code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCamelCase__ = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def lowercase_ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str ): """simple docstring""" inspect_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case__ : Dict =path + '''.py''' assert script_name in os.listdir(SCREAMING_SNAKE_CASE ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def lowercase_ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" inspect_metric(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] =path + '''.py''' assert script_name in os.listdir(SCREAMING_SNAKE_CASE ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def lowercase_ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" snake_case__ : str =get_dataset_config_info(SCREAMING_SNAKE_CASE , config_name=SCREAMING_SNAKE_CASE ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def lowercase_ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" with pytest.raises(SCREAMING_SNAKE_CASE ): get_dataset_config_info(SCREAMING_SNAKE_CASE , config_name=SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def lowercase_ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" snake_case__ : int =get_dataset_config_names(SCREAMING_SNAKE_CASE ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def lowercase_ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" snake_case__ : str =get_dataset_infos(SCREAMING_SNAKE_CASE ) assert list(infos.keys() ) == expected_configs snake_case__ : Any =expected_configs[0] assert expected_config in infos snake_case__ : int =infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def lowercase_ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" snake_case__ : str =get_dataset_infos(SCREAMING_SNAKE_CASE ) assert expected_config in infos snake_case__ : int =infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def lowercase_ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" with pytest.raises(SCREAMING_SNAKE_CASE ): get_dataset_split_names(SCREAMING_SNAKE_CASE , config_name=SCREAMING_SNAKE_CASE )
381
"""simple docstring""" import os from collections import deque import torch from torch.utils.data import Dataset class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' def __init__( self , _A="" , _A="train" ): '''simple docstring''' assert os.path.isdir(_A ) _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =os.listdir(_A ) for story_filename in story_filenames_list: if "summary" in story_filename: continue _SCREAMING_SNAKE_CASE =os.path.join(_A , _A ) if not os.path.isfile(_A ): continue self.documents.append(_A ) def __len__( self ): '''simple docstring''' return len(self.documents ) def __getitem__( self , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.documents[idx] _SCREAMING_SNAKE_CASE =document_path.split('''/''' )[-1] with open(_A , encoding='''utf-8''' ) as source: _SCREAMING_SNAKE_CASE =source.read() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =process_story(_A ) return document_name, story_lines, summary_lines def _lowerCAmelCase(a : str ) -> Any: _SCREAMING_SNAKE_CASE =list(filter(lambda a : len(a ) != 0 , [line.strip() for line in raw_story.split('''\n''' )] ) ) # for some unknown reason some lines miss a period, add it _SCREAMING_SNAKE_CASE =[_add_missing_period(a ) for line in nonempty_lines] # gather article lines _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =deque(a ) while True: try: _SCREAMING_SNAKE_CASE =lines.popleft() if element.startswith('''@highlight''' ): break story_lines.append(a ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines _SCREAMING_SNAKE_CASE =list(filter(lambda a : not t.startswith('''@highlight''' ) , a ) ) return story_lines, summary_lines def _lowerCAmelCase(a : Optional[Any] ) -> Optional[int]: _SCREAMING_SNAKE_CASE =['''.''', '''!''', '''?''', '''...''', '''\'''', '''`''', '''"''', '''\u2019''', '''\u2019''', ''')'''] if line.startswith('''@highlight''' ): return line if line[-1] in END_TOKENS: return line return line + "." def _lowerCAmelCase(a : Optional[int] , a : Optional[Any] , a : Tuple ) -> Union[str, Any]: if len(a ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(a )) ) return sequence def _lowerCAmelCase(a : Optional[int] , a : Any ) -> Dict: _SCREAMING_SNAKE_CASE =torch.ones_like(a ) _SCREAMING_SNAKE_CASE =sequence == pad_token_id _SCREAMING_SNAKE_CASE =0 return mask def _lowerCAmelCase(a : List[str] , a : Union[str, Any] , a : Optional[Any] ) -> Dict: _SCREAMING_SNAKE_CASE =[tokenizer.encode(a ) for line in story_lines] _SCREAMING_SNAKE_CASE =[token for sentence in story_lines_token_ids for token in sentence] _SCREAMING_SNAKE_CASE =[tokenizer.encode(a ) for line in summary_lines] _SCREAMING_SNAKE_CASE =[token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def _lowerCAmelCase(a : Optional[int] , a : str ) -> int: _SCREAMING_SNAKE_CASE =[] for sequence in batch: _SCREAMING_SNAKE_CASE =-1 _SCREAMING_SNAKE_CASE =[] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(a ) return torch.tensor(a )
255
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( _a , unittest.TestCase ): a : Tuple = DanceDiffusionPipeline a : Optional[Any] = UNCONDITIONAL_AUDIO_GENERATION_PARAMS a : str = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } a : List[Any] = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS a : Union[str, Any] = False a : str = False def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=A_ , use_timestep_embedding=A_ , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , ) __lowercase = IPNDMScheduler() __lowercase = { """unet""": unet, """scheduler""": scheduler, } return components def SCREAMING_SNAKE_CASE_ ( self : List[str] , A_ : Tuple , A_ : List[str]=0 ): '''simple docstring''' if str(A_ ).startswith("""mps""" ): __lowercase = torch.manual_seed(A_ ) else: __lowercase = torch.Generator(device=A_ ).manual_seed(A_ ) __lowercase = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' __lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = DanceDiffusionPipeline(**A_ ) __lowercase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __lowercase = self.get_dummy_inputs(A_ ) __lowercase = pipe(**A_ ) __lowercase = output.audios __lowercase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) __lowercase = np.array([-0.72_65, 1.00_00, -0.83_88, 0.11_75, 0.94_98, -1.00_00] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' __lowercase = torch_device __lowercase = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) __lowercase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __lowercase = torch.manual_seed(0 ) __lowercase = pipe(generator=A_ , num_inference_steps=1_0_0 , audio_length_in_s=4.0_96 ) __lowercase = output.audios __lowercase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __lowercase = np.array([-0.01_92, -0.02_31, -0.03_18, -0.00_59, 0.00_02, -0.00_20] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' __lowercase = torch_device __lowercase = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa ) __lowercase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __lowercase = torch.manual_seed(0 ) __lowercase = pipe(generator=A_ , num_inference_steps=1_0_0 , audio_length_in_s=4.0_96 ) __lowercase = output.audios __lowercase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __lowercase = np.array([-0.03_67, -0.04_88, -0.07_71, -0.05_25, -0.04_44, -0.03_41] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
709
"""simple docstring""" from collections.abc import Callable import numpy as np def lowerCAmelCase_ ( UpperCamelCase__ : Callable , UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ): """simple docstring""" __lowercase = int(np.ceil((x_end - xa) / step_size ) ) __lowercase = np.zeros((n + 1,) ) __lowercase = ya __lowercase = xa for k in range(UpperCamelCase__ ): __lowercase = y[k] + step_size * ode_func(UpperCamelCase__ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
442
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a : Tuple = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = ['''MaskFormerFeatureExtractor'''] a : Dict = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] a : List[Any] = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
555
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a_ ( unittest.TestCase ): def _snake_case ( self : Union[str, Any] ) ->Any: '''simple docstring''' _UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] _UpperCAmelCase = DisjunctiveConstraint(__UpperCamelCase ) self.assertTrue(isinstance(dc.token_ids , __UpperCamelCase ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _snake_case ( self : Optional[int] ) ->Dict: '''simple docstring''' _UpperCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(__UpperCamelCase ) # fails here def _snake_case ( self : Optional[int] ) ->Dict: '''simple docstring''' _UpperCAmelCase = [[1, 2, 3], [1, 2, 4]] _UpperCAmelCase = DisjunctiveConstraint(__UpperCamelCase ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = dc.update(1 ) _UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = dc.update(2 ) _UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = dc.update(3 ) _UpperCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _snake_case ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] _UpperCAmelCase = DisjunctiveConstraint(__UpperCamelCase ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
555
1
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase__( snake_case__ , snake_case__ ): '''simple docstring''' @register_to_config def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None) -> List[str]: """simple docstring""" super().__init__() UpperCamelCase__ : Optional[int] =learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCamelCase__ : Dict =torch.zeros(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) else: UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : Any =torch.nn.Parameter(__SCREAMING_SNAKE_CASE) class lowercase__( snake_case__ ): '''simple docstring''' snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> Optional[Any]: """simple docstring""" super().__init__() self.register_modules( vqvae=__SCREAMING_SNAKE_CASE , transformer=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , learned_classifier_free_sampling_embeddings=__SCREAMING_SNAKE_CASE , ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" UpperCamelCase__ : Dict =len(__SCREAMING_SNAKE_CASE) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) else 1 # get prompt text embeddings UpperCamelCase__ : Dict =self.tokenizer( __SCREAMING_SNAKE_CASE , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) UpperCamelCase__ : List[Any] =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase__ : List[str] =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F''' {self.tokenizer.model_max_length} tokens: {removed_text}''') UpperCamelCase__ : Any =text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase__ : List[str] =self.text_encoder(text_input_ids.to(self.device))[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCamelCase__ : str =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__SCREAMING_SNAKE_CASE) # duplicate text embeddings for each generation per prompt UpperCamelCase__ : str =prompt_embeds.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCamelCase__ : Tuple =self.learned_classifier_free_sampling_embeddings.embeddings UpperCamelCase__ : Optional[Any] =negative_prompt_embeds.unsqueeze(0).repeat(__SCREAMING_SNAKE_CASE , 1 , 1) else: UpperCamelCase__ : Dict =[""] * batch_size UpperCamelCase__ : Union[str, Any] =text_input_ids.shape[-1] UpperCamelCase__ : List[Any] =self.tokenizer( __SCREAMING_SNAKE_CASE , padding="max_length" , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , return_tensors="pt" , ) UpperCamelCase__ : Dict =self.text_encoder(uncond_input.input_ids.to(self.device))[0] # See comment for normalizing text embeddings UpperCamelCase__ : Any =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__SCREAMING_SNAKE_CASE) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase__ : List[str] =negative_prompt_embeds.shape[1] UpperCamelCase__ : Optional[int] =negative_prompt_embeds.repeat(1 , __SCREAMING_SNAKE_CASE , 1) UpperCamelCase__ : int =negative_prompt_embeds.view(batch_size * num_images_per_prompt , __SCREAMING_SNAKE_CASE , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase__ : Dict =torch.cat([negative_prompt_embeds, prompt_embeds]) return prompt_embeds @torch.no_grad() def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1_00 , __SCREAMING_SNAKE_CASE = 5.0 , __SCREAMING_SNAKE_CASE = 1.0 , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "pil" , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 1 , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): UpperCamelCase__ : Optional[Any] =1 elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): UpperCamelCase__ : Tuple =len(__SCREAMING_SNAKE_CASE) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(__SCREAMING_SNAKE_CASE)}''') UpperCamelCase__ : List[str] =batch_size * num_images_per_prompt UpperCamelCase__ : Tuple =guidance_scale > 1.0 UpperCamelCase__ : List[str] =self._encode_prompt(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(__SCREAMING_SNAKE_CASE)}.''') # get the initial completely masked latents unless the user supplied it UpperCamelCase__ : Any =(batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCamelCase__ : Optional[Any] =self.transformer.num_vector_embeds - 1 UpperCamelCase__ : Tuple =torch.full(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE).to(self.device) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''') if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( "Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0," F''' {self.transformer.num_vector_embeds - 1} (inclusive).''') UpperCamelCase__ : Union[str, Any] =latents.to(self.device) # set timesteps self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE , device=self.device) UpperCamelCase__ : Optional[Any] =self.scheduler.timesteps.to(self.device) UpperCamelCase__ : Optional[int] =latents for i, t in enumerate(self.progress_bar(__SCREAMING_SNAKE_CASE)): # expand the sample if we are doing classifier free guidance UpperCamelCase__ : Optional[Any] =torch.cat([sample] * 2) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCamelCase__ : List[str] =self.transformer(__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE).sample if do_classifier_free_guidance: UpperCamelCase__ , UpperCamelCase__ : Any =model_output.chunk(2) UpperCamelCase__ : str =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__SCREAMING_SNAKE_CASE , dim=1 , keepdim=__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Union[str, Any] =self.truncate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) # remove `log(0)`'s (`-inf`s) UpperCamelCase__ : Optional[Any] =model_output.clamp(-70) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ : Dict =self.scheduler.step(__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , sample=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) UpperCamelCase__ : Dict =self.vqvae.config.vq_embed_dim UpperCamelCase__ : Any =(batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCamelCase__ : Dict =self.vqvae.quantize.get_codebook_entry(__SCREAMING_SNAKE_CASE , shape=__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Any =self.vqvae.decode(__SCREAMING_SNAKE_CASE , force_not_quantize=__SCREAMING_SNAKE_CASE).sample UpperCamelCase__ : List[Any] =(image / 2 + 0.5).clamp(0 , 1) UpperCamelCase__ : List[Any] =image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": UpperCamelCase__ : List[str] =self.numpy_to_pil(__SCREAMING_SNAKE_CASE) if not return_dict: return (image,) return ImagePipelineOutput(images=__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> torch.FloatTensor: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ : Optional[int] =torch.sort(__SCREAMING_SNAKE_CASE , 1 , descending=__SCREAMING_SNAKE_CASE) UpperCamelCase__ : str =torch.exp(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : List[str] =sorted_p_x_0.cumsum(dim=1) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCamelCase__ : Any =torch.full_like(keep_mask[:, 0:1, :] , __SCREAMING_SNAKE_CASE) UpperCamelCase__ : List[Any] =torch.cat((all_true, keep_mask) , dim=1) UpperCamelCase__ : Union[str, Any] =keep_mask[:, :-1, :] UpperCamelCase__ : Union[str, Any] =keep_mask.gather(1 , indices.argsort(1)) UpperCamelCase__ : Dict =log_p_x_0.clone() UpperCamelCase__ : Dict =-torch.inf # -inf = log(0) return rv
582
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class lowercase__: '''simple docstring''' @staticmethod def UpperCAmelCase ( *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" pass def _lowerCamelCase ( A_ : str ) -> Dict: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __UpperCAmelCase = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class lowercase__( unittest.TestCase ): '''simple docstring''' snake_case__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" UpperCamelCase__ : List[Any] =pipeline( "document-question-answering" , model=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) UpperCamelCase__ : int =INVOICE_URL UpperCamelCase__ : Tuple =list(zip(*apply_tesseract(load_image(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE , ""))) UpperCamelCase__ : int ="What is the placebo?" UpperCamelCase__ : Optional[Any] =[ { "image": load_image(__SCREAMING_SNAKE_CASE), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> int: """simple docstring""" UpperCamelCase__ : Optional[Any] =dqa_pipeline(__SCREAMING_SNAKE_CASE , top_k=2) self.assertEqual( __SCREAMING_SNAKE_CASE , [ [ {"score": ANY(__SCREAMING_SNAKE_CASE), "answer": ANY(__SCREAMING_SNAKE_CASE), "start": ANY(__SCREAMING_SNAKE_CASE), "end": ANY(__SCREAMING_SNAKE_CASE)}, {"score": ANY(__SCREAMING_SNAKE_CASE), "answer": ANY(__SCREAMING_SNAKE_CASE), "start": ANY(__SCREAMING_SNAKE_CASE), "end": ANY(__SCREAMING_SNAKE_CASE)}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase ( self) -> Any: """simple docstring""" UpperCamelCase__ : Union[str, Any] =pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2") UpperCamelCase__ : Tuple =INVOICE_URL UpperCamelCase__ : Dict ="How many cats are there?" UpperCamelCase__ : List[Any] =[ {"score": 0.00_01, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.00_01, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] UpperCamelCase__ : str =dqa_pipeline(image=__SCREAMING_SNAKE_CASE , question=__SCREAMING_SNAKE_CASE , top_k=2) self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , __SCREAMING_SNAKE_CASE) UpperCamelCase__ : Union[str, Any] =dqa_pipeline({"image": image, "question": question} , top_k=2) self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , __SCREAMING_SNAKE_CASE) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably UpperCamelCase__ : Optional[int] ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCamelCase__ : List[str] =dqa_pipeline(image=__SCREAMING_SNAKE_CASE , question=__SCREAMING_SNAKE_CASE , top_k=2) self.assertEqual(__SCREAMING_SNAKE_CASE , []) # We can optionnally pass directly the words and bounding boxes UpperCamelCase__ : Any ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCamelCase__ : Tuple =[] UpperCamelCase__ : Union[str, Any] =[] UpperCamelCase__ : Optional[int] =dqa_pipeline(image=__SCREAMING_SNAKE_CASE , question=__SCREAMING_SNAKE_CASE , words=__SCREAMING_SNAKE_CASE , boxes=__SCREAMING_SNAKE_CASE , top_k=2) self.assertEqual(__SCREAMING_SNAKE_CASE , []) @slow @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase ( self) -> Tuple: """simple docstring""" UpperCamelCase__ : List[str] =pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) UpperCamelCase__ : Dict =INVOICE_URL UpperCamelCase__ : List[Any] ="What is the invoice number?" UpperCamelCase__ : Any =dqa_pipeline(image=__SCREAMING_SNAKE_CASE , question=__SCREAMING_SNAKE_CASE , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ {"score": 0.99_44, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.00_09, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCamelCase__ : Dict =dqa_pipeline({"image": image, "question": question} , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ {"score": 0.99_44, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.00_09, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCamelCase__ : List[Any] =dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ [ {"score": 0.99_44, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.00_09, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase ( self) -> int: """simple docstring""" UpperCamelCase__ : List[Any] =pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) UpperCamelCase__ : Tuple =INVOICE_URL UpperCamelCase__ : Dict ="What is the invoice number?" UpperCamelCase__ : List[Any] =dqa_pipeline(image=__SCREAMING_SNAKE_CASE , question=__SCREAMING_SNAKE_CASE , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ {"score": 0.99_74, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.99_48, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCamelCase__ : Optional[int] =dqa_pipeline({"image": image, "question": question} , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ {"score": 0.99_74, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.99_48, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCamelCase__ : List[str] =dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ [ {"score": 0.99_74, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.99_48, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def UpperCAmelCase ( self) -> Tuple: """simple docstring""" UpperCamelCase__ : Optional[Any] =AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Tuple =pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__SCREAMING_SNAKE_CASE , revision="3dc6de3" , ) UpperCamelCase__ : List[str] =INVOICE_URL UpperCamelCase__ : Tuple ="What is the invoice number?" UpperCamelCase__ : Union[str, Any] =dqa_pipeline(image=__SCREAMING_SNAKE_CASE , question=__SCREAMING_SNAKE_CASE , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ {"score": 0.42_51, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.08_19, "answer": "1110212019", "start": 23, "end": 23}, ] , ) UpperCamelCase__ : Optional[int] =dqa_pipeline({"image": image, "question": question} , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ {"score": 0.42_51, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.08_19, "answer": "1110212019", "start": 23, "end": 23}, ] , ) UpperCamelCase__ : Optional[int] =dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ [ {"score": 0.42_51, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.08_19, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) UpperCamelCase__ : Optional[Any] =list(zip(*apply_tesseract(load_image(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE , ""))) # This model should also work if `image` is set to None UpperCamelCase__ : List[Any] =dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ {"score": 0.42_51, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.08_19, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def UpperCAmelCase ( self) -> str: """simple docstring""" UpperCamelCase__ : List[Any] =AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__SCREAMING_SNAKE_CASE) UpperCamelCase__ : List[Any] =pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__SCREAMING_SNAKE_CASE , revision="3dc6de3" , max_seq_len=50 , ) UpperCamelCase__ : str =INVOICE_URL UpperCamelCase__ : List[str] ="What is the invoice number?" UpperCamelCase__ : Union[str, Any] =dqa_pipeline(image=__SCREAMING_SNAKE_CASE , question=__SCREAMING_SNAKE_CASE , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ {"score": 0.99_99, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.99_98, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCamelCase__ : int =dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ [ {"score": 0.99_99, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.99_98, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) UpperCamelCase__ : List[Any] =list(zip(*apply_tesseract(load_image(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE , ""))) # This model should also work if `image` is set to None UpperCamelCase__ : Optional[Any] =dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ {"score": 0.99_99, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.99_98, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" UpperCamelCase__ : List[Any] =pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa") , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) UpperCamelCase__ : Optional[Any] =INVOICE_URL UpperCamelCase__ : Dict ="What is the invoice number?" UpperCamelCase__ : Any =dqa_pipeline(image=__SCREAMING_SNAKE_CASE , question=__SCREAMING_SNAKE_CASE , top_k=2) self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [{"answer": "us-001"}]) @require_tf @unittest.skip("Document question answering not implemented in TF") def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" pass
582
1
import numpy as np __lowerCamelCase : Union[str, Any] = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Any ): snake_case__ : List[str] = np.array(A_ ) def _lowercase ( self : Any , __A : List[Any] ): snake_case__, snake_case__ : Any = np.where(letter == self.SQUARE ) snake_case__ : Tuple = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _lowercase ( self : Tuple , __A : Any , __A : Tuple ): snake_case__ : Optional[int] = self.SQUARE[indexa - 1, indexa - 1] return letter def _lowercase ( self : List[Any] , __A : Optional[int] ): snake_case__ : Optional[Any] = message.lower() snake_case__ : Any = message.replace(" " , "" ) snake_case__ : Dict = message.replace("j" , "i" ) snake_case__ : List[str] = np.empty((2, len(A_ )) ) for letter_index in range(len(A_ ) ): snake_case__ : int = self.letter_to_numbers(message[letter_index] ) snake_case__ : Tuple = numbers[0] snake_case__ : Optional[Any] = numbers[1] snake_case__ : Any = first_step.reshape(2 * len(A_ ) ) snake_case__ : List[Any] = "" for numbers_index in range(len(A_ ) ): snake_case__ : Dict = int(second_step[numbers_index * 2] ) snake_case__ : int = int(second_step[(numbers_index * 2) + 1] ) snake_case__ : List[Any] = self.numbers_to_letter(A_ , A_ ) snake_case__ : List[Any] = encoded_message + letter return encoded_message def _lowercase ( self : Tuple , __A : Dict ): snake_case__ : Any = message.lower() message.replace(" " , "" ) snake_case__ : Tuple = np.empty(2 * len(A_ ) ) for letter_index in range(len(A_ ) ): snake_case__ : List[Any] = self.letter_to_numbers(message[letter_index] ) snake_case__ : List[str] = numbers[0] snake_case__ : List[str] = numbers[1] snake_case__ : Optional[int] = first_step.reshape((2, len(A_ )) ) snake_case__ : Union[str, Any] = "" for numbers_index in range(len(A_ ) ): snake_case__ : Optional[Any] = int(second_step[0, numbers_index] ) snake_case__ : Tuple = int(second_step[1, numbers_index] ) snake_case__ : Dict = self.numbers_to_letter(A_ , A_ ) snake_case__ : Optional[Any] = decoded_message + letter return decoded_message
297
'''simple docstring''' import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ , A_=100 , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=4 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=None , A_=[0, 1, 2, 3] , )-> Any: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = 100 UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = scope UpperCamelCase = out_indices UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = num_patches + 1 def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> List[str]: '''simple docstring''' UpperCamelCase = BeitModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Any: '''simple docstring''' UpperCamelCase = BeitForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.type_sequence_label_size UpperCamelCase = BeitForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = BeitForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ )-> Optional[Any]: '''simple docstring''' UpperCamelCase = self.num_labels UpperCamelCase = BeitForSemanticSegmentation(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase_ = ( { """feature-extraction""": BeitModel, """image-classification""": BeitForImageClassification, """image-segmentation""": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = BeitModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A_ ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' if not self.model_tester.is_training: return UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(A_ ), BeitForMaskedImageModeling]: continue UpperCamelCase = model_class(A_ ) model.to(A_ ) model.train() UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ ) UpperCamelCase = model(**A_ ).loss loss.backward() def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase = False UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(A_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCamelCase = model_class(A_ ) model.gradient_checkpointing_enable() model.to(A_ ) model.train() UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ ) UpperCamelCase = model(**A_ ).loss loss.backward() def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = _config_zero_init(A_ ) for model_class in self.all_model_classes: UpperCamelCase = model_class(config=A_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = BeitModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A_( ): UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @cached_property def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).pixel_values.to(A_ ) # prepare bool_masked_pos UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(pixel_values=A_ , bool_masked_pos=A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(A_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , A_ , atol=1e-2 ) ) @slow def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(A_ ) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) ) UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , A_ ) @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 21841) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(A_ ) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) ) UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , A_ ) @slow def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) UpperCamelCase = model.to(A_ ) UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ ) UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) UpperCamelCase = Image.open(ds[0]['file'] ) UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: UpperCamelCase = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] , device=A_ , ) else: UpperCamelCase = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] , device=A_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1e-4 ) ) @slow def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) UpperCamelCase = model.to(A_ ) UpperCamelCase = BeitImageProcessor(do_resize=A_ , size=640 , do_center_crop=A_ ) UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) UpperCamelCase = Image.open(ds[0]['file'] ) UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits.detach().cpu() UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ , target_sizes=[(500, 300)] ) UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , A_ ) UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ ) UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , A_ )
3
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case__ : Optional[Any] = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = ['''MobileViTFeatureExtractor'''] snake_case__ : Optional[Any] = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Any = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[int] = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
637
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : int = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class snake_case_( a__ ): __UpperCamelCase = '''levit''' def __init__( self : str , UpperCamelCase_ : Union[str, Any]=2_2_4 , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : int=2 , UpperCamelCase_ : Union[str, Any]=1 , UpperCamelCase_ : Tuple=1_6 , UpperCamelCase_ : Dict=[1_2_8, 2_5_6, 3_8_4] , UpperCamelCase_ : Optional[Any]=[4, 8, 1_2] , UpperCamelCase_ : Dict=[4, 4, 4] , UpperCamelCase_ : Any=[1_6, 1_6, 1_6] , UpperCamelCase_ : str=0 , UpperCamelCase_ : int=[2, 2, 2] , UpperCamelCase_ : Optional[Any]=[2, 2, 2] , UpperCamelCase_ : str=0.02 , **UpperCamelCase_ : List[str] , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Tuple = image_size lowerCAmelCase : int = num_channels lowerCAmelCase : Optional[int] = kernel_size lowerCAmelCase : Dict = stride lowerCAmelCase : List[Any] = padding lowerCAmelCase : Dict = hidden_sizes lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Tuple = depths lowerCAmelCase : Dict = key_dim lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : List[Any] = patch_size lowerCAmelCase : Tuple = attention_ratio lowerCAmelCase : Optional[int] = mlp_ratio lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : List[str] = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class snake_case_( a__ ): __UpperCamelCase = version.parse('''1.11''' ) @property def lowerCamelCase__ ( self : Tuple ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCamelCase__ ( self : Optional[Any] ): return 1E-4
637
1
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase ( snake_case__ , snake_case__ ): @register_to_config def __init__( self : str ,*, _lowerCAmelCase : int = 4 ,_lowerCAmelCase : int = 768 ,_lowerCAmelCase : int ,_lowerCAmelCase : Any ,): """simple docstring""" super().__init__() __snake_case = nn.Parameter(torch.zeros(_lowerCAmelCase ) ) # parameters for additional clip time embeddings __snake_case = nn.Linear(_lowerCAmelCase ,_lowerCAmelCase ) __snake_case = nn.Linear(_lowerCAmelCase ,_lowerCAmelCase ) # parameters for encoder hidden states __snake_case = clip_extra_context_tokens __snake_case = nn.Linear( _lowerCAmelCase ,self.clip_extra_context_tokens * cross_attention_dim ) __snake_case = nn.Linear(_lowerCAmelCase ,_lowerCAmelCase ) __snake_case = nn.LayerNorm(_lowerCAmelCase ) def UpperCamelCase_ ( self : int ,*, _lowerCAmelCase : List[str] ,_lowerCAmelCase : List[Any] ,_lowerCAmelCase : List[Any] ,_lowerCAmelCase : List[str] ): """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __snake_case = image_embeddings.shape[0] __snake_case = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __snake_case = classifier_free_guidance_embeddings.expand( _lowerCAmelCase ,-1 ) __snake_case = torch.cat([classifier_free_guidance_embeddings, image_embeddings] ,dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __snake_case = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __snake_case = self.embedding_proj(_lowerCAmelCase ) __snake_case = self.clip_image_embeddings_project_to_time_embeddings(_lowerCAmelCase ) __snake_case = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __snake_case = self.clip_extra_context_tokens_proj(_lowerCAmelCase ) __snake_case = clip_extra_context_tokens.reshape(_lowerCAmelCase ,-1 ,self.clip_extra_context_tokens ) __snake_case = clip_extra_context_tokens.permute(0 ,2 ,1 ) __snake_case = self.encoder_hidden_states_proj(_lowerCAmelCase ) __snake_case = self.text_encoder_hidden_states_norm(_lowerCAmelCase ) __snake_case = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] ,dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
524
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py lowerCamelCase__ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase__ = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. lowerCamelCase__ = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') lowerCamelCase__ = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase__ = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) lowerCamelCase__ = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def _lowerCamelCase( __snake_case ) -> Tuple: __snake_case = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , __snake_case ) return [m.group(0 ) for m in matches] def _lowerCamelCase( ) -> Optional[int]: __snake_case = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __snake_case = { config.replace("Config" , "" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __snake_case = collections.defaultdict(__snake_case ) __snake_case = collections.defaultdict(__snake_case ) __snake_case = collections.defaultdict(__snake_case ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(__snake_case ): __snake_case = None if _re_tf_models.match(__snake_case ) is not None: __snake_case = tf_models __snake_case = _re_tf_models.match(__snake_case ).groups()[0] elif _re_flax_models.match(__snake_case ) is not None: __snake_case = flax_models __snake_case = _re_flax_models.match(__snake_case ).groups()[0] elif _re_pt_models.match(__snake_case ) is not None: __snake_case = pt_models __snake_case = _re_pt_models.match(__snake_case ).groups()[0] if lookup_dict is not None: while len(__snake_case ) > 0: if attr_name in model_prefix_to_model_type: __snake_case = True break # Try again after removing the last word in the name __snake_case = "".join(camel_case_split(__snake_case )[:-1] ) __snake_case = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __snake_case = list(__snake_case ) all_models.sort() __snake_case = {"model_type": all_models} __snake_case = [pt_models[t] for t in all_models] __snake_case = [tf_models[t] for t in all_models] __snake_case = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __snake_case = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __snake_case = "AutoProcessor" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __snake_case = "AutoTokenizer" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __snake_case = "AutoFeatureExtractor" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __snake_case = "AutoTokenizer" __snake_case = [processors[t] for t in all_models] return pd.DataFrame(__snake_case ) def _lowerCamelCase( __snake_case ) -> List[Any]: __snake_case = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __snake_case = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] __snake_case = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(__snake_case , __snake_case , __snake_case ): # The type of pipeline may not exist in this framework if not hasattr(__snake_case , __snake_case ): continue # First extract all model_names __snake_case = [] for name in getattr(__snake_case , __snake_case ).values(): if isinstance(__snake_case , __snake_case ): model_names.append(__snake_case ) else: model_names.extend(list(__snake_case ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def _lowerCamelCase( __snake_case , __snake_case ) -> Union[str, Any]: __snake_case = get_frameworks_table() __snake_case = Dataset.from_pandas(__snake_case ) __snake_case = hf_hub_download( "huggingface/transformers-metadata" , "pipeline_tags.json" , repo_type="dataset" , token=__snake_case ) __snake_case = Dataset.from_json(__snake_case ) __snake_case = { tags_dataset[i]["model_class"]: (tags_dataset[i]["pipeline_tag"], tags_dataset[i]["auto_class"]) for i in range(len(__snake_case ) ) } __snake_case = update_pipeline_and_auto_class_table(__snake_case ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __snake_case = sorted(table.keys() ) __snake_case = pd.DataFrame( { "model_class": model_classes, "pipeline_tag": [table[m][0] for m in model_classes], "auto_class": [table[m][1] for m in model_classes], } ) __snake_case = Dataset.from_pandas(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(__snake_case , "frameworks.json" ) ) tags_dataset.to_json(os.path.join(__snake_case , "pipeline_tags.json" ) ) if commit_sha is not None: __snake_case = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: __snake_case = "Update" upload_folder( repo_id="huggingface/transformers-metadata" , folder_path=__snake_case , repo_type="dataset" , token=__snake_case , commit_message=__snake_case , ) def _lowerCamelCase( ) -> Union[str, Any]: __snake_case = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __snake_case = transformers_module.pipelines.SUPPORTED_TASKS __snake_case = [] for key in pipeline_tasks: if key not in in_table: __snake_case = pipeline_tasks[key]["pt"] if isinstance(__snake_case , (list, tuple) ): __snake_case = model[0] __snake_case = model.__name__ if model not in in_table.values(): missing.append(__snake_case ) if len(__snake_case ) > 0: __snake_case = ", ".join(__snake_case ) raise ValueError( "The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside " f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') lowerCamelCase__ = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
524
1
'''simple docstring''' class __UpperCAmelCase : '''simple docstring''' def __init__( self ): UpperCAmelCase__ : Optional[Any] = '''''' UpperCAmelCase__ : List[str] = '''''' UpperCAmelCase__ : Union[str, Any] = [] def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: UpperCAmelCase__ : int = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: UpperCAmelCase__ : Dict = self.__min_dist_top_down_dp(_UpperCAmelCase , n - 1 ) UpperCAmelCase__ : Union[str, Any] = self.__min_dist_top_down_dp(m - 1 , _UpperCAmelCase ) UpperCAmelCase__ : Union[str, Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) UpperCAmelCase__ : str = 1 + min(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self.dp[m][n] def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ : Any = worda UpperCAmelCase__ : Dict = worda UpperCAmelCase__ : int = [[-1 for _ in range(len(_UpperCAmelCase ) )] for _ in range(len(_UpperCAmelCase ) )] return self.__min_dist_top_down_dp(len(_UpperCAmelCase ) - 1 , len(_UpperCAmelCase ) - 1 ) def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ : List[str] = worda UpperCAmelCase__ : Tuple = worda UpperCAmelCase__ : Optional[int] = len(_UpperCAmelCase ) UpperCAmelCase__ : Union[str, Any] = len(_UpperCAmelCase ) UpperCAmelCase__ : Optional[int] = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty UpperCAmelCase__ : Any = j elif j == 0: # second string is empty UpperCAmelCase__ : Optional[int] = i elif worda[i - 1] == worda[j - 1]: # last characters are equal UpperCAmelCase__ : Dict = self.dp[i - 1][j - 1] else: UpperCAmelCase__ : List[str] = self.dp[i][j - 1] UpperCAmelCase__ : List[str] = self.dp[i - 1][j] UpperCAmelCase__ : List[Any] = self.dp[i - 1][j - 1] UpperCAmelCase__ : str = 1 + min(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self.dp[m][n] if __name__ == "__main__": UpperCamelCase_ = EditDistance() print("****************** Testing Edit Distance DP Algorithm ******************") print() UpperCamelCase_ = input("Enter the first string: ").strip() UpperCamelCase_ = input("Enter the second string: ").strip() print() print(f'The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}') print(f'The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}') print() print("*************** End of Testing Edit Distance DP Algorithm ***************")
599
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ('''foo.json''',)] ) def lowerCamelCase ( self , _UpperCAmelCase ): UpperCAmelCase__ : Tuple = GenerationConfig( do_sample=_UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_UpperCAmelCase , config_name=_UpperCAmelCase ) UpperCAmelCase__ : List[str] = GenerationConfig.from_pretrained(_UpperCAmelCase , config_name=_UpperCAmelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , _UpperCAmelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , _UpperCAmelCase ) def lowerCamelCase ( self ): UpperCAmelCase__ : Dict = AutoConfig.from_pretrained('''gpt2''' ) UpperCAmelCase__ : Optional[Any] = GenerationConfig.from_model_config(_UpperCAmelCase ) UpperCAmelCase__ : Dict = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def lowerCamelCase ( self ): UpperCAmelCase__ : int = GenerationConfig() UpperCAmelCase__ : Tuple = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } UpperCAmelCase__ : Optional[Any] = copy.deepcopy(_UpperCAmelCase ) UpperCAmelCase__ : int = generation_config.update(**_UpperCAmelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(_UpperCAmelCase , {'''foo''': '''bar'''} ) def lowerCamelCase ( self ): UpperCAmelCase__ : Optional[int] = GenerationConfig() UpperCAmelCase__ : Tuple = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(_UpperCAmelCase ) UpperCAmelCase__ : Union[str, Any] = GenerationConfig.from_pretrained(_UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) UpperCAmelCase__ : Dict = GenerationConfig.from_model_config(_UpperCAmelCase ) assert not hasattr(_UpperCAmelCase , '''foo''' ) # no new kwargs should be initialized if from config def lowerCamelCase ( self ): UpperCAmelCase__ : Union[str, Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , _UpperCAmelCase ) self.assertEqual(default_config.num_beams , 1 ) UpperCAmelCase__ : List[str] = GenerationConfig( do_sample=_UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , _UpperCAmelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_UpperCAmelCase ) UpperCAmelCase__ : Tuple = GenerationConfig.from_pretrained(_UpperCAmelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , _UpperCAmelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCamelCase ( cls ): UpperCAmelCase__ : int = TOKEN HfFolder.save_token(_UpperCAmelCase ) @classmethod def lowerCamelCase ( cls ): try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def lowerCamelCase ( self ): UpperCAmelCase__ : Union[str, Any] = GenerationConfig( do_sample=_UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) UpperCAmelCase__ : List[str] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _UpperCAmelCase , repo_id='''test-generation-config''' , push_to_hub=_UpperCAmelCase , use_auth_token=self._token ) UpperCAmelCase__ : Tuple = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCamelCase ( self ): UpperCAmelCase__ : Optional[int] = GenerationConfig( do_sample=_UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) UpperCAmelCase__ : str = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _UpperCAmelCase , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=_UpperCAmelCase , use_auth_token=self._token ) UpperCAmelCase__ : List[Any] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) )
599
1
"""simple docstring""" import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class lowerCAmelCase_ ( A__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_=1_024 , snake_case_=1_024 , snake_case_=3.6 ) -> int: __lowerCAmelCase = tokenizer __lowerCAmelCase = tokenizer.bos_token_id __lowerCAmelCase = dataset __lowerCAmelCase = seq_length __lowerCAmelCase = seq_length * chars_per_token * num_of_sequences def __iter__( self ) -> Optional[int]: __lowerCAmelCase = iter(self.dataset ) __lowerCAmelCase = True while more_examples: __lowerCAmelCase , __lowerCAmelCase = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(snake_case_ )["""content"""] ) buffer_len += len(buffer[-1] ) except StopIteration: __lowerCAmelCase = False break __lowerCAmelCase = tokenizer(snake_case_ , truncation=snake_case_ )["""input_ids"""] __lowerCAmelCase = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(snake_case_ ) , self.seq_length ): __lowerCAmelCase = all_token_ids[i : i + self.seq_length] if len(snake_case_ ) == self.seq_length: yield torch.tensor(snake_case_ ) def lowercase (_lowerCAmelCase ): __lowerCAmelCase = {"""streaming""": True} __lowerCAmelCase = load_dataset(args.dataset_name , split="""train""" , **_lowerCAmelCase ) __lowerCAmelCase = ConstantLengthDataset(_lowerCAmelCase , _lowerCAmelCase , seq_length=args.seq_length ) __lowerCAmelCase = DataLoader(_lowerCAmelCase , batch_size=args.batch_size ) return eval_dataloader def lowercase (_lowerCAmelCase ): model.eval() __lowerCAmelCase = [] for step, batch in enumerate(_lowerCAmelCase ): with torch.no_grad(): __lowerCAmelCase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) __lowerCAmelCase = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_lowerCAmelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __lowerCAmelCase = torch.mean(torch.cat(_lowerCAmelCase ) ) try: __lowerCAmelCase = torch.exp(_lowerCAmelCase ) except OverflowError: __lowerCAmelCase = float("""inf""" ) return loss.item(), perplexity.item() # Setup Accelerator SCREAMING_SNAKE_CASE_ = Accelerator() # Parse configuration SCREAMING_SNAKE_CASE_ = HfArgumentParser(EvaluationArguments) SCREAMING_SNAKE_CASE_ = parser.parse_args() set_seed(args.seed) # Logging SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) # Load model and tokenizer SCREAMING_SNAKE_CASE_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader SCREAMING_SNAKE_CASE_ = create_dataloader(args) # Prepare everything with our `accelerator`. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('''Evaluating and saving model after training''') SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = evaluate(args) logger.info(F"loss/eval: {eval_loss}, perplexity: {perplexity}")
465
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = '''efficientformer''' def __init__( self , snake_case_ = [3, 2, 6, 4] , snake_case_ = [48, 96, 224, 448] , snake_case_ = [True, True, True, True] , snake_case_ = 448 , snake_case_ = 32 , snake_case_ = 4 , snake_case_ = 7 , snake_case_ = 5 , snake_case_ = 8 , snake_case_ = 4 , snake_case_ = 0.0 , snake_case_ = 16 , snake_case_ = 3 , snake_case_ = 3 , snake_case_ = 3 , snake_case_ = 2 , snake_case_ = 1 , snake_case_ = 0.0 , snake_case_ = 1 , snake_case_ = True , snake_case_ = True , snake_case_ = 1e-5 , snake_case_ = "gelu" , snake_case_ = 0.02 , snake_case_ = 1e-1_2 , snake_case_ = 224 , snake_case_ = 1e-0_5 , **snake_case_ , ) -> None: super().__init__(**snake_case_ ) __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = hidden_sizes __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = depths __lowerCAmelCase = mlp_expansion_ratio __lowerCAmelCase = downsamples __lowerCAmelCase = dim __lowerCAmelCase = key_dim __lowerCAmelCase = attention_ratio __lowerCAmelCase = resolution __lowerCAmelCase = pool_size __lowerCAmelCase = downsample_patch_size __lowerCAmelCase = downsample_stride __lowerCAmelCase = downsample_pad __lowerCAmelCase = drop_path_rate __lowerCAmelCase = num_metaad_blocks __lowerCAmelCase = distillation __lowerCAmelCase = use_layer_scale __lowerCAmelCase = layer_scale_init_value __lowerCAmelCase = image_size __lowerCAmelCase = batch_norm_eps
465
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : Any = {'vocab_file': 'spiece.model'} __lowerCamelCase : str = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } __lowerCamelCase : List[Any] = { 'albert-base-v1': 5_12, 'albert-large-v1': 5_12, 'albert-xlarge-v1': 5_12, 'albert-xxlarge-v1': 5_12, 'albert-base-v2': 5_12, 'albert-large-v2': 5_12, 'albert-xlarge-v2': 5_12, 'albert-xxlarge-v2': 5_12, } __lowerCamelCase : Dict = '▁' class lowerCamelCase ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ =VOCAB_FILES_NAMES UpperCamelCase__ =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any=True , lowerCamelCase_ : str=True , lowerCamelCase_ : str=False , lowerCamelCase_ : Optional[int]="[CLS]" , lowerCamelCase_ : str="[SEP]" , lowerCamelCase_ : Optional[int]="<unk>" , lowerCamelCase_ : str="[SEP]" , lowerCamelCase_ : Optional[int]="<pad>" , lowerCamelCase_ : Optional[Any]="[CLS]" , lowerCamelCase_ : List[str]="[MASK]" , lowerCamelCase_ : Optional[Dict[str, Any]] = None , **lowerCamelCase_ : List[Any] , ) -> Union[str, Any]: __magic_name__ : Dict = ( AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ , normalized=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token ) __magic_name__ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) __magic_name__ : str = do_lower_case __magic_name__ : List[str] = remove_space __magic_name__ : Tuple = keep_accents __magic_name__ : Tuple = vocab_file __magic_name__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) @property def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: return len(self.sp_model ) def UpperCAmelCase__ ( self : Tuple ) -> Tuple: __magic_name__ : List[str] = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ) -> int: __magic_name__ : Dict = self.__dict__.copy() __magic_name__ : Tuple = None return state def __setstate__( self : List[Any] , lowerCamelCase_ : List[str] ) -> int: __magic_name__ : str = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __magic_name__ : str = {} __magic_name__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ ( self : Dict , lowerCamelCase_ : Optional[Any] ) -> List[Any]: if self.remove_space: __magic_name__ : str = ''' '''.join(inputs.strip().split() ) else: __magic_name__ : Optional[int] = inputs __magic_name__ : List[str] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: __magic_name__ : Any = unicodedata.normalize('''NFKD''' , UpperCamelCase__ ) __magic_name__ : int = ''''''.join([c for c in outputs if not unicodedata.combining(UpperCamelCase__ )] ) if self.do_lower_case: __magic_name__ : Union[str, Any] = outputs.lower() return outputs def UpperCAmelCase__ ( self : Any , lowerCamelCase_ : str ) -> Optional[int]: __magic_name__ : Optional[Any] = self.preprocess_text(UpperCamelCase__ ) __magic_name__ : Union[str, Any] = self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) __magic_name__ : str = [] for piece in pieces: if len(UpperCamelCase__ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): __magic_name__ : Any = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCamelCase__ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __magic_name__ : Tuple = cur_pieces[1:] else: __magic_name__ : List[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCamelCase__ ) else: new_pieces.append(UpperCamelCase__ ) return new_pieces def UpperCAmelCase__ ( self : Dict , lowerCamelCase_ : Optional[Any] ) -> List[str]: return self.sp_model.PieceToId(UpperCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] , lowerCamelCase_ : Tuple ) -> Optional[int]: return self.sp_model.IdToPiece(UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase_ : List[Any] ) -> Union[str, Any]: __magic_name__ : List[Any] = [] __magic_name__ : List[str] = '''''' __magic_name__ : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase__ ) + token __magic_name__ : Union[str, Any] = True __magic_name__ : List[str] = [] else: current_sub_tokens.append(UpperCamelCase__ ) __magic_name__ : Tuple = False out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def UpperCAmelCase__ ( self : Union[str, Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ) -> Tuple: __magic_name__ : Optional[int] = [self.sep_token_id] __magic_name__ : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self : Dict , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ) -> Optional[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1] def UpperCAmelCase__ ( self : Tuple , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ) -> Dict: __magic_name__ : List[str] = [self.sep_token_id] __magic_name__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self : Dict , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ) -> Optional[int]: if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __magic_name__ : Dict = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , '''wb''' ) as fi: __magic_name__ : int = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
712
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' UpperCamelCase__ =inspect.getfile(accelerate.test_utils ) UpperCamelCase__ =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) UpperCamelCase__ =['''accelerate''', '''launch'''] UpperCamelCase__ =Path.home() / '''.cache/huggingface/accelerate''' UpperCamelCase__ ='''default_config.yaml''' UpperCamelCase__ =config_folder / config_file UpperCamelCase__ =config_folder / '''_default_config.yaml''' UpperCamelCase__ =Path('''tests/test_configs''' ) @classmethod def UpperCAmelCase__ ( cls : Optional[int] ) -> int: if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def UpperCAmelCase__ ( cls : Dict ) -> List[str]: if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def UpperCAmelCase__ ( self : str ) -> Optional[Any]: __magic_name__ : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def UpperCAmelCase__ ( self : int ) -> Optional[int]: for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=lowerCamelCase_ ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(lowerCamelCase_ ), self.test_file_path] , env=os.environ.copy() ) def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' UpperCamelCase__ ='''test-tpu''' UpperCamelCase__ ='''us-central1-a''' UpperCamelCase__ ='''ls''' UpperCamelCase__ =['''accelerate''', '''tpu-config'''] UpperCamelCase__ ='''cd /usr/share''' UpperCamelCase__ ='''tests/test_samples/test_command_file.sh''' UpperCamelCase__ ='''Running gcloud compute tpus tpu-vm ssh''' def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: __magic_name__ : str = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=lowerCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: __magic_name__ : int = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=lowerCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self : List[Any] ) -> Tuple: __magic_name__ : Any = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=lowerCamelCase_ ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: __magic_name__ : Tuple = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=lowerCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self : List[Any] ) -> Dict: __magic_name__ : str = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=lowerCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : Union[str, Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=lowerCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self : int ) -> List[Any]: __magic_name__ : List[Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=lowerCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self : str ) -> Dict: __magic_name__ : Tuple = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=lowerCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self : Any ) -> Tuple: __magic_name__ : Tuple = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=lowerCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , lowerCamelCase_ , )
501
0
"""simple docstring""" import argparse import datetime def __snake_case ( SCREAMING_SNAKE_CASE__ : str ) -> str: '''simple docstring''' _UpperCAmelCase : List[Any] = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } _UpperCAmelCase : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(SCREAMING_SNAKE_CASE__ ) < 11: raise ValueError("Must be 10 characters long" ) # Get month _UpperCAmelCase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12" ) _UpperCAmelCase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get day _UpperCAmelCase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31" ) # Get second separator _UpperCAmelCase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get year _UpperCAmelCase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8_500: raise ValueError( "Year out of range. There has to be some sort of limit...right?" ) # Get datetime obj for validation _UpperCAmelCase : Tuple = datetime.date(int(SCREAMING_SNAKE_CASE__ ) , int(SCREAMING_SNAKE_CASE__ ) , int(SCREAMING_SNAKE_CASE__ ) ) # Start math if m <= 2: _UpperCAmelCase : int = y - 1 _UpperCAmelCase : Optional[int] = m + 12 # maths var _UpperCAmelCase : int = int(str(SCREAMING_SNAKE_CASE__ )[:2] ) _UpperCAmelCase : int = int(str(SCREAMING_SNAKE_CASE__ )[2:] ) _UpperCAmelCase : int = int(2.6 * m - 5.39 ) _UpperCAmelCase : int = int(c / 4 ) _UpperCAmelCase : int = int(k / 4 ) _UpperCAmelCase : int = int(d + k ) _UpperCAmelCase : int = int(t + u + v + x ) _UpperCAmelCase : int = int(z - (2 * c) ) _UpperCAmelCase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer." ) # Response _UpperCAmelCase : str = f'Your date {date_input}, is a {days[str(SCREAMING_SNAKE_CASE__ )]}!' return response if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Any = argparse.ArgumentParser( description=( "Find out what day of the week nearly any date is or was. Enter " "date as a string in the mm-dd-yyyy or mm/dd/yyyy format" ) ) parser.add_argument( "date_input", type=str, help="Date as a string (mm-dd-yyyy or mm/dd/yyyy)" ) _lowerCAmelCase : Optional[Any] = parser.parse_args() zeller(args.date_input)
289
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase : List[str] = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } _lowerCAmelCase : List[str] = { "gpt2": 10_24, "gpt2-medium": 10_24, "gpt2-large": 10_24, "gpt2-xl": 10_24, "distilgpt2": 10_24, } class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Dict = GPTaTokenizer def __init__( self : Optional[Any] , A : Optional[int]=None , A : List[Any]=None , A : Optional[int]=None , A : Optional[Any]="<|endoftext|>" , A : Union[str, Any]="<|endoftext|>" , A : Optional[Any]="<|endoftext|>" , A : Optional[Any]=False , **A : str , ): super().__init__( A , A , tokenizer_file=A , unk_token=A , bos_token=A , eos_token=A , add_prefix_space=A , **A , ) _UpperCAmelCase : List[Any] = kwargs.pop("add_bos_token" , A ) _UpperCAmelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , A ) != add_prefix_space: _UpperCAmelCase : Dict = getattr(A , pre_tok_state.pop("type" ) ) _UpperCAmelCase : Optional[Any] = add_prefix_space _UpperCAmelCase : Optional[Any] = pre_tok_class(**A ) _UpperCAmelCase : List[Any] = add_prefix_space def snake_case_ ( self : List[Any] , *A : List[Any] , **A : List[str] ): _UpperCAmelCase : Union[str, Any] = kwargs.get("is_split_into_words" , A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A , **A ) def snake_case_ ( self : Optional[Any] , *A : List[Any] , **A : int ): _UpperCAmelCase : Union[str, Any] = kwargs.get("is_split_into_words" , A ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*A , **A ) def snake_case_ ( self : Optional[int] , A : str , A : Optional[str] = None ): _UpperCAmelCase : List[Any] = self._tokenizer.model.save(A , name=A ) return tuple(A ) def snake_case_ ( self : int , A : "Conversation" ): _UpperCAmelCase : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(A , add_special_tokens=A ) + [self.eos_token_id] ) if len(A ) > self.model_max_length: _UpperCAmelCase : Optional[int] = input_ids[-self.model_max_length :] return input_ids
289
1
def _lowercase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] SCREAMING_SNAKE_CASE__ = 6 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 1901 SCREAMING_SNAKE_CASE__ = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 SCREAMING_SNAKE_CASE__ = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 SCREAMING_SNAKE_CASE__ = day - 29 else: if day > days_per_month[month - 1]: month += 1 SCREAMING_SNAKE_CASE__ = day - days_per_month[month - 2] if month > 12: year += 1 SCREAMING_SNAKE_CASE__ = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
400
from typing import TYPE_CHECKING from ...utils import _LazyModule __snake_case = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
400
1
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowercase__ : Dict = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @classmethod def snake_case__ ( cls : List[Any] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def snake_case__ ( cls : str ) -> List[Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def snake_case__ ( self : Dict ) -> int: '''simple docstring''' _UpperCamelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) _UpperCamelCase = FlaxBertModel(lowerCAmelCase__ ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) _UpperCamelCase = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) _UpperCamelCase = flatten_dict(unfreeze(model.params ) ) _UpperCamelCase = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _UpperCamelCase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase__ , 1e-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCAmelCase__ , repo_id='''test-model-flax''' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) _UpperCamelCase = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) _UpperCamelCase = flatten_dict(unfreeze(model.params ) ) _UpperCamelCase = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _UpperCamelCase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase__ , 1e-3 , msg=f"""{key} not identical""" ) def snake_case__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) _UpperCamelCase = FlaxBertModel(lowerCAmelCase__ ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) _UpperCamelCase = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) _UpperCamelCase = flatten_dict(unfreeze(model.params ) ) _UpperCamelCase = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _UpperCamelCase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase__ , 1e-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowerCAmelCase__ , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) _UpperCamelCase = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) _UpperCamelCase = flatten_dict(unfreeze(model.params ) ) _UpperCamelCase = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _UpperCamelCase = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowerCAmelCase__ , 1e-3 , msg=f"""{key} not identical""" ) def a__ ( lowercase : Dict, lowercase : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCamelCase = True _UpperCamelCase = flatten_dict(modela.params ) _UpperCamelCase = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: _UpperCamelCase = False return models_are_equal @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Any ) -> Tuple: '''simple docstring''' _UpperCamelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) _UpperCamelCase = FlaxBertModel(lowerCAmelCase__ ) _UpperCamelCase = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ) with self.assertRaises(lowerCAmelCase__ ): _UpperCamelCase = FlaxBertModel.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = FlaxBertModel.from_pretrained(lowerCAmelCase__ , subfolder=lowerCAmelCase__ ) self.assertTrue(check_models_equal(lowerCAmelCase__ , lowerCAmelCase__ ) ) def snake_case__ ( self : Any ) -> int: '''simple docstring''' _UpperCamelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) _UpperCamelCase = FlaxBertModel(lowerCAmelCase__ ) _UpperCamelCase = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , max_shard_size='''10KB''' ) with self.assertRaises(lowerCAmelCase__ ): _UpperCamelCase = FlaxBertModel.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = FlaxBertModel.from_pretrained(lowerCAmelCase__ , subfolder=lowerCAmelCase__ ) self.assertTrue(check_models_equal(lowerCAmelCase__ , lowerCAmelCase__ ) ) def snake_case__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase = '''bert''' _UpperCamelCase = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(lowerCAmelCase__ ): _UpperCamelCase = FlaxBertModel.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = FlaxBertModel.from_pretrained(lowerCAmelCase__ , subfolder=lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' _UpperCamelCase = '''bert''' _UpperCamelCase = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(lowerCAmelCase__ ): _UpperCamelCase = FlaxBertModel.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = FlaxBertModel.from_pretrained(lowerCAmelCase__ , subfolder=lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ )
98
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" _snake_case : Dict = ['transformers', 'torch', 'note_seq'] def __init__( self : Tuple , *lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : Optional[int] ) -> int: '''simple docstring''' requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def snake_case__ ( cls : Dict , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def snake_case__ ( cls : str , *lowerCAmelCase__ : Any , **lowerCAmelCase__ : List[Any] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
98
1
import sys def lowerCAmelCase (__A): """simple docstring""" _a = len(__A) _a = [[0 for x in range(__A)] for x in range(__A)] _a = [[0 for x in range(__A)] for x in range(__A)] for chain_length in range(2 , __A): for a in range(1 , n - chain_length + 1): _a = a + chain_length - 1 _a = sys.maxsize for c in range(__A , __A): _a = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _a = cost _a = c return matrix, sol def lowerCAmelCase (__A , __A , __A): """simple docstring""" if i == j: print('''A''' + str(__A) , end=''' ''') else: print('''(''' , end=''' ''') print_optiomal_solution(__A , __A , optimal_solution[i][j]) print_optiomal_solution(__A , optimal_solution[i][j] + 1 , __A) print(''')''' , end=''' ''') def lowerCAmelCase (): """simple docstring""" _a = [30, 35, 15, 5, 10, 20, 25] _a = len(__A) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _a , _a = matrix_chain_order(__A) print('''No. of Operation required: ''' + str(matrix[1][n - 1])) print_optiomal_solution(__A , 1 , n - 1) if __name__ == "__main__": main()
721
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np lowercase_ = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 lowercase_ = typing.Union[np.floataa, int, float] # noqa: UP007 def lowerCAmelCase (__A , __A): """simple docstring""" return np.sqrt(np.sum((np.asarray(__A) - np.asarray(__A)) ** 2)) def lowerCAmelCase (__A , __A): """simple docstring""" return sum((va - va) ** 2 for va, va in zip(__A , __A)) ** (1 / 2) if __name__ == "__main__": def lowerCAmelCase (): """simple docstring""" from timeit import timeit print('''Without Numpy''') print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , )) print('''With Numpy''') print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , )) benchmark()
352
0
'''simple docstring''' import argparse import os import re UpperCamelCase_ = """src/transformers/models/auto""" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict UpperCamelCase_ = re.compile(r"""[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict""") # re pattern that matches identifiers in mappings UpperCamelCase_ = re.compile(r"""\s*\(\s*\"(\S[^\"]+)\"""") def _UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : bool = False ) -> List[str]: with open(lowercase__ , """r""" , encoding="""utf-8""" ) as f: _lowerCAmelCase : List[str] = f.read() _lowerCAmelCase : Optional[int] = content.split("""\n""" ) _lowerCAmelCase : Any = [] _lowerCAmelCase : List[str] = 0 while line_idx < len(lowercase__ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: _lowerCAmelCase : Union[str, Any] = len(re.search(R"""^(\s*)\S""" , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 _lowerCAmelCase : List[Any] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": _lowerCAmelCase : Tuple = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers _lowerCAmelCase : Dict = sorted(lowercase__ , key=lambda _lowerCamelCase : _re_identifier.search(lowercase__ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowercase__ , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(lowercase__ ) ) elif "\n".join(lowercase__ ) != content: return True def _UpperCAmelCase ( _lowerCamelCase : bool = False ) -> Tuple: _lowerCAmelCase : int = [os.path.join(lowercase__ , lowercase__ ) for f in os.listdir(lowercase__ ) if f.endswith(""".py""" )] _lowerCAmelCase : List[Any] = [sort_auto_mapping(lowercase__ , overwrite=lowercase__ ) for fname in fnames] if not overwrite and any(lowercase__ ): _lowerCAmelCase : List[str] = [f for f, d in zip(lowercase__ , lowercase__ ) if d] raise ValueError( f'The following files have auto mappings that need sorting: {", ".join(lowercase__ )}. Run `make style` to fix' """ this.""" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") UpperCamelCase_ = parser.parse_args() sort_all_auto_mappings(not args.check_only)
384
'''simple docstring''' def __UpperCamelCase ( lowercase__ : list[int] ): '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError('List is empty' ) __lowercase =sum(lowercase__ ) / len(lowercase__ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
119
0
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowerCamelCase : Union[str, Any] = '''\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n''' lowerCamelCase : str = '''\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n''' lowerCamelCase : Tuple = '''\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n''' lowerCamelCase : List[Any] = '''\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n''' lowerCamelCase : List[str] = '''The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase (datasets.Metric ): def __UpperCAmelCase ( self )-> Optional[int]: return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/openai/human-eval" , codebase_urls=["https://github.com/openai/human-eval"] , reference_urls=["https://github.com/openai/human-eval"] , license=_LICENSE , ) def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=[1, 1_0, 1_0_0] , __UpperCamelCase=4 , __UpperCamelCase=3.0 )-> int: if os.getenv("HF_ALLOW_CODE_EVAL" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows." ) with ThreadPoolExecutor(max_workers=UpperCamelCase_ ) as executor: __lowerCAmelCase = [] __lowerCAmelCase = Counter() __lowerCAmelCase = 0 __lowerCAmelCase = defaultdict(UpperCamelCase_ ) for task_id, (candidates, test_case) in enumerate(zip(UpperCamelCase_ , UpperCamelCase_ ) ): for candidate in candidates: __lowerCAmelCase = candidate + "\n" + test_case __lowerCAmelCase = (test_program, timeout, task_id, completion_id[task_id]) __lowerCAmelCase = executor.submit(UpperCamelCase_ , *UpperCamelCase_ ) futures.append(UpperCamelCase_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(UpperCamelCase_ ): __lowerCAmelCase = future.result() results[result["task_id"]].append((result["completion_id"], result) ) __lowerCAmelCase , __lowerCAmelCase = [], [] for result in results.values(): result.sort() __lowerCAmelCase = [r[1]["passed"] for r in result] total.append(len(UpperCamelCase_ ) ) correct.append(sum(UpperCamelCase_ ) ) __lowerCAmelCase = np.array(UpperCamelCase_ ) __lowerCAmelCase = np.array(UpperCamelCase_ ) __lowerCAmelCase = k __lowerCAmelCase = {F"""pass@{k}""": estimate_pass_at_k(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case ): def estimator(__snake_case , __snake_case , __snake_case ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(A__ , A__ ): __lowerCAmelCase = itertools.repeat(A__ , len(A__ ) ) else: assert len(A__ ) == len(A__ ) __lowerCAmelCase = iter(A__ ) return np.array([estimator(int(A__ ) , int(A__ ) , A__ ) for n, c in zip(A__ , A__ )] )
714
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : Any = { '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''', } class _UpperCamelCase (a_ ): snake_case_ = """bloom""" snake_case_ = ["""past_key_values"""] snake_case_ = { """num_hidden_layers""": """n_layer""", """num_attention_heads""": """n_head""", } def __init__( self , __UpperCamelCase=2_5_0_8_8_0 , __UpperCamelCase=6_4 , __UpperCamelCase=2 , __UpperCamelCase=8 , __UpperCamelCase=1e-5 , __UpperCamelCase=0.0_2 , __UpperCamelCase=True , __UpperCamelCase=1 , __UpperCamelCase=2 , __UpperCamelCase=False , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=1 , __UpperCamelCase=False , **__UpperCamelCase , )-> Dict: __lowerCAmelCase = vocab_size # Backward compatibility with n_embed kwarg __lowerCAmelCase = kwargs.pop("n_embed" , __UpperCamelCase ) __lowerCAmelCase = hidden_size if n_embed is None else n_embed __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = pretraining_tp __lowerCAmelCase = apply_residual_connection_post_layernorm __lowerCAmelCase = hidden_dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id __lowerCAmelCase = slow_but_exact super().__init__(bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) class _UpperCamelCase (a_ ): snake_case_ = version.parse("""1.12""" ) def __init__( self , __UpperCamelCase , __UpperCamelCase = "default" , __UpperCamelCase = None , __UpperCamelCase = False , )-> str: super().__init__(__UpperCamelCase , task=__UpperCamelCase , patching_specs=__UpperCamelCase , use_past=__UpperCamelCase ) if not getattr(self._config , "pad_token_id" , __UpperCamelCase ): # TODO: how to do that better? __lowerCAmelCase = 0 @property def __UpperCAmelCase ( self )-> Mapping[str, Mapping[int, str]]: __lowerCAmelCase = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__UpperCamelCase , direction="inputs" , inverted_values_shape=__UpperCamelCase ) __lowerCAmelCase = {0: "batch", 1: "past_sequence + sequence"} else: __lowerCAmelCase = {0: "batch", 1: "sequence"} return common_inputs @property def __UpperCAmelCase ( self )-> int: return self._config.n_layer @property def __UpperCAmelCase ( self )-> int: return self._config.n_head @property def __UpperCAmelCase ( self )-> float: return 1e-3 def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , )-> Mapping[str, Any]: __lowerCAmelCase = super(__UpperCamelCase , self ).generate_dummy_inputs( __UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["input_ids"].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = self._config.hidden_size // self.num_attention_heads __lowerCAmelCase = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __lowerCAmelCase = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __lowerCAmelCase = [ (torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs["attention_mask"] if self.use_past: __lowerCAmelCase = ordered_inputs["attention_mask"].dtype __lowerCAmelCase = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__UpperCamelCase , __UpperCamelCase , dtype=__UpperCamelCase )] , dim=1 ) return ordered_inputs @property def __UpperCAmelCase ( self )-> int: return 1_3
290
0
"""simple docstring""" class a__ : def __init__( self ): lowercase : Any = {} def __magic_name__ ( self ): print(self.vertex ) for i in self.vertex: print(_a , " -> " , " -> ".join([str(_a ) for j in self.vertex[i]] ) ) def __magic_name__ ( self , _a , _a ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(_a ) else: # else make a new vertex lowercase : Optional[int] = [to_vertex] def __magic_name__ ( self ): # visited array for storing already visited nodes lowercase : Tuple = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_a , _a ) def __magic_name__ ( self , _a , _a ): # mark start vertex as visited lowercase : Tuple = True print(_a , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_a , _a ) if __name__ == "__main__": _A : Any = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
361
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _A : List[str] = get_logger(__name__) class a__ : __lowerCAmelCase = """dummy_data""" __lowerCAmelCase = """datasets""" __lowerCAmelCase = False def __init__( self , _a , _a , _a , _a = None , _a = False , _a = True , _a = None , ): lowercase : int = 0 lowercase : Optional[Any] = dataset_name lowercase : List[str] = cache_dir lowercase : Union[str, Any] = use_local_dummy_data lowercase : str = config # download_callbacks take a single url as input lowercase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase : List[Any] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase : Tuple = str(_a ) # to be downloaded lowercase : Tuple = None lowercase : List[Any] = None @property def __magic_name__ ( self ): if self._dummy_file is None: lowercase : Optional[int] = self.download_dummy_data() return self._dummy_file @property def __magic_name__ ( self ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("dummy" , self.version_name ) @property def __magic_name__ ( self ): return os.path.join(self.dummy_data_folder , "dummy_data.zip" ) def __magic_name__ ( self ): lowercase : Optional[Any] = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase : str = cached_path( _a , cache_dir=self.cache_dir , extract_compressed_file=_a , force_extract=_a ) return os.path.join(_a , self.dummy_file_name ) @property def __magic_name__ ( self ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __magic_name__ ( self ): if self._bucket_url is None: lowercase : Dict = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/" ) ) return self._bucket_url @property def __magic_name__ ( self ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/" ).split("/" )[:-1] ) def __magic_name__ ( self , _a , *_a ): if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase : Optional[int] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(_a , _a ): return self.create_dummy_data_dict(_a , _a ) elif isinstance(_a , (list, tuple) ): return self.create_dummy_data_list(_a , _a ) else: return self.create_dummy_data_single(_a , _a ) def __magic_name__ ( self , _a , *_a ): return self.download_and_extract(_a ) def __magic_name__ ( self , _a , _a ): return self.download_and_extract(_a ) def __magic_name__ ( self , _a , *_a , **_a ): return path def __magic_name__ ( self ): return {} def __magic_name__ ( self , _a , _a ): lowercase : List[str] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_a , _a ): for single_url in single_urls: download_callback(_a ) else: lowercase : Union[str, Any] = single_urls download_callback(_a ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_a , _a ): lowercase : Any = [os.path.join(_a , urllib.parse.quote_plus(Path(_a ).name ) ) for x in single_urls] else: lowercase : int = single_urls lowercase : Tuple = os.path.join(_a , urllib.parse.quote_plus(Path(_a ).name ) ) lowercase : List[str] = value # make sure that values are unique if all(isinstance(_a , _a ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase : str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __magic_name__ ( self , _a , _a ): lowercase : Union[str, Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase : Any = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , _a ) ) for url in data_url ) lowercase : List[Any] = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase : Tuple = [data_url[0]] * len(_a ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_a ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Union[str, Any] = os.path.join(_a , urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(_a ) return dummy_data_list def __magic_name__ ( self , _a , _a ): for download_callback in self.download_callbacks: download_callback(_a ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Tuple = os.path.join(_a , urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(_a ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __magic_name__ ( self ): pass def __magic_name__ ( self ): pass def __magic_name__ ( self , _a ): def _iter_archive_members(_a ): # this preserves the order of the members inside the ZIP archive lowercase : Optional[int] = Path(self.dummy_file ).parent lowercase : List[str] = path.relative_to(_a ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase : List[str] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_a ) lowercase : Union[str, Any] = Path(_a ) lowercase : List[Any] = _iter_archive_members(_a ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(_a ).as_posix(), file_path.open("rb" ) def __magic_name__ ( self , _a ): if not isinstance(_a , _a ): lowercase : Any = [paths] for path in paths: if os.path.isfile(_a ): if os.path.basename(_a ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(_a ): if os.path.basename(_a ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(_a ): if filename.startswith((".", "__") ): continue yield os.path.join(_a , _a )
361
1
from __future__ import annotations import math def _lowerCamelCase ( snake_case , snake_case , snake_case , snake_case , snake_case ): if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , snake_case , snake_case , snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , snake_case , snake_case , snake_case ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , snake_case , snake_case , snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , snake_case , snake_case , snake_case ) , ) ) def _lowerCamelCase ( ): _lowerCAmelCase = [90, 23, 6, 33, 21, 65, 123, 34_423] _lowerCAmelCase = math.log(len(snake_case ) , 2 ) print(F'Optimal value : {minimax(0 , 0 , snake_case , snake_case , snake_case )}' ) if __name__ == "__main__": import doctest doctest.testmod() main()
225
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase: List[str] = logging.get_logger(__name__) _lowercase: Optional[Any] = { '''tiiuae/falcon-40b''': '''https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json''', '''tiiuae/falcon-7b''': '''https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json''', } class lowerCamelCase__ ( UpperCAmelCase ): UpperCamelCase__ ="falcon" UpperCamelCase__ =["past_key_values"] def __init__( self : Optional[Any] , lowercase__ : List[Any]=6_50_24 , lowercase__ : Optional[Any]=45_44 , lowercase__ : int=32 , lowercase__ : List[Any]=71 , lowercase__ : Any=1e-5 , lowercase__ : Dict=0.0_2 , lowercase__ : Union[str, Any]=True , lowercase__ : Optional[Any]=0.0 , lowercase__ : int=0.0 , lowercase__ : Optional[Any]=None , lowercase__ : List[Any]=False , lowercase__ : Tuple=False , lowercase__ : int=True , lowercase__ : List[Any]=True , lowercase__ : Optional[Any]=False , lowercase__ : Optional[Any]=11 , lowercase__ : Optional[Any]=11 , **lowercase__ : Union[str, Any] , ): _lowerCAmelCase = vocab_size # Backward compatibility with n_embed kwarg _lowerCAmelCase = kwargs.pop('n_embed' , lowercase__ ) _lowerCAmelCase = hidden_size if n_embed is None else n_embed _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = use_cache _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id _lowerCAmelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _lowerCAmelCase = alibi _lowerCAmelCase = new_decoder_architecture _lowerCAmelCase = multi_query # Ignored when new_decoder_architecture is True _lowerCAmelCase = parallel_attn _lowerCAmelCase = bias super().__init__(bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ ) @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): return self.hidden_size // self.num_attention_heads @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): return not self.alibi
225
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Dict = { '''SCUT-DLVCLab/lilt-roberta-en-base''': ( '''https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """lilt""" def __init__( self : List[Any] , a_ : List[Any]=30_522 , a_ : Optional[int]=768 , a_ : Optional[Any]=12 , a_ : Union[str, Any]=12 , a_ : Optional[int]=3_072 , a_ : Dict="gelu" , a_ : Union[str, Any]=0.1 , a_ : str=0.1 , a_ : Optional[int]=512 , a_ : Tuple=2 , a_ : Dict=0.02 , a_ : Tuple=1e-12 , a_ : str=0 , a_ : Union[str, Any]="absolute" , a_ : Dict=None , a_ : List[str]=4 , a_ : Optional[Any]=1_024 , **a_ : str , ): """simple docstring""" super().__init__(pad_token_id=a_ , **a_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = classifier_dropout __snake_case = channel_shrink_ratio __snake_case = max_ad_position_embeddings
69
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowerCAmelCase: List[Any] = logging.get_logger(__name__) class lowercase_ (lowercase__ ): snake_case =['pixel_values'] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = None , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: super().__init__(**lowercase_) a__ =size if size is not None else {'shortest_edge': 256} a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) a__ =crop_size if crop_size is not None else {'height': 224, 'width': 224} a__ =get_size_dict(lowercase_ , param_name='crop_size') a__ =do_resize a__ =size a__ =resample a__ =do_center_crop a__ =crop_size a__ =do_rescale a__ =rescale_factor a__ =do_normalize a__ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a__ =image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") a__ =get_resize_output_image_size(lowercase_ , size=size['shortest_edge'] , default_to_square=lowercase_) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: a__ =get_size_dict(lowercase_) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""") return center_crop(lowercase_ , size=(size['height'], size['width']) , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_) -> np.ndarray: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> Tuple: a__ =do_resize if do_resize is not None else self.do_resize a__ =size if size is not None else self.size a__ =get_size_dict(lowercase_ , default_to_square=lowercase_) a__ =resample if resample is not None else self.resample a__ =do_center_crop if do_center_crop is not None else self.do_center_crop a__ =crop_size if crop_size is not None else self.crop_size a__ =get_size_dict(lowercase_ , param_name='crop_size') a__ =do_rescale if do_rescale is not None else self.do_rescale a__ =rescale_factor if rescale_factor is not None else self.rescale_factor a__ =do_normalize if do_normalize is not None else self.do_normalize a__ =image_mean if image_mean is not None else self.image_mean a__ =image_std if image_std is not None else self.image_std a__ =make_list_of_images(lowercase_) if not valid_images(lowercase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a__ =[to_numpy_array(lowercase_) for image in images] if do_resize: a__ =[self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_) for image in images] if do_center_crop: a__ =[self.center_crop(image=lowercase_ , size=lowercase_) for image in images] if do_rescale: a__ =[self.rescale(image=lowercase_ , scale=lowercase_) for image in images] if do_normalize: a__ =[self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_) for image in images] a__ =[to_channel_dimension_format(lowercase_ , lowercase_) for image in images] a__ ={'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ = None) -> str: a__ =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_) != len(lowercase_): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits') if is_torch_tensor(lowercase_): a__ =target_sizes.numpy() a__ =[] for idx in range(len(lowercase_)): a__ =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_) a__ =resized_logits[0].argmax(dim=0) semantic_segmentation.append(lowercase_) else: a__ =logits.argmax(dim=1) a__ =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
20
0
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __a : List[Any] = logging.get_logger(__name__) __a : Dict[Optional[str], Type[Formatter]] = {} __a : Dict[Optional[str], str] = {} __a : Dict[Optional[str], Exception] = {} def UpperCAmelCase ( lowercase , lowercase , lowercase = None , ): """simple docstring""" __lowercase = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) __lowercase = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) __lowercase = format_type def UpperCAmelCase ( lowercase , lowercase , lowercase = None ): """simple docstring""" __lowercase = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): __lowercase = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["""python"""]) _register_formatter(ArrowFormatter, """arrow""", aliases=["""pa""", """pyarrow"""]) _register_formatter(NumpyFormatter, """numpy""", aliases=["""np"""]) _register_formatter(PandasFormatter, """pandas""", aliases=["""pd"""]) _register_formatter(CustomFormatter, """custom""") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, """torch""", aliases=["""pt""", """pytorch"""]) else: __a : int = ValueError("""PyTorch needs to be installed to be able to return PyTorch tensors.""") _register_unavailable_formatter(_torch_error, """torch""", aliases=["""pt""", """pytorch"""]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, """tensorflow""", aliases=["""tf"""]) else: __a : List[str] = ValueError("""Tensorflow needs to be installed to be able to return Tensorflow tensors.""") _register_unavailable_formatter(_tf_error, """tensorflow""", aliases=["""tf"""]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, """jax""", aliases=[]) else: __a : str = ValueError("""JAX needs to be installed to be able to return JAX arrays.""") _register_unavailable_formatter(_jax_error, """jax""", aliases=[]) def UpperCAmelCase ( lowercase ): """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def UpperCAmelCase ( lowercase , **lowercase ): """simple docstring""" __lowercase = get_format_type_from_alias(lowercase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**lowercase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
522
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a : Dict = { """configuration_chinese_clip""": [ """CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ChineseCLIPConfig""", """ChineseCLIPOnnxConfig""", """ChineseCLIPTextConfig""", """ChineseCLIPVisionConfig""", ], """processing_chinese_clip""": ["""ChineseCLIPProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Tuple = ["""ChineseCLIPFeatureExtractor"""] __a : Dict = ["""ChineseCLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Optional[Any] = [ """CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ChineseCLIPModel""", """ChineseCLIPPreTrainedModel""", """ChineseCLIPTextModel""", """ChineseCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
522
1
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =[ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =[ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =[ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(UpperCAmelCase_ ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =[ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =[ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(UpperCAmelCase_ ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =[ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] lowerCamelCase_ ='''fp16''' self.assertTrue(is_safetensors_compatible(UpperCAmelCase_, variant=UpperCAmelCase_ ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =[ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] lowerCamelCase_ ='''fp16''' self.assertTrue(is_safetensors_compatible(UpperCAmelCase_, variant=UpperCAmelCase_ ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =[ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] lowerCamelCase_ ='''fp16''' self.assertTrue(is_safetensors_compatible(UpperCAmelCase_, variant=UpperCAmelCase_ ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =[ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowerCamelCase_ ='''fp16''' self.assertFalse(is_safetensors_compatible(UpperCAmelCase_, variant=UpperCAmelCase_ ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =[ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] lowerCamelCase_ ='''fp16''' self.assertTrue(is_safetensors_compatible(UpperCAmelCase_, variant=UpperCAmelCase_ ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =[ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] lowerCamelCase_ ='''fp16''' self.assertTrue(is_safetensors_compatible(UpperCAmelCase_, variant=UpperCAmelCase_ ) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =[ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] lowerCamelCase_ ='''fp16''' self.assertFalse(is_safetensors_compatible(UpperCAmelCase_, variant=UpperCAmelCase_ ) )
676
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowercase__ = HfApi() lowercase__ = {} # fmt: off lowercase__ = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) lowercase__ = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) lowercase__ = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) lowercase__ = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) lowercase__ = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) lowercase__ = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) lowercase__ = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) lowercase__ = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) lowercase__ = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) lowercase__ = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) lowercase__ = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) lowercase__ = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) lowercase__ = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) lowercase__ = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) lowercase__ = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on lowercase__ = api.list_models(filter='''diffusers''') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowercase__ = '''/home/patrick/google_checkpoints/''' + mod.modelId.split('''/''')[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith('''CompVis'''): lowercase__ = UNetaDModel.from_pretrained(local_checkpoint, subfolder='''unet''') else: lowercase__ = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowercase__ = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowercase__ = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowercase__ = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['''_'''.join('''_'''.join(mod.modelId.split('''/''')).split('''-'''))], atol=1E-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
508
0
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) UpperCAmelCase_ : Dict = parser.parse_args() UpperCAmelCase_ : Tuple = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCAmelCase_ : Union[str, Any] = CLIPImageProcessor() UpperCAmelCase_ : Tuple = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') UpperCAmelCase_ : str = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
11
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : str = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 42 class UpperCAmelCase__ ( A ): def __init__( self : str,__A : PriorTransformer,__A : CLIPVisionModel,__A : CLIPImageProcessor,__A : HeunDiscreteScheduler,__A : ShapERenderer,): super().__init__() self.register_modules( prior=__A,image_encoder=__A,image_processor=__A,scheduler=__A,renderer=__A,) def lowerCamelCase_ ( self : Optional[int],__A : str,__A : Tuple,__A : Any,__A : Optional[int],__A : Tuple,__A : Union[str, Any] ): if latents is None: _lowerCamelCase : int = randn_tensor(__A,generator=__A,device=__A,dtype=__A ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _lowerCamelCase : Union[str, Any] = latents.to(__A ) _lowerCamelCase : Tuple = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self : List[str],__A : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : List[Any] = torch.device(f'cuda:{gpu_id}' ) _lowerCamelCase : Tuple = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__A,__A ) @property def lowerCamelCase_ ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder,"_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__A,"_hf_hook" ) and hasattr(module._hf_hook,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCamelCase_ ( self : Tuple,__A : int,__A : Any,__A : str,__A : int,): if isinstance(__A,__A ) and isinstance(image[0],torch.Tensor ): _lowerCamelCase : Dict = torch.cat(__A,axis=0 ) if image[0].ndim == 4 else torch.stack(__A,axis=0 ) if not isinstance(__A,torch.Tensor ): _lowerCamelCase : str = self.image_processor(__A,return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) _lowerCamelCase : Any = image.to(dtype=self.image_encoder.dtype,device=__A ) _lowerCamelCase : List[str] = self.image_encoder(__A )["last_hidden_state"] _lowerCamelCase : Optional[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _lowerCamelCase : Any = image_embeds.repeat_interleave(__A,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : int = torch.zeros_like(__A ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__A ) def __call__( self : Tuple,__A : Union[PIL.Image.Image, List[PIL.Image.Image]],__A : int = 1,__A : int = 2_5,__A : Optional[Union[torch.Generator, List[torch.Generator]]] = None,__A : Optional[torch.FloatTensor] = None,__A : float = 4.0,__A : int = 6_4,__A : Optional[str] = "pil",__A : bool = True,): if isinstance(__A,PIL.Image.Image ): _lowerCamelCase : Optional[int] = 1 elif isinstance(__A,torch.Tensor ): _lowerCamelCase : Optional[Any] = image.shape[0] elif isinstance(__A,__A ) and isinstance(image[0],(torch.Tensor, PIL.Image.Image) ): _lowerCamelCase : str = len(__A ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__A )}' ) _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : int = batch_size * num_images_per_prompt _lowerCamelCase : Union[str, Any] = guidance_scale > 1.0 _lowerCamelCase : Tuple = self._encode_image(__A,__A,__A,__A ) # prior self.scheduler.set_timesteps(__A,device=__A ) _lowerCamelCase : List[Any] = self.scheduler.timesteps _lowerCamelCase : Dict = self.prior.config.num_embeddings _lowerCamelCase : Tuple = self.prior.config.embedding_dim _lowerCamelCase : List[str] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim),image_embeds.dtype,__A,__A,__A,self.scheduler,) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _lowerCamelCase : Tuple = latents.reshape(latents.shape[0],__A,__A ) for i, t in enumerate(self.progress_bar(__A ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : Tuple = self.scheduler.scale_model_input(__A,__A ) _lowerCamelCase : List[str] = self.prior( __A,timestep=__A,proj_embedding=__A,).predicted_image_embedding # remove the variance _lowerCamelCase , _lowerCamelCase : Optional[Any] = noise_pred.split( scaled_model_input.shape[2],dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _lowerCamelCase , _lowerCamelCase : int = noise_pred.chunk(2 ) _lowerCamelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _lowerCamelCase : Any = self.scheduler.step( __A,timestep=__A,sample=__A,).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__A ) _lowerCamelCase : Any = [] for i, latent in enumerate(__A ): print() _lowerCamelCase : int = self.renderer.decode( latent[None, :],__A,size=__A,ray_batch_size=4_0_9_6,n_coarse_samples=6_4,n_fine_samples=1_2_8,) images.append(__A ) _lowerCamelCase : List[Any] = torch.stack(__A ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) _lowerCamelCase : Union[str, Any] = images.cpu().numpy() if output_type == "pil": _lowerCamelCase : List[str] = [self.numpy_to_pil(__A ) for image in images] # Offload last model to CPU if hasattr(self,"final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__A )
11
1
"""simple docstring""" from __future__ import annotations from math import ceil, floor, sqrt def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 200_0000 ): lowerCAmelCase = [0] lowerCAmelCase = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target lowerCAmelCase = 0 # the area corresponding to the grid that gives the product closest to target lowerCAmelCase = 0 # an estimate of b, using the quadratic formula lowerCAmelCase = 42 # the largest integer less than b_estimate lowerCAmelCase = 42 # the largest integer less than b_estimate lowerCAmelCase = 42 # the triangle number corresponding to b_floor lowerCAmelCase = 42 # the triangle number corresponding to b_ceil lowerCAmelCase = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): lowerCAmelCase = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 lowerCAmelCase = floor(_UpperCAmelCase ) lowerCAmelCase = ceil(_UpperCAmelCase ) lowerCAmelCase = triangle_numbers[b_floor] lowerCAmelCase = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): lowerCAmelCase = triangle_b_first_guess * triangle_a lowerCAmelCase = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): lowerCAmelCase = triangle_b_second_guess * triangle_a lowerCAmelCase = idx_a * b_ceil return area if __name__ == "__main__": print(f'''{solution() = }''')
4
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : torch.FloatTensor UpperCAmelCase__ : Optional[torch.FloatTensor] = None def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Any=0.999 , __lowerCAmelCase : Tuple="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__lowerCAmelCase : Optional[int] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__lowerCAmelCase : int ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) a__ = [] for i in range(__lowerCAmelCase ): a__ = i / num_diffusion_timesteps a__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__lowerCAmelCase ) / alpha_bar_fn(__lowerCAmelCase ) , __lowerCAmelCase ) ) return torch.tensor(__lowerCAmelCase , dtype=torch.floataa ) class snake_case_ (lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ : Optional[int] = 1 @register_to_config def __init__( self :Any ,__snake_case :int = 10_00 ,__snake_case :float = 0.00_01 ,__snake_case :float = 0.02 ,__snake_case :str = "linear" ,__snake_case :Optional[Union[np.ndarray, List[float]]] = None ,__snake_case :bool = True ,__snake_case :bool = True ,__snake_case :int = 0 ,__snake_case :str = "epsilon" ,__snake_case :float = 1.0 ,**__snake_case :str ,) -> List[Any]: if kwargs.get('set_alpha_to_one' ,__snake_case ) is not None: a__ = ( 'The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.' ) deprecate('set_alpha_to_one' ,'1.0.0' ,__snake_case ,standard_warn=__snake_case ) a__ = kwargs['set_alpha_to_one'] if trained_betas is not None: a__ = torch.tensor(__snake_case ,dtype=torch.floataa ) elif beta_schedule == "linear": a__ = torch.linspace(__snake_case ,__snake_case ,__snake_case ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. a__ = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,__snake_case ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule a__ = betas_for_alpha_bar(__snake_case ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) a__ = 1.0 - self.betas a__ = torch.cumprod(self.alphas ,dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. a__ = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution a__ = 1.0 # setable values a__ = None a__ = torch.from_numpy(np.arange(0 ,__snake_case ).copy().astype(np.intaa ) ) def lowerCamelCase__( self :Optional[Any] ,__snake_case :torch.FloatTensor ,__snake_case :Optional[int] = None ) -> torch.FloatTensor: return sample def lowerCamelCase__( self :Dict ,__snake_case :int ,__snake_case :Union[str, torch.device] = None ) -> Union[str, Any]: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) a__ = num_inference_steps a__ = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a__ = (np.arange(0 ,__snake_case ) * step_ratio).round().copy().astype(np.intaa ) a__ = torch.from_numpy(__snake_case ).to(__snake_case ) self.timesteps += self.config.steps_offset def lowerCamelCase__( self :Union[str, Any] ,__snake_case :torch.FloatTensor ,__snake_case :int ,__snake_case :torch.FloatTensor ,__snake_case :float = 0.0 ,__snake_case :bool = False ,__snake_case :Optional[torch.FloatTensor] = None ,__snake_case :bool = True ,) -> Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) a__ = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process a__ = self.alphas_cumprod[timestep] a__ = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) a__ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": a__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 a__ = model_output elif self.config.prediction_type == "sample": a__ = model_output a__ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": a__ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output a__ = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ' `v_prediction`' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: a__ = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf a__ = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf a__ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__snake_case ,pred_original_sample=__snake_case ) def __len__( self :Tuple ) -> Optional[int]: return self.config.num_train_timesteps
335
0
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def snake_case__ ( a ) -> List[str]: '''simple docstring''' if isinstance(a , collections.abc.Iterable ): return x return (x, x) @require_tf class __magic_name__: def __lowerCAmelCase( self : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' pass def __lowerCAmelCase( self : List[str] ): '''simple docstring''' pass def __lowerCAmelCase( self : int ): '''simple docstring''' pass def __lowerCAmelCase( self : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int]=None , **__UpperCamelCase : str ): '''simple docstring''' snake_case__ = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCamelCase , __UpperCamelCase ) snake_case__ = TFVisionTextDualEncoderModel(__UpperCamelCase ) snake_case__ = model(input_ids=__UpperCamelCase , pixel_values=__UpperCamelCase , attention_mask=__UpperCamelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def __lowerCAmelCase( self : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int]=None , **__UpperCamelCase : Any ): '''simple docstring''' snake_case__ , snake_case__ = self.get_vision_text_model(__UpperCamelCase , __UpperCamelCase ) snake_case__ = TFVisionTextDualEncoderModel(vision_model=__UpperCamelCase , text_model=__UpperCamelCase ) snake_case__ = model(input_ids=__UpperCamelCase , pixel_values=__UpperCamelCase , attention_mask=__UpperCamelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __lowerCAmelCase( self : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any]=None , **__UpperCamelCase : Tuple ): '''simple docstring''' snake_case__ , snake_case__ = self.get_vision_text_model(__UpperCamelCase , __UpperCamelCase ) snake_case__ = {"""vision_model""": vision_model, """text_model""": text_model} snake_case__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCamelCase ) snake_case__ = model(input_ids=__UpperCamelCase , pixel_values=__UpperCamelCase , attention_mask=__UpperCamelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __lowerCAmelCase( self : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any]=None , **__UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case__ , snake_case__ = self.get_vision_text_model(__UpperCamelCase , __UpperCamelCase ) snake_case__ = TFVisionTextDualEncoderModel(vision_model=__UpperCamelCase , text_model=__UpperCamelCase ) snake_case__ = model(input_ids=__UpperCamelCase , pixel_values=__UpperCamelCase , attention_mask=__UpperCamelCase ) snake_case__ = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase ) snake_case__ = TFVisionTextDualEncoderModel.from_pretrained(__UpperCamelCase ) snake_case__ = model(input_ids=__UpperCamelCase , pixel_values=__UpperCamelCase , attention_mask=__UpperCamelCase ) snake_case__ = after_output[0].numpy() snake_case__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCamelCase , 1E-5 ) def __lowerCAmelCase( self : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Tuple=None , **__UpperCamelCase : Dict ): '''simple docstring''' snake_case__ , snake_case__ = self.get_vision_text_model(__UpperCamelCase , __UpperCamelCase ) snake_case__ = TFVisionTextDualEncoderModel(vision_model=__UpperCamelCase , text_model=__UpperCamelCase ) snake_case__ = model( input_ids=__UpperCamelCase , pixel_values=__UpperCamelCase , attention_mask=__UpperCamelCase , output_attentions=__UpperCamelCase ) snake_case__ = output.vision_model_output.attentions self.assertEqual(len(__UpperCamelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case__ = to_atuple(vision_model.config.image_size ) snake_case__ = to_atuple(vision_model.config.patch_size ) snake_case__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) snake_case__ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) snake_case__ = output.text_model_output.attentions self.assertEqual(len(__UpperCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __lowerCAmelCase( self : List[str] , __UpperCamelCase : np.ndarray , __UpperCamelCase : np.ndarray , __UpperCamelCase : float ): '''simple docstring''' snake_case__ = np.abs((a - b) ).max() self.assertLessEqual(__UpperCamelCase , __UpperCamelCase , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def __lowerCAmelCase( self : Tuple ): '''simple docstring''' snake_case__ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**__UpperCamelCase ) def __lowerCAmelCase( self : Any ): '''simple docstring''' snake_case__ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__UpperCamelCase ) def __lowerCAmelCase( self : Optional[Any] ): '''simple docstring''' snake_case__ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__UpperCamelCase ) def __lowerCAmelCase( self : str ): '''simple docstring''' snake_case__ = self.prepare_config_and_inputs() self.check_save_load(**__UpperCamelCase ) def __lowerCAmelCase( self : List[Any] ): '''simple docstring''' snake_case__ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__UpperCamelCase ) @slow def __lowerCAmelCase( self : str ): '''simple docstring''' snake_case__ , snake_case__ = self.get_pretrained_model_and_inputs() snake_case__ = model_a(**__UpperCamelCase ) snake_case__ = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__UpperCamelCase ) snake_case__ = TFVisionTextDualEncoderModel.from_pretrained(__UpperCamelCase ) snake_case__ = model_a(**__UpperCamelCase ) snake_case__ = after_outputs[0].numpy() snake_case__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCamelCase , 1E-5 ) @require_tf class __magic_name__( __lowerCAmelCase , unittest.TestCase ): def __lowerCAmelCase( self : Tuple ): '''simple docstring''' snake_case__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) snake_case__ = 1_3 snake_case__ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) snake_case__ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) snake_case__ = random_attention_mask([batch_size, 4] ) snake_case__ = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def __lowerCAmelCase( self : Any , __UpperCamelCase : str , __UpperCamelCase : Optional[int] ): '''simple docstring''' snake_case__ = TFViTModel(__UpperCamelCase , name="""vision_model""" ) snake_case__ = TFBertModel(__UpperCamelCase , name="""text_model""" ) return vision_model, text_model def __lowerCAmelCase( self : Any ): '''simple docstring''' snake_case__ = TFViTModelTester(self ) snake_case__ = TFBertModelTester(self ) snake_case__ = vit_model_tester.prepare_config_and_inputs() snake_case__ = bert_model_tester.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ = vision_config_and_inputs ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __magic_name__( __lowerCAmelCase , unittest.TestCase ): def __lowerCAmelCase( self : Dict ): '''simple docstring''' snake_case__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) snake_case__ = 1_3 snake_case__ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) snake_case__ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) snake_case__ = random_attention_mask([batch_size, 4] ) snake_case__ = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def __lowerCAmelCase( self : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : Tuple , __UpperCamelCase : int=None , **__UpperCamelCase : Dict ): '''simple docstring''' snake_case__ , snake_case__ = self.get_vision_text_model(__UpperCamelCase , __UpperCamelCase ) snake_case__ = TFVisionTextDualEncoderModel(vision_model=__UpperCamelCase , text_model=__UpperCamelCase ) snake_case__ = model( input_ids=__UpperCamelCase , pixel_values=__UpperCamelCase , attention_mask=__UpperCamelCase , output_attentions=__UpperCamelCase ) snake_case__ = output.vision_model_output.attentions self.assertEqual(len(__UpperCamelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) snake_case__ = to_atuple(vision_model.config.image_size ) snake_case__ = to_atuple(vision_model.config.patch_size ) snake_case__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) snake_case__ = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) snake_case__ = output.text_model_output.attentions self.assertEqual(len(__UpperCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __lowerCAmelCase( self : int , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case__ = TFDeiTModel(__UpperCamelCase , name="""vision_model""" ) snake_case__ = TFRobertaModel(__UpperCamelCase , name="""text_model""" ) return vision_model, text_model def __lowerCAmelCase( self : Optional[int] ): '''simple docstring''' snake_case__ = TFDeiTModelTester(self ) snake_case__ = TFRobertaModelTester(self ) snake_case__ = vit_model_tester.prepare_config_and_inputs() snake_case__ = bert_model_tester.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ = vision_config_and_inputs ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __magic_name__( __lowerCAmelCase , unittest.TestCase ): def __lowerCAmelCase( self : Optional[int] ): '''simple docstring''' snake_case__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) snake_case__ = 1_3 snake_case__ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) snake_case__ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) snake_case__ = random_attention_mask([batch_size, 4] ) snake_case__ = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def __lowerCAmelCase( self : Dict , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case__ = TFCLIPVisionModel(__UpperCamelCase , name="""vision_model""" ) snake_case__ = TFBertModel(__UpperCamelCase , name="""text_model""" ) return vision_model, text_model def __lowerCAmelCase( self : Optional[int] ): '''simple docstring''' snake_case__ = TFCLIPVisionModelTester(self ) snake_case__ = TFBertModelTester(self ) snake_case__ = clip_model_tester.prepare_config_and_inputs() snake_case__ = bert_model_tester.prepare_config_and_inputs() snake_case__ , snake_case__ = vision_config_and_inputs ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __magic_name__( unittest.TestCase ): @slow def __lowerCAmelCase( self : Any ): '''simple docstring''' snake_case__ = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=__UpperCamelCase ) snake_case__ = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) snake_case__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) snake_case__ = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=__UpperCamelCase , padding=__UpperCamelCase , return_tensors="""np""" ) snake_case__ = model(**__UpperCamelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) snake_case__ = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __UpperCamelCase , atol=1E-3 ) )
566
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ = logging.get_logger(__name__) a__ = {'''vocab_file''': '''sentencepiece.model'''} a__ = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, } a__ = { '''google/rembert''': 256, } class __magic_name__( __lowerCAmelCase ): UpperCAmelCase_ : str = VOCAB_FILES_NAMES UpperCAmelCase_ : Tuple = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : str , __UpperCamelCase : Any , __UpperCamelCase : List[Any]=False , __UpperCamelCase : List[Any]=True , __UpperCamelCase : List[Any]=True , __UpperCamelCase : Dict="[CLS]" , __UpperCamelCase : Optional[int]="[SEP]" , __UpperCamelCase : str="[UNK]" , __UpperCamelCase : Optional[int]="[SEP]" , __UpperCamelCase : Optional[int]="[PAD]" , __UpperCamelCase : Any="[CLS]" , __UpperCamelCase : str="[MASK]" , **__UpperCamelCase : Optional[int] , ): '''simple docstring''' super().__init__( do_lower_case=__UpperCamelCase , remove_space=__UpperCamelCase , keep_accents=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , **__UpperCamelCase , ) snake_case__ = do_lower_case snake_case__ = remove_space snake_case__ = keep_accents snake_case__ = vocab_file snake_case__ = spm.SentencePieceProcessor() self.sp_model.Load(__UpperCamelCase ) @property def __lowerCAmelCase( self : Union[str, Any] ): '''simple docstring''' return len(self.sp_model ) def __lowerCAmelCase( self : int ): '''simple docstring''' snake_case__ = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): '''simple docstring''' snake_case__ = self.__dict__.copy() snake_case__ = None return state def __setstate__( self : Tuple , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case__ = d snake_case__ = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : int=False ): '''simple docstring''' snake_case__ = self.sp_model.EncodeAsPieces(__UpperCamelCase ) return pieces def __lowerCAmelCase( self : Any , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.sp_model.PieceToId(__UpperCamelCase ) def __lowerCAmelCase( self : Dict , __UpperCamelCase : List[Any] ): '''simple docstring''' return self.sp_model.IdToPiece(__UpperCamelCase ) def __lowerCAmelCase( self : Optional[int] , __UpperCamelCase : str ): '''simple docstring''' snake_case__ = self.sp_model.decode_pieces(__UpperCamelCase ) return out_string def __lowerCAmelCase( self : List[Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' snake_case__ = [self.sep_token_id] snake_case__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCAmelCase( self : Optional[int] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__UpperCamelCase )) + [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1] def __lowerCAmelCase( self : List[str] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' snake_case__ = [self.sep_token_id] snake_case__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase( self : str , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__UpperCamelCase ): logger.error("""Vocabulary path ({}) should be a directory""".format(__UpperCamelCase ) ) return snake_case__ = os.path.join( __UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ): copyfile(self.vocab_file , __UpperCamelCase ) return (out_vocab_file,)
566
1
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 a_ : List[str] = sys.version_info >= (3, 1_0) def __lowercase( UpperCAmelCase__=None , UpperCAmelCase__=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=_SCREAMING_SNAKE_CASE ) @dataclass class lowerCamelCase__ : """simple docstring""" _A = 42 _A = 42 _A = 42 _A = 42 @dataclass class lowerCamelCase__ : """simple docstring""" _A = 42 _A = field(default='toto' , metadata={'help': 'help message'}) @dataclass class lowerCamelCase__ : """simple docstring""" _A = False _A = True _A = None class lowerCamelCase__ ( lowerCAmelCase__): """simple docstring""" _A = """titi""" _A = """toto""" class lowerCamelCase__ ( lowerCAmelCase__): """simple docstring""" _A = """titi""" _A = """toto""" _A = 42 @dataclass class lowerCamelCase__ : """simple docstring""" _A = "toto" def _a (self ): '''simple docstring''' lowerCamelCase = BasicEnum(self.foo ) @dataclass class lowerCamelCase__ : """simple docstring""" _A = "toto" def _a (self ): '''simple docstring''' lowerCamelCase = MixedTypeEnum(self.foo ) @dataclass class lowerCamelCase__ : """simple docstring""" _A = None _A = field(default=lowerCAmelCase__ , metadata={'help': 'help message'}) _A = None _A = list_field(default=[]) _A = list_field(default=[]) @dataclass class lowerCamelCase__ : """simple docstring""" _A = list_field(default=[]) _A = list_field(default=[1, 2, 3]) _A = list_field(default=['Hallo', 'Bonjour', 'Hello']) _A = list_field(default=[0.1, 0.2, 0.3]) @dataclass class lowerCamelCase__ : """simple docstring""" _A = field() _A = field() _A = field() def _a (self ): '''simple docstring''' lowerCamelCase = BasicEnum(self.required_enum ) @dataclass class lowerCamelCase__ : """simple docstring""" _A = 42 _A = field() _A = None _A = field(default='toto' , metadata={'help': 'help message'}) _A = list_field(default=['Hallo', 'Bonjour', 'Hello']) if is_python_no_less_than_3_10: @dataclass class lowerCamelCase__ : """simple docstring""" _A = False _A = True _A = None @dataclass class lowerCamelCase__ : """simple docstring""" _A = None _A = field(default=lowerCAmelCase__ , metadata={'help': 'help message'}) _A = None _A = list_field(default=[]) _A = list_field(default=[]) class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def _a (self , __a , __a ): '''simple docstring''' self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowerCamelCase = {k: v for k, v in vars(UpperCamelCase__ ).items() if k != "container"} lowerCamelCase = {k: v for k, v in vars(UpperCamelCase__ ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , UpperCamelCase__ ) and yy.get("choices" , UpperCamelCase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](UpperCamelCase__ ) , yy["type"](UpperCamelCase__ ) ) del xx["type"], yy["type"] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def _a (self ): '''simple docstring''' lowerCamelCase = HfArgumentParser(UpperCamelCase__ ) lowerCamelCase = argparse.ArgumentParser() expected.add_argument("--foo" , type=UpperCamelCase__ , required=UpperCamelCase__ ) expected.add_argument("--bar" , type=UpperCamelCase__ , required=UpperCamelCase__ ) expected.add_argument("--baz" , type=UpperCamelCase__ , required=UpperCamelCase__ ) expected.add_argument("--flag" , type=UpperCamelCase__ , default=UpperCamelCase__ , const=UpperCamelCase__ , nargs="?" ) self.argparsersEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] (lowerCamelCase ) = parser.parse_args_into_dataclasses(UpperCamelCase__ , look_for_args_file=UpperCamelCase__ ) self.assertFalse(example.flag ) def _a (self ): '''simple docstring''' lowerCamelCase = HfArgumentParser(UpperCamelCase__ ) lowerCamelCase = argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=UpperCamelCase__ ) expected.add_argument("--baz" , default="toto" , type=UpperCamelCase__ , help="help message" ) self.argparsersEqual(UpperCamelCase__ , UpperCamelCase__ ) def _a (self ): '''simple docstring''' lowerCamelCase = argparse.ArgumentParser() expected.add_argument("--foo" , type=UpperCamelCase__ , default=UpperCamelCase__ , const=UpperCamelCase__ , nargs="?" ) expected.add_argument("--baz" , type=UpperCamelCase__ , default=UpperCamelCase__ , const=UpperCamelCase__ , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=UpperCamelCase__ , dest="baz" ) expected.add_argument("--opt" , type=UpperCamelCase__ , default=UpperCamelCase__ ) lowerCamelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(UpperCamelCase__ ) for dataclass_type in dataclass_types: lowerCamelCase = HfArgumentParser(UpperCamelCase__ ) self.argparsersEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase = parser.parse_args([] ) self.assertEqual(UpperCamelCase__ , Namespace(foo=UpperCamelCase__ , baz=UpperCamelCase__ , opt=UpperCamelCase__ ) ) lowerCamelCase = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(UpperCamelCase__ , Namespace(foo=UpperCamelCase__ , baz=UpperCamelCase__ , opt=UpperCamelCase__ ) ) lowerCamelCase = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(UpperCamelCase__ , Namespace(foo=UpperCamelCase__ , baz=UpperCamelCase__ , opt=UpperCamelCase__ ) ) lowerCamelCase = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(UpperCamelCase__ , Namespace(foo=UpperCamelCase__ , baz=UpperCamelCase__ , opt=UpperCamelCase__ ) ) lowerCamelCase = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(UpperCamelCase__ , Namespace(foo=UpperCamelCase__ , baz=UpperCamelCase__ , opt=UpperCamelCase__ ) ) def _a (self ): '''simple docstring''' lowerCamelCase = HfArgumentParser(UpperCamelCase__ ) lowerCamelCase = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowerCamelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowerCamelCase = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowerCamelCase = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowerCamelCase = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) lowerCamelCase = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _a (self ): '''simple docstring''' @dataclass class lowerCamelCase__ : """simple docstring""" _A = "toto" lowerCamelCase = HfArgumentParser(UpperCamelCase__ ) lowerCamelCase = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowerCamelCase = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowerCamelCase = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def _a (self ): '''simple docstring''' lowerCamelCase = HfArgumentParser(UpperCamelCase__ ) lowerCamelCase = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=UpperCamelCase__ ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=UpperCamelCase__ ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=UpperCamelCase__ ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=UpperCamelCase__ ) self.argparsersEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase = parser.parse_args([] ) self.assertEqual( UpperCamelCase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) lowerCamelCase = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(UpperCamelCase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def _a (self ): '''simple docstring''' lowerCamelCase = argparse.ArgumentParser() expected.add_argument("--foo" , default=UpperCamelCase__ , type=UpperCamelCase__ ) expected.add_argument("--bar" , default=UpperCamelCase__ , type=UpperCamelCase__ , help="help message" ) expected.add_argument("--baz" , default=UpperCamelCase__ , type=UpperCamelCase__ ) expected.add_argument("--ces" , nargs="+" , default=[] , type=UpperCamelCase__ ) expected.add_argument("--des" , nargs="+" , default=[] , type=UpperCamelCase__ ) lowerCamelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(UpperCamelCase__ ) for dataclass_type in dataclass_types: lowerCamelCase = HfArgumentParser(UpperCamelCase__ ) self.argparsersEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase = parser.parse_args([] ) self.assertEqual(UpperCamelCase__ , Namespace(foo=UpperCamelCase__ , bar=UpperCamelCase__ , baz=UpperCamelCase__ , ces=[] , des=[] ) ) lowerCamelCase = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(UpperCamelCase__ , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def _a (self ): '''simple docstring''' lowerCamelCase = HfArgumentParser(UpperCamelCase__ ) lowerCamelCase = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=UpperCamelCase__ , required=UpperCamelCase__ ) expected.add_argument("--required_str" , type=UpperCamelCase__ , required=UpperCamelCase__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=UpperCamelCase__ , ) self.argparsersEqual(UpperCamelCase__ , UpperCamelCase__ ) def _a (self ): '''simple docstring''' lowerCamelCase = HfArgumentParser(UpperCamelCase__ ) lowerCamelCase = argparse.ArgumentParser() expected.add_argument("--foo" , type=UpperCamelCase__ , required=UpperCamelCase__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=UpperCamelCase__ , ) expected.add_argument("--opt" , type=UpperCamelCase__ , default=UpperCamelCase__ ) expected.add_argument("--baz" , default="toto" , type=UpperCamelCase__ , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=UpperCamelCase__ ) self.argparsersEqual(UpperCamelCase__ , UpperCamelCase__ ) def _a (self ): '''simple docstring''' lowerCamelCase = HfArgumentParser(UpperCamelCase__ ) lowerCamelCase = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } lowerCamelCase = parser.parse_dict(UpperCamelCase__ )[0] lowerCamelCase = BasicExample(**UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def _a (self ): '''simple docstring''' lowerCamelCase = HfArgumentParser(UpperCamelCase__ ) lowerCamelCase = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(UpperCamelCase__ , parser.parse_dict , UpperCamelCase__ , allow_extra_keys=UpperCamelCase__ ) def _a (self ): '''simple docstring''' lowerCamelCase = HfArgumentParser(UpperCamelCase__ ) lowerCamelCase = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase = os.path.join(UpperCamelCase__ , "temp_json" ) os.mkdir(UpperCamelCase__ ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] lowerCamelCase = BasicExample(**UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def _a (self ): '''simple docstring''' lowerCamelCase = HfArgumentParser(UpperCamelCase__ ) lowerCamelCase = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase = os.path.join(UpperCamelCase__ , "temp_yaml" ) os.mkdir(UpperCamelCase__ ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] lowerCamelCase = BasicExample(**UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def _a (self ): '''simple docstring''' lowerCamelCase = HfArgumentParser(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ )
623
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: lowerCamelCase : List[Any] = jnp.ones((batch_size, length) ) / length return scores def _lowercase ( self ) -> Optional[int]: lowerCamelCase : Optional[Any] = None lowerCamelCase : Optional[Any] = 20 lowerCamelCase : List[Any] = self._get_uniform_logits(batch_size=2 , length=UpperCamelCase__ ) # tweak scores to not be uniform anymore lowerCamelCase : Optional[int] = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase : List[Any] = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase : List[Any] = jax.nn.softmax(UpperCamelCase__ , axis=-1 ) lowerCamelCase : str = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase : Tuple = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase : List[Any] = jax.nn.softmax(temp_dist_warper_sharper(UpperCamelCase__ , scores.copy() , cur_len=UpperCamelCase__ ) , axis=-1 ) lowerCamelCase : Optional[int] = jax.nn.softmax(temp_dist_warper_smoother(UpperCamelCase__ , scores.copy() , cur_len=UpperCamelCase__ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def _lowercase ( self ) -> List[str]: lowerCamelCase : Dict = None lowerCamelCase : List[str] = 10 lowerCamelCase : Optional[int] = 2 # create ramp distribution lowerCamelCase : Dict = np.broadcast_to(np.arange(UpperCamelCase__ )[None, :] , (batch_size, vocab_size) ).copy() lowerCamelCase : Tuple = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase : List[Any] = FlaxTopKLogitsWarper(3 ) lowerCamelCase : str = top_k_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase : Union[str, Any] = 5 lowerCamelCase : Tuple = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCamelCase : Union[str, Any] = np.broadcast_to(np.arange(UpperCamelCase__ )[None, :] , (batch_size, length) ).copy() lowerCamelCase : Union[str, Any] = top_k_warp_safety_check(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : Dict = None lowerCamelCase : Tuple = 10 lowerCamelCase : int = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase : int = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowerCamelCase : Dict = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase : List[str] = np.exp(top_p_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase : List[str] = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase : List[str] = np.broadcast_to(np.arange(UpperCamelCase__ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase : str = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowerCamelCase : str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCamelCase : Optional[Any] = top_p_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : int = 20 lowerCamelCase : Optional[Any] = 4 lowerCamelCase : List[str] = 0 lowerCamelCase : List[str] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCamelCase__ ) # check that min length is applied at length 5 lowerCamelCase : str = ids_tensor((batch_size, 20) , vocab_size=20 ) lowerCamelCase : Any = 5 lowerCamelCase : Optional[int] = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[Any] = min_dist_processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf" )] ) # check that min length is not applied anymore at length 15 lowerCamelCase : Union[str, Any] = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : List[Any] = 15 lowerCamelCase : str = min_dist_processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) self.assertFalse(jnp.isinf(UpperCamelCase__ ).any() ) def _lowercase ( self ) -> List[str]: lowerCamelCase : Any = 20 lowerCamelCase : List[str] = 4 lowerCamelCase : Optional[Any] = 0 lowerCamelCase : Union[str, Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCamelCase__ ) # check that all scores are -inf except the bos_token_id score lowerCamelCase : Any = ids_tensor((batch_size, 1) , vocab_size=20 ) lowerCamelCase : Any = 1 lowerCamelCase : Tuple = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = logits_processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase : str = 3 lowerCamelCase : Union[str, Any] = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[int] = logits_processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) self.assertFalse(jnp.isinf(UpperCamelCase__ ).any() ) def _lowercase ( self ) -> Tuple: lowerCamelCase : Optional[int] = 20 lowerCamelCase : str = 4 lowerCamelCase : str = 0 lowerCamelCase : Any = 5 lowerCamelCase : Optional[int] = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase : List[str] = ids_tensor((batch_size, 4) , vocab_size=20 ) lowerCamelCase : Any = 4 lowerCamelCase : Any = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : List[str] = logits_processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase : Optional[Any] = 3 lowerCamelCase : Optional[Any] = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[int] = logits_processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) self.assertFalse(jnp.isinf(UpperCamelCase__ ).any() ) def _lowercase ( self ) -> Optional[int]: lowerCamelCase : str = 4 lowerCamelCase : List[str] = 10 lowerCamelCase : List[str] = 15 lowerCamelCase : Optional[int] = 2 lowerCamelCase : List[Any] = 1 lowerCamelCase : str = 15 # dummy input_ids and scores lowerCamelCase : Dict = ids_tensor((batch_size, sequence_length) , UpperCamelCase__ ) lowerCamelCase : Tuple = input_ids.copy() lowerCamelCase : List[Any] = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[Any] = scores.copy() # instantiate all dist processors lowerCamelCase : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase : str = FlaxTopKLogitsWarper(3 ) lowerCamelCase : Tuple = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase : List[str] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCamelCase__ ) lowerCamelCase : str = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCamelCase__ ) lowerCamelCase : List[str] = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) lowerCamelCase : Optional[int] = 10 # no processor list lowerCamelCase : Dict = temp_dist_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : Tuple = top_k_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : List[str] = top_p_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = min_dist_proc(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : Optional[int] = bos_dist_proc(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : Optional[Any] = eos_dist_proc(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) # with processor list lowerCamelCase : List[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase : Union[str, Any] = processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def _lowercase ( self ) -> Any: lowerCamelCase : List[Any] = 4 lowerCamelCase : Optional[int] = 10 lowerCamelCase : Dict = 15 lowerCamelCase : Optional[int] = 2 lowerCamelCase : Dict = 1 lowerCamelCase : Optional[Any] = 15 # dummy input_ids and scores lowerCamelCase : List[Any] = ids_tensor((batch_size, sequence_length) , UpperCamelCase__ ) lowerCamelCase : Any = input_ids.copy() lowerCamelCase : Dict = self._get_uniform_logits(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Dict = scores.copy() # instantiate all dist processors lowerCamelCase : int = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase : List[Any] = FlaxTopKLogitsWarper(3 ) lowerCamelCase : List[str] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase : int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCamelCase__ ) lowerCamelCase : List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCamelCase__ ) lowerCamelCase : Optional[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) lowerCamelCase : Dict = 10 # no processor list def run_no_processor_list(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase : Dict = temp_dist_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : Tuple = top_k_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : Optional[int] = top_p_warp(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : int = min_dist_proc(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : Optional[Any] = bos_dist_proc(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) lowerCamelCase : Dict = eos_dist_proc(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) return scores # with processor list def run_processor_list(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase : Optional[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase : Tuple = processor(UpperCamelCase__ , UpperCamelCase__ , cur_len=UpperCamelCase__ ) return scores lowerCamelCase : Dict = jax.jit(UpperCamelCase__ ) lowerCamelCase : Optional[int] = jax.jit(UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = jitted_run_no_processor_list(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[Any] = jitted_run_processor_list(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
311
0
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 1_00 , )-> float: """simple docstring""" UpperCamelCase = x_start UpperCamelCase = fnc(UpperCAmelCase_ ) UpperCamelCase = 0.0 for _ in range(UpperCAmelCase_ ): # Approximates curve as a sequence of linear lines and sums their length UpperCamelCase = (x_end - x_start) / steps + xa UpperCamelCase = fnc(UpperCAmelCase_ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step UpperCamelCase = xa UpperCamelCase = fxa return length if __name__ == "__main__": def lowerCamelCase__ ( UpperCAmelCase_ )-> Optional[int]: """simple docstring""" return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") SCREAMING_SNAKE_CASE = 10 while i <= 100_000: print(F'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
556
"""simple docstring""" SCREAMING_SNAKE_CASE = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) SCREAMING_SNAKE_CASE = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 12, """Pm""": 15, """Em""": 18, """Zm""": 21, """Ym""": 24, } def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> float: """simple docstring""" UpperCamelCase = from_type.lower().strip("s" ) UpperCamelCase = to_type.lower().strip("s" ) UpperCamelCase = UNIT_SYMBOL.get(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = UNIT_SYMBOL.get(UpperCAmelCase_ , UpperCAmelCase_ ) if from_sanitized not in METRIC_CONVERSION: UpperCamelCase = ( F"Invalid 'from_type' value: {from_type!r}.\n" F"Conversion abbreviations are: {', '.join(UpperCAmelCase_ )}" ) raise ValueError(UpperCAmelCase_ ) if to_sanitized not in METRIC_CONVERSION: UpperCamelCase = ( F"Invalid 'to_type' value: {to_type!r}.\n" F"Conversion abbreviations are: {', '.join(UpperCAmelCase_ )}" ) raise ValueError(UpperCAmelCase_ ) UpperCamelCase = METRIC_CONVERSION[from_sanitized] UpperCamelCase = METRIC_CONVERSION[to_sanitized] UpperCamelCase = 1 if from_exponent > to_exponent: UpperCamelCase = from_exponent - to_exponent else: UpperCamelCase = -(to_exponent - from_exponent) return value * pow(10 , UpperCAmelCase_ ) if __name__ == "__main__": from doctest import testmod testmod()
556
1
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowercase__ :Dict = logging.get_logger(__name__) lowercase__ :Optional[int] = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : Optional[int] = 'bart' _A : Optional[int] = ['past_key_values'] _A : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : int , __lowercase : str=50_265 , __lowercase : Dict=1_024 , __lowercase : int=12 , __lowercase : str=4_096 , __lowercase : str=16 , __lowercase : str=12 , __lowercase : Union[str, Any]=4_096 , __lowercase : Tuple=16 , __lowercase : int=0.0 , __lowercase : Tuple=0.0 , __lowercase : Any="gelu" , __lowercase : Optional[Any]=1_024 , __lowercase : Dict=0.1 , __lowercase : Any=0.0 , __lowercase : str=0.0 , __lowercase : str=0.0_2 , __lowercase : List[str]=0.0 , __lowercase : str=False , __lowercase : List[Any]=True , __lowercase : Tuple=3 , __lowercase : Optional[Any]=1 , __lowercase : str=0 , __lowercase : Tuple=2 , __lowercase : Any=True , __lowercase : Dict=2 , __lowercase : int=2 , **__lowercase : int , ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Optional[Any] = encoder_ffn_dim __UpperCAmelCase : Union[str, Any] = encoder_layers __UpperCAmelCase : Optional[Any] = encoder_attention_heads __UpperCAmelCase : Tuple = decoder_ffn_dim __UpperCAmelCase : Tuple = decoder_layers __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : List[str] = dropout __UpperCAmelCase : Union[str, Any] = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : Tuple = activation_function __UpperCAmelCase : List[str] = init_std __UpperCAmelCase : Dict = encoder_layerdrop __UpperCAmelCase : int = decoder_layerdrop __UpperCAmelCase : Union[str, Any] = classifier_dropout __UpperCAmelCase : int = use_cache __UpperCAmelCase : Tuple = encoder_layers __UpperCAmelCase : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , is_encoder_decoder=__lowercase , decoder_start_token_id=__lowercase , forced_eos_token_id=__lowercase , **__lowercase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __lowercase ): __UpperCAmelCase : Optional[int] = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' '''The config can simply be saved and uploaded again to be fixed.''' ) class snake_case ( __UpperCAmelCase ): '''simple docstring''' @property def A_ ( self : List[Any] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __UpperCAmelCase : int = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __UpperCAmelCase : List[Any] = {0: '''batch'''} __UpperCAmelCase : Optional[Any] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __UpperCAmelCase : Union[str, Any] = {0: '''batch''', 1: '''decoder_sequence'''} __UpperCAmelCase : Any = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __UpperCAmelCase : int = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __UpperCAmelCase , __UpperCAmelCase : Dict = self.num_layers for i in range(__lowercase ): __UpperCAmelCase : List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} __UpperCAmelCase : Tuple = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __UpperCAmelCase : Tuple = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def A_ ( self : str ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __UpperCAmelCase : Dict = super().outputs else: __UpperCAmelCase : Any = super(__lowercase , self ).outputs if self.use_past: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.num_layers for i in range(__lowercase ): __UpperCAmelCase : List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''} __UpperCAmelCase : Optional[int] = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def A_ ( self : Union[str, Any] , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ): '''simple docstring''' __UpperCAmelCase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) # Generate decoder inputs __UpperCAmelCase : int = seq_length if not self.use_past else 1 __UpperCAmelCase : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) __UpperCAmelCase : Union[str, Any] = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} __UpperCAmelCase : Tuple = dict(**__lowercase , **__lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __UpperCAmelCase , __UpperCAmelCase : int = common_inputs['''input_ids'''].shape __UpperCAmelCase : List[Any] = common_inputs['''decoder_input_ids'''].shape[1] __UpperCAmelCase , __UpperCAmelCase : str = self.num_attention_heads __UpperCAmelCase : Optional[int] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __UpperCAmelCase : List[Any] = decoder_seq_length + 3 __UpperCAmelCase : Optional[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __UpperCAmelCase : Tuple = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__lowercase , __lowercase )] , dim=1 ) __UpperCAmelCase : List[str] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __UpperCAmelCase , __UpperCAmelCase : int = self.num_layers __UpperCAmelCase : str = min(__lowercase , __lowercase ) __UpperCAmelCase : Optional[Any] = max(__lowercase , __lowercase ) - min_num_layers __UpperCAmelCase : List[str] = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(__lowercase ), torch.zeros(__lowercase ), torch.zeros(__lowercase ), torch.zeros(__lowercase ), ) ) # TODO: test this. __UpperCAmelCase : Union[str, Any] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__lowercase , __lowercase ): common_inputs["past_key_values"].append((torch.zeros(__lowercase ), torch.zeros(__lowercase )) ) return common_inputs def A_ ( self : List[Any] , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ): '''simple docstring''' __UpperCAmelCase : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __UpperCAmelCase : List[str] = seqlen + 2 __UpperCAmelCase , __UpperCAmelCase : List[str] = self.num_layers __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.num_attention_heads __UpperCAmelCase : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __UpperCAmelCase : List[Any] = common_inputs['''attention_mask'''].dtype __UpperCAmelCase : int = torch.cat( [common_inputs['''attention_mask'''], torch.ones(__lowercase , __lowercase , dtype=__lowercase )] , dim=1 ) __UpperCAmelCase : str = [ (torch.zeros(__lowercase ), torch.zeros(__lowercase )) for _ in range(__lowercase ) ] return common_inputs def A_ ( self : str , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = compute_effective_axis_dimension( __lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __UpperCAmelCase : Optional[Any] = tokenizer.num_special_tokens_to_add(__lowercase ) __UpperCAmelCase : List[Any] = compute_effective_axis_dimension( __lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowercase ) # Generate dummy inputs according to compute batch and sequence __UpperCAmelCase : Any = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __UpperCAmelCase : Dict = dict(tokenizer(__lowercase , return_tensors=__lowercase ) ) return common_inputs def A_ ( self : Optional[int] , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __UpperCAmelCase : Union[str, Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase ) elif self.task == "causal-lm": __UpperCAmelCase : Optional[Any] = self._generate_dummy_inputs_for_causal_lm( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase ) else: __UpperCAmelCase : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase ) return common_inputs def A_ ( self : Union[str, Any] , __lowercase : List[Any] , __lowercase : Dict , __lowercase : int , __lowercase : Tuple ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __UpperCAmelCase : str = super()._flatten_past_key_values_(__lowercase , __lowercase , __lowercase , __lowercase ) else: __UpperCAmelCase : str = super(__lowercase , self )._flatten_past_key_values_( __lowercase , __lowercase , __lowercase , __lowercase )
522
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ :List[str] = logging.get_logger(__name__) lowercase__ :List[str] = { 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : int = 'bridgetower_vision_model' def __init__( self : str , __lowercase : Optional[Any]=768 , __lowercase : Tuple=12 , __lowercase : List[str]=3 , __lowercase : Any=16 , __lowercase : int=288 , __lowercase : List[Any]=1 , __lowercase : Any=1e-05 , __lowercase : int=False , __lowercase : Any=True , __lowercase : Any=False , **__lowercase : Union[str, Any] , ): '''simple docstring''' super().__init__(**__lowercase ) __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : int = num_hidden_layers __UpperCAmelCase : int = num_channels __UpperCAmelCase : Optional[int] = patch_size __UpperCAmelCase : List[str] = image_size __UpperCAmelCase : Union[str, Any] = initializer_factor __UpperCAmelCase : List[str] = layer_norm_eps __UpperCAmelCase : Optional[int] = stop_gradient __UpperCAmelCase : List[str] = share_layernorm __UpperCAmelCase : int = remove_last_layer @classmethod def A_ ( cls : Optional[int] , __lowercase : Union[str, os.PathLike] , **__lowercase : Dict ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = cls.get_config_dict(__lowercase , **__lowercase ) if config_dict.get('''model_type''' ) == "bridgetower": __UpperCAmelCase : Optional[Any] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__lowercase , **__lowercase ) class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : str = 'bridgetower_text_model' def __init__( self : Any , __lowercase : Dict=50_265 , __lowercase : int=768 , __lowercase : str=12 , __lowercase : Union[str, Any]=12 , __lowercase : str=1 , __lowercase : List[Any]=3_072 , __lowercase : Optional[Any]="gelu" , __lowercase : str=0.1 , __lowercase : Dict=0.1 , __lowercase : List[str]=514 , __lowercase : List[str]=1 , __lowercase : Any=1e-05 , __lowercase : Tuple=1 , __lowercase : str=0 , __lowercase : Optional[Any]=2 , __lowercase : Optional[int]="absolute" , __lowercase : Tuple=True , **__lowercase : str , ): '''simple docstring''' super().__init__(**__lowercase ) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : int = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : str = hidden_act __UpperCAmelCase : List[Any] = initializer_factor __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : Any = max_position_embeddings __UpperCAmelCase : Dict = type_vocab_size __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : Dict = position_embedding_type __UpperCAmelCase : List[Any] = use_cache __UpperCAmelCase : Optional[Any] = pad_token_id __UpperCAmelCase : Dict = bos_token_id __UpperCAmelCase : Tuple = eos_token_id @classmethod def A_ ( cls : str , __lowercase : Union[str, os.PathLike] , **__lowercase : List[str] ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = cls.get_config_dict(__lowercase , **__lowercase ) if config_dict.get('''model_type''' ) == "bridgetower": __UpperCAmelCase : List[str] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__lowercase , **__lowercase ) class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : Optional[int] = 'bridgetower' def __init__( self : int , __lowercase : Any=True , __lowercase : List[Any]="gelu" , __lowercase : int=768 , __lowercase : Tuple=1 , __lowercase : List[Any]=1e-05 , __lowercase : Optional[Any]=False , __lowercase : str="add" , __lowercase : int=12 , __lowercase : Optional[int]=6 , __lowercase : List[str]=False , __lowercase : Union[str, Any]=False , __lowercase : Tuple=None , __lowercase : str=None , **__lowercase : List[str] , ): '''simple docstring''' __UpperCAmelCase : List[Any] = kwargs.pop('''text_config_dict''' , __lowercase ) __UpperCAmelCase : Any = kwargs.pop('''vision_config_dict''' , __lowercase ) super().__init__(**__lowercase ) __UpperCAmelCase : Optional[Any] = share_cross_modal_transformer_layers __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : List[Any] = initializer_factor __UpperCAmelCase : Optional[Any] = layer_norm_eps __UpperCAmelCase : Dict = share_link_tower_layers __UpperCAmelCase : Any = link_tower_type __UpperCAmelCase : Tuple = num_attention_heads __UpperCAmelCase : List[str] = num_hidden_layers __UpperCAmelCase : Optional[int] = tie_word_embeddings __UpperCAmelCase : Union[str, Any] = init_layernorm_from_vision_encoder if text_config is None: __UpperCAmelCase : List[str] = {} logger.info('''`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.''' ) if vision_config is None: __UpperCAmelCase : Optional[Any] = {} logger.info('''`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.''' ) __UpperCAmelCase : List[str] = BridgeTowerTextConfig(**__lowercase ) __UpperCAmelCase : List[Any] = BridgeTowerVisionConfig(**__lowercase ) @classmethod def A_ ( cls : Any , __lowercase : BridgeTowerTextConfig , __lowercase : BridgeTowerVisionConfig , **__lowercase : Optional[Any] ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__lowercase ) def A_ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Union[str, Any] = self.text_config.to_dict() __UpperCAmelCase : int = self.vision_config.to_dict() __UpperCAmelCase : Union[str, Any] = self.__class__.model_type return output
522
1
'''simple docstring''' import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path lowercase =[ {'dataset': 'wikipedia', 'config_name': '20220301.de'}, {'dataset': 'wikipedia', 'config_name': '20220301.en'}, {'dataset': 'wikipedia', 'config_name': '20220301.fr'}, {'dataset': 'wikipedia', 'config_name': '20220301.frr'}, {'dataset': 'wikipedia', 'config_name': '20220301.it'}, {'dataset': 'wikipedia', 'config_name': '20220301.simple'}, {'dataset': 'snli', 'config_name': 'plain_text'}, {'dataset': 'eli5', 'config_name': 'LFQA_reddit'}, {'dataset': 'wiki40b', 'config_name': 'en'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.compressed'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.no_index'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.multiset.no_index'}, {'dataset': 'natural_questions', 'config_name': 'default'}, ] def lowerCamelCase__ ( __lowerCamelCase : Any=True ): '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=lowerCAmelCase ) ) class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase =None UpperCAmelCase =None def lowerCAmelCase ( self , snake_case , snake_case) -> int: '''simple docstring''' with TemporaryDirectory() as tmp_dir: _UpperCAmelCase : List[Any] =dataset_module_factory(snake_case , cache_dir=snake_case) _UpperCAmelCase : List[str] =import_main_class(dataset_module.module_path , dataset=snake_case) _UpperCAmelCase : DatasetBuilder =builder_cls( cache_dir=snake_case , config_name=snake_case , hash=dataset_module.hash , ) _UpperCAmelCase : List[str] ='/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=snake_case).replace(os.sep , '/'), config.DATASET_INFO_FILENAME, ]) _UpperCAmelCase : Any =cached_path(snake_case , cache_dir=snake_case) self.assertTrue(os.path.exists(snake_case)) @pytest.mark.integration def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] =tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' _UpperCAmelCase : Any =dataset_module_factory('wikipedia' , cache_dir=__lowerCamelCase ) _UpperCAmelCase : Optional[int] =import_main_class(dataset_module.module_path ) _UpperCAmelCase : DatasetBuilder =builder_cls( cache_dir=__lowerCamelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _UpperCAmelCase : Dict =None builder_instance.download_and_prepare() _UpperCAmelCase : Tuple =builder_instance.as_dataset() assert ds @pytest.mark.integration def lowerCamelCase__ ( __lowerCamelCase : Dict ): '''simple docstring''' _UpperCAmelCase : Optional[int] =dataset_module_factory('wikipedia' , cache_dir=__lowerCamelCase ) _UpperCAmelCase : Union[str, Any] =import_main_class(dataset_module.module_path , dataset=__lowerCamelCase ) _UpperCAmelCase : DatasetBuilder =builder_cls( cache_dir=__lowerCamelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) _UpperCAmelCase : Optional[Any] =builder_instance.as_streaming_dataset() assert ds assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert "train" in ds assert isinstance(ds['train'] , __lowerCamelCase ) assert next(iter(ds['train'] ) )
331
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowercase =logging.get_logger(__name__) lowercase ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all MVP models at https://huggingface.co/models?filter=mvp lowercase ={ 'vocab_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json', }, 'added_tokens.json': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json', }, 'merges_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt', }, 'tokenizer_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json', }, } lowercase ={ 'RUCAIBox/mvp': 1024, } class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase =VOCAB_FILES_NAMES UpperCAmelCase =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase =["input_ids", "attention_mask"] UpperCAmelCase =MvpTokenizer def __init__( self , snake_case=None , snake_case=None , snake_case=None , snake_case="replace" , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , snake_case=False , snake_case=True , **snake_case , ) -> str: '''simple docstring''' super().__init__( snake_case , snake_case , tokenizer_file=snake_case , errors=snake_case , bos_token=snake_case , eos_token=snake_case , sep_token=snake_case , cls_token=snake_case , unk_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case , **snake_case , ) _UpperCAmelCase : Union[str, Any] =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , snake_case) != add_prefix_space: _UpperCAmelCase : List[str] =getattr(snake_case , pre_tok_state.pop('type')) _UpperCAmelCase : Union[str, Any] =add_prefix_space _UpperCAmelCase : Optional[Any] =pre_tok_class(**snake_case) _UpperCAmelCase : Union[str, Any] =add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _UpperCAmelCase : List[Any] ='post_processor' _UpperCAmelCase : Optional[int] =getattr(self.backend_tokenizer , snake_case , snake_case) if tokenizer_component_instance: _UpperCAmelCase : int =json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _UpperCAmelCase : Any =tuple(state['sep']) if "cls" in state: _UpperCAmelCase : List[str] =tuple(state['cls']) _UpperCAmelCase : str =False if state.get('add_prefix_space' , snake_case) != add_prefix_space: _UpperCAmelCase : List[str] =add_prefix_space _UpperCAmelCase : Optional[int] =True if state.get('trim_offsets' , snake_case) != trim_offsets: _UpperCAmelCase : Union[str, Any] =trim_offsets _UpperCAmelCase : Tuple =True if changes_to_apply: _UpperCAmelCase : str =getattr(snake_case , state.pop('type')) _UpperCAmelCase : List[Any] =component_class(**snake_case) setattr(self.backend_tokenizer , snake_case , snake_case) @property def lowerCAmelCase ( self) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def lowerCAmelCase ( self , snake_case) -> Dict: '''simple docstring''' _UpperCAmelCase : List[Any] =AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case) if isinstance(snake_case , snake_case) else value _UpperCAmelCase : Any =value def lowerCAmelCase ( self , *snake_case , **snake_case) -> BatchEncoding: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =kwargs.get('is_split_into_words' , snake_case) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*snake_case , **snake_case) def lowerCAmelCase ( self , *snake_case , **snake_case) -> BatchEncoding: '''simple docstring''' _UpperCAmelCase : Any =kwargs.get('is_split_into_words' , snake_case) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " 'to use it with pretokenized inputs.') return super()._encode_plus(*snake_case , **snake_case) def lowerCAmelCase ( self , snake_case , snake_case = None) -> Tuple[str]: '''simple docstring''' _UpperCAmelCase : str =self._tokenizer.model.save(snake_case , name=snake_case) return tuple(snake_case) def lowerCAmelCase ( self , snake_case , snake_case=None) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =[self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase ( self , snake_case , snake_case = None) -> List[int]: '''simple docstring''' _UpperCAmelCase : List[str] =[self.sep_token_id] _UpperCAmelCase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
331
1
from sklearn.metrics import recall_score import datasets snake_case : Optional[int] = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" snake_case : Dict = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" snake_case : Union[str, Any] = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a=None , _a=1 , _a="binary" , _a=None , _a="warn" , ): __magic_name__ : List[Any] = recall_score( _a , _a , labels=_a , pos_label=_a , average=_a , sample_weight=_a , zero_division=_a , ) return {"recall": float(_a ) if score.size == 1 else score}
124
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _snake_case ( snake_case , unittest.TestCase ): UpperCamelCase__ = DiTPipeline UpperCamelCase__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS UpperCamelCase__ = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } UpperCamelCase__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS UpperCamelCase__ = False def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) __magic_name__ : Tuple = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_a , activation_fn="gelu-approximate" , num_embeds_ada_norm=1_000 , norm_type="ada_norm_zero" , norm_elementwise_affine=_a , ) __magic_name__ : int = AutoencoderKL() __magic_name__ : str = DDIMScheduler() __magic_name__ : int = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def SCREAMING_SNAKE_CASE ( self , _a , _a=0 ): if str(_a ).startswith("mps" ): __magic_name__ : str = torch.manual_seed(_a ) else: __magic_name__ : Optional[Any] = torch.Generator(device=_a ).manual_seed(_a ) __magic_name__ : Dict = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = "cpu" __magic_name__ : Optional[int] = self.get_dummy_components() __magic_name__ : Any = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) __magic_name__ : Tuple = self.get_dummy_inputs(_a ) __magic_name__ : Any = pipe(**_a ).images __magic_name__ : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __magic_name__ : List[Any] = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) __magic_name__ : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def SCREAMING_SNAKE_CASE ( self ): self._test_inference_batch_single_identical(relax_max_difference=_a , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def SCREAMING_SNAKE_CASE ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = torch.manual_seed(0 ) __magic_name__ : Optional[int] = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) __magic_name__ : int = ["vase", "umbrella", "white shark", "white wolf"] __magic_name__ : str = pipe.get_label_ids(_a ) __magic_name__ : Dict = pipe(_a , generator=_a , num_inference_steps=40 , output_type="np" ).images for word, image in zip(_a , _a ): __magic_name__ : int = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : str = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) __magic_name__ : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) __magic_name__ : List[str] = ["vase", "umbrella"] __magic_name__ : Any = pipe.get_label_ids(_a ) __magic_name__ : List[str] = torch.manual_seed(0 ) __magic_name__ : Optional[Any] = pipe(_a , generator=_a , num_inference_steps=25 , output_type="np" ).images for word, image in zip(_a , _a ): __magic_name__ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
124
1
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCAmelCase_ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowerCAmelCase_ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", """emoji""": True, }, } ] lowerCAmelCase_ = 0 for log in Path().glob("""*.log"""): lowerCAmelCase_ = 0 with open(log, """r""") as f: for line in f: lowerCAmelCase_ = json.loads(line) if line.get("""nodeid""", """""") != "": lowerCAmelCase_ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowerCAmelCase_ = F"""{line["duration"]:.4f}""" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCAmelCase_ = [] log.unlink() lowerCAmelCase_ = """""" lowerCAmelCase_ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowerCAmelCase_ = [] lowerCAmelCase_ = {} for test in failed_tests: lowerCAmelCase_ = test[0].split("""::""") lowerCAmelCase_ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowerCAmelCase_ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCAmelCase_ = [test[0] for test in failed_table] lowerCAmelCase_ = list(set(files)) # Count number of instances in failed_tests lowerCAmelCase_ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCAmelCase_ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowerCAmelCase_ = """Too many failed tests, please see the full report in the Action results.""" lowerCAmelCase_ = len(err) + 10 lowerCAmelCase_ = message[: 3000 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: lowerCAmelCase_ = """No failed tests! 🤗""" print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowerCAmelCase_ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowerCAmelCase_ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowerCAmelCase_ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) lowerCAmelCase_ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) lowerCAmelCase_ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowerCAmelCase_ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCAmelCase_ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCAmelCase_ = row[0] else: lowerCAmelCase_ = """""" lowerCAmelCase_ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
707
import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
669
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
490
'''simple docstring''' import operator as op def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" _a : Dict = [] _a : List[str] = lambda __a , __a : int(x / y ) # noqa: E731 integer division operation _a : List[Any] = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(1_2 ) , 'Stack' , sep=' | ' ) print('-' * (3_0 + len(__a )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__a ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(1_2 ) , ','.join(__a ) , sep=' | ' ) else: _a : str = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(1_2 ) , ','.join(__a ) , sep=' | ' ) _a : str = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(1_2 ) , ','.join(__a ) , sep=' | ' ) stack.append( str(opr[x](int(__a ) , int(__a ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(1_2 ) , ','.join(__a ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": __lowerCAmelCase = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
229
0
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
674
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : int ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case__ , ) assert hasattr(self , """env""" ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Optional[Any] ): # configuration for running training on smdistributed Model Parallel lowerCAmelCase__ = { """enabled""": True, """processes_per_host""": 8, } lowerCAmelCase__ = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } lowerCAmelCase__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} lowerCAmelCase__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="""py36""" , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str ): TrainingJobAnalytics(snake_case__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[str] ): # create estimator lowerCAmelCase__ = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case__ )
674
1
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): _UpperCAmelCase = tempfile.mkdtemp() # fmt: off _UpperCAmelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _UpperCAmelCase = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } _UpperCAmelCase = os.path.join(self.tmpdirname , _UpperCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self , **_UpperCamelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def UpperCamelCase( self , **_UpperCamelCase ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def UpperCamelCase( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase( self ): _UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _UpperCAmelCase = [Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase( self ): _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _UpperCAmelCase = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0 ) _UpperCAmelCase = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = image_processor(_UpperCamelCase , return_tensors='''np''' ) _UpperCAmelCase = processor(images=_UpperCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) _UpperCAmelCase = '''lower newer''' _UpperCAmelCase = processor(text=_UpperCamelCase ) _UpperCAmelCase = tokenizer(_UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) _UpperCAmelCase = '''lower newer''' _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=_UpperCamelCase , images=_UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(_UpperCamelCase ): processor() def UpperCamelCase( self ): _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) _UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase = processor.batch_decode(_UpperCamelCase ) _UpperCAmelCase = tokenizer.batch_decode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase ) _UpperCAmelCase = '''lower newer''' _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=_UpperCamelCase , images=_UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
32
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers _lowercase = [int(0.5 * n * (n + 1)) for n in range(1, 1_01)] def _snake_case ( ): A = os.path.dirname(os.path.realpath(snake_case__ ) ) A = os.path.join(snake_case__ , 'words.txt' ) A = '' with open(snake_case__ ) as f: A = f.readline() A = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] A = [ word for word in [sum(ord(snake_case__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(snake_case__ ) if __name__ == "__main__": print(solution())
91
0
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
668
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class a__ ( unittest.TestCase ): @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxRobertaModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "bert-base is not a local folder and is not a valid model identifier" ): lowercase__ = FlaxAutoModel.from_pretrained("bert-base" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase, revision="aaaaaa" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack", ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase, "Use `from_pt=True` to load this model" ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
668
1
from collections import defaultdict def UpperCAmelCase ( UpperCAmelCase )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = True for v in tree[start]: if v not in visited: ret += dfs(__lowercase ) if ret % 2 == 0: cuts.append(__lowercase ) return ret def UpperCAmelCase ( )-> Union[str, Any]: '''simple docstring''' dfs(1 ) if __name__ == "__main__": A_ = 1_0, 9 A_ = defaultdict(list) A_ = {} A_ = [] A_ = 0 A_ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (1_0, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
393
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ ( __snake_case ): _lowerCamelCase = ['image_processor', 'tokenizer'] _lowerCamelCase = 'CLIPImageProcessor' _lowerCamelCase = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__( self , lowercase_=None , lowercase_=None , **lowercase_ ): _snake_case : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowercase_ , ) _snake_case : Dict = kwargs.pop("feature_extractor" ) _snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowercase_ , lowercase_ ) def __call__( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ ): if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: _snake_case : str = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if images is not None: _snake_case : List[str] = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None and images is not None: _snake_case : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def UpperCamelCase ( self , *lowercase_ , **lowercase_ ): return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def UpperCamelCase ( self , *lowercase_ , **lowercase_ ): return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def UpperCamelCase ( self ): _snake_case : Any = self.tokenizer.model_input_names _snake_case : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
670
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Optional[int] = '''donut-swin''' lowerCamelCase :str = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowerCAmelCase_=2_24 , lowerCAmelCase_=4 , lowerCAmelCase_=3 , lowerCAmelCase_=96 , lowerCAmelCase_=[2, 2, 6, 2] , lowerCAmelCase_=[3, 6, 12, 24] , lowerCAmelCase_=7 , lowerCAmelCase_=4.0 , lowerCAmelCase_=True , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.1 , lowerCAmelCase_="gelu" , lowerCAmelCase_=False , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-5 , **lowerCAmelCase_ , ) -> Tuple: super().__init__(**lowerCAmelCase_ ) _A = image_size _A = patch_size _A = num_channels _A = embed_dim _A = depths _A = len(lowerCAmelCase_ ) _A = num_heads _A = window_size _A = mlp_ratio _A = qkv_bias _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = drop_path_rate _A = hidden_act _A = use_absolute_embeddings _A = layer_norm_eps _A = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _A = int(embed_dim * 2 ** (len(lowerCAmelCase_ ) - 1) )
714
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Union[str, Any] = '''speech_to_text''' lowerCamelCase :List[str] = ['''past_key_values'''] lowerCamelCase :str = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCAmelCase_=1_00_00 , lowerCAmelCase_=12 , lowerCAmelCase_=20_48 , lowerCAmelCase_=4 , lowerCAmelCase_=6 , lowerCAmelCase_=20_48 , lowerCAmelCase_=4 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_="relu" , lowerCAmelCase_=2_56 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.02 , lowerCAmelCase_=2 , lowerCAmelCase_=True , lowerCAmelCase_=1 , lowerCAmelCase_=0 , lowerCAmelCase_=2 , lowerCAmelCase_=60_00 , lowerCAmelCase_=10_24 , lowerCAmelCase_=2 , lowerCAmelCase_=(5, 5) , lowerCAmelCase_=10_24 , lowerCAmelCase_=80 , lowerCAmelCase_=1 , **lowerCAmelCase_ , ) -> Tuple: _A = vocab_size _A = d_model _A = encoder_ffn_dim _A = encoder_layers _A = encoder_attention_heads _A = decoder_ffn_dim _A = decoder_layers _A = decoder_attention_heads _A = dropout _A = attention_dropout _A = activation_dropout _A = activation_function _A = init_std _A = encoder_layerdrop _A = decoder_layerdrop _A = use_cache _A = encoder_layers _A = scale_embedding # scale factor will be sqrt(d_model) if True _A = max_source_positions _A = max_target_positions _A = num_conv_layers _A = list(lowerCAmelCase_ ) _A = conv_channels _A = input_feat_per_channel _A = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` """ F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' ) super().__init__( pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , decoder_start_token_id=lowerCAmelCase_ , **lowerCAmelCase_ , )
83
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Dict = '''deformable_detr''' A : List[str] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self, A=True, A=None, A=3, A=300, A=1_024, A=6, A=1_024, A=8, A=6, A=1_024, A=8, A=0.0, A=True, A="relu", A=256, A=0.1, A=0.0, A=0.0, A=0.02, A=1.0, A=True, A=False, A="sine", A="resnet50", A=True, A=False, A=4, A=4, A=4, A=False, A=300, A=False, A=1, A=5, A=2, A=1, A=1, A=5, A=2, A=0.1, A=0.25, A=False, **A, ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(A, A ): SCREAMING_SNAKE_CASE : Any = backbone_config.get('model_type' ) SCREAMING_SNAKE_CASE : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE : Optional[Any] = config_class.from_dict(A ) SCREAMING_SNAKE_CASE : List[Any] = use_timm_backbone SCREAMING_SNAKE_CASE : Dict = backbone_config SCREAMING_SNAKE_CASE : List[str] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = num_queries SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE : int = d_model SCREAMING_SNAKE_CASE : List[str] = encoder_ffn_dim SCREAMING_SNAKE_CASE : List[str] = encoder_layers SCREAMING_SNAKE_CASE : Tuple = encoder_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE : Tuple = decoder_layers SCREAMING_SNAKE_CASE : Dict = decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = dropout SCREAMING_SNAKE_CASE : Union[str, Any] = attention_dropout SCREAMING_SNAKE_CASE : Optional[int] = activation_dropout SCREAMING_SNAKE_CASE : int = activation_function SCREAMING_SNAKE_CASE : Optional[int] = init_std SCREAMING_SNAKE_CASE : List[str] = init_xavier_std SCREAMING_SNAKE_CASE : str = encoder_layerdrop SCREAMING_SNAKE_CASE : Dict = auxiliary_loss SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE : List[str] = backbone SCREAMING_SNAKE_CASE : Any = use_pretrained_backbone SCREAMING_SNAKE_CASE : Dict = dilation # deformable attributes SCREAMING_SNAKE_CASE : List[str] = num_feature_levels SCREAMING_SNAKE_CASE : Dict = encoder_n_points SCREAMING_SNAKE_CASE : Optional[int] = decoder_n_points SCREAMING_SNAKE_CASE : List[str] = two_stage SCREAMING_SNAKE_CASE : Optional[int] = two_stage_num_proposals SCREAMING_SNAKE_CASE : Any = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher SCREAMING_SNAKE_CASE : Optional[Any] = class_cost SCREAMING_SNAKE_CASE : Any = bbox_cost SCREAMING_SNAKE_CASE : Tuple = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE : Optional[int] = mask_loss_coefficient SCREAMING_SNAKE_CASE : List[str] = dice_loss_coefficient SCREAMING_SNAKE_CASE : Optional[int] = bbox_loss_coefficient SCREAMING_SNAKE_CASE : Tuple = giou_loss_coefficient SCREAMING_SNAKE_CASE : Optional[int] = eos_coefficient SCREAMING_SNAKE_CASE : Tuple = focal_alpha SCREAMING_SNAKE_CASE : Optional[Any] = disable_custom_kernels super().__init__(is_encoder_decoder=A, **A ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCamelCase_ ( self ): '''simple docstring''' return self.d_model def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE : Optional[Any] = self.__class__.model_type return output
28
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _snake_case = 'pt' elif is_tf_available(): _snake_case = 'tf' else: _snake_case = 'jax' class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ = PerceiverTokenizer UpperCAmelCase__ = False def __lowercase( self ) -> Tuple: super().setUp() __UpperCamelCase = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowercase( self ) -> Union[str, Any]: return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def __lowercase( self , **_SCREAMING_SNAKE_CASE ) -> PerceiverTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=20 , _SCREAMING_SNAKE_CASE=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __UpperCamelCase = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): try: __UpperCamelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) except UnicodeDecodeError: pass toks.append((i, tok) ) __UpperCamelCase = list(filter(lambda _SCREAMING_SNAKE_CASE : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _SCREAMING_SNAKE_CASE ) ) __UpperCamelCase = list(filter(lambda _SCREAMING_SNAKE_CASE : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) if max_length is not None and len(_SCREAMING_SNAKE_CASE ) > max_length: __UpperCamelCase = toks[:max_length] if min_length is not None and len(_SCREAMING_SNAKE_CASE ) < min_length and len(_SCREAMING_SNAKE_CASE ) > 0: while len(_SCREAMING_SNAKE_CASE ) < min_length: __UpperCamelCase = toks + toks # toks_str = [t[1] for t in toks] __UpperCamelCase = [t[0] for t in toks] # Ensure consistency __UpperCamelCase = tokenizer.decode(_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) if " " not in output_txt and len(_SCREAMING_SNAKE_CASE ) > 1: __UpperCamelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) ) if with_prefix_space: __UpperCamelCase = ' ' + output_txt __UpperCamelCase = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) return output_txt, output_ids def __lowercase( self ) -> Optional[int]: __UpperCamelCase = self.perceiver_tokenizer __UpperCamelCase = 'Unicode €.' __UpperCamelCase = tokenizer(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , _SCREAMING_SNAKE_CASE ) # decoding __UpperCamelCase = tokenizer.decode(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , '[CLS]Unicode €.[SEP]' ) __UpperCamelCase = tokenizer('e è é ê ë' ) __UpperCamelCase = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , _SCREAMING_SNAKE_CASE ) # decoding __UpperCamelCase = tokenizer.decode(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def __lowercase( self ) -> Any: __UpperCamelCase = self.perceiver_tokenizer __UpperCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __UpperCamelCase = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __UpperCamelCase = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if FRAMEWORK != "jax": __UpperCamelCase = list(batch.input_ids.numpy()[0] ) else: __UpperCamelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def __lowercase( self ) -> Optional[int]: __UpperCamelCase = self.perceiver_tokenizer __UpperCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __UpperCamelCase = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _SCREAMING_SNAKE_CASE ) self.assertIn('attention_mask' , _SCREAMING_SNAKE_CASE ) self.assertNotIn('decoder_input_ids' , _SCREAMING_SNAKE_CASE ) self.assertNotIn('decoder_attention_mask' , _SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> Tuple: __UpperCamelCase = self.perceiver_tokenizer __UpperCamelCase = [ 'Summary of the text.', 'Another summary.', ] __UpperCamelCase = tokenizer( text_target=_SCREAMING_SNAKE_CASE , max_length=32 , padding='max_length' , truncation=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __lowercase( self ) -> Tuple: # safety check on max_len default value so we are sure the test works __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = ' He is very happy, UNwant\u00E9d,running' __UpperCamelCase = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = tokenizer.__class__.from_pretrained(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = after_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) shutil.rmtree(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __UpperCamelCase = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __UpperCamelCase = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = tokenizer.__class__.from_pretrained(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = after_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __UpperCamelCase = tokenizer.__class__.from_pretrained(_SCREAMING_SNAKE_CASE , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> Tuple: __UpperCamelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __UpperCamelCase = json.load(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __UpperCamelCase = json.load(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = [f"""<extra_id_{i}>""" for i in range(125 )] __UpperCamelCase = added_tokens_extra_ids + [ 'an_additional_special_token' ] __UpperCamelCase = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_SCREAMING_SNAKE_CASE , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __UpperCamelCase = tokenizer_class.from_pretrained( _SCREAMING_SNAKE_CASE , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __UpperCamelCase = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_SCREAMING_SNAKE_CASE )] __UpperCamelCase = tokenizer_class.from_pretrained( _SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __lowercase( self ) -> Tuple: __UpperCamelCase = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def __lowercase( self ) -> int: pass def __lowercase( self ) -> Dict: pass def __lowercase( self ) -> Dict: pass def __lowercase( self ) -> Optional[Any]: pass def __lowercase( self ) -> Union[str, Any]: # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __UpperCamelCase = self.get_tokenizers(fast=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __UpperCamelCase = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] __UpperCamelCase = tokenizer.convert_tokens_to_string(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
383
0
'''simple docstring''' import os def UpperCamelCase_ ( ): '''simple docstring''' with open(os.path.dirname(A__ ) + """/p022_names.txt""" ) as file: lowerCAmelCase_ : Union[str, Any] = str(file.readlines()[0] ) lowerCAmelCase_ : List[Any] = names.replace("""\"""" , """""" ).split(""",""" ) names.sort() lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : Tuple = 0 for i, name in enumerate(A__ ): for letter in name: name_score += ord(A__ ) - 64 total_score += (i + 1) * name_score lowerCAmelCase_ : Optional[Any] = 0 return total_score if __name__ == "__main__": print(solution())
398
'''simple docstring''' def UpperCamelCase_ ( A__ : int ): '''simple docstring''' assert isinstance(A__ , A__ ), f'The input value of [n={number}] is not an integer' if number == 1: return 2 elif number < 1: lowerCAmelCase_ : Any = f'The input value of [n={number}] has to be > 0' raise ValueError(A__ ) else: lowerCAmelCase_ : Optional[int] = sylvester(number - 1 ) lowerCAmelCase_ : Dict = num - 1 lowerCAmelCase_ : Union[str, Any] = num return lower * upper + 1 if __name__ == "__main__": print(F'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
398
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Dict = """openai/whisper-base""" _SCREAMING_SNAKE_CASE :Dict = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) _SCREAMING_SNAKE_CASE :List[str] = """transcriber""" _SCREAMING_SNAKE_CASE :Optional[int] = WhisperProcessor _SCREAMING_SNAKE_CASE :List[str] = WhisperForConditionalGeneration _SCREAMING_SNAKE_CASE :Dict = ["""audio"""] _SCREAMING_SNAKE_CASE :str = ["""text"""] def _a ( self , _a ) -> int: """simple docstring""" return self.pre_processor(_a , return_tensors="""pt""" ).input_features def _a ( self , _a ) -> Optional[int]: """simple docstring""" return self.model.generate(inputs=_a ) def _a ( self , _a ) -> Any: """simple docstring""" return self.pre_processor.batch_decode(_a , skip_special_tokens=_a )[0]
680
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :torch.FloatTensor _SCREAMING_SNAKE_CASE :Optional[torch.FloatTensor] = None def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=0.999 , __lowerCAmelCase="cosine" , ) -> Union[str, Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(__lowerCAmelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__lowerCAmelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) SCREAMING_SNAKE_CASE__ : List[Any] = [] for i in range(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : List[str] = i / num_diffusion_timesteps SCREAMING_SNAKE_CASE__ : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__lowerCAmelCase ) / alpha_bar_fn(__lowerCAmelCase ) , __lowerCAmelCase ) ) return torch.tensor(__lowerCAmelCase , dtype=torch.floataa ) class __a (UpperCamelCase_ , UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :List[Any] = 1 @register_to_config def __init__( self , _a = 1_000 , _a = 0.0_001 , _a = 0.02 , _a = "linear" , _a = None , _a = True , _a = True , _a = 0 , _a = "epsilon" , _a = 1.0 , **_a , ) -> Dict: """simple docstring""" if kwargs.get("""set_alpha_to_one""" , _a ) is not None: SCREAMING_SNAKE_CASE__ : Tuple = ( """The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.""" ) deprecate("""set_alpha_to_one""" , """1.0.0""" , _a , standard_warn=_a ) SCREAMING_SNAKE_CASE__ : Tuple = kwargs["""set_alpha_to_one"""] if trained_betas is not None: SCREAMING_SNAKE_CASE__ : Dict = torch.tensor(_a , dtype=torch.floataa ) elif beta_schedule == "linear": SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.linspace(_a , _a , _a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. SCREAMING_SNAKE_CASE__ : Optional[int] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule SCREAMING_SNAKE_CASE__ : Tuple = betas_for_alpha_bar(_a ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = 1.0 - self.betas SCREAMING_SNAKE_CASE__ : List[Any] = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. SCREAMING_SNAKE_CASE__ : Any = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE__ : Tuple = 1.0 # setable values SCREAMING_SNAKE_CASE__ : Dict = None SCREAMING_SNAKE_CASE__ : List[str] = torch.from_numpy(np.arange(0 , _a ).copy().astype(np.intaa ) ) def _a ( self , _a , _a = None ) -> torch.FloatTensor: """simple docstring""" return sample def _a ( self , _a , _a = None ) -> Optional[int]: """simple docstring""" if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) SCREAMING_SNAKE_CASE__ : List[str] = num_inference_steps SCREAMING_SNAKE_CASE__ : Optional[Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE__ : str = (np.arange(0 , _a ) * step_ratio).round().copy().astype(np.intaa ) SCREAMING_SNAKE_CASE__ : Tuple = torch.from_numpy(_a ).to(_a ) self.timesteps += self.config.steps_offset def _a ( self , _a , _a , _a , _a = 0.0 , _a = False , _a = None , _a = True , ) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process SCREAMING_SNAKE_CASE__ : Optional[int] = self.alphas_cumprod[timestep] SCREAMING_SNAKE_CASE__ : Optional[int] = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) SCREAMING_SNAKE_CASE__ : Any = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": SCREAMING_SNAKE_CASE__ : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 SCREAMING_SNAKE_CASE__ : List[Any] = model_output elif self.config.prediction_type == "sample": SCREAMING_SNAKE_CASE__ : Dict = model_output SCREAMING_SNAKE_CASE__ : int = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": SCREAMING_SNAKE_CASE__ : Dict = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output SCREAMING_SNAKE_CASE__ : str = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' """ `v_prediction`""" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: SCREAMING_SNAKE_CASE__ : Tuple = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf SCREAMING_SNAKE_CASE__ : Any = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf SCREAMING_SNAKE_CASE__ : Dict = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_a , pred_original_sample=_a ) def __len__( self ) -> Dict: """simple docstring""" return self.config.num_train_timesteps
680
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : str = { "configuration_pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ "PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST", "PegasusXForConditionalGeneration", "PegasusXModel", "PegasusXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _UpperCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCAmelCase : Any = { """configuration_longt5""": ["""LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongT5Config""", """LongT5OnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = [ """LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongT5EncoderModel""", """LongT5ForConditionalGeneration""", """LongT5Model""", """LongT5PreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = [ """FlaxLongT5ForConditionalGeneration""", """FlaxLongT5Model""", """FlaxLongT5PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys _UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
108
0
'''simple docstring''' from __future__ import annotations import queue class a : def __init__( self : Optional[int] , lowercase_ : Optional[Any] ): snake_case_ = data snake_case_ = None snake_case_ = None def __magic_name__ ( ) -> str: '''simple docstring''' print('''\n********Press N to stop entering at any point of time********\n''' ) snake_case_ = input('''Enter the value of the root node: ''' ).strip().lower() snake_case_ = queue.Queue() snake_case_ = TreeNode(int(__a ) ) q.put(__a ) while not q.empty(): snake_case_ = q.get() snake_case_ = F"Enter the left node of {node_found.data}: " snake_case_ = input(__a ).strip().lower() or 'n' if check == "n": return tree_node snake_case_ = TreeNode(int(__a ) ) snake_case_ = left_node q.put(__a ) snake_case_ = F"Enter the right node of {node_found.data}: " snake_case_ = input(__a ).strip().lower() or 'n' if check == "n": return tree_node snake_case_ = TreeNode(int(__a ) ) snake_case_ = right_node q.put(__a ) raise def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' if not isinstance(__a, __a ) or not node: return print(node.data, end=''',''' ) pre_order(node.left ) pre_order(node.right ) def __magic_name__ ( __UpperCAmelCase ) -> Any: '''simple docstring''' if not isinstance(__a, __a ) or not node: return in_order(node.left ) print(node.data, end=''',''' ) in_order(node.right ) def __magic_name__ ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if not isinstance(__a, __a ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data, end=''',''' ) def __magic_name__ ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' if not isinstance(__a, __a ) or not node: return snake_case_ = queue.Queue() q.put(__a ) while not q.empty(): snake_case_ = q.get() print(node_dequeued.data, end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' if not isinstance(__a, __a ) or not node: return snake_case_ = queue.Queue() q.put(__a ) while not q.empty(): snake_case_ = [] while not q.empty(): snake_case_ = q.get() print(node_dequeued.data, end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__a ) def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if not isinstance(__a, __a ) or not node: return snake_case_ = [] snake_case_ = node while n or stack: while n: # start from root node, find its left child print(n.data, end=''',''' ) stack.append(__a ) snake_case_ = n.left # end of while means current node doesn't have left child snake_case_ = stack.pop() # start to traverse its right child snake_case_ = n.right def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' if not isinstance(__a, __a ) or not node: return snake_case_ = [] snake_case_ = node while n or stack: while n: stack.append(__a ) snake_case_ = n.left snake_case_ = stack.pop() print(n.data, end=''',''' ) snake_case_ = n.right def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' if not isinstance(__a, __a ) or not node: return snake_case_ = [], [] snake_case_ = node stacka.append(__a ) while stacka: # to find the reversed order of post order, store it in stack2 snake_case_ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__a ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data, end=''',''' ) def __magic_name__ ( __UpperCAmelCase = "", __UpperCAmelCase=50, __UpperCAmelCase="*" ) -> Optional[Any]: '''simple docstring''' if not s: return "\n" + width * char snake_case_ = divmod(width - len(__a ) - 2, 2 ) return F"{left * char} {s} {(left + extra) * char}" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) a : Any = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
640
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class A_(SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ : Dict = TextToVideoSDPipeline a_ : Dict = TEXT_TO_IMAGE_PARAMS a_ : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. a_ : str = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def _lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCamelCase : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) _lowerCamelCase : Optional[int] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=A , set_alpha_to_one=A , ) torch.manual_seed(0 ) _lowerCamelCase : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) _lowerCamelCase : str = CLIPTextModel(A ) _lowerCamelCase : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCamelCase : Any = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def _lowerCAmelCase ( self , A , A=0 ): if str(A ).startswith('mps' ): _lowerCamelCase : Tuple = torch.manual_seed(A ) else: _lowerCamelCase : Optional[int] = torch.Generator(device=A ).manual_seed(A ) _lowerCamelCase : Optional[int] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def _lowerCAmelCase ( self ): _lowerCamelCase : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : Tuple = self.get_dummy_components() _lowerCamelCase : Dict = TextToVideoSDPipeline(**A ) _lowerCamelCase : Optional[int] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) _lowerCamelCase : Union[str, Any] = self.get_dummy_inputs(A ) _lowerCamelCase : Union[str, Any] = 'np' _lowerCamelCase : Optional[int] = sd_pipe(**A ).frames _lowerCamelCase : Dict = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _lowerCamelCase : Tuple = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCAmelCase ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=A , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCAmelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A , expected_max_diff=1E-2 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def _lowerCAmelCase ( self ): pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def _lowerCAmelCase ( self ): pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def _lowerCAmelCase ( self ): pass def _lowerCAmelCase ( self ): return super().test_progress_bar() @slow @skip_mps class A_(unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ): _lowerCamelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy' ) _lowerCamelCase : Dict = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) _lowerCamelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _lowerCamelCase : Tuple = pipe.to('cuda' ) _lowerCamelCase : str = 'Spiderman is surfing' _lowerCamelCase : Any = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCamelCase : Union[str, Any] = pipe(A , generator=A , num_inference_steps=25 , output_type='pt' ).frames _lowerCamelCase : Any = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy' ) _lowerCamelCase : int = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) _lowerCamelCase : Optional[Any] = pipe.to('cuda' ) _lowerCamelCase : Tuple = 'Spiderman is surfing' _lowerCamelCase : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCamelCase : Tuple = pipe(A , generator=A , num_inference_steps=2 , output_type='pt' ).frames _lowerCamelCase : Optional[int] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
437
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase_ : List[str] = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCamelCase_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
246
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class a__ : A__ : List[Any] = MBartConfig A__ : Any = {} A__ : List[str] = 'gelu' def __init__( self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=9_9 , UpperCAmelCase=3_2 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=2_0 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=0 , ) -> List[str]: __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = eos_token_id __a = pad_token_id __a = bos_token_id def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: __a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __a = tf.concat([input_ids, eos_tensor] , axis=1 ) __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __a = prepare_mbart_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase ) -> int: __a = TFMBartModel(config=UpperCAmelCase ).get_decoder() __a = inputs_dict['input_ids'] __a = input_ids[:1, :] __a = inputs_dict['attention_mask'][:1, :] __a = inputs_dict['head_mask'] __a = 1 # first forward pass __a = model(UpperCAmelCase , attention_mask=UpperCAmelCase , head_mask=UpperCAmelCase , use_cache=UpperCAmelCase ) __a , __a = outputs.to_tuple() __a = past_key_values[1] def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ): if attention_mask is None: __a = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __a = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __a = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a__ ( __snake_case , __snake_case , unittest.TestCase ): A__ : List[Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () A__ : Any = (TFMBartForConditionalGeneration,) if is_tf_available() else () A__ : List[str] = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) A__ : int = True A__ : List[str] = False A__ : Union[str, Any] = False def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: __a = TFMBartModelTester(self ) __a = ConfigTester(self , config_class=UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> int: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: __a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class a__ ( unittest.TestCase ): A__ : Optional[Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ] A__ : List[Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] A__ : List[Any] = 'facebook/mbart-large-en-ro' @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: __a = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __SCREAMING_SNAKE_CASE ( self , **UpperCAmelCase ) -> Dict: __a = self.translate_src_text(**UpperCAmelCase ) self.assertListEqual(self.expected_text , UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , **UpperCAmelCase ) -> int: __a = self.tokenizer(self.src_text , **UpperCAmelCase , return_tensors='tf' ) __a = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __a = self.tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) return generated_words @slow def __SCREAMING_SNAKE_CASE ( self ) -> Any: self._assert_generated_batch_equal_expected()
246
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
83
from collections.abc import Callable def lowerCamelCase__ ( __lowerCAmelCase : Callable[[float], float] , __lowerCAmelCase : float , __lowerCAmelCase : float ): """simple docstring""" lowerCAmelCase_ = a lowerCAmelCase_ = b if function(__lowerCAmelCase ) == 0: # one of the a or b is a root for the function return a elif function(__lowerCAmelCase ) == 0: return b elif ( function(__lowerCAmelCase ) * function(__lowerCAmelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("could not find root in given interval." ) else: lowerCAmelCase_ = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(__lowerCAmelCase ) == 0: return mid elif function(__lowerCAmelCase ) * function(__lowerCAmelCase ) < 0: lowerCAmelCase_ = mid else: lowerCAmelCase_ = mid lowerCAmelCase_ = start + (end - start) / 2.0 return mid def lowerCamelCase__ ( __lowerCAmelCase : float ): """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 10_00)) import doctest doctest.testmod()
290
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def _snake_case ( UpperCAmelCase_ : List[Any] ): A__ = botoa.client("""iam""" ) A__ = { "Version": "2012-10-17", "Statement": [ {"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=_lowerCAmelCase , AssumeRolePolicyDocument=json.dumps(_lowerCAmelCase , indent=2 ) ) A__ = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "sagemaker:*", "ecr:GetDownloadUrlForLayer", "ecr:BatchGetImage", "ecr:BatchCheckLayerAvailability", "ecr:GetAuthorizationToken", "cloudwatch:PutMetricData", "cloudwatch:GetMetricData", "cloudwatch:GetMetricStatistics", "cloudwatch:ListMetrics", "logs:CreateLogGroup", "logs:CreateLogStream", "logs:DescribeLogStreams", "logs:PutLogEvents", "logs:GetLogEvents", "s3:CreateBucket", "s3:ListBucket", "s3:GetBucketLocation", "s3:GetObject", "s3:PutObject", ], "Resource": "*", } ], } # attach policy to role iam_client.put_role_policy( RoleName=_lowerCAmelCase , PolicyName=F"""{role_name}_policy_permission""" , PolicyDocument=json.dumps(_lowerCAmelCase , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F"""role {role_name} already exists. Using existing one""" ) def _snake_case ( UpperCAmelCase_ : Optional[int] ): A__ = botoa.client("""iam""" ) return iam_client.get_role(RoleName=_lowerCAmelCase )["Role"]["Arn"] def _snake_case ( ): A__ = _ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , _lowerCAmelCase , ) A__ = None if credentials_configuration == 0: A__ = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" ) A__ = aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) A__ = _ask_field("""AWS Access Key ID: """ ) A__ = aws_access_key_id A__ = _ask_field("""AWS Secret Access Key: """ ) A__ = aws_secret_access_key A__ = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" ) A__ = aws_region A__ = _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , _lowerCAmelCase , ) if role_management == 0: A__ = _ask_field("""Enter your IAM role name: """ ) else: A__ = "accelerate_sagemaker_execution_role" print(F"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" ) _create_iam_role_for_sagemaker(_lowerCAmelCase ) A__ = _ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=_lowerCAmelCase , error_message="""Please enter yes or no.""" , ) A__ = None if is_custom_docker_image: A__ = _ask_field("""Enter your Docker image: """ , lambda UpperCAmelCase_ : str(_lowerCAmelCase ).lower() ) A__ = _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=_lowerCAmelCase , error_message="""Please enter yes or no.""" , ) A__ = None if is_sagemaker_inputs_enabled: A__ = _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda UpperCAmelCase_ : str(_lowerCAmelCase ).lower() , ) A__ = _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=_lowerCAmelCase , error_message="""Please enter yes or no.""" , ) A__ = None if is_sagemaker_metrics_enabled: A__ = _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda UpperCAmelCase_ : str(_lowerCAmelCase ).lower() , ) A__ = _ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) A__ = {} A__ = _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=_lowerCAmelCase , error_message="""Please enter yes or no.""" , ) if use_dynamo: A__ = "dynamo_" A__ = _ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) A__ = _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=_lowerCAmelCase , error_message="""Please enter yes or no.""" , ) if use_custom_options: A__ = _ask_options( """Which mode do you want to use?""" , _lowerCAmelCase , lambda UpperCAmelCase_ : TORCH_DYNAMO_MODES[int(_lowerCAmelCase )] , default="""default""" , ) A__ = _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=_lowerCAmelCase , error_message="""Please enter yes or no.""" , ) A__ = _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=_lowerCAmelCase , error_message="""Please enter yes or no.""" , ) A__ = "Which EC2 instance type you want to use for your training?" if distributed_type != SageMakerDistributedType.NO: A__ = _ask_options( _lowerCAmelCase , _lowerCAmelCase , lambda UpperCAmelCase_ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(_lowerCAmelCase )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" A__ = _ask_field(_lowerCAmelCase , lambda UpperCAmelCase_ : str(_lowerCAmelCase ).lower() , default="""ml.p3.2xlarge""" ) A__ = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): A__ = _ask_field( """How many machines do you want use? [1]: """ , _lowerCAmelCase , default=1 , ) A__ = _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=_lowerCAmelCase , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=_lowerCAmelCase , use_cpu=_lowerCAmelCase , dynamo_config=_lowerCAmelCase , eca_instance_type=_lowerCAmelCase , profile=_lowerCAmelCase , region=_lowerCAmelCase , iam_role_name=_lowerCAmelCase , mixed_precision=_lowerCAmelCase , num_machines=_lowerCAmelCase , sagemaker_inputs_file=_lowerCAmelCase , sagemaker_metrics_file=_lowerCAmelCase , )
716
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : list ): if len(UpperCAmelCase_ ) <= 1: return lst A__ = 1 while i < len(UpperCAmelCase_ ): if lst[i - 1] <= lst[i]: i += 1 else: A__ , A__ = lst[i], lst[i - 1] i -= 1 if i == 0: A__ = 1 return lst if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
500
0
from maths.prime_factors import prime_factors def lowerCamelCase ( UpperCamelCase : int ) -> int: if not isinstance(UpperCamelCase , UpperCamelCase ): _lowerCamelCase = F"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(UpperCamelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
544
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": A = input('Enter image url: ').strip() print(F'''Downloading image from {url} ...''') A = BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image A = soup.find('meta', {'property': 'og:image'})['content'] A = requests.get(image_url).content A = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, 'wb') as fp: fp.write(image_data) print(F'''Done. Image saved to disk as {file_name}.''')
544
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case :Tuple = logging.get_logger(__name__) class _A ( __UpperCAmelCase ): UpperCamelCase__ : Optional[int] = '''timm_backbone''' def __init__( self : Any , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : str=3 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCAmelCase__) __a = backbone __a = num_channels __a = features_only __a = use_pretrained_backbone __a = True __a = out_indices if out_indices is not None else (-1,)
721
from __future__ import annotations __snake_case :Optional[Any] = [] def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for i in range(len(_UpperCAmelCase ) ): if board[row][i] == 1: return False for i in range(len(_UpperCAmelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(_UpperCAmelCase , -1 , -1 ) , range(_UpperCAmelCase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(_UpperCAmelCase , -1 , -1 ) , range(_UpperCAmelCase , len(_UpperCAmelCase ) ) ): if board[i][j] == 1: return False return True def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): if row >= len(_UpperCAmelCase ): solution.append(_UpperCAmelCase ) printboard(_UpperCAmelCase ) print() return True for i in range(len(_UpperCAmelCase ) ): if is_safe(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = 1 solve(_UpperCAmelCase , row + 1 ) __a = 0 return False def __snake_case ( _UpperCAmelCase ): for i in range(len(_UpperCAmelCase ) ): for j in range(len(_UpperCAmelCase ) ): if board[i][j] == 1: print('''Q''' , end=''' ''' ) else: print('''.''' , end=''' ''' ) print() # n=int(input("The no. of queens")) __snake_case :Optional[Any] = 8 __snake_case :Tuple = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('''The total no. of solutions are :''', len(solution))
60
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class __magic_name__ ( unittest.TestCase ): def __init__( self , __magic_name__ , __magic_name__=7 , __magic_name__=3 , __magic_name__=3_0 , __magic_name__=4_0_0 , __magic_name__=True , __magic_name__=None , __magic_name__=True , __magic_name__=[0.5, 0.5, 0.5] , __magic_name__=[0.5, 0.5, 0.5] , __magic_name__=True , __magic_name__=1 / 2_5_5 , __magic_name__=True , ): """simple docstring""" _lowerCAmelCase = size if size is not None else {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_pad def _lowerCamelCase ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowerCamelCase ( self , __magic_name__ , __magic_name__=False ): """simple docstring""" if not batched: _lowerCAmelCase = image_inputs[0] if isinstance(__magic_name__ , Image.Image ): _lowerCAmelCase , _lowerCAmelCase = image.size else: _lowerCAmelCase , _lowerCAmelCase = image.shape[1], image.shape[2] if w < h: _lowerCAmelCase = int(self.size['shortest_edge'] * h / w ) _lowerCAmelCase = self.size['shortest_edge'] elif w > h: _lowerCAmelCase = self.size['shortest_edge'] _lowerCAmelCase = int(self.size['shortest_edge'] * w / h ) else: _lowerCAmelCase = self.size['shortest_edge'] _lowerCAmelCase = self.size['shortest_edge'] else: _lowerCAmelCase = [] for image in image_inputs: _lowerCAmelCase , _lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCAmelCase = max(__magic_name__ , key=lambda __magic_name__ : item[0] )[0] _lowerCAmelCase = max(__magic_name__ , key=lambda __magic_name__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __magic_name__ ( A__ ,unittest.TestCase ): UpperCamelCase : List[str] = ConditionalDetrImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = ConditionalDetrImageProcessingTester(self ) @property def _lowerCamelCase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , 'image_mean' ) ) self.assertTrue(hasattr(__magic_name__ , 'image_std' ) ) self.assertTrue(hasattr(__magic_name__ , 'do_normalize' ) ) self.assertTrue(hasattr(__magic_name__ , 'do_resize' ) ) self.assertTrue(hasattr(__magic_name__ , 'size' ) ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 1_8, 'longest_edge': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __magic_name__ ) _lowerCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__magic_name__ ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2, 'longest_edge': 8_4} ) self.assertEqual(image_processor.do_pad , __magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) _lowerCAmelCase = image_processing(__magic_name__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase = image_processing(__magic_name__ , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase = image_processing(__magic_name__ , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: _lowerCAmelCase = json.loads(f.read() ) _lowerCAmelCase = {'image_id': 3_9_7_6_9, 'annotations': target} # encode them _lowerCAmelCase = ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' ) _lowerCAmelCase = image_processing(images=__magic_name__ , annotations=__magic_name__ , return_tensors='pt' ) # verify pixel values _lowerCAmelCase = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , __magic_name__ ) _lowerCAmelCase = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __magic_name__ , atol=1e-4 ) ) # verify area _lowerCAmelCase = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __magic_name__ ) ) # verify boxes _lowerCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __magic_name__ ) _lowerCAmelCase = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __magic_name__ , atol=1e-3 ) ) # verify image_id _lowerCAmelCase = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __magic_name__ ) ) # verify is_crowd _lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __magic_name__ ) ) # verify class_labels _lowerCAmelCase = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __magic_name__ ) ) # verify orig_size _lowerCAmelCase = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __magic_name__ ) ) # verify size _lowerCAmelCase = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __magic_name__ ) ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: _lowerCAmelCase = json.loads(f.read() ) _lowerCAmelCase = {'file_name': '000000039769.png', 'image_id': 3_9_7_6_9, 'segments_info': target} _lowerCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them _lowerCAmelCase = ConditionalDetrImageProcessor(format='coco_panoptic' ) _lowerCAmelCase = image_processing(images=__magic_name__ , annotations=__magic_name__ , masks_path=__magic_name__ , return_tensors='pt' ) # verify pixel values _lowerCAmelCase = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['pixel_values'].shape , __magic_name__ ) _lowerCAmelCase = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __magic_name__ , atol=1e-4 ) ) # verify area _lowerCAmelCase = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __magic_name__ ) ) # verify boxes _lowerCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __magic_name__ ) _lowerCAmelCase = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __magic_name__ , atol=1e-3 ) ) # verify image_id _lowerCAmelCase = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __magic_name__ ) ) # verify is_crowd _lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __magic_name__ ) ) # verify class_labels _lowerCAmelCase = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __magic_name__ ) ) # verify masks _lowerCAmelCase = 8_2_2_8_7_3 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , __magic_name__ ) # verify orig_size _lowerCAmelCase = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __magic_name__ ) ) # verify size _lowerCAmelCase = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __magic_name__ ) )
589
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING A__ : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = """upernet""" def __init__( self : Dict, lowerCamelCase : Union[str, Any]=None, lowerCamelCase : str=512, lowerCamelCase : Optional[Any]=0.02, lowerCamelCase : Optional[Any]=[1, 2, 3, 6], lowerCamelCase : Optional[int]=True, lowerCamelCase : Tuple=0.4, lowerCamelCase : Optional[int]=384, lowerCamelCase : Optional[int]=256, lowerCamelCase : Dict=1, lowerCamelCase : str=False, lowerCamelCase : List[str]=255, **lowerCamelCase : List[Any], ): '''simple docstring''' super().__init__(**lowerCamelCase ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowercase__ = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(lowerCamelCase, lowerCamelCase ): lowercase__ = backbone_config.get('''model_type''' ) lowercase__ = CONFIG_MAPPING[backbone_model_type] lowercase__ = config_class.from_dict(lowerCamelCase ) lowercase__ = backbone_config lowercase__ = hidden_size lowercase__ = initializer_range lowercase__ = pool_scales lowercase__ = use_auxiliary_head lowercase__ = auxiliary_loss_weight lowercase__ = auxiliary_in_channels lowercase__ = auxiliary_channels lowercase__ = auxiliary_num_convs lowercase__ = auxiliary_concat_input lowercase__ = loss_ignore_index def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.backbone_config.to_dict() lowercase__ = self.__class__.model_type return output
183
0
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( ) -> List[Any]: UpperCAmelCase : Dict = 1_0 UpperCAmelCase : Union[str, Any] = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) UpperCAmelCase : List[Any] = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [9_7], """text""": ["""1976"""]}] * 1_0, """id""": list(range(_lowercase ) ), } , features=_lowercase , ) return dataset @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=_lowercase ) return filename # FILE_CONTENT + files a : int = """\ Text data. Second line of data.""" @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt""" UpperCAmelCase : int = FILE_CONTENT with open(_lowercase , """w""" ) as f: f.write(_lowercase ) return filename @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> List[str]: import bza UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" UpperCAmelCase : Union[str, Any] = bytes(_lowercase , """utf-8""" ) with bza.open(_lowercase , """wb""" ) as f: f.write(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> int: import gzip UpperCAmelCase : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) UpperCAmelCase : Optional[int] = bytes(_lowercase , """utf-8""" ) with gzip.open(_lowercase , """wb""" ) as f: f.write(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: if datasets.config.LZ4_AVAILABLE: import lza.frame UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" UpperCAmelCase : Optional[Any] = bytes(_lowercase , """utf-8""" ) with lza.frame.open(_lowercase , """wb""" ) as f: f.write(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]: if datasets.config.PY7ZR_AVAILABLE: import pyazr UpperCAmelCase : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(_lowercase , """w""" ) as archive: archive.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: import tarfile UpperCAmelCase : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(_lowercase , """w""" ) as f: f.add(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> List[str]: import lzma UpperCAmelCase : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" UpperCAmelCase : int = bytes(_lowercase , """utf-8""" ) with lzma.open(_lowercase , """wb""" ) as f: f.write(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: import zipfile UpperCAmelCase : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> List[str]: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd UpperCAmelCase : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" UpperCAmelCase : Union[str, Any] = bytes(_lowercase , """utf-8""" ) with zstd.open(_lowercase , """wb""" ) as f: f.write(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: UpperCAmelCase : Any = tmp_path_factory.mktemp("""data""" ) / """file.xml""" UpperCAmelCase : Any = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(_lowercase , """w""" ) as f: f.write(_lowercase ) return filename a : Any = [ {"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0}, ] a : Dict = [ {"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0}, {"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0}, ] a : Optional[int] = { """col_1""": ["""0""", """1""", """2""", """3"""], """col_2""": [0, 1, 2, 3], """col_3""": [0.0, 1.0, 2.0, 3.0], } a : int = [ {"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0}, {"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1}, ] a : Optional[Any] = [ {"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0}, ] @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( ) -> Any: return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: UpperCAmelCase : List[Any] = datasets.Dataset.from_dict(_lowercase ) UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Tuple: UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(_lowercase ) ) as con: UpperCAmelCase : str = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(_lowercase , """w""" , newline="""""" ) as f: UpperCAmelCase : Optional[Any] = csv.DictWriter(_lowercase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(_lowercase , """w""" , newline="""""" ) as f: UpperCAmelCase : Tuple = csv.DictWriter(_lowercase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]: import bza UpperCAmelCase : int = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(_lowercase , """rb""" ) as f: UpperCAmelCase : List[str] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(_lowercase , """wb""" ) as f: f.write(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(_lowercase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: UpperCAmelCase : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(_lowercase ) ) ) f.write(_lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) UpperCAmelCase : Union[str, Any] = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(_lowercase , """wb""" ) as f: UpperCAmelCase : int = pq.ParquetWriter(_lowercase , schema=_lowercase ) UpperCAmelCase : int = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(_lowercase ) )] for k in DATA[0]} , schema=_lowercase ) writer.write_table(_lowercase ) writer.close() return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Dict: UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) UpperCAmelCase : Dict = {"""data""": DATA} with open(_lowercase , """w""" ) as f: json.dump(_lowercase , _lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Dict: UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) UpperCAmelCase : Tuple = {"""data""": DATA_DICT_OF_LISTS} with open(_lowercase , """w""" ) as f: json.dump(_lowercase , _lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Tuple: UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(_lowercase , """w""" ) as f: for item in DATA: f.write(json.dumps(_lowercase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(_lowercase , """w""" ) as f: for item in DATA: f.write(json.dumps(_lowercase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(_lowercase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(_lowercase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(_lowercase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(_lowercase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Any: import gzip UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(_lowercase , """rb""" ) as orig_file: with gzip.open(_lowercase , """wb""" ) as zipped_file: zipped_file.writelines(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: import gzip UpperCAmelCase : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(_lowercase , """rb""" ) as orig_file: with gzip.open(_lowercase , """wb""" ) as zipped_file: zipped_file.writelines(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : int = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.join("""nested""" , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : int = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(_lowercase ) ) ) f.write(_lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(_lowercase , """w""" ) as f: f.add(_lowercase , arcname=os.path.basename(_lowercase ) ) f.add(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(_lowercase , """w""" ) as f: f.add(_lowercase , arcname=os.path.join("""nested""" , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : List[str] = ["""0""", """1""", """2""", """3"""] UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(_lowercase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: UpperCAmelCase : List[str] = ["""0""", """1""", """2""", """3"""] UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(_lowercase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Optional[int] = ["""0""", """1""", """2""", """3"""] UpperCAmelCase : int = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(_lowercase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : str = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(_lowercase ) ) ) f.write(_lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: UpperCAmelCase : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(_lowercase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( ) -> List[str]: return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( ) -> Any: return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) f.write(_lowercase , arcname=os.path.basename(_lowercase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) return data_dir
672
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
672
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : List[str] ): '''simple docstring''' A: Any = [[0 for _ in range(__a )] for _ in range(m + 1 )] for i in range(m + 1 ): A: Union[str, Any] = 1 for n in range(m + 1 ): for k in range(1 , __a ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: __SCREAMING_SNAKE_CASE : Dict =int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: __SCREAMING_SNAKE_CASE : Any =int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
135
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __lowerCAmelCase : """simple docstring""" def __init__( self : Dict , _snake_case : Any , _snake_case : Union[str, Any]=99 , _snake_case : List[Any]=13 , _snake_case : Optional[Any]=7 , _snake_case : Union[str, Any]=9 , _snake_case : List[Any]=True , _snake_case : Optional[int]=True , _snake_case : Any=False , _snake_case : str=32 , _snake_case : Any=5 , _snake_case : List[str]=4 , _snake_case : Dict=37 , _snake_case : List[Any]=8 , _snake_case : int=0.1 , _snake_case : List[str]=0.0_0_2 , _snake_case : Optional[Any]=1 , _snake_case : Union[str, Any]=0 , _snake_case : Any=0 , _snake_case : List[str]=None , _snake_case : List[Any]=None , ) -> int: """simple docstring""" A_ = parent A_ = batch_size A_ = encoder_seq_length A_ = decoder_seq_length # For common tests A_ = self.decoder_seq_length A_ = is_training A_ = use_attention_mask A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = d_ff A_ = relative_attention_num_buckets A_ = dropout_rate A_ = initializer_factor A_ = eos_token_id A_ = pad_token_id A_ = decoder_start_token_id A_ = None A_ = decoder_layers def lowerCamelCase__ ( self : Any ) -> Any: """simple docstring""" return TaConfig.from_pretrained("google/umt5-base" ) def lowerCamelCase__ ( self : Union[str, Any] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : int , _snake_case : Dict=None , _snake_case : Dict=None , _snake_case : str=None , _snake_case : Any=None , _snake_case : Union[str, Any]=None , ) -> List[Any]: """simple docstring""" if attention_mask is None: A_ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: A_ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: A_ = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_snake_case ) if decoder_head_mask is None: A_ = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_snake_case ) if cross_attn_head_mask is None: A_ = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=_snake_case ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def lowerCamelCase__ ( self : int ) -> Tuple: """simple docstring""" A_ = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) A_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input A_ = input_ids.clamp(self.pad_token_id + 1 ) A_ = decoder_input_ids.clamp(self.pad_token_id + 1 ) A_ = self.get_config() A_ = config.num_attention_heads A_ = self.prepare_inputs_dict(_snake_case , _snake_case , _snake_case ) return config, input_dict def lowerCamelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" A_ , A_ = self.prepare_config_and_inputs() return config, inputs_dict def lowerCamelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowerCamelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowerCamelCase__ ( self : Optional[int] , _snake_case : List[str] , _snake_case : Any , _snake_case : List[Any] , _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : Optional[Any] , ) -> List[Any]: """simple docstring""" A_ = UMTaModel(config=_snake_case ) model.to(_snake_case ) model.eval() A_ = model( input_ids=_snake_case , decoder_input_ids=_snake_case , attention_mask=_snake_case , decoder_attention_mask=_snake_case , ) A_ = model(input_ids=_snake_case , decoder_input_ids=_snake_case ) A_ = result.last_hidden_state A_ = result.past_key_values A_ = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_snake_case ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def lowerCamelCase__ ( self : Optional[Any] , _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : List[str] , _snake_case : str , _snake_case : Optional[Any] , _snake_case : int , ) -> List[str]: """simple docstring""" A_ = UMTaModel(config=_snake_case ).get_decoder().to(_snake_case ).eval() # first forward pass A_ = model(_snake_case , use_cache=_snake_case ) A_ = model(_snake_case ) A_ = model(_snake_case , use_cache=_snake_case ) self.parent.assertTrue(len(_snake_case ) == len(_snake_case ) ) self.parent.assertTrue(len(_snake_case ) == len(_snake_case ) + 1 ) A_ , A_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and A_ = torch.cat([input_ids, next_tokens] , dim=-1 ) A_ = model(_snake_case )["last_hidden_state"] A_ = model(_snake_case , past_key_values=_snake_case )["last_hidden_state"] # select random slice A_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() A_ = output_from_no_past[:, -1, random_slice_idx].detach() A_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1e-3 ) ) def lowerCamelCase__ ( self : str , _snake_case : Any , _snake_case : str , ) -> List[Any]: """simple docstring""" A_ = UMTaModel(config=_snake_case ).to(_snake_case ).half().eval() A_ = model(**_snake_case )["last_hidden_state"] self.parent.assertFalse(torch.isnan(_snake_case ).any().item() ) @require_torch class __lowerCAmelCase ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" snake_case = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) snake_case = (UMTaForConditionalGeneration,) if is_torch_available() else () snake_case = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) snake_case = True snake_case = False snake_case = False snake_case = True snake_case = True # The small UMT5 model needs higher percentages for CPU/MP tests snake_case = [0.8, 0.9] def lowerCamelCase__ ( self : str ) -> Tuple: """simple docstring""" A_ = UMTaModelTester(self ) @unittest.skip("Test has a segmentation fault on torch 1.8.0" ) def lowerCamelCase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() A_ = UMTaModel(config_and_inputs[0] ).to(_snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _snake_case , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=_snake_case , opset_version=9 , input_names=["input_ids", "decoder_input_ids"] , ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def lowerCamelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_snake_case ) def lowerCamelCase__ ( self : Dict ) -> Dict: """simple docstring""" A_ = ["encoder_attentions", "decoder_attentions", "cross_attentions"] A_ = self.model_tester.prepare_config_and_inputs() A_ = config_and_inputs[0] A_ = UMTaForConditionalGeneration(_snake_case ).eval() model.to(_snake_case ) A_ = { "head_mask": torch.zeros(config.num_layers , config.num_heads , device=_snake_case ), "decoder_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=_snake_case ), "cross_attn_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=_snake_case ), } for attn_name, (name, mask) in zip(_snake_case , head_masking.items() ): A_ = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": A_ = torch.ones( config.num_decoder_layers , config.num_heads , device=_snake_case ) A_ = model.generate( config_and_inputs[1]["input_ids"] , num_beams=1 , max_length=3 , output_attentions=_snake_case , return_dict_in_generate=_snake_case , **_snake_case , ) # We check the state of decoder_attentions and cross_attentions just from the last step A_ = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases." ) def lowerCamelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip( "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" ) def lowerCamelCase__ ( self : Dict ) -> int: """simple docstring""" A_ = UMTaForConditionalGeneration.from_pretrained("google/umt5-small" , return_dict=_snake_case ).to(_snake_case ) A_ = AutoTokenizer.from_pretrained("google/umt5-small" , use_fast=_snake_case , legacy=_snake_case ) A_ = [ "Bonjour monsieur <extra_id_0> bien <extra_id_1>.", "No se como puedo <extra_id_0>.", "This is the reason why we <extra_id_0> them.", "The <extra_id_0> walks in <extra_id_1>, seats", "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.", ] A_ = tokenizer(_snake_case , return_tensors="pt" , padding=_snake_case ).input_ids # fmt: off A_ = torch.tensor( [ [ 38_530, 210_703, 256_299, 1_410, 256_298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25_922, 256_299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_460, 339, 312, 19_014, 10_620, 758, 256_299, 2_355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256_299, 14_869, 281, 301, 256_298, 275, 119_983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256_299, 14_869, 281, 2_234, 289, 2_275, 333,61_391, 289, 256_298, 543, 256_297, 168_714, 329, 256_296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(_snake_case , _snake_case ) A_ = model.generate(input_ids.to(_snake_case ) ) A_ = [ "<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>", "<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", ] A_ = tokenizer.batch_decode(_snake_case ) self.assertEqual(_snake_case , _snake_case )
115
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCamelCase (__lowerCamelCase , unittest.TestCase ): _snake_case = DDIMPipeline _snake_case = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _snake_case = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } _snake_case = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS _snake_case = False def __UpperCAmelCase ( self : Any ): """simple docstring""" torch.manual_seed(0 ) _lowercase : Dict = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) _lowercase : Dict = DDIMScheduler() _lowercase : Optional[int] = {'unet': unet, 'scheduler': scheduler} return components def __UpperCAmelCase ( self : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : Tuple=0 ): """simple docstring""" if str(lowerCamelCase_ ).startswith('mps' ): _lowercase : Tuple = torch.manual_seed(lowerCamelCase_ ) else: _lowercase : Dict = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) _lowercase : Optional[int] = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self : Any ): """simple docstring""" _lowercase : str = 'cpu' _lowercase : Optional[int] = self.get_dummy_components() _lowercase : Any = self.pipeline_class(**lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowercase : Any = self.get_dummy_inputs(lowerCamelCase_ ) _lowercase : Optional[int] = pipe(**lowerCamelCase_ ).images _lowercase : Tuple = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 3_2, 3_2, 3) ) _lowercase : Union[str, Any] = np.array( [1.0_00E00, 5.7_17E-01, 4.7_17E-01, 1.0_00E00, 0.0_00E00, 1.0_00E00, 3.0_00E-04, 0.0_00E00, 9.0_00E-04] ) _lowercase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase_ , 1E-3 ) def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __UpperCAmelCase ( self : Any ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def __UpperCAmelCase ( self : List[str] ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _lowerCamelCase (unittest.TestCase ): def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _lowercase : Any = 'google/ddpm-cifar10-32' _lowercase : int = UNetaDModel.from_pretrained(lowerCamelCase_ ) _lowercase : Optional[Any] = DDIMScheduler() _lowercase : Dict = DDIMPipeline(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) ddim.to(lowerCamelCase_ ) ddim.set_progress_bar_config(disable=lowerCamelCase_ ) _lowercase : Dict = torch.manual_seed(0 ) _lowercase : Optional[Any] = ddim(generator=lowerCamelCase_ , eta=0.0 , output_type='numpy' ).images _lowercase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _lowercase : Optional[int] = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _lowercase : Any = 'google/ddpm-ema-bedroom-256' _lowercase : int = UNetaDModel.from_pretrained(lowerCamelCase_ ) _lowercase : List[str] = DDIMScheduler.from_pretrained(lowerCamelCase_ ) _lowercase : int = DDIMPipeline(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) ddpm.to(lowerCamelCase_ ) ddpm.set_progress_bar_config(disable=lowerCamelCase_ ) _lowercase : List[str] = torch.manual_seed(0 ) _lowercase : List[str] = ddpm(generator=lowerCamelCase_ , output_type='numpy' ).images _lowercase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) _lowercase : Any = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
705
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCamelCase (__lowerCamelCase ): _snake_case = "" _snake_case = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _snake_case = None # compression type in fsspec. ex: "gzip" _snake_case = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : str , lowerCamelCase_ : str = "" , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : Optional[dict] = None , **lowerCamelCase_ : List[str] ): """simple docstring""" super().__init__(self , **lowerCamelCase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode _lowercase : Union[str, Any] = fsspec.open( lowerCamelCase_ , mode='rb' , protocol=lowerCamelCase_ , compression=self.compression , client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) _lowercase : str = os.path.basename(self.file.path.split('::' )[0] ) _lowercase : Optional[int] = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) _lowercase : str = None @classmethod def __UpperCAmelCase ( cls : int , lowerCamelCase_ : List[str] ): """simple docstring""" return super()._strip_protocol(lowerCamelCase_ ).lstrip('/' ) def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" if self.dir_cache is None: _lowercase : Tuple = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} _lowercase : int = {f['name']: f} def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : str ): """simple docstring""" return self.file.open().read() def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : str , lowerCamelCase_ : str = "rb" , lowerCamelCase_ : str=None , lowerCamelCase_ : str=True , lowerCamelCase_ : Union[str, Any]=None , **lowerCamelCase_ : Optional[int] , ): """simple docstring""" _lowercase : Union[str, Any] = self._strip_protocol(lowerCamelCase_ ) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class _lowerCamelCase (__lowerCamelCase ): _snake_case = "bz2" _snake_case = "bz2" _snake_case = ".bz2" class _lowerCamelCase (__lowerCamelCase ): _snake_case = "gzip" _snake_case = "gzip" _snake_case = ".gz" class _lowerCamelCase (__lowerCamelCase ): _snake_case = "lz4" _snake_case = "lz4" _snake_case = ".lz4" class _lowerCamelCase (__lowerCamelCase ): _snake_case = "xz" _snake_case = "xz" _snake_case = ".xz" class _lowerCamelCase (__lowerCamelCase ): _snake_case = "zstd" _snake_case = "zstd" _snake_case = ".zst" def __init__( self : Union[str, Any] , lowerCamelCase_ : str , lowerCamelCase_ : str = "rb" , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : Optional[dict] = None , lowerCamelCase_ : int = DEFAULT_BLOCK_SIZE , **lowerCamelCase_ : int , ): """simple docstring""" super().__init__( fo=lowerCamelCase_ , mode=lowerCamelCase_ , target_protocol=lowerCamelCase_ , target_options=lowerCamelCase_ , block_size=lowerCamelCase_ , **lowerCamelCase_ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 _lowercase : Any = self.file.__enter__ class _lowerCamelCase : def __init__( self : Any , lowerCamelCase_ : List[Any] ): """simple docstring""" _lowercase : Tuple = file_ def __enter__( self : str ): """simple docstring""" self._file.__enter__() return self def __exit__( self : Union[str, Any] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Union[str, Any] ): """simple docstring""" self._file.__exit__(*lowerCamelCase_ , **lowerCamelCase_ ) def __iter__( self : Optional[int] ): """simple docstring""" return iter(self._file ) def __UpperCAmelCase ( self : int ): """simple docstring""" return next(self._file ) def __getattr__( self : List[str] , lowerCamelCase_ : str ): """simple docstring""" return getattr(self._file , lowerCamelCase_ ) def fixed_enter(*lowerCamelCase_ : List[Any] , **lowerCamelCase_ : int ): return WrappedFile(_enter(*lowerCamelCase_ , **lowerCamelCase_ ) ) _lowercase : Optional[int] = fixed_enter
283
0
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCAmelCase_ = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' lowerCAmelCase_ = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' lowerCAmelCase_ = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): '''simple docstring''' def snake_case__( self : List[str] ) ->MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def snake_case__( self : Any , _UpperCamelCase : List[List[List[str]]] , _UpperCamelCase : List[List[str]] , _UpperCamelCase : int = 1 , _UpperCamelCase : int = 4 , ) ->Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_UpperCamelCase , hypotheses=_UpperCamelCase , min_len=_UpperCamelCase , max_len=_UpperCamelCase ) }
39
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str = 'Salesforce/blip-image-captioning-base' _snake_case : Union[str, Any] = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) _snake_case : List[Any] = 'image_captioner' _snake_case : Union[str, Any] = AutoModelForVisionaSeq _snake_case : Dict = ['image'] _snake_case : Optional[int] = ['text'] def __init__( self : Union[str, Any] , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' requires_backends(self , ['''vision'''] ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : Tuple , lowerCAmelCase__ : "Image" ) -> Optional[int]: '''simple docstring''' return self.pre_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ) def snake_case__ ( self : Any , lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return self.model.generate(**lowerCAmelCase__ ) def snake_case__ ( self : int , lowerCAmelCase__ : List[str] ) -> List[str]: '''simple docstring''' return self.pre_processor.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )[0].strip()
98
0
from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=lowercase__ ): __UpperCamelCase =["torch", "scipy"] def __init__( self : List[Any] , *snake_case__ : int , **snake_case__ : Dict ): """simple docstring""" requires_backends(self , ['torch', 'scipy'] ) @classmethod def UpperCamelCase ( cls : Optional[int] , *snake_case__ : Union[str, Any] , **snake_case__ : str ): """simple docstring""" requires_backends(cls , ['torch', 'scipy'] ) @classmethod def UpperCamelCase ( cls : Any , *snake_case__ : List[Any] , **snake_case__ : Optional[Any] ): """simple docstring""" requires_backends(cls , ['torch', 'scipy'] )
700
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a_ : Optional[int] = logging.get_logger(__name__) a_ : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a_ : Any = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } a_ : List[Any] = { "allenai/led-base-16384": 1_6384, } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =LEDTokenizer __UpperCamelCase =["input_ids", "attention_mask"] def __init__( self : Tuple , snake_case__ : List[Any]=None , snake_case__ : List[str]=None , snake_case__ : List[str]=None , snake_case__ : Dict="replace" , snake_case__ : Tuple="<s>" , snake_case__ : Optional[Any]="</s>" , snake_case__ : int="</s>" , snake_case__ : Dict="<s>" , snake_case__ : Union[str, Any]="<unk>" , snake_case__ : Optional[int]="<pad>" , snake_case__ : List[str]="<mask>" , snake_case__ : List[Any]=False , snake_case__ : int=True , **snake_case__ : Dict , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(snake_case__ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**snake_case__ ) SCREAMING_SNAKE_CASE = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE = 'post_processor' SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE = tuple(state['cls'] ) SCREAMING_SNAKE_CASE = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: SCREAMING_SNAKE_CASE = trim_offsets SCREAMING_SNAKE_CASE = True if changes_to_apply: SCREAMING_SNAKE_CASE = getattr(snake_case__ , state.pop('type' ) ) SCREAMING_SNAKE_CASE = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase ( self : List[Any] , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value SCREAMING_SNAKE_CASE = value def UpperCamelCase ( self : Dict , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : List[str] , *snake_case__ : List[Any] , **snake_case__ : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Tuple=None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase ( self : Optional[Any] , snake_case__ : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case__ : Optional[int] = None , snake_case__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , ): """simple docstring""" SCREAMING_SNAKE_CASE = super()._pad( encoded_inputs=snake_case__ , max_length=snake_case__ , padding_strategy=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE = len(encoded_inputs['global_attention_mask'] ) != len(snake_case__ ) if needs_to_be_padded: SCREAMING_SNAKE_CASE = len(snake_case__ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
673
0
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class A : def __init__( self , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" A : Optional[Any] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. A : int = len(SCREAMING_SNAKE_CASE ) - 1 def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." A : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , SCREAMING_SNAKE_CASE ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(SCREAMING_SNAKE_CASE ) , 5 ) == 1 return output_values def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." A : List[Any] = self.basis_function(SCREAMING_SNAKE_CASE ) A : Dict = 0.0 A : Optional[Any] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE = 0.01 ) -> Union[str, Any]: """simple docstring""" from matplotlib import pyplot as plt # type: ignore A : list[float] = [] # x coordinates of points to plot A : list[float] = [] # y coordinates of points to plot A : Tuple = 0.0 while t <= 1: A : Union[str, Any] = self.bezier_curve_function(SCREAMING_SNAKE_CASE ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size A : Optional[int] = [i[0] for i in self.list_of_points] A : List[Any] = [i[1] for i in self.list_of_points] plt.plot( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , ) plt.scatter(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , color='''red''' , label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
634
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A ( __snake_case , unittest.TestCase ): __magic_name__ = DebertaTokenizer __magic_name__ = True __magic_name__ = DebertaTokenizerFast def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A : Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] A : List[str] = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) A : List[Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] A : Tuple = {'''unk_token''': '''[UNK]'''} A : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : Union[str, Any] = '''lower newer''' A : List[Any] = '''lower newer''' return input_text, output_text def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : str = self.get_tokenizer() A : List[str] = '''lower newer''' A : int = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] A : Any = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : str = tokens + [tokenizer.unk_token] A : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : List[Any] = self.get_tokenizer() A : Tuple = tokenizer('''Hello''' , '''World''' ) A : str = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , SCREAMING_SNAKE_CASE ) @slow def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A : Union[str, Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE ) A : Any = tokenizer.encode('''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE ) A : Tuple = tokenizer.encode( '''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE ) A : Union[str, Any] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE ) A : List[str] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Any = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: A : List[str] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A : Dict = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] A : List[Any] = tokenizer(SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE ) A : List[str] = [tokenizer.decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE ) for seq in encoding['''input_ids''']] # fmt: off A : List[str] = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on A : Any = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , SCREAMING_SNAKE_CASE ) for expected, decoded in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
634
1
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case): __snake_case = [True] * limit __snake_case = False __snake_case = False __snake_case = True for i in range(3, int(limit**0.5 + 1), 2): __snake_case = i * 2 while index < limit: __snake_case = False __snake_case = index + i __snake_case = [2] for i in range(3, snake_case, 2): if is_prime[i]: primes.append(snake_case) return primes def SCREAMING_SNAKE_CASE ( snake_case = 1_00_00_00): __snake_case = prime_sieve(snake_case) __snake_case = 0 __snake_case = 0 for i in range(len(snake_case)): for j in range(i + length, len(snake_case)): __snake_case = sum(primes[i:j]) if sol >= ceiling: break if sol in primes: __snake_case = j - i __snake_case = sol return largest if __name__ == "__main__": print(F"""{solution() = }""")
706
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Dict = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def lowercase ( self : Optional[int] , A_ : List[str]=0 ) -> int: __snake_case = floats_tensor((1, 3, 128, 128) , rng=random.Random(A_ ) ) __snake_case = np.random.RandomState(A_ ) __snake_case = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.75, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowercase ( self : Optional[Any] ) -> List[Any]: __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=A_ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**A_ ).images __snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def lowercase ( self : Tuple ) -> Optional[int]: __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=A_ ) pipe.set_progress_bar_config(disable=A_ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**A_ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowercase ( self : Optional[int] ) -> str: __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) # warmup pass to apply optimizations __snake_case = pipe(**self.get_dummy_inputs() ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**A_ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowercase ( self : str ) -> List[str]: __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**A_ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowercase ( self : Optional[int] ) -> Union[str, Any]: __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**A_ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowercase ( self : List[str] ) -> Any: __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**A_ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _A ( unittest.TestCase ): """simple docstring""" @property def lowercase ( self : str ) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase ( self : Dict ) -> Union[str, Any]: __snake_case = ort.SessionOptions() __snake_case = False return options def lowercase ( self : Optional[Any] ) -> Union[str, Any]: __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case = init_image.resize((768, 512) ) # using the PNDM scheduler by default __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=A_ , feature_extractor=A_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A_ ) __snake_case = '''A fantasy landscape, trending on artstation''' __snake_case = np.random.RandomState(0 ) __snake_case = pipe( prompt=A_ , image=A_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=A_ , output_type='''np''' , ) __snake_case = output.images __snake_case = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __snake_case = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def lowercase ( self : str ) -> Optional[int]: __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case = init_image.resize((768, 512) ) __snake_case = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=A_ , safety_checker=A_ , feature_extractor=A_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A_ ) __snake_case = '''A fantasy landscape, trending on artstation''' __snake_case = np.random.RandomState(0 ) __snake_case = pipe( prompt=A_ , image=A_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=A_ , output_type='''np''' , ) __snake_case = output.images __snake_case = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __snake_case = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
93
0
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = BertJapaneseTokenizer lowerCamelCase__ = False lowerCamelCase__ = True def _snake_case ( self : Dict ): super().setUp() SCREAMING_SNAKE_CASE = [ "[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは", "世界", "##世界", "、", "##、", "。", "##。", ] SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _snake_case ( self : Tuple , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = "こんにちは、世界。 \nこんばんは、世界。" SCREAMING_SNAKE_CASE = "こんにちは 、 世界 。 こんばんは 、 世界 。" return input_text, output_text def _snake_case ( self : str , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_input_output_texts(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) return text, ids def _snake_case ( self : Optional[int] ): pass # TODO add if relevant def _snake_case ( self : List[Any] ): pass # TODO add if relevant def _snake_case ( self : List[Any] ): pass # TODO add if relevant def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。" ) self.assertListEqual(__lowerCamelCase , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , word_tokenizer_type="mecab" ) self.assertIsNotNone(__lowerCamelCase ) SCREAMING_SNAKE_CASE = "こんにちは、世界。\nこんばんは、世界。" SCREAMING_SNAKE_CASE = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(__lowerCamelCase , "wb" ) as handle: pickle.dump(__lowerCamelCase , __lowerCamelCase ) with open(__lowerCamelCase , "rb" ) as handle: SCREAMING_SNAKE_CASE = pickle.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer_new.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = MecabTokenizer(mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def _snake_case ( self : int ): try: SCREAMING_SNAKE_CASE = MecabTokenizer(mecab_dic="unidic_lite" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def _snake_case ( self : Optional[Any] ): try: SCREAMING_SNAKE_CASE = MecabTokenizer(mecab_dic="unidic" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = MecabTokenizer(do_lower_case=__lowerCamelCase , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def _snake_case ( self : Union[str, Any] ): try: SCREAMING_SNAKE_CASE = MecabTokenizer( do_lower_case=__lowerCamelCase , normalize_text=__lowerCamelCase , mecab_option="-d /usr/local/lib/mecab/dic/jumandic" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"] , ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = MecabTokenizer(normalize_text=__lowerCamelCase , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"] , ) @require_sudachi def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , word_tokenizer_type="sudachi" ) self.assertIsNotNone(__lowerCamelCase ) SCREAMING_SNAKE_CASE = "こんにちは、世界。\nこんばんは、世界。" SCREAMING_SNAKE_CASE = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(__lowerCamelCase , "wb" ) as handle: pickle.dump(__lowerCamelCase , __lowerCamelCase ) with open(__lowerCamelCase , "rb" ) as handle: SCREAMING_SNAKE_CASE = pickle.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer_new.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @require_sudachi def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = SudachiTokenizer(sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="A" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国", "人", "参政", "権"] ) @require_sudachi def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="B" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人", "参政権"] ) @require_sudachi def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="C" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人参政権"] ) @require_sudachi def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = SudachiTokenizer(do_lower_case=__lowerCamelCase , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iphone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = SudachiTokenizer(normalize_text=__lowerCamelCase , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", "\u3000", "。", " ", " "] , ) @require_sudachi def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = SudachiTokenizer(trim_whitespace=__lowerCamelCase , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) @require_jumanpp def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , word_tokenizer_type="jumanpp" ) self.assertIsNotNone(__lowerCamelCase ) SCREAMING_SNAKE_CASE = "こんにちは、世界。\nこんばんは、世界。" SCREAMING_SNAKE_CASE = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(__lowerCamelCase , "wb" ) as handle: pickle.dump(__lowerCamelCase , __lowerCamelCase ) with open(__lowerCamelCase , "rb" ) as handle: SCREAMING_SNAKE_CASE = pickle.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer_new.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @require_jumanpp def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = JumanppTokenizer(do_lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iphone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = JumanppTokenizer(normalize_text=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["ア", "ッ", "フ", "゚", "ル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = JumanppTokenizer(trim_whitespace=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "。"] , ) @require_jumanpp def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("ありがとうございますm(_ _)m見つけるのが大変です。" ) , ["ありがとう", "ございます", "m(_ _)m", "見つける", "の", "が", "大変です", "。"] , ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = ["[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは"] SCREAMING_SNAKE_CASE = {} for i, token in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE = i SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=__lowerCamelCase , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こんにちは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは" ) , ["こん", "##ばんは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは" ) , ["こん", "##ばんは", "[UNK]", "こんにちは"] ) def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = BertJapaneseTokenizer.from_pretrained("nlp-waseda/roberta-base-japanese-with-auto-jumanpp" ) SCREAMING_SNAKE_CASE = tokenizer.subword_tokenizer SCREAMING_SNAKE_CASE = subword_tokenizer.tokenize("国境 の 長い トンネル を 抜ける と 雪国 であった 。" ) self.assertListEqual(__lowerCamelCase , ["▁国境", "▁の", "▁長い", "▁トンネル", "▁を", "▁抜ける", "▁と", "▁雪", "国", "▁であった", "▁。"] ) SCREAMING_SNAKE_CASE = subword_tokenizer.tokenize("こんばんは こんばん にち は こんにちは" ) self.assertListEqual(__lowerCamelCase , ["▁こん", "ばん", "は", "▁こん", "ばん", "▁に", "ち", "▁は", "▁こんにちは"] ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese" ) SCREAMING_SNAKE_CASE = tokenizer.encode("ありがとう。" , add_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.encode("どういたしまして。" , add_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = BertJapaneseTokenizer lowerCamelCase__ = False def _snake_case ( self : Optional[Any] ): super().setUp() SCREAMING_SNAKE_CASE = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _snake_case ( self : str , **__lowerCamelCase : Optional[int] ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="character" , **__lowerCamelCase ) def _snake_case ( self : Dict , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = "こんにちは、世界。 \nこんばんは、世界。" SCREAMING_SNAKE_CASE = "こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。" return input_text, output_text def _snake_case ( self : Tuple ): pass # TODO add if relevant def _snake_case ( self : Tuple ): pass # TODO add if relevant def _snake_case ( self : Any ): pass # TODO add if relevant def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="character" ) SCREAMING_SNAKE_CASE = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。" ) self.assertListEqual( __lowerCamelCase , ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] SCREAMING_SNAKE_CASE = {} for i, token in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE = i SCREAMING_SNAKE_CASE = CharacterTokenizer(vocab=__lowerCamelCase , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こ", "ん", "に", "ち", "は"] ) self.assertListEqual(tokenizer.tokenize("こんにちほ" ) , ["こ", "ん", "に", "ち", "[UNK]"] ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char" ) SCREAMING_SNAKE_CASE = tokenizer.encode("ありがとう。" , add_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.encode("どういたしまして。" , add_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = "cl-tohoku/bert-base-japanese" SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = "cl-tohoku/bert-base-japanese" with self.assertLogs("transformers" , level="WARNING" ) as cm: BertTokenizer.from_pretrained(__lowerCamelCase ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) ) SCREAMING_SNAKE_CASE = "bert-base-cased" with self.assertLogs("transformers" , level="WARNING" ) as cm: BertJapaneseTokenizer.from_pretrained(__lowerCamelCase ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) )
16
"""simple docstring""" import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging _lowerCAmelCase = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] _lowerCAmelCase = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = """ Hello world! cécé herlolip""" _lowerCAmelCase = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = dct.pop(_lowerCamelCase ) _lowerCAmelCase : int = val def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = torch.load(_lowerCamelCase , map_location='cpu' ) _lowerCAmelCase : Optional[Any] = torch.hub.load('pytorch/fairseq' , 'bart.large.cnn' ).eval() hub_interface.model.load_state_dict(sd['model'] ) return hub_interface def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = emb.weight.shape _lowerCAmelCase : Union[str, Any] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' if not os.path.exists(_lowerCamelCase ): _lowerCAmelCase : int = torch.hub.load('pytorch/fairseq' , _lowerCamelCase ).eval() else: _lowerCAmelCase : List[Any] = load_xsum_checkpoint(_lowerCamelCase ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _lowerCAmelCase : Union[str, Any] = checkpoint_path.replace('.' , '-' ) _lowerCAmelCase : Optional[int] = BartConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : str = bart.encode(_lowerCamelCase ).unsqueeze(0 ) _lowerCAmelCase : Union[str, Any] = BartTokenizer.from_pretrained(_lowerCamelCase ).encode(_lowerCamelCase , return_tensors='pt' ).unsqueeze(0 ) if not torch.eq(_lowerCamelCase , _lowerCamelCase ).all(): raise ValueError( f"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" ) if checkpoint_path == "bart.large.mnli": _lowerCAmelCase : List[Any] = bart.state_dict() remove_ignore_keys_(_lowerCamelCase ) _lowerCAmelCase : List[Any] = state_dict['model.decoder.embed_tokens.weight'] for src, dest in mnli_rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = BartForSequenceClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = bart.predict('mnli' , _lowerCamelCase , return_logits=_lowerCamelCase ) _lowerCAmelCase : int = model(_lowerCamelCase )[0] # logits else: # no classification heads to worry about _lowerCAmelCase : Optional[Any] = bart.model.state_dict() remove_ignore_keys_(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = state_dict['decoder.embed_tokens.weight'] _lowerCAmelCase : int = bart.extract_features(_lowerCamelCase ) if hf_checkpoint_name == "facebook/bart-large": _lowerCAmelCase : Tuple = BartModel(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) _lowerCAmelCase : Any = model(_lowerCamelCase ).model[0] else: _lowerCAmelCase : Any = BartForConditionalGeneration(_lowerCamelCase ).eval() # an existing summarization ckpt model.model.load_state_dict(_lowerCamelCase ) if hasattr(_lowerCamelCase , 'lm_head' ): _lowerCAmelCase : int = make_linear_from_emb(model.model.shared ) _lowerCAmelCase : Any = model.model(_lowerCamelCase )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('Some values in `fairseq_output` are different from `new_model_outputs`' ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) _lowerCAmelCase = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
259
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A : Tuple = logging.get_logger(__name__) A : Dict = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE( __lowerCamelCase ): snake_case_ : List[str] = """table-transformer""" snake_case_ : Dict = ["""past_key_values"""] snake_case_ : Dict = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=3 , lowerCamelCase__=100 , lowerCamelCase__=6 , lowerCamelCase__=2048 , lowerCamelCase__=8 , lowerCamelCase__=6 , lowerCamelCase__=2048 , lowerCamelCase__=8 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=True , lowerCamelCase__="relu" , lowerCamelCase__=256 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=1.0 , lowerCamelCase__=False , lowerCamelCase__="sine" , lowerCamelCase__="resnet50" , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=1 , lowerCamelCase__=5 , lowerCamelCase__=2 , lowerCamelCase__=1 , lowerCamelCase__=1 , lowerCamelCase__=5 , lowerCamelCase__=2 , lowerCamelCase__=0.1 , **lowerCamelCase__ , ) -> Any: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __lowercase = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowercase = backbone_config.get("""model_type""" ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(SCREAMING_SNAKE_CASE_ ) # set timm attributes to None __lowercase ,__lowercase ,__lowercase = None, None, None __lowercase = use_timm_backbone __lowercase = backbone_config __lowercase = num_channels __lowercase = num_queries __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = init_xavier_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = encoder_layers __lowercase = auxiliary_loss __lowercase = position_embedding_type __lowercase = backbone __lowercase = use_pretrained_backbone __lowercase = dilation # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = mask_loss_coefficient __lowercase = dice_loss_coefficient __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def snake_case__ ( self ) -> str: """simple docstring""" return self.encoder_attention_heads @property def snake_case__ ( self ) -> Dict: """simple docstring""" return self.d_model class SCREAMING_SNAKE_CASE( __lowerCamelCase ): snake_case_ : List[str] = version.parse("""1.11""" ) @property def snake_case__ ( self ) -> List[str]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def snake_case__ ( self ) -> List[str]: """simple docstring""" return 1E-5 @property def snake_case__ ( self ) -> int: """simple docstring""" return 12
720
'''simple docstring''' def snake_case_ ( a__ : int ): """simple docstring""" if bit_count < 0: raise ValueError("""The given input must be positive""" ) # get the generated string sequence __lowercase = gray_code_sequence_string(a__ ) # # convert them to integers for i in range(len(a__ ) ): __lowercase = int(sequence[i] ,2 ) return sequence def snake_case_ ( a__ : int ): """simple docstring""" if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __lowercase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __lowercase = gray_code_sequence_string(bit_count - 1 ) __lowercase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __lowercase = """0""" + smaller_sequence[i] sequence.append(a__ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __lowercase = """1""" + smaller_sequence[i] sequence.append(a__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
163
0
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def lowerCamelCase_(lowerCamelCase_ ) -> Any: UpperCAmelCase = SwinConfig(image_size=192 ) if "base" in model_name: UpperCAmelCase = 6 UpperCAmelCase = 128 UpperCAmelCase = (2, 2, 18, 2) UpperCAmelCase = (4, 8, 16, 32) elif "large" in model_name: UpperCAmelCase = 12 UpperCAmelCase = 192 UpperCAmelCase = (2, 2, 18, 2) UpperCAmelCase = (6, 12, 24, 48) else: raise ValueError("Model not supported, only supports base and large variants" ) UpperCAmelCase = window_size UpperCAmelCase = embed_dim UpperCAmelCase = depths UpperCAmelCase = num_heads return config def lowerCamelCase_(lowerCamelCase_ ) -> Optional[int]: if "encoder.mask_token" in name: UpperCAmelCase = name.replace("encoder.mask_token" , "embeddings.mask_token" ) if "encoder.patch_embed.proj" in name: UpperCAmelCase = name.replace("encoder.patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "encoder.patch_embed.norm" in name: UpperCAmelCase = name.replace("encoder.patch_embed.norm" , "embeddings.norm" ) if "attn.proj" in name: UpperCAmelCase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: UpperCAmelCase = name.replace("attn" , "attention.self" ) if "norm1" in name: UpperCAmelCase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCAmelCase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCAmelCase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": UpperCAmelCase = '''layernorm.weight''' if name == "encoder.norm.bias": UpperCAmelCase = '''layernorm.bias''' if "decoder" in name: pass else: UpperCAmelCase = '''swin.''' + name return name def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(lowerCamelCase_ ) if "attn_mask" in key: pass elif "qkv" in key: UpperCAmelCase = key.split("." ) UpperCAmelCase = int(key_split[2] ) UpperCAmelCase = int(key_split[4] ) UpperCAmelCase = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCAmelCase = val[:dim, :] UpperCAmelCase = val[ dim : dim * 2, : ] UpperCAmelCase = val[-dim:, :] else: UpperCAmelCase = val[ :dim ] UpperCAmelCase = val[ dim : dim * 2 ] UpperCAmelCase = val[ -dim: ] else: UpperCAmelCase = val return orig_state_dict def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Any: UpperCAmelCase = torch.load(lowerCamelCase_ , map_location="cpu" )['''model'''] UpperCAmelCase = get_swin_config(lowerCamelCase_ ) UpperCAmelCase = SwinForMaskedImageModeling(lowerCamelCase_ ) model.eval() UpperCAmelCase = convert_state_dict(lowerCamelCase_ , lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = ViTImageProcessor(size={"height": 192, "width": 192} ) UpperCAmelCase = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) UpperCAmelCase = image_processor(images=lowerCamelCase_ , return_tensors="pt" ) with torch.no_grad(): UpperCAmelCase = model(**lowerCamelCase_ ).logits print(outputs.keys() ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase_ ) if push_to_hub: print(F'Pushing model and image processor for {model_name} to hub' ) model.push_to_hub(F'microsoft/{model_name}' ) image_processor.push_to_hub(F'microsoft/{model_name}' ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="swin-base-simmim-window6-192", type=str, choices=["swin-base-simmim-window6-192", "swin-large-simmim-window12-192"], help="Name of the Swin SimMIM model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth", type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __lowerCamelCase : List[Any] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
323
lowerCAmelCase_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[Any]: # Return True if there is node that has not iterated. lowerCAmelCase__ : Optional[int] = [False] * len(UpperCamelCase ) lowerCAmelCase__ : Tuple = [s] lowerCAmelCase__ : Dict = True while queue: lowerCAmelCase__ : int = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : Optional[int] = u return visited[t] def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Optional[Any]: lowerCAmelCase__ : Any = [-1] * (len(UpperCamelCase )) lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : Optional[int] = [i[:] for i in graph] # Record original cut, copy. while bfs(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): lowerCAmelCase__ : List[Any] = float('''Inf''' ) lowerCAmelCase__ : Dict = sink while s != source: # Find the minimum value in select path lowerCAmelCase__ : Tuple = min(UpperCamelCase , graph[parent[s]][s] ) lowerCAmelCase__ : List[Any] = parent[s] max_flow += path_flow lowerCAmelCase__ : List[Any] = sink while v != source: lowerCAmelCase__ : Dict = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCAmelCase__ : Optional[Any] = parent[v] for i in range(len(UpperCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
678
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ =logging.get_logger(__name__) def lowerCAmelCase_ ( UpperCamelCase__ : Optional[Any] ): """simple docstring""" __lowercase = DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: __lowercase = 1024 __lowercase = 4096 __lowercase = 24 __lowercase = 16 __lowercase = [5, 11, 17, 23] __lowercase = [256, 512, 1024, 1024] __lowercase = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: __lowercase = 768 __lowercase = [1, 1, 1, 0.5] __lowercase = [256, 512, 768, 768] __lowercase = 150 __lowercase = 16 __lowercase = (1, 384, 384) __lowercase = False __lowercase = """project""" if "ade" in checkpoint_url: __lowercase = True __lowercase = 768 __lowercase = [1, 1, 1, 0.5] __lowercase = 150 __lowercase = 16 __lowercase = """huggingface/label-files""" __lowercase = """ade20k-id2label.json""" __lowercase = json.load(open(cached_download(hf_hub_url(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) ) , """r""" ) ) __lowercase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = [1, 150, 480, 480] return config, expected_shape def lowerCAmelCase_ ( UpperCamelCase__ : Dict ): """simple docstring""" __lowercase = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase_ ( UpperCamelCase__ : Tuple ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __lowercase = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: __lowercase = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: __lowercase = name.replace("""patch_embed""" , """""" ) if "pos_embed" in name: __lowercase = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: __lowercase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: __lowercase = name.replace("""proj""" , """projection""" ) if "blocks" in name: __lowercase = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: __lowercase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowercase = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name and "backbone" not in name: __lowercase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name and "backbone" not in name: __lowercase = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: __lowercase = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: __lowercase = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: __lowercase = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: __lowercase = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: __lowercase = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: __lowercase = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: __lowercase = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __lowercase = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: __lowercase = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: __lowercase = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: __lowercase = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: __lowercase = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: __lowercase = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __lowercase = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: __lowercase = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: __lowercase = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: __lowercase = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: __lowercase = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: __lowercase = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: __lowercase = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: __lowercase = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: __lowercase = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: __lowercase = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: __lowercase = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: __lowercase = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: __lowercase = name.replace("""bn""" , """batch_norm""" ) if "head" in name: __lowercase = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: __lowercase = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: __lowercase = name.replace("""auxlayer""" , """auxiliary_head.head""" ) if "backbone" in name: __lowercase = name.replace("""backbone""" , """backbone.bit.encoder""" ) if ".." in name: __lowercase = name.replace("""..""" , """.""" ) if "stem.conv" in name: __lowercase = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: __lowercase = name.replace("""blocks""" , """layers""" ) if "convolution" in name and "backbone" in name: __lowercase = name.replace("""convolution""" , """conv""" ) if "layer" in name and "backbone" in name: __lowercase = name.replace("""layer""" , """layers""" ) if "backbone.bit.encoder.bit" in name: __lowercase = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" ) if "embedder.conv" in name: __lowercase = name.replace("""embedder.conv""" , """embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: __lowercase = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" ) return name def lowerCAmelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) __lowercase = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: config.hidden_size, :] __lowercase = in_proj_bias[: config.hidden_size] __lowercase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase = in_proj_weight[ -config.hidden_size :, : ] __lowercase = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( ): """simple docstring""" __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" __lowercase , __lowercase = get_dpt_config(UpperCamelCase__ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") __lowercase = torch.load(UpperCamelCase__ , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(UpperCamelCase__ ) # rename keys for key in state_dict.copy().keys(): __lowercase = state_dict.pop(UpperCamelCase__ ) __lowercase = val # read in qkv matrices read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # load HuggingFace model __lowercase = DPTForSemanticSegmentation(UpperCamelCase__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # Check outputs on an image __lowercase = 480 if """ade""" in checkpoint_url else 384 __lowercase = DPTImageProcessor(size=UpperCamelCase__ ) __lowercase = prepare_img() __lowercase = image_processor(UpperCamelCase__ , return_tensors="""pt""" ) # forward pass __lowercase = model(**UpperCamelCase__ ).logits if """ade""" in checkpoint_url else model(**UpperCamelCase__ ).predicted_depth if show_prediction: __lowercase = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=UpperCamelCase__ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": UpperCAmelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) UpperCAmelCase__ =parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
442
"""simple docstring""" def lowerCAmelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str ): """simple docstring""" __lowercase = [False] * len(UpperCamelCase__ ) __lowercase = [] queue.append(UpperCamelCase__ ) __lowercase = True while queue: __lowercase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(UpperCamelCase__ ) __lowercase = True __lowercase = u return visited[t] def lowerCAmelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] ): """simple docstring""" __lowercase = [-1] * (len(UpperCamelCase__ )) __lowercase = 0 while bfs(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): __lowercase = float("""Inf""" ) __lowercase = sink while s != source: # Find the minimum value in select path __lowercase = min(UpperCamelCase__ , graph[parent[s]][s] ) __lowercase = parent[s] max_flow += path_flow __lowercase = sink while v != source: __lowercase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __lowercase = parent[v] return max_flow UpperCAmelCase__ =[ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] UpperCAmelCase__ , UpperCAmelCase__ =0, 5 print(ford_fulkerson(graph, source, sink))
442
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __lowerCamelCase (lowercase_ ): _lowercase = """xlm-roberta-xl""" def __init__( self: int,A_: Tuple=25_0880,A_: Optional[int]=2560,A_: List[Any]=36,A_: List[str]=32,A_: str=1_0240,A_: Optional[int]="gelu",A_: Union[str, Any]=0.1,A_: Union[str, Any]=0.1,A_: List[str]=514,A_: Tuple=1,A_: str=0.0_2,A_: int=1E-05,A_: int=1,A_: Tuple=0,A_: Any=2,A_: Union[str, Any]="absolute",A_: Tuple=True,A_: Dict=None,**A_: Any,): '''simple docstring''' super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (lowercase_ ): @property def snake_case_ ( self: Any ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
1
'''simple docstring''' import unittest import numpy as np def _SCREAMING_SNAKE_CASE (A , A , A , A = None , ) -> np.ndarray: """simple docstring""" lowercase__ = np.shape(A ) lowercase__ = np.shape(A ) lowercase__ = np.shape(A ) if shape_a[0] != shape_b[0]: lowercase__ = ( '''Expected the same number of rows for A and B. ''' f"Instead found A of size {shape_a} and B of size {shape_b}" ) raise ValueError(A ) if shape_b[1] != shape_c[1]: lowercase__ = ( '''Expected the same number of columns for B and C. ''' f"Instead found B of size {shape_b} and C of size {shape_c}" ) raise ValueError(A ) lowercase__ = pseudo_inv if a_inv is None: try: lowercase__ = np.linalg.inv(A ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase__ = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase__ = np.array([[2, 1], [6, 3]] ) lowercase__ = schur_complement(UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowercase__ = np.block([[a, b], [b.T, c]] ) lowercase__ = np.linalg.det(UpperCamelCase ) lowercase__ = np.linalg.det(UpperCamelCase ) lowercase__ = np.linalg.det(UpperCamelCase ) self.assertAlmostEqual(UpperCamelCase , det_a * det_s ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase__ = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase__ = np.array([[2, 1], [6, 3]] ) with self.assertRaises(UpperCamelCase ): schur_complement(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowercase__ = np.array([[0, 3], [3, 0], [2, 3]] ) lowercase__ = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(UpperCamelCase ): schur_complement(UpperCamelCase , UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
460
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } UpperCAmelCase__ = { "gpt-neox-20b": 2048, } class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ : List[str] = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = ['input_ids', 'attention_mask'] def __init__( self : int , lowerCamelCase__ : Optional[int]=None , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : str=None , lowerCamelCase__ : Optional[int]="<|endoftext|>" , lowerCamelCase__ : Dict="<|endoftext|>" , lowerCamelCase__ : Tuple="<|endoftext|>" , lowerCamelCase__ : Optional[int]=False , **lowerCamelCase__ : List[Any] , ) -> str: """simple docstring""" super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , unk_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , ) __lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCamelCase__ ) != add_prefix_space: __lowercase = getattr(lowerCamelCase__ , pre_tok_state.pop('''type''' ) ) __lowercase = add_prefix_space __lowercase = pre_tok_class(**lowerCamelCase__ ) __lowercase = add_prefix_space def UpperCAmelCase_ ( self : str , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __lowercase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def UpperCAmelCase_ ( self : Dict , lowerCamelCase__ : "Conversation" ) -> List[int]: """simple docstring""" __lowercase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) + [self.eos_token_id] ) if len(lowerCamelCase__ ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] return input_ids
362
import cva import numpy as np class a : """simple docstring""" def __init__( self : Dict , lowerCamelCase__ : float , lowerCamelCase__ : int ) -> Dict: """simple docstring""" if k in (0.0_4, 0.0_6): __lowercase = k __lowercase = window_size else: raise ValueError('''invalid k value''' ) def __str__( self : int ) -> str: """simple docstring""" return str(self.k ) def UpperCAmelCase_ ( self : Dict , lowerCamelCase__ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" __lowercase = cva.imread(lowerCamelCase__ , 0 ) __lowercase , __lowercase = img.shape __lowercase = [] __lowercase = img.copy() __lowercase = cva.cvtColor(lowerCamelCase__ , cva.COLOR_GRAY2RGB ) __lowercase , __lowercase = np.gradient(lowerCamelCase__ ) __lowercase = dx**2 __lowercase = dy**2 __lowercase = dx * dy __lowercase = 0.0_4 __lowercase = self.window_size // 2 for y in range(lowerCamelCase__ , h - offset ): for x in range(lowerCamelCase__ , w - offset ): __lowercase = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowercase = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowercase = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowercase = (wxx * wyy) - (wxy**2) __lowercase = wxx + wyy __lowercase = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": UpperCAmelCase__ = HarrisCorner(0.04, 3) UpperCAmelCase__ , UpperCAmelCase__ = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
362
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class A : def __init__( self , lowercase_ , lowercase_=13 , lowercase_=10 , lowercase_=3 , lowercase_=2 , lowercase_=2 , lowercase_=True , lowercase_=True , lowercase_=32 , lowercase_=5 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=10 , lowercase_=0.02 , lowercase_="divided_space_time" , lowercase_=None , ) -> Union[str, Any]: '''simple docstring''' _snake_case : Tuple = parent _snake_case : Optional[int] = batch_size _snake_case : str = image_size _snake_case : List[Any] = num_channels _snake_case : Dict = patch_size _snake_case : Optional[int] = num_frames _snake_case : Optional[Any] = is_training _snake_case : Any = use_labels _snake_case : Dict = hidden_size _snake_case : Any = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : str = intermediate_size _snake_case : List[Any] = hidden_act _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[Any] = attention_type _snake_case : str = initializer_range _snake_case : Dict = scope _snake_case : List[Any] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token _snake_case : int = (image_size // patch_size) ** 2 _snake_case : Optional[int] = (num_frames) * self.num_patches_per_frame + 1 def __a ( self ) -> int: '''simple docstring''' _snake_case : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _snake_case : List[str] = None if self.use_labels: _snake_case : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) _snake_case : str = self.get_config() return config, pixel_values, labels def __a ( self ) -> Optional[Any]: '''simple docstring''' _snake_case : Dict = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) _snake_case : Tuple = self.num_labels return config def __a ( self , lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' _snake_case : Optional[int] = TimesformerModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() _snake_case : int = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' _snake_case : Any = TimesformerForVideoClassification(lowercase_ ) model.to(lowercase_ ) model.eval() _snake_case : Optional[Any] = model(lowercase_ ) # verify the logits shape _snake_case : Tuple = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowercase_ ) def __a ( self ) -> Any: '''simple docstring''' _snake_case : List[Any] = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : List[str] = config_and_inputs _snake_case : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A (__UpperCAmelCase ,__UpperCAmelCase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def __a ( self ) -> List[str]: '''simple docstring''' _snake_case : int = TimesformerModelTester(self ) _snake_case : Tuple = ConfigTester( self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def __a ( self , lowercase_ , lowercase_ , lowercase_=False ) -> int: '''simple docstring''' _snake_case : List[Any] = copy.deepcopy(lowercase_ ) if return_labels: if model_class in get_values(lowercase_ ): _snake_case : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) return inputs_dict def __a ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def __a ( self ) -> Optional[Any]: '''simple docstring''' pass def __a ( self ) -> List[Any]: '''simple docstring''' _snake_case , _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Any = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _snake_case : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear ) ) def __a ( self ) -> List[str]: '''simple docstring''' _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Optional[Any] = model_class(lowercase_ ) _snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Any = [*signature.parameters.keys()] _snake_case : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_ ) def __a ( self ) -> List[Any]: '''simple docstring''' _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __a ( self ) -> Any: '''simple docstring''' _snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowercase_ ) @slow def __a ( self ) -> int: '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Tuple = TimesformerModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def __a ( self ) -> Optional[int]: '''simple docstring''' if not self.has_attentions: pass else: _snake_case , _snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : str = True for model_class in self.all_model_classes: _snake_case : Dict = self.model_tester.seq_length _snake_case : Dict = self.model_tester.num_frames _snake_case : Any = True _snake_case : Union[str, Any] = False _snake_case : Optional[int] = True _snake_case : str = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): _snake_case : Union[str, Any] = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) _snake_case : List[str] = outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case : int = True _snake_case : Optional[int] = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): _snake_case : Tuple = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) _snake_case : str = outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) _snake_case : int = len(lowercase_ ) # Check attention is always last and order is fine _snake_case : str = True _snake_case : Optional[Any] = True _snake_case : Tuple = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): _snake_case : List[Any] = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) self.assertEqual(out_len + 1 , len(lowercase_ ) ) _snake_case : List[str] = outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __a ( self ) -> Dict: '''simple docstring''' def check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ): _snake_case : Dict = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): _snake_case : List[str] = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) _snake_case : Union[str, Any] = outputs.hidden_states _snake_case : Optional[int] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowercase_ ) , lowercase_ ) _snake_case : Tuple = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _snake_case , _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Tuple = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Any = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def A_ ( ) -> Optional[int]: _snake_case : Dict = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) _snake_case : Any = np.load(lowercase_ ) return list(lowercase_ ) @require_torch @require_vision class A (unittest.TestCase ): @cached_property def __a ( self ) -> Dict: '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __a ( self ) -> Union[str, Any]: '''simple docstring''' _snake_case : List[str] = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( lowercase_ ) _snake_case : Optional[int] = self.default_image_processor _snake_case : List[str] = prepare_video() _snake_case : List[Any] = image_processor(video[:8] , return_tensors='''pt''' ).to(lowercase_ ) # forward pass with torch.no_grad(): _snake_case : str = model(**lowercase_ ) # verify the logits _snake_case : Dict = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , lowercase_ ) _snake_case : Dict = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) )
326
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py lowerCAmelCase_ = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" lowerCAmelCase_ = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" lowerCAmelCase_ = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class A (datasets.Metric ): def __a ( self ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __a ( self , lowercase_ , lowercase_ , lowercase_=4 , lowercase_=False ) -> str: '''simple docstring''' _snake_case : Any = compute_bleu( reference_corpus=lowercase_ , translation_corpus=lowercase_ , max_order=lowercase_ , smooth=lowercase_ ) ((_snake_case) , (_snake_case) , (_snake_case) , (_snake_case) , (_snake_case) , (_snake_case)) : str = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
326
1
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor __snake_case = logging.get_logger(__name__) class lowercase__ ( _UpperCAmelCase ): def __init__( self : str , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[str] ): warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
400
import math from datetime import datetime, timedelta def _lowercase ( UpperCamelCase_ ) -> datetime: '''simple docstring''' SCREAMING_SNAKE_CASE__ = year % 19 SCREAMING_SNAKE_CASE__ = year % 4 SCREAMING_SNAKE_CASE__ = year % 7 SCREAMING_SNAKE_CASE__ = math.floor(year / 100 ) SCREAMING_SNAKE_CASE__ = math.floor((13 + 8 * leap_day_inhibits) / 25 ) SCREAMING_SNAKE_CASE__ = leap_day_inhibits / 4 SCREAMING_SNAKE_CASE__ = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 SCREAMING_SNAKE_CASE__ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 SCREAMING_SNAKE_CASE__ = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon SCREAMING_SNAKE_CASE__ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(UpperCamelCase_ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(UpperCamelCase_ , 4 , 18 ) else: return datetime(UpperCamelCase_ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): __snake_case = """will be""" if year > datetime.now().year else """was""" print(F"""Easter in {year} {tense} {gauss_easter(year)}""")
400
1
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def __lowerCAmelCase ( __magic_name__ , __magic_name__ ): _lowercase: Union[str, Any] = XCLIPTextConfig() # derive patch size from model name _lowercase: List[str] = model_name.find("patch" ) _lowercase: Optional[int] = int(model_name[start_idx + len("patch" ) : start_idx + len("patch" ) + 2] ) _lowercase: List[str] = XCLIPVisionConfig(patch_size=_lowercase , num_frames=_lowercase ) if "large" in model_name: _lowercase: Optional[int] = 7_6_8 _lowercase: Dict = 3_0_7_2 _lowercase: Dict = 1_2 _lowercase: str = 1_0_2_4 _lowercase: Any = 4_0_9_6 _lowercase: Union[str, Any] = 1_6 _lowercase: Optional[Any] = 2_4 _lowercase: List[Any] = 7_6_8 _lowercase: Dict = 3_0_7_2 if model_name == "xclip-large-patch14-16-frames": _lowercase: int = 3_3_6 _lowercase: List[Any] = XCLIPConfig.from_text_vision_configs(_lowercase , _lowercase ) if "large" in model_name: _lowercase: str = 7_6_8 return config def __lowerCAmelCase ( __magic_name__ ): if name == "token_embedding.weight": _lowercase: Optional[int] = name.replace("token_embedding.weight" , "text_model.embeddings.token_embedding.weight" ) if name == "positional_embedding": _lowercase: Any = name.replace("positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "ln_1" in name: _lowercase: Any = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: _lowercase: List[str] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: _lowercase: List[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: _lowercase: Any = name.replace("c_proj" , "fc2" ) if name.startswith("transformer.resblocks" ): _lowercase: int = name.replace("transformer.resblocks" , "text_model.encoder.layers" ) if "attn.out_proj" in name and "message" not in name: _lowercase: str = name.replace("attn.out_proj" , "self_attn.out_proj" ) if "ln_final" in name: _lowercase: List[str] = name.replace("ln_final" , "text_model.final_layer_norm" ) # visual encoder if name == "visual.class_embedding": _lowercase: List[str] = name.replace("visual.class_embedding" , "vision_model.embeddings.class_embedding" ) if name == "visual.positional_embedding": _lowercase: Optional[Any] = name.replace("visual.positional_embedding" , "vision_model.embeddings.position_embedding.weight" ) if name.startswith("visual.transformer.resblocks" ): _lowercase: Union[str, Any] = name.replace("visual.transformer.resblocks" , "vision_model.encoder.layers" ) if "visual.conv1" in name: _lowercase: Dict = name.replace("visual.conv1" , "vision_model.embeddings.patch_embedding" ) if "visual.ln_pre" in name: _lowercase: List[Any] = name.replace("visual.ln_pre" , "vision_model.pre_layernorm" ) if "visual.ln_post" in name: _lowercase: Optional[int] = name.replace("visual.ln_post" , "vision_model.post_layernorm" ) if "visual.proj" in name: _lowercase: str = name.replace("visual.proj" , "visual_projection.weight" ) if "text_projection" in name: _lowercase: Optional[int] = name.replace("text_projection" , "text_projection.weight" ) # things on top if "prompts_visual_proj" in name: _lowercase: List[str] = name.replace("prompts_visual_proj" , "prompts_visual_projection" ) if "prompts_visual_ln" in name: _lowercase: List[str] = name.replace("prompts_visual_ln" , "prompts_visual_layernorm" ) # mit if name == "mit.positional_embedding": _lowercase: int = name.replace("positional" , "position" ) if name.startswith("mit.resblocks" ): _lowercase: Optional[int] = name.replace("mit.resblocks" , "mit.encoder.layers" ) # prompts generator if name.startswith("prompts_generator.norm" ): _lowercase: Optional[int] = name.replace("prompts_generator.norm" , "prompts_generator.layernorm" ) return name def __lowerCAmelCase ( __magic_name__ , __magic_name__ ): for key in orig_state_dict.copy().keys(): _lowercase: Any = orig_state_dict.pop(_lowercase ) if "attn.in_proj" in key: _lowercase: Optional[int] = key.split("." ) if key.startswith("visual" ): _lowercase: List[Any] = key_split[3] _lowercase: Optional[int] = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: _lowercase: List[str] = val[ :dim, : ] _lowercase: Optional[int] = val[ dim : dim * 2, : ] _lowercase: Optional[int] = val[ -dim:, : ] else: _lowercase: List[Any] = val[ :dim ] _lowercase: Any = val[ dim : dim * 2 ] _lowercase: List[str] = val[ -dim: ] else: if "weight" in key: _lowercase: Optional[int] = val[ :dim, : ] _lowercase: List[Any] = val[ dim : dim * 2, : ] _lowercase: List[str] = val[ -dim:, : ] else: _lowercase: List[Any] = val[:dim] _lowercase: List[Any] = val[ dim : dim * 2 ] _lowercase: Optional[Any] = val[-dim:] elif key.startswith("mit" ): _lowercase: Optional[Any] = key_split[2] _lowercase: Tuple = config.vision_config.mit_hidden_size if "weight" in key: _lowercase: Optional[Any] = val[:dim, :] _lowercase: Optional[int] = val[dim : dim * 2, :] _lowercase: Optional[int] = val[-dim:, :] else: _lowercase: List[str] = val[:dim] _lowercase: List[Any] = val[dim : dim * 2] _lowercase: int = val[-dim:] else: _lowercase: List[str] = key_split[2] _lowercase: List[str] = config.text_config.hidden_size if "weight" in key: _lowercase: Tuple = val[:dim, :] _lowercase: Any = val[ dim : dim * 2, : ] _lowercase: str = val[-dim:, :] else: _lowercase: Optional[int] = val[:dim] _lowercase: Tuple = val[ dim : dim * 2 ] _lowercase: List[Any] = val[-dim:] else: _lowercase: int = rename_key(_lowercase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: _lowercase: Dict = val.T _lowercase: Tuple = val return orig_state_dict def __lowerCAmelCase ( __magic_name__ ): if num_frames == 8: _lowercase: Tuple = '''eating_spaghetti_8_frames.npy''' elif num_frames == 1_6: _lowercase: Union[str, Any] = '''eating_spaghetti.npy''' elif num_frames == 3_2: _lowercase: Optional[Any] = '''eating_spaghetti_32_frames.npy''' _lowercase: List[Any] = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename=_lowercase , repo_type="dataset" , ) _lowercase: Union[str, Any] = np.load(_lowercase ) return list(_lowercase ) def __lowerCAmelCase ( __magic_name__ , __magic_name__=None , __magic_name__=False ): _lowercase: Optional[Any] = { # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } _lowercase: Optional[int] = model_to_url[model_name] _lowercase: Dict = 8 if "16-frames" in model_name: _lowercase: List[Any] = 1_6 elif "shot" in model_name: _lowercase: Tuple = 3_2 _lowercase: Any = get_xclip_config(_lowercase , _lowercase ) _lowercase: str = XCLIPModel(_lowercase ) model.eval() if "drive" in checkpoint_url: _lowercase: int = '''pytorch_model.bin''' gdown.cached_download(_lowercase , _lowercase , quiet=_lowercase ) _lowercase: Union[str, Any] = torch.load(_lowercase , map_location="cpu" )['''model'''] else: _lowercase: Optional[int] = torch.hub.load_state_dict_from_url(_lowercase )['''model'''] _lowercase: Dict = convert_state_dict(_lowercase , _lowercase ) _lowercase: int = XCLIPModel(_lowercase ) _lowercase: List[Any] = model.load_state_dict(_lowercase , strict=_lowercase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() _lowercase: Optional[Any] = 3_3_6 if model_name == '''xclip-large-patch14-16-frames''' else 2_2_4 _lowercase: List[str] = VideoMAEImageProcessor(size=_lowercase ) _lowercase: Tuple = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32" ) _lowercase: Tuple = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32" ) _lowercase: List[Any] = XCLIPProcessor(image_processor=_lowercase , tokenizer=_lowercase ) _lowercase: Dict = prepare_video(_lowercase ) _lowercase: List[str] = processor( text=["playing sports", "eating spaghetti", "go shopping"] , videos=_lowercase , return_tensors="pt" , padding=_lowercase ) print("Shape of pixel values:" , inputs.pixel_values.shape ) with torch.no_grad(): _lowercase: str = model(**_lowercase ) # Verify outputs _lowercase: Dict = outputs.logits_per_video _lowercase: Union[str, Any] = logits_per_video.softmax(dim=1 ) print("Probs:" , _lowercase ) # kinetics-400 if model_name == "xclip-base-patch32": _lowercase: Tuple = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] ) elif model_name == "xclip-base-patch32-16-frames": _lowercase: Any = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": _lowercase: Tuple = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] ) elif model_name == "xclip-base-patch16-16-frames": _lowercase: Union[str, Any] = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": _lowercase: str = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] ) elif model_name == "xclip-large-patch14-16-frames": _lowercase: Optional[int] = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": _lowercase: Optional[int] = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": _lowercase: List[str] = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": _lowercase: Optional[Any] = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": _lowercase: List[Any] = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": _lowercase: str = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": _lowercase: List[str] = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": _lowercase: Union[str, Any] = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": _lowercase: Dict = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": _lowercase: Union[str, Any] = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": _lowercase: Optional[Any] = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": _lowercase: Any = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": _lowercase: List[str] = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(f"Model name {model_name} not supported" ) assert torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowercase ) if push_to_hub: print("Pushing model, processor and slow tokenizer files to the hub..." ) model.push_to_hub(_lowercase , organization="nielsr" ) processor.push_to_hub(_lowercase , organization="nielsr" ) slow_tokenizer.push_to_hub(_lowercase , organization="nielsr" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='xclip-base-patch32', type=str, help='Name of the model.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
226
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __a( unittest.TestCase ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=7 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=30 ,_SCREAMING_SNAKE_CASE=400 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=0.9 ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] ,_SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] ,) -> Optional[int]: UpperCAmelCase_ : int = size if size is not None else {'''shortest_edge''': 30} UpperCAmelCase_ : List[str] = crop_size if crop_size is not None else {'''height''': 30, '''width''': 30} UpperCAmelCase_ : Dict = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : int = num_channels UpperCAmelCase_ : Any = min_resolution UpperCAmelCase_ : Tuple = max_resolution UpperCAmelCase_ : Optional[int] = do_resize_and_center_crop UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : List[str] = crop_pct UpperCAmelCase_ : List[str] = crop_size UpperCAmelCase_ : Any = do_normalize UpperCAmelCase_ : str = image_mean UpperCAmelCase_ : List[Any] = image_std def a__ ( self ) -> str: return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a( _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = PoolFormerImageProcessor if is_vision_available() else None def a__ ( self ) -> Dict: UpperCAmelCase_ : str = PoolFormerImageProcessingTester(self ) @property def a__ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''size''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''crop_pct''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''do_normalize''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''image_mean''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE ,'''image_std''' ) ) def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 30} ) self.assertEqual(image_processor.crop_size ,{'''height''': 30, '''width''': 30} ) UpperCAmelCase_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size ,{'''height''': 84, '''width''': 84} ) def a__ ( self ) -> Optional[int]: pass def a__ ( self ) -> Dict: # Initialize image_processing UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE ,Image.Image ) # Test not batched input UpperCAmelCase_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched UpperCAmelCase_ : Union[str, Any] = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def a__ ( self ) -> List[Any]: # Initialize image_processing UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ,numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE ,np.ndarray ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def a__ ( self ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_SCREAMING_SNAKE_CASE ,torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE ,torch.Tensor ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,)
30
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowercase ( self : Union[str, Any] ) -> Any: '''simple docstring''' _lowercase : List[Any] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) _lowercase : Optional[Any] = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(UpperCamelCase_ ) , torch_builtin(UpperCamelCase_ ) ) ) self.assertFalse(torch.allclose(gelu_python(UpperCamelCase_ ) , gelu_new(UpperCamelCase_ ) ) ) def __lowercase ( self : List[Any] ) -> Tuple: '''simple docstring''' _lowercase : Any = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) _lowercase : Union[str, Any] = get_activation('''gelu''' ) _lowercase : Tuple = get_activation('''gelu_10''' ) _lowercase : str = torch_builtin(UpperCamelCase_ ) _lowercase : Optional[int] = geluaa(UpperCamelCase_ ) _lowercase : str = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(UpperCamelCase_ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def __lowercase ( self : Optional[int] ) -> str: '''simple docstring''' get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(UpperCamelCase_ ): get_activation('''bogus''' ) with self.assertRaises(UpperCamelCase_ ): get_activation(UpperCamelCase_ ) def __lowercase ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' _lowercase : str = get_activation('''gelu''' ) _lowercase : Dict = 1 _lowercase : Union[str, Any] = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(UpperCamelCase_ ): _lowercase : List[Any] = acta.a
411
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } lowerCamelCase__ = { 'yjernite/retribert-base-uncased': 5_12, } lowerCamelCase__ = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _lowerCAmelCase ( __A ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = PRETRAINED_INIT_CONFIGURATION snake_case_ = RetriBertTokenizer snake_case_ = ['input_ids', 'attention_mask'] def __init__( self : str , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Tuple=True , UpperCamelCase_ : str="[UNK]" , UpperCamelCase_ : Optional[int]="[SEP]" , UpperCamelCase_ : Union[str, Any]="[PAD]" , UpperCamelCase_ : List[Any]="[CLS]" , UpperCamelCase_ : int="[MASK]" , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : List[Any] , ) -> Union[str, Any]: '''simple docstring''' super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): _lowercase : Any = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) _lowercase : Any = do_lower_case _lowercase : List[Any] = strip_accents _lowercase : Union[str, Any] = tokenize_chinese_chars _lowercase : Optional[int] = normalizer_class(**UpperCamelCase_ ) _lowercase : str = do_lower_case def __lowercase ( self : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str=None ) -> Any: '''simple docstring''' _lowercase : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : int , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _lowercase : List[str] = [self.sep_token_id] _lowercase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' _lowercase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
411
1
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig _UpperCAmelCase = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring _UpperCAmelCase = "UperNetConfig" class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Union[int, Tuple[int, int]] , UpperCamelCase__ : Union[int, Tuple[int, int], str] = 0 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Union[int, Tuple[int, int]] = 1 , ): super().__init__() A = nn.Convad( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , kernel_size=UpperCamelCase__ , padding=UpperCamelCase__ , bias=UpperCamelCase__ , dilation=UpperCamelCase__ , ) A = nn.BatchNormad(UpperCamelCase__ ) A = nn.ReLU() def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : torch.Tensor ): A = self.conv(UpperCamelCase__ ) A = self.batch_norm(UpperCamelCase__ ) A = self.activation(UpperCamelCase__ ) return output class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): super().__init__() A = [ nn.AdaptiveAvgPoolad(UpperCamelCase__ ), UperNetConvModule(UpperCamelCase__ , UpperCamelCase__ , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCamelCase ( self : Union[str, Any] , UpperCamelCase__ : torch.Tensor ): A = input for layer in self.layers: A = layer(UpperCamelCase__ ) return hidden_state class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase__ : Tuple[int, ...] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : bool ): super().__init__() A = pool_scales A = align_corners A = in_channels A = channels A = [] for i, pool_scale in enumerate(UpperCamelCase__ ): A = UperNetPyramidPoolingBlock(pool_scale=UpperCamelCase__ , in_channels=UpperCamelCase__ , channels=UpperCamelCase__ ) self.blocks.append(UpperCamelCase__ ) self.add_module(str(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : torch.Tensor ): A = [] for ppm in self.blocks: A = ppm(UpperCamelCase__ ) A = nn.functional.interpolate( UpperCamelCase__ , size=x.size()[2:] , mode='bilinear' , align_corners=self.align_corners ) ppm_outs.append(UpperCamelCase__ ) return ppm_outs class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] ): super().__init__() A = config A = config.pool_scales # e.g. (1, 2, 3, 6) A = in_channels A = config.hidden_size A = False A = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module A = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) A = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module A = nn.ModuleList() A = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer A = UperNetConvModule(UpperCamelCase__ , self.channels , kernel_size=1 ) A = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(UpperCamelCase__ ) self.fpn_convs.append(UpperCamelCase__ ) A = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def UpperCamelCase ( self : Optional[int] ): self.apply(self._init_weights ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Tuple ): if isinstance(UpperCamelCase__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCamelCase ( self : Union[str, Any] , UpperCamelCase__ : Dict ): A = inputs[-1] A = [x] psp_outs.extend(self.psp_modules(UpperCamelCase__ ) ) A = torch.cat(UpperCamelCase__ , dim=1 ) A = self.bottleneck(UpperCamelCase__ ) return output def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : torch.Tensor ): # build laterals A = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(UpperCamelCase__ ) ) # build top-down path A = len(UpperCamelCase__ ) for i in range(used_backbone_levels - 1 , 0 , -1 ): A = laterals[i - 1].shape[2:] A = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=UpperCamelCase__ , mode='bilinear' , align_corners=self.align_corners ) # build outputs A = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): A = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='bilinear' , align_corners=self.align_corners ) A = torch.cat(UpperCamelCase__ , dim=1 ) A = self.fpn_bottleneck(UpperCamelCase__ ) A = self.classifier(UpperCamelCase__ ) return output class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int = 2 , UpperCamelCase__ : int = 3 , UpperCamelCase__ : Union[int, Tuple[int, int]] = 1 ): super().__init__() A = config A = config.auxiliary_in_channels A = config.auxiliary_channels A = config.auxiliary_num_convs A = config.auxiliary_concat_input A = in_index A = (kernel_size // 2) * dilation A = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=UpperCamelCase__ , padding=UpperCamelCase__ , dilation=UpperCamelCase__ ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=UpperCamelCase__ , padding=UpperCamelCase__ , dilation=UpperCamelCase__ ) ) if self.num_convs == 0: A = nn.Identity() else: A = nn.Sequential(*UpperCamelCase__ ) if self.concat_input: A = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=UpperCamelCase__ , padding=kernel_size // 2 ) A = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def UpperCamelCase ( self : Optional[Any] ): self.apply(self._init_weights ) def UpperCamelCase ( self : List[Any] , UpperCamelCase__ : List[str] ): if isinstance(UpperCamelCase__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def UpperCamelCase ( self : Union[str, Any] , UpperCamelCase__ : torch.Tensor ): # just take the relevant feature maps A = encoder_hidden_states[self.in_index] A = self.convs(UpperCamelCase__ ) if self.concat_input: A = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) A = self.classifier(UpperCamelCase__ ) return output class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = UperNetConfig SCREAMING_SNAKE_CASE : List[str] = '''pixel_values''' SCREAMING_SNAKE_CASE : int = True def UpperCamelCase ( self : Tuple , UpperCamelCase__ : int ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def UpperCamelCase ( self : str ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def UpperCamelCase ( self : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int]=False ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A = value _UpperCAmelCase = R"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _UpperCAmelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( '''UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.''' , __lowercase , ) class _UpperCAmelCase ( __lowercase ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : Union[str, Any] ): super().__init__(UpperCamelCase__ ) A = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) A = UperNetHead(UpperCamelCase__ , in_channels=self.backbone.channels ) A = UperNetFCNHead(UpperCamelCase__ ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('batch_size, sequence_length' ) ) @replace_return_docstrings(output_type=UpperCamelCase__ , config_class=_CONFIG_FOR_DOC ) def UpperCamelCase ( self : Dict , UpperCamelCase__ : Optional[torch.Tensor] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[torch.Tensor] = None , UpperCamelCase__ : Optional[bool] = None , ): A = return_dict if return_dict is not None else self.config.use_return_dict A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A = output_attentions if output_attentions is not None else self.config.output_attentions A = self.backbone.forward_with_filtered_kwargs( UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , output_attentions=UpperCamelCase__ ) A = outputs.feature_maps A = self.decode_head(UpperCamelCase__ ) A = nn.functional.interpolate(UpperCamelCase__ , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=UpperCamelCase__ ) A = None if self.auxiliary_head is not None: A = self.auxiliary_head(UpperCamelCase__ ) A = nn.functional.interpolate( UpperCamelCase__ , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=UpperCamelCase__ ) A = None if labels is not None: if self.config.num_labels == 1: raise ValueError('The number of labels should be greater than one' ) else: # compute weighted loss A = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) A = loss_fct(UpperCamelCase__ , UpperCamelCase__ ) A = loss_fct(UpperCamelCase__ , UpperCamelCase__ ) A = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: A = (logits,) + outputs[1:] else: A = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=UpperCamelCase__ , logits=UpperCamelCase__ , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
699
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _UpperCAmelCase = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _UpperCAmelCase = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _UpperCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] ): A = WATERMARK_BITS A = WatermarkEncoder() self.encoder.set_watermark('bits' , self.watermark ) def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : torch.FloatTensor ): # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images A = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() A = [self.encoder.encode(UpperCamelCase__ , 'dwtDct' ) for image in images] A = torch.from_numpy(np.array(UpperCamelCase__ ) ).permute(0 , 3 , 1 , 2 ) A = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
699
1
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=5 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=3 , __lowerCamelCase=4 , __lowerCamelCase=None , ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = parent _SCREAMING_SNAKE_CASE : List[Any] = batch_size _SCREAMING_SNAKE_CASE : Tuple = seq_length _SCREAMING_SNAKE_CASE : Optional[Any] = is_training _SCREAMING_SNAKE_CASE : Tuple = use_input_mask _SCREAMING_SNAKE_CASE : int = use_token_type_ids _SCREAMING_SNAKE_CASE : Optional[Any] = use_labels _SCREAMING_SNAKE_CASE : List[str] = vocab_size _SCREAMING_SNAKE_CASE : List[str] = hidden_size _SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers _SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads _SCREAMING_SNAKE_CASE : List[str] = intermediate_size _SCREAMING_SNAKE_CASE : int = hidden_act _SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : str = max_position_embeddings _SCREAMING_SNAKE_CASE : Tuple = type_vocab_size _SCREAMING_SNAKE_CASE : Any = type_sequence_label_size _SCREAMING_SNAKE_CASE : Tuple = initializer_range _SCREAMING_SNAKE_CASE : int = num_labels _SCREAMING_SNAKE_CASE : List[str] = num_choices _SCREAMING_SNAKE_CASE : Tuple = scope def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : List[Any] = None if self.use_input_mask: _SCREAMING_SNAKE_CASE : Any = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE : Any = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : List[str] = None _SCREAMING_SNAKE_CASE : List[Any] = None if self.use_labels: _SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self ) -> Optional[Any]: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , use_stable_embedding=__lowerCamelCase , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: _SCREAMING_SNAKE_CASE : List[Any] = OpenLlamaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Dict: _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : int = OpenLlamaModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : List[str] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : List[Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : List[str] = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> List[str]: _SCREAMING_SNAKE_CASE : Any = OpenLlamaForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : Union[str, Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Any: _SCREAMING_SNAKE_CASE : List[Any] = True _SCREAMING_SNAKE_CASE : str = True _SCREAMING_SNAKE_CASE : Optional[int] = OpenLlamaForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() # first forward pass _SCREAMING_SNAKE_CASE : Dict = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _SCREAMING_SNAKE_CASE : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) _SCREAMING_SNAKE_CASE : Any = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) _SCREAMING_SNAKE_CASE : Dict = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )["hidden_states"][0] _SCREAMING_SNAKE_CASE : Optional[Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )["hidden_states"][0] # select random slice _SCREAMING_SNAKE_CASE : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() _SCREAMING_SNAKE_CASE : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() _SCREAMING_SNAKE_CASE : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) ) def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) : Optional[int] = config_and_inputs _SCREAMING_SNAKE_CASE : Any = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__( __lowercase , __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __snake_case = (OpenLlamaForCausalLM,) if is_torch_available() else () __snake_case = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __snake_case = False __snake_case = False def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : List[Any] = OpenLlamaModelTester(self ) _SCREAMING_SNAKE_CASE : str = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7 ) def UpperCamelCase_ ( self ) -> List[str]: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE : Dict = type self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Union[str, Any] = 3 _SCREAMING_SNAKE_CASE : int = input_dict["input_ids"] _SCREAMING_SNAKE_CASE : int = input_ids.ne(1 ).to(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _SCREAMING_SNAKE_CASE : int = OpenLlamaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : List[str] = 3 _SCREAMING_SNAKE_CASE : List[Any] = "single_label_classification" _SCREAMING_SNAKE_CASE : Union[str, Any] = input_dict["input_ids"] _SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids.ne(1 ).to(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _SCREAMING_SNAKE_CASE : List[Any] = OpenLlamaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Tuple = 3 _SCREAMING_SNAKE_CASE : List[str] = "multi_label_classification" _SCREAMING_SNAKE_CASE : Optional[int] = input_dict["input_ids"] _SCREAMING_SNAKE_CASE : List[Any] = input_ids.ne(1 ).to(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _SCREAMING_SNAKE_CASE : Optional[Any] = OpenLlamaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("Open-Llama buffers include complex numbers, which breaks this test" ) def UpperCamelCase_ ( self ) -> Optional[Any]: pass @parameterized.expand([("linear",), ("dynamic",)] ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Dict = ids_tensor([1, 1_0] , config.vocab_size ) _SCREAMING_SNAKE_CASE : int = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights _SCREAMING_SNAKE_CASE : Tuple = OpenLlamaModel(__lowerCamelCase ) original_model.to(__lowerCamelCase ) original_model.eval() _SCREAMING_SNAKE_CASE : List[str] = original_model(__lowerCamelCase ).last_hidden_state _SCREAMING_SNAKE_CASE : int = original_model(__lowerCamelCase ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights _SCREAMING_SNAKE_CASE : Optional[int] = {"type": scaling_type, "factor": 10.0} _SCREAMING_SNAKE_CASE : Optional[Any] = OpenLlamaModel(__lowerCamelCase ) scaled_model.to(__lowerCamelCase ) scaled_model.eval() _SCREAMING_SNAKE_CASE : int = scaled_model(__lowerCamelCase ).last_hidden_state _SCREAMING_SNAKE_CASE : str = scaled_model(__lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-5 ) )
381
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ =logging.get_logger(__name__) set_seed(770) UpperCamelCase__ ={ 'c_attn': 'att_proj', 'c_proj': 'out_proj', 'c_fc': 'in_proj', 'transformer.': '', 'h.': 'layers.', 'ln_1': 'layernorm_1', 'ln_2': 'layernorm_2', 'ln_f': 'layernorm_final', 'wpe': 'position_embeds_layer', 'wte': 'input_embeds_layer', } UpperCamelCase__ ={ 'text_small': { 'repo_id': 'suno/bark', 'file_name': 'text.pt', }, 'coarse_small': { 'repo_id': 'suno/bark', 'file_name': 'coarse.pt', }, 'fine_small': { 'repo_id': 'suno/bark', 'file_name': 'fine.pt', }, 'text': { 'repo_id': 'suno/bark', 'file_name': 'text_2.pt', }, 'coarse': { 'repo_id': 'suno/bark', 'file_name': 'coarse_2.pt', }, 'fine': { 'repo_id': 'suno/bark', 'file_name': 'fine_2.pt', }, } UpperCamelCase__ =os.path.dirname(os.path.abspath(__file__)) UpperCamelCase__ =os.path.join(os.path.expanduser('~'), '.cache') UpperCamelCase__ =os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0') def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase=False ): _SCREAMING_SNAKE_CASE : Union[str, Any] = model_type if use_small: key += "_small" return os.path.join(__lowerCamelCase, REMOTE_MODEL_PATHS[key]["file_name"] ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): os.makedirs(__lowerCamelCase, exist_ok=__lowerCamelCase ) hf_hub_download(repo_id=__lowerCamelCase, filename=__lowerCamelCase, local_dir=__lowerCamelCase ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False, __lowerCamelCase="text" ): if model_type == "text": _SCREAMING_SNAKE_CASE : List[Any] = BarkSemanticModel _SCREAMING_SNAKE_CASE : Any = BarkSemanticConfig _SCREAMING_SNAKE_CASE : Union[str, Any] = BarkSemanticGenerationConfig elif model_type == "coarse": _SCREAMING_SNAKE_CASE : List[str] = BarkCoarseModel _SCREAMING_SNAKE_CASE : Any = BarkCoarseConfig _SCREAMING_SNAKE_CASE : str = BarkCoarseGenerationConfig elif model_type == "fine": _SCREAMING_SNAKE_CASE : Optional[int] = BarkFineModel _SCREAMING_SNAKE_CASE : List[str] = BarkFineConfig _SCREAMING_SNAKE_CASE : Optional[int] = BarkFineGenerationConfig else: raise NotImplementedError() _SCREAMING_SNAKE_CASE : List[str] = f"""{model_type}_small""" if use_small else model_type _SCREAMING_SNAKE_CASE : Optional[Any] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(__lowerCamelCase ): logger.info(f"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info["repo_id"], model_info["file_name"] ) _SCREAMING_SNAKE_CASE : str = torch.load(__lowerCamelCase, map_location=__lowerCamelCase ) # this is a hack _SCREAMING_SNAKE_CASE : Any = checkpoint["model_args"] if "input_vocab_size" not in model_args: _SCREAMING_SNAKE_CASE : Optional[int] = model_args["vocab_size"] _SCREAMING_SNAKE_CASE : Union[str, Any] = model_args["vocab_size"] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments _SCREAMING_SNAKE_CASE : List[Any] = model_args.pop("n_head" ) _SCREAMING_SNAKE_CASE : Dict = model_args.pop("n_embd" ) _SCREAMING_SNAKE_CASE : Tuple = model_args.pop("n_layer" ) _SCREAMING_SNAKE_CASE : Tuple = ConfigClass(**checkpoint["model_args"] ) _SCREAMING_SNAKE_CASE : int = ModelClass(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = GenerationConfigClass() _SCREAMING_SNAKE_CASE : Optional[int] = model_generation_config _SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint["model"] # fixup checkpoint _SCREAMING_SNAKE_CASE : Optional[Any] = "_orig_mod." for k, v in list(state_dict.items() ): if k.startswith(__lowerCamelCase ): # replace part of the key with corresponding layer name in HF implementation _SCREAMING_SNAKE_CASE : Optional[int] = k[len(__lowerCamelCase ) :] for old_layer_name in new_layer_name_dict: _SCREAMING_SNAKE_CASE : Tuple = new_k.replace(__lowerCamelCase, new_layer_name_dict[old_layer_name] ) _SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = set(state_dict.keys() ) - set(model.state_dict().keys() ) _SCREAMING_SNAKE_CASE : int = {k for k in extra_keys if not k.endswith(".attn.bias" )} _SCREAMING_SNAKE_CASE : Optional[int] = set(model.state_dict().keys() ) - set(state_dict.keys() ) _SCREAMING_SNAKE_CASE : List[str] = {k for k in missing_keys if not k.endswith(".attn.bias" )} if len(__lowerCamelCase ) != 0: raise ValueError(f"""extra keys found: {extra_keys}""" ) if len(__lowerCamelCase ) != 0: raise ValueError(f"""missing keys: {missing_keys}""" ) model.load_state_dict(__lowerCamelCase, strict=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = model.num_parameters(exclude_embeddings=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = checkpoint["best_val_loss"].item() logger.info(f"""model loaded: {round(n_params/1e6, 1 )}M params, {round(__lowerCamelCase, 3 )} loss""" ) model.eval() model.to(__lowerCamelCase ) del checkpoint, state_dict return model def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase=False, __lowerCamelCase="text" ): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() _SCREAMING_SNAKE_CASE : Union[str, Any] = "cpu" # do conversion on cpu _SCREAMING_SNAKE_CASE : Union[str, Any] = _get_ckpt_path(__lowerCamelCase, use_small=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = _load_model(__lowerCamelCase, __lowerCamelCase, model_type=__lowerCamelCase, use_small=__lowerCamelCase ) # load bark initial model _SCREAMING_SNAKE_CASE : Union[str, Any] = _bark_load_model(__lowerCamelCase, "cpu", model_type=__lowerCamelCase, use_small=__lowerCamelCase ) if model_type == "text": _SCREAMING_SNAKE_CASE : str = bark_model["model"] if model.num_parameters(exclude_embeddings=__lowerCamelCase ) != bark_model.get_num_params(): raise ValueError("initial and new models don't have the same number of parameters" ) # check if same output as the bark model _SCREAMING_SNAKE_CASE : Optional[Any] = 5 _SCREAMING_SNAKE_CASE : Optional[int] = 10 if model_type in ["text", "coarse"]: _SCREAMING_SNAKE_CASE : Any = torch.randint(256, (batch_size, sequence_length), dtype=torch.int ) _SCREAMING_SNAKE_CASE : Optional[int] = bark_model(__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase ) # take last logits _SCREAMING_SNAKE_CASE : List[str] = output_new_model_total.logits[:, [-1], :] else: _SCREAMING_SNAKE_CASE : Tuple = 3 _SCREAMING_SNAKE_CASE : Union[str, Any] = 8 _SCREAMING_SNAKE_CASE : Optional[Any] = torch.randint(256, (batch_size, sequence_length, n_codes_total), dtype=torch.int ) _SCREAMING_SNAKE_CASE : List[Any] = model(__lowerCamelCase, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = bark_model(__lowerCamelCase, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("initial and new outputs don't have the same shape" ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError("initial and new outputs are not equal" ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): _SCREAMING_SNAKE_CASE : Dict = os.path.join(__lowerCamelCase, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = BarkSemanticConfig.from_pretrained(os.path.join(__lowerCamelCase, "config.json" ) ) _SCREAMING_SNAKE_CASE : Dict = BarkCoarseConfig.from_pretrained(os.path.join(__lowerCamelCase, "config.json" ) ) _SCREAMING_SNAKE_CASE : Union[str, Any] = BarkFineConfig.from_pretrained(os.path.join(__lowerCamelCase, "config.json" ) ) _SCREAMING_SNAKE_CASE : Dict = EncodecConfig.from_pretrained("facebook/encodec_24khz" ) _SCREAMING_SNAKE_CASE : int = BarkSemanticModel.from_pretrained(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = BarkCoarseModel.from_pretrained(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = BarkFineModel.from_pretrained(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = EncodecModel.from_pretrained("facebook/encodec_24khz" ) _SCREAMING_SNAKE_CASE : Any = BarkConfig.from_sub_model_configs( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config, coarseAcoustic.generation_config, fineAcoustic.generation_config ) _SCREAMING_SNAKE_CASE : str = BarkModel(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = semantic _SCREAMING_SNAKE_CASE : Tuple = coarseAcoustic _SCREAMING_SNAKE_CASE : List[str] = fineAcoustic _SCREAMING_SNAKE_CASE : Tuple = codec _SCREAMING_SNAKE_CASE : Tuple = bark_generation_config Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) bark.save_pretrained(__lowerCamelCase, repo_id=__lowerCamelCase, push_to_hub=__lowerCamelCase ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument('model_type', type=str, help='text, coarse or fine.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.') UpperCamelCase__ =parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
381
1
"""simple docstring""" def _a ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = word.split() def justify(_snake_case , _snake_case , _snake_case ) -> str: UpperCAmelCase = max_width - width UpperCAmelCase = len(_snake_case ) if len(_snake_case ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: UpperCAmelCase = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] UpperCAmelCase = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] UpperCAmelCase = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(_snake_case ): num_spaces_between_words_list[i] += 1 UpperCAmelCase = [] for i in range(_snake_case ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(_snake_case ) UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = 0 for word in words: if width + len(_snake_case ) + len(_snake_case ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(_snake_case ) width += len(_snake_case ) else: # justify the line and add it to result answer.append(justify(_snake_case , _snake_case , _snake_case ) ) # reset new line and new width UpperCAmelCase , UpperCAmelCase = [word], len(_snake_case ) UpperCAmelCase = max_width - width - len(_snake_case ) answer.append(""" """.join(_snake_case ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
341
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a : Tuple = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Dict = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys __a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
534
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { """microsoft/swinv2-tiny-patch4-window8-256""": ( """https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json""" ), } class A ( _a ): _SCREAMING_SNAKE_CASE : List[str] = '''swinv2''' _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Optional[int] , __UpperCAmelCase : Optional[int]=224 , __UpperCAmelCase : Union[str, Any]=4 , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : str=96 , __UpperCAmelCase : List[Any]=[2, 2, 6, 2] , __UpperCAmelCase : Optional[Any]=[3, 6, 12, 24] , __UpperCAmelCase : List[Any]=7 , __UpperCAmelCase : str=4.0 , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : int=0.0 , __UpperCAmelCase : List[str]=0.0 , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : List[str]="gelu" , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : str=1E-5 , __UpperCAmelCase : Dict=32 , **__UpperCAmelCase : Union[str, Any] , ) -> int: """simple docstring""" super().__init__(**_A ) UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = embed_dim UpperCamelCase_ = depths UpperCamelCase_ = len(_A ) UpperCamelCase_ = num_heads UpperCamelCase_ = window_size UpperCamelCase_ = mlp_ratio UpperCamelCase_ = qkv_bias UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = drop_path_rate UpperCamelCase_ = hidden_act UpperCamelCase_ = use_absolute_embeddings UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = initializer_range UpperCamelCase_ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase_ = int(embed_dim * 2 ** (len(_A ) - 1) ) UpperCamelCase_ = (0, 0, 0, 0)
714
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class A ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = IFPipeline _SCREAMING_SNAKE_CASE : Any = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} _SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE : Optional[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" return self._get_dummy_components() def lowercase__ ( self : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Any=0 ) -> Tuple: """simple docstring""" if str(__UpperCAmelCase ).startswith('mps' ): UpperCamelCase_ = torch.manual_seed(__UpperCAmelCase ) else: UpperCamelCase_ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) UpperCamelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowercase__ ( self : Any ) -> Any: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def lowercase__ ( self : List[Any] ) -> List[str]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowercase__ ( self : int ) -> int: """simple docstring""" self._test_save_load_local() def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) UpperCamelCase_ = IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) UpperCamelCase_ , UpperCamelCase_ = pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCamelCase_ = None UpperCamelCase_ = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCamelCase_ = IFImgaImgPipeline(**pipe_a.components ) UpperCamelCase_ = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCamelCase_ = IFInpaintingPipeline(**pipe_a.components ) UpperCamelCase_ = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowercase__ ( self : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" _start_torch_memory_measurement() UpperCamelCase_ = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase_ = pipe_a( prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , num_inference_steps=2 , generator=__UpperCAmelCase , output_type='np' , ) UpperCamelCase_ = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase_ = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 UpperCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase_ = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__UpperCAmelCase ) UpperCamelCase_ = pipe_a( prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type='np' , ) UpperCamelCase_ = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase_ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase ) def lowercase__ ( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ) -> int: """simple docstring""" _start_torch_memory_measurement() UpperCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__UpperCAmelCase ) UpperCamelCase_ = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase_ = pipe_a( prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , image=__UpperCAmelCase , num_inference_steps=2 , generator=__UpperCAmelCase , output_type='np' , ) UpperCamelCase_ = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase_ = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase_ = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__UpperCAmelCase ) UpperCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__UpperCAmelCase ) UpperCamelCase_ = pipe_a( prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , image=__UpperCAmelCase , original_image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type='np' , ) UpperCamelCase_ = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase_ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase ) def lowercase__ ( self : Any , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _start_torch_memory_measurement() UpperCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__UpperCAmelCase ) UpperCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__UpperCAmelCase ) UpperCamelCase_ = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase_ = pipe_a( prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , num_inference_steps=2 , generator=__UpperCAmelCase , output_type='np' , ) UpperCamelCase_ = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase_ = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase_ = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__UpperCAmelCase ) UpperCamelCase_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(__UpperCAmelCase ) UpperCamelCase_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(__UpperCAmelCase ) UpperCamelCase_ = pipe_a( prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , original_image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type='np' , ) UpperCamelCase_ = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase_ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase ) def a_ ( ) -> Union[str, Any]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
559
0
# Algorithm for the pigeonhole sorting def UpperCAmelCase_ ( __UpperCAmelCase : Any ) -> List[str]: SCREAMING_SNAKE_CASE_ = min(__UpperCAmelCase ) # min() finds the minimum value SCREAMING_SNAKE_CASE_ = max(__UpperCAmelCase ) # max() finds the maximum value SCREAMING_SNAKE_CASE_ = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size SCREAMING_SNAKE_CASE_ = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. SCREAMING_SNAKE_CASE_ = 0 for count in range(__UpperCAmelCase ): while holes[count] > 0: holes[count] -= 1 SCREAMING_SNAKE_CASE_ = count + min_val i += 1 def UpperCAmelCase_ ( ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(__UpperCAmelCase ) print('Sorted order is:' , ' '.join(__UpperCAmelCase ) ) if __name__ == "__main__": main()
31
from __future__ import annotations from typing import TypedDict class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 lowercase_ = 42 def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> list[str]: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> BWTTransformDict: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) SCREAMING_SNAKE_CASE_ = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation SCREAMING_SNAKE_CASE_ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int ) -> str: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: SCREAMING_SNAKE_CASE_ = int(__UpperCAmelCase ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) SCREAMING_SNAKE_CASE_ = [''] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCamelCase__ : Optional[int] = 'Provide a string that I will generate its BWT transform: ' lowerCamelCase__ : List[str] = input(entry_msg).strip() lowerCamelCase__ : int = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) lowerCamelCase__ : Dict = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
31
1
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __snake_case ( tf.keras.optimizers.schedules.LearningRateSchedule): '''simple docstring''' def __init__( self , a_ , a_ , a_ , a_ = 1.0 , a_ = None , ): super().__init__() a__ = initial_learning_rate a__ = warmup_steps a__ = power a__ = decay_schedule_fn a__ = name def __call__( self , a_ ): with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. a__ = tf.cast(lowerCAmelCase_ , tf.floataa ) a__ = tf.cast(self.warmup_steps , tf.floataa ) a__ = global_step_float / warmup_steps_float a__ = self.initial_learning_rate * tf.math.pow(lowerCAmelCase_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=lowerCAmelCase_ , ) def _a ( self ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def A_ ( __a : float , __a : int , __a : int , __a : float = 0.0 , __a : float = 0.9 , __a : float = 0.9_9_9 , __a : float = 1e-8 , __a : Optional[float] = None , __a : Optional[float] = None , __a : float = 0.0 , __a : float = 1.0 , __a : Optional[List[str]] = None , ): """simple docstring""" a__ = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=snake_case__ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=snake_case__ , ) if num_warmup_steps: a__ = WarmUp( initial_learning_rate=snake_case__ , decay_schedule_fn=snake_case__ , warmup_steps=snake_case__ , ) if weight_decay_rate > 0.0: a__ = AdamWeightDecay( learning_rate=snake_case__ , weight_decay_rate=snake_case__ , beta_a=snake_case__ , beta_a=snake_case__ , epsilon=snake_case__ , clipnorm=snake_case__ , global_clipnorm=snake_case__ , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=snake_case__ , ) else: a__ = tf.keras.optimizers.Adam( learning_rate=snake_case__ , beta_a=snake_case__ , beta_a=snake_case__ , epsilon=snake_case__ , clipnorm=snake_case__ , global_clipnorm=snake_case__ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __snake_case ( __lowerCAmelCase): '''simple docstring''' def __init__( self , a_ = 0.001 , a_ = 0.9 , a_ = 0.999 , a_ = 1E-7 , a_ = False , a_ = 0.0 , a_ = None , a_ = None , a_ = "AdamWeightDecay" , **a_ , ): super().__init__(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) a__ = weight_decay_rate a__ = include_in_weight_decay a__ = exclude_from_weight_decay @classmethod def _a ( cls , a_ ): a__ = {"""WarmUp""": WarmUp} return super(lowerCAmelCase_ , cls ).from_config(lowerCAmelCase_ , custom_objects=lowerCAmelCase_ ) def _a ( self , a_ , a_ , a_ ): super(lowerCAmelCase_ , self )._prepare_local(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) a__ = tf.constant( self.weight_decay_rate , name="""adam_weight_decay_rate""" ) def _a ( self , a_ , a_ , a_ ): a__ = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""] , use_locking=self._use_locking , ) return tf.no_op() def _a ( self , a_ , a_=None , **a_ ): a__ , a__ = list(zip(*lowerCAmelCase_ ) ) return super(lowerCAmelCase_ , self ).apply_gradients(zip(lowerCAmelCase_ , lowerCAmelCase_ ) , name=lowerCAmelCase_ , **lowerCAmelCase_ ) def _a ( self , a_ , a_ , a_ ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} a__ = apply_state or {} a__ = apply_state.get((var_device, var_dtype) ) if coefficients is None: a__ = self._fallback_apply_state(lowerCAmelCase_ , lowerCAmelCase_ ) a__ = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _a ( self , a_ , a_ , a_=None ): a__ , a__ = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase_ ) a__ = self._decay_weights_op(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) with tf.control_dependencies([decay] ): return super(lowerCAmelCase_ , self )._resource_apply_dense(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def _a ( self , a_ , a_ , a_ , a_=None ): a__ , a__ = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase_ ) a__ = self._decay_weights_op(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) with tf.control_dependencies([decay] ): return super(lowerCAmelCase_ , self )._resource_apply_sparse(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def _a ( self ): a__ = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def _a ( self , a_ ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ) is not None: return False return True class __snake_case ( __lowerCAmelCase): '''simple docstring''' def __init__( self ): a__ = [] a__ = None @property def _a ( self ): if self._accum_steps is None: a__ = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=lowerCAmelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def _a ( self ): if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , a_ ): if not self._gradients: a__ = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowerCAmelCase_ ) , trainable=lowerCAmelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(lowerCAmelCase_ ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(lowerCAmelCase_ )}''' ) for accum_gradient, gradient in zip(self._gradients , lowerCAmelCase_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowerCAmelCase_ ) self._accum_steps.assign_add(1 ) def _a ( self ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowerCAmelCase_ ) )
717
from __future__ import annotations UpperCAmelCase = 8.988E9 # units = N * m^s * C^-2 def A_ ( __a : float , __a : float , __a : float , __a : float ): """simple docstring""" a__ = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if distance < 0: raise ValueError("""Distance cannot be negative""" ) if force == 0: a__ = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: a__ = abs(__a ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: a__ = abs(__a ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: a__ = (COULOMBS_CONSTANT * charge_product / abs(__a )) ** 0.5 return {"distance": distance} raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
351
0
from __future__ import annotations from dataclasses import dataclass @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowercase = 42 _lowercase = None _lowercase = None def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Optional[Any] ) -> bool: """simple docstring""" def is_valid_tree(lowerCAmelCase_ : int ) -> bool: if node is None: return True if not isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(lowerCAmelCase_ ): raise ValueError( 'Each node should be type of TreeNode and data should be float.' ) def is_binary_search_tree_recursive_check( lowerCAmelCase_ : int ,lowerCAmelCase_ : Any ,lowerCAmelCase_ : Optional[Any] ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left ,lowerCAmelCase_ ,node.data ) and is_binary_search_tree_recursive_check( node.right ,node.data ,lowerCAmelCase_ ) ) return is_binary_search_tree_recursive_check(lowerCAmelCase_ ,-float('inf' ) ,float('inf' ) ) if __name__ == "__main__": import doctest doctest.testmod()
220
import math import sys def _SCREAMING_SNAKE_CASE ( a ) -> str: __A : Tuple = '' try: with open(a , 'rb' ) as binary_file: __A : List[str] = binary_file.read() for dat in data: __A : Optional[Any] = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _SCREAMING_SNAKE_CASE ( a ) -> str: __A : str = {'0': '0', '1': '1'} __A , __A : str = '', '' __A : List[str] = len(a ) for i in range(len(a ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __A : Dict = lexicon[curr_string] result += last_match_id __A : List[str] = last_match_id + '0' if math.loga(a ).is_integer(): __A : int = {} for curr_key in list(a ): __A : Union[str, Any] = lexicon.pop(a ) __A : List[Any] = new_lex __A : int = last_match_id + '1' index += 1 __A : Any = '' return result def _SCREAMING_SNAKE_CASE ( a , a ) -> None: __A : int = 8 try: with open(a , 'wb' ) as opened_file: __A : str = [ to_write[i : i + byte_length] for i in range(0 , len(a ) , a ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(a , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _SCREAMING_SNAKE_CASE ( a ) -> str: __A : int = 0 for letter in data_bits: if letter == "1": break counter += 1 __A : str = data_bits[counter:] __A : List[str] = data_bits[counter + 1 :] return data_bits def _SCREAMING_SNAKE_CASE ( a , a ) -> None: __A : int = read_file_binary(a ) __A : Union[str, Any] = remove_prefix(a ) __A : int = decompress_data(a ) write_file_binary(a , a ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
239
0
"""simple docstring""" from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowerCamelCase__ ( UpperCAmelCase_ ): def __init__( self : List[str] , _lowercase : Callable , _lowercase : Optional[Features] = None , _lowercase : str = None , _lowercase : bool = False , _lowercase : bool = False , _lowercase : Optional[dict] = None , _lowercase : Optional[int] = None , **_lowercase : List[Any] , ): super().__init__( features=_lowercase , cache_dir=_lowercase , keep_in_memory=_lowercase , streaming=_lowercase , num_proc=_lowercase , **_lowercase , ) A = Generator( cache_dir=_lowercase , features=_lowercase , generator=_lowercase , gen_kwargs=_lowercase , **_lowercase , ) def __a ( self : int ): # Build iterable dataset if self.streaming: A = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: A = None A = None A = None A = None self.builder.download_and_prepare( download_config=_lowercase , download_mode=_lowercase , verification_mode=_lowercase , base_path=_lowercase , num_proc=self.num_proc , ) A = self.builder.as_dataset( split='train' , verification_mode=_lowercase , in_memory=self.keep_in_memory ) return dataset
720
"""simple docstring""" # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers UpperCamelCase : Optional[Any] = float("nan") class lowerCamelCase__ : def __init__( self : List[str] , _lowercase : Union[str, Any] ): A = sys.stdout A = open(_lowercase , 'a' ) def __getattr__( self : Tuple , _lowercase : Union[str, Any] ): return getattr(self.stdout , _lowercase ) def __a ( self : Optional[int] , _lowercase : Union[str, Any] ): self.stdout.write(_lowercase ) # strip tqdm codes self.file.write(re.sub(R'^.*\r' , '' , _lowercase , 0 , re.M ) ) def __snake_case ( UpperCamelCase__=80 , UpperCamelCase__=False ) -> Union[str, Any]: """simple docstring""" A = [] # deal with critical env vars A = ['CUDA_VISIBLE_DEVICES'] for key in env_keys: A = os.environ.get(UpperCamelCase__ , UpperCamelCase__ ) if val is not None: cmd.append(f'{key}={val}' ) # python executable (not always needed if the script is executable) A = sys.executable if full_python_path else sys.executable.split('/' )[-1] cmd.append(UpperCamelCase__ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes A = [] A = '' while len(UpperCamelCase__ ) > 0: current_line += f'{cmd.pop(0 )} ' if len(UpperCamelCase__ ) == 0 or len(UpperCamelCase__ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(UpperCamelCase__ ) A = '' return "\\\n".join(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: """simple docstring""" A = re.sub(r'[\\\n]+' , ' ' , args.base_cmd ) # remove --output_dir if any and set our own A = re.sub('--output_dir\s+[^\s]+' , '' , args.base_cmd ) args.base_cmd += f' --output_dir {output_dir}' # ensure we have --overwrite_output_dir A = re.sub('--overwrite_output_dir\s+' , '' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: """simple docstring""" if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 1_0.3_1, 1_0_0.2, 5_5.6_6_6_6, 2_2_2.2_2_2_2_2_2_2_2] )} , ) A = subprocess.run(UpperCamelCase__ , capture_output=UpperCamelCase__ , text=UpperCamelCase__ ) if verbose: print('STDOUT' , result.stdout ) print('STDERR' , result.stderr ) # save the streams A = variation.replace(' ' , '-' ) with open(Path(UpperCamelCase__ ) / f'log.{prefix}.stdout.txt' , 'w' ) as f: f.write(result.stdout ) with open(Path(UpperCamelCase__ ) / f'log.{prefix}.stderr.txt' , 'w' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('failed' ) return {target_metric_key: nan} with io.open(f'{output_dir}/all_results.json' , 'r' , encoding='utf-8' ) as f: A = json.load(UpperCamelCase__ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> str: """simple docstring""" A = [] A = [] A = f'{id}: {variation:<{longest_variation_len}}' A = f'{preamble}: ' A = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(UpperCamelCase__ ) , desc=UpperCamelCase__ , leave=UpperCamelCase__ ): A = process_run_single( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A = single_run_metrics[target_metric_key] if not math.isnan(UpperCamelCase__ ): metrics.append(UpperCamelCase__ ) results.append(UpperCamelCase__ ) outcome += "✓" else: outcome += "✘" A = f'\33[2K\r{outcome}' if len(UpperCamelCase__ ) > 0: A = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} A = round(mean_metrics[target_metric_key] , 2 ) A = f'{outcome} {mean_target}' if len(UpperCamelCase__ ) > 1: results_str += f' {tuple(round(UpperCamelCase__ , 2 ) for x in results )}' print(UpperCamelCase__ ) A = variation return mean_metrics else: print(UpperCamelCase__ ) return {variation_key: variation, target_metric_key: nan} def __snake_case ( ) -> List[Any]: """simple docstring""" A = torch.cuda.get_device_properties(torch.device('cuda' ) ) return f'\nDatetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n' def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: """simple docstring""" A = pd.DataFrame(UpperCamelCase__ ) A = 'variation' A = 'diff_%' A = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan A = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(UpperCamelCase__ ): # as a fallback, use the minimal value as the sentinel A = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(UpperCamelCase__ ): A = df.apply( lambda UpperCamelCase__ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='columns' , ) # re-order columns A = [variation_key, target_metric_key, diff_key, *report_metric_keys] A = df.reindex(UpperCamelCase__ , axis='columns' ) # reorder cols # capitalize A = df.rename(str.capitalize , axis='columns' ) # make the cols as narrow as possible A = df.rename(lambda UpperCamelCase__ : c.replace('_' , '<br>' ) , axis='columns' ) A = df.rename(lambda UpperCamelCase__ : c.replace('_' , '\n' ) , axis='columns' ) A = ['', 'Copy between the cut-here-lines and paste as is to github or a forum'] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=UpperCamelCase__ , floatfmt='.2f' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=UpperCamelCase__ , floatfmt='.2f' )] print('\n\n'.join(UpperCamelCase__ ) ) def __snake_case ( ) -> Union[str, Any]: """simple docstring""" A = argparse.ArgumentParser() parser.add_argument( '--base-cmd' , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help='Base cmd' , ) parser.add_argument( '--variations' , default=UpperCamelCase__ , type=UpperCamelCase__ , nargs='+' , required=UpperCamelCase__ , help='Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'' , ) parser.add_argument( '--base-variation' , default=UpperCamelCase__ , type=UpperCamelCase__ , help='Baseline variation to compare to. if None the minimal target value will be used to compare against' , ) parser.add_argument( '--target-metric-key' , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help='Target metric key in output_dir/all_results.json, e.g., train_samples_per_second' , ) parser.add_argument( '--report-metric-keys' , default='' , type=UpperCamelCase__ , help='Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples' , ) parser.add_argument( '--repeat-times' , default=1 , type=UpperCamelCase__ , help='How many times to re-run each variation - an average will be reported' , ) parser.add_argument( '--output_dir' , default='output_benchmark' , type=UpperCamelCase__ , help='The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked' , ) parser.add_argument( '--verbose' , default=UpperCamelCase__ , action='store_true' , help='Whether to show the outputs of each run or just the benchmark progress' , ) A = parser.parse_args() A = args.output_dir Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) A = get_base_command(UpperCamelCase__ , UpperCamelCase__ ) # split each dimension into its --foo variations A = [list(map(str.strip , re.split(r'\|' , UpperCamelCase__ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty A = list(map(str.strip , map(' '.join , itertools.product(*UpperCamelCase__ ) ) ) ) A = max(len(UpperCamelCase__ ) for x in variations ) # split wanted keys A = args.report_metric_keys.split() # capture prints into a log file for convenience A = f'benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt' print(f'\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt' ) print(f'and this script\'s output is also piped into {report_fn}' ) A = Tee(UpperCamelCase__ ) print(f'\n*** Running {len(UpperCamelCase__ )} benchmarks:' ) print(f'Base command: {" ".join(UpperCamelCase__ )}' ) A = 'variation' A = [] for id, variation in enumerate(tqdm(UpperCamelCase__ , desc='Total completion: ' , leave=UpperCamelCase__ ) ): A = base_cmd + variation.split() results.append( process_run( id + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.repeat_times , UpperCamelCase__ , args.verbose , ) ) process_results(UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.base_variation , UpperCamelCase__ ) if __name__ == "__main__": main()
91
0
'''simple docstring''' class __A : '''simple docstring''' def __init__(self , A ) -> None: """simple docstring""" _a = len(A ) _a = [0] * len_array if len_array > 0: _a = array[0] for i in range(1 , A ): _a = self.prefix_sum[i - 1] + array[i] def a__ (self , A , A ) -> int: """simple docstring""" if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a__ (self , A ) -> bool: """simple docstring""" _a = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A ) return False if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" if digit_amount > 0: return round(number - int(__A) , __A) return number - int(__A) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
11
1
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers SCREAMING_SNAKE_CASE_ = [ 'python', 'tqdm', 'regex', 'requests', 'packaging', 'filelock', 'numpy', 'tokenizers', 'huggingface-hub', 'safetensors', 'accelerate', 'pyyaml', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def __lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) -> Optional[int]: """simple docstring""" require_version(deps[pkg] , __SCREAMING_SNAKE_CASE )
201
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def __a ( self : int ): '''simple docstring''' __a = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) __a = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house __a = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim __a = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __a = model(SCREAMING_SNAKE_CASE__ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) ) @slow def __a ( self : int ): '''simple docstring''' __a = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) __a = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house __a = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim __a = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __a = model(SCREAMING_SNAKE_CASE__ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) )
201
1
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE( self :str ) ->Optional[int]: lowercase = torch.nn.Linear(10 , 10 ) lowercase = torch.optim.SGD(model.parameters() , 0.1 ) lowercase = Accelerator() lowercase = accelerator.prepare(lowerCAmelCase__ ) try: pickle.loads(pickle.dumps(lowerCAmelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
441
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters _snake_case : Any = False _snake_case : int = False def __snake_case ( __magic_name__ ): '''simple docstring''' return TrainCommand(__magic_name__ ) class UpperCamelCase_ ( __a ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE( lowerCAmelCase__ :ArgumentParser ) ->str: lowercase = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=lowerCAmelCase__ , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=lowerCAmelCase__ , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=lowerCAmelCase__ , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=lowerCAmelCase__ , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=lowerCAmelCase__ , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=lowerCAmelCase__ , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=lowerCAmelCase__ , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=lowerCAmelCase__ , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=lowerCAmelCase__ , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=lowerCAmelCase__ , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=lowerCAmelCase__ , default=3E-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=lowerCAmelCase__ , default=1E-0_8 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=lowerCAmelCase__ ) def __init__( self :Optional[int] , lowerCAmelCase__ :Namespace ) ->str: lowercase = logging.get_logger("transformers-cli/training" ) lowercase = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=lowerCAmelCase__ ) lowercase = args.output lowercase = args.column_label lowercase = args.column_text lowercase = args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": lowercase = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) lowercase = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowercase = None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) lowercase = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowercase = args.validation_split lowercase = args.train_batch_size lowercase = args.valid_batch_size lowercase = args.learning_rate lowercase = args.adam_epsilon def SCREAMING_SNAKE_CASE( self :List[str] ) ->List[str]: if self.framework == "tf": return self.run_tf() return self.run_torch() def SCREAMING_SNAKE_CASE( self :List[Any] ) ->Dict: raise NotImplementedError def SCREAMING_SNAKE_CASE( self :Any ) ->str: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
441
1
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy __lowercase : Tuple =logging.get_logger(__name__) __lowercase : Optional[int] ={ 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } __lowercase : int ={ 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } __lowercase : List[str] ={ 'jukebox': 512, } class A ( __lowercase ): _snake_case =VOCAB_FILES_NAMES _snake_case =PRETRAINED_VOCAB_FILES_MAP _snake_case =PRETRAINED_LYRIC_TOKENS_SIZES _snake_case =['''input_ids''', '''attention_mask'''] def __init__( self: int , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any]=["v3", "v2", "v2"] , _lowerCAmelCase: Any=512 , _lowerCAmelCase: str=5 , _lowerCAmelCase: Tuple="<|endoftext|>" , **_lowerCAmelCase: Optional[int] , ) -> Any: '''simple docstring''' UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else unk_token super().__init__( unk_token=_lowerCAmelCase , n_genres=_lowerCAmelCase , version=_lowerCAmelCase , max_n_lyric_tokens=_lowerCAmelCase , **_lowerCAmelCase , ) UpperCAmelCase_ =version UpperCAmelCase_ =max_n_lyric_tokens UpperCAmelCase_ =n_genres with open(_lowerCAmelCase , encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ =json.load(_lowerCAmelCase ) with open(_lowerCAmelCase , encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ =json.load(_lowerCAmelCase ) with open(_lowerCAmelCase , encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ =json.load(_lowerCAmelCase ) UpperCAmelCase_ =r"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: UpperCAmelCase_ =oov.replace(r"\-'" , r"\-+'" ) UpperCAmelCase_ =regex.compile(_lowerCAmelCase ) UpperCAmelCase_ ={v: k for k, v in self.artists_encoder.items()} UpperCAmelCase_ ={v: k for k, v in self.genres_encoder.items()} UpperCAmelCase_ ={v: k for k, v in self.lyrics_encoder.items()} @property def lowerCAmelCase__ ( self: Optional[int] ) -> Optional[Any]: '''simple docstring''' return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: List[str] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =[self.artists_encoder.get(_lowerCAmelCase , 0 ) for artist in list_artists] for genres in range(len(_lowerCAmelCase ) ): UpperCAmelCase_ =[self.genres_encoder.get(_lowerCAmelCase , 0 ) for genre in list_genres[genres]] UpperCAmelCase_ =list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) UpperCAmelCase_ =[[self.lyrics_encoder.get(_lowerCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: Union[str, Any] ) -> Tuple: '''simple docstring''' return list(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: List[str] , _lowerCAmelCase: Any , _lowerCAmelCase: Dict , **_lowerCAmelCase: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.prepare_for_tokenization(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =self._tokenize(_lowerCAmelCase ) return artist, genre, lyrics def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: str , _lowerCAmelCase: str , _lowerCAmelCase: str , _lowerCAmelCase: bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: '''simple docstring''' for idx in range(len(self.version ) ): if self.version[idx] == "v3": UpperCAmelCase_ =artists[idx].lower() UpperCAmelCase_ =[genres[idx].lower()] else: UpperCAmelCase_ =self._normalize(artists[idx] ) + ".v2" UpperCAmelCase_ =[ self._normalize(_lowerCAmelCase ) + ".v2" for genre in genres[idx].split("_" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": UpperCAmelCase_ =regex.compile(r"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" ) UpperCAmelCase_ ="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n" UpperCAmelCase_ ={vocab[index]: index + 1 for index in range(len(_lowerCAmelCase ) )} UpperCAmelCase_ =0 UpperCAmelCase_ =len(_lowerCAmelCase ) + 1 UpperCAmelCase_ =self.vocab UpperCAmelCase_ ={v: k for k, v in self.vocab.items()} UpperCAmelCase_ ="" else: UpperCAmelCase_ =regex.compile(r"[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+" ) UpperCAmelCase_ =self._run_strip_accents(_lowerCAmelCase ) UpperCAmelCase_ =lyrics.replace("\\" , "\n" ) UpperCAmelCase_ =self.out_of_vocab.sub("" , _lowerCAmelCase ), [], [] return artists, genres, lyrics def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: List[str] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =unicodedata.normalize("NFD" , _lowerCAmelCase ) UpperCAmelCase_ =[] for char in text: UpperCAmelCase_ =unicodedata.category(_lowerCAmelCase ) if cat == "Mn": continue output.append(_lowerCAmelCase ) return "".join(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: str ) -> str: '''simple docstring''' UpperCAmelCase_ =( [chr(_lowerCAmelCase ) for i in range(ord("a" ) , ord("z" ) + 1 )] + [chr(_lowerCAmelCase ) for i in range(ord("A" ) , ord("Z" ) + 1 )] + [chr(_lowerCAmelCase ) for i in range(ord("0" ) , ord("9" ) + 1 )] + ["."] ) UpperCAmelCase_ =frozenset(_lowerCAmelCase ) UpperCAmelCase_ =re.compile(r"_+" ) UpperCAmelCase_ ="".join([c if c in accepted else "_" for c in text.lower()] ) UpperCAmelCase_ =pattern.sub("_" , _lowerCAmelCase ).strip("_" ) return text def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: List[str] ) -> str: '''simple docstring''' return " ".join(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: int , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: bool = False ) -> Dict: '''simple docstring''' if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase_ =TensorType(_lowerCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( "Unable to convert output to TensorFlow tensors format, TensorFlow is not installed." ) import tensorflow as tf UpperCAmelCase_ =tf.constant UpperCAmelCase_ =tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed." ) import torch UpperCAmelCase_ =torch.tensor UpperCAmelCase_ =torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed." ) import jax.numpy as jnp # noqa: F811 UpperCAmelCase_ =jnp.array UpperCAmelCase_ =_is_jax else: UpperCAmelCase_ =np.asarray UpperCAmelCase_ =_is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: UpperCAmelCase_ =[inputs] if not is_tensor(_lowerCAmelCase ): UpperCAmelCase_ =as_tensor(_lowerCAmelCase ) except: # noqa E722 raise ValueError( "Unable to create tensor, you should probably activate truncation and/or padding " "with 'padding=True' 'truncation=True' to have batched tensors with the same length." ) return inputs def __call__( self: str , _lowerCAmelCase: Tuple , _lowerCAmelCase: List[str] , _lowerCAmelCase: str="" , _lowerCAmelCase: Optional[Any]="pt" ) -> BatchEncoding: '''simple docstring''' UpperCAmelCase_ =[0, 0, 0] UpperCAmelCase_ =[artist] * len(self.version ) UpperCAmelCase_ =[genres] * len(self.version ) UpperCAmelCase_ =self.tokenize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =self._convert_token_to_id(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =[-INFINITY] * len(full_tokens[-1] ) UpperCAmelCase_ =[ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_lowerCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({"input_ids": input_ids, "attention_masks": attention_masks} ) def lowerCAmelCase__ ( self: str , _lowerCAmelCase: str , _lowerCAmelCase: Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return UpperCAmelCase_ =os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["artists_file"] ) with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_lowerCAmelCase ) ) UpperCAmelCase_ =os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["genres_file"] ) with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_lowerCAmelCase ) ) UpperCAmelCase_ =os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["lyrics_file"] ) with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_lowerCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: Dict , _lowerCAmelCase: int , _lowerCAmelCase: Optional[int] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.artists_decoder.get(_lowerCAmelCase ) UpperCAmelCase_ =[self.genres_decoder.get(_lowerCAmelCase ) for genre in genres_index] UpperCAmelCase_ =[self.lyrics_decoder.get(_lowerCAmelCase ) for character in lyric_index] return artist, genres, lyrics
706
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: str ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =1 UpperCAmelCase_ =3 UpperCAmelCase_ =(32, 32) UpperCAmelCase_ =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase ) return image @property def lowerCAmelCase__ ( self: Any ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def lowerCAmelCase__ ( self: List[Any] ) -> int: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def lowerCAmelCase__ ( self: Dict ) -> str: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(_lowerCAmelCase ) @property def lowerCAmelCase__ ( self: Optional[int] ) -> Optional[Any]: '''simple docstring''' def extract(*_lowerCAmelCase: List[str] , **_lowerCAmelCase: List[str] ): class A : def __init__( self: List[str] ) -> Any: '''simple docstring''' UpperCAmelCase_ =torch.ones([0] ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Dict ) -> List[Any]: '''simple docstring''' self.pixel_values.to(_lowerCAmelCase ) return self return Out() return extract def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ ="cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ =self.dummy_cond_unet UpperCAmelCase_ =DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=_lowerCAmelCase , set_alpha_to_one=_lowerCAmelCase , ) UpperCAmelCase_ =self.dummy_vae UpperCAmelCase_ =self.dummy_text_encoder UpperCAmelCase_ =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ =StableDiffusionPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) UpperCAmelCase_ =sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ ="A painting of a squirrel eating a burger" UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) UpperCAmelCase_ =sd_pipe([prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) UpperCAmelCase_ =output.images UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) UpperCAmelCase_ =sd_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self: Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ ="cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ =self.dummy_cond_unet UpperCAmelCase_ =PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) UpperCAmelCase_ =self.dummy_vae UpperCAmelCase_ =self.dummy_text_encoder UpperCAmelCase_ =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ =StableDiffusionPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) UpperCAmelCase_ =sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ ="A painting of a squirrel eating a burger" UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) UpperCAmelCase_ =sd_pipe([prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) UpperCAmelCase_ =output.images UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) UpperCAmelCase_ =sd_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert isinstance(pipe.scheduler , _lowerCAmelCase ) assert pipe.safety_checker is None UpperCAmelCase_ =pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =StableDiffusionPipeline.from_pretrained(_lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCAmelCase_ =pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.dummy_cond_unet UpperCAmelCase_ =PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) UpperCAmelCase_ =self.dummy_vae UpperCAmelCase_ =self.dummy_text_encoder UpperCAmelCase_ =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 UpperCAmelCase_ =unet.half() UpperCAmelCase_ =vae.half() UpperCAmelCase_ =bert.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_ =StableDiffusionPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) UpperCAmelCase_ =sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ ="A painting of a squirrel eating a burger" UpperCAmelCase_ =sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_lowerCAmelCase ) UpperCAmelCase_ =LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ =sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) UpperCAmelCase_ =40_0366_0346 UpperCAmelCase_ =7 # without safety guidance (sld_guidance_scale = 0) UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) UpperCAmelCase_ =sd_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=_lowerCAmelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCAmelCase_ =output.images UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =[0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) UpperCAmelCase_ =sd_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=_lowerCAmelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase_ =output.images UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =[0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self: Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_lowerCAmelCase ) UpperCAmelCase_ =LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ =sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ ="padme amidala taking a bath artwork, safe for work, no nudity" UpperCAmelCase_ =27_3497_1755 UpperCAmelCase_ =7 UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) UpperCAmelCase_ =sd_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=_lowerCAmelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCAmelCase_ =output.images UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =[0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) UpperCAmelCase_ =sd_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=_lowerCAmelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase_ =output.images UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =[0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self: str ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) UpperCAmelCase_ =sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) UpperCAmelCase_ =10_4435_5234 UpperCAmelCase_ =12 UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) UpperCAmelCase_ =sd_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=_lowerCAmelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCAmelCase_ =output.images UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) UpperCAmelCase_ =sd_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=_lowerCAmelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase_ =output.images UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
550
0
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES a :Tuple = "tiny-wmt19-en-ru" # Build # borrowed from a test a :Tuple = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] a :Optional[Any] = dict(zip(vocab, range(len(vocab)))) a :str = ["l o 123", "lo w 1456", "e r</w> 1789", ""] with tempfile.TemporaryDirectory() as tmpdirname: a :Union[str, Any] = Path(tmpdirname) a :Tuple = build_dir / VOCAB_FILES_NAMES["src_vocab_file"] a :List[str] = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"] a :Dict = build_dir / VOCAB_FILES_NAMES["merges_file"] with open(src_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, "w") as fp: fp.write("\n".join(merges)) a :Dict = FSMTTokenizer( langs=["en", "ru"], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) a :List[Any] = FSMTConfig( langs=["ru", "en"], src_vocab_size=1_000, tgt_vocab_size=1_000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) a :List[Any] = FSMTForConditionalGeneration(config) print(f'num of params {tiny_model.num_parameters()}') # Test a :Tuple = tokenizer(["Making tiny model"], return_tensors="pt") a :Any = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-ru
680
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCamelCase ( unittest.TestCase ): def __A ( self ): A__ = 10 def __A ( self ): A__ = [1, 2, 3, 4] A__ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __A ( self ): A__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] A__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __A ( self ): A__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] A__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __A ( self ): A__ = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." A__ , A__ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) def __A ( self ): A__ = "" A__ , A__ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) self.assertEqual(UpperCAmelCase__ , [] ) def __A ( self ): A__ = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) A__ , A__ = process_story(UpperCAmelCase__ ) A__ = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) A__ = ["It was the best of times."] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def __A ( self ): A__ = torch.tensor([1, 2, 3, 4] ) A__ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 0 ).numpy() , expected.numpy() ) def __A ( self ): A__ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) A__ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 23 ).numpy() , expected.numpy() ) def __A ( self ): A__ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) A__ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 1 ).numpy() , expected.numpy() ) def __A ( self ): A__ = 101 A__ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) A__ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) A__ = compute_token_type_ids(UpperCAmelCase__ , UpperCAmelCase__ ) np.testing.assert_array_equal(UpperCAmelCase__ , UpperCAmelCase__ )
491
0
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : List[Any] ) -> set: _snake_case = set() # edges = list of graph's edges _snake_case = get_edges(__lowerCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _snake_case = edges.pop() chosen_vertices.add(__lowerCAmelCase ) chosen_vertices.add(__lowerCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(__lowerCAmelCase ) return chosen_vertices def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] ) -> set: _snake_case = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
712
"""simple docstring""" import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def _UpperCAmelCase ( __lowerCamelCase : Optional[int] ) -> Dict: _snake_case = [ '''decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : List[Any] ) -> List[str]: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _snake_case = emb.weight.data return lin_layer def _UpperCAmelCase ( __lowerCamelCase : str ) -> Any: _snake_case = torch.load(__lowerCamelCase , map_location='''cpu''' ) _snake_case = Namespace(**checkpoint['''cfg''']['''model'''] ) _snake_case = checkpoint['''model'''] remove_ignore_keys_(__lowerCamelCase ) _snake_case = state_dict['''decoder.embed_tokens.weight'''].shape[0] _snake_case = {key.replace('''decoder''' , '''model''' ): val for key, val in state_dict.items()} _snake_case = XGLMConfig( vocab_size=__lowerCamelCase , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''gelu''' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) _snake_case = XGLMForCausalLM(__lowerCamelCase ) _snake_case = model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) print(__lowerCamelCase ) _snake_case = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
430
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase_ = logging.get_logger(__name__) class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = ['''pixel_values'''] def __init__( self : str , __UpperCAmelCase : bool = True , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : float = None , __UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCAmelCase : bool = True , __UpperCAmelCase : Union[int, float] = 1 / 255 , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , **__UpperCAmelCase : Dict , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) _A = size if size is not None else {"shortest_edge": 384} _A = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _A = do_resize _A = size # Default value set here for backwards compatibility where the value in config is None _A = crop_pct if crop_pct is not None else 224 / 256 _A = resample _A = do_rescale _A = rescale_factor _A = do_normalize _A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _A = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Dict[str, int] , __UpperCAmelCase : float , __UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : List[Any] , ): '''simple docstring''' _A = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) _A = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _A = int(shortest_edge / crop_pct ) _A = get_resize_output_image_size(__UpperCAmelCase , size=__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _A = resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=__UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( __UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Union[int, float] , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : List[str] , ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : int , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Union[float, List[float]] , __UpperCAmelCase : Union[float, List[float]] , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : List[Any] , ): '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : ImageInput , __UpperCAmelCase : bool = None , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : float = None , __UpperCAmelCase : PILImageResampling = None , __UpperCAmelCase : bool = None , __UpperCAmelCase : float = None , __UpperCAmelCase : bool = None , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : Optional[Union[str, TensorType]] = None , __UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **__UpperCAmelCase : Dict , ): '''simple docstring''' _A = do_resize if do_resize is not None else self.do_resize _A = crop_pct if crop_pct is not None else self.crop_pct _A = resample if resample is not None else self.resample _A = do_rescale if do_rescale is not None else self.do_rescale _A = rescale_factor if rescale_factor is not None else self.rescale_factor _A = do_normalize if do_normalize is not None else self.do_normalize _A = image_mean if image_mean is not None else self.image_mean _A = image_std if image_std is not None else self.image_std _A = size if size is not None else self.size _A = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _A = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _A = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: _A = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , crop_pct=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_rescale: _A = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: _A = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] _A = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] _A = {"pixel_values": images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
330
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def __lowercase ( __lowercase ) -> str: # picklable for multiprocessing '''simple docstring''' return x.sum() def __lowercase ( __lowercase ) -> int: # picklable for multiprocessing '''simple docstring''' return i + 1 @dataclass class _UpperCAmelCase : """simple docstring""" snake_case = 42 snake_case = 42 class _UpperCAmelCase ( snake_case_ ): """simple docstring""" def lowerCAmelCase ( self : int ): '''simple docstring''' _A = {} _A = [] _A = 1 _A = [1, 2] _A = {"a": 1, "b": 2} _A = {"a": [1, 2], "b": [3, 4]} _A = {"a": {"1": 1}, "b": 2} _A = {"a": 1, "b": 2, "c": 3, "d": 4} _A = {} _A = [] _A = 2 _A = [2, 3] _A = {"a": 2, "b": 3} _A = {"a": [2, 3], "b": [4, 5]} _A = {"a": {"1": 2}, "b": 3} _A = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(map_nested(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(map_nested(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(map_nested(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(map_nested(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(map_nested(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(map_nested(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(map_nested(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) _A = 2 self.assertEqual(map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) , __UpperCAmelCase ) _A = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} _A = {"a": 2, "b": 0, "c": 2} _A = { "a": np.eye(2 ).astype(__UpperCAmelCase ), "b": np.zeros(3 ).astype(__UpperCAmelCase ), "c": np.ones(2 ).astype(__UpperCAmelCase ), } self.assertEqual(map_nested(__UpperCAmelCase , __UpperCAmelCase , map_numpy=__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__UpperCAmelCase , __UpperCAmelCase , map_numpy=__UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(__UpperCAmelCase , __UpperCAmelCase , map_numpy=__UpperCAmelCase , num_proc=__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__UpperCAmelCase , __UpperCAmelCase , map_numpy=__UpperCAmelCase , num_proc=__UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(__UpperCAmelCase ): # can't pickle a local lambda map_nested(lambda __UpperCAmelCase : x + 1 , __UpperCAmelCase , num_proc=__UpperCAmelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = {"a": 1, "b": 2} _A = {"a": 3, "b": 4} _A = {"a": 5, "b": 6} _A = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) ) , __UpperCAmelCase ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' class _UpperCAmelCase : """simple docstring""" snake_case = '''bar''' _A = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(__UpperCAmelCase , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def __lowercase ( __lowercase , __lowercase , __lowercase ) -> Tuple: '''simple docstring''' with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: _A = {F'''{i}''': i for i in range(__lowercase )} _A = map_nested(lambda __lowercase : x + 10 , __lowercase , num_proc=__lowercase , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class _UpperCAmelCase ( snake_case_ ): """simple docstring""" @require_tf def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' import tensorflow as tf from tensorflow.keras import layers _A = layers.Dense(2 ) def gen_random_output(): _A = tf.random.uniform((1, 3) ) return model(__UpperCAmelCase ).numpy() with temp_seed(42 , set_tensorflow=__UpperCAmelCase ): _A = gen_random_output() with temp_seed(42 , set_tensorflow=__UpperCAmelCase ): _A = gen_random_output() _A = gen_random_output() np.testing.assert_equal(__UpperCAmelCase , __UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' import torch def gen_random_output(): _A = torch.nn.Linear(3 , 2 ) _A = torch.rand(1 , 3 ) return model(__UpperCAmelCase ).detach().numpy() with temp_seed(42 , set_pytorch=__UpperCAmelCase ): _A = gen_random_output() with temp_seed(42 , set_pytorch=__UpperCAmelCase ): _A = gen_random_output() _A = gen_random_output() np.testing.assert_equal(__UpperCAmelCase , __UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def lowerCAmelCase ( self : Any ): '''simple docstring''' def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): _A = gen_random_output() with temp_seed(42 ): _A = gen_random_output() _A = gen_random_output() np.testing.assert_equal(__UpperCAmelCase , __UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" , [{}] ) def __lowercase ( __lowercase ) -> str: '''simple docstring''' _A = NestedDataStructure(__lowercase ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def __lowercase ( __lowercase , __lowercase ) -> str: '''simple docstring''' _A = NestedDataStructure(__lowercase ).flatten() assert output == expected_output def __lowercase ( ) -> Union[str, Any]: '''simple docstring''' _A = A(x=1 , y="foobar" ) _A = {"x": 1, "y": "foobar"} assert asdict(__lowercase ) == expected_output _A = {"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} _A = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(__lowercase ) == expected_output with pytest.raises(__lowercase ): asdict([1, A(x=10 , y="foo" )] ) def __lowercase ( __lowercase ) -> Union[str, Any]: '''simple docstring''' return text.split() def __lowercase ( __lowercase ) -> Union[str, Any]: '''simple docstring''' yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def __lowercase ( ) -> Optional[int]: '''simple docstring''' with Pool(2 ) as pool: _A = list(iflatmap_unordered(__lowercase , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__lowercase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _A = list(iflatmap_unordered(__lowercase , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__lowercase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _A = [] for yield_time, content in iflatmap_unordered( __lowercase , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__lowercase ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(__lowercase ) == 4
330
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
80
from __future__ import annotations def lowerCamelCase__ ( A__ : list[float] , A__ : list[float] ): '''simple docstring''' __lowerCamelCase = sorted(numsa + numsa ) __lowerCamelCase, __lowerCamelCase = divmod(len(A__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = [float(x) for x in input('Enter the elements of first array: ').split()] UpperCAmelCase_ = [float(x) for x in input('Enter the elements of second array: ').split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
80
1
'''simple docstring''' import qiskit def UpperCamelCase_ ( A__ = 2 ): a_ = qubits # Using Aer's simulator a_ = qiskit.Aer.get_backend("""aer_simulator""" ) # Creating a Quantum Circuit acting on the q register a_ = qiskit.QuantumCircuit(A__ , A__ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , A__ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , A__ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(A__ ) ) , list(range(A__ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator a_ = qiskit.execute(A__ , A__ , shots=10_00 ) return job.result().get_counts(A__ ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
263
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig lowercase__ =logging.get_logger(__name__) # General docstring lowercase__ ='PoolFormerConfig' # Base docstring lowercase__ ='sail/poolformer_s12' lowercase__ =[1, 5_12, 7, 7] # Image classification docstring lowercase__ ='sail/poolformer_s12' lowercase__ ='tabby, tabby cat' lowercase__ =[ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def UpperCamelCase_ ( A__ , A__ = 0.0 , A__ = False ): if drop_prob == 0.0 or not training: return input a_ = 1 - drop_prob a_ = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets a_ = keep_prob + torch.rand(A__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize a_ = input.div(A__ ) * random_tensor return output class a_ ( nn.Module ): def __init__( self , UpperCAmelCase = None ): super().__init__() a_ = drop_prob def lowerCAmelCase__ ( self , UpperCAmelCase ): return drop_path(UpperCAmelCase , self.drop_prob , self.training ) def lowerCAmelCase__ ( self ): return "p={}".format(self.drop_prob ) class a_ ( nn.Module ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ): super().__init__() a_ = patch_size if isinstance(UpperCAmelCase , collections.abc.Iterable ) else (patch_size, patch_size) a_ = stride if isinstance(UpperCAmelCase , collections.abc.Iterable ) else (stride, stride) a_ = padding if isinstance(UpperCAmelCase , collections.abc.Iterable ) else (padding, padding) a_ = nn.Convad(UpperCAmelCase , UpperCAmelCase , kernel_size=UpperCAmelCase , stride=UpperCAmelCase , padding=UpperCAmelCase ) a_ = norm_layer(UpperCAmelCase ) if norm_layer else nn.Identity() def lowerCAmelCase__ ( self , UpperCAmelCase ): a_ = self.projection(UpperCAmelCase ) a_ = self.norm(UpperCAmelCase ) return embeddings class a_ ( nn.GroupNorm ): def __init__( self , UpperCAmelCase , **UpperCAmelCase ): super().__init__(1 , UpperCAmelCase , **UpperCAmelCase ) class a_ ( nn.Module ): def __init__( self , UpperCAmelCase ): super().__init__() a_ = nn.AvgPoolad(UpperCAmelCase , stride=1 , padding=pool_size // 2 , count_include_pad=UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase ): return self.pool(UpperCAmelCase ) - hidden_states class a_ ( nn.Module ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): super().__init__() a_ = nn.Convad(UpperCAmelCase , UpperCAmelCase , 1 ) a_ = nn.Convad(UpperCAmelCase , UpperCAmelCase , 1 ) a_ = PoolFormerDropPath(UpperCAmelCase ) if isinstance(config.hidden_act , UpperCAmelCase ): a_ = ACTaFN[config.hidden_act] else: a_ = config.hidden_act def lowerCAmelCase__ ( self , UpperCAmelCase ): a_ = self.conva(UpperCAmelCase ) a_ = self.act_fn(UpperCAmelCase ) a_ = self.drop(UpperCAmelCase ) a_ = self.conva(UpperCAmelCase ) a_ = self.drop(UpperCAmelCase ) return hidden_states class a_ ( nn.Module ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): super().__init__() a_ = PoolFormerPooling(UpperCAmelCase ) a_ = PoolFormerOutput(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) a_ = PoolFormerGroupNorm(UpperCAmelCase ) a_ = PoolFormerGroupNorm(UpperCAmelCase ) # Useful for training neural nets a_ = PoolFormerDropPath(UpperCAmelCase ) if drop_path > 0.0 else nn.Identity() a_ = config.use_layer_scale if config.use_layer_scale: a_ = nn.Parameter( config.layer_scale_init_value * torch.ones((UpperCAmelCase) ) , requires_grad=UpperCAmelCase ) a_ = nn.Parameter( config.layer_scale_init_value * torch.ones((UpperCAmelCase) ) , requires_grad=UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase ): if self.use_layer_scale: a_ = self.pooling(self.before_norm(UpperCAmelCase ) ) a_ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection a_ = hidden_states + self.drop_path(UpperCAmelCase ) a_ = () a_ = self.output(self.after_norm(UpperCAmelCase ) ) a_ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection a_ = hidden_states + self.drop_path(UpperCAmelCase ) a_ = (output,) + outputs return outputs else: a_ = self.drop_path(self.pooling(self.before_norm(UpperCAmelCase ) ) ) # First residual connection a_ = pooling_output + hidden_states a_ = () # Second residual connection inside the PoolFormerOutput block a_ = self.drop_path(self.output(self.after_norm(UpperCAmelCase ) ) ) a_ = hidden_states + layer_output a_ = (output,) + outputs return outputs class a_ ( nn.Module ): def __init__( self , UpperCAmelCase ): super().__init__() a_ = config # stochastic depth decay rule a_ = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings a_ = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) a_ = nn.ModuleList(UpperCAmelCase ) # Transformer blocks a_ = [] a_ = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers a_ = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( UpperCAmelCase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(UpperCAmelCase ) ) a_ = nn.ModuleList(UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=True ): a_ = () if output_hidden_states else None a_ = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): a_ , a_ = layers # Get patch embeddings from hidden_states a_ = embedding_layer(UpperCAmelCase ) # Send the embeddings through the blocks for _, blk in enumerate(UpperCAmelCase ): a_ = blk(UpperCAmelCase ) a_ = layer_outputs[0] if output_hidden_states: a_ = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=UpperCAmelCase , hidden_states=UpperCAmelCase ) class a_ ( UpperCamelCase__ ): lowerCamelCase__ : Union[str, Any] = PoolFormerConfig lowerCamelCase__ : Optional[Any] = 'poolformer' lowerCamelCase__ : List[Any] = 'pixel_values' lowerCamelCase__ : int = True def lowerCAmelCase__ ( self , UpperCAmelCase ): if isinstance(UpperCAmelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=False ): if isinstance(UpperCAmelCase , UpperCAmelCase ): a_ = value lowercase__ =r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowercase__ =r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , UpperCamelCase__ , ) class a_ ( UpperCamelCase__ ): def __init__( self , UpperCAmelCase ): super().__init__(UpperCAmelCase ) a_ = config a_ = PoolFormerEncoder(UpperCAmelCase ) # Initialize weights and apply final processing self.post_init() def lowerCAmelCase__ ( self ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ): a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) a_ = self.encoder( UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase , ) a_ = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) class a_ ( nn.Module ): def __init__( self , UpperCAmelCase ): super().__init__() a_ = nn.Linear(config.hidden_size , config.hidden_size ) def lowerCAmelCase__ ( self , UpperCAmelCase ): a_ = self.dense(UpperCAmelCase ) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' , UpperCamelCase__ , ) class a_ ( UpperCamelCase__ ): def __init__( self , UpperCAmelCase ): super().__init__(UpperCAmelCase ) a_ = config.num_labels a_ = PoolFormerModel(UpperCAmelCase ) # Final norm a_ = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head a_ = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ): a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = self.poolformer( UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase , ) a_ = outputs[0] a_ = self.classifier(self.norm(UpperCAmelCase ).mean([-2, -1] ) ) a_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: a_ = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): a_ = """single_label_classification""" else: a_ = """multi_label_classification""" if self.config.problem_type == "regression": a_ = MSELoss() if self.num_labels == 1: a_ = loss_fct(logits.squeeze() , labels.squeeze() ) else: a_ = loss_fct(UpperCAmelCase , UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": a_ = CrossEntropyLoss() a_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": a_ = BCEWithLogitsLoss() a_ = loss_fct(UpperCAmelCase , UpperCAmelCase ) if not return_dict: a_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=UpperCAmelCase , logits=UpperCAmelCase , hidden_states=outputs.hidden_states )
263
1
"""simple docstring""" import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class _A ( _a ): """simple docstring""" UpperCAmelCase : Any = """MCTCTFeatureExtractor""" UpperCAmelCase : Tuple = """AutoTokenizer""" def __init__( self : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any]): super().__init__(__UpperCAmelCase , __UpperCAmelCase) a : Dict = self.feature_extractor a : Tuple = False def __call__( self : int , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : List[str]): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.") a : List[str] = kwargs.pop("raw_speech") else: a : Union[str, Any] = kwargs.pop("audio" , __UpperCAmelCase) a : Optional[Any] = kwargs.pop("sampling_rate" , __UpperCAmelCase) a : List[Any] = kwargs.pop("text" , __UpperCAmelCase) if len(__UpperCAmelCase) > 0: a : int = args[0] a : Tuple = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: a : Union[str, Any] = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase) if text is not None: a : int = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase) if text is None: return inputs elif audio is None: return encodings else: a : Dict = encodings["input_ids"] return inputs def __snake_case ( self : Optional[int] , *__UpperCAmelCase : Any , **__UpperCAmelCase : str): return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase) def __snake_case ( self : List[str] , *__UpperCAmelCase : str , **__UpperCAmelCase : Union[str, Any]): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__UpperCAmelCase , **__UpperCAmelCase) a : Optional[int] = kwargs.pop("input_features" , __UpperCAmelCase) a : Optional[int] = kwargs.pop("labels" , __UpperCAmelCase) if len(__UpperCAmelCase) > 0: a : int = args[0] a : Dict = args[1:] if input_features is not None: a : Union[str, Any] = self.feature_extractor.pad(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase) if labels is not None: a : Any = self.tokenizer.pad(__UpperCAmelCase , **__UpperCAmelCase) if labels is None: return input_features elif input_features is None: return labels else: a : Dict = labels["input_ids"] return input_features def __snake_case ( self : Any , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : int): return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase) @contextmanager def __snake_case ( self : Optional[Any]): warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call.") a : str = True a : str = self.tokenizer yield a : Union[str, Any] = self.feature_extractor a : int = False
135
"""simple docstring""" # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers __lowercase = float("""nan""") class _A : """simple docstring""" def __init__( self : List[str] , __UpperCAmelCase : Optional[int]): a : Any = sys.stdout a : Any = open(__UpperCAmelCase , "a") def __getattr__( self : Dict , __UpperCAmelCase : List[Any]): return getattr(self.stdout , __UpperCAmelCase) def __snake_case ( self : Any , __UpperCAmelCase : Any): self.stdout.write(__UpperCAmelCase) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , __UpperCAmelCase , 0 , re.M)) def lowercase ( A_=80 , A_=False )-> List[str]: '''simple docstring''' a : List[Any] = [] # deal with critical env vars a : List[Any] = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: a : Any = os.environ.get(A_ , A_ ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) a : List[Any] = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(A_ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes a : Any = [] a : Any = "" while len(A_ ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(A_ ) == 0 or len(A_ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(A_ ) a : List[Any] = "" return "\\\n".join(A_ ) def lowercase ( A_ , A_ )-> Tuple: '''simple docstring''' a : List[str] = re.sub(R"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own a : Optional[int] = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir a : Dict = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def lowercase ( A_ , A_ , A_ , A_ , A_ , A_ , A_ )-> int: '''simple docstring''' if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 1_0.3_1, 1_0_0.2, 5_5.6_6_6_6, 2_2_2.2_2_2_2_2_2_2_2] )} , ) a : Optional[Any] = subprocess.run(A_ , capture_output=A_ , text=A_ ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams a : List[str] = variation.replace(" " , "-" ) with open(Path(A_ ) / F'''log.{prefix}.stdout.txt''' , "w" ) as f: f.write(result.stdout ) with open(Path(A_ ) / F'''log.{prefix}.stderr.txt''' , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , "r" , encoding="utf-8" ) as f: a : Dict = json.load(A_ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def lowercase ( A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , )-> Tuple: '''simple docstring''' a : List[Any] = [] a : List[str] = [] a : Union[str, Any] = F'''{id}: {variation:<{longest_variation_len}}''' a : Any = F'''{preamble}: ''' a : Optional[Any] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(A_ ) , desc=A_ , leave=A_ ): a : Dict = process_run_single( A_ , A_ , A_ , A_ , A_ , A_ , A_ ) a : Tuple = single_run_metrics[target_metric_key] if not math.isnan(A_ ): metrics.append(A_ ) results.append(A_ ) outcome += "✓" else: outcome += "✘" a : List[str] = F'''\33[2K\r{outcome}''' if len(A_ ) > 0: a : List[Any] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} a : Tuple = round(mean_metrics[target_metric_key] , 2 ) a : Optional[int] = F'''{outcome} {mean_target}''' if len(A_ ) > 1: results_str += F''' {tuple(round(A_ , 2 ) for x in results )}''' print(A_ ) a : Optional[int] = variation return mean_metrics else: print(A_ ) return {variation_key: variation, target_metric_key: nan} def lowercase ( )-> Any: '''simple docstring''' a : int = torch.cuda.get_device_properties(torch.device("cuda" ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def lowercase ( A_ , A_ , A_ , A_ , A_ )-> List[str]: '''simple docstring''' a : Optional[Any] = pd.DataFrame(A_ ) a : Tuple = "variation" a : Union[str, Any] = "diff_%" a : Optional[Any] = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan a : List[str] = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(A_ ): # as a fallback, use the minimal value as the sentinel a : Optional[int] = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(A_ ): a : Tuple = df.apply( lambda A_ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns a : str = [variation_key, target_metric_key, diff_key, *report_metric_keys] a : Tuple = df.reindex(A_ , axis="columns" ) # reorder cols # capitalize a : Tuple = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible a : Dict = df.rename(lambda A_ : c.replace("_" , "<br>" ) , axis="columns" ) a : Tuple = df.rename(lambda A_ : c.replace("_" , "\n" ) , axis="columns" ) a : Dict = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=A_ , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=A_ , floatfmt=".2f" )] print("\n\n".join(A_ ) ) def lowercase ( )-> List[str]: '''simple docstring''' a : str = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=A_ , type=A_ , required=A_ , help="Base cmd" , ) parser.add_argument( "--variations" , default=A_ , type=A_ , nargs="+" , required=A_ , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=A_ , type=A_ , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=A_ , type=A_ , required=A_ , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=A_ , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=A_ , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=A_ , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=A_ , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) a : int = parser.parse_args() a : str = args.output_dir Path(A_ ).mkdir(exist_ok=A_ ) a : Tuple = get_base_command(A_ , A_ ) # split each dimension into its --foo variations a : Optional[int] = [list(map(str.strip , re.split(R"\|" , A_ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty a : Union[str, Any] = list(map(str.strip , map(" ".join , itertools.product(*A_ ) ) ) ) a : str = max(len(A_ ) for x in variations ) # split wanted keys a : Tuple = args.report_metric_keys.split() # capture prints into a log file for convenience a : Optional[int] = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) a : str = Tee(A_ ) print(F'''\n*** Running {len(A_ )} benchmarks:''' ) print(F'''Base command: {" ".join(A_ )}''' ) a : str = "variation" a : List[Any] = [] for id, variation in enumerate(tqdm(A_ , desc="Total completion: " , leave=A_ ) ): a : List[Any] = base_cmd + variation.split() results.append( process_run( id + 1 , A_ , A_ , A_ , A_ , args.target_metric_key , A_ , args.repeat_times , A_ , args.verbose , ) ) process_results(A_ , args.target_metric_key , A_ , args.base_variation , A_ ) if __name__ == "__main__": main()
135
1
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("""0.8.3"""): raise Exception("""requires gluonnlp == 0.8.3""") if version.parse(mx.__version__) != version.parse("""1.5.0"""): raise Exception("""requires mxnet == 1.5.0""") logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def UpperCAmelCase__ ( __snake_case , __snake_case ) -> List[Any]: _A = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1_024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1_024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1e-5, """token_type_vocab_size""": 2, } _A = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py _A = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=snake_case_ , output_all_encodings=snake_case_ , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , snake_case_ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later _A = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab _A = os.path.join(get_home_dir() , '''models''' ) _A = _load_vocab(snake_case_ , snake_case_ , snake_case_ , cls=snake_case_ ) _A = nlp.model.BERTModel( snake_case_ , len(snake_case_ ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=snake_case_ , use_token_type_embed=snake_case_ , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=snake_case_ , use_decoder=snake_case_ , ) original_bort.load_parameters(snake_case_ , cast_dtype=snake_case_ , ignore_extra=snake_case_ ) _A = original_bort._collect_params_with_prefix() # Build our config 🤗 _A = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(snake_case_ ), } _A = BertConfig.from_dict(snake_case_ ) _A = BertForMaskedLM(snake_case_ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(__snake_case ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(__snake_case , __snake_case ): _A = hf_param.shape _A = to_torch(params[gluon_param] ) _A = gluon_param.shape assert ( shape_hf == shape_gluon ), F'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param _A = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) _A = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) _A = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) _A = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) _A = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): _A = hf_bort_model.bert.encoder.layer[i] # self attention _A = layer.attention.self _A = check_and_map_params( self_attn.key.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) _A = check_and_map_params( self_attn.key.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) _A = check_and_map_params( self_attn.query.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) _A = check_and_map_params( self_attn.query.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) _A = check_and_map_params( self_attn.value.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) _A = check_and_map_params( self_attn.value.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output _A = layer.attention.output _A = check_and_map_params( self_output.dense.bias , F'''encoder.transformer_cells.{i}.proj.bias''' ) _A = check_and_map_params( self_output.dense.weight , F'''encoder.transformer_cells.{i}.proj.weight''' ) _A = check_and_map_params( self_output.LayerNorm.bias , F'''encoder.transformer_cells.{i}.layer_norm.beta''' ) _A = check_and_map_params( self_output.LayerNorm.weight , F'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate _A = layer.intermediate _A = check_and_map_params( intermediate.dense.bias , F'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) _A = check_and_map_params( intermediate.dense.weight , F'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output _A = layer.output _A = check_and_map_params( bert_output.dense.bias , F'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) _A = check_and_map_params( bert_output.dense.weight , F'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) _A = check_and_map_params( bert_output.LayerNorm.bias , F'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) _A = check_and_map_params( bert_output.LayerNorm.weight , F'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models _A = RobertaTokenizer.from_pretrained('''roberta-base''' ) _A = tokenizer.encode_plus(snake_case_ )["""input_ids"""] # Get gluon output _A = mx.nd.array([input_ids] ) _A = original_bort(inputs=snake_case_ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(snake_case_ ) _A = BertModel.from_pretrained(snake_case_ ) hf_bort_model.eval() _A = tokenizer.encode_plus(snake_case_ , return_tensors='''pt''' ) _A = hf_bort_model(**snake_case_ )[0] _A = output_gluon[0].asnumpy() _A = output_hf[0].detach().numpy() _A = np.max(np.abs(hf_layer - gluon_layer ) ).item() _A = np.allclose(snake_case_ , snake_case_ , atol=1e-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , snake_case_ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bort_checkpoint_path""", default=None, type=str, required=True, help="""Path the official Bort params file.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCamelCase = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
317
"""simple docstring""" import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def A_ ( snake_case_ : int ): '''simple docstring''' UpperCamelCase : List[Any] = checkpoints.load_tax_checkpoint(snake_case_ ) UpperCamelCase : Dict = flatten_dict(snake_case_ ) return flax_params def A_ ( snake_case_ : Optional[int] ): '''simple docstring''' UpperCamelCase : Optional[int] = {} UpperCamelCase : Tuple = { """token_embedder""": """embeddings""", """encoder_norm""": """layernorm""", """kernel""": """weight""", """.out""": """.output""", """scale""": """weight""", """embedders_0.pos_embedding""": """row_embedder.weight""", """embedders_1.pos_embedding""": """column_embedder.weight""", } UpperCamelCase : Optional[int] = { """query""": """attention.query""", """key""": """attention.key""", """value""": """attention.value""", """output.dense""": """output""", """encoder_decoder_attention.o""": """encoder_decoder_attention.attention.o""", """pre_self_attention_layer_norm""": """self_attention.layer_norm""", """pre_cross_attention_layer_norm""": """encoder_decoder_attention.layer_norm""", """mlp.""": """mlp.DenseReluDense.""", """pre_mlp_layer_norm""": """mlp.layer_norm""", """self_attention.o""": """self_attention.attention.o""", """decoder.embeddings.embedding""": """decoder.embed_tokens.weight""", """decoder.relpos_bias.rel_embedding""": """decoder.layer.0.self_attention.attention.relative_attention_bias.weight""", """decoder.decoder_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.logits_dense.weight""": """decoder.lm_head.weight""", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key UpperCamelCase : List[str] = """.""".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): UpperCamelCase : List[str] = new_key.replace(snake_case_ ,snake_case_ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): UpperCamelCase : str = new_key.replace(snake_case_ ,snake_case_ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number UpperCamelCase : List[str] = re.sub(R"""layers_(\d+)""" ,R"""layer.\1""" ,snake_case_ ) UpperCamelCase : Union[str, Any] = new_key.replace("""encoder""" ,"""encoder.encoder""" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number UpperCamelCase : Any = re.sub(R"""layers_(\d+)""" ,R"""layer.\1""" ,snake_case_ ) UpperCamelCase : Any = flax_dict[key] UpperCamelCase : Optional[Any] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): UpperCamelCase : Union[str, Any] = torch.from_numpy(converted_dict[key].T ) else: UpperCamelCase : List[Any] = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def A_ ( snake_case_ : Optional[Any] ,snake_case_ : Dict ,snake_case_ : str=False ,snake_case_ : Dict=False ): '''simple docstring''' UpperCamelCase : Optional[int] = get_flax_param(snake_case_ ) if not use_large: UpperCamelCase : List[str] = PixaStructVisionConfig() UpperCamelCase : int = PixaStructTextConfig() else: UpperCamelCase : List[str] = PixaStructVisionConfig( hidden_size=1_5_3_6 ,d_ff=3_9_6_8 ,num_attention_heads=2_4 ,num_hidden_layers=1_8 ) UpperCamelCase : Tuple = PixaStructTextConfig(hidden_size=1_5_3_6 ,d_ff=3_9_6_8 ,num_heads=2_4 ,num_layers=1_8 ) UpperCamelCase : List[Any] = PixaStructConfig( vision_config=encoder_config.to_dict() ,text_config=decoder_config.to_dict() ,is_vqa=snake_case_ ) UpperCamelCase : Optional[int] = PixaStructForConditionalGeneration(snake_case_ ) UpperCamelCase : Optional[Any] = rename_and_convert_flax_params(snake_case_ ) model.load_state_dict(snake_case_ ) UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained("""ybelkada/test-pix2struct-tokenizer""" ) UpperCamelCase : Dict = PixaStructImageProcessor() UpperCamelCase : List[str] = PixaStructProcessor(image_processor=snake_case_ ,tokenizer=snake_case_ ) if use_large: UpperCamelCase : int = 4_0_9_6 UpperCamelCase : int = True # mkdir if needed os.makedirs(snake_case_ ,exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) processor.save_pretrained(snake_case_ ) print("""Model saved in {}""".format(snake_case_ ) ) if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''') parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''') __A : Optional[Any] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
499
0
from math import factorial def snake_case_ ( snake_case , snake_case , snake_case ) -> float: if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(snake_case , snake_case ) or not isinstance(snake_case , snake_case ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) lowercase__: int = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! lowercase__: List[str] = float(factorial(snake_case ) ) coefficient /= factorial(snake_case ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
335
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING __lowerCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): __lowercase : Union[str, Any] = 'upernet' def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=512 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=[1, 2, 3, 6] , lowerCAmelCase__=True , lowerCAmelCase__=0.4 , lowerCAmelCase__=384 , lowerCAmelCase__=256 , lowerCAmelCase__=1 , lowerCAmelCase__=False , lowerCAmelCase__=255 , **lowerCAmelCase__ , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowercase__: str = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase__: str = backbone_config.get('model_type' ) lowercase__: Union[str, Any] = CONFIG_MAPPING[backbone_model_type] lowercase__: Dict = config_class.from_dict(lowerCAmelCase__ ) lowercase__: List[Any] = backbone_config lowercase__: Union[str, Any] = hidden_size lowercase__: Tuple = initializer_range lowercase__: Optional[int] = pool_scales lowercase__: Union[str, Any] = use_auxiliary_head lowercase__: Any = auxiliary_loss_weight lowercase__: Tuple = auxiliary_in_channels lowercase__: Optional[Any] = auxiliary_channels lowercase__: List[Any] = auxiliary_num_convs lowercase__: List[str] = auxiliary_concat_input lowercase__: Any = loss_ignore_index def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Tuple = copy.deepcopy(self.__dict__ ) lowercase__: List[Any] = self.backbone_config.to_dict() lowercase__: str = self.__class__.model_type return output
335
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : str = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class lowerCamelCase (__UpperCAmelCase ): """simple docstring""" lowerCamelCase__ = 'biogpt' def __init__( self : Dict , __magic_name__ : Any=42_384 , __magic_name__ : List[Any]=1_024 , __magic_name__ : List[str]=24 , __magic_name__ : int=16 , __magic_name__ : int=4_096 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : Tuple=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : List[Any]=1_024 , __magic_name__ : Optional[int]=0.02 , __magic_name__ : List[str]=1e-12 , __magic_name__ : Tuple=True , __magic_name__ : List[Any]=True , __magic_name__ : Union[str, Any]=0.0 , __magic_name__ : Union[str, Any]=0.0 , __magic_name__ : List[str]=1 , __magic_name__ : Dict=0 , __magic_name__ : Optional[int]=2 , **__magic_name__ : Optional[int] , ) -> Tuple: SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = scale_embedding SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = layerdrop SCREAMING_SNAKE_CASE_ = activation_dropout super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
140
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class a ( __UpperCAmelCase , unittest.TestCase ): lowercase_ : Optional[Any] = BlenderbotSmallTokenizer lowercase_ : List[str] = False def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" super().setUp() __lowerCAmelCase = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] __lowerCAmelCase = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) __lowerCAmelCase = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] __lowerCAmelCase = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case__ ) ) def UpperCAmelCase__ ( self : Any , **snake_case__ : Union[str, Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCAmelCase__ ( self : List[str] , snake_case__ : str ): """simple docstring""" __lowerCAmelCase = "adapt act apte" __lowerCAmelCase = "adapt act apte" return input_text, output_text def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __lowerCAmelCase = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCAmelCase = "adapt act apte" __lowerCAmelCase = ["adapt", "act", "ap@@", "te"] __lowerCAmelCase = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) __lowerCAmelCase = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] __lowerCAmelCase = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __lowerCAmelCase = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1_384] __lowerCAmelCase = "I am a small frog." __lowerCAmelCase = tok([src_text] , padding=snake_case__ , truncation=snake_case__ )["input_ids"] __lowerCAmelCase = tok.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def UpperCAmelCase__ ( self : int ): """simple docstring""" __lowerCAmelCase = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) __lowerCAmelCase = "I am a small frog ." __lowerCAmelCase = "." __lowerCAmelCase = tok(snake_case__ )["input_ids"] __lowerCAmelCase = tok(snake_case__ )["input_ids"] assert encoded[-1] == encoded_dot[0]
611
0
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCamelCase_ : '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any]) ->Dict: '''simple docstring''' return None class UpperCamelCase_ : '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any]) ->Union[str, Any]: '''simple docstring''' return None class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = [ # (model_name, model_kwargs) ('''bert-base-cased''', {}), ('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(UpperCAmelCase__ , '''tf''' , 12 , **UpperCAmelCase__) @require_torch @slow def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(UpperCAmelCase__ , '''pt''' , 12 , **UpperCAmelCase__) @require_torch @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->int: '''simple docstring''' from transformers import BertModel A__ = ['''[UNK]''', '''[SEP]''', '''[CLS]''', '''[PAD]''', '''[MASK]''', '''some''', '''other''', '''words'''] with NamedTemporaryFile(mode='''w+t''') as vocab_file: vocab_file.write('''\n'''.join(UpperCAmelCase__)) vocab_file.flush() A__ = BertTokenizerFast(vocab_file.name) with TemporaryDirectory() as bert_save_dir: A__ = BertModel(BertConfig(vocab_size=len(UpperCAmelCase__))) model.save_pretrained(UpperCAmelCase__) self._test_export(UpperCAmelCase__ , '''pt''' , 12 , UpperCAmelCase__) @require_tf @slow def SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: A__ = self._test_export(UpperCAmelCase__ , '''tf''' , 12 , **UpperCAmelCase__) A__ = quantize(Path(UpperCAmelCase__)) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(UpperCAmelCase__).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''') @require_torch @slow def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Dict: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: A__ = self._test_export(UpperCAmelCase__ , '''pt''' , 12 , **UpperCAmelCase__) A__ = quantize(UpperCAmelCase__) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(UpperCAmelCase__).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''') def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : Optional[int]) ->Optional[Any]: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: A__ = Path(UpperCAmelCase__).joinpath('''model.onnx''') # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__) return path except Exception as e: self.fail(UpperCAmelCase__) @require_torch @require_tokenizers @slow def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]: '''simple docstring''' from transformers import BertModel A__ = BertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''')) A__ = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''') self._test_infer_dynamic_axis(UpperCAmelCase__ , UpperCAmelCase__ , '''pt''') @require_tf @require_tokenizers @slow def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: '''simple docstring''' from transformers import TFBertModel A__ = TFBertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''')) A__ = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''') self._test_infer_dynamic_axis(UpperCAmelCase__ , UpperCAmelCase__ , '''tf''') def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int) ->Any: '''simple docstring''' A__ = FeatureExtractionPipeline(UpperCAmelCase__ , UpperCAmelCase__) A__ = ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''output_0''', '''output_1'''] A__ , A__ , A__ , A__ = infer_shapes(UpperCAmelCase__ , UpperCAmelCase__) # Assert all variables are present self.assertEqual(len(UpperCAmelCase__) , len(UpperCAmelCase__)) self.assertTrue(all(var_name in shapes for var_name in variable_names)) self.assertSequenceEqual(variable_names[:3] , UpperCAmelCase__) self.assertSequenceEqual(variable_names[3:] , UpperCAmelCase__) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: '''batch''', 1: '''sequence'''}) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['''output_0'''] , {0: '''batch''', 1: '''sequence'''}) self.assertDictEqual(shapes['''output_1'''] , {0: '''batch'''}) def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' A__ = ['''input_ids''', '''attention_mask''', '''token_type_ids'''] A__ = {'''input_ids''': [1, 2, 3, 4], '''attention_mask''': [0, 0, 0, 0], '''token_type_ids''': [1, 1, 1, 1]} A__ , A__ = ensure_valid_input(FuncContiguousArgs() , UpperCAmelCase__ , UpperCAmelCase__) # Should have exactly the same number of args (all are valid) self.assertEqual(len(UpperCAmelCase__) , 3) # Should have exactly the same input names self.assertEqual(set(UpperCAmelCase__) , set(UpperCAmelCase__)) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(UpperCAmelCase__ , (tokens['''input_ids'''], tokens['''token_type_ids'''], tokens['''attention_mask'''])) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) A__ , A__ = ensure_valid_input(FuncNonContiguousArgs() , UpperCAmelCase__ , UpperCAmelCase__) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(UpperCAmelCase__) , 1) self.assertEqual(len(UpperCAmelCase__) , 1) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['''input_ids''']) self.assertEqual(ordered_input_names[0] , '''input_ids''') def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ = generate_identified_filename(Path('''/home/something/my_fake_model.onnx''') , '''-test''') self.assertEqual('''/home/something/my_fake_model-test.onnx''' , generated.as_posix())
177
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" A__ = 1 for i in range(1 , num + 1 ): fact *= i return fact def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" A__ = 0 while number > 0: A__ = number % 10 sum_of_digits += last_digit A__ = number // 10 # Removing the last_digit from the given number return sum_of_digits def SCREAMING_SNAKE_CASE ( lowercase_ = 100 ) -> int: """simple docstring""" A__ = factorial(lowercase_ ) A__ = split_and_add(lowercase_ ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
177
1
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCamelCase__ = { '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 10_00, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } lowerCamelCase__ = { '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 10_00, '''block_out_channels''': [1_92, 1_92 * 2, 1_92 * 3, 1_92 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } lowerCamelCase__ = { '''sample_size''': 2_56, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [2_56, 2_56, 2_56 * 2, 2_56 * 2, 2_56 * 4, 2_56 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } lowerCamelCase__ = { '''num_train_timesteps''': 40, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } lowerCamelCase__ = { '''num_train_timesteps''': 2_01, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } lowerCamelCase__ = { '''num_train_timesteps''': 1_51, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } def A(__a: List[str] ): if isinstance(A_ , A_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("boolean value expected" ) def A(__a: Union[str, Any] , __a: Optional[Any] , __a: Tuple , __a: Dict , __a: Optional[Any]=False ): lowerCAmelCase_ = checkpoint[F"{old_prefix}.in_layers.0.weight"] lowerCAmelCase_ = checkpoint[F"{old_prefix}.in_layers.0.bias"] lowerCAmelCase_ = checkpoint[F"{old_prefix}.in_layers.2.weight"] lowerCAmelCase_ = checkpoint[F"{old_prefix}.in_layers.2.bias"] lowerCAmelCase_ = checkpoint[F"{old_prefix}.emb_layers.1.weight"] lowerCAmelCase_ = checkpoint[F"{old_prefix}.emb_layers.1.bias"] lowerCAmelCase_ = checkpoint[F"{old_prefix}.out_layers.0.weight"] lowerCAmelCase_ = checkpoint[F"{old_prefix}.out_layers.0.bias"] lowerCAmelCase_ = checkpoint[F"{old_prefix}.out_layers.3.weight"] lowerCAmelCase_ = checkpoint[F"{old_prefix}.out_layers.3.bias"] if has_skip: lowerCAmelCase_ = checkpoint[F"{old_prefix}.skip_connection.weight"] lowerCAmelCase_ = checkpoint[F"{old_prefix}.skip_connection.bias"] return new_checkpoint def A(__a: Optional[int] , __a: Tuple , __a: Union[str, Any] , __a: Tuple , __a: str=None ): lowerCAmelCase_ = checkpoint[F"{old_prefix}.qkv.weight"].chunk(3 , dim=0 ) lowerCAmelCase_ = checkpoint[F"{old_prefix}.qkv.bias"].chunk(3 , dim=0 ) lowerCAmelCase_ = checkpoint[F"{old_prefix}.norm.weight"] lowerCAmelCase_ = checkpoint[F"{old_prefix}.norm.bias"] lowerCAmelCase_ = weight_q.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase_ = bias_q.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase_ = weight_k.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase_ = bias_k.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase_ = weight_v.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase_ = bias_v.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase_ = ( checkpoint[F"{old_prefix}.proj_out.weight"].squeeze(-1 ).squeeze(-1 ) ) lowerCAmelCase_ = checkpoint[F"{old_prefix}.proj_out.bias"].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def A(__a: str , __a: Union[str, Any] ): lowerCAmelCase_ = torch.load(A_ , map_location="cpu" ) lowerCAmelCase_ = {} lowerCAmelCase_ = checkpoint['''time_embed.0.weight'''] lowerCAmelCase_ = checkpoint['''time_embed.0.bias'''] lowerCAmelCase_ = checkpoint['''time_embed.2.weight'''] lowerCAmelCase_ = checkpoint['''time_embed.2.bias'''] if unet_config["num_class_embeds"] is not None: lowerCAmelCase_ = checkpoint['''label_emb.weight'''] lowerCAmelCase_ = checkpoint['''input_blocks.0.0.weight'''] lowerCAmelCase_ = checkpoint['''input_blocks.0.0.bias'''] lowerCAmelCase_ = unet_config['''down_block_types'''] lowerCAmelCase_ = unet_config['''layers_per_block'''] lowerCAmelCase_ = unet_config['''attention_head_dim'''] lowerCAmelCase_ = unet_config['''block_out_channels'''] lowerCAmelCase_ = 1 lowerCAmelCase_ = channels_list[0] for i, layer_type in enumerate(A_ ): lowerCAmelCase_ = channels_list[i] lowerCAmelCase_ = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(A_ ): lowerCAmelCase_ = F"down_blocks.{i}.resnets.{j}" lowerCAmelCase_ = F"input_blocks.{current_layer}.0" lowerCAmelCase_ = True if j == 0 and downsample_block_has_skip else False lowerCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ , has_skip=A_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(A_ ): lowerCAmelCase_ = F"down_blocks.{i}.resnets.{j}" lowerCAmelCase_ = F"input_blocks.{current_layer}.0" lowerCAmelCase_ = True if j == 0 and downsample_block_has_skip else False lowerCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ , has_skip=A_ ) lowerCAmelCase_ = F"down_blocks.{i}.attentions.{j}" lowerCAmelCase_ = F"input_blocks.{current_layer}.1" lowerCAmelCase_ = convert_attention( A_ , A_ , A_ , A_ , A_ ) current_layer += 1 if i != len(A_ ) - 1: lowerCAmelCase_ = F"down_blocks.{i}.downsamplers.0" lowerCAmelCase_ = F"input_blocks.{current_layer}.0" lowerCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ ) current_layer += 1 lowerCAmelCase_ = current_channels # hardcoded the mid-block for now lowerCAmelCase_ = '''mid_block.resnets.0''' lowerCAmelCase_ = '''middle_block.0''' lowerCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ ) lowerCAmelCase_ = '''mid_block.attentions.0''' lowerCAmelCase_ = '''middle_block.1''' lowerCAmelCase_ = convert_attention(A_ , A_ , A_ , A_ , A_ ) lowerCAmelCase_ = '''mid_block.resnets.1''' lowerCAmelCase_ = '''middle_block.2''' lowerCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ ) lowerCAmelCase_ = 0 lowerCAmelCase_ = unet_config['''up_block_types'''] for i, layer_type in enumerate(A_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): lowerCAmelCase_ = F"up_blocks.{i}.resnets.{j}" lowerCAmelCase_ = F"output_blocks.{current_layer}.0" lowerCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ , has_skip=A_ ) current_layer += 1 if i != len(A_ ) - 1: lowerCAmelCase_ = F"up_blocks.{i}.upsamplers.0" lowerCAmelCase_ = F"output_blocks.{current_layer-1}.1" lowerCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): lowerCAmelCase_ = F"up_blocks.{i}.resnets.{j}" lowerCAmelCase_ = F"output_blocks.{current_layer}.0" lowerCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ , has_skip=A_ ) lowerCAmelCase_ = F"up_blocks.{i}.attentions.{j}" lowerCAmelCase_ = F"output_blocks.{current_layer}.1" lowerCAmelCase_ = convert_attention( A_ , A_ , A_ , A_ , A_ ) current_layer += 1 if i != len(A_ ) - 1: lowerCAmelCase_ = F"up_blocks.{i}.upsamplers.0" lowerCAmelCase_ = F"output_blocks.{current_layer-1}.2" lowerCAmelCase_ = convert_resnet(A_ , A_ , A_ , A_ ) lowerCAmelCase_ = checkpoint['''out.0.weight'''] lowerCAmelCase_ = checkpoint['''out.0.bias'''] lowerCAmelCase_ = checkpoint['''out.2.weight'''] lowerCAmelCase_ = checkpoint['''out.2.bias'''] return new_checkpoint if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = strabool(args.class_cond) lowerCamelCase__ = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: lowerCamelCase__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCamelCase__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCamelCase__ = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: lowerCamelCase__ = None lowerCamelCase__ = con_pt_to_diffuser(args.unet_path, unet_config) lowerCamelCase__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCamelCase__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCamelCase__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCamelCase__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') lowerCamelCase__ = CMStochasticIterativeScheduler(**scheduler_config) lowerCamelCase__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
122
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __snake_case : def __init__( self : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple=1_3 , __lowerCAmelCase : Any=2 , __lowerCAmelCase : List[str]=2_4 , __lowerCAmelCase : str=1_6 , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Optional[Any]=3_2 , __lowerCAmelCase : List[Any]=5 , __lowerCAmelCase : int=4 , __lowerCAmelCase : int=3_7 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : int=1_0 , __lowerCAmelCase : List[Any]=0.02 , __lowerCAmelCase : str=None , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Union[str, Any]=2 , ): """simple docstring""" _lowerCamelCase : List[str] = parent _lowerCamelCase : str = batch_size _lowerCamelCase : Tuple = patch_size _lowerCamelCase : Optional[int] = max_length _lowerCamelCase : List[Any] = num_mel_bins _lowerCamelCase : int = is_training _lowerCamelCase : Union[str, Any] = use_labels _lowerCamelCase : Dict = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : int = num_attention_heads _lowerCamelCase : Tuple = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Dict = hidden_dropout_prob _lowerCamelCase : int = attention_probs_dropout_prob _lowerCamelCase : List[Any] = type_sequence_label_size _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : List[str] = scope _lowerCamelCase : Optional[int] = frequency_stride _lowerCamelCase : List[Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowerCamelCase : Optional[int] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 _lowerCamelCase : Union[str, Any] = (self.max_length - self.patch_size) // self.time_stride + 1 _lowerCamelCase : Any = frequency_out_dimension * time_out_dimension _lowerCamelCase : List[Any] = num_patches + 2 def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : int = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) _lowerCamelCase : str = None if self.use_labels: _lowerCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : Optional[int] = self.get_config() return config, input_values, labels def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : List[Any] = ASTModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : List[Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : int = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Optional[Any] = config_and_inputs _lowerCamelCase : int = {'''input_values''': input_values} return config, inputs_dict @require_torch class __snake_case ( _lowercase , _lowercase , unittest.TestCase): snake_case__ : List[Any] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) snake_case__ : Tuple = ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) snake_case__ : Any = False snake_case__ : List[Any] = False snake_case__ : Optional[Any] = False snake_case__ : Optional[Any] = False def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] ): """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Optional[int] = ASTModelTester(self ) _lowerCamelCase : Any = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCamelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : str = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Any = [*signature.parameters.keys()] _lowerCamelCase : str = ['''input_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Union[str, Any] = ASTModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : List[str] = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''', filename='''sample_audio.flac''', repo_type='''dataset''' ) _lowerCamelCase , _lowerCamelCase : str = torchaudio.load(A_ ) return audio, sampling_rate @require_torch @require_torchaudio class __snake_case ( unittest.TestCase): @cached_property def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : int = self.default_feature_extractor _lowerCamelCase : Union[str, Any] = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(__lowerCAmelCase ) _lowerCamelCase : List[Any] = self.default_feature_extractor _lowerCamelCase , _lowerCamelCase : List[Any] = prepare_audio() _lowerCamelCase : Dict = audio.squeeze().numpy() _lowerCamelCase : Tuple = feature_extractor(__lowerCAmelCase , sampling_rate=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): _lowerCamelCase : Tuple = model(**__lowerCAmelCase ) # verify the logits _lowerCamelCase : Tuple = torch.Size((1, 5_2_7) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) _lowerCamelCase : Optional[int] = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) )
83
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowerCamelCase : def __init__(self : Union[str, Any] , _A : Optional[int] , _A : List[str]=1_3 , _A : Union[str, Any]=7 , _A : Union[str, Any]=True , _A : List[str]=True , _A : str=True , _A : List[str]=9_9 , _A : List[Any]=3_2 , _A : Dict=5 , _A : Tuple=4 , _A : int=3_7 , _A : str="gelu" , _A : Optional[Any]=0.1 , _A : int=0.1 , _A : Union[str, Any]=5_1_2 , _A : int=1_6 , _A : List[Any]=2 , _A : List[Any]=0.02 , _A : Dict=3 , _A : List[str]=4 , _A : Dict=None , ) -> List[str]: snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = scope snake_case = self.vocab_size - 1 def UpperCAmelCase(self : Dict ) -> Union[str, Any]: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = None if self.use_token_type_ids: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case = None snake_case = None snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = ids_tensor([self.batch_size] , self.num_choices ) snake_case = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) snake_case = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase(self : Dict , _A : Optional[Any] , _A : Tuple , _A : int , _A : List[str] , *_A : Union[str, Any] ) -> Optional[int]: snake_case = OpenAIGPTModel(config=_A ) model.to(_A ) model.eval() snake_case = model(_A , token_type_ids=_A , head_mask=_A ) snake_case = model(_A , token_type_ids=_A ) snake_case = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase(self : Tuple , _A : List[str] , _A : Tuple , _A : List[str] , _A : List[str] , *_A : Dict ) -> List[Any]: snake_case = OpenAIGPTLMHeadModel(_A ) model.to(_A ) model.eval() snake_case = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase(self : int , _A : str , _A : str , _A : Union[str, Any] , _A : Union[str, Any] , *_A : Tuple ) -> int: snake_case = OpenAIGPTDoubleHeadsModel(_A ) model.to(_A ) model.eval() snake_case = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase(self : List[Any] , _A : Tuple , _A : Union[str, Any] , _A : str , _A : Dict , *_A : Optional[int] ) -> int: snake_case = self.num_labels snake_case = OpenAIGPTForSequenceClassification(_A ) model.to(_A ) model.eval() snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase(self : Any ) -> Tuple: snake_case = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) = config_and_inputs snake_case = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class lowerCamelCase ( A_ , A_ , A_ , unittest.TestCase ): UpperCAmelCase__ : int = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) UpperCAmelCase__ : Tuple = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly UpperCAmelCase__ : Any = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase(self : Union[str, Any] , _A : Union[str, Any] , _A : int , _A : List[str] , _A : Dict , _A : Optional[int] ) -> Dict: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCAmelCase(self : Optional[int] , _A : Optional[int] , _A : List[str] , _A : List[str]=False ) -> int: snake_case = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_A , ) snake_case = inputs_dict["labels"] snake_case = inputs_dict["labels"] snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_A , ) snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def UpperCAmelCase(self : Optional[Any] ) -> Any: snake_case = OpenAIGPTModelTester(self ) snake_case = ConfigTester(self , config_class=_A , n_embd=3_7 ) def UpperCAmelCase(self : Union[str, Any] ) -> Optional[int]: self.config_tester.run_common_tests() def UpperCAmelCase(self : Any ) -> Union[str, Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_A ) def UpperCAmelCase(self : int ) -> Tuple: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_A ) def UpperCAmelCase(self : List[Any] ) -> Optional[Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_A ) def UpperCAmelCase(self : Tuple ) -> Any: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_A ) @slow def UpperCAmelCase(self : Optional[int] ) -> List[Any]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = OpenAIGPTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def UpperCAmelCase(self : str ) -> int: snake_case = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(_A ) snake_case = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=_A ) # the president is snake_case = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the snake_case = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].tolist() , _A )
294
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _A = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class lowerCamelCase : def __init__(self : Any , _A : int = 1_4 ) -> None: if group not in primes: raise ValueError("Unsupported Group" ) snake_case = primes[group]["prime"] snake_case = primes[group]["generator"] snake_case = int(hexlify(urandom(3_2 ) ) , base=1_6 ) def UpperCAmelCase(self : Any ) -> str: return hex(self.__private_key )[2:] def UpperCAmelCase(self : Tuple ) -> str: snake_case = pow(self.generator , self.__private_key , self.prime ) return hex(_A )[2:] def UpperCAmelCase(self : Optional[int] , _A : int ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_A , (self.prime - 1) // 2 , self.prime ) == 1 ) def UpperCAmelCase(self : List[Any] , _A : str ) -> str: snake_case = int(_A , base=1_6 ) if not self.is_valid_public_key(_A ): raise ValueError("Invalid public key" ) snake_case = pow(_A , self.__private_key , self.prime ) return shaaaa(str(_A ).encode() ).hexdigest() @staticmethod def UpperCAmelCase(_A : int , _A : int ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_A , (prime - 1) // 2 , _A ) == 1 ) @staticmethod def UpperCAmelCase(_A : str , _A : str , _A : int = 1_4 ) -> str: snake_case = int(_A , base=1_6 ) snake_case = int(_A , base=1_6 ) snake_case = primes[group]["prime"] if not DiffieHellman.is_valid_public_key_static(_A , _A ): raise ValueError("Invalid public key" ) snake_case = pow(_A , _A , _A ) return shaaaa(str(_A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
294
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. A_ : List[Any] = 10 def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if array[i] == target: return i return -1 def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' __UpperCAmelCase = 0 __UpperCAmelCase = len(SCREAMING_SNAKE_CASE ) while left <= right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = (left + right) // 3 + 1 __UpperCAmelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __UpperCAmelCase = one_third - 1 elif array[two_third] < target: __UpperCAmelCase = two_third + 1 else: __UpperCAmelCase = one_third + 1 __UpperCAmelCase = two_third - 1 else: return -1 def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if left < right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = (left + right) // 3 + 1 __UpperCAmelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(SCREAMING_SNAKE_CASE , one_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() A_ : Union[str, Any] = input('Enter numbers separated by comma:\n').strip() A_ : Optional[int] = [int(item.strip()) for item in user_input.split(',')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." A_ : Tuple = int(input('Enter the number to be found in the list:\n').strip()) A_ : Optional[Any] = ite_ternary_search(collection, target) A_ : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"""Iterative search: {target} found at positions: {resulta}""") print(F"""Recursive search: {target} found at positions: {resulta}""") else: print('Not found')
303
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class A_ : '''simple docstring''' def __init__(self , lowercase__ , lowercase__=2 , lowercase__=True , lowercase__=False , lowercase__=10 , lowercase__=3 , lowercase__=32 * 8 , lowercase__=32 * 8 , lowercase__=4 , lowercase__=64 , ) -> Dict: __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = is_training __UpperCAmelCase = use_auxiliary_loss __UpperCAmelCase = num_queries __UpperCAmelCase = num_channels __UpperCAmelCase = min_size __UpperCAmelCase = max_size __UpperCAmelCase = num_labels __UpperCAmelCase = hidden_dim __UpperCAmelCase = hidden_dim def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowercase__ ) __UpperCAmelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowercase__ ) __UpperCAmelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowercase__ ) > 0.5 ).float() __UpperCAmelCase = (torch.rand((self.batch_size, self.num_labels) , device=lowercase__ ) > 0.5).long() __UpperCAmelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __UpperCAmelCase = self.num_queries __UpperCAmelCase = self.num_labels __UpperCAmelCase = [1, 1, 1, 1] __UpperCAmelCase = self.num_channels __UpperCAmelCase = 64 __UpperCAmelCase = 128 __UpperCAmelCase = self.hidden_dim __UpperCAmelCase = self.hidden_dim __UpperCAmelCase = self.hidden_dim return config def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.prepare_config_and_inputs() __UpperCAmelCase = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> Optional[int]: __UpperCAmelCase = output.encoder_hidden_states __UpperCAmelCase = output.pixel_decoder_hidden_states __UpperCAmelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowercase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowercase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowercase__ ) , config.decoder_layers ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__=False ) -> Union[str, Any]: with torch.no_grad(): __UpperCAmelCase = MaskaFormerModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __UpperCAmelCase = model(pixel_values=lowercase__ , pixel_mask=lowercase__ ) __UpperCAmelCase = model(lowercase__ , output_hidden_states=lowercase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowercase__ , lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: __UpperCAmelCase = MaskaFormerForUniversalSegmentation(config=lowercase__ ) model.to(lowercase__ ) model.eval() def comm_check_on_output(lowercase__ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __UpperCAmelCase = model(pixel_values=lowercase__ , pixel_mask=lowercase__ ) __UpperCAmelCase = model(lowercase__ ) comm_check_on_output(lowercase__ ) __UpperCAmelCase = model( pixel_values=lowercase__ , pixel_mask=lowercase__ , mask_labels=lowercase__ , class_labels=lowercase__ ) comm_check_on_output(lowercase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class A_ ( _a , _a , unittest.TestCase ): '''simple docstring''' a__ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () a__ = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} a__ = False a__ = False a__ = False a__ = False def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = MaskaFormerModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ ) def lowerCAmelCase_ (self ) -> Any: self.config_tester.run_common_tests() def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowercase__ , **lowercase__ , output_hidden_states=lowercase__ ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowercase__ ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def lowerCAmelCase_ (self ) -> Tuple: pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def lowerCAmelCase_ (self ) -> str: pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def lowerCAmelCase_ (self ) -> Optional[Any]: pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def lowerCAmelCase_ (self ) -> List[Any]: pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowerCAmelCase_ (self ) -> Optional[int]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase_ (self ) -> Optional[Any]: pass def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase__ ) @slow def lowerCAmelCase_ (self ) -> int: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __UpperCAmelCase = MaskaFormerModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = (self.model_tester.min_size,) * 2 __UpperCAmelCase = { '''pixel_values''': torch.randn((2, 3, *size) , device=lowercase__ ), '''mask_labels''': torch.randn((2, 10, *size) , device=lowercase__ ), '''class_labels''': torch.zeros(2 , 10 , device=lowercase__ ).long(), } __UpperCAmelCase = self.model_tester.get_config() __UpperCAmelCase = MaskaFormerForUniversalSegmentation(lowercase__ ).to(lowercase__ ) __UpperCAmelCase = model(**lowercase__ ) self.assertTrue(outputs.loss is not None ) def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowercase__ , **lowercase__ , output_hidden_states=lowercase__ ) def lowerCAmelCase_ (self ) -> Dict: __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(lowercase__ ).to(lowercase__ ) __UpperCAmelCase = model(**lowercase__ , output_attentions=lowercase__ ) self.assertTrue(outputs.attentions is not None ) def lowerCAmelCase_ (self ) -> str: if not self.model_tester.is_training: return __UpperCAmelCase = self.all_model_classes[1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() __UpperCAmelCase = model_class(lowercase__ ) model.to(lowercase__ ) model.train() __UpperCAmelCase = model(lowercase__ , mask_labels=lowercase__ , class_labels=lowercase__ ).loss loss.backward() def lowerCAmelCase_ (self ) -> List[Any]: __UpperCAmelCase = self.all_model_classes[1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = model_class(lowercase__ ).to(lowercase__ ) model.train() __UpperCAmelCase = model(lowercase__ , mask_labels=lowercase__ , class_labels=lowercase__ ) __UpperCAmelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __UpperCAmelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __UpperCAmelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __UpperCAmelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowercase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) A_ : List[Any] = 1e-4 def __a ( ) -> str: '''simple docstring''' __UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ (self ) -> Union[str, Any]: return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowerCAmelCase_ (self ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowercase__ ) __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) __UpperCAmelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowercase__ , (1, 3, 384, 384) ) with torch.no_grad(): __UpperCAmelCase = model(**lowercase__ ) __UpperCAmelCase = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(lowercase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowercase__ , atol=lowercase__ ) ) __UpperCAmelCase = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(lowercase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowercase__ , atol=lowercase__ ) ) __UpperCAmelCase = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(lowercase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowercase__ , atol=lowercase__ ) ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowercase__ ).eval() __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = prepare_img() __UpperCAmelCase = image_processor(lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) __UpperCAmelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowercase__ , (1, 3, 384, 384) ) with torch.no_grad(): __UpperCAmelCase = model(**lowercase__ ) # masks_queries_logits __UpperCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __UpperCAmelCase = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __UpperCAmelCase = torch.tensor(lowercase__ ).to(lowercase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowercase__ , atol=lowercase__ ) ) # class_queries_logits __UpperCAmelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __UpperCAmelCase = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase__ , atol=lowercase__ ) ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowercase__ ).eval() __UpperCAmelCase = self.default_image_processor __UpperCAmelCase = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) __UpperCAmelCase = inputs['''pixel_values'''].to(lowercase__ ) __UpperCAmelCase = [el.to(lowercase__ ) for el in inputs['''mask_labels''']] __UpperCAmelCase = [el.to(lowercase__ ) for el in inputs['''class_labels''']] with torch.no_grad(): __UpperCAmelCase = model(**lowercase__ ) self.assertTrue(outputs.loss is not None )
303
1
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True ): model.train() UpperCamelCase__ : Optional[int] = model(_lowerCamelCase ) UpperCamelCase__ : Union[str, Any] = F.mse_loss(_lowerCamelCase , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__=False ): set_seed(4_2 ) UpperCamelCase__ : Dict = RegressionModel() UpperCamelCase__ : Optional[Any] = deepcopy(_lowerCamelCase ) UpperCamelCase__ : str = RegressionDataset(length=8_0 ) UpperCamelCase__ : int = DataLoader(_lowerCamelCase , batch_size=1_6 ) model.to(accelerator.device ) if sched: UpperCamelCase__ : List[str] = AdamW(params=model.parameters() , lr=1e-3 ) UpperCamelCase__ : Dict = AdamW(params=ddp_model.parameters() , lr=1e-3 ) UpperCamelCase__ : Tuple = LambdaLR(_lowerCamelCase , lr_lambda=lambda UpperCamelCase__ : epoch**0.65 ) UpperCamelCase__ : Union[str, Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda UpperCamelCase__ : epoch**0.65 ) # Make a copy of `model` if sched: UpperCamelCase__ : List[Any] = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: UpperCamelCase__ : Any = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): # Test when on a single CPU or GPU that the context manager does nothing UpperCamelCase__ : str = get_training_setup(_lowerCamelCase ) # Use a single batch UpperCamelCase__ : List[str] = next(iter(_lowerCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCamelCase__ : int = accelerator.gather((ddp_input, ddp_target) ) UpperCamelCase__ : str = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase ): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) UpperCamelCase__ : List[Any] = ddp_input[torch.randperm(len(_lowerCamelCase ) )] def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): # Test on distributed setup that context manager behaves properly UpperCamelCase__ : List[Any] = get_training_setup(_lowerCamelCase ) # Use a single batch UpperCamelCase__ : List[Any] = next(iter(_lowerCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCamelCase__ : List[str] = accelerator.gather((ddp_input, ddp_target) ) UpperCamelCase__ : List[Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase ): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) UpperCamelCase__ : Optional[Any] = ddp_input[torch.randperm(len(_lowerCamelCase ) )] def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__=False , UpperCamelCase__=False ): UpperCamelCase__ : Tuple = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCamelCase__ : List[Any] = get_training_setup(_lowerCamelCase ) for iteration, batch in enumerate(_lowerCamelCase ): UpperCamelCase__ : Optional[Any] = batch.values() # Gather the distributed inputs and targs for the base model UpperCamelCase__ : Dict = accelerator.gather((ddp_input, ddp_target) ) UpperCamelCase__ : Any = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_lowerCamelCase ): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) UpperCamelCase__ : int = ddp_input[torch.randperm(len(_lowerCamelCase ) )] GradientState._reset_state() def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__=False , UpperCamelCase__=False ): UpperCamelCase__ : Any = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCamelCase__ : Any = get_training_setup(_lowerCamelCase , _lowerCamelCase ) for iteration, batch in enumerate(_lowerCamelCase ): UpperCamelCase__ : Optional[int] = batch.values() # Gather the distributed inputs and targs for the base model UpperCamelCase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target) ) UpperCamelCase__ : Optional[int] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_lowerCamelCase ): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' UpperCamelCase__ : Optional[int] = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase )) if accelerator.num_processes > 1: check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def SCREAMING_SNAKE_CASE_ ( ): UpperCamelCase__ : List[Any] = Accelerator() UpperCamelCase__ : str = RegressionDataset(length=8_0 ) UpperCamelCase__ : Dict = DataLoader(_lowerCamelCase , batch_size=1_6 ) UpperCamelCase__ : int = RegressionDataset(length=9_6 ) UpperCamelCase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=1_6 ) UpperCamelCase__ : List[str] = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_lowerCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(_lowerCamelCase ) if iteration < len(_lowerCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_lowerCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(_lowerCamelCase ) if batch_num < len(_lowerCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def SCREAMING_SNAKE_CASE_ ( ): UpperCamelCase__ : int = Accelerator() UpperCamelCase__ : str = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(_lowerCamelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(_lowerCamelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
719
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowerCamelCase =logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase__ : List[Any] = to_pil_image(UpperCamelCase__ ) UpperCamelCase__ ,UpperCamelCase__ : Optional[int] = pil_image.size UpperCamelCase__ : str = pytesseract.image_to_data(UpperCamelCase__ , lang=UpperCamelCase__ , output_type='''dict''' , config=UpperCamelCase__ ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Tuple = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates UpperCamelCase__ : Optional[Any] = [idx for idx, word in enumerate(UpperCamelCase__ ) if not word.strip()] UpperCamelCase__ : int = [word for idx, word in enumerate(UpperCamelCase__ ) if idx not in irrelevant_indices] UpperCamelCase__ : int = [coord for idx, coord in enumerate(UpperCamelCase__ ) if idx not in irrelevant_indices] UpperCamelCase__ : List[Any] = [coord for idx, coord in enumerate(UpperCamelCase__ ) if idx not in irrelevant_indices] UpperCamelCase__ : List[Any] = [coord for idx, coord in enumerate(UpperCamelCase__ ) if idx not in irrelevant_indices] UpperCamelCase__ : Dict = [coord for idx, coord in enumerate(UpperCamelCase__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format UpperCamelCase__ : str = [] for x, y, w, h in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase__ : List[Any] = [x, y, x + w, y + h] actual_boxes.append(UpperCamelCase__ ) # finally, normalize the bounding boxes UpperCamelCase__ : str = [] for box in actual_boxes: normalized_boxes.append(normalize_box(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] def __init__( self , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = 1 / 2_5_5 , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "" , **__SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} UpperCamelCase__ : Optional[int] = get_size_dict(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = do_resize UpperCamelCase__ : Optional[int] = size UpperCamelCase__ : Optional[Any] = resample UpperCamelCase__ : Optional[Any] = do_rescale UpperCamelCase__ : str = rescale_value UpperCamelCase__ : Any = do_normalize UpperCamelCase__ : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase__ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD UpperCamelCase__ : Dict = apply_ocr UpperCamelCase__ : List[Any] = ocr_lang UpperCamelCase__ : str = tesseract_config def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" UpperCamelCase__ : Union[str, Any] = get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) UpperCamelCase__ : int = (size['''height'''], size['''width''']) return resize(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" return rescale(__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" return normalize(__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image: """simple docstring""" UpperCamelCase__ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ : List[str] = size if size is not None else self.size UpperCamelCase__ : Dict = get_size_dict(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = resample if resample is not None else self.resample UpperCamelCase__ : int = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ : str = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ : Tuple = image_std if image_std is not None else self.image_std UpperCamelCase__ : Optional[Any] = apply_ocr if apply_ocr is not None else self.apply_ocr UpperCamelCase__ : List[str] = ocr_lang if ocr_lang is not None else self.ocr_lang UpperCamelCase__ : List[Any] = tesseract_config if tesseract_config is not None else self.tesseract_config UpperCamelCase__ : List[Any] = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. UpperCamelCase__ : List[Any] = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) UpperCamelCase__ : Optional[int] = [] UpperCamelCase__ : List[Any] = [] for image in images: UpperCamelCase__ ,UpperCamelCase__ : Tuple = apply_tesseract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) words_batch.append(__SCREAMING_SNAKE_CASE ) boxes_batch.append(__SCREAMING_SNAKE_CASE ) if do_resize: UpperCamelCase__ : str = [self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: UpperCamelCase__ : List[Any] = [self.rescale(image=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: UpperCamelCase__ : str = [self.normalize(image=__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase__ : int = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase__ : List[Any] = BatchFeature(data={'''pixel_values''': images} , tensor_type=__SCREAMING_SNAKE_CASE ) if apply_ocr: UpperCamelCase__ : str = words_batch UpperCamelCase__ : Union[str, Any] = boxes_batch return data
462
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
645
"""simple docstring""" from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : int ="SpeechT5FeatureExtractor" a : Any ="SpeechT5Tokenizer" def __init__( self , snake_case__ , snake_case__ ): """simple docstring""" super().__init__(snake_case__ , snake_case__ ) def __call__( self , *snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : str = kwargs.pop("audio" , snake_case__ ) lowerCAmelCase : Tuple = kwargs.pop("text" , snake_case__ ) lowerCAmelCase : str = kwargs.pop("text_target" , snake_case__ ) lowerCAmelCase : List[str] = kwargs.pop("audio_target" , snake_case__ ) lowerCAmelCase : Union[str, Any] = kwargs.pop("sampling_rate" , snake_case__ ) if audio is not None and text is not None: raise ValueError( "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" ) if audio_target is not None and text_target is not None: raise ValueError( "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." ) if audio is not None: lowerCAmelCase : int = self.feature_extractor(snake_case__ , *snake_case__ , sampling_rate=snake_case__ , **snake_case__ ) elif text is not None: lowerCAmelCase : Optional[int] = self.tokenizer(snake_case__ , **snake_case__ ) else: lowerCAmelCase : Union[str, Any] = None if audio_target is not None: lowerCAmelCase : Optional[Any] = self.feature_extractor(audio_target=snake_case__ , *snake_case__ , sampling_rate=snake_case__ , **snake_case__ ) lowerCAmelCase : Any = targets["input_values"] elif text_target is not None: lowerCAmelCase : Tuple = self.tokenizer(snake_case__ , **snake_case__ ) lowerCAmelCase : str = targets["input_ids"] else: lowerCAmelCase : str = None if inputs is None: return targets if targets is not None: lowerCAmelCase : List[str] = labels lowerCAmelCase : List[Any] = targets.get("attention_mask" ) if decoder_attention_mask is not None: lowerCAmelCase : Union[str, Any] = decoder_attention_mask return inputs def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : int = kwargs.pop("input_values" , snake_case__ ) lowerCAmelCase : List[Any] = kwargs.pop("input_ids" , snake_case__ ) lowerCAmelCase : Dict = kwargs.pop("labels" , snake_case__ ) if input_values is not None and input_ids is not None: raise ValueError("Cannot process both `input_values` and `input_ids` inputs." ) if input_values is None and input_ids is None and labels is None: raise ValueError( "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." ) if input_values is not None: lowerCAmelCase : int = self.feature_extractor.pad(snake_case__ , *snake_case__ , **snake_case__ ) elif input_ids is not None: lowerCAmelCase : Optional[Any] = self.tokenizer.pad(snake_case__ , **snake_case__ ) else: lowerCAmelCase : Optional[Any] = None if labels is not None: if "input_ids" in labels or (isinstance(snake_case__ , snake_case__ ) and "input_ids" in labels[0]): lowerCAmelCase : Tuple = self.tokenizer.pad(snake_case__ , **snake_case__ ) lowerCAmelCase : Any = targets["input_ids"] else: lowerCAmelCase : List[Any] = self.feature_extractor.feature_size lowerCAmelCase : Optional[int] = self.feature_extractor.num_mel_bins lowerCAmelCase : str = self.feature_extractor.pad(snake_case__ , *snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = feature_size_hack lowerCAmelCase : Optional[Any] = targets["input_values"] else: lowerCAmelCase : List[Any] = None if inputs is None: return targets if targets is not None: lowerCAmelCase : int = labels lowerCAmelCase : Optional[int] = targets.get("attention_mask" ) if decoder_attention_mask is not None: lowerCAmelCase : List[Any] = decoder_attention_mask return inputs def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.tokenizer.decode(*snake_case__ , **snake_case__ )
645
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowercase = logging.get_logger(__name__) # TODO: upload to AWS lowercase = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : Union[str, Any] = '''retribert''' def __init__( self , a__=30522 , a__=768 , a__=8 , a__=12 , a__=3072 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=2 , a__=0.02 , a__=1e-12 , a__=True , a__=128 , a__=0 , **a__ , ): super().__init__(pad_token_id=a__ , **a__ ) __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : Any = hidden_size __SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers __SCREAMING_SNAKE_CASE : Tuple = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[int] = hidden_act __SCREAMING_SNAKE_CASE : Dict = intermediate_size __SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : Dict = type_vocab_size __SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range __SCREAMING_SNAKE_CASE : Dict = layer_norm_eps __SCREAMING_SNAKE_CASE : Optional[Any] = share_encoders __SCREAMING_SNAKE_CASE : Dict = projection_dim
564
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def __A ( _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" return EnvironmentCommand() class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def a_ ( a__ ): __SCREAMING_SNAKE_CASE : int = parser.add_parser("env" ) download_parser.set_defaults(func=a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Any = huggingface_hub.__version__ __SCREAMING_SNAKE_CASE : Dict = "not installed" __SCREAMING_SNAKE_CASE : Dict = "NA" if is_torch_available(): import torch __SCREAMING_SNAKE_CASE : List[str] = torch.__version__ __SCREAMING_SNAKE_CASE : List[str] = torch.cuda.is_available() __SCREAMING_SNAKE_CASE : Optional[Any] = "not installed" if is_transformers_available(): import transformers __SCREAMING_SNAKE_CASE : str = transformers.__version__ __SCREAMING_SNAKE_CASE : List[str] = "not installed" if is_accelerate_available(): import accelerate __SCREAMING_SNAKE_CASE : List[str] = accelerate.__version__ __SCREAMING_SNAKE_CASE : Union[str, Any] = "not installed" if is_xformers_available(): import xformers __SCREAMING_SNAKE_CASE : List[Any] = xformers.__version__ __SCREAMING_SNAKE_CASE : int = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": f'{pt_version} ({pt_cuda_available})', "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(a__ ) ) return info @staticmethod def a_ ( a__ ): return "\n".join([f'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
564
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable UpperCamelCase__: Optional[Any] = list[list[float | int]] def snake_case_ ( _lowerCAmelCase : Matrix , _lowerCAmelCase : Matrix ) -> Matrix: UpperCAmelCase : int = len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(SCREAMING_SNAKE_CASE__ )] UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float for row in range(SCREAMING_SNAKE_CASE__ ): for col in range(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase : List[Any] = matrix[row][col] UpperCAmelCase : List[Any] = vector[row][0] UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: UpperCAmelCase : List[str] = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , SCREAMING_SNAKE_CASE__ ): UpperCAmelCase : str = augmented[rowa][col] / augmented[row][col] UpperCAmelCase : int = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , SCREAMING_SNAKE_CASE__ ): for row in range(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase : List[Any] = augmented[row][col] / augmented[col][col] for cola in range(SCREAMING_SNAKE_CASE__ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(SCREAMING_SNAKE_CASE__ ) ] def snake_case_ ( _lowerCAmelCase : list[int] ) -> Callable[[int], int]: UpperCAmelCase : int = len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase : Matrix = [[0 for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ )] UpperCAmelCase : Matrix = [[0] for _ in range(SCREAMING_SNAKE_CASE__ )] UpperCAmelCase : Matrix UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int for x_val, y_val in enumerate(SCREAMING_SNAKE_CASE__ ): for col in range(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase : List[str] = (x_val + 1) ** (size - col - 1) UpperCAmelCase : Tuple = y_val UpperCAmelCase : Union[str, Any] = solve(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def interpolated_func(_lowerCAmelCase : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(SCREAMING_SNAKE_CASE__ ) ) return interpolated_func def snake_case_ ( _lowerCAmelCase : int ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def snake_case_ ( _lowerCAmelCase : Callable[[int], int] = question_function , _lowerCAmelCase : int = 10 ) -> int: UpperCAmelCase : list[int] = [func(SCREAMING_SNAKE_CASE__ ) for x_val in range(1 , order + 1 )] UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] UpperCAmelCase : int = 0 UpperCAmelCase : Callable[[int], int] UpperCAmelCase : int for poly in polynomials: UpperCAmelCase : Tuple = 1 while func(SCREAMING_SNAKE_CASE__ ) == poly(SCREAMING_SNAKE_CASE__ ): x_val += 1 ret += poly(SCREAMING_SNAKE_CASE__ ) return ret if __name__ == "__main__": print(F"{solution() = }")
127
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : Optional[Any] = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = ['''MobileViTFeatureExtractor'''] _lowerCamelCase : List[str] = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys _lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
663
0
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a( __snake_case , unittest.TestCase ): lowerCamelCase__ :Union[str, Any] = OpenAIGPTTokenizer lowerCamelCase__ :Optional[Any] = OpenAIGPTTokenizerFast lowerCamelCase__ :Tuple = True lowerCamelCase__ :List[Any] = False def lowercase ( self ) -> str: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case : Tuple = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] _snake_case : Any = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _snake_case : Optional[int] = ["#version: 0.2", "l o", "lo w", "e r</w>", ""] _snake_case : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(__UpperCamelCase ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(__UpperCamelCase ) ) def lowercase ( self , __snake_case ) -> Dict: '''simple docstring''' return "lower newer", "lower newer" def lowercase ( self ) -> Tuple: '''simple docstring''' _snake_case : Any = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) _snake_case : Union[str, Any] = "lower" _snake_case : List[str] = ["low", "er</w>"] _snake_case : str = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _snake_case : Optional[Any] = tokens + ["<unk>"] _snake_case : Any = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase ) def lowercase ( self , __snake_case=1_5 ) -> Dict: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case : Optional[int] = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) # Simple input _snake_case : Optional[int] = "This is a simple input" _snake_case : List[str] = ["This is a simple input 1", "This is a simple input 2"] _snake_case : Optional[Any] = ("This is a simple input", "This is a pair") _snake_case : Optional[int] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__UpperCamelCase , tokenizer_r.encode , __UpperCamelCase , max_length=__UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises(__UpperCamelCase , tokenizer_r.encode_plus , __UpperCamelCase , max_length=__UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises( __UpperCamelCase , tokenizer_r.batch_encode_plus , __UpperCamelCase , max_length=__UpperCamelCase , padding="max_length" , ) # Pair input self.assertRaises(__UpperCamelCase , tokenizer_r.encode , __UpperCamelCase , max_length=__UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises(__UpperCamelCase , tokenizer_r.encode_plus , __UpperCamelCase , max_length=__UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises( __UpperCamelCase , tokenizer_r.batch_encode_plus , __UpperCamelCase , max_length=__UpperCamelCase , padding="max_length" , ) def lowercase ( self ) -> Dict: '''simple docstring''' pass @require_ftfy @require_spacy @require_tokenizers class _a( __snake_case ): pass
702
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class _a: def __init__( self , __snake_case , ) -> List[str]: '''simple docstring''' _snake_case : Dict = parent _snake_case : Any = 1_3 _snake_case : Union[str, Any] = 7 _snake_case : Any = True _snake_case : Optional[Any] = True _snake_case : List[str] = False _snake_case : str = True _snake_case : int = 9_9 _snake_case : Optional[int] = 3_2 _snake_case : Dict = 2 _snake_case : Optional[Any] = 4 _snake_case : Any = 3_7 _snake_case : Optional[int] = "gelu" _snake_case : Optional[Any] = 0.1 _snake_case : List[Any] = 0.1 _snake_case : Any = 5_1_2 _snake_case : Optional[int] = 1_6 _snake_case : Dict = 2 _snake_case : Optional[int] = 0.02 _snake_case : Any = 3 _snake_case : Tuple = 4 _snake_case : str = None def lowercase ( self ) -> Union[str, Any]: '''simple docstring''' _snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : List[Any] = None if self.use_input_mask: _snake_case : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : str = None _snake_case : Optional[Any] = None _snake_case : Any = None if self.use_labels: _snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) _snake_case : Optional[Any] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' _snake_case : str = TFDistilBertModel(config=__snake_case ) _snake_case : Dict = {"input_ids": input_ids, "attention_mask": input_mask} _snake_case : Union[str, Any] = model(__snake_case ) _snake_case : Union[str, Any] = [input_ids, input_mask] _snake_case : int = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> str: '''simple docstring''' _snake_case : str = TFDistilBertForMaskedLM(config=__snake_case ) _snake_case : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} _snake_case : Tuple = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Union[str, Any]: '''simple docstring''' _snake_case : int = TFDistilBertForQuestionAnswering(config=__snake_case ) _snake_case : Any = { "input_ids": input_ids, "attention_mask": input_mask, } _snake_case : Tuple = model(__snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> str: '''simple docstring''' _snake_case : Dict = self.num_labels _snake_case : Dict = TFDistilBertForSequenceClassification(__snake_case ) _snake_case : Dict = {"input_ids": input_ids, "attention_mask": input_mask} _snake_case : Optional[Any] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Dict: '''simple docstring''' _snake_case : str = self.num_choices _snake_case : List[str] = TFDistilBertForMultipleChoice(__snake_case ) _snake_case : Optional[int] = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) _snake_case : int = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) _snake_case : str = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } _snake_case : List[Any] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Dict: '''simple docstring''' _snake_case : List[str] = self.num_labels _snake_case : int = TFDistilBertForTokenClassification(__snake_case ) _snake_case : Any = {"input_ids": input_ids, "attention_mask": input_mask} _snake_case : Any = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self ) -> Tuple: '''simple docstring''' _snake_case : List[str] = self.prepare_config_and_inputs() ((_snake_case) , (_snake_case) , (_snake_case) , (_snake_case) , (_snake_case) , (_snake_case)) : List[str] = config_and_inputs _snake_case : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _a( __A , __A , unittest.TestCase ): lowerCamelCase__ :str = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) lowerCamelCase__ :Tuple = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ :Tuple = False lowerCamelCase__ :Any = False def lowercase ( self ) -> int: '''simple docstring''' _snake_case : Optional[Any] = TFDistilBertModelTester(self ) _snake_case : str = ConfigTester(self , config_class=__snake_case , dim=3_7 ) def lowercase ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase ( self ) -> List[Any]: '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__snake_case ) def lowercase ( self ) -> Any: '''simple docstring''' _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__snake_case ) def lowercase ( self ) -> List[str]: '''simple docstring''' _snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__snake_case ) def lowercase ( self ) -> Dict: '''simple docstring''' _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__snake_case ) def lowercase ( self ) -> Dict: '''simple docstring''' _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__snake_case ) def lowercase ( self ) -> List[Any]: '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__snake_case ) @slow def lowercase ( self ) -> Tuple: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): _snake_case : Any = TFDistilBertModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_tf class _a( unittest.TestCase ): @slow def lowercase ( self ) -> List[str]: '''simple docstring''' _snake_case : Any = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) _snake_case : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) _snake_case : Dict = model(__snake_case )[0] _snake_case : str = [1, 6, 7_6_8] self.assertEqual(output.shape , __snake_case ) _snake_case : Optional[Any] = tf.constant( [ [ [0.19_26_18_85, -0.13_73_29_55, 0.4_11_97_99], [0.22_15_01_56, -0.07_42_26_61, 0.39_03_72_04], [0.22_75_60_18, -0.0_89_64_14, 0.3_70_14_67], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __snake_case , atol=1E-4 )
278
0
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel UpperCAmelCase_ = False UpperCAmelCase_ = True UpperCAmelCase_ = False if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = { "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } UpperCAmelCase_ = { "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } UpperCAmelCase_ = "" if has_file(args.repo_path, "config.json") else "unet" with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: UpperCAmelCase_ = reader.read() UpperCAmelCase_ = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): UpperCAmelCase_ = UNetaDModel(**config) else: UpperCAmelCase_ = UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel UpperCAmelCase_ = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) UpperCAmelCase_ = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: UpperCAmelCase_ = config[key] del config[key] UpperCAmelCase_ = [k.replace("UNetRes", "") for k in config["down_block_types"]] UpperCAmelCase_ = [k.replace("UNetRes", "") for k in config["up_block_types"]] if do_only_weights: UpperCAmelCase_ = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) UpperCAmelCase_ = {} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue UpperCAmelCase_ = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: UpperCAmelCase_ = param_value UpperCAmelCase_ = True if not has_changed: UpperCAmelCase_ = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
32
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def lowerCAmelCase ( *snake_case , **snake_case) -> str: '''simple docstring''' pass def lowerCamelCase__ ( __lowerCamelCase : Image ): '''simple docstring''' _UpperCAmelCase : Optional[Any] =hashlib.mda(image.tobytes() ) return m.hexdigest()[:1_0] def lowerCamelCase__ ( __lowerCamelCase : Image ): '''simple docstring''' _UpperCAmelCase : List[str] =np.array(__lowerCamelCase ) _UpperCAmelCase : List[str] =npimg.shape return {"hash": hashimage(__lowerCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __magic_name__ ( unittest.TestCase ): UpperCAmelCase =dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) UpperCAmelCase =dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCAmelCase ( self , snake_case , snake_case , snake_case) -> str: '''simple docstring''' _UpperCAmelCase : List[str] =MaskGenerationPipeline(model=snake_case , image_processor=snake_case) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCAmelCase ( self , snake_case , snake_case) -> Optional[Any]: '''simple docstring''' pass @require_tf @unittest.skip('Image segmentation not implemented in TF') def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' pass @slow @require_torch def lowerCAmelCase ( self) -> str: '''simple docstring''' _UpperCAmelCase : Any =pipeline('mask-generation' , model='facebook/sam-vit-huge') _UpperCAmelCase : Union[str, Any] =image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=2_5_6) # Shortening by hashing _UpperCAmelCase : str =[] for i, o in enumerate(outputs['masks']): new_outupt += [{"mask": mask_to_test_readable(snake_case), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(snake_case , decimals=4) , [ {'mask': {'hash': '115ad19f5f', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.04_44}, {'mask': {'hash': '6affa964c6', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.0_21}, {'mask': {'hash': 'dfe28a0388', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.01_67}, {'mask': {'hash': 'c0a5f4a318', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.01_32}, {'mask': {'hash': 'fe8065c197', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.00_53}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.99_67}, {'mask': {'hash': '453c7844bd', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9_93}, {'mask': {'hash': '3d44f2926d', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.99_09}, {'mask': {'hash': '64033ddc3f', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.98_79}, {'mask': {'hash': '801064ff79', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.98_34}, {'mask': {'hash': '6172f276ef', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.97_16}, {'mask': {'hash': 'b49e60e084', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.96_12}, {'mask': {'hash': 'a811e775fd', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.95_99}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.95_52}, {'mask': {'hash': '9d8257e080', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.95_32}, {'mask': {'hash': '32de6454a8', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.95_16}, {'mask': {'hash': 'af3d4af2c8', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.94_99}, {'mask': {'hash': '3c6db475fb', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.94_83}, {'mask': {'hash': 'c290813fb9', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.94_64}, {'mask': {'hash': 'b6f0b8f606', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9_43}, {'mask': {'hash': '92ce16bfdf', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.9_43}, {'mask': {'hash': 'c749b25868', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.94_08}, {'mask': {'hash': 'efb6cab859', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.93_35}, {'mask': {'hash': '1ff2eafb30', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.93_26}, {'mask': {'hash': '788b798e24', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.92_62}, {'mask': {'hash': 'abea804f0e', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.89_99}, {'mask': {'hash': '7b9e8ddb73', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.89_86}, {'mask': {'hash': 'cd24047c8a', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.89_84}, {'mask': {'hash': '6943e6bcbd', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.88_73}, {'mask': {'hash': 'b5f47c9191', 'shape': (4_8_0, 6_4_0)}, 'scores': 0.88_71} ] , ) # fmt: on @require_torch @slow def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[str] ='facebook/sam-vit-huge' _UpperCAmelCase : Optional[int] =pipeline('mask-generation' , model=snake_case) _UpperCAmelCase : str =image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=2_5_6) # Shortening by hashing _UpperCAmelCase : Tuple =[] for i, o in enumerate(outputs['masks']): new_outupt += [{"mask": mask_to_test_readable(snake_case), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(snake_case , decimals=4) , [ {'mask': {'hash': '115ad19f5f', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.04_44}, {'mask': {'hash': '6affa964c6', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.02_10}, {'mask': {'hash': 'dfe28a0388', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.01_67}, {'mask': {'hash': 'c0a5f4a318', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.01_32}, {'mask': {'hash': 'fe8065c197', 'shape': (4_8_0, 6_4_0)}, 'scores': 1.00_53}, ] , )
446
0
"""simple docstring""" import operator as op lowerCamelCase__ = """scaler.pt""" lowerCamelCase__ = """pytorch_model""" lowerCamelCase__ = """random_states""" lowerCamelCase__ = """optimizer""" lowerCamelCase__ = """scheduler""" lowerCamelCase__ = """pytorch_model.bin""" lowerCamelCase__ = """pytorch_model.bin.index.json""" lowerCamelCase__ = """model.safetensors""" lowerCamelCase__ = """model.safetensors.index.json""" lowerCamelCase__ = """1.10.2""" lowerCamelCase__ = """py38""" lowerCamelCase__ = """4.17.0""" lowerCamelCase__ = ["""ml.p3.16xlarge""", """ml.p3dn.24xlarge""", """ml.p4dn.24xlarge"""] lowerCamelCase__ = ["""FULL_SHARD""", """SHARD_GRAD_OP""", """NO_SHARD""", """HYBRID_SHARD""", """HYBRID_SHARD_ZERO2"""] lowerCamelCase__ = ["""TRANSFORMER_BASED_WRAP""", """SIZE_BASED_WRAP""", """NO_WRAP"""] lowerCamelCase__ = ["""BACKWARD_PRE""", """BACKWARD_POST""", """NO_PREFETCH"""] lowerCamelCase__ = ["""FULL_STATE_DICT""", """LOCAL_STATE_DICT""", """SHARDED_STATE_DICT"""] lowerCamelCase__ = """2.0.1""" lowerCamelCase__ = ["""pdsh""", """standard""", """openmpi""", """mvapich"""] lowerCamelCase__ = ["""default""", """reduce-overhead""", """max-autotune"""] lowerCamelCase__ = {""">""": op.gt, """>=""": op.ge, """==""": op.eq, """!=""": op.ne, """<=""": op.le, """<""": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 lowerCamelCase__ = [ """nnodes""", """nproc_per_node""", """rdzv_backend""", """rdzv_endpoint""", """rdzv_id""", """rdzv_conf""", """standalone""", """max_restarts""", """monitor_interval""", """start_method""", """role""", """module""", """m""", """no_python""", """run_path""", """log_dir""", """r""", """redirects""", """t""", """tee""", """node_rank""", """master_addr""", """master_port""", ] lowerCamelCase__ = ["""DEEPSPEED""", """MULTI_GPU""", """FSDP""", """MEGATRON_LM"""] lowerCamelCase__ = ["""DEEPSPEED""", """MULTI_XPU""", """FSDP"""]
549
"""simple docstring""" from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
549
1
"""simple docstring""" from PIL import Image def __lowerCAmelCase ( __UpperCamelCase : Image , __UpperCamelCase : float ): '''simple docstring''' def brightness(__UpperCamelCase : int ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 __lowerCAmelCase : Tuple = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
58
'''simple docstring''' import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __lowerCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__ ( _lowerCAmelCase ): A = "token-classification" def __init__( self : Tuple , UpperCamelCase_ : Tuple ) -> Dict: """simple docstring""" if type(UpperCamelCase_ ) == dict: lowerCamelCase_ : Tuple = Namespace(**UpperCamelCase_ ) lowerCamelCase_ : Any = import_module('''tasks''' ) try: lowerCamelCase_ : Any = getattr(UpperCamelCase_ , hparams.task_type ) lowerCamelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) lowerCamelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) lowerCamelCase_ : Optional[Any] = CrossEntropyLoss().ignore_index super().__init__(UpperCamelCase_ , len(self.labels ) , self.mode ) def __UpperCamelCase ( self : Dict , **UpperCamelCase_ : List[str] ) -> Dict: """simple docstring""" return self.model(**UpperCamelCase_ ) def __UpperCamelCase ( self : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ : Dict = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": lowerCamelCase_ : str = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids lowerCamelCase_ : List[str] = self(**UpperCamelCase_ ) lowerCamelCase_ : int = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : str = self.hparams for mode in ["train", "dev", "test"]: lowerCamelCase_ : List[Any] = self._feature_file(UpperCamelCase_ ) if os.path.exists(UpperCamelCase_ ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , UpperCamelCase_ ) lowerCamelCase_ : Dict = torch.load(UpperCamelCase_ ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) lowerCamelCase_ : Optional[int] = self.token_classification_task.read_examples_from_file(args.data_dir , UpperCamelCase_ ) lowerCamelCase_ : int = self.token_classification_task.convert_examples_to_features( UpperCamelCase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=UpperCamelCase_ , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , UpperCamelCase_ ) torch.save(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCamelCase ( self : str , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : bool = False ) -> DataLoader: """simple docstring""" lowerCamelCase_ : Dict = self._feature_file(UpperCamelCase_ ) logger.info('''Loading features from cached file %s''' , UpperCamelCase_ ) lowerCamelCase_ : Optional[Any] = torch.load(UpperCamelCase_ ) lowerCamelCase_ : List[Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowerCamelCase_ : Union[str, Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowerCamelCase_ : Optional[int] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowerCamelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowerCamelCase_ : Optional[Any] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , batch_size=UpperCamelCase_ ) def __UpperCamelCase ( self : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str ) -> Any: """simple docstring""" """Compute validation""" "" lowerCamelCase_ : Optional[Any] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": lowerCamelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids lowerCamelCase_ : List[Any] = self(**UpperCamelCase_ ) lowerCamelCase_ , lowerCamelCase_ : List[Any] = outputs[:2] lowerCamelCase_ : List[Any] = logits.detach().cpu().numpy() lowerCamelCase_ : str = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase ( self : Tuple , UpperCamelCase_ : str ) -> Tuple: """simple docstring""" lowerCamelCase_ : Tuple = torch.stack([x['''val_loss'''] for x in outputs] ).mean() lowerCamelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) lowerCamelCase_ : Optional[Any] = np.argmax(UpperCamelCase_ , axis=2 ) lowerCamelCase_ : List[str] = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) lowerCamelCase_ : List[str] = dict(enumerate(self.labels ) ) lowerCamelCase_ : Optional[Any] = [[] for _ in range(out_label_ids.shape[0] )] lowerCamelCase_ : str = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowerCamelCase_ : Optional[Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(UpperCamelCase_ , UpperCamelCase_ ), '''precision''': precision_score(UpperCamelCase_ , UpperCamelCase_ ), '''recall''': recall_score(UpperCamelCase_ , UpperCamelCase_ ), '''f1''': fa_score(UpperCamelCase_ , UpperCamelCase_ ), } lowerCamelCase_ : Union[str, Any] = dict(results.items() ) lowerCamelCase_ : List[str] = results return ret, preds_list, out_label_list def __UpperCamelCase ( self : Optional[Any] , UpperCamelCase_ : Tuple ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Any = self._eval_end(UpperCamelCase_ ) lowerCamelCase_ : Tuple = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase ( self : Dict , UpperCamelCase_ : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = self._eval_end(UpperCamelCase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowerCamelCase_ : Optional[int] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" BaseTransformer.add_model_specific_args(UpperCamelCase_ , UpperCamelCase_ ) parser.add_argument( '''--task_type''' , default='''NER''' , type=UpperCamelCase_ , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=UpperCamelCase_ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=UpperCamelCase_ , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=UpperCamelCase_ , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __lowerCamelCase : Tuple = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __lowerCamelCase : Optional[int] = NERTransformer.add_model_specific_args(parser, os.getcwd()) __lowerCamelCase : Any = parser.parse_args() __lowerCamelCase : List[Any] = NERTransformer(args) __lowerCamelCase : Any = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __lowerCamelCase : Any = sorted(glob.glob(os.path.join(args.output_dir, """checkpoint-epoch=*.ckpt"""), recursive=True)) __lowerCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
501
0
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument _lowercase = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def A (__lowerCamelCase :Optional[int] ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model _lowerCAmelCase = list(s_dict.keys() ) for key in keys: _lowerCAmelCase = r""".*/layers_(\d+)""" _lowerCAmelCase = key if re.match(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase = re.sub(r"""layers_(\d+)""" , r"""block/\1/layer""" , __lowerCamelCase ) _lowerCAmelCase = r"""(encoder|decoder)\/""" if re.match(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase = re.match(__lowerCamelCase , __lowerCamelCase ).groups() if groups[0] == "encoder": _lowerCAmelCase = re.sub(r"""/mlp/""" , r"""/1/mlp/""" , __lowerCamelCase ) _lowerCAmelCase = re.sub(r"""/pre_mlp_layer_norm/""" , r"""/1/layer_norm/""" , __lowerCamelCase ) elif groups[0] == "decoder": _lowerCAmelCase = re.sub(r"""/mlp/""" , r"""/2/mlp/""" , __lowerCamelCase ) _lowerCAmelCase = re.sub(r"""/pre_mlp_layer_norm/""" , r"""/2/layer_norm/""" , __lowerCamelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _lowerCAmelCase = new_key.replace(__lowerCamelCase , __lowerCamelCase ) print(f'{key} -> {new_key}' ) _lowerCAmelCase = s_dict.pop(__lowerCamelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _lowerCAmelCase = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _lowerCAmelCase = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: _lowerCAmelCase = s_dict[key].shape[0] _lowerCAmelCase = s_dict[key] for idx in range(__lowerCamelCase ): _lowerCAmelCase = expert_weihts[idx] print(f'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(__lowerCamelCase ) return s_dict _lowercase = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def A (__lowerCamelCase :List[Any] , __lowerCamelCase :Tuple ): # Convert a google style config to the hugging face fromat import regex as re with open(__lowerCamelCase , """r""" ) as f: _lowerCAmelCase = f.read() _lowerCAmelCase = re.findall(r"""(.*) = ([0-9.]*)""" , __lowerCamelCase ) _lowerCAmelCase = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _lowerCAmelCase = float(__lowerCamelCase ) if """.""" in value else int(__lowerCamelCase ) _lowerCAmelCase = re.findall(r"""(.*activations) = \(\'(.*)\',\)""" , __lowerCamelCase )[0] _lowerCAmelCase = str(activation[1] ) _lowerCAmelCase = num_experts _lowerCAmelCase = SwitchTransformersConfig(**__lowerCamelCase ) return config def A (__lowerCamelCase :str , __lowerCamelCase :List[Any] , __lowerCamelCase :int=None , __lowerCamelCase :Tuple="./" , __lowerCamelCase :Tuple=8 ): # Initialise PyTorch model print(f'Loading flax weights from : {flax_checkpoint_path}' ) _lowerCAmelCase = checkpoints.load_tax_checkpoint(__lowerCamelCase ) if gin_file is not None: _lowerCAmelCase = convert_gin_to_config(__lowerCamelCase , __lowerCamelCase ) else: _lowerCAmelCase = SwitchTransformersConfig.from_pretrained(__lowerCamelCase ) _lowerCAmelCase = SwitchTransformersForConditionalGeneration(__lowerCamelCase ) _lowerCAmelCase = flax_params["""target"""] _lowerCAmelCase = flatten_dict(__lowerCamelCase , sep="""/""" ) _lowerCAmelCase = rename_keys(__lowerCamelCase ) _lowerCAmelCase = unflatten_dict(__lowerCamelCase , sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__lowerCamelCase , __lowerCamelCase ) print(f'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") _lowercase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
162
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=2 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = 13 _lowerCAmelCase = 7 _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = 99 _lowerCAmelCase = 384 _lowerCAmelCase = 2 _lowerCAmelCase = 4 _lowerCAmelCase = 37 _lowerCAmelCase = """gelu""" _lowerCAmelCase = 0.1 _lowerCAmelCase = 0.1 _lowerCAmelCase = 512 _lowerCAmelCase = 16 _lowerCAmelCase = 2 _lowerCAmelCase = 0.02 _lowerCAmelCase = 3 _lowerCAmelCase = 4 _lowerCAmelCase = 128 _lowerCAmelCase = 2 _lowerCAmelCase = 9 _lowerCAmelCase = 1 _lowerCAmelCase = None def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_lowercase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFConvBertModel(config=_lowercase ) _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowerCAmelCase = [input_ids, input_mask] _lowerCAmelCase = model(_lowercase ) _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFConvBertForMaskedLM(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFConvBertForSequenceClassification(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.num_choices _lowerCAmelCase = TFConvBertForMultipleChoice(config=_lowercase ) _lowerCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFConvBertForTokenClassification(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = TFConvBertForQuestionAnswering(config=_lowercase ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Union[str, Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _lowercase : str = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _lowercase : int = False _lowercase : str = False _lowercase : Any = False def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFConvBertModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowercase ) @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True _lowerCAmelCase = True if hasattr(_lowercase , """use_cache""" ): _lowerCAmelCase = True _lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) _lowerCAmelCase = getattr(self.model_tester , """key_length""" , _lowercase ) for model_class in self.all_model_classes: _lowerCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = len(model(_lowercase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowercase , saved_model=_lowercase ) _lowerCAmelCase = os.path.join(_lowercase , """saved_model""" , """1""" ) _lowerCAmelCase = tf.keras.models.load_model(_lowercase ) _lowerCAmelCase = model(_lowercase ) if self.is_encoder_decoder: _lowerCAmelCase = outputs["""encoder_hidden_states"""] _lowerCAmelCase = outputs["""encoder_attentions"""] else: _lowerCAmelCase = outputs["""hidden_states"""] _lowerCAmelCase = outputs["""attentions"""] self.assertEqual(len(_lowercase ) , _lowercase ) _lowerCAmelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = True _lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) _lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) _lowerCAmelCase = getattr(self.model_tester , """key_length""" , _lowercase ) _lowerCAmelCase = getattr(self.model_tester , """key_length""" , _lowercase ) def check_decoder_attentions_output(_lowercase ): _lowerCAmelCase = len(_lowercase ) self.assertEqual(out_len % 2 , 0 ) _lowerCAmelCase = outputs.decoder_attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_lowercase ): _lowerCAmelCase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) _lowerCAmelCase = len(_lowercase ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) if self.is_encoder_decoder: _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_decoder_attentions_output(_lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _lowerCAmelCase = True _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) # Check attention is always last and order is fine _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_lowercase ) ) self.assertEqual(model.config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) _lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase = model(_lowercase )[0] _lowerCAmelCase = [1, 6, 768] self.assertEqual(output.shape , _lowercase ) _lowerCAmelCase = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowercase , atol=1e-4 )
162
1
"""simple docstring""" from __future__ import annotations from typing import Any class UpperCamelCase : """simple docstring""" def __init__( self : str , _lowerCamelCase : int ): A__ = num_of_nodes A__ = [] A__ = {} def A__ ( self : Dict , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int ): self.m_edges.append([u_node, v_node, weight] ) def A__ ( self : Optional[Any] , _lowerCamelCase : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def A__ ( self : Union[str, Any] , _lowerCamelCase : int ): if self.m_component[u_node] != u_node: for k in self.m_component: A__ = self.find_component(_lowerCamelCase ) def A__ ( self : int , _lowerCamelCase : list[int] , _lowerCamelCase : int , _lowerCamelCase : int ): if component_size[u_node] <= component_size[v_node]: A__ = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: A__ = self.find_component(_lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCamelCase ) def A__ ( self : str ): A__ = [] A__ = 0 A__ = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) A__ = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: A__ , A__ , A__ = edge A__ = self.m_component[u] A__ = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): A__ = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCamelCase , _lowerCamelCase ): A__ , A__ , A__ = edge A__ = self.m_component[u] A__ = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 A__ = [-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def a_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
571
"""simple docstring""" import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class UpperCamelCase ( a ): """simple docstring""" def __init__( self : Tuple , _lowerCamelCase : int , _lowerCamelCase : List[str]=1_3 , _lowerCamelCase : Dict=7 , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Any=True , _lowerCamelCase : int=False , _lowerCamelCase : int=True , _lowerCamelCase : Optional[Any]=9_9 , _lowerCamelCase : Optional[Any]=3_2 , _lowerCamelCase : List[str]=5 , _lowerCamelCase : Optional[int]=4 , _lowerCamelCase : str=6_4 , _lowerCamelCase : Union[str, Any]="gelu" , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : List[Any]=5_1_2 , _lowerCamelCase : Tuple=1_6 , _lowerCamelCase : str=2 , _lowerCamelCase : str=0.02 , _lowerCamelCase : Union[str, Any]=3 , _lowerCamelCase : Tuple=4 , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Tuple=2 , _lowerCamelCase : List[Any]=2 , _lowerCamelCase : str=2 , _lowerCamelCase : Optional[Any]=2 , _lowerCamelCase : Tuple=4 , _lowerCamelCase : Dict=1 , ): A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope A__ = q_groups A__ = k_groups A__ = v_groups A__ = post_attention_groups A__ = intermediate_groups A__ = output_groups def A__ ( self : Union[str, Any] ): A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : Optional[int] ): return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def A__ ( self : Dict , _lowerCamelCase : Tuple , _lowerCamelCase : int , _lowerCamelCase : List[Any] , _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str ): A__ = SqueezeBertModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A__ = model(_lowerCamelCase , _lowerCamelCase ) A__ = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : Dict ): A__ = SqueezeBertForMaskedLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A__ = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : str ): A__ = SqueezeBertForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A__ = model( _lowerCamelCase , attention_mask=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : Any , _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any] ): A__ = self.num_labels A__ = SqueezeBertForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A__ = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] ): A__ = self.num_labels A__ = SqueezeBertForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A__ = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] ): A__ = self.num_choices A__ = SqueezeBertForMultipleChoice(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ = model( _lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Union[str, Any] ): A__ = self.prepare_config_and_inputs() ((A__) , (A__) , (A__) , (A__) , (A__) , (A__)) = config_and_inputs A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( a , a , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Any =( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) _lowerCamelCase : List[str] =( { "feature-extraction": SqueezeBertModel, "fill-mask": SqueezeBertForMaskedLM, "question-answering": SqueezeBertForQuestionAnswering, "text-classification": SqueezeBertForSequenceClassification, "token-classification": SqueezeBertForTokenClassification, "zero-shot": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : Tuple =False _lowerCamelCase : Optional[Any] =True _lowerCamelCase : str =False def A__ ( self : Optional[int] ): A__ = SqueezeBertModelTester(self ) A__ = ConfigTester(self , config_class=_lowerCamelCase , dim=3_7 ) def A__ ( self : int ): self.config_tester.run_common_tests() def A__ ( self : List[str] ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_lowerCamelCase ) def A__ ( self : List[Any] ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_lowerCamelCase ) def A__ ( self : Dict ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_lowerCamelCase ) def A__ ( self : Tuple ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_lowerCamelCase ) def A__ ( self : Dict ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_lowerCamelCase ) def A__ ( self : Dict ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_lowerCamelCase ) @slow def A__ ( self : Any ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = SqueezeBertModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @require_sentencepiece @require_tokenizers @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Optional[Any] ): A__ = SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' ) A__ = torch.tensor([[1, 2_9_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 1_3, 1_5_8_8, 2]] ) A__ = model(_lowerCamelCase )[0] A__ = torch.Size((1, 3) ) self.assertEqual(output.shape , _lowerCamelCase ) A__ = torch.tensor([[0.6_401, -0.0_349, -0.6_041]] ) self.assertTrue(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-4 ) )
571
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
720
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" if "img_encoder.pos_embed" in name: lowerCAmelCase__ : int = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: lowerCAmelCase__ : Optional[int] = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: lowerCAmelCase__ : Optional[Any] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: lowerCAmelCase__ : Optional[Any] = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: lowerCAmelCase__ : int = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: lowerCAmelCase__ : Optional[Any] = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: lowerCAmelCase__ : Optional[int] = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: lowerCAmelCase__ : int = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: lowerCAmelCase__ : List[str] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: lowerCAmelCase__ : Tuple = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: lowerCAmelCase__ : int = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: lowerCAmelCase__ : Any = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: lowerCAmelCase__ : int = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: lowerCAmelCase__ : Optional[Any] = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: lowerCAmelCase__ : Optional[Any] = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: lowerCAmelCase__ : Optional[Any] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: lowerCAmelCase__ : Optional[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: lowerCAmelCase__ : List[str] = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: lowerCAmelCase__ : Tuple = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: lowerCAmelCase__ : str = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: lowerCAmelCase__ : Optional[int] = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: lowerCAmelCase__ : Tuple = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: lowerCAmelCase__ : List[str] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: lowerCAmelCase__ : Optional[Any] = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCAmelCase__ : int = orig_state_dict.pop(lowerCamelCase_ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ : Any = key.split("." ) lowerCAmelCase__ , lowerCAmelCase__ : str = int(key_split[2] ), int(key_split[4] ) lowerCAmelCase__ : List[str] = config.vision_config.hidden_size if "weight" in key: lowerCAmelCase__ : Dict = val[:dim, :] lowerCAmelCase__ : Any = val[dim : dim * 2, :] lowerCAmelCase__ : Optional[int] = val[-dim:, :] else: lowerCAmelCase__ : List[str] = val[:dim] lowerCAmelCase__ : List[Any] = val[dim : dim * 2] lowerCAmelCase__ : str = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase__ : List[Any] = key.split("." ) lowerCAmelCase__ : Dict = int(key_split[3] ) lowerCAmelCase__ : str = config.text_config.hidden_size if "weight" in key: lowerCAmelCase__ : List[Any] = val[:dim, :] lowerCAmelCase__ : Any = val[ dim : dim * 2, : ] lowerCAmelCase__ : Dict = val[-dim:, :] else: lowerCAmelCase__ : str = val[:dim] lowerCAmelCase__ : str = val[dim : dim * 2] lowerCAmelCase__ : Optional[int] = val[-dim:] else: lowerCAmelCase__ : List[str] = rename_key(lowerCamelCase_ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowerCAmelCase__ : Optional[Any] = val.squeeze_() else: lowerCAmelCase__ : List[str] = val return orig_state_dict def UpperCAmelCase_ ( ): """simple docstring""" lowerCAmelCase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_="groupvit-gcc-yfcc" , lowerCamelCase_=False ): """simple docstring""" lowerCAmelCase__ : List[str] = GroupViTConfig() lowerCAmelCase__ : Any = GroupViTModel(lowerCamelCase_ ).eval() lowerCAmelCase__ : Tuple = torch.load(lowerCamelCase_ , map_location="cpu" )["model"] lowerCAmelCase__ : Optional[int] = convert_state_dict(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ : Dict = model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCamelCase_ ) == 0) # verify result lowerCAmelCase__ : Union[str, Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) lowerCAmelCase__ : str = prepare_img() lowerCAmelCase__ : int = processor(text=["a photo of a cat", "a photo of a dog"] , images=lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors="pt" ) with torch.no_grad(): lowerCAmelCase__ : Union[str, Any] = model(**lowerCamelCase_ ) if model_name == "groupvit-gcc-yfcc": lowerCAmelCase__ : Union[str, Any] = torch.tensor([[13.3523, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": lowerCAmelCase__ : int = torch.tensor([[16.1873, 8.6230]] ) else: raise ValueError(f'''Model name {model_name} not supported.''' ) assert torch.allclose(outputs.logits_per_image , lowerCamelCase_ , atol=1e-3 ) processor.save_pretrained(lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) print("Successfully saved processor and model to" , lowerCamelCase_ ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(lowerCamelCase_ , organization="nielsr" ) model.push_to_hub(lowerCamelCase_ , organization="nielsr" ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) snake_case = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
568
0