code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import Any def __UpperCAmelCase ( lowerCamelCase_ : list ) -> list[Any]: """simple docstring""" if not input_list: return [] SCREAMING_SNAKE_CASE_ : Any = [input_list.count(lowerCamelCase_ ) for value in input_list] SCREAMING_SNAKE_CASE_ : Dict = max(lowerCamelCase_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowerCamelCase_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
105
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a__( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , *__lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase): """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = eval_examples lowerCAmelCase = post_process_function def a_ ( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase = "eval"): """simple docstring""" lowerCAmelCase = self.eval_dataset if eval_dataset is None else eval_dataset lowerCAmelCase = self.get_eval_dataloader(__lowerCAmelCase) lowerCAmelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase = self.compute_metrics lowerCAmelCase = None lowerCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowerCAmelCase = time.time() try: lowerCAmelCase = eval_loop( __lowerCAmelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCAmelCase , metric_key_prefix=__lowerCAmelCase , ) finally: lowerCAmelCase = compute_metrics lowerCAmelCase = self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( __lowerCAmelCase , __lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowerCAmelCase = self.post_process_function(__lowerCAmelCase , __lowerCAmelCase , output.predictions) lowerCAmelCase = self.compute_metrics(__lowerCAmelCase) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): lowerCAmelCase = metrics.pop(__lowerCAmelCase) metrics.update(output.metrics) else: lowerCAmelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__lowerCAmelCase) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) lowerCAmelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowerCAmelCase) return metrics def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase = "test"): """simple docstring""" lowerCAmelCase = self.get_test_dataloader(__lowerCAmelCase) # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase = self.compute_metrics lowerCAmelCase = None lowerCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowerCAmelCase = time.time() try: lowerCAmelCase = eval_loop( __lowerCAmelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCAmelCase , metric_key_prefix=__lowerCAmelCase , ) finally: lowerCAmelCase = compute_metrics lowerCAmelCase = self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( __lowerCAmelCase , __lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output lowerCAmelCase = self.post_process_function(__lowerCAmelCase , __lowerCAmelCase , output.predictions , """predict""") lowerCAmelCase = self.compute_metrics(__lowerCAmelCase) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): lowerCAmelCase = metrics.pop(__lowerCAmelCase) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowerCAmelCase)
370
0
from __future__ import annotations import time import numpy as np a = [8, 5, 9, 7] a = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] a = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class UpperCamelCase__ : def __init__( self : Optional[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : list[list[int]] , ): '''simple docstring''' lowercase_ = claim_vector lowercase_ = allocated_resources_table lowercase_ = maximum_claim_table def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(UpperCamelCase__ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return {self.__need().index(UpperCamelCase__ ): i for i in self.__need()} def UpperCAmelCase__ ( self : Optional[Any] , **UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' lowercase_ = self.__need() lowercase_ = self.__allocated_resources_table lowercase_ = self.__available_resources() lowercase_ = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 50 + """\n""" ) while need_list: lowercase_ = False for each_need in need_list: lowercase_ = True for index, need in enumerate(UpperCamelCase__ ): if need > available_resources[index]: lowercase_ = False break if execution: lowercase_ = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowercase_ = original_need_index print(F'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(UpperCamelCase__ ) # update available/freed resources stack lowercase_ = np.array(UpperCamelCase__ ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(UpperCamelCase__ ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( F'''P{self.__allocated_resources_table.index(UpperCamelCase__ ) + 1}''' + """ """.join(F'''{it:>8}''' for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( F'''P{self.__maximum_claim_table.index(UpperCamelCase__ ) + 1}''' + """ """.join(F'''{it:>8}''' for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(UpperCamelCase__ ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(UpperCamelCase__ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
650
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging a = logging.get_logger(__name__) class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : str = ['pixel_values'] def __init__( self : List[Any] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : int = 8 , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_pad lowercase_ = pad_size def UpperCAmelCase__ ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : float , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[Any] ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' lowercase_ , lowercase_ = get_image_size(UpperCamelCase__ ) lowercase_ = (old_height // size + 1) * size - old_height lowercase_ = (old_width // size + 1) * size - old_width return pad(UpperCamelCase__ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase__ : Dict , ): '''simple docstring''' lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_pad if do_pad is not None else self.do_pad lowercase_ = pad_size if pad_size is not None else self.pad_size lowercase_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_rescale: lowercase_ = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_pad: lowercase_ = [self.pad(UpperCamelCase__ , size=UpperCamelCase__ ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
650
1
from __future__ import annotations def _lowercase ( UpperCamelCase_ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = len(_A ) // 2 # choose the middle 3 elements SCREAMING_SNAKE_CASE__ = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
472
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE( a_ , unittest.TestCase ): _UpperCAmelCase = PhobertTokenizer _UpperCAmelCase = False def lowerCAmelCase_ ( self: Dict ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case__ = ['T@@', 'i', 'I', 'R@@', 'r', 'e@@'] snake_case__ = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) snake_case__ = ['#version: 0.2', 'l à</w>'] snake_case__ = {'unk_token': '<unk>'} snake_case__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(F'''{token} {vocab_tokens[token]}\n''' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase ) ) def lowerCAmelCase_ ( self: str , **UpperCamelCase: Dict ) -> int: kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCAmelCase_ ( self: Dict , UpperCamelCase: Any ) -> Optional[int]: snake_case__ = 'Tôi là VinAI Research' snake_case__ = 'T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>' return input_text, output_text def lowerCAmelCase_ ( self: Tuple ) -> Tuple: snake_case__ = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case__ = 'Tôi là VinAI Research' snake_case__ = 'T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'.split() snake_case__ = tokenizer.tokenize(UpperCamelCase ) print(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) snake_case__ = tokens + [tokenizer.unk_token] snake_case__ = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase )
328
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :Union[List[PIL.Image.Image], np.ndarray] lowerCamelCase_ :Optional[List[bool]] lowerCamelCase_ :Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
701
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :List[str] = ['''image_processor''', '''tokenizer'''] lowerCamelCase_ :Optional[int] = '''BlipImageProcessor''' lowerCamelCase_ :Union[str, Any] = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : List[Any] = False super().__init__(snake_case_ , snake_case_ ) UpperCAmelCase_ : Union[str, Any] = self.image_processor def __call__( self , snake_case_ = None , snake_case_ = None , snake_case_ = True , snake_case_ = False , snake_case_ = None , snake_case_ = None , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = True , snake_case_ = None , **snake_case_ , ): '''simple docstring''' if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: UpperCAmelCase_ : str = self.tokenizer UpperCAmelCase_ : Optional[int] = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) return text_encoding # add pixel_values UpperCAmelCase_ : Optional[int] = self.image_processor(snake_case_ , return_tensors=snake_case_ ) if text is not None: UpperCAmelCase_ : Optional[Any] = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) else: UpperCAmelCase_ : Optional[int] = None if text_encoding is not None: encoding_image_processor.update(snake_case_ ) return encoding_image_processor def _UpperCamelCase ( self , *snake_case_ , **snake_case_ ): '''simple docstring''' return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def _UpperCamelCase ( self , *snake_case_ , **snake_case_ ): '''simple docstring''' return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.tokenizer.model_input_names UpperCAmelCase_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
389
0
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] , lowercase__ : Dict , lowercase__ : List[str]=2 , lowercase__ : str=8 , lowercase__ : List[str]=True , lowercase__ : Union[str, Any]=True , lowercase__ : Optional[int]=True , lowercase__ : List[str]=True , lowercase__ : int=9_9 , lowercase__ : List[Any]=1_6 , lowercase__ : Tuple=5 , lowercase__ : Optional[int]=2 , lowercase__ : List[Any]=3_6 , lowercase__ : Union[str, Any]="gelu" , lowercase__ : Tuple=0.0 , lowercase__ : List[Any]=0.0 , lowercase__ : List[Any]=5_1_2 , lowercase__ : Optional[int]=1_6 , lowercase__ : int=2 , lowercase__ : Any=0.0_2 , lowercase__ : Any=3 , lowercase__ : Any=4 , lowercase__ : int=None , ): __lowercase : int = parent __lowercase : List[Any] = batch_size __lowercase : Optional[Any] = seq_length __lowercase : List[Any] = is_training __lowercase : Optional[int] = use_input_mask __lowercase : Optional[int] = use_token_type_ids __lowercase : Union[str, Any] = use_labels __lowercase : Dict = vocab_size __lowercase : Dict = hidden_size __lowercase : Dict = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : Optional[Any] = hidden_act __lowercase : Optional[int] = hidden_dropout_prob __lowercase : Optional[Any] = attention_probs_dropout_prob __lowercase : Optional[int] = max_position_embeddings __lowercase : Any = type_vocab_size __lowercase : Optional[Any] = type_sequence_label_size __lowercase : Optional[Any] = initializer_range __lowercase : Any = num_labels __lowercase : Optional[int] = num_choices __lowercase : Optional[Any] = scope def snake_case ( self : List[str] ): __lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : str = None if self.use_input_mask: __lowercase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : int = None if self.use_token_type_ids: __lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : str = None __lowercase : Tuple = None __lowercase : List[str] = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self : Optional[int] ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) def snake_case ( self : int ): __lowercase : Dict = self.get_config() __lowercase : List[str] = 3_0_0 return config def snake_case ( self : Dict ): ( __lowercase ) : Optional[Any] = self.prepare_config_and_inputs() __lowercase : List[Any] = True __lowercase : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case ( self : str , lowercase__ : str , lowercase__ : List[Any] , lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : List[str] , lowercase__ : Any , lowercase__ : List[str] ): __lowercase : Any = MraModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() __lowercase : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) __lowercase : List[str] = model(lowercase_ , token_type_ids=lowercase_ ) __lowercase : Dict = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : Optional[Any] , lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : List[Any] , lowercase__ : str , lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str , lowercase__ : Optional[Any] , ): __lowercase : Any = True __lowercase : List[Any] = MraModel(lowercase_ ) model.to(lowercase_ ) model.eval() __lowercase : Tuple = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) __lowercase : Any = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , encoder_hidden_states=lowercase_ , ) __lowercase : List[str] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : Tuple , lowercase__ : List[str] , lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : int , lowercase__ : List[str] , lowercase__ : List[Any] , lowercase__ : List[str] ): __lowercase : List[Any] = MraForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() __lowercase : Optional[int] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : str , lowercase__ : Optional[int] , lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any , lowercase__ : Tuple , lowercase__ : int , lowercase__ : Tuple ): __lowercase : List[Any] = MraForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() __lowercase : int = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self : str , lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : int , lowercase__ : int , lowercase__ : List[str] , lowercase__ : Optional[int] , lowercase__ : List[str] ): __lowercase : int = self.num_labels __lowercase : int = MraForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() __lowercase : List[str] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self : Optional[Any] , lowercase__ : Dict , lowercase__ : Any , lowercase__ : Optional[Any] , lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : List[Any] , lowercase__ : str ): __lowercase : List[Any] = self.num_labels __lowercase : Union[str, Any] = MraForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() __lowercase : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self : Dict , lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] , lowercase__ : Optional[int] , lowercase__ : str , lowercase__ : Optional[Any] ): __lowercase : Union[str, Any] = self.num_choices __lowercase : int = MraForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() __lowercase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : str = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case ( self : Union[str, Any] ): __lowercase : Dict = self.prepare_config_and_inputs() ( __lowercase ) : Optional[Any] = config_and_inputs __lowercase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Any = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : str = False __UpperCAmelCase : List[Any] = () def snake_case ( self : Optional[int] ): __lowercase : Any = MraModelTester(self ) __lowercase : int = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7 ) def snake_case ( self : Optional[Any] ): self.config_tester.run_common_tests() def snake_case ( self : Tuple ): __lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def snake_case ( self : str ): __lowercase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : Dict = type self.model_tester.create_and_check_model(*lowercase_ ) def snake_case ( self : Dict ): __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def snake_case ( self : Tuple ): __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase_ ) def snake_case ( self : Optional[int] ): __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) def snake_case ( self : Optional[Any] ): __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def snake_case ( self : str ): __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) @slow def snake_case ( self : Dict ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Union[str, Any] = MraModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip(reason="MRA does not output attentions" ) def snake_case ( self : Optional[Any] ): return @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self : Optional[Any] ): __lowercase : Union[str, Any] = MraModel.from_pretrained("uw-madison/mra-base-512-4" ) __lowercase : Union[str, Any] = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowercase : str = model(lowercase_ )[0] __lowercase : Optional[int] = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , lowercase_ ) __lowercase : int = torch.tensor( [[[-0.0_1_4_0, 0.0_8_3_0, -0.0_3_8_1], [0.1_5_4_6, 0.1_4_0_2, 0.0_2_2_0], [0.1_1_6_2, 0.0_8_5_1, 0.0_1_6_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1e-4 ) ) @slow def snake_case ( self : List[Any] ): __lowercase : Optional[Any] = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" ) __lowercase : Union[str, Any] = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowercase : Optional[int] = model(lowercase_ )[0] __lowercase : Optional[Any] = 5_0_2_6_5 __lowercase : Optional[Any] = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , lowercase_ ) __lowercase : Optional[int] = torch.tensor( [[[9.2_5_9_5, -3.6_0_3_8, 1_1.8_8_1_9], [9.3_8_6_9, -3.2_6_9_3, 1_1.0_9_5_6], [1_1.8_5_2_4, -3.4_9_3_8, 1_3.1_2_1_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1e-4 ) ) @slow def snake_case ( self : Optional[int] ): __lowercase : Any = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" ) __lowercase : Optional[int] = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): __lowercase : Tuple = model(lowercase_ )[0] __lowercase : List[str] = 5_0_2_6_5 __lowercase : Optional[Any] = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , lowercase_ ) __lowercase : Tuple = torch.tensor( [[[5.4_7_8_9, -2.3_5_6_4, 7.5_0_6_4], [7.9_0_6_7, -1.3_3_6_9, 9.9_6_6_8], [9.0_7_1_2, -1.8_1_0_6, 7.0_3_8_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1e-4 ) )
575
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _UpperCAmelCase ( unittest.TestCase): def __init__( self : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : str=13 , lowercase_ : Union[str, Any]=7 , lowercase_ : Dict=True , lowercase_ : int=True , lowercase_ : str=True , lowercase_ : List[Any]=True , lowercase_ : Optional[int]=99 , lowercase_ : str=32 , lowercase_ : List[str]=5 , lowercase_ : List[str]=4 , lowercase_ : List[Any]=37 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Any=0.1 , lowercase_ : Dict=0.1 , lowercase_ : List[Any]=512 , lowercase_ : List[str]=16 , lowercase_ : Any=2 , lowercase_ : Dict=0.02 , lowercase_ : Any=4 , ): snake_case_ : str = parent snake_case_ : List[Any] = batch_size snake_case_ : int = seq_length snake_case_ : Union[str, Any] = is_training snake_case_ : List[Any] = use_attention_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : List[str] = use_labels snake_case_ : List[Any] = vocab_size snake_case_ : Union[str, Any] = hidden_size snake_case_ : int = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : Union[str, Any] = intermediate_size snake_case_ : Optional[int] = hidden_act snake_case_ : int = hidden_dropout_prob snake_case_ : int = attention_probs_dropout_prob snake_case_ : int = max_position_embeddings snake_case_ : List[str] = type_vocab_size snake_case_ : Any = type_sequence_label_size snake_case_ : List[str] = initializer_range snake_case_ : int = num_choices def _snake_case ( self : Union[str, Any] ): snake_case_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Dict = None if self.use_attention_mask: snake_case_ : int = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Any = None if self.use_token_type_ids: snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Optional[int] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _snake_case ( self : List[str] ): snake_case_ : Optional[Any] = self.prepare_config_and_inputs() snake_case_, snake_case_, snake_case_, snake_case_ : int = config_and_inputs snake_case_ : List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class _UpperCAmelCase ( lowerCAmelCase__ , unittest.TestCase): _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Any = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _snake_case ( self : Optional[int] ): snake_case_ : Any = FlaxRoFormerModelTester(self ) @slow def _snake_case ( self : Optional[Any] ): for model_class_name in self.all_model_classes: snake_case_ : str = model_class_name.from_pretrained('''junnyu/roformer_chinese_small''' , from_pt=lowercase_ ) snake_case_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase_ ) @require_flax class _UpperCAmelCase ( unittest.TestCase): @slow def _snake_case ( self : Optional[int] ): snake_case_ : Optional[int] = FlaxRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) snake_case_ : Dict = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ : List[Any] = model(lowercase_ )[0] snake_case_ : List[str] = 50000 snake_case_ : Any = (1, 6, vocab_size) self.assertEqual(output.shape , lowercase_ ) snake_case_ : Tuple = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , lowercase_ , atol=1E-4 ) )
123
0
'''simple docstring''' lowerCamelCase_ : Union[str, Any] = 8.3_1_4_4_5_9_8 def __magic_name__( _A , _A ): '''simple docstring''' if temperature < 0: raise Exception("""Temperature cannot be less than 0 K""" ) if molar_mass <= 0: raise Exception("""Molar mass cannot be less than or equal to 0 kg/mol""" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example lowerCamelCase_ : List[Any] = 300 lowerCamelCase_ : Any = 28 lowerCamelCase_ : int = rms_speed_of_molecule(temperature, molar_mass) print(f"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
265
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase_ : Optional[int] = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __a : Optional[Any] = ["pixel_values"] def __init__( self : str , lowercase : bool = True , lowercase : int = 3_2 , lowercase : List[Any]=PILImageResampling.BILINEAR , lowercase : bool = True , **lowercase : str , ) -> None: '''simple docstring''' UpperCamelCase__ = do_resize UpperCamelCase__ = do_rescale UpperCamelCase__ = size_divisor UpperCamelCase__ = resample super().__init__(**lowercase ) def A ( self : Optional[int] , lowercase : np.ndarray , lowercase : int , lowercase : List[Any] , lowercase : Optional[ChannelDimension] = None , **lowercase : Any ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = get_image_size(lowercase ) # Rounds the height and width down to the closest multiple of size_divisor UpperCamelCase__ = height // size_divisor * size_divisor UpperCamelCase__ = width // size_divisor * size_divisor UpperCamelCase__ = resize(lowercase , (new_h, new_w) , resample=lowercase , data_format=lowercase , **lowercase ) return image def A ( self : int , lowercase : np.ndarray , lowercase : float , lowercase : Optional[ChannelDimension] = None , **lowercase : List[str] ) -> np.ndarray: '''simple docstring''' return rescale(image=lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A ( self : int , lowercase : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , lowercase : Optional[bool] = None , lowercase : Optional[int] = None , lowercase : Optional[Any]=None , lowercase : Optional[bool] = None , lowercase : Optional[Union[TensorType, str]] = None , lowercase : ChannelDimension = ChannelDimension.FIRST , **lowercase : str , ) -> BatchFeature: '''simple docstring''' UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = size_divisor if size_divisor is not None else self.size_divisor UpperCamelCase__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) UpperCamelCase__ = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(lowercase ) for img in images] if do_resize: UpperCamelCase__ = [self.resize(lowercase , size_divisor=lowercase , resample=lowercase ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(lowercase , scale=1 / 2_5_5 ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(lowercase , lowercase ) for image in images] UpperCamelCase__ = {"""pixel_values""": images} return BatchFeature(data=lowercase , tensor_type=lowercase )
265
1
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( "compression_format, is_archive" , [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] , ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) -> List[Any]: """simple docstring""" __A = { "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bza_file, BzipaExtractor), "gzip": (gz_file, GzipExtractor), "lz4": (lza_file, LzaExtractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } __A , __A = input_paths_and_base_extractors[compression_format] if input_path is None: __A = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(a_ ) assert base_extractor.is_extractable(a_ ) __A = tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(a_ , a_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __A = file_path.read_text(encoding="utf-8" ) else: __A = output_path.read_text(encoding="utf-8" ) __A = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( "compression_format, is_archive" , [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] , ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) -> Optional[int]: """simple docstring""" __A = { "7z": seven_zip_file, "bz2": bza_file, "gzip": gz_file, "lz4": lza_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } __A = input_paths[compression_format] if input_path is None: __A = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(a_ ) __A = Extractor.infer_extractor_format(a_ ) assert extractor_format is not None __A = tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(a_ , a_ , a_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __A = file_path.read_text(encoding="utf-8" ) else: __A = output_path.read_text(encoding="utf-8" ) __A = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.fixture def UpperCAmelCase ( a_ , a_ ) -> List[Any]: """simple docstring""" import tarfile __A = tmp_path / "data_dot_dot" directory.mkdir() __A = directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(a_ , "w" ) as f: f.add(a_ , arcname=os.path.join(".." , text_file.name ) ) return path @pytest.fixture def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" import tarfile __A = tmp_path / "data_sym_link" directory.mkdir() __A = directory / "tar_file_with_sym_link.tar" os.symlink(".." , directory / "subdir" , target_is_directory=a_ ) with tarfile.TarFile(a_ , "w" ) as f: f.add(str(directory / "subdir" ) , arcname="subdir" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( "insecure_tar_file, error_log" , [("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")] , ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ ) -> int: """simple docstring""" __A = { "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } __A = insecure_tar_files[insecure_tar_file] __A = tmp_path / "extracted" TarExtractor.extract(a_ , a_ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 __A = ( b"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" b"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" b"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" b"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open("wb" ) as f: f.write(a_ ) assert zipfile.is_zipfile(str(a_ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(a_ ) # but we're right
55
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
512
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class lowercase__ : a_ =PegasusConfig a_ ={} a_ ="""gelu""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=40 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = eos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = bos_token_id def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase__ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCAmelCase__ = prepare_pegasus_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, inputs_dict def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = TFPegasusModel(config=__UpperCAmelCase ).get_decoder() lowerCAmelCase__ = inputs_dict["input_ids"] lowerCAmelCase__ = input_ids[:1, :] lowerCAmelCase__ = inputs_dict["attention_mask"][:1, :] lowerCAmelCase__ = inputs_dict["head_mask"] lowerCAmelCase__ = 1 # first forward pass lowerCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase__ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] lowerCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase__ = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , rtol=1E-3 ) def _a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any=None , UpperCamelCase_ : int=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : int=None , ) -> int: """simple docstring""" if attention_mask is None: lowerCAmelCase__ = tf.cast(tf.math.not_equal(UpperCamelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCAmelCase__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCAmelCase__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowercase__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase ): a_ =(TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () a_ =(TFPegasusForConditionalGeneration,) if is_tf_available() else () a_ =( { """conversational""": TFPegasusForConditionalGeneration, """feature-extraction""": TFPegasusModel, """summarization""": TFPegasusForConditionalGeneration, """text2text-generation""": TFPegasusForConditionalGeneration, """translation""": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) a_ =True a_ =False a_ =False def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = TFPegasusModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=__UpperCAmelCase ) def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class lowercase__ ( unittest.TestCase ): a_ =[ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] a_ =[ """California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to""" """ reduce the risk of wildfires.""", """N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""", ] # differs slightly from pytorch, likely due to numerical differences in linear layers a_ ="""google/pegasus-xsum""" @cached_property def UpperCAmelCase ( self )-> Any: '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCAmelCase ( self , **__UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = self.translate_src_text(**__UpperCAmelCase ) assert self.expected_text == generated_words def UpperCAmelCase ( self , **__UpperCAmelCase )-> Dict: '''simple docstring''' lowerCAmelCase__ = self.tokenizer(self.src_text , **__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors="tf" ) lowerCAmelCase__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__UpperCAmelCase , ) lowerCAmelCase__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__UpperCAmelCase ) return generated_words @slow def UpperCAmelCase ( self )-> Dict: '''simple docstring''' self._assert_generated_batch_equal_expected()
115
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple=0.999 , UpperCamelCase_ : Union[str, Any]="cosine" , ) -> str: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase_ : List[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase_ : int ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowerCAmelCase__ = [] for i in range(UpperCamelCase_ ): lowerCAmelCase__ = i / num_diffusion_timesteps lowerCAmelCase__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase_ ) / alpha_bar_fn(UpperCamelCase_ ) , UpperCamelCase_ ) ) return torch.tensor(UpperCamelCase_ , dtype=torch.floataa ) class lowercase__ ( _UpperCAmelCase, _UpperCAmelCase ): a_ =[e.name for e in KarrasDiffusionSchedulers] a_ =2 @register_to_config def __init__( self , __UpperCAmelCase = 1000 , __UpperCAmelCase = 0.00_085 , __UpperCAmelCase = 0.012 , __UpperCAmelCase = "linear" , __UpperCAmelCase = None , __UpperCAmelCase = "epsilon" , __UpperCAmelCase = "linspace" , __UpperCAmelCase = 0 , )-> int: '''simple docstring''' if trained_betas is not None: lowerCAmelCase__ = torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": lowerCAmelCase__ = torch.linspace(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase__ = betas_for_alpha_bar(__UpperCAmelCase ) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}" ) lowerCAmelCase__ = 1.0 - self.betas lowerCAmelCase__ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> str: '''simple docstring''' if schedule_timesteps is None: lowerCAmelCase__ = self.timesteps lowerCAmelCase__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowerCAmelCase__ = 1 if len(__UpperCAmelCase ) > 1 else 0 else: lowerCAmelCase__ = timestep.cpu().item() if torch.is_tensor(__UpperCAmelCase ) else timestep lowerCAmelCase__ = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , )-> torch.FloatTensor: '''simple docstring''' lowerCAmelCase__ = self.index_for_timestep(__UpperCAmelCase ) if self.state_in_first_order: lowerCAmelCase__ = self.sigmas[step_index] else: lowerCAmelCase__ = self.sigmas_interpol[step_index] lowerCAmelCase__ = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = num_inference_steps lowerCAmelCase__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCAmelCase__ = np.linspace(0 , num_train_timesteps - 1 , __UpperCAmelCase , dtype=__UpperCAmelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCAmelCase__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ = (np.arange(0 , __UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(__UpperCAmelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCAmelCase__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ = (np.arange(__UpperCAmelCase , 0 , -step_ratio )).round().copy().astype(__UpperCAmelCase ) timesteps -= 1 else: raise ValueError( F"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) lowerCAmelCase__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowerCAmelCase__ = torch.from_numpy(np.log(__UpperCAmelCase ) ).to(__UpperCAmelCase ) lowerCAmelCase__ = np.interp(__UpperCAmelCase , np.arange(0 , len(__UpperCAmelCase ) ) , __UpperCAmelCase ) lowerCAmelCase__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowerCAmelCase__ = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase ) # interpolate sigmas lowerCAmelCase__ = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() lowerCAmelCase__ = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) lowerCAmelCase__ = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(__UpperCAmelCase ).startswith("mps" ): # mps does not support float64 lowerCAmelCase__ = torch.from_numpy(__UpperCAmelCase ).to(__UpperCAmelCase , dtype=torch.floataa ) else: lowerCAmelCase__ = torch.from_numpy(__UpperCAmelCase ).to(__UpperCAmelCase ) # interpolate timesteps lowerCAmelCase__ = self.sigma_to_t(__UpperCAmelCase ).to(__UpperCAmelCase , dtype=timesteps.dtype ) lowerCAmelCase__ = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() lowerCAmelCase__ = torch.cat([timesteps[:1], interleaved_timesteps] ) lowerCAmelCase__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCAmelCase__ = defaultdict(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple: '''simple docstring''' lowerCAmelCase__ = sigma.log() # get distribution lowerCAmelCase__ = log_sigma - self.log_sigmas[:, None] # get sigmas range lowerCAmelCase__ = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) lowerCAmelCase__ = low_idx + 1 lowerCAmelCase__ = self.log_sigmas[low_idx] lowerCAmelCase__ = self.log_sigmas[high_idx] # interpolate sigmas lowerCAmelCase__ = (low - log_sigma) / (low - high) lowerCAmelCase__ = w.clamp(0 , 1 ) # transform interpolation to time range lowerCAmelCase__ = (1 - w) * low_idx + w * high_idx lowerCAmelCase__ = t.view(sigma.shape ) return t @property def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' return self.sample is None def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , )-> Union[SchedulerOutput, Tuple]: '''simple docstring''' lowerCAmelCase__ = self.index_for_timestep(__UpperCAmelCase ) # advance index counter by 1 lowerCAmelCase__ = timestep.cpu().item() if torch.is_tensor(__UpperCAmelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCAmelCase__ = self.sigmas[step_index] lowerCAmelCase__ = self.sigmas_interpol[step_index + 1] lowerCAmelCase__ = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method lowerCAmelCase__ = self.sigmas[step_index - 1] lowerCAmelCase__ = self.sigmas_interpol[step_index] lowerCAmelCase__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCAmelCase__ = 0 lowerCAmelCase__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCAmelCase__ = sigma_hat if self.state_in_first_order else sigma_interpol lowerCAmelCase__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase__ = sigma_hat if self.state_in_first_order else sigma_interpol lowerCAmelCase__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCAmelCase__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCAmelCase__ = sigma_interpol - sigma_hat # store for 2nd order step lowerCAmelCase__ = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order lowerCAmelCase__ = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep lowerCAmelCase__ = sigma_next - sigma_hat lowerCAmelCase__ = self.sample lowerCAmelCase__ = None lowerCAmelCase__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , )-> torch.FloatTensor: '''simple docstring''' lowerCAmelCase__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__UpperCAmelCase ): # mps does not support float64 lowerCAmelCase__ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowerCAmelCase__ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowerCAmelCase__ = self.timesteps.to(original_samples.device ) lowerCAmelCase__ = timesteps.to(original_samples.device ) lowerCAmelCase__ = [self.index_for_timestep(__UpperCAmelCase , __UpperCAmelCase ) for t in timesteps] lowerCAmelCase__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowerCAmelCase__ = sigma.unsqueeze(-1 ) lowerCAmelCase__ = original_samples + noise * sigma return noisy_samples def __len__( self )-> List[Any]: '''simple docstring''' return self.config.num_train_timesteps
115
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class snake_case__ : def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=4 , lowerCamelCase=None , ): __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = scope def a__ ( self ): __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self ): return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __a = LlamaModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase , attention_mask=lowerCamelCase ) __a = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): __a = True __a = LlamaModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , ) __a = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , ) __a = model(lowerCamelCase , attention_mask=lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): __a = LlamaForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): __a = True __a = True __a = LlamaForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # first forward pass __a = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , use_cache=lowerCamelCase , ) __a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __a = ids_tensor((self.batch_size, 3) , config.vocab_size ) __a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __a = torch.cat([input_ids, next_tokens] , dim=-1 ) __a = torch.cat([input_mask, next_mask] , dim=-1 ) __a = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , output_hidden_states=lowerCamelCase , )["hidden_states"][0] __a = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , output_hidden_states=lowerCamelCase , )["hidden_states"][0] # select random slice __a = ids_tensor((1,) , output_from_past.shape[-1] ).item() __a = output_from_no_past[:, -3:, random_slice_idx].detach() __a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) def a__ ( self ): __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class snake_case__ ( snake_case_, snake_case_, snake_case_, unittest.TestCase ): _snake_case : Union[str, Any] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _snake_case : Tuple = (LlamaForCausalLM,) if is_torch_available() else () _snake_case : Tuple = ( { """feature-extraction""": LlamaModel, """text-classification""": LlamaForSequenceClassification, """text-generation""": LlamaForCausalLM, """zero-shot""": LlamaForSequenceClassification, } if is_torch_available() else {} ) _snake_case : Union[str, Any] = False _snake_case : Tuple = False def a__ ( self ): __a = LlamaModelTester(self ) __a = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def a__ ( self ): self.config_tester.run_common_tests() def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def a__ ( self ): __a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __a = type self.model_tester.create_and_check_model(*lowerCamelCase ) def a__ ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = input_dict["input_ids"] __a = input_ids.ne(1 ).to(lowerCamelCase ) __a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __a = LlamaForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = "single_label_classification" __a = input_dict["input_ids"] __a = input_ids.ne(1 ).to(lowerCamelCase ) __a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __a = LlamaForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = "multi_label_classification" __a = input_dict["input_ids"] __a = input_ids.ne(1 ).to(lowerCamelCase ) __a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __a = LlamaForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __a = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("LLaMA buffers include complex numbers, which breaks this test" ) def a__ ( self ): pass @parameterized.expand([("linear",), ("dynamic",)] ) def a__ ( self , lowerCamelCase ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = ids_tensor([1, 10] , config.vocab_size ) __a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __a = LlamaModel(lowerCamelCase ) original_model.to(lowerCamelCase ) original_model.eval() __a = original_model(lowerCamelCase ).last_hidden_state __a = original_model(lowerCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __a = {"type": scaling_type, "factor": 10.0} __a = LlamaModel(lowerCamelCase ) scaled_model.to(lowerCamelCase ) scaled_model.eval() __a = scaled_model(lowerCamelCase ).last_hidden_state __a = scaled_model(lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-5 ) ) @require_torch class snake_case__ ( unittest.TestCase ): @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def a__ ( self ): __a = [1, 306, 4658, 278, 6593, 310, 2834, 338] __a = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" , device_map="auto" ) __a = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __a = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __a = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def a__ ( self ): __a = [1, 306, 4658, 278, 6593, 310, 2834, 338] __a = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" , device_map="auto" ) __a = model(torch.tensor(lowerCamelCase ) ) # Expected mean on dim = -1 __a = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __a = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def a__ ( self ): __a = [1, 306, 4658, 278, 6593, 310, 2834, 338] __a = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" , device_map="auto" ) __a = model(torch.tensor(lowerCamelCase ) ) # Expected mean on dim = -1 __a = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __a = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test" ) @slow def a__ ( self ): __a = [1, 306, 4658, 278, 6593, 310, 2834, 338] __a = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" , device_map="auto" ) __a = model(torch.tensor(lowerCamelCase ) ) __a = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off __a = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Model is curently gated" ) @slow def a__ ( self ): __a = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi" __a = "Simply put, the theory of relativity states that " __a = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf" ) __a = tokenizer.encode(lowerCamelCase , return_tensors="pt" ) __a = LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-13b-chat-hf" , device_map="sequential" , use_safetensors=lowerCamelCase ) # greedy generation outputs __a = model.generate(lowerCamelCase , max_new_tokens=64 , top_p=lowerCamelCase , temperature=1 , do_sample=lowerCamelCase ) __a = tokenizer.decode(generated_ids[0] , skip_special_tokens=lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase )
528
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging SCREAMING_SNAKE_CASE__:Optional[Any] = logging.get_logger(__name__) class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase ): super().__init__() __a = nn.ModuleList(lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = True , ): for i, (image, scale, controlnet) in enumerate(zip(lowerCamelCase , lowerCamelCase , self.nets ) ): __a , __a = controlnet( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) # merge samples if i == 0: __a , __a = down_samples, mid_sample else: __a = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(lowerCamelCase , lowerCamelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def a__ ( self , lowerCamelCase , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = None , ): __a = 0 __a = save_directory for controlnet in self.nets: controlnet.save_pretrained( lowerCamelCase , is_main_process=lowerCamelCase , save_function=lowerCamelCase , safe_serialization=lowerCamelCase , variant=lowerCamelCase , ) idx += 1 __a = model_path_to_save + F"_{idx}" @classmethod def a__ ( cls , lowerCamelCase , **lowerCamelCase ): __a = 0 __a = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... __a = pretrained_model_path while os.path.isdir(lowerCamelCase ): __a = ControlNetModel.from_pretrained(lowerCamelCase , **lowerCamelCase ) controlnets.append(lowerCamelCase ) idx += 1 __a = pretrained_model_path + F"_{idx}" logger.info(F"{len(lowerCamelCase )} controlnets loaded from {pretrained_model_path}." ) if len(lowerCamelCase ) == 0: raise ValueError( F"No ControlNets found under {os.path.dirname(lowerCamelCase )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(lowerCamelCase )
528
1
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=100 , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=3 , )-> int: lowerCamelCase_ =parent lowerCamelCase_ =vocab_size lowerCamelCase_ =batch_size lowerCamelCase_ =image_size lowerCamelCase_ =patch_size lowerCamelCase_ =num_channels lowerCamelCase_ =is_training lowerCamelCase_ =use_labels lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_act lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =type_sequence_label_size lowerCamelCase_ =initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase_ =(image_size // patch_size) ** 2 lowerCamelCase_ =num_patches + 1 def _snake_case ( self )-> Tuple: lowerCamelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ =BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, pixel_values, labels def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> List[Any]: lowerCamelCase_ =FlaxBeitModel(config=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Any: lowerCamelCase_ =FlaxBeitForMaskedImageModeling(config=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> List[str]: lowerCamelCase_ =self.type_sequence_label_size lowerCamelCase_ =FlaxBeitForImageClassification(config=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ =1 lowerCamelCase_ =FlaxBeitForImageClassification(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Optional[int]: lowerCamelCase_ =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) =config_and_inputs lowerCamelCase_ ={"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:Tuple = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _snake_case ( self )-> None: lowerCamelCase_ =FlaxBeitModelTester(self ) lowerCamelCase_ =ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def _snake_case ( self )-> List[str]: self.config_tester.run_common_tests() def _snake_case ( self )-> int: lowerCamelCase_ , lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ =model_class(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ =[*signature.parameters.keys()] lowerCamelCase_ =["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> str: lowerCamelCase_ , lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase_ =self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model_class(_SCREAMING_SNAKE_CASE ) @jax.jit def model_jitted(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return model(pixel_values=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) with self.subTest("""JIT Enabled""" ): lowerCamelCase_ =model_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowerCamelCase_ =model_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) def _snake_case ( self )-> Dict: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )-> int: for model_class_name in self.all_model_classes: lowerCamelCase_ =model_class_name.from_pretrained("""microsoft/beit-base-patch16-224""" ) lowerCamelCase_ =model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( ) ->Dict: """simple docstring""" lowerCamelCase_ =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase): @cached_property def _snake_case ( self )-> Union[str, Any]: return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def _snake_case ( self )-> List[str]: lowerCamelCase_ =FlaxBeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ) lowerCamelCase_ =self.default_image_processor lowerCamelCase_ =prepare_img() lowerCamelCase_ =image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""np""" ).pixel_values # prepare bool_masked_pos lowerCamelCase_ =np.ones((1, 196) , dtype=_SCREAMING_SNAKE_CASE ) # forward pass lowerCamelCase_ =model(pixel_values=_SCREAMING_SNAKE_CASE , bool_masked_pos=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =outputs.logits # verify the logits lowerCamelCase_ =(1, 196, 8192) self.assertEqual(logits.shape , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =np.array( [[-3.2_4_3_7, 0.5_0_7_2, -13.9174], [-3.2_4_5_6, 0.4_9_4_8, -13.9401], [-3.2_0_3_3, 0.5_1_2_1, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-2 ) ) @slow def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ) lowerCamelCase_ =self.default_image_processor lowerCamelCase_ =prepare_img() lowerCamelCase_ =image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""np""" ) # forward pass lowerCamelCase_ =model(**_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =outputs.logits # verify the logits lowerCamelCase_ =(1, 1000) self.assertEqual(logits.shape , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =np.array([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ) self.assertTrue(np.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) lowerCamelCase_ =281 self.assertEqual(logits.argmax(-1 ).item() , _SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )-> List[str]: lowerCamelCase_ =FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ) lowerCamelCase_ =self.default_image_processor lowerCamelCase_ =prepare_img() lowerCamelCase_ =image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""np""" ) # forward pass lowerCamelCase_ =model(**_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =outputs.logits # verify the logits lowerCamelCase_ =(1, 2_1841) self.assertEqual(logits.shape , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =np.array([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ) self.assertTrue(np.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) lowerCamelCase_ =2396 self.assertEqual(logits.argmax(-1 ).item() , _SCREAMING_SNAKE_CASE )
706
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase): def _snake_case ( self )-> List[str]: lowerCamelCase_ =torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCamelCase_ =get_activation("""gelu""" ) self.assertTrue(torch.allclose(gelu_python(_SCREAMING_SNAKE_CASE ) , torch_builtin(_SCREAMING_SNAKE_CASE ) ) ) self.assertFalse(torch.allclose(gelu_python(_SCREAMING_SNAKE_CASE ) , gelu_new(_SCREAMING_SNAKE_CASE ) ) ) def _snake_case ( self )-> int: lowerCamelCase_ =torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCamelCase_ =get_activation("""gelu""" ) lowerCamelCase_ =get_activation("""gelu_10""" ) lowerCamelCase_ =torch_builtin(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =geluaa(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(_SCREAMING_SNAKE_CASE ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _snake_case ( self )-> Dict: get_activation("""gelu""" ) get_activation("""gelu_10""" ) get_activation("""gelu_fast""" ) get_activation("""gelu_new""" ) get_activation("""gelu_python""" ) get_activation("""gelu_pytorch_tanh""" ) get_activation("""linear""" ) get_activation("""mish""" ) get_activation("""quick_gelu""" ) get_activation("""relu""" ) get_activation("""sigmoid""" ) get_activation("""silu""" ) get_activation("""swish""" ) get_activation("""tanh""" ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): get_activation("""bogus""" ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): get_activation(_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Any: lowerCamelCase_ =get_activation("""gelu""" ) lowerCamelCase_ =1 lowerCamelCase_ =get_activation("""gelu""" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): lowerCamelCase_ =acta.a
75
0
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class A_ (unittest.TestCase ): """simple docstring""" def __init__( self :int , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str]=13 , lowerCAmelCase__ :str=7 , lowerCAmelCase__ :Any=True , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :Dict=99 , lowerCAmelCase__ :Tuple=32 , lowerCAmelCase__ :Optional[int]=5 , lowerCAmelCase__ :Dict=4 , lowerCAmelCase__ :Any=37 , lowerCAmelCase__ :int="gelu" , lowerCAmelCase__ :Optional[Any]=0.1 , lowerCAmelCase__ :Tuple=0.1 , lowerCAmelCase__ :Union[str, Any]=512 , lowerCAmelCase__ :Tuple=16 , lowerCAmelCase__ :int=2 , lowerCAmelCase__ :List[str]=0.0_2 , lowerCAmelCase__ :Dict=4 , ) -> int: '''simple docstring''' snake_case_ : str = parent snake_case_ : Any = batch_size snake_case_ : Any = seq_length snake_case_ : Dict = is_training snake_case_ : List[Any] = use_attention_mask snake_case_ : int = use_token_type_ids snake_case_ : str = use_labels snake_case_ : Dict = vocab_size snake_case_ : str = hidden_size snake_case_ : Any = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : Optional[int] = intermediate_size snake_case_ : List[Any] = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : Tuple = attention_probs_dropout_prob snake_case_ : Tuple = max_position_embeddings snake_case_ : Tuple = type_vocab_size snake_case_ : Optional[int] = type_sequence_label_size snake_case_ : Any = initializer_range snake_case_ : List[Any] = num_choices def _A ( self :Any ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Optional[Any] = None if self.use_attention_mask: snake_case_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[Any] = None if self.use_token_type_ids: snake_case_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Dict = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _A ( self :List[str] ) -> List[Any]: '''simple docstring''' snake_case_ : int = self.prepare_config_and_inputs() snake_case_, snake_case_, snake_case_, snake_case_ : Optional[int] = config_and_inputs snake_case_ : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class A_ (a_ , unittest.TestCase ): """simple docstring""" a__ = True a__ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _A ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case_ : int = FlaxRoFormerModelTester(self ) @slow def _A ( self :List[Any] ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : str = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=lowerCAmelCase__ ) snake_case_ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase__ ) @require_flax class A_ (unittest.TestCase ): """simple docstring""" @slow def _A ( self :Union[str, Any] ) -> Any: '''simple docstring''' snake_case_ : Any = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) snake_case_ : int = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Any = model(lowerCAmelCase__ )[0] snake_case_ : Any = 50_000 snake_case_ : Dict = (1, 6, vocab_size) self.assertEqual(output.shape , lowerCAmelCase__ ) snake_case_ : Dict = jnp.array( [[[-0.1_2_0_5, -1.0_2_6_5, 0.2_9_2_2], [-1.5_1_3_4, 0.1_9_7_4, 0.1_5_1_9], [-5.0_1_3_5, -3.9_0_0_3, -0.8_4_0_4]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) )
653
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> str: """simple docstring""" if not isinstance(__magic_name__ ,__magic_name__ ): raise ValueError("iterations must be defined as integers" ) if not isinstance(__magic_name__ ,__magic_name__ ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) snake_case_ : Dict = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__magic_name__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
653
1
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): _lowerCamelCase : Optional[Any] = DistilBertTokenizer _lowerCamelCase : int = DistilBertTokenizerFast _lowerCamelCase : Tuple = True @slow def __magic_name__ ( self ): a_ = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) a_ = tokenizer.encode("""sequence builders""" , add_special_tokens=_SCREAMING_SNAKE_CASE ) a_ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_SCREAMING_SNAKE_CASE ) a_ = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE ) a_ = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
403
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Optional[int] ) -> int: """simple docstring""" return getitem, k def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Dict , UpperCamelCase : Any ) -> Tuple: """simple docstring""" return setitem, k, v def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Tuple ) -> List[Any]: """simple docstring""" return delitem, k def __SCREAMING_SNAKE_CASE ( UpperCamelCase : List[str] , UpperCamelCase : Dict , *UpperCamelCase : Optional[int] ) -> str: """simple docstring""" try: return fun(UpperCamelCase , *UpperCamelCase ), None except Exception as e: return None, e _A = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) _A = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] _A = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] _A = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] _A = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] _A = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" a_ = HashMap(initial_block_size=4 ) a_ = {} for _, (fun, *args) in enumerate(UpperCamelCase ): a_ , a_ = _run_operation(UpperCamelCase , UpperCamelCase , *UpperCamelCase ) a_ , a_ = _run_operation(UpperCamelCase , UpperCamelCase , *UpperCamelCase ) assert my_res == py_res assert str(UpperCamelCase ) == str(UpperCamelCase ) assert set(UpperCamelCase ) == set(UpperCamelCase ) assert len(UpperCamelCase ) == len(UpperCamelCase ) assert set(my.items() ) == set(py.items() ) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: """simple docstring""" def is_public(UpperCamelCase : str ) -> bool: return not name.startswith("""_""" ) a_ = {name for name in dir({} ) if is_public(UpperCamelCase )} a_ = {name for name in dir(HashMap() ) if is_public(UpperCamelCase )} assert dict_public_names > hash_public_names
403
1
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline __UpperCAmelCase = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def snake_case_ (__A : Optional[Any] , __A : tuple , __A : Path , __A : Optional[int] , __A : Union[str, Any] , __A : Optional[int] , __A : Union[str, Any] , __A : str=False , ) -> Optional[Any]: output_path.parent.mkdir(parents=__A , exist_ok=__A ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , use_external_data_format=__A , enable_onnx_checker=__A , opset_version=__A , ) else: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , opset_version=__A , ) @torch.no_grad() def snake_case_ (__A : str , __A : str , __A : int , __A : bool = False ) -> List[Any]: __lowerCAmelCase : Any = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __lowerCAmelCase : int = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: __lowerCAmelCase : Union[str, Any] = """cpu""" __lowerCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(__A , torch_dtype=__A ).to(__A ) __lowerCAmelCase : int = Path(__A ) # TEXT ENCODER __lowerCAmelCase : int = pipeline.text_encoder.config.max_position_embeddings __lowerCAmelCase : Optional[int] = pipeline.text_encoder.config.hidden_size __lowerCAmelCase : Union[str, Any] = pipeline.tokenizer( """A sample prompt""" , padding="""max_length""" , max_length=pipeline.tokenizer.model_max_length , truncation=__A , return_tensors="""pt""" , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=__A , dtype=torch.intaa )) , output_path=output_path / """text_encoder""" / """model.onnx""" , ordered_input_names=["""input_ids"""] , output_names=["""last_hidden_state""", """pooler_output"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """sequence"""}, } , opset=__A , ) del pipeline.text_encoder # UNET __lowerCAmelCase : Optional[int] = pipeline.unet.config.in_channels __lowerCAmelCase : Tuple = pipeline.unet.config.sample_size __lowerCAmelCase : Optional[Any] = output_path / """unet""" / """model.onnx""" onnx_export( pipeline.unet , model_args=( torch.randn(2 , __A , __A , __A ).to(device=__A , dtype=__A ), torch.randn(2 ).to(device=__A , dtype=__A ), torch.randn(2 , __A , __A ).to(device=__A , dtype=__A ), False, ) , output_path=__A , ordered_input_names=["""sample""", """timestep""", """encoder_hidden_states""", """return_dict"""] , output_names=["""out_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """timestep""": {0: """batch"""}, """encoder_hidden_states""": {0: """batch""", 1: """sequence"""}, } , opset=__A , use_external_data_format=__A , ) __lowerCAmelCase : str = str(unet_path.absolute().as_posix() ) __lowerCAmelCase : Union[str, Any] = os.path.dirname(__A ) __lowerCAmelCase : Optional[Any] = onnx.load(__A ) # clean up existing tensor files shutil.rmtree(__A ) os.mkdir(__A ) # collate external tensor files into one onnx.save_model( __A , __A , save_as_external_data=__A , all_tensors_to_one_file=__A , location="""weights.pb""" , convert_attribute=__A , ) del pipeline.unet # VAE ENCODER __lowerCAmelCase : List[str] = pipeline.vae __lowerCAmelCase : Tuple = vae_encoder.config.in_channels __lowerCAmelCase : Dict = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder __lowerCAmelCase : List[Any] = lambda __A , __A : vae_encoder.encode(__A , __A )[0].sample() onnx_export( __A , model_args=( torch.randn(1 , __A , __A , __A ).to(device=__A , dtype=__A ), False, ) , output_path=output_path / """vae_encoder""" / """model.onnx""" , ordered_input_names=["""sample""", """return_dict"""] , output_names=["""latent_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__A , ) # VAE DECODER __lowerCAmelCase : Any = pipeline.vae __lowerCAmelCase : Union[str, Any] = vae_decoder.config.latent_channels __lowerCAmelCase : str = vae_decoder.config.out_channels # forward only through the decoder part __lowerCAmelCase : Optional[int] = vae_encoder.decode onnx_export( __A , model_args=( torch.randn(1 , __A , __A , __A ).to(device=__A , dtype=__A ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__A , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: __lowerCAmelCase : Optional[Any] = pipeline.safety_checker __lowerCAmelCase : Optional[int] = safety_checker.config.vision_config.num_channels __lowerCAmelCase : str = safety_checker.config.vision_config.image_size __lowerCAmelCase : Dict = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , __A , __A , __A , ).to(device=__A , dtype=__A ), torch.randn(1 , __A , __A , __A ).to(device=__A , dtype=__A ), ) , output_path=output_path / """safety_checker""" / """model.onnx""" , ordered_input_names=["""clip_input""", """images"""] , output_names=["""out_images""", """has_nsfw_concepts"""] , dynamic_axes={ """clip_input""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """images""": {0: """batch""", 1: """height""", 2: """width""", 3: """channels"""}, } , opset=__A , ) del pipeline.safety_checker __lowerCAmelCase : List[Any] = OnnxRuntimeModel.from_pretrained(output_path / """safety_checker""" ) __lowerCAmelCase : Tuple = pipeline.feature_extractor else: __lowerCAmelCase : Dict = None __lowerCAmelCase : Any = None __lowerCAmelCase : List[Any] = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_encoder""" ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_decoder""" ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / """text_encoder""" ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / """unet""" ) , scheduler=pipeline.scheduler , safety_checker=__A , feature_extractor=__A , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(__A ) print("""ONNX pipeline saved to""" , __A ) del pipeline del onnx_pipeline __lowerCAmelCase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(__A , provider="""CPUExecutionProvider""" ) print("""ONNX pipeline is loadable""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") __UpperCAmelCase = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
651
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __UpperCAmelCase = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : bool =field(default=a_ , metadata={"help": "Whether to use SortishSampler or not."} ) lowerCamelCase : bool =field( default=a_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowerCamelCase : Optional[int] =field( default=a_ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowerCamelCase : Optional[int] =field( default=a_ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowerCamelCase : Optional[Union[str, Path, GenerationConfig]] =field( default=a_ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = super().to_dict() for k, v in d.items(): if isinstance(lowerCAmelCase , lowerCAmelCase ): __lowerCAmelCase : List[Any] = v.to_dict() return d
651
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCAmelCase : Dict = """▁""" _UpperCAmelCase : Any = {"""vocab_file""": """spiece.model"""} _UpperCAmelCase : str = { """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } _UpperCAmelCase : List[str] = { """google/reformer-crime-and-punishment""": 5_2_4_2_8_8, } class a__ ( __A ): """simple docstring""" __UpperCamelCase : List[Any] = VOCAB_FILES_NAMES __UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Any = ['input_ids', 'attention_mask'] def __init__(self , __lowercase , __lowercase="</s>" , __lowercase="<unk>" , __lowercase=[] , __lowercase = None , **__lowercase , ): __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__lowercase , unk_token=__lowercase , additional_special_tokens=__lowercase , sp_model_kwargs=self.sp_model_kwargs , **__lowercase , ) __lowerCAmelCase = vocab_file __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowercase ) @property def _snake_case (self ): return self.sp_model.get_piece_size() def _snake_case (self ): __lowerCAmelCase = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__(self , __lowercase ): __lowerCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case (self , __lowercase ): return self.sp_model.encode(__lowercase , out_type=__lowercase ) def _snake_case (self , __lowercase ): return self.sp_model.piece_to_id(__lowercase ) def _snake_case (self , __lowercase ): if index < self.sp_model.get_piece_size(): __lowerCAmelCase = self.sp_model.IdToPiece(__lowercase ) return token def _snake_case (self , __lowercase ): __lowerCAmelCase = [] __lowerCAmelCase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowercase ) + token __lowerCAmelCase = [] else: current_sub_tokens.append(__lowercase ) out_string += self.sp_model.decode(__lowercase ) return out_string.strip() def _snake_case (self , __lowercase , __lowercase = None ): if not os.path.isdir(__lowercase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowercase ) elif not os.path.isfile(self.vocab_file ): with open(__lowercase , '''wb''' ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (out_vocab_file,)
705
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer _UpperCAmelCase : str = ["""gpt2"""] _UpperCAmelCase : Optional[int] = """gpt2""" if is_tf_available(): class a__ ( tf.Module ): """simple docstring""" def __init__(self , __lowercase ): super().__init__() __lowerCAmelCase = tokenizer __lowerCAmelCase = AutoConfig.from_pretrained(__lowercase ) __lowerCAmelCase = TFGPTaLMHeadModel.from_config(__lowercase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def _snake_case (self , __lowercase ): __lowerCAmelCase = self.tokenizer(__lowercase ) __lowerCAmelCase = tokenized['''input_ids'''].to_tensor() __lowerCAmelCase = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __lowerCAmelCase = self.model(input_ids=__lowercase , attention_mask=__lowercase )['''logits'''] return outputs @require_tf @require_keras_nlp class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().setUp() __lowerCAmelCase = [GPTaTokenizer.from_pretrained(__lowercase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __lowerCAmelCase = [TFGPTaTokenizer.from_pretrained(__lowercase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __lowerCAmelCase = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] __lowerCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _snake_case (self ): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __lowerCAmelCase = tokenizer([test_inputs] , return_tensors='''tf''' ) __lowerCAmelCase = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __lowerCAmelCase = python_outputs[key].numpy() __lowerCAmelCase = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__lowercase , tf.intaa ) == tf_outputs_values ) ) @slow def _snake_case (self ): for tf_tokenizer in self.tf_tokenizers: __lowerCAmelCase = tf.function(__lowercase ) for test_inputs in self.test_sentences: __lowerCAmelCase = tf.constant(__lowercase ) __lowerCAmelCase = compiled_tokenizer(__lowercase ) __lowerCAmelCase = tf_tokenizer(__lowercase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _snake_case (self ): for tf_tokenizer in self.tf_tokenizers: __lowerCAmelCase = ModelToSave(tokenizer=__lowercase ) __lowerCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCAmelCase = model.serving(__lowercase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __lowerCAmelCase = Path(__lowercase ) / '''saved.model''' tf.saved_model.save(__lowercase , __lowercase , signatures={'''serving_default''': model.serving} ) __lowerCAmelCase = tf.saved_model.load(__lowercase ) __lowerCAmelCase = loaded_model.signatures['''serving_default'''](__lowercase )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _snake_case (self ): for tf_tokenizer in self.tf_tokenizers: __lowerCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCAmelCase = tf_tokenizer(__lowercase ) # Build model with some sample inputs __lowerCAmelCase = tf_tokenizer.get_config() __lowerCAmelCase = TFGPTaTokenizer.from_config(__lowercase ) __lowerCAmelCase = model_from_config(__lowercase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _snake_case (self ): for tf_tokenizer in self.tf_tokenizers: # for the test to run __lowerCAmelCase = 12_31_23 for max_length in [3, 5, 10_24]: __lowerCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCAmelCase = tf_tokenizer(__lowercase , max_length=__lowercase ) __lowerCAmelCase = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
474
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a ={ """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys a =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
652
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __SCREAMING_SNAKE_CASE = False class __snake_case ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE_ ( self :List[str] ): return 12 @property def SCREAMING_SNAKE_CASE_ ( self :int ): return 12 @property def SCREAMING_SNAKE_CASE_ ( self :Dict ): return 32 @property def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): torch.manual_seed(0 ) _a = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def SCREAMING_SNAKE_CASE_ ( self :Dict ): _a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCamelCase__ ) @property def SCREAMING_SNAKE_CASE_ ( self :str ): torch.manual_seed(0 ) _a = 12 _a = 12 _a = { "attention_bias": True, "cross_attention_dim": 32, "attention_head_dim": height * width, "num_attention_heads": 1, "num_vector_embeds": self.num_embed, "num_embeds_ada_norm": self.num_embeds_ada_norm, "norm_num_groups": 32, "sample_size": width, "activation_fn": "geglu-approximate", } _a = TransformeraDModel(**UpperCamelCase__ ) return model def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): _a = "cpu" _a = self.dummy_vqvae _a = self.dummy_text_encoder _a = self.dummy_tokenizer _a = self.dummy_transformer _a = VQDiffusionScheduler(self.num_embed ) _a = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCamelCase__ ) _a = VQDiffusionPipeline( vqvae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , transformer=UpperCamelCase__ , scheduler=UpperCamelCase__ , learned_classifier_free_sampling_embeddings=UpperCamelCase__ , ) _a = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _a = "teddy bear playing in the pool" _a = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _a = pipe([prompt] , generator=UpperCamelCase__ , num_inference_steps=2 , output_type="np" ) _a = output.images _a = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _a = pipe( [prompt] , generator=UpperCamelCase__ , output_type="np" , return_dict=UpperCamelCase__ , num_inference_steps=2 )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) _a = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): _a = "cpu" _a = self.dummy_vqvae _a = self.dummy_text_encoder _a = self.dummy_tokenizer _a = self.dummy_transformer _a = VQDiffusionScheduler(self.num_embed ) _a = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCamelCase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) _a = VQDiffusionPipeline( vqvae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , transformer=UpperCamelCase__ , scheduler=UpperCamelCase__ , learned_classifier_free_sampling_embeddings=UpperCamelCase__ , ) _a = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _a = "teddy bear playing in the pool" _a = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _a = pipe([prompt] , generator=UpperCamelCase__ , num_inference_steps=2 , output_type="np" ) _a = output.images _a = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _a = pipe( [prompt] , generator=UpperCamelCase__ , output_type="np" , return_dict=UpperCamelCase__ , num_inference_steps=2 )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) _a = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy" ) _a = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq" ) _a = pipeline.to(UpperCamelCase__ ) pipeline.set_progress_bar_config(disable=UpperCamelCase__ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though _a = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _a = pipeline( "teddy bear playing in the pool" , num_images_per_prompt=1 , generator=UpperCamelCase__ , output_type="np" , ) _a = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
388
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ : Optional[Any] = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[int] = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
704
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : int=7 ): """simple docstring""" SCREAMING_SNAKE_CASE_ = None if token is not None: SCREAMING_SNAKE_CASE_ = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""} # The id of a workflow (not of a workflow run) SCREAMING_SNAKE_CASE_ = '636036' SCREAMING_SNAKE_CASE_ = f"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" SCREAMING_SNAKE_CASE_ = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() return result["workflow_runs"] def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ = get_daily_ci_runs(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": SCREAMING_SNAKE_CASE_ = workflow_run['id'] break return workflow_run_id def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = get_last_daily_ci_runs(_SCREAMING_SNAKE_CASE ) if workflow_run_id is not None: SCREAMING_SNAKE_CASE_ = get_artifacts_links(worflow_run_id=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) for artifact_name in artifact_names: if artifact_name in artifacts_links: SCREAMING_SNAKE_CASE_ = artifacts_links[artifact_name] download_artifact( artifact_name=_SCREAMING_SNAKE_CASE , artifact_url=_SCREAMING_SNAKE_CASE , output_dir=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" get_last_daily_ci_artifacts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = {} for artifact_name in artifact_names: SCREAMING_SNAKE_CASE_ = os.path.join(_SCREAMING_SNAKE_CASE , f"""{artifact_name}.zip""" ) if os.path.isfile(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ = {} with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): # read the file with z.open(_SCREAMING_SNAKE_CASE ) as f: SCREAMING_SNAKE_CASE_ = f.read().decode('UTF-8' ) return results
620
0
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") _lowerCAmelCase, _lowerCAmelCase = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") _lowerCAmelCase = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: _lowerCAmelCase = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) _lowerCAmelCase = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'pip install -r transformers/examples/{example_dir}/requirements.txt']) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
10
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _SCREAMING_SNAKE_CASE () -> Dict: """simple docstring""" lowercase__ = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) lowercase__ = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(A ) DownloadCommand.register_subcommand(A ) EnvironmentCommand.register_subcommand(A ) RunCommand.register_subcommand(A ) ServeCommand.register_subcommand(A ) UserCommands.register_subcommand(A ) AddNewModelCommand.register_subcommand(A ) AddNewModelLikeCommand.register_subcommand(A ) LfsCommands.register_subcommand(A ) PTtoTFCommand.register_subcommand(A ) # Let's go lowercase__ = parser.parse_args() if not hasattr(A , '''func''' ): parser.print_help() exit(1 ) # Run lowercase__ = args.func(A ) service.run() if __name__ == "__main__": main()
460
0
def lowerCamelCase_ ( UpperCamelCase__ : Tuple ): '''simple docstring''' return str(__UpperCAmelCase ) == str(__UpperCAmelCase )[::-1] def lowerCamelCase_ ( UpperCamelCase__ : Tuple ): '''simple docstring''' return int(__UpperCAmelCase ) + int(str(__UpperCAmelCase )[::-1] ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] = 1_0000 ): '''simple docstring''' UpperCamelCase__ = [] for num in range(1, __UpperCAmelCase ): UpperCamelCase__ = 0 UpperCamelCase__ = num while iterations < 50: UpperCamelCase__ = sum_reverse(__UpperCAmelCase ) iterations += 1 if is_palindrome(__UpperCAmelCase ): break else: lychrel_nums.append(__UpperCAmelCase ) return len(__UpperCAmelCase ) if __name__ == "__main__": print(f'{solution() = }')
713
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def lowerCamelCase_ ( UpperCamelCase__ : Any ): '''simple docstring''' UpperCamelCase__ = tmp_path / '''file.csv''' UpperCamelCase__ = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(UpperCamelCase__, '''w''' ) as f: f.write(UpperCamelCase__ ) return str(UpperCamelCase__ ) @pytest.fixture def lowerCamelCase_ ( UpperCamelCase__ : int ): '''simple docstring''' UpperCamelCase__ = tmp_path / '''malformed_file.csv''' UpperCamelCase__ = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(UpperCamelCase__, '''w''' ) as f: f.write(UpperCamelCase__ ) return str(UpperCamelCase__ ) @pytest.fixture def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : str ): '''simple docstring''' UpperCamelCase__ = tmp_path / '''csv_with_image.csv''' UpperCamelCase__ = textwrap.dedent( F"""\ image {image_file} """ ) with open(UpperCamelCase__, '''w''' ) as f: f.write(UpperCamelCase__ ) return str(UpperCamelCase__ ) @pytest.fixture def lowerCamelCase_ ( UpperCamelCase__ : List[str] ): '''simple docstring''' UpperCamelCase__ = tmp_path / '''csv_with_label.csv''' UpperCamelCase__ = textwrap.dedent( '''\ label good bad good ''' ) with open(UpperCamelCase__, '''w''' ) as f: f.write(UpperCamelCase__ ) return str(UpperCamelCase__ ) @pytest.fixture def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ): '''simple docstring''' UpperCamelCase__ = tmp_path / '''csv_with_int_list.csv''' UpperCamelCase__ = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(UpperCamelCase__, '''w''' ) as f: f.write(UpperCamelCase__ ) return str(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : Optional[int], UpperCamelCase__ : Tuple ): '''simple docstring''' UpperCamelCase__ = Csv() UpperCamelCase__ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(UpperCamelCase__, match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(UpperCamelCase__ ) in record.message for record in caplog.records ) @require_pil def lowerCamelCase_ ( UpperCamelCase__ : List[str] ): '''simple docstring''' with open(UpperCamelCase__, encoding='''utf-8''' ) as f: UpperCamelCase__ = f.read().splitlines()[1] UpperCamelCase__ = Csv(encoding='''utf-8''', features=Features({'''image''': Image()} ) ) UpperCamelCase__ = csv._generate_tables([[csv_file_with_image]] ) UpperCamelCase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() UpperCamelCase__ = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def lowerCamelCase_ ( UpperCamelCase__ : Tuple ): '''simple docstring''' with open(UpperCamelCase__, encoding='''utf-8''' ) as f: UpperCamelCase__ = f.read().splitlines()[1:] UpperCamelCase__ = Csv(encoding='''utf-8''', features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) UpperCamelCase__ = csv._generate_tables([[csv_file_with_label]] ) UpperCamelCase__ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() UpperCamelCase__ = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(UpperCamelCase__ ) for label in labels] def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ): '''simple docstring''' UpperCamelCase__ = Csv(encoding='''utf-8''', sep=''',''', converters={'''int_list''': lambda UpperCamelCase__ : [int(UpperCamelCase__ ) for i in x.split()]} ) UpperCamelCase__ = csv._generate_tables([[csv_file_with_int_list]] ) UpperCamelCase__ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) UpperCamelCase__ = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
591
0
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __A : str = "http://www.mocksite.com/file1.txt" __A : Optional[Any] = "\"text\": [\"foo\", \"foo\"]" __A : Dict = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class __lowerCAmelCase : '''simple docstring''' __magic_name__ : Dict = 2_00 __magic_name__ : List[str] = {"""Content-Length""": """100"""} __magic_name__ : int = {} def _UpperCAmelCase ( self : int , **UpperCamelCase__ : int ): return [bytes(UpperCamelCase__ , "utf-8" )] def lowercase ( *UpperCamelCase : Any , **UpperCamelCase : List[str] ): """simple docstring""" return MockResponse() @pytest.mark.parametrize("urls_type" , [str, list, dict] ) def lowercase ( UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : int ): """simple docstring""" import requests monkeypatch.setattr(UpperCamelCase , "request" , UpperCamelCase ) A__ : Union[str, Any] =URL if issubclass(UpperCamelCase , UpperCamelCase ): A__ : int =url elif issubclass(UpperCamelCase , UpperCamelCase ): A__ : Optional[int] =[url] elif issubclass(UpperCamelCase , UpperCamelCase ): A__ : Optional[Any] ={"train": url} A__ : Optional[Any] ="dummy" A__ : Any ="downloads" A__ : List[str] =tmp_path A__ : Any =DownloadConfig( cache_dir=os.path.join(UpperCamelCase , UpperCamelCase ) , use_etag=UpperCamelCase , ) A__ : Any =DownloadManager(dataset_name=UpperCamelCase , download_config=UpperCamelCase ) A__ : List[Any] =dl_manager.download(UpperCamelCase ) A__ : Optional[Any] =urls for downloaded_paths in [downloaded_paths]: if isinstance(UpperCamelCase , UpperCamelCase ): A__ : Optional[int] =[downloaded_paths] A__ : Tuple =[urls] elif isinstance(UpperCamelCase , UpperCamelCase ): assert "train" in downloaded_paths.keys() A__ : Tuple =downloaded_paths.values() A__ : str =urls.values() assert downloaded_paths for downloaded_path, input_url in zip(UpperCamelCase , UpperCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] A__ : Optional[int] =Path(UpperCamelCase ) A__ : str =downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() A__ : Optional[Any] =downloaded_path.read_text() assert content == CONTENT A__ : Any =downloaded_path.with_suffix(".json" ) assert metadata_downloaded_path.exists() A__ : Tuple =json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("paths_type" , [str, list, dict] ) def lowercase ( UpperCamelCase : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : List[str] ): """simple docstring""" A__ : int =str(UpperCamelCase ) if issubclass(UpperCamelCase , UpperCamelCase ): A__ : List[Any] =filename elif issubclass(UpperCamelCase , UpperCamelCase ): A__ : Dict =[filename] elif issubclass(UpperCamelCase , UpperCamelCase ): A__ : str ={"train": filename} A__ : Optional[int] ="dummy" A__ : int =xz_file.parent A__ : List[Any] ="extracted" A__ : List[str] =DownloadConfig( cache_dir=UpperCamelCase , use_etag=UpperCamelCase , ) A__ : List[Any] =DownloadManager(dataset_name=UpperCamelCase , download_config=UpperCamelCase ) A__ : str =dl_manager.extract(UpperCamelCase ) A__ : Union[str, Any] =paths for extracted_paths in [extracted_paths]: if isinstance(UpperCamelCase , UpperCamelCase ): A__ : str =[extracted_paths] A__ : List[Any] =[paths] elif isinstance(UpperCamelCase , UpperCamelCase ): assert "train" in extracted_paths.keys() A__ : str =extracted_paths.values() A__ : Any =paths.values() assert extracted_paths for extracted_path, input_path in zip(UpperCamelCase , UpperCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] A__ : List[str] =Path(UpperCamelCase ) A__ : List[str] =extracted_path.parts assert parts[-1] == hash_url_to_filename(UpperCamelCase , etag=UpperCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() A__ : Dict =extracted_path.read_text() A__ : Dict =text_file.read_text() assert extracted_file_content == expected_file_content def lowercase ( UpperCamelCase : int , UpperCamelCase : str ): """simple docstring""" assert path.endswith(".jsonl" ) for num_items, line in enumerate(UpperCamelCase , start=1 ): A__ : Any =json.loads(line.decode("utf-8" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("archive_jsonl" , ["tar_jsonl_path", "zip_jsonl_path"] ) def lowercase ( UpperCamelCase : int , UpperCamelCase : int ): """simple docstring""" A__ : int =request.getfixturevalue(UpperCamelCase ) A__ : Any =DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(UpperCamelCase ) , start=1 ): _test_jsonl(UpperCamelCase , UpperCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("archive_nested_jsonl" , ["tar_nested_jsonl_path", "zip_nested_jsonl_path"] ) def lowercase ( UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] ): """simple docstring""" A__ : int =request.getfixturevalue(UpperCamelCase ) A__ : Tuple =DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(UpperCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(UpperCamelCase ) , start=1 ): _test_jsonl(UpperCamelCase , UpperCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowercase ( UpperCamelCase : List[Any] ): """simple docstring""" A__ : str =DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(UpperCamelCase ) , start=1 ): assert os.path.basename(UpperCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
656
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __lowerCAmelCase ( unittest.TestCase): '''simple docstring''' def _UpperCAmelCase ( self : List[Any] ): A__ : Tuple =torch.nn.Linear(10 , 10 ) A__ : List[str] =torch.optim.SGD(model.parameters() , 0.1 ) A__ : Union[str, Any] =Accelerator() A__ : str =accelerator.prepare(UpperCamelCase__ ) try: pickle.loads(pickle.dumps(UpperCamelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
656
1
import re from filelock import FileLock try: import nltk lowercase : Optional[Any] = True except (ImportError, ModuleNotFoundError): lowercase : Any = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str) -> str: '''simple docstring''' re.sub("<n>" , "" , _lowerCamelCase) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_lowerCamelCase))
94
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowercase : Any = 'pytorch_model.bin' lowercase : List[str] = 'pytorch_model.bin.index.json' lowercase : List[Any] = 'adapter_config.json' lowercase : str = 'adapter_model.bin' lowercase : List[str] = 'adapter_model.safetensors' lowercase : Any = 'tf_model.h5' lowercase : str = 'tf_model.h5.index.json' lowercase : Any = 'model.ckpt' lowercase : Optional[int] = 'flax_model.msgpack' lowercase : Dict = 'flax_model.msgpack.index.json' lowercase : Dict = 'model.safetensors' lowercase : Dict = 'model.safetensors.index.json' lowercase : Union[str, Any] = 'config.json' lowercase : Tuple = 'preprocessor_config.json' lowercase : Tuple = FEATURE_EXTRACTOR_NAME lowercase : Dict = 'generation_config.json' lowercase : Dict = 'modelcard.json' lowercase : Optional[int] = '▁' lowercase : Any = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowercase : List[Any] = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowercase : Tuple = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowercase : Any = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any]) -> List[str]: '''simple docstring''' if version.parse(_lowerCamelCase) < version.parse(_lowerCamelCase): if "dev" in min_version: __UpperCamelCase : List[str] = ( "This example requires a source install from HuggingFace Transformers (see " "`https://huggingface.co/docs/transformers/installation#install-from-source`)," ) else: __UpperCamelCase : Optional[Any] = F'This example requires a minimum version of {min_version},' error_message += F' but the version found is {__version__}.\n' raise ImportError( error_message + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other " "versions of HuggingFace Transformers.")
94
1
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _SCREAMING_SNAKE_CASE = "true" def __a(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str=82 , SCREAMING_SNAKE_CASE_ : Dict=16 ): '''simple docstring''' set_seed(42 ) _lowerCAmelCase = RegressionModel() _lowerCAmelCase = deepcopy(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = RegressionDataset(length=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = DataLoader(SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) model.to(accelerator.device ) _lowerCAmelCase , _lowerCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return model, ddp_model, dataloader def __a(SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : int=False ): '''simple docstring''' _lowerCAmelCase = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) _lowerCAmelCase = load_dataset("glue" , "mrpc" , split="validation" ) def tokenize_function(SCREAMING_SNAKE_CASE_ : List[str] ): _lowerCAmelCase = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs with accelerator.main_process_first(): _lowerCAmelCase = dataset.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=["idx", "sentence1", "sentence2"] , ) _lowerCAmelCase = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(SCREAMING_SNAKE_CASE_ : str ): if use_longest: return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding="longest" , return_tensors="pt" ) return tokenizer.pad(SCREAMING_SNAKE_CASE_ , padding="max_length" , max_length=128 , return_tensors="pt" ) return DataLoader(SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=16 ) def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' _lowerCAmelCase = Accelerator(dispatch_batches=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = get_dataloader(SCREAMING_SNAKE_CASE_ , not dispatch_batches ) _lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase , _lowerCAmelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' _lowerCAmelCase = [] for batch in dataloader: _lowerCAmelCase , _lowerCAmelCase = batch.values() with torch.no_grad(): _lowerCAmelCase = model(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase , _lowerCAmelCase = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) _lowerCAmelCase , _lowerCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(SCREAMING_SNAKE_CASE_ ) targs.append(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase , _lowerCAmelCase = torch.cat(SCREAMING_SNAKE_CASE_ ), torch.cat(SCREAMING_SNAKE_CASE_ ) return logits, targs def __a(SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : List[Any]=82 , SCREAMING_SNAKE_CASE_ : Optional[int]=False , SCREAMING_SNAKE_CASE_ : List[Any]=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=16 ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = get_basic_setup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase , _lowerCAmelCase = generate_predictions(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert ( len(SCREAMING_SNAKE_CASE_ ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(SCREAMING_SNAKE_CASE_ )}''' def __a(SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False ): '''simple docstring''' _lowerCAmelCase = evaluate.load("glue" , "mrpc" ) _lowerCAmelCase , _lowerCAmelCase = get_mrpc_setup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # First do baseline _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = setup["no"] model.to(SCREAMING_SNAKE_CASE_ ) model.eval() for batch in dataloader: batch.to(SCREAMING_SNAKE_CASE_ ) with torch.inference_mode(): _lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE_ , references=batch["labels"] ) _lowerCAmelCase = metric.compute() # Then do distributed _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): _lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = outputs.logits.argmax(dim=-1 ) _lowerCAmelCase = batch["labels"] _lowerCAmelCase , _lowerCAmelCase = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def __a(): '''simple docstring''' _lowerCAmelCase = Accelerator(split_batches=SCREAMING_SNAKE_CASE_ , dispatch_batches=SCREAMING_SNAKE_CASE_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: _lowerCAmelCase = Accelerator(split_batches=SCREAMING_SNAKE_CASE_ , dispatch_batches=SCREAMING_SNAKE_CASE_ ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(SCREAMING_SNAKE_CASE_ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) _lowerCAmelCase = Accelerator() test_torch_metrics(SCREAMING_SNAKE_CASE_ , 512 ) accelerator.state._reset_state() def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
18
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin __SCREAMING_SNAKE_CASE = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class __UpperCamelCase ( UpperCamelCase , unittest.TestCase ): lowercase_ : Optional[int] = SpeechTaTokenizer lowercase_ : Dict = False lowercase_ : Any = True def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase :Union[str, Any] = SpeechTaTokenizer(UpperCAmelCase ) lowerCAmelCase :Any = AddedToken('<mask>' , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) lowerCAmelCase :List[Any] = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : str , UpperCAmelCase : Any ) -> Union[str, Any]: lowerCAmelCase :Tuple = 'this is a test' lowerCAmelCase :Union[str, Any] = 'this is a test' return input_text, output_text def UpperCAmelCase__ ( self : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any=False , UpperCAmelCase : List[Any]=20 , UpperCAmelCase : str=5 ) -> Optional[Any]: lowerCAmelCase , lowerCAmelCase :Dict = self.get_input_output_texts(UpperCAmelCase ) lowerCAmelCase :str = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCAmelCase :Union[str, Any] = tokenizer.decode(UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) return text, ids def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: lowerCAmelCase :List[Any] = '<pad>' lowerCAmelCase :Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def UpperCAmelCase__ ( self : Any ) -> Any: lowerCAmelCase :Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(UpperCAmelCase ) , 81 ) def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def UpperCAmelCase__ ( self : Any ) -> List[str]: lowerCAmelCase :Any = self.get_tokenizers(do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase :Optional[int] = tokenizer.vocab_size lowerCAmelCase :Union[str, Any] = len(UpperCAmelCase ) self.assertNotEqual(UpperCAmelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) lowerCAmelCase :Optional[Any] = ['aaaaa bbbbbb', 'cccccccccdddddddd'] lowerCAmelCase :Union[str, Any] = tokenizer.add_tokens(UpperCAmelCase ) lowerCAmelCase :str = tokenizer.vocab_size lowerCAmelCase :List[Any] = len(UpperCAmelCase ) self.assertNotEqual(UpperCAmelCase , 0 ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , len(UpperCAmelCase ) ) self.assertEqual(UpperCAmelCase , all_size + len(UpperCAmelCase ) ) lowerCAmelCase :int = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=UpperCAmelCase ) self.assertGreaterEqual(len(UpperCAmelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) lowerCAmelCase :List[Any] = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} lowerCAmelCase :str = tokenizer.add_special_tokens(UpperCAmelCase ) lowerCAmelCase :Optional[Any] = tokenizer.vocab_size lowerCAmelCase :Tuple = len(UpperCAmelCase ) self.assertNotEqual(UpperCAmelCase , 0 ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , len(UpperCAmelCase ) ) self.assertEqual(UpperCAmelCase , all_size_a + len(UpperCAmelCase ) ) lowerCAmelCase :List[str] = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=UpperCAmelCase ) self.assertGreaterEqual(len(UpperCAmelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]: pass def UpperCAmelCase__ ( self : str ) -> int: pass def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: lowerCAmelCase :Optional[int] = self.get_tokenizer() lowerCAmelCase :List[str] = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(UpperCAmelCase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) lowerCAmelCase :List[str] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) lowerCAmelCase :Optional[int] = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) # fmt: off self.assertListEqual(UpperCAmelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on lowerCAmelCase :int = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def UpperCAmelCase__ ( self : str ) -> Tuple: # Use custom sequence because this tokenizer does not handle numbers. lowerCAmelCase :Any = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off lowerCAmelCase :List[str] = { 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=UpperCAmelCase , )
553
0
"""simple docstring""" import string from math import logaa def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : str ) ->int: '''simple docstring''' a : Tuple = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) a : Union[str, Any] = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : str ) ->tuple[int, int]: '''simple docstring''' a : Any = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' a : int = corpus_without_punctuation.split("\n" ) a : Dict = term.lower() return (len([doc for doc in docs if term in doc] ), len(_lowercase )) def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : int , _lowercase : Union[str, Any]=False ) ->float: '''simple docstring''' if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : int ) ->float: '''simple docstring''' return round(tf * idf , 3 )
31
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] ) ->int: '''simple docstring''' a : int = {} a : Union[str, Any] = tokenizer(example["content"] , truncation=_lowercase )["input_ids"] a : Any = len(example["content"] ) / len(output["input_ids"] ) return output a : int = HfArgumentParser(PretokenizationArguments) a : Optional[int] = parser.parse_args() if args.num_workers is None: a : Tuple = multiprocessing.cpu_count() a : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) a : Dict = time.time() a : Tuple = load_dataset(args.dataset_name, split='''train''') print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') a : Dict = time.time() a : Tuple = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') a : Tuple = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
31
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch lowerCamelCase =logging.get_logger(__name__) class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] def __init__( self , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = 1 / 2_5_5 , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = size if size is not None else {'''shortest_edge''': 2_5_6} UpperCamelCase__ : Optional[int] = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} UpperCamelCase__ : Optional[Any] = get_size_dict(__SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) UpperCamelCase__ : List[Any] = do_resize UpperCamelCase__ : Dict = size UpperCamelCase__ : Union[str, Any] = resample UpperCamelCase__ : Dict = do_center_crop UpperCamelCase__ : Tuple = crop_size UpperCamelCase__ : Union[str, Any] = do_rescale UpperCamelCase__ : Dict = rescale_factor UpperCamelCase__ : int = do_normalize UpperCamelCase__ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase__ : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" UpperCamelCase__ : str = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCamelCase__ : Optional[int] = get_resize_output_image_size(__SCREAMING_SNAKE_CASE , size=size['''shortest_edge'''] , default_to_square=__SCREAMING_SNAKE_CASE ) return resize(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" UpperCamelCase__ : int = get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(__SCREAMING_SNAKE_CASE , size=(size['''height'''], size['''width''']) , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE ) -> np.ndarray: """simple docstring""" return rescale(__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" return normalize(__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE , ) -> Dict: """simple docstring""" UpperCamelCase__ : Any = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ : str = size if size is not None else self.size UpperCamelCase__ : Tuple = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = resample if resample is not None else self.resample UpperCamelCase__ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ : Optional[int] = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ : List[Any] = get_size_dict(__SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) UpperCamelCase__ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ : Tuple = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ : Optional[Any] = image_std if image_std is not None else self.image_std UpperCamelCase__ : int = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCamelCase__ : Tuple = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] if do_resize: UpperCamelCase__ : List[Any] = [self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: UpperCamelCase__ : int = [self.center_crop(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: UpperCamelCase__ : Optional[Any] = [self.rescale(image=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: UpperCamelCase__ : Tuple = [self.normalize(image=__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase__ : int = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase__ : List[Any] = {'''pixel_values''': images} return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) -> Tuple: """simple docstring""" UpperCamelCase__ : List[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(__SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Any = target_sizes.numpy() UpperCamelCase__ : List[Any] = [] for idx in range(len(__SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ : List[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ : Dict = logits.argmax(dim=1 ) UpperCamelCase__ : Optional[int] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
285
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase ={ "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =[ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
285
1
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowercase ( tf.keras.layers.Layer ): def __init__( self , _a , _a , _a = None , _a = None ) -> Any: super().__init__() _A : Dict = pad_token_id _A : List[Any] = max_length _A : Optional[int] = vocab _A : Optional[int] = merges _A : Optional[int] = BytePairTokenizer(_a , _a , sequence_length=_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> str: _A : Any = [""" """.join(_a ) for m in tokenizer.bpe_ranks.keys()] _A : str = tokenizer.get_vocab() return cls(_a , _a , *_a , **_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> List[Any]: _A : Union[str, Any] = GPTaTokenizer.from_pretrained(_a , *_a , **_a ) return cls.from_tokenizer(_a , *_a , **_a ) @classmethod def a__ ( cls , _a ) -> Union[str, Any]: return cls(**_a ) def a__ ( self ) -> Union[str, Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def a__ ( self , _a , _a = None ) -> int: _A : Optional[int] = self.tf_tokenizer(_a ) _A : Tuple = tf.ones_like(_a ) if self.pad_token_id is not None: # pad the tokens up to max length _A : Dict = max_length if max_length is not None else self.max_length if max_length is not None: _A , _A : Dict = pad_model_inputs( _a , max_seq_length=_a , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
54
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = CLIPTokenizer _a = CLIPTokenizerFast _a = True _a = {} _a = False def a__ ( self ) -> Optional[Any]: super().setUp() # fmt: off _A : int = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _A : str = dict(zip(_a , range(len(_a ) ) ) ) _A : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] _A : str = {"""unk_token""": """<unk>"""} _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self , **_a ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , **_a ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> str: _A : Tuple = """lower newer""" _A : Optional[Any] = """lower newer""" return input_text, output_text def a__ ( self ) -> List[Any]: _A : Optional[int] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _A : str = """lower newer""" _A : List[str] = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] _A : int = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _A : str = tokens + [tokenizer.unk_token] _A : Dict = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) @require_ftfy def a__ ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : Dict = self.tokenizer_class.from_pretrained(_a , **_a ) _A : str = self.rust_tokenizer_class.from_pretrained(_a , **_a ) _A : List[str] = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _A : Tuple = """xa\u0303y""" + """ """ + """x\xe3y""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of space type _A : Any = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _A : Optional[int] = tokenizer_s.tokenize(_a ) _A : List[Any] = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of line break type _A : int = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _A : Optional[Any] = tokenizer_s.tokenize(_a ) _A : Tuple = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : List[Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _A : str = F'''{text_of_1_token} {text_of_1_token}''' _A : str = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Dict = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ) + 1, len(_a ) + 1 + len(_a )) , ) _A : Any = F''' {text}''' _A : List[Any] = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Optional[int] = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_a ) + 1, 1 + len(_a ) + 1 + len(_a )) , ) def a__ ( self ) -> List[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_a ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def a__ ( self ) -> str: super().test_tokenization_python_rust_equals() def a__ ( self ) -> Union[str, Any]: # CLIP always lower cases letters pass
54
1
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase__ ( ) -> str: """simple docstring""" UpperCamelCase = torch.nn.Linear(2 , 4) UpperCamelCase = torch.optim.AdamW(model.parameters() , lr=1.0) UpperCamelCase = torch.optim.lr_scheduler.OneCycleLR(_UpperCamelCase , max_lr=0.0_1 , steps_per_epoch=2 , epochs=1) UpperCamelCase = DataLoader(TensorDataset(torch.tensor([1, 2, 3]))) UpperCamelCase = DataLoader(TensorDataset(torch.tensor([4, 5, 6]))) return model, optimizer, scheduler, train_dl, valid_dl def lowercase__ ( _UpperCamelCase) -> List[Any]: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase__ ( _UpperCamelCase) -> Tuple: """simple docstring""" UpperCamelCase = torch.nn.Linear(*tuple(model.weight.T.shape)).state_dict() model.load_state_dict(_UpperCamelCase) class A__ ( __UpperCamelCase ): '''simple docstring''' @require_cuda def _SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" UpperCamelCase = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(__SCREAMING_SNAKE_CASE ): UpperCamelCase = Accelerator(cpu=__SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" UpperCamelCase = Accelerator() UpperCamelCase = GradientState() assert state.num_steps == 1 UpperCamelCase = 4 assert state.num_steps == 4 assert state.sync_gradients is True UpperCamelCase = False assert state.sync_gradients is False GradientState._reset_state() def _SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" UpperCamelCase = Accelerator() UpperCamelCase = create_components() ( UpperCamelCase ) = accelerator.prepare(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def _SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" UpperCamelCase = Accelerator() UpperCamelCase = create_components() accelerator.prepare(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*_SCREAMING_SNAKE_CASE : Tuple , **_SCREAMING_SNAKE_CASE : List[Any] ): pass with patch('torch.cuda.set_device' , __SCREAMING_SNAKE_CASE ), patch_environment(ACCELERATE_TORCH_DEVICE='cuda:64' ): UpperCamelCase = Accelerator() self.assertEqual(str(accelerator.state.device ) , 'cuda:64' ) def _SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" UpperCamelCase = Accelerator() UpperCamelCase = create_components() accelerator.prepare(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase = get_signature(__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__SCREAMING_SNAKE_CASE ) # make sure random weights don't match load_random_weights(__SCREAMING_SNAKE_CASE ) self.assertTrue(abs(model_signature - get_signature(__SCREAMING_SNAKE_CASE ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(__SCREAMING_SNAKE_CASE ) self.assertTrue(abs(model_signature - get_signature(__SCREAMING_SNAKE_CASE ) ) < 1E-3 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = Accelerator() UpperCamelCase = create_components() accelerator.prepare(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase = get_signature(__SCREAMING_SNAKE_CASE ) # saving hook def save_config(_SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] ): UpperCamelCase = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(__SCREAMING_SNAKE_CASE , 'data.json' ) , 'w' ) as f: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # loading hook def load_config(_SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ): with open(os.path.join(__SCREAMING_SNAKE_CASE , 'data.json' ) , 'r' ) as f: UpperCamelCase = json.load(__SCREAMING_SNAKE_CASE ) UpperCamelCase = config['''class_name'''] UpperCamelCase = accelerator.register_save_state_pre_hook(__SCREAMING_SNAKE_CASE ) UpperCamelCase = accelerator.register_load_state_pre_hook(__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__SCREAMING_SNAKE_CASE ) # make sure random weights don't match with hooks load_random_weights(__SCREAMING_SNAKE_CASE ) self.assertTrue(abs(model_signature - get_signature(__SCREAMING_SNAKE_CASE ) ) > 1E-3 ) # random class name to verify correct one is loaded UpperCamelCase = '''random''' # make sure loaded weights match with hooks accelerator.load_state(__SCREAMING_SNAKE_CASE ) self.assertTrue(abs(model_signature - get_signature(__SCREAMING_SNAKE_CASE ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__SCREAMING_SNAKE_CASE ) # make sure random weights don't match with hooks removed load_random_weights(__SCREAMING_SNAKE_CASE ) self.assertTrue(abs(model_signature - get_signature(__SCREAMING_SNAKE_CASE ) ) > 1E-3 ) # random class name to verify correct one is loaded UpperCamelCase = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(__SCREAMING_SNAKE_CASE ) self.assertTrue(abs(model_signature - get_signature(__SCREAMING_SNAKE_CASE ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" UpperCamelCase = Accelerator() UpperCamelCase = create_components() UpperCamelCase = None # This should work UpperCamelCase = accelerator.prepare( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertTrue(dummy_obj is None ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = Accelerator() UpperCamelCase = create_components() UpperCamelCase = [1, 2, 3] # This should work UpperCamelCase = accelerator.prepare( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual( getattr(__SCREAMING_SNAKE_CASE , '_is_accelerate_prepared' , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , 'Dummy object should have `_is_accelerate_prepared` set to `True`' , ) self.assertEqual( getattr(__SCREAMING_SNAKE_CASE , '_is_accelerate_prepared' , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , 'Model is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(__SCREAMING_SNAKE_CASE , '_is_accelerate_prepared' , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , 'Optimizer is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(__SCREAMING_SNAKE_CASE , '_is_accelerate_prepared' , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , 'Scheduler is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(__SCREAMING_SNAKE_CASE , '_is_accelerate_prepared' , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , 'Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(__SCREAMING_SNAKE_CASE , '_is_accelerate_prepared' , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , 'Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , ) @slow @require_bnb def _SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" from transformers import AutoModelForCausalLM UpperCamelCase = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=__SCREAMING_SNAKE_CASE , device_map={'': 0} , ) UpperCamelCase = Accelerator() # This should work UpperCamelCase = accelerator.prepare(__SCREAMING_SNAKE_CASE ) @slow @require_bnb def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" from transformers import AutoModelForCausalLM UpperCamelCase = Accelerator() with init_empty_weights(): UpperCamelCase = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) model.tie_weights() UpperCamelCase = infer_auto_device_map(__SCREAMING_SNAKE_CASE ) UpperCamelCase = '''cpu''' UpperCamelCase = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , device_map=__SCREAMING_SNAKE_CASE , load_in_abit=__SCREAMING_SNAKE_CASE , llm_inta_enable_fpaa_cpu_offload=__SCREAMING_SNAKE_CASE ) # This should not work and get value error with self.assertRaises(__SCREAMING_SNAKE_CASE ): UpperCamelCase = accelerator.prepare(__SCREAMING_SNAKE_CASE ) @slow @require_bnb @require_multi_gpu def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" from transformers import AutoModelForCausalLM UpperCamelCase = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): UpperCamelCase = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) model.tie_weights() UpperCamelCase = infer_auto_device_map(__SCREAMING_SNAKE_CASE ) UpperCamelCase = 1 UpperCamelCase = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=__SCREAMING_SNAKE_CASE , device_map=__SCREAMING_SNAKE_CASE , ) UpperCamelCase = Accelerator() # This should not work and get value error with self.assertRaises(__SCREAMING_SNAKE_CASE ): UpperCamelCase = accelerator.prepare(__SCREAMING_SNAKE_CASE ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def _SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" from transformers import AutoModelForCausalLM with init_empty_weights(): UpperCamelCase = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) UpperCamelCase = infer_auto_device_map(__SCREAMING_SNAKE_CASE ) UpperCamelCase = 1 UpperCamelCase = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=__SCREAMING_SNAKE_CASE , device_map=__SCREAMING_SNAKE_CASE , ) UpperCamelCase = Accelerator() # This should work UpperCamelCase = accelerator.prepare(__SCREAMING_SNAKE_CASE ) @require_cuda def _SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" UpperCamelCase = torch.nn.Linear(10 , 10 ) UpperCamelCase = torch.optim.SGD(model.parameters() , lr=0.0_1 ) UpperCamelCase = Accelerator(cpu=__SCREAMING_SNAKE_CASE ) UpperCamelCase = accelerator.prepare(__SCREAMING_SNAKE_CASE )
280
from __future__ import annotations def lowercase_ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): """simple docstring""" snake_case__ : list[list[int]] =[] create_all_state(1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , [] , SCREAMING_SNAKE_CASE ) return result def lowercase_ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : list[list[int]] , ): """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE , level - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) current_list.pop() def lowercase_ ( SCREAMING_SNAKE_CASE : list[list[int]] ): """simple docstring""" for i in total_list: print(*SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCamelCase__ = 4 lowerCamelCase__ = 2 lowerCamelCase__ = generate_all_combinations(n, k) print_all_state(total_list)
381
0
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[Any] = StableUnCLIPPipeline __lowerCamelCase : Any = TEXT_TO_IMAGE_PARAMS __lowerCamelCase : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS __lowerCamelCase : str = TEXT_TO_IMAGE_IMAGE_PARAMS __lowerCamelCase : int = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __lowerCamelCase : str = False def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = 32 _lowerCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _lowerCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCamelCase , projection_dim=_lowerCamelCase , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _lowerCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowerCamelCase , num_layers=1 , ) torch.manual_seed(0 ) _lowerCAmelCase = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1000 , clip_sample=_lowerCamelCase , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) _lowerCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=_lowerCamelCase ) _lowerCAmelCase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowerCamelCase , layers_per_block=1 , upcast_attention=_lowerCamelCase , use_linear_projection=_lowerCamelCase , ) torch.manual_seed(0 ) _lowerCAmelCase = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=_lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase=0 ) -> str: if str(_lowerCamelCase ).startswith("mps" ): _lowerCAmelCase = torch.manual_seed(_lowerCamelCase ) else: _lowerCAmelCase = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) _lowerCAmelCase = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def _snake_case ( self ) -> int: _lowerCAmelCase = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=_lowerCamelCase ) def _snake_case ( self ) -> Tuple: _lowerCAmelCase = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=_lowerCamelCase ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _lowerCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) _lowerCAmelCase = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowerCAmelCase = torch.Generator(device="cpu" ).manual_seed(0 ) _lowerCAmelCase = pipe("anime turle" , generator=_lowerCamelCase , output_type="np" ) _lowerCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def _snake_case ( self ) -> str: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) _lowerCAmelCase = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowerCAmelCase = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) _lowerCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
712
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : list[float] , SCREAMING_SNAKE_CASE_ : list[float] ): '''simple docstring''' _lowerCAmelCase = sorted(numsa + numsa ) _lowerCAmelCase , _lowerCAmelCase = divmod(len(SCREAMING_SNAKE_CASE_ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = [float(x) for x in input("Enter the elements of first array: ").split()] _SCREAMING_SNAKE_CASE = [float(x) for x in input("Enter the elements of second array: ").split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
489
0
"""simple docstring""" import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = 'MCTCTFeatureExtractor' __UpperCAmelCase : Optional[Any] = 'AutoTokenizer' def __init__( self , _a , _a ): super().__init__(_a , _a ) __a = self.feature_extractor __a = False def __call__( self , *_a , **_a ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_a , **_a ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) __a = kwargs.pop('''raw_speech''' ) else: __a = kwargs.pop('''audio''' , _a ) __a = kwargs.pop('''sampling_rate''' , _a ) __a = kwargs.pop('''text''' , _a ) if len(_a ) > 0: __a = args[0] __a = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: __a = self.feature_extractor(_a , *_a , sampling_rate=_a , **_a ) if text is not None: __a = self.tokenizer(_a , **_a ) if text is None: return inputs elif audio is None: return encodings else: __a = encodings['''input_ids'''] return inputs def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.batch_decode(*_a , **_a ) def __UpperCAmelCase ( self , *_a , **_a ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_a , **_a ) __a = kwargs.pop('''input_features''' , _a ) __a = kwargs.pop('''labels''' , _a ) if len(_a ) > 0: __a = args[0] __a = args[1:] if input_features is not None: __a = self.feature_extractor.pad(_a , *_a , **_a ) if labels is not None: __a = self.tokenizer.pad(_a , **_a ) if labels is None: return input_features elif input_features is None: return labels else: __a = labels['''input_ids'''] return input_features def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.decode(*_a , **_a ) @contextmanager def __UpperCAmelCase ( self ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) __a = True __a = self.tokenizer yield __a = self.feature_extractor __a = False
695
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowercase_ = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict: if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(lowerCAmelCase__ ) , version.parse(lowerCAmelCase__ ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> None: __a = f'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(r'''^[\w_\-\d]+$''' , lowerCAmelCase__ ): __a , __a , __a = requirement, None, None else: __a = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f''' got {requirement}''' ) __a , __a = match[0] __a = want_full.split(''',''' ) # there could be multiple requirements __a = {} for w in want_range: __a = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f''' but got {requirement}''' ) __a , __a = match[0] __a = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": __a = '''.'''.join([str(lowerCAmelCase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return # check if any version is installed try: __a = importlib.metadata.version(lowerCAmelCase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Tuple ) -> Optional[Any]: __a = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowerCAmelCase__ , lowerCAmelCase__ )
695
1
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def _snake_case ( lowerCamelCase__ : Callable[[int | float], int | float] , lowerCamelCase__ : int | float , lowerCamelCase__ : int | float , lowerCamelCase__ : int = 100 , ) -> float: lowerCamelCase_ : Dict =x_start lowerCamelCase_ : Union[str, Any] =fnc(lowerCamelCase__ ) lowerCamelCase_ : Dict =0.0 for _ in range(lowerCamelCase__ ): # Approximates curve as a sequence of linear lines and sums their length lowerCamelCase_ : List[Any] =(x_end - x_start) / steps + xa lowerCamelCase_ : Optional[int] =fnc(lowerCamelCase__ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step lowerCamelCase_ : Optional[Any] =xa lowerCamelCase_ : List[str] =fxa return length if __name__ == "__main__": def _snake_case ( lowerCamelCase__ : Optional[int] ) -> str: return math.sin(10 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') A__ : str = 10 while i <= 100_000: print(f'With {i} steps: {line_length(f, -10, 10, i)}') i *= 10
700
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record A__ : int = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' A__ : Dict = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' A__ : Optional[int] = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def _snake_case ( lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any] ) -> List[Any]: return float((preds == labels).mean() ) def _snake_case ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Any , lowerCamelCase__ : Tuple="binary" ) -> Tuple: lowerCamelCase_ : Optional[int] =simple_accuracy(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : Optional[Any] =float(fa_score(y_true=lowerCamelCase__ , y_pred=lowerCamelCase__ , average=lowerCamelCase__ ) ) return { "accuracy": acc, "f1": fa, } def _snake_case ( lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] ) -> int: lowerCamelCase_ : Optional[int] ={} for id_pred, label in zip(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ : Union[str, Any] =F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" lowerCamelCase_ : Any =id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCamelCase_ : int =[(pred, label)] lowerCamelCase_ , lowerCamelCase_ : Optional[int] =[], [] for question, preds_labels in question_map.items(): lowerCamelCase_ , lowerCamelCase_ : Dict =zip(*lowerCamelCase__ ) lowerCamelCase_ : Any =fa_score(y_true=lowerCamelCase__ , y_pred=lowerCamelCase__ , average="macro" ) fas.append(lowerCamelCase__ ) lowerCamelCase_ : Union[str, Any] =int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase__ ) ) ems.append(lowerCamelCase__ ) lowerCamelCase_ : Any =float(sum(lowerCamelCase__ ) / len(lowerCamelCase__ ) ) lowerCamelCase_ : List[Any] =sum(lowerCamelCase__ ) / len(lowerCamelCase__ ) lowerCamelCase_ : List[str] =float(fa_score(y_true=lowerCamelCase__ , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def UpperCAmelCase__ ( self : Union[str, Any] ): if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def UpperCAmelCase__ ( self : int ): if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def UpperCAmelCase__ ( self : Dict , snake_case__ : Optional[int] , snake_case__ : Dict ): if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(snake_case__ , snake_case__ )} elif self.config_name == "cb": return acc_and_fa(snake_case__ , snake_case__ , fa_avg="macro" ) elif self.config_name == "record": lowerCamelCase_ : List[Any] =[ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] lowerCamelCase_ : str ={pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(snake_case__ , snake_case__ )[0] elif self.config_name == "multirc": return evaluate_multirc(snake_case__ , snake_case__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(snake_case__ , snake_case__ )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
244
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=_lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) __snake_case :ClassVar[Features] = Features({'audio': Audio()} ) __snake_case :ClassVar[Features] = Features({'labels': ClassLabel} ) __snake_case :str = "audio" __snake_case :str = "labels" def _a ( self : Any , _lowerCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , _lowerCAmelCase ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) __lowercase = copy.deepcopy(self ) __lowercase = self.label_schema.copy() __lowercase = features[self.label_column] __lowercase = label_schema return task_template @property def _a ( self : Dict ) -> Dict[str, str]: """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
80
"""simple docstring""" import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( _UpperCamelCase ,unittest.TestCase ): UpperCamelCase : Optional[Any] = LxmertTokenizer UpperCamelCase : str = LxmertTokenizerFast UpperCamelCase : Optional[int] = True UpperCamelCase : Optional[int] = True def _lowerCamelCase ( self ): """simple docstring""" super().setUp() _lowerCAmelCase = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _lowerCamelCase ( self , __magic_name__ ): """simple docstring""" _lowerCAmelCase = 'UNwant\u00E9d,running' _lowerCAmelCase = 'unwanted, running' return input_text, output_text def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.tokenizer_class(self.vocab_file ) _lowerCAmelCase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(__magic_name__ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , [7, 4, 5, 1_0, 8, 9] ) def _lowerCamelCase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = 'I was born in 92000, and this is falsé.' _lowerCAmelCase = tokenizer.tokenize(__magic_name__ ) _lowerCAmelCase = rust_tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) _lowerCAmelCase = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) _lowerCAmelCase = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = tokenizer.encode(__magic_name__ ) _lowerCAmelCase = rust_tokenizer.encode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ )
589
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Dict = logging.get_logger(__name__) lowerCAmelCase__ : Tuple = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = """ctrl""" __UpperCAmelCase = ["""past_key_values"""] __UpperCAmelCase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Tuple , snake_case_ : Dict=2_4_6_5_3_4 , snake_case_ : Optional[int]=2_5_6 , snake_case_ : Dict=1_2_8_0 , snake_case_ : Union[str, Any]=8_1_9_2 , snake_case_ : Any=4_8 , snake_case_ : List[Any]=1_6 , snake_case_ : Optional[Any]=0.1 , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Optional[Any]=1e-6 , snake_case_ : List[Any]=0.0_2 , snake_case_ : Dict=True , **snake_case_ : List[Any] , ): '''simple docstring''' snake_case__ : Any = vocab_size snake_case__ : int = n_positions snake_case__ : Optional[int] = n_embd snake_case__ : str = n_layer snake_case__ : Any = n_head snake_case__ : str = dff snake_case__ : Any = resid_pdrop snake_case__ : Tuple = embd_pdrop snake_case__ : List[str] = layer_norm_epsilon snake_case__ : int = initializer_range snake_case__ : Optional[int] = use_cache super().__init__(**snake_case_ )
502
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = None class a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = 2 @register_to_config def __init__( self : int , snake_case_ : float = 0.0_2 , snake_case_ : float = 1_0_0 , snake_case_ : float = 1.0_0_7 , snake_case_ : float = 8_0 , snake_case_ : float = 0.0_5 , snake_case_ : float = 5_0 , ): '''simple docstring''' snake_case__ : List[Any] = sigma_max # setable values snake_case__ : int = None snake_case__ : np.IntTensor = None snake_case__ : torch.FloatTensor = None # sigma(t_i) def __magic_name__ ( self : Any , snake_case_ : torch.FloatTensor , snake_case_ : Optional[int] = None ): '''simple docstring''' return sample def __magic_name__ ( self : Optional[int] , snake_case_ : int , snake_case_ : Union[str, torch.device] = None ): '''simple docstring''' snake_case__ : Union[str, Any] = num_inference_steps snake_case__ : Tuple = np.arange(0 , self.num_inference_steps )[::-1].copy() snake_case__ : int = torch.from_numpy(snake_case_ ).to(snake_case_ ) snake_case__ : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] snake_case__ : Union[str, Any] = torch.tensor(snake_case_ , dtype=torch.floataa , device=snake_case_ ) def __magic_name__ ( self : Optional[int] , snake_case_ : torch.FloatTensor , snake_case_ : float , snake_case_ : Optional[torch.Generator] = None ): '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: snake_case__ : List[Any] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: snake_case__ : List[Any] = 0 # sample eps ~ N(0, S_noise^2 * I) snake_case__ : Any = self.config.s_noise * randn_tensor(sample.shape , generator=snake_case_ ).to(sample.device ) snake_case__ : Tuple = sigma + gamma * sigma snake_case__ : Dict = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __magic_name__ ( self : Optional[int] , snake_case_ : torch.FloatTensor , snake_case_ : float , snake_case_ : float , snake_case_ : torch.FloatTensor , snake_case_ : bool = True , ): '''simple docstring''' snake_case__ : Union[str, Any] = sample_hat + sigma_hat * model_output snake_case__ : List[Any] = (sample_hat - pred_original_sample) / sigma_hat snake_case__ : Any = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=snake_case_ , derivative=snake_case_ , pred_original_sample=snake_case_ ) def __magic_name__ ( self : Tuple , snake_case_ : torch.FloatTensor , snake_case_ : float , snake_case_ : float , snake_case_ : torch.FloatTensor , snake_case_ : torch.FloatTensor , snake_case_ : torch.FloatTensor , snake_case_ : bool = True , ): '''simple docstring''' snake_case__ : str = sample_prev + sigma_prev * model_output snake_case__ : List[Any] = (sample_prev - pred_original_sample) / sigma_prev snake_case__ : Any = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=snake_case_ , derivative=snake_case_ , pred_original_sample=snake_case_ ) def __magic_name__ ( self : str , snake_case_ : List[Any] , snake_case_ : Optional[int] , snake_case_ : Tuple ): '''simple docstring''' raise NotImplementedError()
502
1
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) SCREAMING_SNAKE_CASE = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : str , UpperCAmelCase : str , UpperCAmelCase : bool , UpperCAmelCase : str = None , UpperCAmelCase : list = None ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] =None lowercase : Any =os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) lowercase : List[str] =os.path.abspath('''examples''' ) for item in os.listdir(UpperCAmelCase ): if item not in EXCLUDE_EXAMPLES: lowercase : Union[str, Any] =os.path.join(UpperCAmelCase , UpperCAmelCase ) if os.path.isfile(UpperCAmelCase ) and ".py" in item_path: with self.subTest( tested_script=UpperCAmelCase , feature_script=UpperCAmelCase , tested_section='''main()''' if parser_only else '''training_function()''' , ): lowercase : List[Any] =compare_against_test( os.path.join(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Optional[int] ='''\n'''.join(UpperCAmelCase ) if special_strings is not None: for string in special_strings: lowercase : Optional[Any] =diff.replace(UpperCAmelCase , '''''' ) self.assertEqual(UpperCAmelCase , '''''' ) def A__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' self.one_complete_example('''complete_nlp_example.py''' , UpperCAmelCase ) self.one_complete_example('''complete_nlp_example.py''' , UpperCAmelCase ) def A__ ( self : str ) -> Any: '''simple docstring''' lowercase : str =os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) lowercase : str =[ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.one_complete_example('''complete_cv_example.py''' , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = False @classmethod def A__ ( cls : Optional[Any] ) -> List[Any]: '''simple docstring''' super().setUpClass() lowercase : List[str] =tempfile.mkdtemp() lowercase : Union[str, Any] =os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowercase : Any =['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def A__ ( cls : Optional[Any] ) -> Tuple: '''simple docstring''' super().tearDownClass() shutil.rmtree(cls._tmpdir ) def A__ ( self : List[str] ) -> Tuple: '''simple docstring''' lowercase : Dict =f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def A__ ( self : int ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() lowercase : str =run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Optional[int] =f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() lowercase : Any =run_command(self._launch_args + testargs , return_stdout=UpperCAmelCase ) self.assertNotIn('''epoch 0:''' , UpperCAmelCase ) self.assertIn('''epoch 1:''' , UpperCAmelCase ) def A__ ( self : str ) -> List[Any]: '''simple docstring''' lowercase : List[str] =f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() lowercase : Tuple =run_command(self._launch_args + testargs , return_stdout=UpperCAmelCase ) if torch.cuda.is_available(): lowercase : List[Any] =torch.cuda.device_count() else: lowercase : Dict =1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , UpperCAmelCase ) self.assertIn('''epoch 1:''' , UpperCAmelCase ) else: self.assertIn('''epoch 0:''' , UpperCAmelCase ) self.assertIn('''epoch 1:''' , UpperCAmelCase ) @slow def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' lowercase : List[Any] =''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): lowercase : List[str] =run_command(self._launch_args + testargs , return_stdout=UpperCAmelCase ) lowercase : List[Any] =re.findall('''({.+})''' , UpperCAmelCase ) lowercase : Tuple =[r for r in results if '''accuracy''' in r][-1] lowercase : Union[str, Any] =ast.literal_eval(UpperCAmelCase ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' lowercase : Any =['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def A__ ( self : int ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: lowercase : Tuple =f'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase , '''tracking''' ) ) ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def A__ ( self : Dict ) -> Tuple: '''simple docstring''' lowercase : List[str] =['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
94
def lowercase_ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ): """simple docstring""" snake_case__ : List[Any] =word.split() def justify(SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> str: snake_case__ : Optional[Any] =max_width - width snake_case__ : Tuple =len(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: snake_case__ : List[Any] =words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] snake_case__ : Tuple =spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] snake_case__ : str =( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(SCREAMING_SNAKE_CASE ): num_spaces_between_words_list[i] += 1 snake_case__ : str =[] for i in range(SCREAMING_SNAKE_CASE ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ''' ''' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] =[] snake_case__ : list[str] =[] snake_case__ : Dict =0 for word in words: if width + len(SCREAMING_SNAKE_CASE ) + len(SCREAMING_SNAKE_CASE ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(SCREAMING_SNAKE_CASE ) width += len(SCREAMING_SNAKE_CASE ) else: # justify the line and add it to result answer.append(justify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # reset new line and new width snake_case__, snake_case__ : Tuple =[word], len(SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] =max_width - width - len(SCREAMING_SNAKE_CASE ) answer.append(''' '''.join(SCREAMING_SNAKE_CASE ) + (remaining_spaces + 1) * ''' ''' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
381
0
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class __magic_name__ ( lowercase_ ): """simple docstring""" def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=False , a__=True , a__=99 , a__=32 , a__=5 , a__=4 , a__=64 , a__="gelu" , a__=0.1 , a__=0.1 , a__=5_12 , a__=16 , a__=2 , a__=0.02 , a__=3 , a__=4 , a__=None , a__=2 , a__=2 , a__=2 , a__=2 , a__=4 , a__=1 , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = seq_length _lowerCamelCase = is_training _lowerCamelCase = use_input_mask _lowerCamelCase = use_token_type_ids _lowerCamelCase = use_labels _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = type_vocab_size _lowerCamelCase = type_sequence_label_size _lowerCamelCase = initializer_range _lowerCamelCase = num_labels _lowerCamelCase = num_choices _lowerCamelCase = scope _lowerCamelCase = q_groups _lowerCamelCase = k_groups _lowerCamelCase = v_groups _lowerCamelCase = post_attention_groups _lowerCamelCase = intermediate_groups _lowerCamelCase = output_groups def _UpperCAmelCase ( self ): _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase = None if self.use_input_mask: _lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ): return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def _UpperCAmelCase ( self , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCamelCase = SqueezeBertModel(config=a__ ) model.to(a__ ) model.eval() _lowerCamelCase = model(a__ , a__ ) _lowerCamelCase = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCamelCase = SqueezeBertForMaskedLM(config=a__ ) model.to(a__ ) model.eval() _lowerCamelCase = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCamelCase = SqueezeBertForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() _lowerCamelCase = model( a__ , attention_mask=a__ , start_positions=a__ , end_positions=a__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCamelCase = self.num_labels _lowerCamelCase = SqueezeBertForSequenceClassification(a__ ) model.to(a__ ) model.eval() _lowerCamelCase = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCamelCase = self.num_labels _lowerCamelCase = SqueezeBertForTokenClassification(config=a__ ) model.to(a__ ) model.eval() _lowerCamelCase = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCamelCase = self.num_choices _lowerCamelCase = SqueezeBertForMultipleChoice(config=a__ ) model.to(a__ ) model.eval() _lowerCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase = model( a__ , attention_mask=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ): _lowerCamelCase = self.prepare_config_and_inputs() ((_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase)) = config_and_inputs _lowerCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( lowercase_ ,lowercase_ ,unittest.TestCase ): """simple docstring""" _UpperCamelCase = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) _UpperCamelCase = ( { "feature-extraction": SqueezeBertModel, "fill-mask": SqueezeBertForMaskedLM, "question-answering": SqueezeBertForQuestionAnswering, "text-classification": SqueezeBertForSequenceClassification, "token-classification": SqueezeBertForTokenClassification, "zero-shot": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase = False _UpperCamelCase = True _UpperCamelCase = False def _UpperCAmelCase ( self ): _lowerCamelCase = SqueezeBertModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=a__ , dim=37 ) def _UpperCAmelCase ( self ): self.config_tester.run_common_tests() def _UpperCAmelCase ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*a__ ) def _UpperCAmelCase ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*a__ ) def _UpperCAmelCase ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*a__ ) def _UpperCAmelCase ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*a__ ) def _UpperCAmelCase ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*a__ ) def _UpperCAmelCase ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*a__ ) @slow def _UpperCAmelCase ( self ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase = SqueezeBertModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_sentencepiece @require_tokenizers @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def _UpperCAmelCase ( self ): _lowerCamelCase = SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' ) _lowerCamelCase = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]] ) _lowerCamelCase = model(a__ )[0] _lowerCamelCase = torch.Size((1, 3) ) self.assertEqual(output.shape , a__ ) _lowerCamelCase = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(a__ , a__ , atol=1E-4 ) )
711
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging _UpperCAmelCase = logging.get_logger(__name__) def _lowerCamelCase ( _a , _a , _a ): """simple docstring""" _lowerCamelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(_a ) == len(_a ), F'''{len(_a )} != {len(_a )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) _UpperCAmelCase = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } _UpperCAmelCase = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def _lowerCamelCase ( _a , _a ): """simple docstring""" try: _lowerCamelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(_a ) ) def _lowerCamelCase ( _a , _a ): """simple docstring""" if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(_a ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _lowerCamelCase ( _a , _a = "student" , _a = None , _a = None , _a=False , _a=None , _a=None , **_a , ): """simple docstring""" _lowerCamelCase = '''encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.''' assert (e is not None) or (d is not None), _msg if isinstance(_a , _a ): AutoTokenizer.from_pretrained(_a ).save_pretrained(_a ) # purely for convenience _lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained(_a ).eval() else: assert isinstance(_a , _a ), F'''teacher must be a model or string got type {type(_a )}''' _lowerCamelCase = teacher.config.to_diff_dict() try: _lowerCamelCase , _lowerCamelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _lowerCamelCase = teacher_e if d is None: _lowerCamelCase = teacher_d init_kwargs.update({'''encoder_layers''': e, '''decoder_layers''': d} ) except AttributeError: # T5 if hasattr(teacher.config , '''num_encoder_layers''' ): _lowerCamelCase , _lowerCamelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _lowerCamelCase , _lowerCamelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _lowerCamelCase = teacher_e if d is None: _lowerCamelCase = teacher_d if hasattr(teacher.config , '''num_encoder_layers''' ): init_kwargs.update({'''num_encoder_layers''': e, '''num_decoder_layers''': d} ) else: init_kwargs.update({'''num_layers''': e, '''num_decoder_layers''': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(_a ) # Copy weights _lowerCamelCase = teacher.config_class(**_a ) _lowerCamelCase = AutoModelForSeqaSeqLM.from_config(_a ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _lowerCamelCase = student.load_state_dict(teacher.state_dict() , strict=_a ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _lowerCamelCase , _lowerCamelCase = list(range(_a ) ), list(range(_a ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(_a ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _lowerCamelCase = pick_layers_to_copy(_a , _a ) if d_layers_to_copy is None: _lowerCamelCase = pick_layers_to_copy(_a , _a ) try: if hasattr( _a , '''prophetnet''' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _a ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _a ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _a ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _a ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , _a ) copy_layers(teacher.decoder.block , student.decoder.block , _a ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _lowerCamelCase = { '''teacher_type''': teacher.config.model_type, '''copied_encoder_layers''': e_layers_to_copy, '''copied_decoder_layers''': d_layers_to_copy, } student.save_pretrained(_a ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
297
0
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _A ( _lowerCAmelCase ): """simple docstring""" random.seed(_lowerCAmelCase ) np.random.seed(_lowerCAmelCase ) torch.manual_seed(_lowerCAmelCase ) torch.cuda.manual_seed_all(_lowerCAmelCase ) # ^^ safe to call this function even if cuda is not available class _UpperCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : Iterable[torch.nn.Parameter] , _lowerCAmelCase : float = 0.9999 , _lowerCAmelCase : float = 0.0 , _lowerCAmelCase : int = 0 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Union[float, int] = 1.0 , _lowerCAmelCase : Union[float, int] = 2 / 3 , _lowerCAmelCase : Optional[Any] = None , _lowerCAmelCase : Dict[str, Any] = None , **_lowerCAmelCase : Tuple , ): '''simple docstring''' if isinstance(_lowerCAmelCase , torch.nn.Module): __lowercase =( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage`' , '1.0.0' , _lowerCAmelCase , standard_warn=_lowerCAmelCase , ) __lowercase =parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility __lowercase =True if kwargs.get('max_value' , _lowerCAmelCase) is not None: __lowercase ='The `max_value` argument is deprecated. Please use `decay` instead.' deprecate('max_value' , '1.0.0' , _lowerCAmelCase , standard_warn=_lowerCAmelCase) __lowercase =kwargs['max_value'] if kwargs.get('min_value' , _lowerCAmelCase) is not None: __lowercase ='The `min_value` argument is deprecated. Please use `min_decay` instead.' deprecate('min_value' , '1.0.0' , _lowerCAmelCase , standard_warn=_lowerCAmelCase) __lowercase =kwargs['min_value'] __lowercase =list(_lowerCAmelCase) __lowercase =[p.clone().detach() for p in parameters] if kwargs.get('device' , _lowerCAmelCase) is not None: __lowercase ='The `device` argument is deprecated. Please use `to` instead.' deprecate('device' , '1.0.0' , _lowerCAmelCase , standard_warn=_lowerCAmelCase) self.to(device=kwargs['device']) __lowercase =None __lowercase =decay __lowercase =min_decay __lowercase =update_after_step __lowercase =use_ema_warmup __lowercase =inv_gamma __lowercase =power __lowercase =0 __lowercase =None # set in `step()` __lowercase =model_cls __lowercase =model_config @classmethod def __lowerCamelCase ( cls : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]): '''simple docstring''' __lowercase , __lowercase =model_cls.load_config(_lowerCAmelCase , return_unused_kwargs=_lowerCAmelCase) __lowercase =model_cls.from_pretrained(_lowerCAmelCase) __lowercase =cls(model.parameters() , model_cls=_lowerCAmelCase , model_config=model.config) ema_model.load_state_dict(_lowerCAmelCase) return ema_model def __lowerCamelCase ( self : Dict , _lowerCAmelCase : Optional[int]): '''simple docstring''' if self.model_cls is None: raise ValueError('`save_pretrained` can only be used if `model_cls` was defined at __init__.') if self.model_config is None: raise ValueError('`save_pretrained` can only be used if `model_config` was defined at __init__.') __lowercase =self.model_cls.from_config(self.model_config) __lowercase =self.state_dict() state_dict.pop('shadow_params' , _lowerCAmelCase) model.register_to_config(**_lowerCAmelCase) self.copy_to(model.parameters()) model.save_pretrained(_lowerCAmelCase) def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : int): '''simple docstring''' __lowercase =max(0 , optimization_step - self.update_after_step - 1) if step <= 0: return 0.0 if self.use_ema_warmup: __lowercase =1 - (1 + step / self.inv_gamma) ** -self.power else: __lowercase =(1 + step) / (1_0 + step) __lowercase =min(_lowerCAmelCase , self.decay) # make sure decay is not smaller than min_decay __lowercase =max(_lowerCAmelCase , self.min_decay) return cur_decay_value @torch.no_grad() def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : Iterable[torch.nn.Parameter]): '''simple docstring''' if isinstance(_lowerCAmelCase , torch.nn.Module): __lowercase =( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage.step`' , '1.0.0' , _lowerCAmelCase , standard_warn=_lowerCAmelCase , ) __lowercase =parameters.parameters() __lowercase =list(_lowerCAmelCase) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. __lowercase =self.get_decay(self.optimization_step) __lowercase =decay __lowercase =1 - decay __lowercase =contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , _lowerCAmelCase): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): __lowercase =deepspeed.zero.GatheredParameters(_lowerCAmelCase , modifier_rank=_lowerCAmelCase) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param)) else: s_param.copy_(_lowerCAmelCase) def __lowerCamelCase ( self : Any , _lowerCAmelCase : Iterable[torch.nn.Parameter]): '''simple docstring''' __lowercase =list(_lowerCAmelCase) for s_param, param in zip(self.shadow_params , _lowerCAmelCase): param.data.copy_(s_param.to(param.device).data) def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : str=None , _lowerCAmelCase : Optional[Any]=None): '''simple docstring''' __lowercase =[ p.to(device=_lowerCAmelCase , dtype=_lowerCAmelCase) if p.is_floating_point() else p.to(device=_lowerCAmelCase) for p in self.shadow_params ] def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : Iterable[torch.nn.Parameter]): '''simple docstring''' __lowercase =[param.detach().cpu().clone() for param in parameters] def __lowerCamelCase ( self : int , _lowerCAmelCase : Iterable[torch.nn.Parameter]): '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError('This ExponentialMovingAverage has no `store()`ed weights ' 'to `restore()`') for c_param, param in zip(self.temp_stored_params , _lowerCAmelCase): param.data.copy_(c_param.data) # Better memory-wise. __lowercase =None def __lowerCamelCase ( self : Optional[int] , _lowerCAmelCase : dict): '''simple docstring''' __lowercase =copy.deepcopy(_lowerCAmelCase) __lowercase =state_dict.get('decay' , self.decay) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('Decay must be between 0 and 1') __lowercase =state_dict.get('min_decay' , self.min_decay) if not isinstance(self.min_decay , _lowerCAmelCase): raise ValueError('Invalid min_decay') __lowercase =state_dict.get('optimization_step' , self.optimization_step) if not isinstance(self.optimization_step , _lowerCAmelCase): raise ValueError('Invalid optimization_step') __lowercase =state_dict.get('update_after_step' , self.update_after_step) if not isinstance(self.update_after_step , _lowerCAmelCase): raise ValueError('Invalid update_after_step') __lowercase =state_dict.get('use_ema_warmup' , self.use_ema_warmup) if not isinstance(self.use_ema_warmup , _lowerCAmelCase): raise ValueError('Invalid use_ema_warmup') __lowercase =state_dict.get('inv_gamma' , self.inv_gamma) if not isinstance(self.inv_gamma , (float, int)): raise ValueError('Invalid inv_gamma') __lowercase =state_dict.get('power' , self.power) if not isinstance(self.power , (float, int)): raise ValueError('Invalid power') __lowercase =state_dict.get('shadow_params' , _lowerCAmelCase) if shadow_params is not None: __lowercase =shadow_params if not isinstance(self.shadow_params , _lowerCAmelCase): raise ValueError('shadow_params must be a list') if not all(isinstance(_lowerCAmelCase , torch.Tensor) for p in self.shadow_params): raise ValueError('shadow_params must all be Tensors')
474
'''simple docstring''' import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = DownBlockaD # noqa F405 lowerCAmelCase__ = """down""" def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =[-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = ResnetDownsampleBlockaD # noqa F405 lowerCAmelCase__ = """down""" def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =[0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AttnDownBlockaD # noqa F405 lowerCAmelCase__ = """down""" def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =[0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = CrossAttnDownBlockaD # noqa F405 lowerCAmelCase__ = """down""" def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase , __lowercase =super().prepare_init_args_and_inputs_for_common() __lowercase =3_2 return init_dict, inputs_dict def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =[0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = SimpleCrossAttnDownBlockaD # noqa F405 lowerCAmelCase__ = """down""" @property def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=_lowerCAmelCase) def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase , __lowercase =super().prepare_init_args_and_inputs_for_common() __lowercase =3_2 return init_dict, inputs_dict @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent') def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =[0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = SkipDownBlockaD # noqa F405 lowerCAmelCase__ = """down""" @property def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return super().get_dummy_input(include_skip_sample=_lowerCAmelCase) def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =[-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AttnSkipDownBlockaD # noqa F405 lowerCAmelCase__ = """down""" @property def __lowerCamelCase ( self : Dict): '''simple docstring''' return super().get_dummy_input(include_skip_sample=_lowerCAmelCase) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =[0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = DownEncoderBlockaD # noqa F405 lowerCAmelCase__ = """down""" @property def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return super().get_dummy_input(include_temb=_lowerCAmelCase) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase ={ 'in_channels': 3_2, 'out_channels': 3_2, } __lowercase =self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =[1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AttnDownEncoderBlockaD # noqa F405 lowerCAmelCase__ = """down""" @property def __lowerCamelCase ( self : Any): '''simple docstring''' return super().get_dummy_input(include_temb=_lowerCAmelCase) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase ={ 'in_channels': 3_2, 'out_channels': 3_2, } __lowercase =self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =[0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = UNetMidBlockaD # noqa F405 lowerCAmelCase__ = """mid""" def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase ={ 'in_channels': 3_2, 'temb_channels': 1_2_8, } __lowercase =self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =[-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = UNetMidBlockaDCrossAttn # noqa F405 lowerCAmelCase__ = """mid""" def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase , __lowercase =super().prepare_init_args_and_inputs_for_common() __lowercase =3_2 return init_dict, inputs_dict def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =[0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = UNetMidBlockaDSimpleCrossAttn # noqa F405 lowerCAmelCase__ = """mid""" @property def __lowerCamelCase ( self : List[Any]): '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=_lowerCAmelCase) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase , __lowercase =super().prepare_init_args_and_inputs_for_common() __lowercase =3_2 return init_dict, inputs_dict def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =[0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = UpBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def __lowerCamelCase ( self : Any): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =[-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = ResnetUpsampleBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def __lowerCamelCase ( self : List[str]): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase) def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =[0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = CrossAttnUpBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase) def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase , __lowercase =super().prepare_init_args_and_inputs_for_common() __lowercase =3_2 return init_dict, inputs_dict def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =[-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = SimpleCrossAttnUpBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def __lowerCamelCase ( self : Tuple): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase , include_encoder_hidden_states=_lowerCAmelCase) def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase , __lowercase =super().prepare_init_args_and_inputs_for_common() __lowercase =3_2 return init_dict, inputs_dict def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =[0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AttnUpBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase) @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent') def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =[0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = SkipUpBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =[-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AttnSkipUpBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =[0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = UpDecoderBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def __lowerCamelCase ( self : int): '''simple docstring''' return super().get_dummy_input(include_temb=_lowerCAmelCase) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase ={'in_channels': 3_2, 'out_channels': 3_2} __lowercase =self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =[0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(_lowerCAmelCase) class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = AttnUpDecoderBlockaD # noqa F405 lowerCAmelCase__ = """up""" @property def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return super().get_dummy_input(include_temb=_lowerCAmelCase) def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase ={'in_channels': 3_2, 'out_channels': 3_2} __lowercase =self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =[0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(_lowerCAmelCase)
474
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : str = logging.get_logger(__name__) def UpperCAmelCase_ ( snake_case__ , snake_case__=False ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'deit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'deit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'deit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'deit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'deit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'deit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'deit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'deit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'deit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'deit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" lowerCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__=False ) -> Union[str, Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase__ = '' else: lowerCAmelCase__ = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase__ = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ = in_proj_bias[: config.hidden_size] lowerCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = dct.pop(snake_case__ ) lowerCAmelCase__ = val def UpperCAmelCase_ ( ) -> int: """simple docstring""" lowerCAmelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase__ = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( snake_case__ , snake_case__ ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = DeiTConfig() # all deit models have fine-tuned heads lowerCAmelCase__ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size lowerCAmelCase__ = 1000 lowerCAmelCase__ = 'huggingface/label-files' lowerCAmelCase__ = 'imagenet-1k-id2label.json' lowerCAmelCase__ = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase__ = {int(snake_case__ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} lowerCAmelCase__ = int(deit_name[-6:-4] ) lowerCAmelCase__ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): lowerCAmelCase__ = 192 lowerCAmelCase__ = 768 lowerCAmelCase__ = 12 lowerCAmelCase__ = 3 elif deit_name[9:].startswith('small' ): lowerCAmelCase__ = 384 lowerCAmelCase__ = 1536 lowerCAmelCase__ = 12 lowerCAmelCase__ = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): lowerCAmelCase__ = 1024 lowerCAmelCase__ = 4096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 # load original model from timm lowerCAmelCase__ = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase__ = timm_model.state_dict() lowerCAmelCase__ = create_rename_keys(snake_case__ , snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) read_in_q_k_v(snake_case__ , snake_case__ , snake_case__ ) # load HuggingFace model lowerCAmelCase__ = DeiTForImageClassificationWithTeacher(snake_case__ ).eval() model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by DeiTImageProcessor lowerCAmelCase__ = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 lowerCAmelCase__ = DeiTImageProcessor(size=snake_case__ , crop_size=config.image_size ) lowerCAmelCase__ = image_processor(images=prepare_img() , return_tensors='pt' ) lowerCAmelCase__ = encoding['pixel_values'] lowerCAmelCase__ = model(snake_case__ ) lowerCAmelCase__ = timm_model(snake_case__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(snake_case__ , outputs.logits , atol=1E-3 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(f'Saving model {deit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _lowerCAmelCase : List[str] = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
604
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def UpperCAmelCase_ ( snake_case__="" ) -> str: """simple docstring""" lowerCAmelCase__ = tempfile.mkdtemp() return os.path.join(snake_case__ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class __snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = torch.rand(12 ,dtype=torch.floataa ) - 0.5 lowerCAmelCase__ = AgentAudio(a_ ) lowerCAmelCase__ = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(a_ ,agent_type.to_raw() ,atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(a_ ) ) # Ensure that the file contains the same value as the original tensor lowerCAmelCase__ , lowerCAmelCase__ = sf.read(a_ ) self.assertTrue(torch.allclose(a_ ,torch.tensor(a_ ) ,atol=1e-4 ) ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = torch.rand(12 ,dtype=torch.floataa ) - 0.5 lowerCAmelCase__ = get_new_path(suffix='.wav' ) sf.write(a_ ,a_ ,1_6000 ) lowerCAmelCase__ = AgentAudio(a_ ) self.assertTrue(torch.allclose(a_ ,agent_type.to_raw() ,atol=1e-4 ) ) self.assertEqual(agent_type.to_string() ,a_ ) @require_vision @require_torch class __snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = torch.randint(0 ,256 ,(64, 64, 3) ) lowerCAmelCase__ = AgentImage(a_ ) lowerCAmelCase__ = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(a_ ,agent_type._tensor ,atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() ,Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(a_ ) ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' lowerCAmelCase__ = Image.open(a_ ) lowerCAmelCase__ = AgentImage(a_ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(a_ ) ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' lowerCAmelCase__ = Image.open(a_ ) lowerCAmelCase__ = AgentImage(a_ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(a_ ) ) class __snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = 'Hey!' lowerCAmelCase__ = AgentText(a_ ) self.assertEqual(a_ ,agent_type.to_string() ) self.assertEqual(a_ ,agent_type.to_raw() ) self.assertEqual(a_ ,a_ )
604
1
from __future__ import annotations from collections.abc import Callable def a__ ( snake_case , snake_case , snake_case , snake_case = 100 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = x_start __SCREAMING_SNAKE_CASE : List[Any] = fnc(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Optional[Any] = 0.0 for _ in range(lowerCamelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area __SCREAMING_SNAKE_CASE : List[Any] = (x_end - x_start) / steps + xa __SCREAMING_SNAKE_CASE : List[str] = fnc(lowerCamelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __SCREAMING_SNAKE_CASE : Union[str, Any] = xa __SCREAMING_SNAKE_CASE : Tuple = fxa return area if __name__ == "__main__": def a__ ( snake_case ): """simple docstring""" return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") lowercase_ = 10 while i <= 100_000: print(f'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 10
74
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def _lowerCamelCase ( ): '''simple docstring''' print('''Making key files...''' ) make_key_files('''rsa''' , 1024 ) print('''Key files generation successful.''' ) def _lowerCamelCase ( lowerCamelCase_: int ): '''simple docstring''' print('''Generating prime p...''' ) A : Optional[Any] = rabinMiller.generate_large_prime(lowerCamelCase_ ) print('''Generating prime q...''' ) A : Tuple = rabinMiller.generate_large_prime(lowerCamelCase_ ) A : Optional[Any] = p * q print('''Generating e that is relatively prime to (p - 1) * (q - 1)...''' ) while True: A : Any = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(lowerCamelCase_ , (p - 1) * (q - 1) ) == 1: break print('''Calculating d that is mod inverse of e...''' ) A : Optional[Any] = cryptoMath.find_mod_inverse(lowerCamelCase_ , (p - 1) * (q - 1) ) A : List[Any] = (n, e) A : Optional[Any] = (n, d) return (public_key, private_key) def _lowerCamelCase ( lowerCamelCase_: str , lowerCamelCase_: int ): '''simple docstring''' if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print('''\nWARNING:''' ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" '''Use a different name or delete these files and re-run this program.''' ) sys.exit() A , A : Union[str, Any] = generate_key(lowerCamelCase_ ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , '''w''' ) as out_file: out_file.write(f"""{key_size},{public_key[0]},{public_key[1]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , '''w''' ) as out_file: out_file.write(f"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
256
0
from __future__ import annotations import math def __UpperCamelCase ( _A : int , _A : int , _A : bool , _A : list[int] , _A : float ) ->int: """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , _A , _A , _A ) , minimax(depth + 1 , node_index * 2 + 1 , _A , _A , _A ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , _A , _A , _A ) , minimax(depth + 1 , node_index * 2 + 1 , _A , _A , _A ) , ) ) def __UpperCamelCase ( ) ->None: """simple docstring""" lowerCamelCase_ =[90, 23, 6, 33, 21, 65, 123, 34423] lowerCamelCase_ =math.log(len(_A ) , 2 ) print(f'Optimal value : {minimax(0 , 0 , _A , _A , _A )}' ) if __name__ == "__main__": import doctest doctest.testmod() main()
75
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py __A : List[Any] = 'src/transformers' __A : Tuple = 'docs/source/en' __A : Optional[int] = '.' def __UpperCamelCase ( _A : Tuple , _A : Tuple , _A : Optional[Any] ) ->Optional[Any]: """simple docstring""" with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase_ =f.readlines() # Find the start prompt. lowerCamelCase_ =0 while not lines[start_index].startswith(_A ): start_index += 1 start_index += 1 lowerCamelCase_ =start_index while not lines[end_index].startswith(_A ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | __A : Dict = 'Model|Encoder|Decoder|ForConditionalGeneration' # Regexes that match TF/Flax/PT model names. __A : Optional[int] = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') __A : Optional[int] = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __A : str = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # This is to make sure the transformers module imported is the one in the repo. __A : List[Any] = direct_transformers_import(TRANSFORMERS_PATH) def __UpperCamelCase ( _A : List[Any] ) ->str: """simple docstring""" lowerCamelCase_ =re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , _A ) return [m.group(0 ) for m in matches] def __UpperCamelCase ( _A : Union[str, Any] , _A : List[str] ) ->Optional[int]: """simple docstring""" lowerCamelCase_ =2 if text == """✅""" or text == """❌""" else len(_A ) lowerCamelCase_ =(width - text_length) // 2 lowerCamelCase_ =width - text_length - left_indent return " " * left_indent + text + " " * right_indent def __UpperCamelCase ( ) ->Any: """simple docstring""" lowerCamelCase_ =transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowerCamelCase_ ={ name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowerCamelCase_ ={name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowerCamelCase_ =collections.defaultdict(_A ) lowerCamelCase_ =collections.defaultdict(_A ) lowerCamelCase_ =collections.defaultdict(_A ) lowerCamelCase_ =collections.defaultdict(_A ) lowerCamelCase_ =collections.defaultdict(_A ) # Let's lookup through all transformers object (once). for attr_name in dir(_A ): lowerCamelCase_ =None if attr_name.endswith("""Tokenizer""" ): lowerCamelCase_ =slow_tokenizers lowerCamelCase_ =attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): lowerCamelCase_ =fast_tokenizers lowerCamelCase_ =attr_name[:-13] elif _re_tf_models.match(_A ) is not None: lowerCamelCase_ =tf_models lowerCamelCase_ =_re_tf_models.match(_A ).groups()[0] elif _re_flax_models.match(_A ) is not None: lowerCamelCase_ =flax_models lowerCamelCase_ =_re_flax_models.match(_A ).groups()[0] elif _re_pt_models.match(_A ) is not None: lowerCamelCase_ =pt_models lowerCamelCase_ =_re_pt_models.match(_A ).groups()[0] if lookup_dict is not None: while len(_A ) > 0: if attr_name in model_name_to_prefix.values(): lowerCamelCase_ =True break # Try again after removing the last word in the name lowerCamelCase_ ="""""".join(camel_case_split(_A )[:-1] ) # Let's build that table! lowerCamelCase_ =list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowerCamelCase_ =["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowerCamelCase_ =[len(_A ) + 2 for c in columns] lowerCamelCase_ =max([len(_A ) for name in model_names] ) + 2 # Build the table per se lowerCamelCase_ ="""|""" + """|""".join([_center_text(_A , _A ) for c, w in zip(_A , _A )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" lowerCamelCase_ ={True: """✅""", False: """❌"""} for name in model_names: lowerCamelCase_ =model_name_to_prefix[name] lowerCamelCase_ =[ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(_A , _A ) for l, w in zip(_A , _A )] ) + "|\n" return table def __UpperCamelCase ( _A : str=False ) ->Optional[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ =_find_text_in_file( filename=os.path.join(_A , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) lowerCamelCase_ =get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(_A , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": __A : int = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __A : Any = parser.parse_args() check_model_table(args.fix_and_overwrite)
75
1
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowercase ( unittest.TestCase ): '''simple docstring''' @property def __magic_name__( self :Union[str, Any] ) -> int: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Tuple = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def __magic_name__( self :Dict ) -> int: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_uncond_unet __SCREAMING_SNAKE_CASE : Tuple = KarrasVeScheduler() __SCREAMING_SNAKE_CASE : List[str] = KarrasVePipeline(unet=__snake_case , scheduler=__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = pipe(num_inference_steps=2 , generator=__snake_case , output_type='''numpy''' ).images __SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = pipe(num_inference_steps=2 , generator=__snake_case , output_type='''numpy''' , return_dict=__snake_case )[0] __SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Tuple ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = """google/ncsnpp-celebahq-256""" __SCREAMING_SNAKE_CASE : str = UNetaDModel.from_pretrained(__snake_case ) __SCREAMING_SNAKE_CASE : int = KarrasVeScheduler() __SCREAMING_SNAKE_CASE : List[Any] = KarrasVePipeline(unet=__snake_case , scheduler=__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[str] = pipe(num_inference_steps=20 , generator=__snake_case , output_type='''numpy''' ).images __SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __SCREAMING_SNAKE_CASE : str = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
696
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __A ( nn.Module ): def __init__( self :List[Any] ): '''simple docstring''' super().__init__() __magic_name__ : Tuple =nn.Linear(3 , 4 ) __magic_name__ : Union[str, Any] =nn.BatchNormad(4 ) __magic_name__ : List[str] =nn.Linear(4 , 5 ) def A__ ( self :Dict , __snake_case :Tuple ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__snake_case ) ) ) class __A ( UpperCamelCase__ ): def A__ ( self :Any , __snake_case :Optional[Any] , *__snake_case :List[Any] , **__snake_case :Any ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __A ( UpperCamelCase__ ): def A__ ( self :List[str] , __snake_case :Tuple , __snake_case :Union[str, Any] ): '''simple docstring''' return output + 1 class __A ( unittest.TestCase ): def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : Tuple =ModelHook() add_hook_to_module(__snake_case , __snake_case ) self.assertEqual(test_model._hf_hook , __snake_case ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : int =ModelForTest() __magic_name__ : List[str] =ModelHook() add_hook_to_module(__snake_case , __snake_case ) add_hook_to_module(__snake_case , __snake_case , append=__snake_case ) self.assertEqual(isinstance(test_model._hf_hook , __snake_case ) , __snake_case ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__snake_case , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__snake_case ) self.assertFalse(hasattr(__snake_case , """_hf_hook""" ) ) self.assertFalse(hasattr(__snake_case , """_old_forward""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() __magic_name__ : Any =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(x + 1 ) __magic_name__ : Optional[Any] =test_model(x + 2 ) __magic_name__ : int =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : int =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : str =PreForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : List[str] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Optional[Any] =SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) assert torch.allclose(__snake_case , __snake_case , atol=1E-5 ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() __magic_name__ : Dict =torch.randn(2 , 3 ) __magic_name__ : Any =test_model(__snake_case ) __magic_name__ : Dict =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Any =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Optional[int] =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __magic_name__ : Union[str, Any] =SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) assert torch.allclose(__snake_case , output + 2 , atol=1E-5 ) def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Tuple =ModelForTest() __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =test_model(__snake_case ) __magic_name__ : Union[str, Any] =PostForwardHook() add_hook_to_module(__snake_case , __snake_case ) __magic_name__ : Dict =test_model(__snake_case ) self.assertTrue(torch.allclose(__snake_case , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __magic_name__ : Any =True __magic_name__ : Any =test_model(__snake_case ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Optional[Any] =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[Any] =model(__snake_case ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__snake_case , AlignDevicesHook(io_same_device=__snake_case ) ) __magic_name__ : int =torch.randn(2 , 3 ).to(0 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , torch.device(0 ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : int =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : int ={"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[int] =torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : Union[str, Any] =torch.randn(2 , 3 ) __magic_name__ : Optional[int] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __magic_name__ : Tuple ={ """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__snake_case ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__snake_case ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Tuple =torch.randn(2 , 3 ) __magic_name__ : int =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Any =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : str =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__snake_case , execution_device=__snake_case , offload=__snake_case , offload_buffers=__snake_case ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : Optional[int] =torch.randn(2 , 3 ) __magic_name__ : Union[str, Any] =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : Dict =ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __magic_name__ : List[str] =0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __magic_name__ : Optional[Any] =torch.device(__snake_case ) self.assertEqual(model.batchnorm.running_mean.device , __snake_case ) __magic_name__ : int =torch.randn(2 , 3 ) __magic_name__ : Any =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __snake_case , execution_device=__snake_case , offload=__snake_case , weights_map=model.state_dict() , offload_buffers=__snake_case , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __magic_name__ : List[Any] =torch.randn(2 , 3 ) __magic_name__ : str =model(__snake_case ) self.assertEqual(output.device , __snake_case ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__snake_case ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
21
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { """configuration_xlm_roberta""": [ """XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaConfig""", """XLMRobertaOnnxConfig""", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["""XLMRobertaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["""XLMRobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ """XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaForCausalLM""", """XLMRobertaForMaskedLM""", """XLMRobertaForMultipleChoice""", """XLMRobertaForQuestionAnswering""", """XLMRobertaForSequenceClassification""", """XLMRobertaForTokenClassification""", """XLMRobertaModel""", """XLMRobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ """TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMRobertaForCausalLM""", """TFXLMRobertaForMaskedLM""", """TFXLMRobertaForMultipleChoice""", """TFXLMRobertaForQuestionAnswering""", """TFXLMRobertaForSequenceClassification""", """TFXLMRobertaForTokenClassification""", """TFXLMRobertaModel""", """TFXLMRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ """FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxXLMRobertaForMaskedLM""", """FlaxXLMRobertaForCausalLM""", """FlaxXLMRobertaForMultipleChoice""", """FlaxXLMRobertaForQuestionAnswering""", """FlaxXLMRobertaForSequenceClassification""", """FlaxXLMRobertaForTokenClassification""", """FlaxXLMRobertaModel""", """FlaxXLMRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
611
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowerCAmelCase : @staticmethod def UpperCAmelCase ( *_lowercase :List[Any] , **_lowercase :Tuple ): '''simple docstring''' pass def _A ( __magic_name__ ): lowercase__ = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowerCAmelCase ( unittest.TestCase ): __lowerCamelCase = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def UpperCAmelCase ( self :Dict , _lowercase :str , _lowercase :Union[str, Any] , _lowercase :Tuple ): '''simple docstring''' lowercase__ = DepthEstimationPipeline(model=_lowercase , image_processor=_lowercase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCAmelCase ( self :List[Any] , _lowercase :Optional[int] , _lowercase :str ): '''simple docstring''' lowercase__ = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , _lowercase ) import datasets lowercase__ = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) lowercase__ = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , _lowercase , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def UpperCAmelCase ( self :str ): '''simple docstring''' pass @slow @require_torch def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = "Intel/dpt-large" lowercase__ = pipeline("depth-estimation" , model=_lowercase ) lowercase__ = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) lowercase__ = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.662 ) @require_torch def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
611
1
"""simple docstring""" from manim import * class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE = Rectangle(height=0.25 , width=0.25 ) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = Text('CPU' , font_size=24 ) SCREAMING_SNAKE_CASE = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = Text('GPU' , font_size=24 ) SCREAMING_SNAKE_CASE = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = Text('Model' , font_size=24 ) SCREAMING_SNAKE_CASE = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) model.move_to([3, -1.0, 0] ) self.add(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(lowerCAmelCase__ ): rect.set_stroke(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowerCAmelCase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowerCAmelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=lowerCAmelCase__ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=lowerCAmelCase__ , buff=0.0 ) self.add(lowerCAmelCase__ ) model_cpu_arr.append(lowerCAmelCase__ ) self.add(*lowerCAmelCase__ , *lowerCAmelCase__ , *lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = Text('Loaded Checkpoint' , font_size=24 ) SCREAMING_SNAKE_CASE = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = fill.copy().set_fill(lowerCAmelCase__ , opacity=0.7 ) target.move_to(lowerCAmelCase__ ) ckpt_arr.append(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(lowerCAmelCase__ ) self.add(*lowerCAmelCase__ , *lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowerCAmelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = MarkupText( F'Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) SCREAMING_SNAKE_CASE = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = Text('Disk' , font_size=24 ) SCREAMING_SNAKE_CASE = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(lowerCAmelCase__ , run_time=3 ) , Write(lowerCAmelCase__ , run_time=1 ) , Create(lowerCAmelCase__ , run_time=1 ) ) SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(lowerCAmelCase__ , run_time=1.5 ) ) self.play(*lowerCAmelCase__ ) self.play(FadeOut(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE = MarkupText(F'Then, the checkpoint is removed from memory\nthrough garbage collection.' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCAmelCase__ , run_time=3 ) ) self.play( FadeOut(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ , *lowerCAmelCase__ ) , ) self.wait()
247
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class lowerCAmelCase ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = """convnextv2""" def __init__( self , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.02 , lowerCAmelCase__=1e-12 , lowerCAmelCase__=0.0 , lowerCAmelCase__=224 , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> int: super().__init__(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_stages SCREAMING_SNAKE_CASE = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes SCREAMING_SNAKE_CASE = [3, 3, 9, 3] if depths is None else depths SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = ['stem'] + [F'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
247
1
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowerCAmelCase_ ( nn.Module ): SCREAMING_SNAKE_CASE_ : int SCREAMING_SNAKE_CASE_ : int SCREAMING_SNAKE_CASE_ : float = 0.0 SCREAMING_SNAKE_CASE_ : int = 1 SCREAMING_SNAKE_CASE_ : int = 1 SCREAMING_SNAKE_CASE_ : bool = True SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : jnp.dtype = jnp.floataa def a_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Any = [] _UpperCAmelCase : Tuple = [] for i in range(self.num_layers ): _UpperCAmelCase : Union[str, Any] = self.in_channels if i == 0 else self.out_channels _UpperCAmelCase : int = FlaxResnetBlockaD( in_channels=UpperCAmelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) _UpperCAmelCase : List[str] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase_ ) _UpperCAmelCase : List[Any] = resnets _UpperCAmelCase : Tuple = attentions if self.add_downsample: _UpperCAmelCase : Tuple = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int]=True ) -> Dict: '''simple docstring''' _UpperCAmelCase : Tuple = () for resnet, attn in zip(self.resnets , self.attentions ): _UpperCAmelCase : List[str] = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) _UpperCAmelCase : List[str] = attn(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) output_states += (hidden_states,) if self.add_downsample: _UpperCAmelCase : Union[str, Any] = self.downsamplers_a(UpperCAmelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class lowerCAmelCase_ ( nn.Module ): SCREAMING_SNAKE_CASE_ : int SCREAMING_SNAKE_CASE_ : int SCREAMING_SNAKE_CASE_ : float = 0.0 SCREAMING_SNAKE_CASE_ : int = 1 SCREAMING_SNAKE_CASE_ : bool = True SCREAMING_SNAKE_CASE_ : jnp.dtype = jnp.floataa def a_ ( self : Any ) -> str: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] for i in range(self.num_layers ): _UpperCAmelCase : Union[str, Any] = self.in_channels if i == 0 else self.out_channels _UpperCAmelCase : Union[str, Any] = FlaxResnetBlockaD( in_channels=UpperCAmelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) _UpperCAmelCase : Dict = resnets if self.add_downsample: _UpperCAmelCase : Optional[int] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str=True ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : str = () for resnet in self.resnets: _UpperCAmelCase : str = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) output_states += (hidden_states,) if self.add_downsample: _UpperCAmelCase : Dict = self.downsamplers_a(UpperCAmelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class lowerCAmelCase_ ( nn.Module ): SCREAMING_SNAKE_CASE_ : int SCREAMING_SNAKE_CASE_ : int SCREAMING_SNAKE_CASE_ : int SCREAMING_SNAKE_CASE_ : float = 0.0 SCREAMING_SNAKE_CASE_ : int = 1 SCREAMING_SNAKE_CASE_ : int = 1 SCREAMING_SNAKE_CASE_ : bool = True SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : jnp.dtype = jnp.floataa def a_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : str = [] _UpperCAmelCase : Union[str, Any] = [] for i in range(self.num_layers ): _UpperCAmelCase : Tuple = self.in_channels if (i == self.num_layers - 1) else self.out_channels _UpperCAmelCase : List[str] = self.prev_output_channel if i == 0 else self.out_channels _UpperCAmelCase : Any = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) _UpperCAmelCase : Optional[Any] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase_ ) _UpperCAmelCase : int = resnets _UpperCAmelCase : List[Any] = attentions if self.add_upsample: _UpperCAmelCase : Dict = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple=True ) -> Optional[Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _UpperCAmelCase : Tuple = res_hidden_states_tuple[-1] _UpperCAmelCase : Dict = res_hidden_states_tuple[:-1] _UpperCAmelCase : Optional[int] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _UpperCAmelCase : Tuple = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) _UpperCAmelCase : Tuple = attn(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) if self.add_upsample: _UpperCAmelCase : List[str] = self.upsamplers_a(UpperCAmelCase_ ) return hidden_states class lowerCAmelCase_ ( nn.Module ): SCREAMING_SNAKE_CASE_ : int SCREAMING_SNAKE_CASE_ : int SCREAMING_SNAKE_CASE_ : int SCREAMING_SNAKE_CASE_ : float = 0.0 SCREAMING_SNAKE_CASE_ : int = 1 SCREAMING_SNAKE_CASE_ : bool = True SCREAMING_SNAKE_CASE_ : jnp.dtype = jnp.floataa def a_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Tuple = [] for i in range(self.num_layers ): _UpperCAmelCase : Optional[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels _UpperCAmelCase : Any = self.prev_output_channel if i == 0 else self.out_channels _UpperCAmelCase : str = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) _UpperCAmelCase : int = resnets if self.add_upsample: _UpperCAmelCase : int = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any]=True ) -> Optional[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states _UpperCAmelCase : int = res_hidden_states_tuple[-1] _UpperCAmelCase : List[str] = res_hidden_states_tuple[:-1] _UpperCAmelCase : List[str] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _UpperCAmelCase : Optional[int] = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) if self.add_upsample: _UpperCAmelCase : Tuple = self.upsamplers_a(UpperCAmelCase_ ) return hidden_states class lowerCAmelCase_ ( nn.Module ): SCREAMING_SNAKE_CASE_ : int SCREAMING_SNAKE_CASE_ : float = 0.0 SCREAMING_SNAKE_CASE_ : int = 1 SCREAMING_SNAKE_CASE_ : int = 1 SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : bool = False SCREAMING_SNAKE_CASE_ : jnp.dtype = jnp.floataa def a_ ( self : Any ) -> Any: '''simple docstring''' _UpperCAmelCase : Optional[int] = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _UpperCAmelCase : Union[str, Any] = [] for _ in range(self.num_layers ): _UpperCAmelCase : Union[str, Any] = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase_ ) _UpperCAmelCase : Tuple = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase_ ) _UpperCAmelCase : Optional[int] = resnets _UpperCAmelCase : Optional[Any] = attentions def __call__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]=True ) -> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.resnets[0](UpperCAmelCase_ , UpperCAmelCase_ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _UpperCAmelCase : Optional[Any] = attn(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) _UpperCAmelCase : Any = resnet(UpperCAmelCase_ , UpperCAmelCase_ , deterministic=UpperCAmelCase_ ) return hidden_states
416
def _A ( _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase : Tuple = len(_UpperCamelCase ) _UpperCAmelCase : Tuple = len(_UpperCamelCase ) _UpperCAmelCase : Dict = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] _UpperCAmelCase : List[Any] = True for i in range(_UpperCamelCase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _UpperCAmelCase : List[Any] = True if a[i].islower(): _UpperCAmelCase : str = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
416
1
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCAmelCase : Optional[int] = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') lowerCAmelCase : List[str] = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCAmelCase : int = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCAmelCase : Any = sorted(arg_to_scheduler.keys()) lowerCAmelCase : Optional[int] = '{' + ', '.join(arg_to_scheduler_choices) + '}' class SCREAMING_SNAKE_CASE__ ( pl.LightningModule): def __init__( self , A_ , A_=None , A_="base" , A_=None , A_=None , A_=None , **A_ , )-> str: '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(A_ ) UpperCamelCase = 0 UpperCamelCase = Path(self.hparams.output_dir ) UpperCamelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: UpperCamelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=A_ , **A_ , ) else: UpperCamelCase = config UpperCamelCase = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , A_ , A_ ): assert hasattr(self.config , A_ ), F'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , A_ , getattr(self.hparams , A_ ) ) if tokenizer is None: UpperCamelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=A_ , ) else: UpperCamelCase = tokenizer UpperCamelCase = MODEL_MODES[mode] if model is None: UpperCamelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=A_ , ) else: UpperCamelCase = model def UpperCAmelCase_ ( self , *A_ , **A_ )-> Tuple: '''simple docstring''' UpperCamelCase = self.model_type.from_pretrained(*A_ , **A_ ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = arg_to_scheduler[self.hparams.lr_scheduler] UpperCamelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) UpperCamelCase = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = self.model UpperCamelCase = ['bias', 'LayerNorm.weight'] UpperCamelCase = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: UpperCamelCase = Adafactor( A_ , lr=self.hparams.learning_rate , scale_parameter=A_ , relative_step=A_ ) else: UpperCamelCase = AdamW( A_ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) UpperCamelCase = optimizer UpperCamelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase_ ( self , A_ , A_ )-> Optional[Any]: '''simple docstring''' return self.validation_step(A_ , A_ ) def UpperCAmelCase_ ( self , A_ )-> Union[str, Any]: '''simple docstring''' return self.validation_end(A_ ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores UpperCamelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase_ ( self , A_ )-> str: '''simple docstring''' if stage == "test": UpperCamelCase = len(self.test_dataloader().dataset ) else: UpperCamelCase = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=A_ ) UpperCamelCase = len(self.train_dataloader().dataset ) def UpperCAmelCase_ ( self , A_ , A_ , A_ = False )-> Dict: '''simple docstring''' raise NotImplementedError('You must implement this for your task' ) def UpperCAmelCase_ ( self )-> str: '''simple docstring''' return self.train_loader def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=A_ ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=A_ ) def UpperCAmelCase_ ( self , A_ )-> int: '''simple docstring''' return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( A_ , list(filter(A_ , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase_ ( self , A_ )-> None: '''simple docstring''' UpperCamelCase = self.output_dir.joinpath('best_tfmr' ) UpperCamelCase = self.step_count self.model.save_pretrained(A_ ) self.tokenizer.save_pretrained(A_ ) @staticmethod def UpperCAmelCase_ ( A_ , A_ )-> Tuple: '''simple docstring''' parser.add_argument( '--model_name_or_path' , default=A_ , type=A_ , required=A_ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=A_ , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=A_ , type=A_ , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(A_ ).parent / 'test_run' / 'cache' ) , type=A_ , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=A_ , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=A_ , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=A_ , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=A_ , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5e-5 , type=A_ , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=A_ , metavar=A_ , type=A_ , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=A_ , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=A_ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=A_ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=A_ , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=A_ ) parser.add_argument('--train_batch_size' , default=32 , type=A_ ) parser.add_argument('--eval_batch_size' , default=32 , type=A_ ) parser.add_argument('--adafactor' , action='store_true' ) class SCREAMING_SNAKE_CASE__ ( pl.Callback): def UpperCAmelCase_ ( self , A_ , A_ )-> Tuple: '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class SCREAMING_SNAKE_CASE__ ( pl.Callback): def UpperCAmelCase_ ( self , A_ , A_ )-> Tuple: '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(A_ ) class SCREAMING_SNAKE_CASE__ ( pl.Callback): def UpperCAmelCase_ ( self , A_ , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = trainer.lr_schedulers[0]['scheduler'] UpperCamelCase = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(A_ ) def UpperCAmelCase_ ( self , A_ , A_ )-> List[str]: '''simple docstring''' rank_zero_info('***** Validation results *****' ) UpperCamelCase = trainer.callback_metrics # Log results for key in sorted(A_ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(A_ , str(metrics[key] ) ) ) def UpperCAmelCase_ ( self , A_ , A_ )-> Union[str, Any]: '''simple docstring''' rank_zero_info('***** Test results *****' ) UpperCamelCase = trainer.callback_metrics # Log and save results to file UpperCamelCase = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(A_ , 'w' ) as writer: for key in sorted(A_ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(A_ , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(A_ , str(metrics[key] ) ) ) def A_( A : Optional[int] , A : Tuple): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir' , default=str(Path(A).parent / 'test_run' / 'model_checkpoints') , type=A , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=A , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=A) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=A , help='Max gradient norm') parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.') parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.') parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=A , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=A , default=42 , help='random seed for initialization') parser.add_argument( '--data_dir' , default=str(Path(A).parent / 'test_run' / 'dummy-train-data') , type=A , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def A_( A : BaseTransformer , A : argparse.Namespace , A : Optional[int]=None , A : Optional[int]=True , A : Dict=[] , A : str=None , A : List[str]=None , **A : Tuple , ): pl.seed_everything(args.seed) # init model UpperCamelCase = Path(model.hparams.output_dir) odir.mkdir(exist_ok=A) # add custom checkpoints if checkpoint_callback is None: UpperCamelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1) if early_stopping_callback: extra_callbacks.append(A) if logging_callback is None: UpperCamelCase = LoggingCallback() UpperCamelCase = {} if args.fpaa: UpperCamelCase = 16 if args.gpus > 1: UpperCamelCase = 'auto' UpperCamelCase = 'ddp' UpperCamelCase = args.accumulate_grad_batches UpperCamelCase = None UpperCamelCase = 'auto' UpperCamelCase = pl.Trainer.from_argparse_args( A , weights_summary=A , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=A , val_check_interval=1 , num_sanity_val_steps=2 , **A , ) if args.do_train: trainer.fit(A) else: print('RAG modeling tests with new set functions successfuly executed!') return trainer
3
def UpperCAmelCase_ ( UpperCAmelCase__ = "The quick brown fox jumps over the lazy dog" , ): lowercase_ = set() # Replace all the whitespace in our sentence lowercase_ = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(UpperCAmelCase__ ) == 2_6 def UpperCAmelCase_ ( UpperCAmelCase__ = "The quick brown fox jumps over the lazy dog" , ): lowercase_ = [False] * 2_6 for char in input_str: if char.islower(): lowercase_ = True elif char.isupper(): lowercase_ = True return all(UpperCAmelCase__ ) def UpperCAmelCase_ ( UpperCAmelCase__ = "The quick brown fox jumps over the lazy dog" , ): return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def UpperCAmelCase_ ( ): from timeit import timeit lowercase_ = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=UpperCAmelCase__ ) ) print(timeit("""is_pangram_faster()""" , setup=UpperCAmelCase__ ) ) print(timeit("""is_pangram_fastest()""" , setup=UpperCAmelCase__ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
412
0
'''simple docstring''' import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_=False ): """simple docstring""" try: lowerCAmelCase__ : Optional[Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowerCAmelCase__ : Optional[int] = default else: # KEY is set, convert it to True or False. try: lowerCAmelCase__ : Tuple = strtobool(lowerCamelCase_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value snake_case = parse_flag_from_env("""RUN_SLOW""", default=False) snake_case = parse_flag_from_env("""RUN_REMOTE""", default=False) snake_case = parse_flag_from_env("""RUN_LOCAL""", default=True) snake_case = parse_flag_from_env("""RUN_PACKAGED""", default=True) # Compression snake_case = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="""test requires lz4""") snake_case = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="""test requires py7zr""") snake_case = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="""test requires zstandard""") # Audio snake_case = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("""soundfile""") is None or version.parse(importlib_metadata.version("""soundfile""")) < version.parse("""0.12.0"""), reason="""test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; """, ) # Beam snake_case = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("""0.3.2"""), reason="""test requires apache-beam and a compatible dill version""", ) # Dill-cloudpickle compatibility snake_case = pytest.mark.skipif( config.DILL_VERSION <= version.parse("""0.3.2"""), reason="""test requires dill>0.3.2 for cloudpickle compatibility""", ) # Windows snake_case = pytest.mark.skipif( sys.platform == """win32""", reason="""test should not be run on Windows""", ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" try: import faiss # noqa except ImportError: lowerCAmelCase__ : List[str] = unittest.skip("test requires faiss" )(lowerCamelCase_ ) return test_case def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" try: import regex # noqa except ImportError: lowerCAmelCase__ : Optional[int] = unittest.skip("test requires regex" )(lowerCamelCase_ ) return test_case def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" try: import elasticsearch # noqa except ImportError: lowerCAmelCase__ : List[Any] = unittest.skip("test requires elasticsearch" )(lowerCamelCase_ ) return test_case def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: lowerCAmelCase__ : List[str] = unittest.skip("test requires sqlalchemy" )(lowerCamelCase_ ) return test_case def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" if not config.TORCH_AVAILABLE: lowerCAmelCase__ : List[Any] = unittest.skip("test requires PyTorch" )(lowerCamelCase_ ) return test_case def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" if not config.TF_AVAILABLE: lowerCAmelCase__ : Optional[int] = unittest.skip("test requires TensorFlow" )(lowerCamelCase_ ) return test_case def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" if not config.JAX_AVAILABLE: lowerCAmelCase__ : Optional[Any] = unittest.skip("test requires JAX" )(lowerCamelCase_ ) return test_case def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" if not config.PIL_AVAILABLE: lowerCAmelCase__ : int = unittest.skip("test requires Pillow" )(lowerCamelCase_ ) return test_case def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(lowerCamelCase_ ) else: return test_case def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(lowerCamelCase_ ) else: return test_case def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(lowerCamelCase_ ) else: return test_case def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" def _require_spacy_model(lowerCamelCase_ ): try: import spacy # noqa F401 spacy.load(lowerCamelCase_ ) except ImportError: return unittest.skip("test requires spacy" )(lowerCamelCase_ ) except OSError: return unittest.skip("test requires spacy model '{}'".format(lowerCamelCase_ ) )(lowerCamelCase_ ) else: return test_case return _require_spacy_model def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(lowerCamelCase_ ) else: return test_case def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(lowerCamelCase_ ) else: return test_case def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: lowerCAmelCase__ : int = unittest.skip("test is slow" )(lowerCamelCase_ ) return test_case def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: lowerCAmelCase__ : Tuple = unittest.skip("test is local" )(lowerCamelCase_ ) return test_case def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: lowerCAmelCase__ : List[str] = unittest.skip("test is packaged" )(lowerCamelCase_ ) return test_case def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: lowerCAmelCase__ : Union[str, Any] = unittest.skip("test requires remote" )(lowerCamelCase_ ) return test_case def UpperCAmelCase_ ( *lowerCamelCase_ ): """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(lowerCamelCase_ ) and name.startswith("test" ): for decorator in decorators: lowerCAmelCase__ : Optional[Any] = decorator(lowerCamelCase_ ) setattr(cls , lowerCamelCase_ , lowerCamelCase_ ) return cls return decorate class lowerCAmelCase ( UpperCamelCase_ ): pass class lowerCAmelCase ( UpperCamelCase_ ): A_ : List[Any] = 0 A_ : int = 1 A_ : Any = 2 @contextmanager def UpperCAmelCase_ ( lowerCamelCase_=OfflineSimulationMode.CONNECTION_FAILS , lowerCamelCase_=1e-1_6 ): """simple docstring""" lowerCAmelCase__ : Optional[int] = requests.Session().request def timeout_request(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ): # Change the url to an invalid url so that the connection hangs lowerCAmelCase__ : Union[str, Any] = "https://10.255.255.1" if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( f'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) lowerCAmelCase__ : Union[str, Any] = timeout try: return online_request(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier lowerCAmelCase__ : Union[str, Any] = url lowerCAmelCase__ : List[Any] = e.args[0] lowerCAmelCase__ : Tuple = (max_retry_error.args[0].replace("10.255.255.1" , f'''OfflineMock[{url}]''' ),) lowerCAmelCase__ : str = (max_retry_error,) raise def raise_connection_error(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ): raise requests.ConnectionError("Offline mode is enabled." , request=lowerCamelCase_ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , lowerCamelCase_ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , lowerCamelCase_ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , lowerCamelCase_ ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def UpperCAmelCase_ ( *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : str = str(Path().resolve() ) with tempfile.TemporaryDirectory(*lowerCamelCase_ , **lowerCamelCase_ ) as tmp_dir: try: os.chdir(lowerCamelCase_ ) yield finally: os.chdir(lowerCamelCase_ ) @contextmanager def UpperCAmelCase_ ( ): """simple docstring""" import gc gc.collect() lowerCAmelCase__ : List[str] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def UpperCAmelCase_ ( ): """simple docstring""" import gc gc.collect() lowerCAmelCase__ : Dict = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return deepcopy(lowerCamelCase_ ).integers(0 , 1_0_0 , 1_0 ).tolist() == deepcopy(lowerCamelCase_ ).integers(0 , 1_0_0 , 1_0 ).tolist() def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ): try: return func(*lowerCamelCase_ , **lowerCamelCase_ ) except HTTPError as err: if str(lowerCamelCase_ ).startswith("500" ) or str(lowerCamelCase_ ).startswith("502" ): pytest.xfail(str(lowerCamelCase_ ) ) raise err return decorator.decorator(_wrapper , lowerCamelCase_ ) class lowerCAmelCase : def __init__( self : Optional[Any] , a__ : Any , a__ : Optional[Any] , a__ : int ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = returncode lowerCAmelCase__ : str = stdout lowerCAmelCase__ : Tuple = stderr async def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" while True: lowerCAmelCase__ : Optional[int] = await stream.readline() if line: callback(lowerCamelCase_ ) else: break async def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=False , lowerCamelCase_=False ): """simple docstring""" if echo: print("\nRunning: " , " ".join(lowerCamelCase_ ) ) lowerCAmelCase__ : Tuple = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowerCamelCase_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCamelCase_ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowerCAmelCase__ : List[str] = [] lowerCAmelCase__ : str = [] def tee(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_="" ): lowerCAmelCase__ : int = line.decode("utf-8" ).rstrip() sink.append(lowerCamelCase_ ) if not quiet: print(lowerCamelCase_ , lowerCamelCase_ , file=lowerCamelCase_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda lowerCamelCase_ : tee(lowerCamelCase_ , lowerCamelCase_ , sys.stdout , label="stdout:" ) ), _read_stream(p.stderr , lambda lowerCamelCase_ : tee(lowerCamelCase_ , lowerCamelCase_ , sys.stderr , label="stderr:" ) ), ] , timeout=lowerCamelCase_ , ) return _RunOutput(await p.wait() , lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=1_8_0 , lowerCamelCase_=False , lowerCamelCase_=True ): """simple docstring""" lowerCAmelCase__ : Any = asyncio.get_event_loop() lowerCAmelCase__ : Any = loop.run_until_complete( _stream_subprocess(lowerCamelCase_ , env=lowerCamelCase_ , stdin=lowerCamelCase_ , timeout=lowerCamelCase_ , quiet=lowerCamelCase_ , echo=lowerCamelCase_ ) ) lowerCAmelCase__ : Union[str, Any] = " ".join(lowerCamelCase_ ) if result.returncode > 0: lowerCAmelCase__ : List[str] = "\n".join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'''\'{cmd_str}\' produced no output.''' ) return result def UpperCAmelCase_ ( ): """simple docstring""" lowerCAmelCase__ : int = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" ) lowerCAmelCase__ : Optional[Any] = re.sub(R"^gw" , "" , lowerCamelCase_ , 0 , re.M ) return int(lowerCamelCase_ ) def UpperCAmelCase_ ( ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = 2_9_5_0_0 lowerCAmelCase__ : Optional[Any] = pytest_xdist_worker_id() return port + uniq_delta
568
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: snake_case = None snake_case = logging.get_logger(__name__) snake_case = {"""vocab_file""": """sentencepiece.model""", """tokenizer_file""": """tokenizer.json"""} snake_case = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, """tokenizer_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/tokenizer.json""", }, } snake_case = { """google/rembert""": 2_56, } snake_case = """▁""" class lowerCAmelCase ( UpperCamelCase_ ): A_ : Dict = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Tuple = RemBertTokenizer def __init__( self : Dict , a__ : int=None , a__ : List[Any]=None , a__ : List[Any]=True , a__ : Dict=True , a__ : int=False , a__ : Tuple="[CLS]" , a__ : Optional[int]="[SEP]" , a__ : Optional[Any]="<unk>" , a__ : List[str]="[SEP]" , a__ : Any="<pad>" , a__ : List[str]="[CLS]" , a__ : int="[MASK]" , **a__ : Dict , ): '''simple docstring''' lowerCAmelCase__ : Tuple = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token super().__init__( a__ , tokenizer_file=a__ , do_lower_case=a__ , remove_space=a__ , keep_accents=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , **a__ , ) lowerCAmelCase__ : Dict = do_lower_case lowerCAmelCase__ : List[str] = remove_space lowerCAmelCase__ : Optional[int] = keep_accents lowerCAmelCase__ : Tuple = vocab_file lowerCAmelCase__ : Optional[int] = False if not self.vocab_file else True def _A ( self : List[str] , a__ : List[int] , a__ : Optional[List[int]] = None ): '''simple docstring''' lowerCAmelCase__ : Any = [self.sep_token_id] lowerCAmelCase__ : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _A ( self : List[str] , a__ : List[int] , a__ : Optional[List[int]] = None , a__ : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(a__ )) + [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1] def _A ( self : Tuple , a__ : List[int] , a__ : Optional[List[int]] = None ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = [self.sep_token_id] lowerCAmelCase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _A ( self : List[str] , a__ : str , a__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(a__ ): logger.error("Vocabulary path ({}) should be a directory".format(a__ ) ) return lowerCAmelCase__ : List[Any] = os.path.join( a__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) return (out_vocab_file,)
568
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Tuple = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __lowerCamelCase = "levit" def __init__( self , snake_case__=224 , snake_case__=3 , snake_case__=3 , snake_case__=2 , snake_case__=1 , snake_case__=16 , snake_case__=[128, 256, 384] , snake_case__=[4, 8, 12] , snake_case__=[4, 4, 4] , snake_case__=[16, 16, 16] , snake_case__=0 , snake_case__=[2, 2, 2] , snake_case__=[2, 2, 2] , snake_case__=0.02 , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) lowercase__ : Optional[Any]= image_size lowercase__ : Dict= num_channels lowercase__ : Optional[int]= kernel_size lowercase__ : Dict= stride lowercase__ : Optional[Any]= padding lowercase__ : int= hidden_sizes lowercase__ : str= num_attention_heads lowercase__ : List[str]= depths lowercase__ : int= key_dim lowercase__ : Optional[int]= drop_path_rate lowercase__ : Optional[Any]= patch_size lowercase__ : Any= attention_ratio lowercase__ : str= mlp_ratio lowercase__ : Tuple= initializer_range lowercase__ : Optional[int]= [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __lowerCamelCase = version.parse("1.11" ) @property def UpperCAmelCase_ ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase_ ( self ): '''simple docstring''' return 1e-4
218
"""simple docstring""" from ...processing_utils import ProcessorMixin class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __lowerCamelCase = "WhisperFeatureExtractor" __lowerCamelCase = "WhisperTokenizer" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' super().__init__(snake_case__ , snake_case__ ) lowercase__ : List[Any]= self.feature_extractor lowercase__ : Dict= False def UpperCAmelCase_ ( self , snake_case__=None , snake_case__=None , snake_case__=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=snake_case__ , language=snake_case__ , no_timestamps=snake_case__ ) def __call__( self , *snake_case__ , **snake_case__ ): '''simple docstring''' # For backward compatibility if self._in_target_context_manager: return self.current_processor(*snake_case__ , **snake_case__ ) lowercase__ : Tuple= kwargs.pop("audio" , snake_case__ ) lowercase__ : Optional[int]= kwargs.pop("sampling_rate" , snake_case__ ) lowercase__ : Union[str, Any]= kwargs.pop("text" , snake_case__ ) if len(snake_case__ ) > 0: lowercase__ : List[Any]= args[0] lowercase__ : str= args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: lowercase__ : Tuple= self.feature_extractor(snake_case__ , *snake_case__ , sampling_rate=snake_case__ , **snake_case__ ) if text is not None: lowercase__ : Optional[Any]= self.tokenizer(snake_case__ , **snake_case__ ) if text is None: return inputs elif audio is None: return encodings else: lowercase__ : str= encodings["input_ids"] return inputs def UpperCAmelCase_ ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def UpperCAmelCase_ ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' return self.tokenizer.decode(*snake_case__ , **snake_case__ ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__="np" ): '''simple docstring''' return self.tokenizer.get_prompt_ids(snake_case__ , return_tensors=snake_case__ )
218
1
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and number_of_steps > 0 ), F'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 UpperCamelCase__ , UpperCamelCase__ = 1, 1 for _ in range(number_of_steps - 1 ): UpperCamelCase__ , UpperCamelCase__ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
717
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : str= logging.get_logger(__name__) A__ : List[Any]= { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowerCamelCase ( _a ): a : Any ="""segformer""" def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[32, 64, 160, 256] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=256 , snake_case_=255 , **snake_case_ , ) -> Tuple: super().__init__(**snake_case_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , snake_case_ , ) UpperCamelCase__ = num_channels UpperCamelCase__ = num_encoder_blocks UpperCamelCase__ = depths UpperCamelCase__ = sr_ratios UpperCamelCase__ = hidden_sizes UpperCamelCase__ = patch_sizes UpperCamelCase__ = strides UpperCamelCase__ = mlp_ratios UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = classifier_dropout_prob UpperCamelCase__ = initializer_range UpperCamelCase__ = drop_path_rate UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = decoder_hidden_size UpperCamelCase__ = kwargs.get('reshape_last_stage' , snake_case_ ) UpperCamelCase__ = semantic_loss_ignore_index class __lowerCamelCase ( _a ): a : Any =version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ) -> float: return 1E-4 @property def SCREAMING_SNAKE_CASE__ ( self ) -> int: return 12
20
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __magic_name__ ( unittest.TestCase ): def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) _lowerCAmelCase = { 'do_resize': True, 'size': 2_0, 'do_center_crop': True, 'crop_size': 1_8, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } _lowerCAmelCase = os.path.join(self.tmpdirname , __magic_name__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(__magic_name__ , __magic_name__ ) def _lowerCamelCase ( self , **__magic_name__ ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ ) def _lowerCamelCase ( self , **__magic_name__ ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **__magic_name__ ) def _lowerCamelCase ( self , **__magic_name__ ): """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _lowerCAmelCase = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = AlignProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) processor_slow.save_pretrained(self.tmpdirname ) _lowerCAmelCase = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__magic_name__ ) _lowerCAmelCase = AlignProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) processor_fast.save_pretrained(self.tmpdirname ) _lowerCAmelCase = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __magic_name__ ) self.assertIsInstance(processor_fast.tokenizer , __magic_name__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __magic_name__ ) self.assertIsInstance(processor_fast.image_processor , __magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCAmelCase = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 ) _lowerCAmelCase = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__magic_name__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __magic_name__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = AlignProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = image_processor(__magic_name__ , return_tensors='np' ) _lowerCAmelCase = processor(images=__magic_name__ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = AlignProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) _lowerCAmelCase = 'lower newer' _lowerCAmelCase = processor(text=__magic_name__ ) _lowerCAmelCase = tokenizer(__magic_name__ , padding='max_length' , max_length=6_4 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = AlignProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) _lowerCAmelCase = 'lower newer' _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = AlignProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) _lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase = processor.batch_decode(__magic_name__ ) _lowerCAmelCase = tokenizer.batch_decode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = AlignProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) _lowerCAmelCase = 'lower newer' _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
589
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def A__ ( __lowerCamelCase ): """simple docstring""" # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def A__ ( __lowerCamelCase, __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue _lowerCAmelCase = key.replace('heads.cmd.mim_head.cls.predictions', 'mmm_image_head' ) _lowerCAmelCase = key.replace('heads.cmd.mlm_head.cls.predictions', 'mmm_text_head' ) _lowerCAmelCase = key.replace('heads.cmd.itm_head.cls', 'itm_head' ) _lowerCAmelCase = key.replace('heads.cmd.itm_head.pooler', 'itm_head.pooler' ) _lowerCAmelCase = key.replace('heads.cmd.clip_head.logit_scale', 'flava.logit_scale' ) _lowerCAmelCase = key.replace('heads.fairseq_mlm.cls.predictions', 'mlm_head' ) _lowerCAmelCase = key.replace('heads.imagenet.mim_head.cls.predictions', 'mim_head' ) _lowerCAmelCase = key.replace('mm_text_projection', 'flava.text_to_mm_projection' ) _lowerCAmelCase = key.replace('mm_image_projection', 'flava.image_to_mm_projection' ) _lowerCAmelCase = key.replace('image_encoder.module', 'flava.image_model' ) _lowerCAmelCase = key.replace('text_encoder.module', 'flava.text_model' ) _lowerCAmelCase = key.replace('mm_encoder.module.encoder.cls_token', 'flava.multimodal_model.cls_token' ) _lowerCAmelCase = key.replace('mm_encoder.module', 'flava.multimodal_model' ) _lowerCAmelCase = key.replace('text_projection', 'flava.text_projection' ) _lowerCAmelCase = key.replace('image_projection', 'flava.image_projection' ) _lowerCAmelCase = value.float() for key, value in codebook_state_dict.items(): _lowerCAmelCase = value return upgrade @torch.no_grad() def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None ): """simple docstring""" if config_path is not None: _lowerCAmelCase = FlavaConfig.from_pretrained(__lowerCamelCase ) else: _lowerCAmelCase = FlavaConfig() _lowerCAmelCase = FlavaForPreTraining(__lowerCamelCase ).eval() _lowerCAmelCase = convert_dalle_checkpoint(__lowerCamelCase, __lowerCamelCase, save_checkpoint=__lowerCamelCase ) if os.path.exists(__lowerCamelCase ): _lowerCAmelCase = torch.load(__lowerCamelCase, map_location='cpu' ) else: _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase, map_location='cpu' ) _lowerCAmelCase = upgrade_state_dict(__lowerCamelCase, __lowerCamelCase ) hf_model.load_state_dict(__lowerCamelCase ) _lowerCAmelCase = hf_model.state_dict() _lowerCAmelCase = count_parameters(__lowerCamelCase ) _lowerCAmelCase = count_parameters(__lowerCamelCase ) + count_parameters(__lowerCamelCase ) assert torch.allclose(__lowerCamelCase, __lowerCamelCase, atol=1e-3 ) hf_model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": a__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") a__ : str = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
589
1
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a__ : List[Any] = logging.get_logger(__name__) class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = ["pixel_values"] def __init__( self : str , lowerCAmelCase : bool = True , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase : bool = True , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : bool = True , lowerCAmelCase : Union[int, float] = 1 / 2_55 , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , lowerCAmelCase : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **lowerCAmelCase : Optional[Any] , ) -> None: """simple docstring""" super().__init__(**__UpperCamelCase) lowercase__ = size if size is not None else {'shortest_edge': 2_24} lowercase__ = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase) lowercase__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} lowercase__ = get_size_dict(__UpperCamelCase , param_name='crop_size') lowercase__ = do_resize lowercase__ = size lowercase__ = resample lowercase__ = do_center_crop lowercase__ = crop_size lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_normalize lowercase__ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase__ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self : Any , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : str , ) -> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowercase__ = int((2_56 / 2_24) * size['shortest_edge']) lowercase__ = get_resize_output_image_size(__UpperCamelCase , size=__UpperCamelCase , default_to_square=__UpperCamelCase) lowercase__ = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''') return resize( __UpperCamelCase , size=(size_dict['height'], size_dict['width']) , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : List[Any] , ) -> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(__UpperCamelCase) if "height" not in size or "width" not in size: raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''') return center_crop(__UpperCamelCase , size=(size['height'], size['width']) , data_format=__UpperCamelCase , **__UpperCamelCase) def UpperCAmelCase ( self : Any , lowerCAmelCase : np.ndarray , lowerCAmelCase : Union[int, float] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : int , ) -> np.ndarray: """simple docstring""" return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase) def UpperCAmelCase ( self : Any , lowerCAmelCase : np.ndarray , lowerCAmelCase : Union[float, List[float]] , lowerCAmelCase : Union[float, List[float]] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Optional[Any] , ) -> np.ndarray: """simple docstring""" return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : ImageInput , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[Dict[str, int]] = None , lowerCAmelCase : PILImageResampling = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[Dict[str, int]] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[float] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase : Optional[TensorType] = None , lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase : Dict , ) -> BatchFeature: """simple docstring""" lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = resample if resample is not None else self.resample lowercase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = image_mean if image_mean is not None else self.image_mean lowercase__ = image_std if image_std is not None else self.image_std lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase) lowercase__ = crop_size if crop_size is not None else self.crop_size lowercase__ = get_size_dict(__UpperCamelCase , param_name='crop_size') lowercase__ = make_list_of_images(__UpperCamelCase) if not valid_images(__UpperCamelCase): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(__UpperCamelCase) for image in images] if do_resize: lowercase__ = [self.resize(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase) for image in images] if do_center_crop: lowercase__ = [self.center_crop(__UpperCamelCase , __UpperCamelCase) for image in images] if do_rescale: lowercase__ = [self.rescale(__UpperCamelCase , __UpperCamelCase) for image in images] if do_normalize: lowercase__ = [self.normalize(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase) for image in images] lowercase__ = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase) for image in images] lowercase__ = {'pixel_values': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase)
707
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Optional[int] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
0
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class UpperCAmelCase__ : @staticmethod def lowerCamelCase_ ( *__A : Optional[Any],**__A : int ): pass def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _lowerCamelCase : Optional[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _lowerCamelCase : Union[str, Any] = np.array(_lowerCAmelCase ) _lowerCamelCase : str = npimg.shape return {"hash": hashimage(_lowerCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): lowerCAmelCase_ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) lowerCAmelCase_ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCamelCase_ ( self : int,__A : Any,__A : Optional[int],__A : Optional[int] ): _lowerCamelCase : Tuple = MaskGenerationPipeline(model=__A,image_processor=__A ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase_ ( self : Tuple,__A : List[Any],__A : Union[str, Any] ): pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def lowerCamelCase_ ( self : str ): pass @slow @require_torch def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = pipeline("mask-generation",model="facebook/sam-vit-huge" ) _lowerCamelCase : Tuple = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg",points_per_batch=2_5_6 ) # Shortening by hashing _lowerCamelCase : Optional[Any] = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(__A ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(__A,decimals=4 ),[ {"mask": {"hash": "115ad19f5f", "shape": (4_8_0, 6_4_0)}, "scores": 1.0444}, {"mask": {"hash": "6affa964c6", "shape": (4_8_0, 6_4_0)}, "scores": 1.021}, {"mask": {"hash": "dfe28a0388", "shape": (4_8_0, 6_4_0)}, "scores": 1.0167}, {"mask": {"hash": "c0a5f4a318", "shape": (4_8_0, 6_4_0)}, "scores": 1.0132}, {"mask": {"hash": "fe8065c197", "shape": (4_8_0, 6_4_0)}, "scores": 1.0053}, {"mask": {"hash": "e2d0b7a0b7", "shape": (4_8_0, 6_4_0)}, "scores": 0.9967}, {"mask": {"hash": "453c7844bd", "shape": (4_8_0, 6_4_0)}, "scores": 0.993}, {"mask": {"hash": "3d44f2926d", "shape": (4_8_0, 6_4_0)}, "scores": 0.9909}, {"mask": {"hash": "64033ddc3f", "shape": (4_8_0, 6_4_0)}, "scores": 0.9879}, {"mask": {"hash": "801064ff79", "shape": (4_8_0, 6_4_0)}, "scores": 0.9834}, {"mask": {"hash": "6172f276ef", "shape": (4_8_0, 6_4_0)}, "scores": 0.9716}, {"mask": {"hash": "b49e60e084", "shape": (4_8_0, 6_4_0)}, "scores": 0.9612}, {"mask": {"hash": "a811e775fd", "shape": (4_8_0, 6_4_0)}, "scores": 0.9599}, {"mask": {"hash": "a6a8ebcf4b", "shape": (4_8_0, 6_4_0)}, "scores": 0.9552}, {"mask": {"hash": "9d8257e080", "shape": (4_8_0, 6_4_0)}, "scores": 0.9532}, {"mask": {"hash": "32de6454a8", "shape": (4_8_0, 6_4_0)}, "scores": 0.9516}, {"mask": {"hash": "af3d4af2c8", "shape": (4_8_0, 6_4_0)}, "scores": 0.9499}, {"mask": {"hash": "3c6db475fb", "shape": (4_8_0, 6_4_0)}, "scores": 0.9483}, {"mask": {"hash": "c290813fb9", "shape": (4_8_0, 6_4_0)}, "scores": 0.9464}, {"mask": {"hash": "b6f0b8f606", "shape": (4_8_0, 6_4_0)}, "scores": 0.943}, {"mask": {"hash": "92ce16bfdf", "shape": (4_8_0, 6_4_0)}, "scores": 0.943}, {"mask": {"hash": "c749b25868", "shape": (4_8_0, 6_4_0)}, "scores": 0.9408}, {"mask": {"hash": "efb6cab859", "shape": (4_8_0, 6_4_0)}, "scores": 0.9335}, {"mask": {"hash": "1ff2eafb30", "shape": (4_8_0, 6_4_0)}, "scores": 0.9326}, {"mask": {"hash": "788b798e24", "shape": (4_8_0, 6_4_0)}, "scores": 0.9262}, {"mask": {"hash": "abea804f0e", "shape": (4_8_0, 6_4_0)}, "scores": 0.8999}, {"mask": {"hash": "7b9e8ddb73", "shape": (4_8_0, 6_4_0)}, "scores": 0.8986}, {"mask": {"hash": "cd24047c8a", "shape": (4_8_0, 6_4_0)}, "scores": 0.8984}, {"mask": {"hash": "6943e6bcbd", "shape": (4_8_0, 6_4_0)}, "scores": 0.8873}, {"mask": {"hash": "b5f47c9191", "shape": (4_8_0, 6_4_0)}, "scores": 0.8871} ],) # fmt: on @require_torch @slow def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Union[str, Any] = "facebook/sam-vit-huge" _lowerCamelCase : Tuple = pipeline("mask-generation",model=__A ) _lowerCamelCase : Union[str, Any] = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg",pred_iou_thresh=1,points_per_batch=2_5_6 ) # Shortening by hashing _lowerCamelCase : List[Any] = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(__A ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(__A,decimals=4 ),[ {"mask": {"hash": "115ad19f5f", "shape": (4_8_0, 6_4_0)}, "scores": 1.0444}, {"mask": {"hash": "6affa964c6", "shape": (4_8_0, 6_4_0)}, "scores": 1.0210}, {"mask": {"hash": "dfe28a0388", "shape": (4_8_0, 6_4_0)}, "scores": 1.0167}, {"mask": {"hash": "c0a5f4a318", "shape": (4_8_0, 6_4_0)}, "scores": 1.0132}, {"mask": {"hash": "fe8065c197", "shape": (4_8_0, 6_4_0)}, "scores": 1.0053}, ],)
44
import math def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> float: return math.pow(_UpperCAmelCase , 2 ) - a def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> float: return 2 * x def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> float: _a = 2.0 while start <= a: _a = math.pow(_UpperCAmelCase , 2 ) return start def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase = 9999 , _UpperCAmelCase = 0.00000000000001 ) -> float: if a < 0: raise ValueError('math domain error' ) _a = get_initial_point(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ): _a = value _a = value - fx(_UpperCAmelCase , _UpperCAmelCase ) / fx_derivative(_UpperCAmelCase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
562
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ ={ """configuration_xlm_roberta_xl""": [ """XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaXLConfig""", """XLMRobertaXLOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ =[ """XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaXLForCausalLM""", """XLMRobertaXLForMaskedLM""", """XLMRobertaXLForMultipleChoice""", """XLMRobertaXLForQuestionAnswering""", """XLMRobertaXLForSequenceClassification""", """XLMRobertaXLForTokenClassification""", """XLMRobertaXLModel""", """XLMRobertaXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys UpperCAmelCase_ =_LazyModule(__name__, globals()["""__file__"""], _import_structure)
701
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ =logging.get_logger(__name__) UpperCAmelCase_ ={ """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } UpperCAmelCase_ ={ """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } UpperCAmelCase_ ={ """vinai/phobert-base""": 256, """vinai/phobert-large""": 256, } def UpperCAmelCase ( _snake_case ): lowerCAmelCase = set() lowerCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase = char lowerCAmelCase = set(_snake_case ) return pairs class __UpperCamelCase ( __UpperCAmelCase ): '''simple docstring''' __a : Union[str, Any] =VOCAB_FILES_NAMES __a : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP __a : Optional[int] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_="<s>" , UpperCAmelCase_="</s>" , UpperCAmelCase_="</s>" , UpperCAmelCase_="<s>" , UpperCAmelCase_="<unk>" , UpperCAmelCase_="<pad>" , UpperCAmelCase_="<mask>" , **UpperCAmelCase_ , ): super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCAmelCase = vocab_file lowerCAmelCase = merges_file lowerCAmelCase = {} lowerCAmelCase = 0 lowerCAmelCase = 1 lowerCAmelCase = 2 lowerCAmelCase = 3 self.add_from_file(UpperCAmelCase_ ) lowerCAmelCase = {v: k for k, v in self.encoder.items()} with open(UpperCAmelCase_ , encoding='''utf-8''' ) as merges_handle: lowerCAmelCase = merges_handle.read().split('''\n''' )[:-1] lowerCAmelCase = [tuple(merge.split()[:-1] ) for merge in merges] lowerCAmelCase = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowerCAmelCase = {} def __snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_ )) + [1] return [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] + ([0] * len(UpperCAmelCase_ )) + [1] def __snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __snake_case ( self ): return len(self.encoder ) def __snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __snake_case ( self , UpperCAmelCase_ ): if token in self.cache: return self.cache[token] lowerCAmelCase = tuple(UpperCAmelCase_ ) lowerCAmelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowerCAmelCase = get_pairs(UpperCAmelCase_ ) if not pairs: return token while True: lowerCAmelCase = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : self.bpe_ranks.get(UpperCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase , lowerCAmelCase = bigram lowerCAmelCase = [] lowerCAmelCase = 0 while i < len(UpperCAmelCase_ ): try: lowerCAmelCase = word.index(UpperCAmelCase_ , UpperCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase = j if word[i] == first and i < len(UpperCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase = tuple(UpperCAmelCase_ ) lowerCAmelCase = new_word if len(UpperCAmelCase_ ) == 1: break else: lowerCAmelCase = get_pairs(UpperCAmelCase_ ) lowerCAmelCase = '''@@ '''.join(UpperCAmelCase_ ) lowerCAmelCase = word[:-4] lowerCAmelCase = word return word def __snake_case ( self , UpperCAmelCase_ ): lowerCAmelCase = [] lowerCAmelCase = re.findall(r'''\S+\n?''' , UpperCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(UpperCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __snake_case ( self , UpperCAmelCase_ ): return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token ) ) def __snake_case ( self , UpperCAmelCase_ ): return self.decoder.get(UpperCAmelCase_ , self.unk_token ) def __snake_case ( self , UpperCAmelCase_ ): lowerCAmelCase = ''' '''.join(UpperCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): if not os.path.isdir(UpperCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase = os.path.join( UpperCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase = os.path.join( UpperCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.merges_file , UpperCAmelCase_ ) return out_vocab_file, out_merge_file def __snake_case ( self , UpperCAmelCase_ ): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): try: with open(UpperCAmelCase_ , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(UpperCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F"""Incorrect encoding detected in {f}, please rebuild the dataset""" ) return lowerCAmelCase = f.readlines() for lineTmp in lines: lowerCAmelCase = lineTmp.strip() lowerCAmelCase = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) lowerCAmelCase = line[:idx] lowerCAmelCase = len(self.encoder )
33
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name SCREAMING_SNAKE_CASE__ : Optional[int] = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=8 ) -> Optional[int]: lowerCamelCase : Any = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowerCamelCase : Dict = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class UpperCamelCase__ (snake_case_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> Tuple: super().__init__() self.register_modules( unet=UpperCamelCase__ , scheduler=UpperCamelCase__ , movq=UpperCamelCase__ , ) lowerCamelCase : Tuple = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: if latents is None: lowerCamelCase : str = randn_tensor(UpperCamelCase__ , generator=UpperCamelCase__ , device=UpperCamelCase__ , dtype=UpperCamelCase__ ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) lowerCamelCase : Optional[int] = latents.to(UpperCamelCase__ ) lowerCamelCase : Optional[int] = latents * scheduler.init_noise_sigma return latents def _lowercase ( self , UpperCamelCase__=0 ) -> List[str]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowerCamelCase : List[str] = torch.device(F'''cuda:{gpu_id}''' ) lowerCamelCase : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__=0 ) -> int: if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) lowerCamelCase : Any = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=UpperCamelCase__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCamelCase : Optional[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: lowerCamelCase : Optional[int] = cpu_offload_with_hook(UpperCamelCase__ , UpperCamelCase__ , prev_module_hook=UpperCamelCase__ ) # We'll offload the last model manually. lowerCamelCase : int = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowercase ( self ) -> int: if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase__ ) def __call__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 512 , UpperCamelCase__ = 512 , UpperCamelCase__ = 100 , UpperCamelCase__ = 4.0 , UpperCamelCase__ = 1 , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , ) -> str: lowerCamelCase : Optional[int] = self._execution_device lowerCamelCase : Optional[Any] = guidance_scale > 1.0 if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase : Any = torch.cat(UpperCamelCase__ , dim=0 ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase : Optional[int] = torch.cat(UpperCamelCase__ , dim=0 ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase : str = torch.cat(UpperCamelCase__ , dim=0 ) lowerCamelCase : int = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: lowerCamelCase : Tuple = image_embeds.repeat_interleave(UpperCamelCase__ , dim=0 ) lowerCamelCase : Union[str, Any] = negative_image_embeds.repeat_interleave(UpperCamelCase__ , dim=0 ) lowerCamelCase : Union[str, Any] = hint.repeat_interleave(UpperCamelCase__ , dim=0 ) lowerCamelCase : str = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase__ ) lowerCamelCase : Dict = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase__ ) self.scheduler.set_timesteps(UpperCamelCase__ , device=UpperCamelCase__ ) lowerCamelCase : Tuple = self.scheduler.timesteps lowerCamelCase : Dict = self.movq.config.latent_channels lowerCamelCase : Dict = downscale_height_and_width(UpperCamelCase__ , UpperCamelCase__ , self.movq_scale_factor ) # create initial latent lowerCamelCase : Dict = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCamelCase__ ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase : Tuple = {'image_embeds': image_embeds, 'hint': hint} lowerCamelCase : Dict = self.unet( sample=UpperCamelCase__ , timestep=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , added_cond_kwargs=UpperCamelCase__ , return_dict=UpperCamelCase__ , )[0] if do_classifier_free_guidance: lowerCamelCase : Any = noise_pred.split(latents.shape[1] , dim=1 ) lowerCamelCase : int = noise_pred.chunk(2 ) lowerCamelCase : Optional[Any] = variance_pred.chunk(2 ) lowerCamelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCamelCase : Dict = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCamelCase : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase : List[str] = self.scheduler.step( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ , )[0] # post-processing lowerCamelCase : List[Any] = self.movq.decode(UpperCamelCase__ , force_not_quantize=UpperCamelCase__ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: lowerCamelCase : Union[str, Any] = image * 0.5 + 0.5 lowerCamelCase : str = image.clamp(0 , 1 ) lowerCamelCase : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase : Dict = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase__ )
311
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a_ = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' a_ = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' a_ = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : str , snake_case : Any , snake_case : Optional[Any]=4 , snake_case : str=False ) -> Dict: """simple docstring""" UpperCamelCase_ : Optional[int] = compute_bleu( reference_corpus=snake_case , translation_corpus=snake_case , max_order=snake_case , smooth=snake_case ) ((UpperCamelCase_), (UpperCamelCase_), (UpperCamelCase_), (UpperCamelCase_), (UpperCamelCase_), (UpperCamelCase_)) : int = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
417
0
from statistics import mean import numpy as np def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : int = 0 # Number of processes finished _lowerCamelCase : str = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. _lowerCamelCase : Dict = [0] * no_of_process # List to include calculation results _lowerCamelCase : List[str] = [0] * no_of_process # Sort by arrival time. _lowerCamelCase : str = [burst_time[i] for i in np.argsort(lowercase__ )] _lowerCamelCase : List[Any] = [process_name[i] for i in np.argsort(lowercase__ )] arrival_time.sort() while no_of_process > finished_process_count: _lowerCamelCase : Dict = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: _lowerCamelCase : Union[str, Any] = arrival_time[i] _lowerCamelCase : int = 0 # Index showing the location of the process being performed _lowerCamelCase : List[Any] = 0 # Saves the current response ratio. _lowerCamelCase : Union[str, Any] = 0 for i in range(0 , lowercase__ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: _lowerCamelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: _lowerCamelCase : str = temp _lowerCamelCase : List[str] = i # Calculate the turn around time _lowerCamelCase : List[str] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. _lowerCamelCase : int = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Dict = [0] * no_of_process for i in range(0 , lowercase__ ): _lowerCamelCase : Dict = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": lowercase__ = 5 lowercase__ = ["""A""", """B""", """C""", """D""", """E"""] lowercase__ = [1, 2, 3, 4, 5] lowercase__ = [1, 2, 3, 4, 5] lowercase__ = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) lowercase__ = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("""Process name \tArrival time \tBurst time \tTurn around time \tWaiting time""") for i in range(0, no_of_process): print( F"{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t" F"{turn_around_time[i]}\t\t\t{waiting_time[i]}" ) print(F"average waiting time : {mean(waiting_time):.5f}") print(F"average turn around time : {mean(turn_around_time):.5f}")
718
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """realm""" def __init__( self , lowercase=30522 , lowercase=768 , lowercase=128 , lowercase=12 , lowercase=12 , lowercase=8 , lowercase=3072 , lowercase="gelu_new" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=256 , lowercase=10 , lowercase=1E-3 , lowercase=5 , lowercase=320 , lowercase=13353718 , lowercase=5000 , lowercase=1 , lowercase=0 , lowercase=2 , **lowercase , ): super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) # Common config _lowerCamelCase : str = vocab_size _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : int = hidden_size _lowerCamelCase : Optional[Any] = retriever_proj_size _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : Any = num_attention_heads _lowerCamelCase : int = num_candidates _lowerCamelCase : List[Any] = intermediate_size _lowerCamelCase : int = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Dict = attention_probs_dropout_prob _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : List[Any] = type_vocab_size _lowerCamelCase : int = layer_norm_eps # Reader config _lowerCamelCase : Tuple = span_hidden_size _lowerCamelCase : int = max_span_width _lowerCamelCase : Tuple = reader_layer_norm_eps _lowerCamelCase : Union[str, Any] = reader_beam_size _lowerCamelCase : Union[str, Any] = reader_seq_len # Retrieval config _lowerCamelCase : Optional[Any] = num_block_records _lowerCamelCase : str = searcher_beam_size
492
0
'''simple docstring''' class snake_case : """simple docstring""" def __init__( self ) -> None: """simple docstring""" snake_case__ : dict[str, TrieNode] = {} # Mapping from char to TrieNode snake_case__ : int = False def lowercase__ ( self , lowerCamelCase ) -> None: """simple docstring""" for word in words: self.insert(lowerCamelCase ) def lowercase__ ( self , lowerCamelCase ) -> None: """simple docstring""" snake_case__ : Any = self for char in word: if char not in curr.nodes: snake_case__ : int = TrieNode() snake_case__ : List[Any] = curr.nodes[char] snake_case__ : Any = True def lowercase__ ( self , lowerCamelCase ) -> bool: """simple docstring""" snake_case__ : Union[str, Any] = self for char in word: if char not in curr.nodes: return False snake_case__ : List[Any] = curr.nodes[char] return curr.is_leaf def lowercase__ ( self , lowerCamelCase ) -> None: """simple docstring""" def _delete(lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> bool: if index == len(lowerCamelCase ): # If word does not exist if not curr.is_leaf: return False snake_case__ : str = False return len(curr.nodes ) == 0 snake_case__ : List[str] = word[index] snake_case__ : Optional[Any] = curr.nodes.get(lowerCamelCase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted snake_case__ : Any = _delete(lowerCamelCase , lowerCamelCase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , lowerCamelCase , 0 ) def _A ( snake_case__ : TrieNode , snake_case__ : str ): if node.is_leaf: print(snake_case__ , end=''' ''' ) for key, value in node.nodes.items(): print_words(snake_case__ , word + key ) def _A ( ): snake_case__ : Union[str, Any] = '''banana bananas bandana band apple all beast'''.split() snake_case__ : Union[str, Any] = TrieNode() root.insert_many(snake_case__ ) # print_words(root, "") assert all(root.find(snake_case__ ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def _A ( snake_case__ : str , snake_case__ : bool ): print(str(snake_case__ ) , '''works!''' if passes else '''doesn\'t work :(''' ) def _A ( ): assert test_trie() def _A ( ): print_results('''Testing trie functionality''' , test_trie() ) if __name__ == "__main__": main()
261
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def _A ( snake_case__ : List[str]="ro" , snake_case__ : int="en" , snake_case__ : Any="wmt16" , snake_case__ : Optional[Any]=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) snake_case__ : List[Any] = f'''{src_lang}-{tgt_lang}''' print(f'''Converting {dataset}-{pair}''' ) snake_case__ : Optional[Any] = datasets.load_dataset(snake_case__ , snake_case__ ) if save_dir is None: snake_case__ : Optional[int] = f'''{dataset}-{pair}''' snake_case__ : Optional[int] = Path(snake_case__ ) save_dir.mkdir(exist_ok=snake_case__ ) for split in ds.keys(): print(f'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets snake_case__ : Optional[int] = '''val''' if split == '''validation''' else split snake_case__ : Optional[Any] = save_dir.joinpath(f'''{fn}.source''' ) snake_case__ : Any = save_dir.joinpath(f'''{fn}.target''' ) snake_case__ : Union[str, Any] = src_path.open('''w+''' ) snake_case__ : str = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): snake_case__ : int = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(f'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
261
1
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __lowerCamelCase ( __snake_case : Tuple ) -> Any: """simple docstring""" A__ : List[Any] =torch.exp(__snake_case ) A__ : Optional[int] =torch.sum(__snake_case, dim=1 ) # sum of exp(x_i) A__ : Union[str, Any] =torch.sum(x * exp_x, dim=1 ) # sum of x_i * exp(x_i) return torch.log(__snake_case ) - B / A class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase_ : Tuple ) -> Tuple: '''simple docstring''' super().__init__() A__ : str =config.output_attentions A__ : Any =config.output_hidden_states A__ : Dict =nn.ModuleList([BertLayer(lowerCAmelCase_ ) for _ in range(config.num_hidden_layers )] ) A__ : int =nn.ModuleList([BertHighway(lowerCAmelCase_ ) for _ in range(config.num_hidden_layers )] ) A__ : Optional[Any] =[-1 for _ in range(config.num_hidden_layers )] def lowercase__ ( self : Tuple , lowerCAmelCase_ : int ) -> Any: '''simple docstring''' if (type(lowerCAmelCase_ ) is float) or (type(lowerCAmelCase_ ) is int): for i in range(len(self.early_exit_entropy ) ): A__ : List[Any] =x else: A__ : List[str] =x def lowercase__ ( self : List[Any] , lowerCAmelCase_ : int ) -> Tuple: '''simple docstring''' A__ : Any =pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , ) -> int: '''simple docstring''' A__ : List[str] =() A__ : List[Any] =() A__ : Tuple =() for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: A__ : List[str] =all_hidden_states + (hidden_states,) A__ : Optional[int] =layer_module( lowerCAmelCase_ , lowerCAmelCase_ , head_mask[i] , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Dict =layer_outputs[0] if self.output_attentions: A__ : Dict =all_attentions + (layer_outputs[1],) A__ : Tuple =(hidden_states,) if self.output_hidden_states: A__ : Any =current_outputs + (all_hidden_states,) if self.output_attentions: A__ : Dict =current_outputs + (all_attentions,) A__ : Dict =self.highway[i](lowerCAmelCase_ ) # logits, pooled_output if not self.training: A__ : Optional[int] =highway_exit[0] A__ : Optional[Any] =entropy(lowerCAmelCase_ ) A__ : Optional[int] =highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy A__ : Union[str, Any] =all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: A__ : Optional[Any] =(highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(lowerCAmelCase_ , i + 1 ) else: A__ : Optional[Any] =all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: A__ : str =all_hidden_states + (hidden_states,) A__ : Union[str, Any] =(hidden_states,) if self.output_hidden_states: A__ : str =outputs + (all_hidden_states,) if self.output_attentions: A__ : Any =outputs + (all_attentions,) A__ : Optional[Any] =outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( 'The Bert Model transformer with early exiting (DeeBERT). ' , __UpperCAmelCase , ) class lowerCamelCase ( __UpperCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : str ) -> List[str]: '''simple docstring''' super().__init__(lowerCAmelCase_ ) A__ : Tuple =config A__ : Tuple =BertEmbeddings(lowerCAmelCase_ ) A__ : int =DeeBertEncoder(lowerCAmelCase_ ) A__ : Tuple =BertPooler(lowerCAmelCase_ ) self.init_weights() def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def lowercase__ ( self : str ) -> Any: '''simple docstring''' return self.embeddings.word_embeddings def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Any ) -> List[str]: '''simple docstring''' A__ : Any =value def lowercase__ ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(lowerCAmelCase_ ) @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Dict=None , ) -> str: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: A__ : List[str] =input_ids.size() elif inputs_embeds is not None: A__ : str =inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) A__ : Dict =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: A__ : Optional[int] =torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_ ) if encoder_attention_mask is None: A__ : Tuple =torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_ ) if token_type_ids is None: A__ : Any =torch.zeros(lowerCAmelCase_ , dtype=torch.long , device=lowerCAmelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. A__ : int =self.get_extended_attention_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: A__ : Optional[int] =encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: A__ : Optional[Any] =encoder_attention_mask[:, None, None, :] A__ : Optional[Any] =encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility A__ : Any =(1.0 - encoder_extended_attention_mask) * -1_00_00.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] A__ : Optional[int] =self.get_head_mask(lowerCAmelCase_ , self.config.num_hidden_layers ) A__ : Union[str, Any] =self.embeddings( input_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ ) A__ : Tuple =self.encoder( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) A__ : str =encoder_outputs[0] A__ : List[str] =self.pooler(lowerCAmelCase_ ) A__ : Dict =( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowerCamelCase ( __UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ) -> Union[str, Any]: '''simple docstring''' A__ : List[Any] =message A__ : Optional[Any] =exit_layer # start from 1! class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase_ : Tuple ) -> Union[str, Any]: '''simple docstring''' super().__init__() A__ : Dict =BertPooler(lowerCAmelCase_ ) A__ : Tuple =nn.Dropout(config.hidden_dropout_prob ) A__ : Union[str, Any] =nn.Linear(config.hidden_size , config.num_labels ) def lowercase__ ( self : Dict , lowerCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' A__ : Optional[int] =encoder_outputs[0] A__ : Union[str, Any] =self.pooler(lowerCAmelCase_ ) # "return" pooler_output # BertModel A__ : int =(pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification A__ : List[str] =bmodel_output[1] A__ : Optional[int] =self.dropout(lowerCAmelCase_ ) A__ : int =self.classifier(lowerCAmelCase_ ) return logits, pooled_output @add_start_docstrings( 'Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. ' , __UpperCAmelCase , ) class lowerCamelCase ( __UpperCAmelCase ): '''simple docstring''' def __init__( self : Any , lowerCAmelCase_ : int ) -> List[Any]: '''simple docstring''' super().__init__(lowerCAmelCase_ ) A__ : Optional[Any] =config.num_labels A__ : Dict =config.num_hidden_layers A__ : int =DeeBertModel(lowerCAmelCase_ ) A__ : Tuple =nn.Dropout(config.hidden_dropout_prob ) A__ : Union[str, Any] =nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=-1 , lowerCAmelCase_ : str=False , ) -> Optional[int]: '''simple docstring''' A__ : List[Any] =self.num_layers try: A__ : List[Any] =self.bert( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits A__ : Optional[int] =outputs[1] A__ : Optional[int] =self.dropout(lowerCAmelCase_ ) A__ : Optional[Any] =self.classifier(lowerCAmelCase_ ) A__ : str =(logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: A__ : Optional[Any] =e.message A__ : int =e.exit_layer A__ : Optional[Any] =outputs[0] if not self.training: A__ : Tuple =entropy(lowerCAmelCase_ ) A__ : Union[str, Any] =[] A__ : Union[str, Any] =[] if labels is not None: if self.num_labels == 1: # We are doing regression A__ : Any =MSELoss() A__ : int =loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: A__ : Dict =CrossEntropyLoss() A__ : List[str] =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits A__ : str =[] for highway_exit in outputs[-1]: A__ : int =highway_exit[0] if not self.training: highway_logits_all.append(lowerCAmelCase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression A__ : List[Any] =MSELoss() A__ : str =loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: A__ : Any =CrossEntropyLoss() A__ : int =loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowerCAmelCase_ ) if train_highway: A__ : Tuple =(sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: A__ : int =(loss,) + outputs if not self.training: A__ : int =outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: A__ : Dict =( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
717
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __snake_case : Union[str, Any] = logging.getLogger(__name__) __snake_case : int = tf.data.AUTOTUNE def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : str =argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""", type=__snake_case, default="""roberta-base""", help="""The model config to use. Note that we don't copy the model's weights, only the config!""", ) parser.add_argument( """--tokenizer""", type=__snake_case, default="""unigram-tokenizer-wikitext""", help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""", ) parser.add_argument( """--per_replica_batch_size""", type=__snake_case, default=8, help="""Batch size per TPU core.""", ) parser.add_argument( """--no_tpu""", action="""store_true""", help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""", ) parser.add_argument( """--tpu_name""", type=__snake_case, help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""", default="""local""", ) parser.add_argument( """--tpu_zone""", type=__snake_case, help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""", ) parser.add_argument( """--gcp_project""", type=__snake_case, help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""", action="""store_true""", help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""", ) parser.add_argument( """--train_dataset""", type=__snake_case, help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--shuffle_buffer_size""", type=__snake_case, default=2**18, help="""Size of the shuffle buffer (in samples)""", ) parser.add_argument( """--eval_dataset""", type=__snake_case, help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--num_epochs""", type=__snake_case, default=1, help="""Number of epochs to train for.""", ) parser.add_argument( """--learning_rate""", type=__snake_case, default=1E-4, help="""Learning rate to use for training.""", ) parser.add_argument( """--weight_decay_rate""", type=__snake_case, default=1E-3, help="""Weight decay rate to use for training.""", ) parser.add_argument( """--max_length""", type=__snake_case, default=512, help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""", ) parser.add_argument( """--mlm_probability""", type=__snake_case, default=0.15, help="""Fraction of tokens to mask during training.""", ) parser.add_argument("""--output_dir""", type=__snake_case, required=__snake_case, help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""", type=__snake_case, help="""Model ID to upload to on the Hugging Face Hub.""" ) A__ : Optional[Any] =parser.parse_args() return args def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" try: if args.tpu_name: A__ : List[Any] =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name, zone=args.tpu_zone, project=args.gcp_project ) else: A__ : Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(__snake_case ) tf.tpu.experimental.initialize_tpu_system(__snake_case ) return tpu def __lowerCamelCase ( __snake_case : Optional[int] ) -> Dict: """simple docstring""" A__ : Any =0 for file in file_list: A__ : Optional[int] =file.split("""/""" )[-1] A__ : Union[str, Any] =re.search(r"""-\d+-(\d+)\.tfrecord""", __snake_case ).group(1 ) A__ : str =int(__snake_case ) num_samples += sample_count return num_samples def __lowerCamelCase ( __snake_case : List[str], __snake_case : int, __snake_case : Any, __snake_case : List[Any], __snake_case : int, __snake_case : List[Any]=None ) -> Optional[int]: """simple docstring""" A__ : List[str] =count_samples(__snake_case ) A__ : Union[str, Any] =tf.data.Dataset.from_tensor_slices(__snake_case ) if shuffle: A__ : Optional[int] =dataset.shuffle(len(__snake_case ) ) A__ : List[str] =tf.data.TFRecordDataset(__snake_case, num_parallel_reads=__snake_case ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here A__ : int =dataset.apply(tf.data.experimental.assert_cardinality(__snake_case ) ) A__ : Any =dataset.map(__snake_case, num_parallel_calls=__snake_case ) if shuffle: assert shuffle_buffer_size is not None A__ : List[Any] =dataset.shuffle(args.shuffle_buffer_size ) A__ : int =dataset.batch(__snake_case, drop_remainder=__snake_case ) A__ : Optional[int] =dataset.map(__snake_case, num_parallel_calls=__snake_case ) A__ : Tuple =dataset.prefetch(__snake_case ) return dataset def __lowerCamelCase ( __snake_case : List[Any] ) -> Tuple: """simple docstring""" if not args.no_tpu: A__ : Dict =initialize_tpu(__snake_case ) A__ : int =tf.distribute.TPUStrategy(__snake_case ) else: A__ : List[str] =tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) A__ : Tuple =AutoTokenizer.from_pretrained(args.tokenizer ) A__ : List[str] =AutoConfig.from_pretrained(args.pretrained_model_config ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Tuple =tf.io.gfile.glob(os.path.join(args.train_dataset, """*.tfrecord""" ) ) if not training_records: raise ValueError(f"No .tfrecord files found in {args.train_dataset}." ) A__ : Optional[Any] =tf.io.gfile.glob(os.path.join(args.eval_dataset, """*.tfrecord""" ) ) if not eval_records: raise ValueError(f"No .tfrecord files found in {args.eval_dataset}." ) A__ : Optional[Any] =count_samples(__snake_case ) A__ : str =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) A__ : str =steps_per_epoch * args.num_epochs with strategy.scope(): A__ : List[str] =TFAutoModelForMaskedLM.from_config(__snake_case ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built A__ , A__ : Optional[Any] =create_optimizer( num_train_steps=__snake_case, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__snake_case, metrics=["""accuracy"""] ) def decode_fn(__snake_case : Tuple ): A__ : Dict ={ """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), } return tf.io.parse_single_example(__snake_case, __snake_case ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. A__ : List[Any] =DataCollatorForLanguageModeling( tokenizer=__snake_case, mlm_probability=args.mlm_probability, mlm=__snake_case, return_tensors="""tf""" ) def mask_with_collator(__snake_case : Optional[int] ): # TF really needs an isin() function A__ : Union[str, Any] =( ~tf.cast(batch["""attention_mask"""], tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) A__ , A__ : List[str] =data_collator.tf_mask_tokens( batch["""input_ids"""], vocab_size=len(__snake_case ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=__snake_case, ) return batch A__ : List[Any] =args.per_replica_batch_size * strategy.num_replicas_in_sync A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, shuffle_buffer_size=args.shuffle_buffer_size, ) A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, ) A__ : Tuple =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=__snake_case ) ) model.fit( __snake_case, validation_data=__snake_case, epochs=args.num_epochs, callbacks=__snake_case, ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __snake_case : str = parse_args() main(args)
687
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class __lowerCAmelCase ( _a ): UpperCamelCase__ = '''funnel''' UpperCamelCase__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', } def __init__( self :Dict , __magic_name__ :Union[str, Any]=3_0522 , __magic_name__ :Any=[4, 4, 4] , __magic_name__ :Dict=None , __magic_name__ :Any=2 , __magic_name__ :Dict=768 , __magic_name__ :str=12 , __magic_name__ :Dict=64 , __magic_name__ :Union[str, Any]=3072 , __magic_name__ :List[str]="gelu_new" , __magic_name__ :List[str]=0.1 , __magic_name__ :Union[str, Any]=0.1 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :int=0.1 , __magic_name__ :Tuple=None , __magic_name__ :Optional[Any]=1E-9 , __magic_name__ :Optional[int]="mean" , __magic_name__ :List[str]="relative_shift" , __magic_name__ :int=True , __magic_name__ :str=True , __magic_name__ :List[str]=True , **__magic_name__ :Optional[int] , ): '''simple docstring''' a = vocab_size a = block_sizes a = [1] * len(__magic_name__ ) if block_repeats is None else block_repeats assert len(__magic_name__ ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." a = num_decoder_layers a = d_model a = n_head a = d_head a = d_inner a = hidden_act a = hidden_dropout a = attention_dropout a = activation_dropout a = initializer_range a = initializer_std a = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.' a = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.' a = attention_type a = separate_cls a = truncate_seq a = pool_q_only super().__init__(**__magic_name__ ) @property def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[Any] ): '''simple docstring''' raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" ) @property def lowerCamelCase__ ( self :Any ): '''simple docstring''' return len(self.block_sizes ) @num_blocks.setter def lowerCamelCase__ ( self :str , __magic_name__ :List[str] ): '''simple docstring''' raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
468
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self :Any): """simple docstring""" _lowercase =0 def UpperCamelCase__ ( self :Optional[int]): """simple docstring""" _lowercase =AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32') self.assertIsInstance(snake_case, snake_case) def UpperCamelCase__ ( self :Union[str, Any]): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowercase =Path(snake_case) / 'preprocessor_config.json' _lowercase =Path(snake_case) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'}, open(snake_case, 'w'), ) json.dump({'model_type': 'clip'}, open(snake_case, 'w')) _lowercase =AutoImageProcessor.from_pretrained(snake_case) self.assertIsInstance(snake_case, snake_case) def UpperCamelCase__ ( self :Union[str, Any]): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowercase =Path(snake_case) / 'preprocessor_config.json' _lowercase =Path(snake_case) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'}, open(snake_case, 'w'), ) json.dump({'model_type': 'clip'}, open(snake_case, 'w')) _lowercase =AutoImageProcessor.from_pretrained(snake_case) self.assertIsInstance(snake_case, snake_case) def UpperCamelCase__ ( self :Union[str, Any]): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowercase =CLIPConfig() # Create a dummy config file with image_proceesor_type _lowercase =Path(snake_case) / 'preprocessor_config.json' _lowercase =Path(snake_case) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'}, open(snake_case, 'w'), ) json.dump({'model_type': 'clip'}, open(snake_case, 'w')) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _lowercase =AutoImageProcessor.from_pretrained(snake_case).to_dict() config_dict.pop('image_processor_type') _lowercase =CLIPImageProcessor(**snake_case) # save in new folder model_config.save_pretrained(snake_case) config.save_pretrained(snake_case) _lowercase =AutoImageProcessor.from_pretrained(snake_case) # make sure private variable is not incorrectly saved _lowercase =json.loads(config.to_json_string()) self.assertTrue('_processor_class' not in dict_as_saved) self.assertIsInstance(snake_case, snake_case) def UpperCamelCase__ ( self :Optional[int]): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowercase =Path(snake_case) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'}, open(snake_case, 'w'), ) _lowercase =AutoImageProcessor.from_pretrained(snake_case) self.assertIsInstance(snake_case, snake_case) def UpperCamelCase__ ( self :int): """simple docstring""" with self.assertRaisesRegex( snake_case, 'clip-base is not a local folder and is not a valid model identifier'): _lowercase =AutoImageProcessor.from_pretrained('clip-base') def UpperCamelCase__ ( self :Dict): """simple docstring""" with self.assertRaisesRegex( snake_case, r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): _lowercase =AutoImageProcessor.from_pretrained(snake_case, revision='aaaaaa') def UpperCamelCase__ ( self :List[Any]): """simple docstring""" with self.assertRaisesRegex( snake_case, 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.', ): _lowercase =AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model') def UpperCamelCase__ ( self :Optional[Any]): """simple docstring""" with self.assertRaises(snake_case): _lowercase =AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor') # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case): _lowercase =AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor', trust_remote_code=snake_case) _lowercase =AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor', trust_remote_code=snake_case) self.assertEqual(image_processor.__class__.__name__, 'NewImageProcessor') # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case) _lowercase =AutoImageProcessor.from_pretrained(snake_case, trust_remote_code=snake_case) self.assertEqual(reloaded_image_processor.__class__.__name__, 'NewImageProcessor') def UpperCamelCase__ ( self :Optional[Any]): """simple docstring""" try: AutoConfig.register('custom', snake_case) AutoImageProcessor.register(snake_case, snake_case) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case): AutoImageProcessor.register(snake_case, snake_case) with tempfile.TemporaryDirectory() as tmpdirname: _lowercase =Path(snake_case) / 'preprocessor_config.json' _lowercase =Path(snake_case) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'}, open(snake_case, 'w'), ) json.dump({'model_type': 'clip'}, open(snake_case, 'w')) _lowercase =CustomImageProcessor.from_pretrained(snake_case) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case) _lowercase =AutoImageProcessor.from_pretrained(snake_case) self.assertIsInstance(snake_case, snake_case) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ ( self :str): """simple docstring""" class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" __lowerCAmelCase : Union[str, Any] =True try: AutoConfig.register('custom', snake_case) AutoImageProcessor.register(snake_case, snake_case) # If remote code is not set, the default is to use local _lowercase =AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor') self.assertEqual(image_processor.__class__.__name__, 'NewImageProcessor') self.assertTrue(image_processor.is_local) # If remote code is disabled, we load the local one. _lowercase =AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor', trust_remote_code=snake_case) self.assertEqual(image_processor.__class__.__name__, 'NewImageProcessor') self.assertTrue(image_processor.is_local) # If remote is enabled, we load from the Hub _lowercase =AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor', trust_remote_code=snake_case) self.assertEqual(image_processor.__class__.__name__, 'NewImageProcessor') self.assertTrue(not hasattr(snake_case, 'is_local')) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
181
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ : str = { "configuration_swiftformer": [ "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig", "SwiftFormerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys lowercase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
139
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class UpperCAmelCase : '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = None lowerCAmelCase_ = None lowercase__ : Any = namedtuple("CoinsDistribResult", "moves excess") def lowerCamelCase__ ( _A ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_A ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_A ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_A ) != count_coins(_A ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(_A ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) snake_case_ , snake_case_ = get_distrib(node.left ) snake_case_ , snake_case_ = get_distrib(node.right ) snake_case_ = 1 - left_distrib_excess snake_case_ = 1 - right_distrib_excess snake_case_ = ( left_distrib_moves + right_distrib_moves + abs(_A ) + abs(_A ) ) snake_case_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_A , _A ) return get_distrib(_A )[0] if __name__ == "__main__": import doctest doctest.testmod()
139
1
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : int = {"vocab_file": "vocab.txt"} SCREAMING_SNAKE_CASE__ : int = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } SCREAMING_SNAKE_CASE__ : Dict = { "openbmb/cpm-ant-10b": 1024, } def _a ( lowercase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = collections.OrderedDict() with open(lowercase__ , 'r' , encoding='utf-8' ) as reader: SCREAMING_SNAKE_CASE__ : Dict = reader.readlines() for index, token in enumerate(lowercase__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] = token.rstrip('\n' ) SCREAMING_SNAKE_CASE__ : Dict = index return vocab class snake_case ( UpperCamelCase_ ): def __init__( self : List[Any] , a_ : List[str] , a_ : Union[str, Any]="<unk>" , a_ : int=200 )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = vocab SCREAMING_SNAKE_CASE__ : Tuple = unk_token SCREAMING_SNAKE_CASE__ : int = max_input_chars_per_word def __lowercase( self : Union[str, Any] , a_ : Optional[int] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = list(a_ ) if len(a_ ) > self.max_input_chars_per_word: return [self.unk_token] SCREAMING_SNAKE_CASE__ : Optional[int] = 0 SCREAMING_SNAKE_CASE__ : List[str] = [] while start < len(a_ ): SCREAMING_SNAKE_CASE__ : Optional[Any] = len(a_ ) SCREAMING_SNAKE_CASE__ : str = None while start < end: SCREAMING_SNAKE_CASE__ : Any = ''.join(chars[start:end] ) if substr in self.vocab: SCREAMING_SNAKE_CASE__ : str = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(a_ ) SCREAMING_SNAKE_CASE__ : Dict = end return sub_tokens class snake_case ( UpperCamelCase_ ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ['input_ids', 'attention_mask'] lowercase_ = False def __init__( self : Any , a_ : Union[str, Any] , a_ : Dict="<d>" , a_ : List[Any]="</d>" , a_ : Tuple="<s>" , a_ : Tuple="</s>" , a_ : Optional[Any]="<pad>" , a_ : Optional[Any]="<unk>" , a_ : Union[str, Any]="</n>" , a_ : int="</_>" , a_ : Any="left" , **a_ : Optional[int] , )-> str: """simple docstring""" requires_backends(self , ['jieba'] ) super().__init__( bod_token=a_ , eod_token=a_ , bos_token=a_ , eos_token=a_ , pad_token=a_ , unk_token=a_ , line_token=a_ , space_token=a_ , padding_side=a_ , **a_ , ) SCREAMING_SNAKE_CASE__ : Optional[int] = bod_token SCREAMING_SNAKE_CASE__ : List[str] = eod_token SCREAMING_SNAKE_CASE__ : List[str] = load_vocab(a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = self.encoder[space_token] SCREAMING_SNAKE_CASE__ : Optional[int] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] SCREAMING_SNAKE_CASE__ : List[str] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda a_ : x[1] ) ) SCREAMING_SNAKE_CASE__ : List[str] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE__ : str = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __lowercase( self : Union[str, Any] )-> Optional[int]: """simple docstring""" return self.encoder[self.bod_token] @property def __lowercase( self : str )-> Any: """simple docstring""" return self.encoder[self.eod_token] @property def __lowercase( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" return self.encoder["\n"] @property def __lowercase( self : List[str] )-> int: """simple docstring""" return len(self.encoder ) def __lowercase( self : Optional[int] )-> List[Any]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __lowercase( self : Any , a_ : Any )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = [] for x in jieba.cut(a_ , cut_all=a_ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(a_ ) ) return output_tokens def __lowercase( self : str , a_ : int , **a_ : str )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = [i for i in token_ids if i >= 0] SCREAMING_SNAKE_CASE__ : Any = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(a_ , **a_ ) def __lowercase( self : Optional[int] , a_ : List[str] )-> Optional[Any]: """simple docstring""" return token in self.encoder def __lowercase( self : str , a_ : List[str] )-> str: """simple docstring""" return "".join(a_ ) def __lowercase( self : int , a_ : Tuple )-> int: """simple docstring""" return self.encoder.get(a_ , self.encoder.get(self.unk_token ) ) def __lowercase( self : str , a_ : List[Any] )-> Tuple: """simple docstring""" return self.decoder.get(a_ , self.unk_token ) def __lowercase( self : Any , a_ : str , a_ : Optional[str] = None )-> Tuple[str]: """simple docstring""" if os.path.isdir(a_ ): SCREAMING_SNAKE_CASE__ : str = os.path.join( a_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: SCREAMING_SNAKE_CASE__ : Tuple = (filename_prefix + '-' if filename_prefix else '') + save_directory SCREAMING_SNAKE_CASE__ : str = 0 if " " in self.encoder: SCREAMING_SNAKE_CASE__ : Dict = self.encoder[' '] del self.encoder[" "] if "\n" in self.encoder: SCREAMING_SNAKE_CASE__ : Dict = self.encoder['\n'] del self.encoder["\n"] SCREAMING_SNAKE_CASE__ : int = collections.OrderedDict(sorted(self.encoder.items() , key=lambda a_ : x[1] ) ) with open(a_ , 'w' , encoding='utf-8' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ' Please check that the vocabulary is not corrupted!' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = token_index writer.write(token + '\n' ) index += 1 return (vocab_file,) def __lowercase( self : Tuple , a_ : List[int] , a_ : List[int] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __lowercase( self : int , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is not None: return [1] + ([0] * len(a_ )) + [1] + ([0] * len(a_ )) return [1] + ([0] * len(a_ ))
85
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "google/mobilenet_v1_1.0_224": "https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json", "google/mobilenet_v1_0.75_192": "https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = "mobilenet_v1" def __init__( self : Optional[int] , __a : List[str]=3 , __a : Union[str, Any]=224 , __a : Tuple=1.0 , __a : List[Any]=8 , __a : Union[str, Any]="relu6" , __a : Dict=True , __a : Tuple=0.9_99 , __a : Dict=0.02 , __a : Any=0.0_01 , **__a : Any , ) -> int: super().__init__(**__a ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) _UpperCamelCase : Any = num_channels _UpperCamelCase : Optional[Any] = image_size _UpperCamelCase : Optional[Any] = depth_multiplier _UpperCamelCase : int = min_depth _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : Union[str, Any] = tf_padding _UpperCamelCase : int = classifier_dropout_prob _UpperCamelCase : Optional[int] = initializer_range _UpperCamelCase : Union[str, Any] = layer_norm_eps class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = version.parse("1.11" ) @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})] ) @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> float: return 1e-4
624
0
"""simple docstring""" import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def _UpperCamelCase ( _A ) -> Dict: """simple docstring""" assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def _UpperCamelCase ( ) -> Tuple: """simple docstring""" assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def _UpperCamelCase ( ) -> str: """simple docstring""" _UpperCAmelCase = """mock-s3-bucket""" _UpperCAmelCase = F"""s3://{mock_bucket}""" _UpperCAmelCase = extract_path_from_uri(_UpperCAmelCase ) assert dataset_path.startswith("""s3://""" ) is False _UpperCAmelCase = """./local/path""" _UpperCAmelCase = extract_path_from_uri(_UpperCAmelCase ) assert dataset_path == new_dataset_path def _UpperCamelCase ( _A ) -> str: """simple docstring""" _UpperCAmelCase = is_remote_filesystem(_UpperCAmelCase ) assert is_remote is True _UpperCAmelCase = fsspec.filesystem("""file""" ) _UpperCAmelCase = is_remote_filesystem(_UpperCAmelCase ) assert is_remote is False @pytest.mark.parametrize("""compression_fs_class""" , _UpperCAmelCase ) def _UpperCamelCase ( _A , _A , _A , _A , _A , _A , _A ) -> Any: """simple docstring""" _UpperCAmelCase = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_file, """bz2""": bza_file, """lz4""": lza_file} _UpperCAmelCase = input_paths[compression_fs_class.protocol] if input_path is None: _UpperCAmelCase = F"""for \'{compression_fs_class.protocol}\' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_UpperCAmelCase ) _UpperCAmelCase = fsspec.filesystem(compression_fs_class.protocol , fo=_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = os.path.basename(_UpperCAmelCase ) _UpperCAmelCase = expected_filename[: expected_filename.rindex(""".""" )] assert fs.glob("""*""" ) == [expected_filename] with fs.open(_UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f, open(_UpperCAmelCase , encoding="""utf-8""" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("""protocol""" , ["""zip""", """gzip"""] ) def _UpperCamelCase ( _A , _A , _A ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = {"""zip""": zip_jsonl_path, """gzip""": jsonl_gz_path} _UpperCAmelCase = compressed_file_paths[protocol] _UpperCAmelCase = """dataset.jsonl""" _UpperCAmelCase = F"""{protocol}://{member_file_path}::{compressed_file_path}""" _UpperCAmelCase ,*_UpperCAmelCase = fsspec.get_fs_token_paths(_UpperCAmelCase ) assert fs.isfile(_UpperCAmelCase ) assert not fs.isfile("""non_existing_""" + member_file_path ) @pytest.mark.integration def _UpperCamelCase ( _A , _A , _A , _A ) -> Any: """simple docstring""" _UpperCAmelCase = hf_api.dataset_info(_UpperCAmelCase , token=_UpperCAmelCase ) _UpperCAmelCase = HfFileSystem(repo_info=_UpperCAmelCase , token=_UpperCAmelCase ) assert sorted(hffs.glob("""*""" ) ) == [".gitattributes", "data"] assert hffs.isdir("""data""" ) assert hffs.isfile(""".gitattributes""" ) and hffs.isfile("""data/text_data.txt""" ) with open(_UpperCAmelCase ) as f: assert hffs.open("""data/text_data.txt""" , """r""" ).read() == f.read() def _UpperCamelCase ( ) -> Dict: """simple docstring""" _UpperCAmelCase = """bz2""" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(_UpperCAmelCase , _UpperCAmelCase , clobber=_UpperCAmelCase ) with pytest.warns(_UpperCAmelCase ) as warning_info: importlib.reload(datasets.filesystems ) assert len(_UpperCAmelCase ) == 1 assert ( str(warning_info[0].message ) == F"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
715
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : List[Any] = get_logger() a : Optional[dict] = None class a_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self : int , __UpperCamelCase : List[str]=None , __UpperCamelCase : Optional[int]=None , **__UpperCamelCase : int ) ->Tuple: '''simple docstring''' super().__init__(features=__UpperCamelCase ) import jax from jaxlib.xla_client import Device if isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError( f"""Expected {device} to be a `str` not {type(__UpperCamelCase )}, as `jaxlib.xla_extension.Device` """ """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) _UpperCAmelCase = device if isinstance(__UpperCamelCase , __UpperCamelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _UpperCAmelCase = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f"""Device with string identifier {self.device} not listed among the available """ f"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ f"""device: {str(jax.devices()[0] )}.""" ) _UpperCAmelCase = str(jax.devices()[0] ) _UpperCAmelCase = jnp_array_kwargs @staticmethod def _snake_case ( ) ->Dict[str, "jaxlib.xla_extension.Device"]: '''simple docstring''' import jax return {str(__UpperCamelCase ): device for device in jax.devices()} def _snake_case ( self : Dict , __UpperCamelCase : Any ) ->Union[str, Any]: '''simple docstring''' import jax import jax.numpy as jnp if isinstance(__UpperCamelCase , __UpperCamelCase ) and column: if all( isinstance(__UpperCamelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__UpperCamelCase , axis=0 ) return column def _snake_case ( self : List[str] , __UpperCamelCase : Any ) ->Optional[int]: '''simple docstring''' import jax import jax.numpy as jnp if isinstance(__UpperCamelCase , (str, bytes, type(__UpperCamelCase )) ): return value elif isinstance(__UpperCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _UpperCAmelCase = {} if isinstance(__UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _UpperCAmelCase = {"""dtype""": jnp.intaa} else: _UpperCAmelCase = {"""dtype""": jnp.intaa} elif isinstance(__UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _UpperCAmelCase = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__UpperCamelCase , PIL.Image.Image ): _UpperCAmelCase = np.asarray(__UpperCamelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _UpperCAmelCase = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__UpperCamelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def _snake_case ( self : Union[str, Any] , __UpperCamelCase : List[str] ) ->Any: '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__UpperCamelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__UpperCamelCase , """__array__""" ) and not isinstance(__UpperCamelCase , jax.Array ): _UpperCAmelCase = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__UpperCamelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__UpperCamelCase ) for substruct in data_struct] ) elif isinstance(__UpperCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__UpperCamelCase ) for substruct in data_struct] ) return self._tensorize(__UpperCamelCase ) def _snake_case ( self : List[str] , __UpperCamelCase : dict ) ->int: '''simple docstring''' return map_nested(self._recursive_tensorize , __UpperCamelCase , map_list=__UpperCamelCase ) def _snake_case ( self : Dict , __UpperCamelCase : pa.Table ) ->Mapping: '''simple docstring''' _UpperCAmelCase = self.numpy_arrow_extractor().extract_row(__UpperCamelCase ) _UpperCAmelCase = self.python_features_decoder.decode_row(__UpperCamelCase ) return self.recursive_tensorize(__UpperCamelCase ) def _snake_case ( self : Optional[int] , __UpperCamelCase : pa.Table ) ->"jax.Array": '''simple docstring''' _UpperCAmelCase = self.numpy_arrow_extractor().extract_column(__UpperCamelCase ) _UpperCAmelCase = self.python_features_decoder.decode_column(__UpperCamelCase , pa_table.column_names[0] ) _UpperCAmelCase = self.recursive_tensorize(__UpperCamelCase ) _UpperCAmelCase = self._consolidate(__UpperCamelCase ) return column def _snake_case ( self : Optional[Any] , __UpperCamelCase : pa.Table ) ->Mapping: '''simple docstring''' _UpperCAmelCase = self.numpy_arrow_extractor().extract_batch(__UpperCamelCase ) _UpperCAmelCase = self.python_features_decoder.decode_batch(__UpperCamelCase ) _UpperCAmelCase = self.recursive_tensorize(__UpperCamelCase ) for column_name in batch: _UpperCAmelCase = self._consolidate(batch[column_name] ) return batch
19
0
"""simple docstring""" UpperCAmelCase__ = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' UpperCAmelCase__ = [{'type': 'code', 'content': INSTALL_CONTENT}] UpperCAmelCase__ = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
224
"""simple docstring""" class lowerCAmelCase__ : def __init__( self : List[Any] , _lowerCamelCase : str = "" , _lowerCamelCase : bool = False ): # Mapping from the first character of the prefix of the node _snake_case = {} # A node will be a leaf if the tree contains its word _snake_case = is_leaf _snake_case = prefix def lowercase ( self : List[Any] , _lowerCamelCase : str ): _snake_case = 0 for q, w in zip(self.prefix , _lowerCamelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase ( self : Optional[Any] , _lowerCamelCase : list[str] ): for word in words: self.insert(_lowerCamelCase ) def lowercase ( self : Union[str, Any] , _lowerCamelCase : str ): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: _snake_case = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _snake_case = RadixNode(prefix=_lowerCamelCase , is_leaf=_lowerCamelCase ) else: _snake_case = self.nodes[word[0]] _snake_case , _snake_case , _snake_case = incoming_node.match( _lowerCamelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(_lowerCamelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _snake_case = remaining_prefix _snake_case = self.nodes[matching_string[0]] _snake_case = RadixNode(_lowerCamelCase , _lowerCamelCase ) _snake_case = aux_node if remaining_word == "": _snake_case = True else: self.nodes[matching_string[0]].insert(_lowerCamelCase ) def lowercase ( self : List[Any] , _lowerCamelCase : str ): _snake_case = self.nodes.get(word[0] , _lowerCamelCase ) if not incoming_node: return False else: _snake_case , _snake_case , _snake_case = incoming_node.match( _lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(_lowerCamelCase ) def lowercase ( self : Union[str, Any] , _lowerCamelCase : str ): _snake_case = self.nodes.get(word[0] , _lowerCamelCase ) if not incoming_node: return False else: _snake_case , _snake_case , _snake_case = incoming_node.match( _lowerCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(_lowerCamelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: _snake_case = list(self.nodes.values() )[0] _snake_case = merging_node.is_leaf self.prefix += merging_node.prefix _snake_case = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: _snake_case = False # If there is 1 edge, we merge it with its child else: _snake_case = list(incoming_node.nodes.values() )[0] _snake_case = merging_node.is_leaf incoming_node.prefix += merging_node.prefix _snake_case = merging_node.nodes return True def lowercase ( self : List[Any] , _lowerCamelCase : int = 0 ): if self.prefix != "": print('''-''' * height , self.prefix , ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def _UpperCAmelCase ( ) -> bool: _snake_case = '''banana bananas bandana band apple all beast'''.split() _snake_case = RadixNode() root.insert_many(__lowerCamelCase ) assert all(root.find(__lowerCamelCase ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def _UpperCAmelCase ( ) -> None: assert test_trie() def _UpperCAmelCase ( ) -> None: _snake_case = RadixNode() _snake_case = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(__lowerCamelCase ) print('''Words:''' , __lowerCamelCase ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
224
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } _lowercase = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def __UpperCamelCase ( a : Any ) ->List[str]: snake_case = {} with open(a , '''r''' ) as file: for line_number, line in enumerate(a ): snake_case = line.strip() if line: snake_case = line.split() snake_case = line_number snake_case = words[0] snake_case = value return result def __UpperCamelCase ( a : Tuple , a : Tuple , a : Optional[int] , a : int , a : str ) ->Any: for attribute in key.split('''.''' ): snake_case = getattr(a , a ) snake_case = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(a ): snake_case = PARAM_MAPPING[full_name.split('''.''' )[-1]] snake_case = '''param''' if weight_type is not None and weight_type != "param": snake_case = getattr(a , a ).shape elif weight_type is not None and weight_type == "param": snake_case = hf_pointer for attribute in hf_param_name.split('''.''' ): snake_case = getattr(a , a ) snake_case = shape_pointer.shape # let's reduce dimension snake_case = value[0] else: snake_case = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): snake_case = getattr(a , a ) snake_case = value else: snake_case = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __UpperCamelCase ( a : Optional[int] , a : Optional[Any] , a : Optional[int] , a : Any , a : int ) ->Dict: snake_case = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(a ): snake_case = PARAM_MAPPING[full_name.split('''.''' )[-1]] snake_case = '''param''' if weight_type is not None and weight_type != "param": snake_case = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": snake_case = '''.'''.join([key, hf_param_name] ) else: snake_case = key snake_case = value if '''lm_head''' in full_key else value[0] _lowercase = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def __UpperCamelCase ( a : List[Any] , a : Optional[int] , a : Optional[Any]=None , a : Any=None ) ->Any: snake_case = False for key, mapped_key in MAPPING.items(): snake_case = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: snake_case = True if "*" in mapped_key: snake_case = name.split(a )[0].split('''.''' )[-2] snake_case = mapped_key.replace('''*''' , a ) if "weight_g" in name: snake_case = '''weight_g''' elif "weight_v" in name: snake_case = '''weight_v''' elif "bias" in name: snake_case = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case = '''weight''' else: snake_case = None if hf_dict is not None: rename_dict(a , a , a , a , a ) else: set_recursively(a , a , a , a , a ) return is_used return is_used def __UpperCamelCase ( a : List[Any] , a : Union[str, Any] , a : str ) ->Any: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( a , a , a , a , hf_model.config.feat_extract_norm == '''group''' , ) snake_case = True else: snake_case = load_wavaveca_layer(a , a , a ) if not is_used: unused_weights.append(a ) logger.warning(f"""Unused weights: {unused_weights}""" ) def __UpperCamelCase ( a : Union[str, Any] , a : List[str] , a : Union[str, Any] , a : Dict , a : List[str] ) ->Tuple: snake_case = full_name.split('''conv_layers.''' )[-1] snake_case = name.split('''.''' ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) snake_case = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(a ) @torch.no_grad() def __UpperCamelCase ( a : Tuple , a : Tuple , a : List[str]=None , a : Tuple=None , a : str=True , a : Tuple=False ) ->Dict: if config_path is not None: snake_case = WavaVecaConfig.from_pretrained(a ) else: snake_case = WavaVecaConfig() if is_seq_class: snake_case = read_txt_into_dict(a ) snake_case = idalabel snake_case = WavaVecaForSequenceClassification(a ) snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=a , return_attention_mask=a , ) feature_extractor.save_pretrained(a ) elif is_finetuned: if dict_path: snake_case = Dictionary.load(a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(a , '''vocab.json''' ) if not os.path.isdir(a ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(a ) ) return os.makedirs(a , exist_ok=a ) snake_case = target_dict.indices # fairseq has the <pad> and <s> switched snake_case = 0 snake_case = 1 with open(a , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(a , a ) snake_case = WavaVecaCTCTokenizer( a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=a , ) snake_case = True if config.feat_extract_norm == '''layer''' else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=a , return_attention_mask=a , ) snake_case = WavaVecaProcessor(feature_extractor=a , tokenizer=a ) processor.save_pretrained(a ) snake_case = WavaVecaForCTC(a ) else: snake_case = WavaVecaForPreTraining(a ) if is_finetuned or is_seq_class: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: snake_case = argparse.Namespace(task='''audio_pretraining''' ) snake_case = fairseq.tasks.setup_task(a ) snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=a ) snake_case = model[0].eval() recursively_load_weights(a , a , not is_finetuned ) hf_wavavec.save_pretrained(a ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) _lowercase = parser.parse_args() _lowercase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
44
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class _lowercase : @staticmethod def UpperCamelCase ( *A__ , **A__ ) -> List[Any]: pass def __UpperCamelCase ( a : Image ) ->str: snake_case = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class _lowercase ( unittest.TestCase ): _UpperCAmelCase = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def UpperCamelCase ( self , A__ , A__ , A__ ) -> Union[str, Any]: snake_case = DepthEstimationPipeline(model=A__ , image_processor=A__ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCamelCase ( self , A__ , A__ ) -> List[Any]: snake_case = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , A__ ) import datasets snake_case = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) snake_case = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , A__ , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def UpperCamelCase ( self ) -> Optional[Any]: pass @slow @require_torch def UpperCamelCase ( self ) -> Dict: snake_case = '''Intel/dpt-large''' snake_case = pipeline('''depth-estimation''' , model=A__ ) snake_case = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) snake_case = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 2_9.3_0_4 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.6_6_2 ) @require_torch def UpperCamelCase ( self ) -> Any: # This is highly irregular to have no small tests. self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
44
1
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self : Any ) -> Dict: '''simple docstring''' a__ : Dict = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split() a__ : Any = dict(zip(a_ , range(len(a_ ) ) ) ) a__ : int = { "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", } a__ : Optional[Any] = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 1_60_00, "return_attention_mask": False, "do_normalize": True, } a__ : Optional[int] = tempfile.mkdtemp() a__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) a__ : Tuple = os.path.join(self.tmpdirname , a_ ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.feature_extraction_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) # load decoder from hub a__ : Tuple = "hf-internal-testing/ngram-beam-search-decoder" def UpperCAmelCase ( self : List[Any] , **a_ : Dict ) -> List[str]: '''simple docstring''' a__ : Optional[int] = self.add_kwargs_tokens_map.copy() kwargs.update(a_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **a_ ) def UpperCAmelCase ( self : Dict , **a_ : str ) -> Optional[int]: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **a_ ) def UpperCAmelCase ( self : Any , **a_ : List[str] ) -> Union[str, Any]: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **a_ ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: '''simple docstring''' a__ : str = self.get_tokenizer() a__ : str = self.get_feature_extractor() a__ : Optional[Any] = self.get_decoder() a__ : List[Any] = WavaVecaProcessorWithLM(tokenizer=a_ , feature_extractor=a_ , decoder=a_ ) processor.save_pretrained(self.tmpdirname ) a__ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , a_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , a_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , a_ ) def UpperCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' a__ : Tuple = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match a__ : Dict = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCAmelCase ( self : List[str] ) -> Any: '''simple docstring''' a__ : Any = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["xx"] ) with self.assertRaisesRegex(a_ , "include" ): WavaVecaProcessorWithLM( tokenizer=a_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCAmelCase ( self : Optional[Any] ) -> Dict: '''simple docstring''' a__ : int = self.get_feature_extractor() a__ : List[Any] = self.get_tokenizer() a__ : Union[str, Any] = self.get_decoder() a__ : str = WavaVecaProcessorWithLM(tokenizer=a_ , feature_extractor=a_ , decoder=a_ ) a__ : Dict = floats_list((3, 10_00) ) a__ : List[Any] = feature_extractor(a_ , return_tensors="np" ) a__ : Optional[Any] = processor(a_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self : str ) -> Optional[int]: '''simple docstring''' a__ : Optional[Any] = self.get_feature_extractor() a__ : Optional[Any] = self.get_tokenizer() a__ : Any = self.get_decoder() a__ : str = WavaVecaProcessorWithLM(tokenizer=a_ , feature_extractor=a_ , decoder=a_ ) a__ : Optional[int] = "This is a test string" a__ : Union[str, Any] = processor(text=a_ ) a__ : List[Any] = tokenizer(a_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase ( self : Dict , a_ : Tuple=(2, 10, 16) , a_ : Optional[int]=77 ) -> Any: '''simple docstring''' np.random.seed(a_ ) return np.random.rand(*a_ ) def UpperCAmelCase ( self : Optional[Any] ) -> Dict: '''simple docstring''' a__ : int = self.get_feature_extractor() a__ : Dict = self.get_tokenizer() a__ : List[str] = self.get_decoder() a__ : List[Any] = WavaVecaProcessorWithLM(tokenizer=a_ , feature_extractor=a_ , decoder=a_ ) a__ : List[Any] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) a__ : Optional[int] = processor.decode(a_ ) a__ : Optional[int] = decoder.decode_beams(a_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("</s> <s> </s>" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["fork"], ["spawn"]] ) def UpperCAmelCase ( self : Dict , a_ : Dict ) -> Optional[Any]: '''simple docstring''' a__ : Any = self.get_feature_extractor() a__ : List[str] = self.get_tokenizer() a__ : Dict = self.get_decoder() a__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=a_ , feature_extractor=a_ , decoder=a_ ) a__ : List[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: a__ : Optional[Any] = processor.batch_decode(a_ ) else: with get_context(a_ ).Pool() as pool: a__ : int = processor.batch_decode(a_ , a_ ) a__ : Optional[Any] = list(a_ ) with get_context("fork" ).Pool() as p: a__ : List[Any] = decoder.decode_beams_batch(a_ , a_ ) a__ , a__ , a__ : str = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(a_ , decoded_processor.text ) self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] , decoded_processor.text ) self.assertListEqual(a_ , decoded_processor.logit_score ) self.assertListEqual(a_ , decoded_processor.lm_score ) def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] = self.get_feature_extractor() a__ : Union[str, Any] = self.get_tokenizer() a__ : int = self.get_decoder() a__ : List[str] = WavaVecaProcessorWithLM(tokenizer=a_ , feature_extractor=a_ , decoder=a_ ) a__ : Optional[int] = self._get_dummy_logits() a__ : Dict = 15 a__ : Optional[int] = -20.0 a__ : Optional[int] = -4.0 a__ : Union[str, Any] = processor.batch_decode( a_ , beam_width=a_ , beam_prune_logp=a_ , token_min_logp=a_ , ) a__ : Any = decoded_processor_out.text a__ : Optional[Any] = list(a_ ) with get_context("fork" ).Pool() as pool: a__ : Union[str, Any] = decoder.decode_beams_batch( a_ , a_ , beam_width=a_ , beam_prune_logp=a_ , token_min_logp=a_ , ) a__ : Optional[int] = [d[0][0] for d in decoded_decoder_out] a__ : Tuple = [d[0][2] for d in decoded_decoder_out] a__ : Union[str, Any] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(a_ , a_ ) self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] , a_ ) self.assertTrue(np.array_equal(a_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , a_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(a_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , a_ , atol=1E-3 ) ) def UpperCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' a__ : Tuple = self.get_feature_extractor() a__ : List[Any] = self.get_tokenizer() a__ : Any = self.get_decoder() a__ : int = WavaVecaProcessorWithLM(tokenizer=a_ , feature_extractor=a_ , decoder=a_ ) a__ : Tuple = self._get_dummy_logits() a__ : str = 2.0 a__ : Optional[int] = 5.0 a__ : Optional[int] = -20.0 a__ : Any = True a__ : List[str] = processor.batch_decode( a_ , alpha=a_ , beta=a_ , unk_score_offset=a_ , lm_score_boundary=a_ , ) a__ : List[Any] = decoded_processor_out.text a__ : Tuple = list(a_ ) decoder.reset_params( alpha=a_ , beta=a_ , unk_score_offset=a_ , lm_score_boundary=a_ , ) with get_context("fork" ).Pool() as pool: a__ : Optional[int] = decoder.decode_beams_batch( a_ , a_ , ) a__ : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(a_ , a_ ) self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] , a_ ) a__ : int = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , a_ ) def UpperCAmelCase ( self : Dict ) -> str: '''simple docstring''' a__ : List[Any] = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) a__ : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] a__ : Dict = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() a__ : List[Any] = os.listdir(a_ ) a__ : Optional[int] = ["alphabet.json", "language_model"] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(a_ , a_ ) def UpperCAmelCase ( self : int ) -> List[str]: '''simple docstring''' a__ : Optional[int] = snapshot_download("hf-internal-testing/processor_with_lm" ) a__ : str = WavaVecaProcessorWithLM.from_pretrained(a_ ) a__ : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] a__ : List[str] = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() a__ : List[Any] = os.listdir(a_ ) a__ : Any = os.listdir(a_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(a_ , a_ ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: '''simple docstring''' a__ : List[Any] = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) a__ : Optional[int] = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm" ) a__ : List[str] = floats_list((3, 10_00) ) a__ : Tuple = processor_wavaveca(a_ , return_tensors="np" ) a__ : Any = processor_auto(a_ , return_tensors="np" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) a__ : Optional[int] = self._get_dummy_logits() a__ : Optional[Any] = processor_wavaveca.batch_decode(a_ ) a__ : int = processor_auto.batch_decode(a_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: '''simple docstring''' a__ : List[str] = self.get_feature_extractor() a__ : Optional[Any] = self.get_tokenizer() a__ : List[Any] = self.get_decoder() a__ : Any = WavaVecaProcessorWithLM(tokenizer=a_ , feature_extractor=a_ , decoder=a_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , ) @staticmethod def UpperCAmelCase ( a_ : Dict , a_ : Any ) -> Dict: '''simple docstring''' a__ : Tuple = [d[key] for d in offsets] return retrieved_list def UpperCAmelCase ( self : Optional[Any] ) -> Any: '''simple docstring''' a__ : str = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) a__ : Dict = self._get_dummy_logits()[0] a__ : Union[str, Any] = processor.decode(a_ , output_word_offsets=a_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(a_ , a_ ) ) self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] , "word" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "end_offset" ) , [1, 3, 5] ) def UpperCAmelCase ( self : str ) -> Dict: '''simple docstring''' a__ : Tuple = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) a__ : Union[str, Any] = self._get_dummy_logits() a__ : Union[str, Any] = processor.batch_decode(a_ , output_word_offsets=a_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(a_ , a_ ) ) self.assertListEqual( [" ".join(self.get_from_offsets(a_ , "word" ) ) for o in outputs["word_offsets"]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "end_offset" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' import torch a__ : List[Any] = load_dataset("common_voice" , "en" , split="train" , streaming=a_ ) a__ : Optional[int] = ds.cast_column("audio" , datasets.Audio(sampling_rate=1_60_00 ) ) a__ : Optional[int] = iter(a_ ) a__ : Optional[int] = next(a_ ) a__ : Any = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) a__ : Optional[Any] = WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train a__ : int = processor(sample["audio"]["array"] , return_tensors="pt" ).input_values with torch.no_grad(): a__ : int = model(a_ ).logits.cpu().numpy() a__ : str = processor.decode(logits[0] , output_word_offsets=a_ ) a__ : Optional[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate a__ : Optional[Any] = [ { "start_time": d["start_offset"] * time_offset, "end_time": d["end_offset"] * time_offset, "word": d["word"], } for d in output["word_offsets"] ] a__ : List[str] = "WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL" # output words self.assertEqual(" ".join(self.get_from_offsets(a_ , "word" ) ) , a_ ) self.assertEqual(" ".join(self.get_from_offsets(a_ , "word" ) ) , output.text ) # output times a__ : Optional[Any] = torch.tensor(self.get_from_offsets(a_ , "start_time" ) ) a__ : str = torch.tensor(self.get_from_offsets(a_ , "end_time" ) ) # fmt: off a__ : Optional[int] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) a__ : Optional[Any] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(a_ , a_ , atol=0.01 ) ) self.assertTrue(torch.allclose(a_ , a_ , atol=0.01 ) )
642
"""simple docstring""" def lowercase__ ( lowerCAmelCase__ : str ) -> list[int]: '''simple docstring''' a__ : List[str] = [0 for i in range(len(lowerCAmelCase__ ) )] # initialize interval's left pointer and right pointer a__ , a__ : int = 0, 0 for i in range(1 , len(lowerCAmelCase__ ) ): # case when current index is inside the interval if i <= right_pointer: a__ : List[Any] = min(right_pointer - i + 1 , z_result[i - left_pointer] ) a__ : List[str] = min_edge while go_next(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: a__ , a__ : str = i, i + z_result[i] - 1 return z_result def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : str ) -> bool: '''simple docstring''' return i + z_result[i] < len(lowerCAmelCase__ ) and s[z_result[i]] == s[i + z_result[i]] def lowercase__ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> int: '''simple docstring''' a__ : List[Any] = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string a__ : List[str] = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(lowerCAmelCase__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
642
1
from datetime import datetime as dt import os from github import Github a__ : Union[str, Any] = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = Github(os.environ['''GITHUB_TOKEN'''] ) SCREAMING_SNAKE_CASE : List[Any] = g.get_repo('''huggingface/transformers''' ) SCREAMING_SNAKE_CASE : int = repo.get_issues(state='''open''' ) for issue in open_issues: SCREAMING_SNAKE_CASE : List[str] = sorted([comment for comment in issue.get_comments()] , key=lambda a__ : i.created_at , reverse=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = comments[0] if len(UpperCamelCase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
703
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def UpperCAmelCase_( a__ , a__ , a__ , a__ , a__ = None , a__ = None , a__ = None , ): """simple docstring""" if config_name_or_path is None: SCREAMING_SNAKE_CASE : int = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE : Union[str, Any] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE : Union[str, Any] = question_encoder_name_or_path SCREAMING_SNAKE_CASE : Optional[Any] = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. SCREAMING_SNAKE_CASE : List[str] = RagConfig.from_pretrained(a__ ) SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = AutoConfig.from_pretrained(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = gen_config SCREAMING_SNAKE_CASE : List[Any] = question_encoder_config SCREAMING_SNAKE_CASE : Dict = model_class.from_pretrained_question_encoder_generator( a__ , a__ , config=a__ ) rag_model.save_pretrained(a__ ) # Sanity check. model_class.from_pretrained(a__ ) # Save tokenizers. SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained(a__ ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(a__ ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": a__ : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) a__ : Dict = parser.parse_args() a__ : Tuple = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
333
0
"""simple docstring""" import numpy as np def A_ ( snake_case_ : Tuple ,snake_case_ : Any ,snake_case_ : str ,snake_case_ : Optional[int] ,snake_case_ : List[str] ): '''simple docstring''' UpperCamelCase : int = int(np.ceil((x_end - xa) / h ) ) UpperCamelCase : Dict = np.zeros((n + 1,) ) UpperCamelCase : Optional[int] = ya UpperCamelCase : Optional[Any] = xa for k in range(snake_case_ ): UpperCamelCase : Optional[Any] = f(snake_case_ ,y[k] ) UpperCamelCase : Optional[Any] = f(x + 0.5 * h ,y[k] + 0.5 * h * ka ) UpperCamelCase : Optional[Any] = f(x + 0.5 * h ,y[k] + 0.5 * h * ka ) UpperCamelCase : Optional[int] = f(x + h ,y[k] + h * ka ) UpperCamelCase : Tuple = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
499
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __A : Dict = logging.get_logger(__name__) __A : List[Any] = TypeVar('''DatasetType''', Dataset, IterableDataset) def A_ ( snake_case_ : List[DatasetType] ,snake_case_ : Optional[List[float]] = None ,snake_case_ : Optional[int] = None ,snake_case_ : Optional[DatasetInfo] = None ,snake_case_ : Optional[NamedSplit] = None ,snake_case_ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" ,): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(snake_case_ ): if not isinstance(snake_case_ ,(Dataset, IterableDataset) ): if isinstance(snake_case_ ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' """is an empty dataset dictionary.""" ) raise ValueError( f'Dataset at position {i} has at least one split: {list(snake_case_ )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(snake_case_ ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case_ ).__name__}.' ) if i == 0: UpperCamelCase , UpperCamelCase : Dict = ( (Dataset, IterableDataset) if isinstance(snake_case_ ,snake_case_ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case_ ,snake_case_ ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( snake_case_ ,snake_case_ ,snake_case_ ,info=snake_case_ ,split=snake_case_ ,stopping_strategy=snake_case_ ) else: return _interleave_iterable_datasets( snake_case_ ,snake_case_ ,snake_case_ ,info=snake_case_ ,split=snake_case_ ,stopping_strategy=snake_case_ ) def A_ ( snake_case_ : List[DatasetType] ,snake_case_ : Optional[DatasetInfo] = None ,snake_case_ : Optional[NamedSplit] = None ,snake_case_ : int = 0 ,): '''simple docstring''' if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(snake_case_ ): if not isinstance(snake_case_ ,(Dataset, IterableDataset) ): if isinstance(snake_case_ ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' """is an empty dataset dictionary.""" ) raise ValueError( f'Dataset at position {i} has at least one split: {list(snake_case_ )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(snake_case_ ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case_ ).__name__}.' ) if i == 0: UpperCamelCase , UpperCamelCase : List[str] = ( (Dataset, IterableDataset) if isinstance(snake_case_ ,snake_case_ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case_ ,snake_case_ ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(snake_case_ ,info=snake_case_ ,split=snake_case_ ,axis=snake_case_ ) else: return _concatenate_iterable_datasets(snake_case_ ,info=snake_case_ ,split=snake_case_ ,axis=snake_case_ )
499
1
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ = random.Random() def lowerCamelCase ( _snake_case : List[Any] ,_snake_case : int=1.0 ,_snake_case : Dict=None ,_snake_case : Any=None ): '''simple docstring''' if rng is None: lowercase__ = global_rng lowercase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class snake_case (unittest.TestCase ): def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=7 ,UpperCAmelCase_=400 ,UpperCAmelCase_=2_000 ,UpperCAmelCase_=10 ,UpperCAmelCase_=160 ,UpperCAmelCase_=8 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=4_000 ,UpperCAmelCase_=False ,UpperCAmelCase_=True ,) -> str: lowercase__ = parent lowercase__ = batch_size lowercase__ = min_seq_length lowercase__ = max_seq_length lowercase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase__ = padding_value lowercase__ = sampling_rate lowercase__ = return_attention_mask lowercase__ = do_normalize lowercase__ = feature_size lowercase__ = chunk_length lowercase__ = hop_length def _a ( self ) -> Union[str, Any]: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _a ( self ,UpperCAmelCase_=False ,UpperCAmelCase_=False ) -> Optional[Any]: def _flatten(UpperCAmelCase_ ): return list(itertools.chain(*UpperCAmelCase_ ) ) if equal_length: lowercase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowercase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: lowercase__ = [np.asarray(UpperCAmelCase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class snake_case (UpperCamelCase , unittest.TestCase ): lowerCAmelCase__ :Tuple = WhisperFeatureExtractor if is_speech_available() else None def _a ( self ) -> int: lowercase__ = WhisperFeatureExtractionTester(self ) def _a ( self ) -> Union[str, Any]: lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = feat_extract_first.save_pretrained(UpperCAmelCase_ )[0] check_json_file_has_correct_format(UpperCAmelCase_ ) lowercase__ = self.feature_extraction_class.from_pretrained(UpperCAmelCase_ ) lowercase__ = feat_extract_first.to_dict() lowercase__ = feat_extract_second.to_dict() lowercase__ = feat_extract_first.mel_filters lowercase__ = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCAmelCase_ ,UpperCAmelCase_ ) ) self.assertEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) def _a ( self ) -> List[Any]: lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(UpperCAmelCase_ ,"feat_extract.json" ) feat_extract_first.to_json_file(UpperCAmelCase_ ) lowercase__ = self.feature_extraction_class.from_json_file(UpperCAmelCase_ ) lowercase__ = feat_extract_first.to_dict() lowercase__ = feat_extract_second.to_dict() lowercase__ = feat_extract_first.mel_filters lowercase__ = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCAmelCase_ ,UpperCAmelCase_ ) ) self.assertEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) def _a ( self ) -> Optional[Any]: # Tests that all call wrap to encode_plus and batch_encode_plus lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] lowercase__ = [np.asarray(UpperCAmelCase_ ) for speech_input in speech_inputs] # Test feature size lowercase__ = feature_extractor(UpperCAmelCase_ ,padding="max_length" ,return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input lowercase__ = feature_extractor(speech_inputs[0] ,return_tensors="np" ).input_features lowercase__ = feature_extractor(np_speech_inputs[0] ,return_tensors="np" ).input_features self.assertTrue(np.allclose(UpperCAmelCase_ ,UpperCAmelCase_ ,atol=1E-3 ) ) # Test batched lowercase__ = feature_extractor(UpperCAmelCase_ ,return_tensors="np" ).input_features lowercase__ = feature_extractor(UpperCAmelCase_ ,return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCAmelCase_ ,UpperCAmelCase_ ): self.assertTrue(np.allclose(UpperCAmelCase_ ,UpperCAmelCase_ ,atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowercase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowercase__ = np.asarray(UpperCAmelCase_ ) lowercase__ = feature_extractor(UpperCAmelCase_ ,return_tensors="np" ).input_features lowercase__ = feature_extractor(UpperCAmelCase_ ,return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCAmelCase_ ,UpperCAmelCase_ ): self.assertTrue(np.allclose(UpperCAmelCase_ ,UpperCAmelCase_ ,atol=1E-3 ) ) # Test truncation required lowercase__ = [floats_list((1, x) )[0] for x in range(200 ,(feature_extractor.n_samples + 500) ,200 )] lowercase__ = [np.asarray(UpperCAmelCase_ ) for speech_input in speech_inputs] lowercase__ = [x[: feature_extractor.n_samples] for x in speech_inputs] lowercase__ = [np.asarray(UpperCAmelCase_ ) for speech_input in speech_inputs_truncated] lowercase__ = feature_extractor(UpperCAmelCase_ ,return_tensors="np" ).input_features lowercase__ = feature_extractor(UpperCAmelCase_ ,return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCAmelCase_ ,UpperCAmelCase_ ): self.assertTrue(np.allclose(UpperCAmelCase_ ,UpperCAmelCase_ ,atol=1E-3 ) ) def _a ( self ) -> Union[str, Any]: import torch lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ = np.random.rand(100 ,32 ).astype(np.floataa ) lowercase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase__ = feature_extractor.pad([{"input_features": inputs}] ,return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowercase__ = feature_extractor.pad([{"input_features": inputs}] ,return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _a ( self ,UpperCAmelCase_ ) -> List[Any]: lowercase__ = load_dataset("hf-internal-testing/librispeech_asr_dummy" ,"clean" ,split="validation" ) # automatic decoding with librispeech lowercase__ = ds.sort("id" ).select(range(UpperCAmelCase_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _a ( self ) -> Union[str, Any]: # fmt: off lowercase__ = torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on lowercase__ = self._load_datasamples(1 ) lowercase__ = WhisperFeatureExtractor() lowercase__ = feature_extractor(UpperCAmelCase_ ,return_tensors="pt" ).input_features self.assertEqual(input_features.shape ,(1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] ,UpperCAmelCase_ ,atol=1E-4 ) ) def _a ( self ) -> int: lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ = self._load_datasamples(1 )[0] lowercase__ = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue lowercase__ = feat_extract.zero_mean_unit_var_norm([audio] ,attention_mask=UpperCAmelCase_ )[0] self.assertTrue(np.all(np.mean(UpperCAmelCase_ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCAmelCase_ ) - 1 ) < 1E-3 ) )
539
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class snake_case (unittest.TestCase , UpperCamelCase ): def _a ( self ) -> List[str]: lowercase__ = load_tool("text-classification" ) self.tool.setup() lowercase__ = load_tool("text-classification" ,remote=UpperCAmelCase_ ) def _a ( self ) -> Any: lowercase__ = self.tool("That's quite cool" ,["positive", "negative"] ) self.assertEqual(UpperCAmelCase_ ,"positive" ) def _a ( self ) -> Optional[int]: lowercase__ = self.remote_tool("That's quite cool" ,["positive", "negative"] ) self.assertEqual(UpperCAmelCase_ ,"positive" ) def _a ( self ) -> List[Any]: lowercase__ = self.tool(text="That's quite cool" ,labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase_ ,"positive" ) def _a ( self ) -> List[Any]: lowercase__ = self.remote_tool(text="That's quite cool" ,labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase_ ,"positive" )
539
1
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class UpperCamelCase ( UpperCAmelCase__ ): def __get__( self : Optional[int] , snake_case__ : List[str] , snake_case__ : Tuple=None ): """simple docstring""" if obj is None: return self if self.fget is None: raise AttributeError('unreadable attribute' ) SCREAMING_SNAKE_CASE = """__cached_""" + self.fget.__name__ SCREAMING_SNAKE_CASE = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if cached is None: SCREAMING_SNAKE_CASE = self.fget(_SCREAMING_SNAKE_CASE ) setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return cached def __lowerCAmelCase ( _UpperCamelCase : Any ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f"""invalid truth value {val!r}""" ) def __lowerCAmelCase ( _UpperCamelCase : Optional[int] ) -> List[Any]: '''simple docstring''' if is_torch_fx_proxy(_UpperCamelCase ): return True if is_torch_available(): import torch if isinstance(_UpperCamelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(_UpperCamelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(_UpperCamelCase , (jnp.ndarray, Tracer) ): return True return isinstance(_UpperCamelCase , np.ndarray ) def __lowerCAmelCase ( _UpperCamelCase : Any ) -> Optional[Any]: '''simple docstring''' return isinstance(_UpperCamelCase , np.ndarray ) def __lowerCAmelCase ( _UpperCamelCase : int ) -> List[Any]: '''simple docstring''' return _is_numpy(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : Optional[int] ) -> List[Any]: '''simple docstring''' import torch return isinstance(_UpperCamelCase , torch.Tensor ) def __lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> str: '''simple docstring''' return False if not is_torch_available() else _is_torch(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : List[str] ) -> str: '''simple docstring''' import torch return isinstance(_UpperCamelCase , torch.device ) def __lowerCAmelCase ( _UpperCamelCase : Optional[int] ) -> List[Any]: '''simple docstring''' return False if not is_torch_available() else _is_torch_device(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : Optional[int] ) -> str: '''simple docstring''' import torch if isinstance(_UpperCamelCase , _UpperCamelCase ): if hasattr(_UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE = getattr(_UpperCamelCase , _UpperCamelCase ) else: return False return isinstance(_UpperCamelCase , torch.dtype ) def __lowerCAmelCase ( _UpperCamelCase : int ) -> Dict: '''simple docstring''' return False if not is_torch_available() else _is_torch_dtype(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' import tensorflow as tf return isinstance(_UpperCamelCase , tf.Tensor ) def __lowerCAmelCase ( _UpperCamelCase : Optional[int] ) -> Tuple: '''simple docstring''' return False if not is_tf_available() else _is_tensorflow(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(_UpperCamelCase , 'is_symbolic_tensor' ): return tf.is_symbolic_tensor(_UpperCamelCase ) return type(_UpperCamelCase ) == tf.Tensor def __lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> int: '''simple docstring''' return False if not is_tf_available() else _is_tf_symbolic_tensor(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : int ) -> str: '''simple docstring''' import jax.numpy as jnp # noqa: F811 return isinstance(_UpperCamelCase , jnp.ndarray ) def __lowerCAmelCase ( _UpperCamelCase : int ) -> Any: '''simple docstring''' return False if not is_flax_available() else _is_jax(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : List[str] ) -> Tuple: '''simple docstring''' if isinstance(_UpperCamelCase , (dict, UserDict) ): return {k: to_py_obj(_UpperCamelCase ) for k, v in obj.items()} elif isinstance(_UpperCamelCase , (list, tuple) ): return [to_py_obj(_UpperCamelCase ) for o in obj] elif is_tf_tensor(_UpperCamelCase ): return obj.numpy().tolist() elif is_torch_tensor(_UpperCamelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(_UpperCamelCase ): return np.asarray(_UpperCamelCase ).tolist() elif isinstance(_UpperCamelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def __lowerCAmelCase ( _UpperCamelCase : Tuple ) -> List[Any]: '''simple docstring''' if isinstance(_UpperCamelCase , (dict, UserDict) ): return {k: to_numpy(_UpperCamelCase ) for k, v in obj.items()} elif isinstance(_UpperCamelCase , (list, tuple) ): return np.array(_UpperCamelCase ) elif is_tf_tensor(_UpperCamelCase ): return obj.numpy() elif is_torch_tensor(_UpperCamelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(_UpperCamelCase ): return np.asarray(_UpperCamelCase ) else: return obj class UpperCamelCase ( UpperCAmelCase__ ): def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = fields(self ) # Safety and consistency checks if not len(_SCREAMING_SNAKE_CASE ): raise ValueError(F"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F"""{self.__class__.__name__} should not have more than one required field.""" ) SCREAMING_SNAKE_CASE = getattr(self , class_fields[0].name ) SCREAMING_SNAKE_CASE = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(_SCREAMING_SNAKE_CASE ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = first_field.items() SCREAMING_SNAKE_CASE = True else: try: SCREAMING_SNAKE_CASE = iter(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = True except TypeError: SCREAMING_SNAKE_CASE = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_SCREAMING_SNAKE_CASE ): if ( not isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) or not len(_SCREAMING_SNAKE_CASE ) == 2 or not isinstance(element[0] , _SCREAMING_SNAKE_CASE ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute SCREAMING_SNAKE_CASE = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: SCREAMING_SNAKE_CASE = element[1] elif first_field is not None: SCREAMING_SNAKE_CASE = first_field else: for field in class_fields: SCREAMING_SNAKE_CASE = getattr(self , field.name ) if v is not None: SCREAMING_SNAKE_CASE = v def __delitem__( self : Union[str, Any] , *snake_case__ : List[str] , **snake_case__ : Optional[Any] ): """simple docstring""" raise Exception(F"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def UpperCamelCase ( self : int , *snake_case__ : List[Any] , **snake_case__ : Any ): """simple docstring""" raise Exception(F"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def UpperCamelCase ( self : Optional[Any] , *snake_case__ : int , **snake_case__ : int ): """simple docstring""" raise Exception(F"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def UpperCamelCase ( self : List[str] , *snake_case__ : Optional[int] , **snake_case__ : Optional[int] ): """simple docstring""" raise Exception(F"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self : Tuple , snake_case__ : Optional[int] ): """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): """simple docstring""" if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) super().__setattr__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __setitem__( self : List[str] , snake_case__ : Dict , snake_case__ : Tuple ): """simple docstring""" super().__setitem__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : List[str] ): """simple docstring""" return tuple(self[k] for k in self.keys() ) class UpperCamelCase ( UpperCAmelCase__ , UpperCAmelCase__ ): @classmethod def UpperCamelCase ( cls : Optional[int] , snake_case__ : Any ): """simple docstring""" raise ValueError( F"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class UpperCamelCase ( UpperCAmelCase__ ): __UpperCamelCase ='longest' __UpperCamelCase ='max_length' __UpperCamelCase ='do_not_pad' class UpperCamelCase ( UpperCAmelCase__ ): __UpperCamelCase ='pt' __UpperCamelCase ='tf' __UpperCamelCase ='np' __UpperCamelCase ='jax' class UpperCamelCase : def __init__( self : int , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = context_managers SCREAMING_SNAKE_CASE = ExitStack() def __enter__( self : Any ): """simple docstring""" for context_manager in self.context_managers: self.stack.enter_context(_SCREAMING_SNAKE_CASE ) def __exit__( self : Union[str, Any] , *snake_case__ : List[str] , **snake_case__ : Dict ): """simple docstring""" self.stack.__exit__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( _UpperCamelCase : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = infer_framework(_UpperCamelCase ) if framework == "tf": SCREAMING_SNAKE_CASE = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": SCREAMING_SNAKE_CASE = inspect.signature(model_class.forward ) # PyTorch models else: SCREAMING_SNAKE_CASE = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def __lowerCAmelCase ( _UpperCamelCase : str ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = model_class.__name__ SCREAMING_SNAKE_CASE = infer_framework(_UpperCamelCase ) if framework == "tf": SCREAMING_SNAKE_CASE = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": SCREAMING_SNAKE_CASE = inspect.signature(model_class.forward ) # PyTorch models else: SCREAMING_SNAKE_CASE = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def __lowerCAmelCase ( _UpperCamelCase : MutableMapping , _UpperCamelCase : str = "" , _UpperCamelCase : str = "." ) -> Dict: '''simple docstring''' def _flatten_dict(_UpperCamelCase : int , _UpperCamelCase : List[str]="" , _UpperCamelCase : Union[str, Any]="." ): for k, v in d.items(): SCREAMING_SNAKE_CASE = str(_UpperCamelCase ) + delimiter + str(_UpperCamelCase ) if parent_key else k if v and isinstance(_UpperCamelCase , _UpperCamelCase ): yield from flatten_dict(_UpperCamelCase , _UpperCamelCase , delimiter=_UpperCamelCase ).items() else: yield key, v return dict(_flatten_dict(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ) @contextmanager def __lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : bool = False ) -> str: '''simple docstring''' if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : List[Any]=None ) -> Any: '''simple docstring''' if is_numpy_array(_UpperCamelCase ): return np.transpose(_UpperCamelCase , axes=_UpperCamelCase ) elif is_torch_tensor(_UpperCamelCase ): return array.T if axes is None else array.permute(*_UpperCamelCase ) elif is_tf_tensor(_UpperCamelCase ): import tensorflow as tf return tf.transpose(_UpperCamelCase , perm=_UpperCamelCase ) elif is_jax_tensor(_UpperCamelCase ): return jnp.transpose(_UpperCamelCase , axes=_UpperCamelCase ) else: raise ValueError(f"""Type not supported for transpose: {type(_UpperCamelCase )}.""" ) def __lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : Optional[Any] ) -> Dict: '''simple docstring''' if is_numpy_array(_UpperCamelCase ): return np.reshape(_UpperCamelCase , _UpperCamelCase ) elif is_torch_tensor(_UpperCamelCase ): return array.reshape(*_UpperCamelCase ) elif is_tf_tensor(_UpperCamelCase ): import tensorflow as tf return tf.reshape(_UpperCamelCase , _UpperCamelCase ) elif is_jax_tensor(_UpperCamelCase ): return jnp.reshape(_UpperCamelCase , _UpperCamelCase ) else: raise ValueError(f"""Type not supported for reshape: {type(_UpperCamelCase )}.""" ) def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : List[Any]=None ) -> Any: '''simple docstring''' if is_numpy_array(_UpperCamelCase ): return np.squeeze(_UpperCamelCase , axis=_UpperCamelCase ) elif is_torch_tensor(_UpperCamelCase ): return array.squeeze() if axis is None else array.squeeze(dim=_UpperCamelCase ) elif is_tf_tensor(_UpperCamelCase ): import tensorflow as tf return tf.squeeze(_UpperCamelCase , axis=_UpperCamelCase ) elif is_jax_tensor(_UpperCamelCase ): return jnp.squeeze(_UpperCamelCase , axis=_UpperCamelCase ) else: raise ValueError(f"""Type not supported for squeeze: {type(_UpperCamelCase )}.""" ) def __lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] ) -> int: '''simple docstring''' if is_numpy_array(_UpperCamelCase ): return np.expand_dims(_UpperCamelCase , _UpperCamelCase ) elif is_torch_tensor(_UpperCamelCase ): return array.unsqueeze(dim=_UpperCamelCase ) elif is_tf_tensor(_UpperCamelCase ): import tensorflow as tf return tf.expand_dims(_UpperCamelCase , axis=_UpperCamelCase ) elif is_jax_tensor(_UpperCamelCase ): return jnp.expand_dims(_UpperCamelCase , axis=_UpperCamelCase ) else: raise ValueError(f"""Type not supported for expand_dims: {type(_UpperCamelCase )}.""" ) def __lowerCAmelCase ( _UpperCamelCase : Any ) -> str: '''simple docstring''' if is_numpy_array(_UpperCamelCase ): return np.size(_UpperCamelCase ) elif is_torch_tensor(_UpperCamelCase ): return array.numel() elif is_tf_tensor(_UpperCamelCase ): import tensorflow as tf return tf.size(_UpperCamelCase ) elif is_jax_tensor(_UpperCamelCase ): return array.size else: raise ValueError(f"""Type not supported for expand_dims: {type(_UpperCamelCase )}.""" ) def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' for key, value in auto_map.items(): if isinstance(_UpperCamelCase , (tuple, list) ): SCREAMING_SNAKE_CASE = [f"""{repo_id}--{v}""" if (v is not None and """--""" not in v) else v for v in value] elif value is not None and "--" not in value: SCREAMING_SNAKE_CASE = f"""{repo_id}--{value}""" return auto_map def __lowerCAmelCase ( _UpperCamelCase : List[str] ) -> Optional[Any]: '''simple docstring''' for base_class in inspect.getmro(_UpperCamelCase ): SCREAMING_SNAKE_CASE = base_class.__module__ SCREAMING_SNAKE_CASE = base_class.__name__ if module.startswith('tensorflow' ) or module.startswith('keras' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('torch' ) or name == "PreTrainedModel": return "pt" elif module.startswith('flax' ) or module.startswith('jax' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f"""Could not infer framework from class {model_class}.""" )
439
"""simple docstring""" import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() A: int = logging.get_logger(__name__) A: List[str] = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def _snake_case ( UpperCamelCase : Optional[int] ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: UpperCAmelCase : Tuple = k.replace(UpperCamelCase , UpperCamelCase ) if k.startswith("""encoder""" ): UpperCAmelCase : str = k.replace(""".attn""" , """.self_attn""" ) UpperCAmelCase : str = k.replace("""norm1""" , """self_attn_layer_norm""" ) UpperCAmelCase : Optional[int] = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): UpperCAmelCase : Optional[int] = k.replace("""norm1""" , """self_attn_layer_norm""" ) UpperCAmelCase : Dict = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) UpperCAmelCase : Tuple = k.replace("""norm3""" , """final_layer_norm""" ) return k def _snake_case ( UpperCamelCase : List[Any] ): UpperCAmelCase : Any = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: UpperCAmelCase : List[Any] = sd.pop(UpperCamelCase ) UpperCAmelCase : Dict = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd UpperCAmelCase : List[str] = v A: Optional[Any] = ["START"] @torch.no_grad() def _snake_case ( UpperCamelCase : Optional[int] , UpperCamelCase : str , UpperCamelCase : Tuple ): UpperCAmelCase : str = torch.load(UpperCamelCase , map_location="""cpu""" ) UpperCAmelCase : str = model["""model"""] UpperCAmelCase : str = BlenderbotConfig.from_json_file(UpperCamelCase ) UpperCAmelCase : str = BlenderbotForConditionalGeneration(UpperCamelCase ) UpperCAmelCase : List[str] = m.model.state_dict().keys() UpperCAmelCase : Dict = [] UpperCAmelCase : str = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue UpperCAmelCase : Union[str, Any] = rename_state_dict_key(UpperCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: UpperCAmelCase : Optional[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCamelCase ) m.model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) m.half() m.save_pretrained(UpperCamelCase ) if __name__ == "__main__": A: Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) A: Dict = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
160
0
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case__ , "tf_padding" ) ) self.parent.assertTrue(hasattr(snake_case__ , "depth_multiplier" ) ) class UpperCamelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=3 , snake_case__=32 , snake_case__=0.25 , snake_case__=8 , snake_case__=True , snake_case__=1024 , snake_case__=32 , snake_case__="relu6" , snake_case__=0.1 , snake_case__=0.02 , snake_case__=True , snake_case__=True , snake_case__=10 , snake_case__=None , ): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = parent _SCREAMING_SNAKE_CASE : str = batch_size _SCREAMING_SNAKE_CASE : Dict = num_channels _SCREAMING_SNAKE_CASE : str = image_size _SCREAMING_SNAKE_CASE : Optional[Any] = depth_multiplier _SCREAMING_SNAKE_CASE : Optional[Any] = min_depth _SCREAMING_SNAKE_CASE : Optional[Any] = tf_padding _SCREAMING_SNAKE_CASE : Optional[int] = int(last_hidden_size * depth_multiplier ) _SCREAMING_SNAKE_CASE : Union[str, Any] = output_stride _SCREAMING_SNAKE_CASE : str = hidden_act _SCREAMING_SNAKE_CASE : str = classifier_dropout_prob _SCREAMING_SNAKE_CASE : str = use_labels _SCREAMING_SNAKE_CASE : Tuple = is_training _SCREAMING_SNAKE_CASE : List[Any] = num_labels _SCREAMING_SNAKE_CASE : Optional[int] = initializer_range _SCREAMING_SNAKE_CASE : List[Any] = scope def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE : List[str] = None _SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: _SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size] , self.num_labels ) _SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _SCREAMING_SNAKE_CASE : int = self.get_config() return config, pixel_values, labels, pixel_labels def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = MobileNetVaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() _SCREAMING_SNAKE_CASE : Dict = model(snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = self.num_labels _SCREAMING_SNAKE_CASE : int = MobileNetVaForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() _SCREAMING_SNAKE_CASE : int = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = config_and_inputs _SCREAMING_SNAKE_CASE : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () A__ = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) A__ = False A__ = False A__ = False A__ = False def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = MobileNetVaModelTester(self ) _SCREAMING_SNAKE_CASE : Optional[Any] = MobileNetVaConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : str = model_class(snake_case__ ) _SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE : Dict = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): _SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) _SCREAMING_SNAKE_CASE : Tuple = outputs.hidden_states _SCREAMING_SNAKE_CASE : Optional[int] = 26 self.assertEqual(len(snake_case__ ) , snake_case__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : int = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE : Any = MobileNetVaModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _lowerCAmelCase ( ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(snake_case__ ) _SCREAMING_SNAKE_CASE : int = self.default_image_processor _SCREAMING_SNAKE_CASE : Dict = prepare_img() _SCREAMING_SNAKE_CASE : str = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE : Optional[int] = model(**snake_case__ ) # verify the logits _SCREAMING_SNAKE_CASE : Dict = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , snake_case__ ) _SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
295
"""simple docstring""" import operator as op def _lowerCAmelCase ( lowerCamelCase__ : Tuple ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = [] _SCREAMING_SNAKE_CASE : str = lambda lowerCamelCase__, lowerCamelCase__ : int(x / y ) # noqa: E731 integer division operation _SCREAMING_SNAKE_CASE : Any = { "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ), "Action".center(1_2 ), "Stack", sep=" | " ) print("-" * (3_0 + len(lowerCamelCase__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowerCamelCase__ ) # append x to stack # output in tabular format print(x.rjust(8 ), ("push(" + x + ")").ljust(1_2 ), ",".join(lowerCamelCase__ ), sep=" | " ) else: _SCREAMING_SNAKE_CASE : Dict = stack.pop() # pop stack # output in tabular format print("".rjust(8 ), ("pop(" + b + ")").ljust(1_2 ), ",".join(lowerCamelCase__ ), sep=" | " ) _SCREAMING_SNAKE_CASE : Any = stack.pop() # pop stack # output in tabular format print("".rjust(8 ), ("pop(" + a + ")").ljust(1_2 ), ",".join(lowerCamelCase__ ), sep=" | " ) stack.append( str(opr[x](int(lowerCamelCase__ ), int(lowerCamelCase__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ), ("push(" + a + x + b + ")").ljust(1_2 ), ",".join(lowerCamelCase__ ), sep=" | ", ) return int(stack[0] ) if __name__ == "__main__": lowercase_ : int = input('''\n\nEnter a Postfix Equation (space separated) = ''').split(''' ''') print('''\n\tResult = ''', solve(Postfix))
295
1
"""simple docstring""" from __future__ import annotations import numpy as np def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase : Any = np.shape(__snake_case ) if rows != columns: lowerCAmelCase : Optional[Any] = ( "\'table\' has to be of square shaped array but got a " f"""{rows}x{columns} array:\n{table}""" ) raise ValueError(__snake_case ) lowerCAmelCase : Optional[Any] = np.zeros((rows, columns) ) lowerCAmelCase : Any = np.zeros((rows, columns) ) for i in range(__snake_case ): for j in range(__snake_case ): lowerCAmelCase : Optional[int] = sum(lower[i][k] * upper[k][j] for k in range(__snake_case ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) lowerCAmelCase : Dict = (table[i][j] - total) / upper[j][j] lowerCAmelCase : Union[str, Any] = 1 for j in range(__snake_case , __snake_case ): lowerCAmelCase : str = sum(lower[i][k] * upper[k][j] for k in range(__snake_case ) ) lowerCAmelCase : str = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
645
# limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class _snake_case ( lowerCamelCase ): """simple docstring""" def __init__( self , a , a ) -> List[str]: """simple docstring""" super().__init__() self.register_modules(unet=a , scheduler=a ) @torch.no_grad() def __call__( self , a = 1 , a = None , a = 5_0 , a = "pil" , a = True , **a , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" _A = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=a , ) _A = image.to(self.device ) # set step values self.scheduler.set_timesteps(a ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _A = self.unet(a , a ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _A = self.scheduler.step(a , a , a ).prev_sample _A = (image / 2 + 0.5).clamp(0 , 1 ) _A = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _A = self.numpy_to_pil(a ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=a ), "This is a local test"
317
0
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowerCAmelCase__ = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = list(s_dict.keys() ) for key in keys: _UpperCamelCase : Optional[int] = R'.*/layers_(\d+)' _UpperCamelCase : int = key if re.match(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : List[str] = re.sub(R'layers_(\d+)' , R'block/\1/layer' , UpperCAmelCase_ ) _UpperCamelCase : Tuple = R'(encoder|decoder)\/' if re.match(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Optional[Any] = re.match(UpperCAmelCase_ , UpperCAmelCase_ ).groups() if groups[0] == "encoder": _UpperCamelCase : Tuple = re.sub(R'/mlp/' , R'/1/mlp/' , UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , UpperCAmelCase_ ) elif groups[0] == "decoder": _UpperCamelCase : int = re.sub(R'/mlp/' , R'/2/mlp/' , UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , UpperCAmelCase_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _UpperCamelCase : Optional[int] = new_key.replace(UpperCAmelCase_ , UpperCAmelCase_ ) print(F'''{key} -> {new_key}''' ) _UpperCamelCase : Union[str, Any] = s_dict.pop(UpperCAmelCase_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _UpperCamelCase : Optional[Any] = s_dict[ 'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _UpperCamelCase : Any = s_dict[ 'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: _UpperCamelCase : Any = s_dict[key].shape[0] _UpperCamelCase : Union[str, Any] = s_dict[key] for idx in range(UpperCAmelCase_ ): _UpperCamelCase : Any = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/" , "nested fstring" )}''' ) s_dict.pop(UpperCAmelCase_ ) return s_dict lowerCAmelCase__ = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict ) -> List[str]: '''simple docstring''' import regex as re with open(UpperCAmelCase_ , 'r' ) as f: _UpperCamelCase : str = f.read() _UpperCamelCase : Optional[int] = re.findall(R'(.*) = ([0-9.]*)' , UpperCAmelCase_ ) _UpperCamelCase : int = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _UpperCamelCase : List[Any] = float(UpperCAmelCase_ ) if '.' in value else int(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = re.findall(R'(.*activations) = \(\'(.*)\',\)' , UpperCAmelCase_ )[0] _UpperCamelCase : Union[str, Any] = str(activation[1] ) _UpperCamelCase : Any = num_experts _UpperCamelCase : Optional[Any] = SwitchTransformersConfig(**UpperCAmelCase_ ) return config def lowerCamelCase_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Dict="./" , UpperCAmelCase_ : Optional[int]=8 ) -> Optional[int]: '''simple docstring''' print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) _UpperCamelCase : Tuple = checkpoints.load_tax_checkpoint(UpperCAmelCase_ ) if gin_file is not None: _UpperCamelCase : str = convert_gin_to_config(UpperCAmelCase_ , UpperCAmelCase_ ) else: _UpperCamelCase : Optional[Any] = SwitchTransformersConfig.from_pretrained(UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = SwitchTransformersForConditionalGeneration(UpperCAmelCase_ ) _UpperCamelCase : Dict = flax_params['target'] _UpperCamelCase : str = flatten_dict(UpperCAmelCase_ , sep='/' ) _UpperCamelCase : Dict = rename_keys(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = unflatten_dict(UpperCAmelCase_ , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase_ , UpperCAmelCase_ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") lowerCAmelCase__ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
701
import logging from transformers.configuration_utils import PretrainedConfig lowerCAmelCase__ = logging.getLogger(__name__) class lowercase ( _lowercase ): """simple docstring""" a__ = "masked_bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="topK" , __snake_case="constant" , __snake_case=0.0 , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : Any = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : str = intermediate_size _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : Dict = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : List[Any] = layer_norm_eps _UpperCamelCase : Tuple = pruning_method _UpperCamelCase : Tuple = mask_init _UpperCamelCase : Dict = mask_scale
648
0
from __future__ import annotations def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> set[str]: UpperCamelCase_ ,UpperCamelCase_: Dict = set(UpperCAmelCase__ ), [start] while stack: UpperCamelCase_: Any = stack.pop() explored.add(UpperCAmelCase__ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(UpperCAmelCase__ ) return explored A_ : Dict = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
57
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : int =logging.getLogger(__name__) @dataclass(frozen=__a ) class A_ : _A :str _A :str _A :Optional[str] = None _A :Optional[str] = None _A :Optional[str] = None @dataclass(frozen=__a ) class A_ : _A :List[int] _A :Optional[List[int]] = None _A :Optional[List[int]] = None _A :Optional[Union[int, float]] = None _A :Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class A_ ( __a ): _A :List[InputFeatures] def __init__( self : List[Any] , snake_case__ : str , snake_case__ : PreTrainedTokenizer , snake_case__ : str , snake_case__ : Optional[int] = None , snake_case__ : Optional[int]=False , snake_case__ : bool = False , ): lowercase = hans_processors[task]() lowercase = os.path.join( snake_case__ , """cached_{}_{}_{}_{}""".format( """dev""" if evaluate else """train""" , tokenizer.__class__.__name__ , str(snake_case__ ) , snake_case__ , ) , ) lowercase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase , lowercase = label_list[2], label_list[1] lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowercase = cached_features_file + """.lock""" with FileLock(snake_case__ ): if os.path.exists(snake_case__ ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) lowercase = torch.load(snake_case__ ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) lowercase = ( processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) ) logger.info("""Training examples: %s""" , len(snake_case__ ) ) lowercase = hans_convert_examples_to_features(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) logger.info("""Saving features into cached file %s""" , snake_case__ ) torch.save(self.features , snake_case__ ) def __len__( self : List[str] ): return len(self.features ) def __getitem__( self : int , snake_case__ : int ): return self.features[i] def SCREAMING_SNAKE_CASE__ ( self : int ): return self.label_list if is_tf_available(): import tensorflow as tf class A_ : _A :List[InputFeatures] def __init__( self : Union[str, Any] , snake_case__ : str , snake_case__ : PreTrainedTokenizer , snake_case__ : str , snake_case__ : Optional[int] = 1_28 , snake_case__ : Union[str, Any]=False , snake_case__ : bool = False , ): lowercase = hans_processors[task]() lowercase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase , lowercase = label_list[2], label_list[1] lowercase = label_list lowercase = processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) lowercase = hans_convert_examples_to_features(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="""convert examples to features""" ): if ex_index % 1_00_00 == 0: logger.info("""Writing example %d of %d""" % (ex_index, len(snake_case__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowercase = tf.data.Dataset.from_generator( snake_case__ , ( { """example_id""": tf.intaa, """input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa, }, tf.intaa, ) , ( { """example_id""": tf.TensorShape([] ), """input_ids""": tf.TensorShape([None, None] ), """attention_mask""": tf.TensorShape([None, None] ), """token_type_ids""": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def SCREAMING_SNAKE_CASE__ ( self : str ): return self.dataset def __len__( self : int ): return len(self.features ) def __getitem__( self : Optional[Any] , snake_case__ : Union[str, Any] ): return self.features[i] def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return self.label_list class A_ ( __a ): def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case__ : Optional[Any] ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ , """heuristics_train_set.txt""" ) ) , """train""" ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case__ : List[str] ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ , """heuristics_evaluation_set.txt""" ) ) , """dev""" ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return ["contradiction", "entailment", "neutral"] def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case__ : List[str] , snake_case__ : str ): lowercase = [] for i, line in enumerate(snake_case__ ): if i == 0: continue lowercase = """%s-%s""" % (set_type, line[0]) lowercase = line[5] lowercase = line[6] lowercase = line[7][2:] if line[7].startswith("""ex""" ) else line[7] lowercase = line[0] examples.append(InputExample(guid=snake_case__ , text_a=snake_case__ , text_b=snake_case__ , label=snake_case__ , pairID=snake_case__ ) ) return examples def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,): lowercase = {label: i for i, label in enumerate(lowerCAmelCase__ )} lowercase = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCAmelCase__ ) ,desc="""convert examples to features""" ): if ex_index % 10_000 == 0: logger.info("""Writing example %d""" % (ex_index) ) lowercase = tokenizer( example.text_a ,example.text_b ,add_special_tokens=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="""max_length""" ,truncation=lowerCAmelCase__ ,return_overflowing_tokens=lowerCAmelCase__ ,) lowercase = label_map[example.label] if example.label in label_map else 0 lowercase = int(example.pairID ) features.append(InputFeatures(**lowerCAmelCase__ ,label=lowerCAmelCase__ ,pairID=lowerCAmelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info("""*** Example ***""" ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features __SCREAMING_SNAKE_CASE : Optional[int] ={ '''hans''': 3, } __SCREAMING_SNAKE_CASE : List[str] ={ '''hans''': HansProcessor, }
428
0
'''simple docstring''' def _a ( __lowerCAmelCase : int = 10_00 ): """simple docstring""" snake_case__ : Optional[Any] = -1 snake_case__ : str = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c snake_case__ : int = (n * n - 2 * a * n) // (2 * n - 2 * a) snake_case__ : str = n - a - b if c * c == (a * a + b * b): snake_case__ : List[str] = a * b * c if candidate >= product: snake_case__ : Optional[int] = candidate return product if __name__ == "__main__": print(f"""{solution() = }""")
502
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run lowerCAmelCase__ : Any = True except (ImportError, AttributeError): lowerCAmelCase__ : Dict = object def _a ( *__lowerCAmelCase : List[str] , **__lowerCAmelCase : Tuple ): """simple docstring""" pass lowerCAmelCase__ : str = False lowerCAmelCase__ : List[str] = logging.get_logger("""transformers-cli/serving""") def _a ( __lowerCAmelCase : Namespace ): """simple docstring""" snake_case__ : Union[str, Any] = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(__lowerCAmelCase , args.host , args.port , args.workers ) class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = 42 class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = 42 class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = 42 class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" @staticmethod def __magic_name__ ( snake_case_ : ArgumentParser ): '''simple docstring''' snake_case__ : Optional[Any] = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=snake_case_ , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=snake_case_ , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=snake_case_ , default=8_8_8_8 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=snake_case_ , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=snake_case_ , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=snake_case_ , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=snake_case_ , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=snake_case_ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=snake_case_ ) def __init__( self : Union[str, Any] , snake_case_ : Pipeline , snake_case_ : str , snake_case_ : int , snake_case_ : int ): '''simple docstring''' snake_case__ : Any = pipeline snake_case__ : Tuple = host snake_case__ : Optional[Any] = port snake_case__ : Tuple = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(F"""Serving model over {host}:{port}""" ) snake_case__ : str = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=snake_case_ , response_class=snake_case_ , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=snake_case_ , response_class=snake_case_ , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=snake_case_ , response_class=snake_case_ , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=snake_case_ , response_class=snake_case_ , methods=['''POST'''] , ), ] , timeout=6_0_0 , ) def __magic_name__ ( self : str ): '''simple docstring''' run(self._app , host=self.host , port=self.port , workers=self.workers ) def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def __magic_name__ ( self : List[str] , snake_case_ : str = Body(snake_case_ , embed=snake_case_ ) , snake_case_ : bool = Body(snake_case_ , embed=snake_case_ ) ): '''simple docstring''' try: snake_case__ : Optional[Any] = self._pipeline.tokenizer.tokenize(snake_case_ ) if return_ids: snake_case__ : Optional[int] = self._pipeline.tokenizer.convert_tokens_to_ids(snake_case_ ) return ServeTokenizeResult(tokens=snake_case_ , tokens_ids=snake_case_ ) else: return ServeTokenizeResult(tokens=snake_case_ ) except Exception as e: raise HTTPException(status_code=5_0_0 , detail={'''model''': '''''', '''error''': str(snake_case_ )} ) def __magic_name__ ( self : List[Any] , snake_case_ : List[int] = Body(snake_case_ , embed=snake_case_ ) , snake_case_ : bool = Body(snake_case_ , embed=snake_case_ ) , snake_case_ : bool = Body(snake_case_ , embed=snake_case_ ) , ): '''simple docstring''' try: snake_case__ : Optional[int] = self._pipeline.tokenizer.decode(snake_case_ , snake_case_ , snake_case_ ) return ServeDeTokenizeResult(model='''''' , text=snake_case_ ) except Exception as e: raise HTTPException(status_code=5_0_0 , detail={'''model''': '''''', '''error''': str(snake_case_ )} ) async def __magic_name__ ( self : Tuple , snake_case_ : List[str]=Body(snake_case_ , embed=snake_case_ ) ): '''simple docstring''' if len(snake_case_ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model snake_case__ : Tuple = self._pipeline(snake_case_ ) return ServeForwardResult(output=snake_case_ ) except Exception as e: raise HTTPException(5_0_0 , {'''error''': str(snake_case_ )} )
502
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""", } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[Any] = '''data2vec-text''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=True , _lowercase=None , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = classifier_dropout class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": _lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
5
from collections.abc import Sequence def UpperCamelCase ( snake_case__ = None): if nums is None or not nums: raise ValueError("Input sequence should not be empty") lowerCAmelCase_ : Dict = nums[0] for i in range(1 , len(snake_case__)): lowerCAmelCase_ : Optional[int] = nums[i] lowerCAmelCase_ : Optional[int] = max(snake_case__ , ans + num , snake_case__) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _lowercase = int(input('''Enter number of elements : ''').strip()) _lowercase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
659
0
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_: Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class a__ ( _a , unittest.TestCase ): snake_case_ = XLMProphetNetTokenizer snake_case_ = False snake_case_ = True def snake_case__ ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__ = XLMProphetNetTokenizer(_UpperCAmelCase, keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = "[PAD]" lowercase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ), _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], "[PAD]" ) self.assertEqual(vocab_keys[1], "[CLS]" ) self.assertEqual(vocab_keys[-1], "j" ) self.assertEqual(len(_UpperCAmelCase ), 1012 ) def snake_case__ ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 1012 ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = XLMProphetNetTokenizer(_UpperCAmelCase, keep_accents=_UpperCAmelCase ) lowercase__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase, ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) lowercase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ], ) lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ], ) lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ], ) @cached_property def snake_case__ ( self ): '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = "Hello World!" lowercase__ = [3_5389, 6672, 49, 2] self.assertListEqual(_UpperCAmelCase, self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = {"input_ids": [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase, model_name="microsoft/xprophetnet-large-wiki100-cased", revision="1acad1643ddd54a44df6a1b797ada8373685d90e", )
668
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( _a , unittest.TestCase ): snake_case_ = MgpstrTokenizer snake_case_ = False snake_case_ = {} snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() # fmt: off lowercase__ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on lowercase__ = dict(zip(_UpperCAmelCase, range(len(_UpperCAmelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + "\n" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = "tester" lowercase__ = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) lowercase__ = tokenizer.encode([special_token], add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ), 1 ) lowercase__ = tokenizer.decode(_UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ , lowercase__ = self.get_input_output_texts(_UpperCAmelCase ) lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ), 0 ) lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual(text_a.replace(" ", "" ), _UpperCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def snake_case__ ( self ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def snake_case__ ( self ): '''simple docstring''' pass
668
1
"""simple docstring""" class lowerCamelCase_: '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None ): _lowerCamelCase = data _lowerCamelCase = previous _lowerCamelCase = next_node def __str__( self ): return F"""{self.data}""" def snake_case__ ( self ): return self.data def snake_case__ ( self ): return self.next def snake_case__ ( self ): return self.previous class lowerCamelCase_: '''simple docstring''' def __init__( self , lowerCamelCase__ ): _lowerCamelCase = head def __iter__( self ): return self def snake_case__ ( self ): if not self.current: raise StopIteration else: _lowerCamelCase = self.current.get_data() _lowerCamelCase = self.current.get_next() return value class lowerCamelCase_: '''simple docstring''' def __init__( self ): _lowerCamelCase = None # First node in list _lowerCamelCase = None # Last node in list def __str__( self ): _lowerCamelCase = self.head _lowerCamelCase = [] while current is not None: nodes.append(current.get_data() ) _lowerCamelCase = current.get_next() return " ".join(str(_a ) for node in nodes ) def __contains__( self , lowerCamelCase__ ): _lowerCamelCase = self.head while current: if current.get_data() == value: return True _lowerCamelCase = current.get_next() return False def __iter__( self ): return LinkedListIterator(self.head ) def snake_case__ ( self ): if self.head: return self.head.get_data() return None def snake_case__ ( self ): if self.tail: return self.tail.get_data() return None def snake_case__ ( self , lowerCamelCase__ ): if self.head is None: _lowerCamelCase = node _lowerCamelCase = node else: self.insert_before_node(self.head , _a ) def snake_case__ ( self , lowerCamelCase__ ): if self.head is None: self.set_head(_a ) else: self.insert_after_node(self.tail , _a ) def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = Node(_a ) if self.head is None: self.set_head(_a ) else: self.set_tail(_a ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = node _lowerCamelCase = node.previous if node.get_previous() is None: _lowerCamelCase = node_to_insert else: _lowerCamelCase = node_to_insert _lowerCamelCase = node_to_insert def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = node _lowerCamelCase = node.next if node.get_next() is None: _lowerCamelCase = node_to_insert else: _lowerCamelCase = node_to_insert _lowerCamelCase = node_to_insert def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = 1 _lowerCamelCase = Node(_a ) _lowerCamelCase = self.head while node: if current_position == position: self.insert_before_node(_a , _a ) return current_position += 1 _lowerCamelCase = node.next self.insert_after_node(self.tail , _a ) def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = self.head while node: if node.get_data() == item: return node _lowerCamelCase = node.get_next() raise Exception('''Node not found''' ) def snake_case__ ( self , lowerCamelCase__ ): if (node := self.get_node(_a )) is not None: if node == self.head: _lowerCamelCase = self.head.get_next() if node == self.tail: _lowerCamelCase = self.tail.get_previous() self.remove_node_pointers(_a ) @staticmethod def snake_case__ ( lowerCamelCase__ ): if node.get_next(): _lowerCamelCase = node.previous if node.get_previous(): _lowerCamelCase = node.next _lowerCamelCase = None _lowerCamelCase = None def snake_case__ ( self ): return self.head is None def lowerCAmelCase_( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
661
from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : float UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None def __UpperCAmelCase ( __a : TreeNode | None ) -> bool: """simple docstring""" def is_valid_tree(__a : TreeNode | None ) -> bool: if node is None: return True if not isinstance(__a ,__a ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__a ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( __a : TreeNode | None ,__a : float ,__a : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left ,__a ,node.data ) and is_binary_search_tree_recursive_check( node.right ,node.data ,__a ) ) return is_binary_search_tree_recursive_check(__a ,-float('''inf''' ) ,float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
14
0
from __future__ import annotations import math from collections.abc import Callable def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Callable[[int | float], int | float] , SCREAMING_SNAKE_CASE : int | float , SCREAMING_SNAKE_CASE : int | float , SCREAMING_SNAKE_CASE : int = 100 , ) -> float: __lowercase = x_start __lowercase = fnc(SCREAMING_SNAKE_CASE ) __lowercase = 0.0 for _ in range(SCREAMING_SNAKE_CASE ): # Approximates curve as a sequence of linear lines and sums their length __lowercase = (x_end - x_start) / steps + xa __lowercase = fnc(SCREAMING_SNAKE_CASE ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step __lowercase = xa __lowercase = fxa return length if __name__ == "__main__": def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[int]: return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") SCREAMING_SNAKE_CASE__ = 10 while i <= 10_0000: print(F'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
688
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A__ ( unittest.TestCase ): def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict: """simple docstring""" __lowercase = size if size is not None else {'height': 18, 'width': 18} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = apply_ocr def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = LayoutLMvaImageProcessingTester(self ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def a__ ( self : int ) -> Tuple: """simple docstring""" pass def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _UpperCAmelCase ) self.assertIsInstance(encoding.boxes , _UpperCAmelCase ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = LayoutLMvaImageProcessor() from datasets import load_dataset __lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __lowercase = Image.open(ds[0]['file'] ).convert('RGB' ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _UpperCAmelCase ) self.assertListEqual(encoding.boxes , _UpperCAmelCase ) # with apply_OCR = False __lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
688
1
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter snake_case_ = True except ImportError: snake_case_ = False snake_case_ = logging.get_logger(__name__) # pylint: disable=invalid-name def snake_case__ ( SCREAMING_SNAKE_CASE_ : Namespace ): '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class SCREAMING_SNAKE_CASE__ (lowerCAmelCase_ ): @staticmethod def snake_case_ ( a): lowercase__ : List[Any] = parser.add_parser('add-new-model') add_new_model_parser.add_argument('--testing' , action='store_true' , help='If in testing mode.') add_new_model_parser.add_argument('--testing_file' , type=snake_case_ , help='Configuration file on which to run.') add_new_model_parser.add_argument( '--path' , type=snake_case_ , help='Path to cookiecutter. Should only be used for testing purposes.') add_new_model_parser.set_defaults(func=snake_case_) def __init__( self , a , a , a=None , *a): lowercase__ : Optional[int] = testing lowercase__ : Union[str, Any] = testing_file lowercase__ : Dict = path def snake_case_ ( self): warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.') if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n') # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory lowercase__ : List[str] = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(snake_case_) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.') lowercase__ : Any = ( Path(snake_case_).parent.parent.parent.parent if self._path is None else Path(self._path).parent.parent ) lowercase__ : str = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(snake_case_)) else: with open(self._testing_file , 'r') as configuration_file: lowercase__ : Dict = json.load(snake_case_) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path) , no_input=snake_case_ , extra_context=snake_case_ , ) lowercase__ : Any = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' , 'r') as configuration_file: lowercase__ : Tuple = json.load(snake_case_) lowercase__ : str = configuration['lowercase_modelname'] lowercase__ : Union[str, Any] = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(f"""{directory}/configuration.json""") lowercase__ : Optional[int] = 'PyTorch' in generate_tensorflow_pytorch_and_flax lowercase__ : Dict = 'TensorFlow' in generate_tensorflow_pytorch_and_flax lowercase__ : Any = 'Flax' in generate_tensorflow_pytorch_and_flax lowercase__ : Optional[Any] = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(snake_case_ , exist_ok=snake_case_) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=snake_case_) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , 'w'): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(a): with open(snake_case_ , 'r') as f: lowercase__ : Union[str, Any] = f.readlines() with open(snake_case_ , 'w') as f: for line in lines: if "# Copied from transformers." not in line: f.write(snake_case_) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""") shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""") os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""") if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""") shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""") os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""") if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""") shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""") os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""") shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(a , a , a): # Create temp file lowercase__ , lowercase__ : Dict = mkstemp() lowercase__ : List[Any] = False with fdopen(snake_case_ , 'w') as new_file: with open(snake_case_) as old_file: for line in old_file: new_file.write(snake_case_) if line_to_copy_below in line: lowercase__ : int = True for line_to_copy in lines_to_copy: new_file.write(snake_case_) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""") # Copy the file permissions from the old file to the new file copymode(snake_case_ , snake_case_) # Remove original file remove(snake_case_) # Move new file move(snake_case_ , snake_case_) def skip_units(a): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(a): with open(snake_case_) as datafile: lowercase__ : int = [] lowercase__ : str = False lowercase__ : List[str] = False for line in datafile: if "# To replace in: " in line and "##" not in line: lowercase__ : Any = line.split('\"')[1] lowercase__ : Tuple = skip_units(snake_case_) elif "# Below: " in line and "##" not in line: lowercase__ : str = line.split('\"')[1] lowercase__ : Any = skip_units(snake_case_) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(snake_case_ , snake_case_ , snake_case_) lowercase__ : Optional[Any] = [] elif "# Replace with" in line and "##" not in line: lowercase__ : Optional[int] = [] elif "##" not in line: lines_to_copy.append(snake_case_) remove(snake_case_) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""") os.rmdir(snake_case_)
164
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __SCREAMING_SNAKE_CASE :Tuple = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __SCREAMING_SNAKE_CASE :Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __SCREAMING_SNAKE_CASE :Dict = re.compile(R'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') __SCREAMING_SNAKE_CASE :Any = re.compile(R'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __SCREAMING_SNAKE_CASE :Dict = re.compile(R'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __SCREAMING_SNAKE_CASE :Any = [ ('''pretraining''', '''MODEL_FOR_PRETRAINING_MAPPING_NAMES''', '''AutoModelForPreTraining'''), ('''feature-extraction''', '''MODEL_MAPPING_NAMES''', '''AutoModel'''), ('''audio-classification''', '''MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioClassification'''), ('''text-generation''', '''MODEL_FOR_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForCausalLM'''), ('''automatic-speech-recognition''', '''MODEL_FOR_CTC_MAPPING_NAMES''', '''AutoModelForCTC'''), ('''image-classification''', '''MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForImageClassification'''), ('''image-segmentation''', '''MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES''', '''AutoModelForImageSegmentation'''), ('''fill-mask''', '''MODEL_FOR_MASKED_LM_MAPPING_NAMES''', '''AutoModelForMaskedLM'''), ('''object-detection''', '''MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForObjectDetection'''), ( '''zero-shot-object-detection''', '''MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForZeroShotObjectDetection''', ), ('''question-answering''', '''MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForQuestionAnswering'''), ('''text2text-generation''', '''MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForSeq2SeqLM'''), ('''text-classification''', '''MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForSequenceClassification'''), ('''automatic-speech-recognition''', '''MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES''', '''AutoModelForSpeechSeq2Seq'''), ( '''table-question-answering''', '''MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForTableQuestionAnswering''', ), ('''token-classification''', '''MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForTokenClassification'''), ('''multiple-choice''', '''MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES''', '''AutoModelForMultipleChoice'''), ( '''next-sentence-prediction''', '''MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES''', '''AutoModelForNextSentencePrediction''', ), ( '''audio-frame-classification''', '''MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioFrameClassification''', ), ('''audio-xvector''', '''MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES''', '''AutoModelForAudioXVector'''), ( '''document-question-answering''', '''MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForDocumentQuestionAnswering''', ), ( '''visual-question-answering''', '''MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForVisualQuestionAnswering''', ), ('''image-to-text''', '''MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES''', '''AutoModelForVision2Seq'''), ( '''zero-shot-image-classification''', '''MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForZeroShotImageClassification''', ), ('''depth-estimation''', '''MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES''', '''AutoModelForDepthEstimation'''), ('''video-classification''', '''MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForVideoClassification'''), ('''mask-generation''', '''MODEL_FOR_MASK_GENERATION_MAPPING_NAMES''', '''AutoModelForMaskGeneration'''), ] def UpperCAmelCase_ ( __lowercase : Optional[int] ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , __lowercase ) return [m.group(0 ) for m in matches] def UpperCAmelCase_ ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCAmelCase = { config.replace("Config" , "" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _UpperCAmelCase = collections.defaultdict(__lowercase ) _UpperCAmelCase = collections.defaultdict(__lowercase ) _UpperCAmelCase = collections.defaultdict(__lowercase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(__lowercase ): _UpperCAmelCase = None if _re_tf_models.match(__lowercase ) is not None: _UpperCAmelCase = tf_models _UpperCAmelCase = _re_tf_models.match(__lowercase ).groups()[0] elif _re_flax_models.match(__lowercase ) is not None: _UpperCAmelCase = flax_models _UpperCAmelCase = _re_flax_models.match(__lowercase ).groups()[0] elif _re_pt_models.match(__lowercase ) is not None: _UpperCAmelCase = pt_models _UpperCAmelCase = _re_pt_models.match(__lowercase ).groups()[0] if lookup_dict is not None: while len(__lowercase ) > 0: if attr_name in model_prefix_to_model_type: _UpperCAmelCase = True break # Try again after removing the last word in the name _UpperCAmelCase = "".join(camel_case_split(__lowercase )[:-1] ) _UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) _UpperCAmelCase = list(__lowercase ) all_models.sort() _UpperCAmelCase = {"model_type": all_models} _UpperCAmelCase = [pt_models[t] for t in all_models] _UpperCAmelCase = [tf_models[t] for t in all_models] _UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _UpperCAmelCase = "AutoProcessor" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _UpperCAmelCase = "AutoTokenizer" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _UpperCAmelCase = "AutoFeatureExtractor" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _UpperCAmelCase = "AutoTokenizer" _UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(__lowercase ) def UpperCAmelCase_ ( __lowercase : List[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _UpperCAmelCase = [model_mapping, f'TF_{model_mapping}', f'FLAX_{model_mapping}'] _UpperCAmelCase = [auto_class, f'TF_{auto_class}', f'Flax_{auto_class}'] # Loop through all three frameworks for module, cls, mapping in zip(__lowercase , __lowercase , __lowercase ): # The type of pipeline may not exist in this framework if not hasattr(__lowercase , __lowercase ): continue # First extract all model_names _UpperCAmelCase = [] for name in getattr(__lowercase , __lowercase ).values(): if isinstance(__lowercase , __lowercase ): model_names.append(__lowercase ) else: model_names.extend(list(__lowercase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = get_frameworks_table() _UpperCAmelCase = Dataset.from_pandas(__lowercase ) _UpperCAmelCase = hf_hub_download( "huggingface/transformers-metadata" , "pipeline_tags.json" , repo_type="dataset" , token=__lowercase ) _UpperCAmelCase = Dataset.from_json(__lowercase ) _UpperCAmelCase = { tags_dataset[i]["model_class"]: (tags_dataset[i]["pipeline_tag"], tags_dataset[i]["auto_class"]) for i in range(len(__lowercase ) ) } _UpperCAmelCase = update_pipeline_and_auto_class_table(__lowercase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _UpperCAmelCase = sorted(table.keys() ) _UpperCAmelCase = pd.DataFrame( { "model_class": model_classes, "pipeline_tag": [table[m][0] for m in model_classes], "auto_class": [table[m][1] for m in model_classes], } ) _UpperCAmelCase = Dataset.from_pandas(__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(__lowercase , "frameworks.json" ) ) tags_dataset.to_json(os.path.join(__lowercase , "pipeline_tags.json" ) ) if commit_sha is not None: _UpperCAmelCase = ( f'Update with commit {commit_sha}\n\nSee: ' f'https://github.com/huggingface/transformers/commit/{commit_sha}' ) else: _UpperCAmelCase = "Update" upload_folder( repo_id="huggingface/transformers-metadata" , folder_path=__lowercase , repo_type="dataset" , token=__lowercase , commit_message=__lowercase , ) def UpperCAmelCase_ ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS _UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: _UpperCAmelCase = pipeline_tasks[key]["pt"] if isinstance(__lowercase , (list, tuple) ): _UpperCAmelCase = model[0] _UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(__lowercase ) if len(__lowercase ) > 0: _UpperCAmelCase = ", ".join(__lowercase ) raise ValueError( "The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside " f'`utils/update_metadata.py`: {msg}. Please add them!' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE :Any = argparse.ArgumentParser() parser.add_argument('''--token''', type=str, help='''The token to use to push to the transformers-metadata dataset.''') parser.add_argument('''--commit_sha''', type=str, help='''The sha of the commit going with this update.''') parser.add_argument('''--check-only''', action='''store_true''', help='''Activate to just check all pipelines are present.''') __SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
236
0
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _a = logging.get_logger(__name__) class __A ( lowerCAmelCase ): '''simple docstring''' def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
700
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """ClapFeatureExtractor""" lowerCAmelCase_ = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' super().__init__(__lowerCAmelCase , __lowerCAmelCase ) def __call__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = kwargs.pop('''sampling_rate''' , __lowerCAmelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: lowerCamelCase__ = self.tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if audios is not None: lowerCamelCase__ = self.feature_extractor( __lowerCAmelCase , sampling_rate=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if text is not None and audios is not None: lowerCamelCase__ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase ) def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.tokenizer.model_input_names lowerCamelCase__ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
29
0
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) lowerCAmelCase__ = logging.getLogger(__name__) lowerCAmelCase__ = '''Hello world! cécé herlolip''' lowerCAmelCase__ = namedtuple( '''BertAbsConfig''', [ '''temp_dir''', '''large''', '''use_bert_emb''', '''finetune_bert''', '''encoder''', '''share_emb''', '''max_pos''', '''enc_layers''', '''enc_hidden_size''', '''enc_heads''', '''enc_ff_size''', '''enc_dropout''', '''dec_layers''', '''dec_hidden_size''', '''dec_heads''', '''dec_ff_size''', '''dec_dropout''', ], ) def _A ( A__ , A__ ): """simple docstring""" __lowercase = BertAbsConfig( temp_dir='''.''' , finetune_bert=A__ , large=A__ , share_emb=A__ , use_bert_emb=A__ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __lowercase = torch.load(A__ , lambda A__ , A__ : storage ) __lowercase = AbsSummarizer(A__ , torch.device('''cpu''' ) , A__ ) original.eval() __lowercase = BertAbsSummarizer(A__ , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) __lowercase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs __lowercase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(A__ )) ) __lowercase = torch.tensor(A__ ).unsqueeze(0 ) __lowercase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(A__ )) ) __lowercase = torch.tensor(A__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __lowercase = encoder_input_ids __lowercase = decoder_input_ids __lowercase = __lowercase = None __lowercase = None __lowercase = __lowercase = None __lowercase = __lowercase = None __lowercase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __lowercase = original(A__ , A__ , A__ , A__ , A__ , A__ , A__ )[0] __lowercase = original.generator(A__ ) __lowercase = new_model( A__ , A__ , A__ , A__ , A__ )[0] __lowercase = new_model.generator(A__ ) __lowercase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(A__ ) ) __lowercase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(A__ ) ) __lowercase = torch.allclose(A__ , A__ , atol=1e-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--bertabs_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''', ) lowerCAmelCase__ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
41
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small' SCREAMING_SNAKE_CASE : int = ['past_key_values'] SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] ,lowercase__ : List[str]=5_0_2_6_5 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Optional[int]=8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : List[str]=1_6 ,lowercase__ : str=8 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Tuple=1_6 ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Any=True ,lowercase__ : str=True ,lowercase__ : int="gelu" ,lowercase__ : Tuple=5_1_2 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[Any]=False ,lowercase__ : Optional[int]=0 ,lowercase__ : Optional[int]=1 ,lowercase__ : str=2 ,lowercase__ : int=2 ,**lowercase__ : List[str] ,): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Dict ): if self.task in ["default", "seq2seq-lm"]: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase = {0: '''batch'''} __lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super().outputs else: __lowercase = super(lowercase__ ,self ).outputs if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) # Generate decoder inputs __lowercase = seq_length if not self.use_past else 1 __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase = dict(**lowercase__ ,**lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape __lowercase = common_inputs['''decoder_input_ids'''].shape[1] __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = decoder_seq_length + 3 __lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ ,lowercase__ )] ,dim=1 ) __lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase = self.num_layers __lowercase = min(lowercase__ ,lowercase__ ) __lowercase = max(lowercase__ ,lowercase__ ) - min_num_layers __lowercase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. __lowercase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase__ ,lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase , __lowercase = self.num_layers __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = common_inputs['''attention_mask'''].dtype __lowercase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 ) __lowercase = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = tokenizer.num_special_tokens_to_add(lowercase__ ) __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence __lowercase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase = dict(tokenizer(lowercase__ ,return_tensors=lowercase__ ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): if self.task in ["default", "seq2seq-lm"]: __lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) elif self.task == "causal-lm": __lowercase = self._generate_dummy_inputs_for_causal_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) else: __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super()._flatten_past_key_values_(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) else: __lowercase = super(lowercase__ ,self )._flatten_past_key_values_( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
41
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer snake_case_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name snake_case_ : Optional[Any] = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n" @dataclass class snake_case_ ( __A ): '''simple docstring''' lowerCamelCase = 42 class snake_case_ ( __A ): '''simple docstring''' def __init__( self : Dict , __magic_name__ : PriorTransformer , __magic_name__ : CLIPVisionModel , __magic_name__ : CLIPImageProcessor , __magic_name__ : HeunDiscreteScheduler , __magic_name__ : ShapERenderer , ) -> List[str]: super().__init__() self.register_modules( prior=__magic_name__ , image_encoder=__magic_name__ , image_processor=__magic_name__ , scheduler=__magic_name__ , renderer=__magic_name__ , ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Any ) -> Optional[Any]: if latents is None: lowerCamelCase_ : Tuple = randn_tensor(__magic_name__ , generator=__magic_name__ , device=__magic_name__ , dtype=__magic_name__ ) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" ) lowerCamelCase_ : Optional[Any] = latents.to(__magic_name__ ) lowerCamelCase_ : Optional[int] = latents * scheduler.init_noise_sigma return latents def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : int=0 ) -> str: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowerCamelCase_ : Tuple = torch.device(F"cuda:{gpu_id}" ) lowerCamelCase_ : List[Any] = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__magic_name__ , __magic_name__ ) @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: if self.device != torch.device("meta" ) or not hasattr(self.image_encoder , "_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__magic_name__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , ) -> Union[str, Any]: if isinstance(__magic_name__ , __magic_name__ ) and isinstance(image[0] , torch.Tensor ): lowerCamelCase_ : Tuple = torch.cat(__magic_name__ , axis=0 ) if image[0].ndim == 4 else torch.stack(__magic_name__ , axis=0 ) if not isinstance(__magic_name__ , torch.Tensor ): lowerCamelCase_ : Tuple = self.image_processor(__magic_name__ , return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) lowerCamelCase_ : int = image.to(dtype=self.image_encoder.dtype , device=__magic_name__ ) lowerCamelCase_ : str = self.image_encoder(__magic_name__ )["last_hidden_state"] lowerCamelCase_ : Union[str, Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowerCamelCase_ : int = image_embeds.repeat_interleave(__magic_name__ , dim=0 ) if do_classifier_free_guidance: lowerCamelCase_ : Union[str, Any] = torch.zeros_like(__magic_name__ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ : Dict = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__magic_name__ ) def __call__( self : Any , __magic_name__ : Union[PIL.Image.Image, List[PIL.Image.Image]] , __magic_name__ : int = 1 , __magic_name__ : int = 25 , __magic_name__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : float = 4.0 , __magic_name__ : int = 64 , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , ) -> Tuple: if isinstance(__magic_name__ , PIL.Image.Image ): lowerCamelCase_ : Any = 1 elif isinstance(__magic_name__ , torch.Tensor ): lowerCamelCase_ : Dict = image.shape[0] elif isinstance(__magic_name__ , __magic_name__ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowerCamelCase_ : Optional[int] = len(__magic_name__ ) else: raise ValueError( F"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__magic_name__ )}" ) lowerCamelCase_ : Any = self._execution_device lowerCamelCase_ : Union[str, Any] = batch_size * num_images_per_prompt lowerCamelCase_ : Any = guidance_scale > 1.0 lowerCamelCase_ : List[Any] = self._encode_image(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # prior self.scheduler.set_timesteps(__magic_name__ , device=__magic_name__ ) lowerCamelCase_ : str = self.scheduler.timesteps lowerCamelCase_ : List[Any] = self.prior.config.num_embeddings lowerCamelCase_ : Optional[Any] = self.prior.config.embedding_dim lowerCamelCase_ : Dict = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , __magic_name__ , __magic_name__ , __magic_name__ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowerCamelCase_ : int = latents.reshape(latents.shape[0] , __magic_name__ , __magic_name__ ) for i, t in enumerate(self.progress_bar(__magic_name__ ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ : Optional[int] = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ ) lowerCamelCase_ : Union[str, Any] = self.prior( __magic_name__ , timestep=__magic_name__ , proj_embedding=__magic_name__ , ).predicted_image_embedding # remove the variance lowerCamelCase_ , lowerCamelCase_ : List[str] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] = noise_pred.chunk(2 ) lowerCamelCase_ : Any = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowerCamelCase_ : Union[str, Any] = self.scheduler.step( __magic_name__ , timestep=__magic_name__ , sample=__magic_name__ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__magic_name__ ) lowerCamelCase_ : List[Any] = [] for i, latent in enumerate(__magic_name__ ): print() lowerCamelCase_ : Any = self.renderer.decode( latent[None, :] , __magic_name__ , size=__magic_name__ , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(__magic_name__ ) lowerCamelCase_ : Union[str, Any] = torch.stack(__magic_name__ ) if output_type not in ["np", "pil"]: raise ValueError(F"Only the output types `pil` and `np` are supported not output_type={output_type}" ) lowerCamelCase_ : Union[str, Any] = images.cpu().numpy() if output_type == "pil": lowerCamelCase_ : List[Any] = [self.numpy_to_pil(__magic_name__ ) for image in images] # Offload last model to CPU if hasattr(self , "final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__magic_name__ )
253
from collections.abc import Generator from math import sin def __a ( __UpperCAmelCase : bytes ) -> bytes: """simple docstring""" if len(__UpperCAmelCase ) != 32: raise ValueError("Input must be of length 32" ) lowerCamelCase_ : Optional[Any] = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def __a ( __UpperCAmelCase : int ) -> bytes: """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) lowerCamelCase_ : Tuple = format(__UpperCAmelCase , "08x" )[-8:] lowerCamelCase_ : int = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def __a ( __UpperCAmelCase : bytes ) -> bytes: """simple docstring""" lowerCamelCase_ : int = b"" for char in message: bit_string += format(__UpperCAmelCase , "08b" ).encode("utf-8" ) lowerCamelCase_ : Optional[int] = format(len(__UpperCAmelCase ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__UpperCAmelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def __a ( __UpperCAmelCase : bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(__UpperCAmelCase ) % 512 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(__UpperCAmelCase ) , 512 ): lowerCamelCase_ : Union[str, Any] = bit_string[pos : pos + 512] lowerCamelCase_ : Any = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def __a ( __UpperCAmelCase : int ) -> int: """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) lowerCamelCase_ : Dict = format(__UpperCAmelCase , "032b" ) lowerCamelCase_ : Dict = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(__UpperCAmelCase , 2 ) def __a ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: """simple docstring""" return (a + b) % 2**32 def __a ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def __a ( __UpperCAmelCase : bytes ) -> bytes: """simple docstring""" lowerCamelCase_ : int = preprocess(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states lowerCamelCase_ : List[str] = 0X67_452_301 lowerCamelCase_ : Optional[int] = 0XEF_CDA_B89 lowerCamelCase_ : str = 0X98_BAD_CFE lowerCamelCase_ : Optional[int] = 0X10_325_476 lowerCamelCase_ : Union[str, Any] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__UpperCAmelCase ): lowerCamelCase_ : Optional[int] = aa lowerCamelCase_ : List[str] = ba lowerCamelCase_ : Optional[int] = ca lowerCamelCase_ : List[Any] = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f lowerCamelCase_ : Dict = d ^ (b & (c ^ d)) lowerCamelCase_ : Any = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f lowerCamelCase_ : Any = c ^ (d & (b ^ c)) lowerCamelCase_ : List[Any] = (5 * i + 1) % 16 elif i <= 47: lowerCamelCase_ : List[Any] = b ^ c ^ d lowerCamelCase_ : int = (3 * i + 5) % 16 else: lowerCamelCase_ : str = c ^ (b | not_aa(__UpperCAmelCase )) lowerCamelCase_ : int = (7 * i) % 16 lowerCamelCase_ : List[str] = (f + a + added_consts[i] + block_words[g]) % 2**32 lowerCamelCase_ : Union[str, Any] = d lowerCamelCase_ : Optional[int] = c lowerCamelCase_ : Union[str, Any] = b lowerCamelCase_ : List[str] = sum_aa(__UpperCAmelCase , left_rotate_aa(__UpperCAmelCase , shift_amounts[i] ) ) # Add hashed chunk to running total lowerCamelCase_ : Tuple = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : List[str] = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Dict = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Optional[int] = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Optional[int] = reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
253
1
"""simple docstring""" from ...processing_utils import ProcessorMixin class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : Tuple = "SpeechT5FeatureExtractor" A__ : List[Any] = "SpeechT5Tokenizer" def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __call__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> str: A__ = kwargs.pop("audio" , SCREAMING_SNAKE_CASE__ ) A__ = kwargs.pop("text" , SCREAMING_SNAKE_CASE__ ) A__ = kwargs.pop("text_target" , SCREAMING_SNAKE_CASE__ ) A__ = kwargs.pop("audio_target" , SCREAMING_SNAKE_CASE__ ) A__ = kwargs.pop("sampling_rate" , SCREAMING_SNAKE_CASE__ ) if audio is not None and text is not None: raise ValueError( "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" ) if audio_target is not None and text_target is not None: raise ValueError( "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." ) if audio is not None: A__ = self.feature_extractor(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , sampling_rate=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) elif text is not None: A__ = self.tokenizer(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) else: A__ = None if audio_target is not None: A__ = self.feature_extractor(audio_target=SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , sampling_rate=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A__ = targets["input_values"] elif text_target is not None: A__ = self.tokenizer(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A__ = targets["input_ids"] else: A__ = None if inputs is None: return targets if targets is not None: A__ = labels A__ = targets.get("attention_mask" ) if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def snake_case__ ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> int: A__ = kwargs.pop("input_values" , SCREAMING_SNAKE_CASE__ ) A__ = kwargs.pop("input_ids" , SCREAMING_SNAKE_CASE__ ) A__ = kwargs.pop("labels" , SCREAMING_SNAKE_CASE__ ) if input_values is not None and input_ids is not None: raise ValueError("Cannot process both `input_values` and `input_ids` inputs." ) if input_values is None and input_ids is None and labels is None: raise ValueError( "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." ) if input_values is not None: A__ = self.feature_extractor.pad(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) elif input_ids is not None: A__ = self.tokenizer.pad(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) else: A__ = None if labels is not None: if "input_ids" in labels or (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and "input_ids" in labels[0]): A__ = self.tokenizer.pad(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A__ = targets["input_ids"] else: A__ = self.feature_extractor.feature_size A__ = self.feature_extractor.num_mel_bins A__ = self.feature_extractor.pad(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A__ = feature_size_hack A__ = targets["input_values"] else: A__ = None if inputs is None: return targets if targets is not None: A__ = labels A__ = targets.get("attention_mask" ) if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def snake_case__ ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Dict: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> int: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
104
def A_ ( _lowerCAmelCase ) -> bool: return str(_lowerCAmelCase ) == str(_lowerCAmelCase )[::-1] def A_ ( _lowerCAmelCase ) -> int: return int(_lowerCAmelCase ) + int(str(_lowerCAmelCase )[::-1] ) def A_ ( _lowerCAmelCase = 1_0000 ) -> int: UpperCamelCase : List[Any] = [] for num in range(1 , _lowerCAmelCase ): UpperCamelCase : Union[str, Any] = 0 UpperCamelCase : List[str] = num while iterations < 50: UpperCamelCase : int = sum_reverse(_lowerCAmelCase ) iterations += 1 if is_palindrome(_lowerCAmelCase ): break else: lychrel_nums.append(_lowerCAmelCase ) return len(_lowerCAmelCase ) if __name__ == "__main__": print(f"""{solution() = }""")
629
0
'''simple docstring''' import math def __UpperCamelCase( _A : int ): '''simple docstring''' UpperCAmelCase__ : str = 0 UpperCAmelCase__ : List[Any] = 0 while num > 0: UpperCAmelCase__ : Union[str, Any] = num % 8 UpperCAmelCase__ : int = octal + (remainder * math.floor(math.pow(10 , _A ) )) counter += 1 UpperCAmelCase__ : str = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F'''0o{int(_A )}''' def __UpperCamelCase( ): '''simple docstring''' print('''\n2 in octal is:''' ) print(decimal_to_octal(2 ) ) # = 2 print('''\n8 in octal is:''' ) print(decimal_to_octal(8 ) ) # = 10 print('''\n65 in octal is:''' ) print(decimal_to_octal(65 ) ) # = 101 print('''\n216 in octal is:''' ) print(decimal_to_octal(2_16 ) ) # = 330 print('''\n512 in octal is:''' ) print(decimal_to_octal(5_12 ) ) # = 1000 print('''\n''' ) if __name__ == "__main__": main()
496
'''simple docstring''' def __UpperCamelCase( _A : int ): '''simple docstring''' if length <= 0 or not isinstance(_A , _A ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(_A )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
496
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = "mctct" def __init__( self , _lowerCAmelCase=8065 , _lowerCAmelCase=1536 , _lowerCAmelCase=36 , _lowerCAmelCase=6144 , _lowerCAmelCase=4 , _lowerCAmelCase=384 , _lowerCAmelCase=920 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.3 , _lowerCAmelCase="relu" , _lowerCAmelCase=0.02 , _lowerCAmelCase=0.3 , _lowerCAmelCase=0.3 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0.3 , _lowerCAmelCase=1 , _lowerCAmelCase=(7,) , _lowerCAmelCase=(3,) , _lowerCAmelCase=80 , _lowerCAmelCase=1 , _lowerCAmelCase=None , _lowerCAmelCase="sum" , _lowerCAmelCase=False , **_lowerCAmelCase , ) -> int: super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = intermediate_size _lowerCAmelCase = num_attention_heads _lowerCAmelCase = attention_head_dim _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = layerdrop _lowerCAmelCase = hidden_act _lowerCAmelCase = initializer_range _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = pad_token_id _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id _lowerCAmelCase = conv_glu_dim _lowerCAmelCase = conv_dropout _lowerCAmelCase = num_conv_layers _lowerCAmelCase = input_feat_per_channel _lowerCAmelCase = input_channels _lowerCAmelCase = conv_channels _lowerCAmelCase = ctc_loss_reduction _lowerCAmelCase = ctc_zero_infinity # prevents config testing fail with exporting to json _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel)` == `config.num_conv_layers` " f'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : str = "gpt_bigcode" __lowerCamelCase : Optional[int] = ["past_key_values"] __lowerCamelCase : List[str] = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _lowerCAmelCase=50257 , _lowerCAmelCase=1024 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=None , _lowerCAmelCase="gelu_pytorch_tanh" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=50256 , _lowerCAmelCase=50256 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> List[Any]: _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_embd _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = attention_softmax_in_fpaa _lowerCAmelCase = scale_attention_softmax_in_fpaa _lowerCAmelCase = multi_query _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
18
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =StableDiffusionPanoramaPipeline lowerCamelCase__ =TEXT_TO_IMAGE_PARAMS lowerCamelCase__ =TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ =TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ =TEXT_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __snake_case : List[Any] = DDIMScheduler() torch.manual_seed(0 ) __snake_case : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __snake_case : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __snake_case : Optional[int] = CLIPTextModel(a_ ) __snake_case : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __snake_case : Optional[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def SCREAMING_SNAKE_CASE (self , a_ , a_=0 ): '''simple docstring''' __snake_case : Optional[Any] = torch.manual_seed(a_ ) __snake_case : Tuple = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __snake_case : Optional[Any] = self.get_dummy_components() __snake_case : Dict = StableDiffusionPanoramaPipeline(**a_ ) __snake_case : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) __snake_case : List[Any] = self.get_dummy_inputs(a_ ) __snake_case : Dict = sd_pipe(**a_ ).images __snake_case : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : Optional[Any] = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator __snake_case : Optional[Any] = self.get_dummy_components() __snake_case : str = StableDiffusionPanoramaPipeline(**a_ ) __snake_case : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) __snake_case : Optional[Any] = self.get_dummy_inputs(a_ ) __snake_case : Any = '''french fries''' __snake_case : int = sd_pipe(**a_ , negative_prompt=a_ ) __snake_case : Union[str, Any] = output.images __snake_case : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : Union[str, Any] = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __snake_case : str = self.get_dummy_components() __snake_case : Dict = StableDiffusionPanoramaPipeline(**a_ ) __snake_case : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) __snake_case : str = self.get_dummy_inputs(a_ ) __snake_case : Any = sd_pipe(**a_ , view_batch_size=2 ) __snake_case : Tuple = output.images __snake_case : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : Optional[int] = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __snake_case : Union[str, Any] = self.get_dummy_components() __snake_case : Optional[int] = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) __snake_case : Optional[int] = StableDiffusionPanoramaPipeline(**a_ ) __snake_case : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) __snake_case : str = self.get_dummy_inputs(a_ ) __snake_case : Union[str, Any] = sd_pipe(**a_ ).images __snake_case : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : int = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __snake_case : List[str] = self.get_dummy_components() __snake_case : Optional[Any] = PNDMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=a_ ) __snake_case : Optional[int] = StableDiffusionPanoramaPipeline(**a_ ) __snake_case : List[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) __snake_case : str = self.get_dummy_inputs(a_ ) __snake_case : int = sd_pipe(**a_ ).images __snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : Tuple = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE (self , a_=0 ): '''simple docstring''' __snake_case : Dict = torch.manual_seed(a_ ) __snake_case : List[Any] = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = '''stabilityai/stable-diffusion-2-base''' __snake_case : List[str] = DDIMScheduler.from_pretrained(a_ , subfolder='''scheduler''' ) __snake_case : Dict = StableDiffusionPanoramaPipeline.from_pretrained(a_ , scheduler=a_ , safety_checker=a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() __snake_case : int = self.get_inputs() __snake_case : Union[str, Any] = pipe(**a_ ).images __snake_case : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) __snake_case : List[str] = np.array( [ 0.3696_8392, 0.2702_5372, 0.3244_6766, 0.2837_9387, 0.3636_3274, 0.3073_3347, 0.2710_0027, 0.2705_4125, 0.2553_6096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=a_ ) __snake_case : List[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() __snake_case : List[str] = self.get_inputs() __snake_case : int = pipe(**a_ ).images __snake_case : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) __snake_case : Tuple = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = 0 def callback_fn(a_ , a_ , a_ ) -> None: __snake_case : Optional[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __snake_case : Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) __snake_case : Union[str, Any] = latents[0, -3:, -3:, -1] __snake_case : List[Any] = np.array( [ 0.1868_1869, 0.3390_7816, 0.536_1276, 0.1443_2865, -0.0285_6611, -0.7394_1123, 0.2339_7987, 0.4732_2682, -0.3782_3164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: __snake_case : int = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) __snake_case : Optional[Any] = latents[0, -3:, -3:, -1] __snake_case : Optional[Any] = np.array( [ 0.1853_9645, 0.3398_7248, 0.537_8559, 0.1443_7142, -0.0245_5261, -0.733_8317, 0.2399_0755, 0.4735_6272, -0.378_6505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 __snake_case : Dict = False __snake_case : Optional[int] = '''stabilityai/stable-diffusion-2-base''' __snake_case : Tuple = DDIMScheduler.from_pretrained(a_ , subfolder='''scheduler''' ) __snake_case : str = StableDiffusionPanoramaPipeline.from_pretrained(a_ , scheduler=a_ , safety_checker=a_ ) __snake_case : str = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() __snake_case : Any = self.get_inputs() pipe(**a_ , callback=a_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __snake_case : Optional[Any] = '''stabilityai/stable-diffusion-2-base''' __snake_case : Union[str, Any] = DDIMScheduler.from_pretrained(a_ , subfolder='''scheduler''' ) __snake_case : Optional[Any] = StableDiffusionPanoramaPipeline.from_pretrained(a_ , scheduler=a_ , safety_checker=a_ ) __snake_case : Any = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __snake_case : Optional[Any] = self.get_inputs() __snake_case : Dict = pipe(**a_ ) __snake_case : int = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
229
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 SCREAMING_SNAKE_CASE : str = data_utils.TransfoXLTokenizer SCREAMING_SNAKE_CASE : str = data_utils.TransfoXLCorpus SCREAMING_SNAKE_CASE : Union[str, Any] = data_utils SCREAMING_SNAKE_CASE : Any = data_utils def lowercase ( _snake_case : Any , _snake_case : str , _snake_case : List[str] , _snake_case : str ) ->Optional[int]: """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(_snake_case , '''rb''' ) as fp: __snake_case : List[str] = pickle.load(_snake_case , encoding='''latin1''' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __snake_case : Optional[Any] = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(f"""Save vocabulary to {pytorch_vocab_dump_path}""" ) __snake_case : List[Any] = corpus.vocab.__dict__ torch.save(_snake_case , _snake_case ) __snake_case : Tuple = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''' , _snake_case ) __snake_case : Dict = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(f"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(_snake_case , _snake_case ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __snake_case : Tuple = os.path.abspath(_snake_case ) __snake_case : int = os.path.abspath(_snake_case ) print(f"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": __snake_case : Union[str, Any] = TransfoXLConfig() else: __snake_case : Optional[int] = TransfoXLConfig.from_json_file(_snake_case ) print(f"""Building PyTorch model from configuration: {config}""" ) __snake_case : Union[str, Any] = TransfoXLLMHeadModel(_snake_case ) __snake_case : Optional[int] = load_tf_weights_in_transfo_xl(_snake_case , _snake_case , _snake_case ) # Save pytorch-model __snake_case : Optional[int] = os.path.join(_snake_case , _snake_case ) __snake_case : Tuple = os.path.join(_snake_case , _snake_case ) print(f"""Save PyTorch model to {os.path.abspath(_snake_case )}""" ) torch.save(model.state_dict() , _snake_case ) print(f"""Save configuration file to {os.path.abspath(_snake_case )}""" ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
229
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a : Dict = logging.get_logger(__name__) class _a ( _lowerCAmelCase ): A = ['''pixel_values'''] def __init__(self, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = PIL.Image.BICUBIC, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = 1 / 255, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> None: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = size if size is not None else {"""height""": 256, """width""": 256} UpperCAmelCase_: Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase_: Dict = get_size_dict(SCREAMING_SNAKE_CASE_, param_name="""crop_size""" ) UpperCAmelCase_: int = do_resize UpperCAmelCase_: Any = size UpperCAmelCase_: List[Any] = resample UpperCAmelCase_: int = do_center_crop UpperCAmelCase_: Dict = crop_size UpperCAmelCase_: Tuple = do_rescale UpperCAmelCase_: Tuple = rescale_factor UpperCAmelCase_: Dict = do_normalize UpperCAmelCase_: Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_: int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = PIL.Image.BICUBIC, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> np.ndarray: UpperCAmelCase_: Tuple = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return resize( SCREAMING_SNAKE_CASE_, size=(size["""height"""], size["""width"""]), resample=SCREAMING_SNAKE_CASE_, data_format=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> np.ndarray: UpperCAmelCase_: Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(SCREAMING_SNAKE_CASE_, size=(size["""height"""], size["""width"""]), data_format=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> int: return rescale(SCREAMING_SNAKE_CASE_, scale=SCREAMING_SNAKE_CASE_, data_format=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> np.ndarray: return normalize(SCREAMING_SNAKE_CASE_, mean=SCREAMING_SNAKE_CASE_, std=SCREAMING_SNAKE_CASE_, data_format=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST, **SCREAMING_SNAKE_CASE_, ) -> PIL.Image.Image: UpperCAmelCase_: Any = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_: Dict = resample if resample is not None else self.resample UpperCAmelCase_: Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_: str = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_: List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_: List[Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_: Optional[Any] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_: Dict = image_std if image_std is not None else self.image_std UpperCAmelCase_: Any = size if size is not None else self.size UpperCAmelCase_: Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_: Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE_, param_name="""crop_size""" ) UpperCAmelCase_: str = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. UpperCAmelCase_: Tuple = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: UpperCAmelCase_: int = [self.resize(image=SCREAMING_SNAKE_CASE_, size=SCREAMING_SNAKE_CASE_, resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: UpperCAmelCase_: Dict = [self.center_crop(image=SCREAMING_SNAKE_CASE_, size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: UpperCAmelCase_: Optional[int] = [self.rescale(image=SCREAMING_SNAKE_CASE_, scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: UpperCAmelCase_: int = [self.normalize(image=SCREAMING_SNAKE_CASE_, mean=SCREAMING_SNAKE_CASE_, std=SCREAMING_SNAKE_CASE_ ) for image in images] UpperCAmelCase_: Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for image in images] UpperCAmelCase_: Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_, tensor_type=SCREAMING_SNAKE_CASE_ )
556
def lowerCAmelCase_ (lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: Optional[int] ): """simple docstring""" UpperCAmelCase_: List[str] = 0 UpperCAmelCase_: Tuple = len(lowerCAmelCase__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase_: Dict = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowerCAmelCase__ ): return None UpperCAmelCase_: str = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCAmelCase_: int = left UpperCAmelCase_: str = point elif point > right: UpperCAmelCase_: List[str] = right UpperCAmelCase_: Optional[int] = point else: if item < current_item: UpperCAmelCase_: Optional[Any] = point - 1 else: UpperCAmelCase_: Any = point + 1 return None def lowerCAmelCase_ (lowerCAmelCase__: Dict , lowerCAmelCase__: List[Any] , lowerCAmelCase__: Any , lowerCAmelCase__: Any ): """simple docstring""" if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase_: Union[str, Any] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowerCAmelCase__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) elif point > right: return interpolation_search_by_recursion(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , point - 1 ) else: return interpolation_search_by_recursion( lowerCAmelCase__ , lowerCAmelCase__ , point + 1 , lowerCAmelCase__ ) def lowerCAmelCase_ (lowerCAmelCase__: Dict ): """simple docstring""" if collection != sorted(lowerCAmelCase__ ): raise ValueError("""Collection must be ascending sorted""" ) return True if __name__ == "__main__": import sys a : Optional[Any] = 0 if debug == 1: a : int = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('Sequence must be ascending sorted to apply interpolation search') a : int = 67 a : Any = interpolation_search(collection, target) if result is not None: print(F'''{target} found at positions: {result}''') else: print('Not found')
556
1
from __future__ import annotations from math import ceil, floor, sqrt def A ( _lowerCamelCase = 2_000_000 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [0] _lowerCAmelCase : Union[str, Any] = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _lowerCAmelCase : Union[str, Any] = 0 # the area corresponding to the grid that gives the product closest to target _lowerCAmelCase : Union[str, Any] = 0 # an estimate of b, using the quadratic formula _lowerCAmelCase : Any = 42 # the largest integer less than b_estimate _lowerCAmelCase : str = 42 # the largest integer less than b_estimate _lowerCAmelCase : Dict = 42 # the triangle number corresponding to b_floor _lowerCAmelCase : Any = 42 # the triangle number corresponding to b_ceil _lowerCAmelCase : Tuple = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): _lowerCAmelCase : List[str] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _lowerCAmelCase : str = floor(a__ ) _lowerCAmelCase : List[str] = ceil(a__ ) _lowerCAmelCase : Tuple = triangle_numbers[b_floor] _lowerCAmelCase : Union[str, Any] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _lowerCAmelCase : Any = triangle_b_first_guess * triangle_a _lowerCAmelCase : str = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _lowerCAmelCase : str = triangle_b_second_guess * triangle_a _lowerCAmelCase : Union[str, Any] = idx_a * b_ceil return area if __name__ == "__main__": print(f'''{solution() = }''')
716
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'upernet' def __init__( self, __a=None, __a=512, __a=0.02, __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=384, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _lowerCAmelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(__a, __a): _lowerCAmelCase : List[Any] = backbone_config.get("model_type") _lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Optional[Any] = config_class.from_dict(__a) _lowerCAmelCase : Tuple = backbone_config _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = pool_scales _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Dict = auxiliary_loss_weight _lowerCAmelCase : Tuple = auxiliary_in_channels _lowerCAmelCase : Optional[Any] = auxiliary_channels _lowerCAmelCase : str = auxiliary_num_convs _lowerCAmelCase : Union[str, Any] = auxiliary_concat_input _lowerCAmelCase : Dict = loss_ignore_index def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[Any] = self.backbone_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
658
0
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = np.full((len(SCREAMING_SNAKE_CASE__ ), sequence_length, 2) , SCREAMING_SNAKE_CASE__ ) else: snake_case_ = np.full((len(SCREAMING_SNAKE_CASE__ ), sequence_length) , SCREAMING_SNAKE_CASE__ ) for i, tensor in enumerate(SCREAMING_SNAKE_CASE__ ): if padding_side == "right": if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = tensor[:sequence_length] else: snake_case_ = tensor[:sequence_length] else: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = tensor[:sequence_length] else: snake_case_ = tensor[:sequence_length] return out_tensor.tolist() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = ord(SCREAMING_SNAKE_CASE__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True snake_case_ = unicodedata.category(SCREAMING_SNAKE_CASE__ ) if cat.startswith('''P''' ): return True return False @dataclass class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : PreTrainedTokenizerBase SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = True SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : int = -100 SCREAMING_SNAKE_CASE : str = "pt" def snake_case__( self : Optional[int] , _UpperCamelCase : str ) ->str: import torch snake_case_ = '''label''' if '''label''' in features[0].keys() else '''labels''' snake_case_ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None snake_case_ = self.tokenizer.pad( _UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch snake_case_ = torch.tensor(batch['''entity_ids'''] ).shape[1] snake_case_ = self.tokenizer.padding_side if padding_side == "right": snake_case_ = [ list(_UpperCamelCase ) + [self.label_pad_token_id] * (sequence_length - len(_UpperCamelCase )) for label in labels ] else: snake_case_ = [ [self.label_pad_token_id] * (sequence_length - len(_UpperCamelCase )) + list(_UpperCamelCase ) for label in labels ] snake_case_ = [feature['''ner_tags'''] for feature in features] snake_case_ = padding_tensor(_UpperCamelCase , -1 , _UpperCamelCase , _UpperCamelCase ) snake_case_ = [feature['''original_entity_spans'''] for feature in features] snake_case_ = padding_tensor(_UpperCamelCase , (-1, -1) , _UpperCamelCase , _UpperCamelCase ) snake_case_ = {k: torch.tensor(_UpperCamelCase , dtype=torch.intaa ) for k, v in batch.items()} return batch
39
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["""MaskFormerFeatureExtractor"""] UpperCAmelCase_ = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] UpperCAmelCase_ = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
458
0
'''simple docstring''' from typing import Any def UpperCamelCase__ ( __magic_name__ : list , __magic_name__ : list , __magic_name__ : dict , __magic_name__ : dict , __magic_name__ : dict , ) -> list: '''simple docstring''' _validation( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) # Creates data structures and fill initial step snake_case__ : List[Any] = {} snake_case__ : List[str] = {} for state in states_space: snake_case__ : Any = observations_space[0] snake_case__ : Dict = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case__ : Optional[int] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(UpperCAmelCase__ ) ): snake_case__ : Tuple = observations_space[o] snake_case__ : Dict = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case__ : Optional[int] = """""" snake_case__ : Any = -1 for k_state in states_space: snake_case__ : Tuple = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case__ : List[Any] = probability snake_case__ : List[str] = k_state # Update probabilities and pointers dicts snake_case__ : List[Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case__ : List[Any] = arg_max # The final observation snake_case__ : Optional[Any] = observations_space[len(UpperCAmelCase__ ) - 1] # argmax for given final observation snake_case__ : Tuple = """""" snake_case__ : Tuple = -1 for k_state in states_space: snake_case__ : Optional[Any] = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case__ : Optional[int] = probability snake_case__ : Optional[int] = k_state snake_case__ : Union[str, Any] = arg_max # Process pointers backwards snake_case__ : Optional[int] = last_state snake_case__ : Dict = [] for o in range(len(UpperCAmelCase__ ) - 1 , -1 , -1 ): result.append(UpperCAmelCase__ ) snake_case__ : int = pointers[previous, observations_space[o]] result.reverse() return result def UpperCamelCase__ ( __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : Any , ) -> None: '''simple docstring''' _validate_not_empty( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) _validate_lists(UpperCAmelCase__ , UpperCAmelCase__ ) _validate_dicts( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCamelCase__ ( __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : Any , ) -> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("""There's an empty parameter""" ) def UpperCamelCase__ ( __magic_name__ : Any , __magic_name__ : Any ) -> None: '''simple docstring''' _validate_list(UpperCAmelCase__ , """observations_space""" ) _validate_list(UpperCAmelCase__ , """states_space""" ) def UpperCamelCase__ ( __magic_name__ : Any , __magic_name__ : str ) -> None: '''simple docstring''' if not isinstance(_object , UpperCAmelCase__ ): snake_case__ : List[str] = f"{var_name} must be a list" raise ValueError(UpperCAmelCase__ ) else: for x in _object: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): snake_case__ : List[Any] = f"{var_name} must be a list of strings" raise ValueError(UpperCAmelCase__ ) def UpperCamelCase__ ( __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : Any , ) -> None: '''simple docstring''' _validate_dict(UpperCAmelCase__ , """initial_probabilities""" , UpperCAmelCase__ ) _validate_nested_dict(UpperCAmelCase__ , """transition_probabilities""" ) _validate_nested_dict(UpperCAmelCase__ , """emission_probabilities""" ) def UpperCamelCase__ ( __magic_name__ : Any , __magic_name__ : str ) -> None: '''simple docstring''' _validate_dict(_object , UpperCAmelCase__ , UpperCAmelCase__ ) for x in _object.values(): _validate_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCamelCase__ ( __magic_name__ : Any , __magic_name__ : str , __magic_name__ : type , __magic_name__ : bool = False ) -> None: '''simple docstring''' if not isinstance(_object , UpperCAmelCase__ ): snake_case__ : str = f"{var_name} must be a dict" raise ValueError(UpperCAmelCase__ ) if not all(isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for x in _object ): snake_case__ : List[str] = f"{var_name} all keys must be strings" raise ValueError(UpperCAmelCase__ ) if not all(isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for x in _object.values() ): snake_case__ : Union[str, Any] = """nested dictionary """ if nested else """""" snake_case__ : Union[str, Any] = f"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(UpperCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
715
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = KandinskyVaaImgaImgPipeline lowerCamelCase__ = ['''image_embeds''', '''negative_image_embeds''', '''image'''] lowerCamelCase__ = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] lowerCamelCase__ = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowerCamelCase__ = False @property def __UpperCamelCase ( self ): return 3_2 @property def __UpperCamelCase ( self ): return 3_2 @property def __UpperCamelCase ( self ): return self.time_input_dim @property def __UpperCamelCase ( self ): return self.time_input_dim * 4 @property def __UpperCamelCase ( self ): return 1_0_0 @property def __UpperCamelCase ( self ): torch.manual_seed(0 ) snake_case__ : int = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case__ : Optional[int] = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE ) return model @property def __UpperCamelCase ( self ): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCamelCase ( self ): torch.manual_seed(0 ) snake_case__ : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase ( self ): snake_case__ : Dict = self.dummy_unet snake_case__ : Any = self.dummy_movq snake_case__ : Any = { """num_train_timesteps""": 1_0_0_0, """beta_schedule""": """linear""", """beta_start""": 0.0_0085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } snake_case__ : int = DDIMScheduler(**__SCREAMING_SNAKE_CASE ) snake_case__ : str = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): snake_case__ : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __SCREAMING_SNAKE_CASE ) # create init_image snake_case__ : Any = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ : str = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert("""RGB""" ).resize((2_5_6, 2_5_6) ) if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): snake_case__ : Union[str, Any] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: snake_case__ : List[Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 6_4, """width""": 6_4, """num_inference_steps""": 1_0, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = """cpu""" snake_case__ : Dict = self.get_dummy_components() snake_case__ : List[Any] = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) snake_case__ : Any = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) snake_case__ : int = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) snake_case__ : Union[str, Any] = output.images snake_case__ : Dict = pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) , return_dict=__SCREAMING_SNAKE_CASE , )[0] snake_case__ : List[str] = image[0, -3:, -3:, -1] snake_case__ : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case__ : Optional[int] = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ): snake_case__ : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) snake_case__ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) snake_case__ : int = """A red cartoon frog, 4k""" snake_case__ : Tuple = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) snake_case__ : Any = pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case__ , snake_case__ : int = pipe_prior( __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() snake_case__ : str = pipeline( image=__SCREAMING_SNAKE_CASE , image_embeds=__SCREAMING_SNAKE_CASE , negative_image_embeds=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type="""np""" , ) snake_case__ : List[Any] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
419
0
class _A : """simple docstring""" def __init__( self : Optional[Any] ) -> Optional[Any]: __UpperCAmelCase ={} def _a ( self : str ) -> None: print(self.vertex ) for i in self.vertex: print(__SCREAMING_SNAKE_CASE , """ -> """ , """ -> """.join([str(__SCREAMING_SNAKE_CASE ) for j in self.vertex[i]] ) ) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__SCREAMING_SNAKE_CASE ) else: # else make a new vertex __UpperCAmelCase =[to_vertex] def _a ( self : Tuple ) -> None: # visited array for storing already visited nodes __UpperCAmelCase =[False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list ) -> None: # mark start vertex as visited __UpperCAmelCase =True print(__SCREAMING_SNAKE_CASE , end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
68
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def lowercase__ ( A_: Union[str, Any] ) -> List[Any]: """simple docstring""" __UpperCAmelCase =botoa.client("""iam""" ) __UpperCAmelCase ={ """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=A_ , AssumeRolePolicyDocument=json.dumps(A_ , indent=2 ) ) __UpperCAmelCase ={ """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=A_ , PolicyName=F'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(A_ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F'''role {role_name} already exists. Using existing one''' ) def lowercase__ ( A_: Dict ) -> Any: """simple docstring""" __UpperCAmelCase =botoa.client("""iam""" ) return iam_client.get_role(RoleName=A_ )["Role"]["Arn"] def lowercase__ ( ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase =_ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , A_ , ) __UpperCAmelCase =None if credentials_configuration == 0: __UpperCAmelCase =_ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" ) __UpperCAmelCase =aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) __UpperCAmelCase =_ask_field("""AWS Access Key ID: """ ) __UpperCAmelCase =aws_access_key_id __UpperCAmelCase =_ask_field("""AWS Secret Access Key: """ ) __UpperCAmelCase =aws_secret_access_key __UpperCAmelCase =_ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" ) __UpperCAmelCase =aws_region __UpperCAmelCase =_ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , A_ , ) if role_management == 0: __UpperCAmelCase =_ask_field("""Enter your IAM role name: """ ) else: __UpperCAmelCase ="""accelerate_sagemaker_execution_role""" print(F'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(A_ ) __UpperCAmelCase =_ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=A_ , error_message="""Please enter yes or no.""" , ) __UpperCAmelCase =None if is_custom_docker_image: __UpperCAmelCase =_ask_field("""Enter your Docker image: """ , lambda A_ : str(A_ ).lower() ) __UpperCAmelCase =_ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=A_ , error_message="""Please enter yes or no.""" , ) __UpperCAmelCase =None if is_sagemaker_inputs_enabled: __UpperCAmelCase =_ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda A_ : str(A_ ).lower() , ) __UpperCAmelCase =_ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=A_ , error_message="""Please enter yes or no.""" , ) __UpperCAmelCase =None if is_sagemaker_metrics_enabled: __UpperCAmelCase =_ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda A_ : str(A_ ).lower() , ) __UpperCAmelCase =_ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) __UpperCAmelCase ={} __UpperCAmelCase =_ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=A_ , error_message="""Please enter yes or no.""" , ) if use_dynamo: __UpperCAmelCase ="""dynamo_""" __UpperCAmelCase =_ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) __UpperCAmelCase =_ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=A_ , error_message="""Please enter yes or no.""" , ) if use_custom_options: __UpperCAmelCase =_ask_options( """Which mode do you want to use?""" , A_ , lambda A_ : TORCH_DYNAMO_MODES[int(A_ )] , default="""default""" , ) __UpperCAmelCase =_ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=A_ , error_message="""Please enter yes or no.""" , ) __UpperCAmelCase =_ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=A_ , error_message="""Please enter yes or no.""" , ) __UpperCAmelCase ="""Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: __UpperCAmelCase =_ask_options( A_ , A_ , lambda A_ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(A_ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" __UpperCAmelCase =_ask_field(A_ , lambda A_ : str(A_ ).lower() , default="""ml.p3.2xlarge""" ) __UpperCAmelCase =1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): __UpperCAmelCase =_ask_field( """How many machines do you want use? [1]: """ , A_ , default=1 , ) __UpperCAmelCase =_ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=A_ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=A_ , use_cpu=A_ , dynamo_config=A_ , eca_instance_type=A_ , profile=A_ , region=A_ , iam_role_name=A_ , mixed_precision=A_ , num_machines=A_ , sagemaker_inputs_file=A_ , sagemaker_metrics_file=A_ , )
68
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = DDIMPipeline _lowerCamelCase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _lowerCamelCase = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''latents''', '''callback''', '''callback_steps''', } _lowerCamelCase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS _lowerCamelCase = False def UpperCamelCase__ ( self ) -> List[Any]: torch.manual_seed(0 ) A = UNetaDModel( block_out_channels=(3_2, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=3 ,out_channels=3 ,down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") ,up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") ,) A = DDIMScheduler() A = {"""unet""": unet, """scheduler""": scheduler} return components def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_=0 ) -> str: if str(lowerCamelCase_ ).startswith("""mps""" ): A = torch.manual_seed(lowerCamelCase_ ) else: A = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) A = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def UpperCamelCase__ ( self ) -> List[Any]: A = """cpu""" A = self.get_dummy_components() A = self.pipeline_class(**lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) A = self.get_dummy_inputs(lowerCamelCase_ ) A = pipe(**lowerCamelCase_ ).images A = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 3_2, 3_2, 3) ) A = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) A = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase_ ,1E-3 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def UpperCamelCase__ ( self ) -> Optional[Any]: super().test_save_load_local(expected_max_difference=3E-3 ) def UpperCamelCase__ ( self ) -> List[Any]: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> Tuple: A = """google/ddpm-cifar10-32""" A = UNetaDModel.from_pretrained(lowerCamelCase_ ) A = DDIMScheduler() A = DDIMPipeline(unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ) ddim.to(lowerCamelCase_ ) ddim.set_progress_bar_config(disable=lowerCamelCase_ ) A = torch.manual_seed(0 ) A = ddim(generator=lowerCamelCase_ ,eta=0.0 ,output_type="""numpy""" ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) A = np.array([0.17_23, 0.16_17, 0.16_00, 0.16_26, 0.14_97, 0.15_13, 0.15_05, 0.14_42, 0.14_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ) -> Dict: A = """google/ddpm-ema-bedroom-256""" A = UNetaDModel.from_pretrained(lowerCamelCase_ ) A = DDIMScheduler.from_pretrained(lowerCamelCase_ ) A = DDIMPipeline(unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ) ddpm.to(lowerCamelCase_ ) ddpm.set_progress_bar_config(disable=lowerCamelCase_ ) A = torch.manual_seed(0 ) A = ddpm(generator=lowerCamelCase_ ,output_type="""numpy""" ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) A = np.array([0.00_60, 0.02_01, 0.03_44, 0.00_24, 0.00_18, 0.00_02, 0.00_22, 0.00_00, 0.00_69] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
255
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self ) -> Dict: A = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) A = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] ,dtype=tf.intaa ,) # J'aime le camembert !" A = model(lowerCamelCase_ )["""last_hidden_state"""] A = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape ,lowerCamelCase_ ) # compare the actual values for a slice. A = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] ,dtype=tf.floataa ,) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4 ) )
255
1
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def lowerCamelCase__ ( A_ ): # picklable for multiprocessing return x.sum() def lowerCamelCase__ ( A_ ): # picklable for multiprocessing return i + 1 @dataclass class lowercase_ : a_ = 42 a_ = 42 class lowercase_ ( _A ): def lowerCamelCase_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase_ = {} UpperCAmelCase_ = [] UpperCAmelCase_ = 1 UpperCAmelCase_ = [1, 2] UpperCAmelCase_ = {"a": 1, "b": 2} UpperCAmelCase_ = {"a": [1, 2], "b": [3, 4]} UpperCAmelCase_ = {"a": {"1": 1}, "b": 2} UpperCAmelCase_ = {"a": 1, "b": 2, "c": 3, "d": 4} UpperCAmelCase_ = {} UpperCAmelCase_ = [] UpperCAmelCase_ = 2 UpperCAmelCase_ = [2, 3] UpperCAmelCase_ = {"a": 2, "b": 3} UpperCAmelCase_ = {"a": [2, 3], "b": [4, 5]} UpperCAmelCase_ = {"a": {"1": 2}, "b": 3} UpperCAmelCase_ = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(map_nested(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(map_nested(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(map_nested(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(map_nested(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(map_nested(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(map_nested(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(map_nested(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) UpperCAmelCase_ = 2 self.assertEqual(map_nested(UpperCamelCase__ , UpperCamelCase__ , num_proc=UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(map_nested(UpperCamelCase__ , UpperCamelCase__ , num_proc=UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(map_nested(UpperCamelCase__ , UpperCamelCase__ , num_proc=UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(map_nested(UpperCamelCase__ , UpperCamelCase__ , num_proc=UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(map_nested(UpperCamelCase__ , UpperCamelCase__ , num_proc=UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(map_nested(UpperCamelCase__ , UpperCamelCase__ , num_proc=UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(map_nested(UpperCamelCase__ , UpperCamelCase__ , num_proc=UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(map_nested(UpperCamelCase__ , UpperCamelCase__ , num_proc=UpperCamelCase__ ) , UpperCamelCase__ ) UpperCAmelCase_ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} UpperCAmelCase_ = {"a": 2, "b": 0, "c": 2} UpperCAmelCase_ = { "a": np.eye(2 ).astype(UpperCamelCase__ ), "b": np.zeros(3 ).astype(UpperCamelCase__ ), "c": np.ones(2 ).astype(UpperCamelCase__ ), } self.assertEqual(map_nested(UpperCamelCase__ , UpperCamelCase__ , map_numpy=UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(UpperCamelCase__ , UpperCamelCase__ , map_numpy=UpperCamelCase__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(UpperCamelCase__ , UpperCamelCase__ , map_numpy=UpperCamelCase__ , num_proc=UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(UpperCamelCase__ , UpperCamelCase__ , map_numpy=UpperCamelCase__ , num_proc=UpperCamelCase__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(UpperCamelCase__ ): # can't pickle a local lambda map_nested(lambda UpperCamelCase__ : x + 1 , UpperCamelCase__ , num_proc=UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ = {"a": 1, "b": 2} UpperCAmelCase_ = {"a": 3, "b": 4} UpperCAmelCase_ = {"a": 5, "b": 6} UpperCAmelCase_ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) , UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> str: """simple docstring""" class lowercase_ : a_ = """bar""" UpperCAmelCase_ = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(UpperCamelCase__ , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def lowerCamelCase__ ( A_ , A_ , A_ ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: UpperCAmelCase_ = {F"""{i}""": i for i in range(A_ )} UpperCAmelCase_ = map_nested(lambda A_ : x + 10 , A_ , num_proc=A_ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class lowercase_ ( _A ): @require_tf def lowerCamelCase_ ( self ) -> int: """simple docstring""" import tensorflow as tf from tensorflow.keras import layers UpperCAmelCase_ = layers.Dense(2 ) def gen_random_output(): UpperCAmelCase_ = tf.random.uniform((1, 3) ) return model(UpperCamelCase__ ).numpy() with temp_seed(4_2 , set_tensorflow=UpperCamelCase__ ): UpperCAmelCase_ = gen_random_output() with temp_seed(4_2 , set_tensorflow=UpperCamelCase__ ): UpperCAmelCase_ = gen_random_output() UpperCAmelCase_ = gen_random_output() np.testing.assert_equal(UpperCamelCase__ , UpperCamelCase__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def lowerCamelCase_ ( self ) -> Tuple: """simple docstring""" import torch def gen_random_output(): UpperCAmelCase_ = torch.nn.Linear(3 , 2 ) UpperCAmelCase_ = torch.rand(1 , 3 ) return model(UpperCamelCase__ ).detach().numpy() with temp_seed(4_2 , set_pytorch=UpperCamelCase__ ): UpperCAmelCase_ = gen_random_output() with temp_seed(4_2 , set_pytorch=UpperCamelCase__ ): UpperCAmelCase_ = gen_random_output() UpperCAmelCase_ = gen_random_output() np.testing.assert_equal(UpperCamelCase__ , UpperCamelCase__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def lowerCamelCase_ ( self ) -> int: """simple docstring""" def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): UpperCAmelCase_ = gen_random_output() with temp_seed(4_2 ): UpperCAmelCase_ = gen_random_output() UpperCAmelCase_ = gen_random_output() np.testing.assert_equal(UpperCamelCase__ , UpperCamelCase__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" , [{}] ) def lowerCamelCase__ ( A_ ): UpperCAmelCase_ = NestedDataStructure(A_ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def lowerCamelCase__ ( A_ , A_ ): UpperCAmelCase_ = NestedDataStructure(A_ ).flatten() assert output == expected_output def lowerCamelCase__ ( ): UpperCAmelCase_ = A(x=1 , y="foobar" ) UpperCAmelCase_ = {"x": 1, "y": "foobar"} assert asdict(A_ ) == expected_output UpperCAmelCase_ = {"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} UpperCAmelCase_ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(A_ ) == expected_output with pytest.raises(A_ ): asdict([1, A(x=10 , y="foo" )] ) def lowerCamelCase__ ( A_ ): return text.split() def lowerCamelCase__ ( A_ ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def lowerCamelCase__ ( ): with Pool(2 ) as pool: UpperCAmelCase_ = list(iflatmap_unordered(A_ , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(A_ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: UpperCAmelCase_ = list(iflatmap_unordered(A_ , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(A_ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: UpperCAmelCase_ = [] for yield_time, content in iflatmap_unordered( A_ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(A_ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(A_ ) == 4
660
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __snake_case : Optional[Any] = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowercase_ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=1_6 , UpperCamelCase__=1_3 , UpperCamelCase__=7 , UpperCamelCase__=1_4 , UpperCamelCase__=1_0 , UpperCamelCase__=1_9 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=True , UpperCamelCase__=1_6 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=[1, 2, 3, 4, 5] , UpperCamelCase__=2_5 , UpperCamelCase__=5 , ) -> Tuple: """simple docstring""" UpperCAmelCase_ = d_model UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = prediction_length UpperCAmelCase_ = context_length UpperCAmelCase_ = cardinality UpperCAmelCase_ = num_time_features UpperCAmelCase_ = lags_sequence UpperCAmelCase_ = embedding_dimension UpperCAmelCase_ = is_training UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = context_length UpperCAmelCase_ = prediction_length + label_length UpperCAmelCase_ = label_length UpperCAmelCase_ = moving_average UpperCAmelCase_ = autocorrelation_factor def lowerCamelCase_ ( self ) -> List[Any]: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> Any: """simple docstring""" UpperCAmelCase_ = config.context_length + max(config.lags_sequence ) UpperCAmelCase_ = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) UpperCAmelCase_ = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) UpperCAmelCase_ = floats_tensor([self.batch_size, _past_length] ) UpperCAmelCase_ = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs UpperCAmelCase_ = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) UpperCAmelCase_ = floats_tensor([self.batch_size, config.prediction_length] ) UpperCAmelCase_ = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def lowerCamelCase_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = self.prepare_autoformer_inputs_dict(UpperCamelCase__ ) return config, inputs_dict def lowerCamelCase_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.prepare_config_and_inputs() return config, inputs_dict def lowerCamelCase_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> str: """simple docstring""" UpperCAmelCase_ = AutoformerModel(config=UpperCamelCase__ ).to(UpperCamelCase__ ).eval() UpperCAmelCase_ = model(**UpperCamelCase__ ) UpperCAmelCase_ = outputs.encoder_last_hidden_state UpperCAmelCase_ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = model.get_encoder() encoder.save_pretrained(UpperCamelCase__ ) UpperCAmelCase_ = AutoformerEncoder.from_pretrained(UpperCamelCase__ ).to(UpperCamelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = model.create_network_inputs(**UpperCamelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) UpperCAmelCase_ = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) UpperCAmelCase_ = encoder(inputs_embeds=UpperCamelCase__ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) UpperCAmelCase_ = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) UpperCAmelCase_ = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) UpperCAmelCase_ = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) UpperCAmelCase_ = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = model.get_decoder() decoder.save_pretrained(UpperCamelCase__ ) UpperCAmelCase_ = AutoformerDecoder.from_pretrained(UpperCamelCase__ ).to(UpperCamelCase__ ) UpperCAmelCase_ = decoder( trend=UpperCamelCase__ , inputs_embeds=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowercase_ ( _A , _A , unittest.TestCase ): a_ = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () a_ = (AutoformerForPrediction,) if is_torch_available() else () a_ = {"""feature-extraction""": AutoformerModel} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False a_ = False a_ = False def lowerCamelCase_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase_ = AutoformerModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = model_class.from_pretrained(UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) self.assertEqual(info["missing_keys"] , [] ) def lowerCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*UpperCamelCase__ ) @unittest.skip(reason="Model has no tokens embeddings" ) def lowerCamelCase_ ( self ) -> Any: """simple docstring""" pass def lowerCamelCase_ ( self ) -> int: """simple docstring""" UpperCAmelCase_ = inspect.signature(getattr(UpperCamelCase__ , "forward" ) ) # The main input is the name of the argument after `self` UpperCAmelCase_ = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(UpperCamelCase__ ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(UpperCamelCase__ )] , UpperCamelCase__ ) def lowerCamelCase_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = True UpperCAmelCase_ = getattr(self.model_tester , "seq_length" , UpperCamelCase__ ) UpperCAmelCase_ = getattr(self.model_tester , "decoder_seq_length" , UpperCamelCase__ ) UpperCAmelCase_ = getattr(self.model_tester , "encoder_seq_length" , UpperCamelCase__ ) UpperCAmelCase_ = getattr(self.model_tester , "d_model" , UpperCamelCase__ ) UpperCAmelCase_ = getattr(self.model_tester , "num_attention_heads" , UpperCamelCase__ ) UpperCAmelCase_ = d_model // num_attention_heads for model_class in self.all_model_classes: UpperCAmelCase_ = True UpperCAmelCase_ = False UpperCAmelCase_ = True UpperCAmelCase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) UpperCAmelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase_ = True UpperCAmelCase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) UpperCAmelCase_ = outputs.encoder_attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) UpperCAmelCase_ = len(UpperCamelCase__ ) UpperCAmelCase_ = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) # decoder attentions UpperCAmelCase_ = outputs.decoder_attentions self.assertIsInstance(UpperCamelCase__ , (list, tuple) ) self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions UpperCAmelCase_ = outputs.cross_attentions self.assertIsInstance(UpperCamelCase__ , (list, tuple) ) self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(out_len + 2 , len(UpperCamelCase__ ) ) UpperCAmelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCamelCase_ ( self ) -> str: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowerCamelCase__ ( A_="train-batch.pt" ): UpperCAmelCase_ = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" , filename=A_ , repo_type="dataset" ) UpperCAmelCase_ = torch.load(A_ , map_location=A_ ) return batch @require_torch @slow class lowercase_ ( unittest.TestCase ): def lowerCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase_ = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(UpperCamelCase__ ) UpperCAmelCase_ = prepare_batch() with torch.no_grad(): UpperCAmelCase_ = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , future_values=batch["future_values"] , future_time_features=batch["future_time_features"] , )[0] UpperCAmelCase_ = torch.Size( (6_4, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , UpperCamelCase__ ) UpperCAmelCase_ = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__ ) ) def lowerCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(UpperCamelCase__ ) UpperCAmelCase_ = prepare_batch("val-batch.pt" ) with torch.no_grad(): UpperCAmelCase_ = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , ).encoder_last_hidden_state UpperCAmelCase_ = torch.Size((6_4, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , UpperCamelCase__ ) UpperCAmelCase_ = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__ ) ) def lowerCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase_ = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(UpperCamelCase__ ) UpperCAmelCase_ = prepare_batch("val-batch.pt" ) with torch.no_grad(): UpperCAmelCase_ = model.generate( static_categorical_features=batch["static_categorical_features"] , past_time_features=batch["past_time_features"] , past_values=batch["past_values"] , future_time_features=batch["future_time_features"] , past_observed_mask=batch["past_observed_mask"] , ) UpperCAmelCase_ = torch.Size((6_4, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , UpperCamelCase__ ) UpperCAmelCase_ = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=UpperCamelCase__ ) UpperCAmelCase_ = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , UpperCamelCase__ , rtol=1e-1 ) )
660
1
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 42 snake_case_ = jnp.floataa snake_case_ = True def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' super().setup() A__ : List[Any] = nn.Dense(5 , dtype=self.dtype ) def __call__( self : Optional[int] , *snake_case : Any , **snake_case : str ): '''simple docstring''' A__ : int = super().__call__(*snake_case , **snake_case ) A__ : str = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = FlaxBigBirdForNaturalQuestionsModule def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : int, UpperCAmelCase__ : Dict, UpperCAmelCase__ : int, UpperCAmelCase__ : Dict ) ->Tuple: def cross_entropy(UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Union[str, Any]=None ): A__ : Optional[Any] = logits.shape[-1] A__ : Union[str, Any] = (labels[..., None] == jnp.arange(UpperCAmelCase__ )[None]).astype("""f4""" ) A__ : Optional[Any] = jax.nn.log_softmax(UpperCAmelCase__, axis=-1 ) A__ : Dict = -jnp.sum(labels * logits, axis=-1 ) if reduction is not None: A__ : List[Any] = reduction(UpperCAmelCase__ ) return loss A__ : Tuple = partial(UpperCAmelCase__, reduction=jnp.mean ) A__ : Tuple = cross_entropy(UpperCAmelCase__, UpperCAmelCase__ ) A__ : List[str] = cross_entropy(UpperCAmelCase__, UpperCAmelCase__ ) A__ : List[Any] = cross_entropy(UpperCAmelCase__, UpperCAmelCase__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __SCREAMING_SNAKE_CASE : snake_case_ = "google/bigbird-roberta-base" snake_case_ = 3000 snake_case_ = 10500 snake_case_ = 128 snake_case_ = 3 snake_case_ = 1 snake_case_ = 5 # tx_args snake_case_ = 3E-5 snake_case_ = 0.0 snake_case_ = 20000 snake_case_ = 0.0_0_9_5 snake_case_ = "bigbird-roberta-natural-questions" snake_case_ = "training-expt" snake_case_ = "data/nq-training.jsonl" snake_case_ = "data/nq-validation.jsonl" def _UpperCamelCase ( self : str ): '''simple docstring''' os.makedirs(self.base_dir , exist_ok=snake_case ) A__ : str = os.path.join(self.base_dir , self.save_dir ) A__ : Optional[int] = self.batch_size_per_device * jax.device_count() @dataclass class __SCREAMING_SNAKE_CASE : snake_case_ = 42 snake_case_ = 4096 # no dynamic padding on TPUs def __call__( self : str , snake_case : Dict ): '''simple docstring''' A__ : Optional[int] = self.collate_fn(snake_case ) A__ : List[Any] = jax.tree_util.tree_map(snake_case , snake_case ) return batch def _UpperCamelCase ( self : int , snake_case : Optional[Any] ): '''simple docstring''' A__ , A__ : Union[str, Any] = self.fetch_inputs(features["""input_ids"""] ) A__ : Union[str, Any] = { """input_ids""": jnp.array(snake_case , dtype=jnp.intaa ), """attention_mask""": jnp.array(snake_case , dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ), } return batch def _UpperCamelCase ( self : Optional[Any] , snake_case : list ): '''simple docstring''' A__ : str = [self._fetch_inputs(snake_case ) for ids in input_ids] return zip(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] , snake_case : list ): '''simple docstring''' A__ : str = [1 for _ in range(len(snake_case ) )] while len(snake_case ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[str]=None ) ->Dict: if seed is not None: A__ : Optional[int] = dataset.shuffle(seed=UpperCAmelCase__ ) for i in range(len(UpperCAmelCase__ ) // batch_size ): A__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCAmelCase__ ) @partial(jax.pmap, axis_name="""batch""" ) def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any], **UpperCAmelCase__ : str ) ->Dict: def loss_fn(UpperCAmelCase__ : Union[str, Any] ): A__ : Any = model_inputs.pop("""start_labels""" ) A__ : int = model_inputs.pop("""end_labels""" ) A__ : Any = model_inputs.pop("""pooled_labels""" ) A__ : List[Any] = state.apply_fn(**UpperCAmelCase__, params=UpperCAmelCase__, dropout_rng=UpperCAmelCase__, train=UpperCAmelCase__ ) A__ , A__ , A__ : List[str] = outputs return state.loss_fn( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A__ , A__ : Optional[int] = jax.random.split(UpperCAmelCase__ ) A__ : Optional[Any] = jax.value_and_grad(UpperCAmelCase__ ) A__ , A__ : Union[str, Any] = grad_fn(state.params ) A__ : Dict = jax.lax.pmean({"""loss""": loss}, axis_name="""batch""" ) A__ : int = jax.lax.pmean(UpperCAmelCase__, """batch""" ) A__ : Any = state.apply_gradients(grads=UpperCAmelCase__ ) return state, metrics, new_drp_rng @partial(jax.pmap, axis_name="""batch""" ) def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], **UpperCAmelCase__ : List[str] ) ->Optional[Any]: A__ : Any = model_inputs.pop("""start_labels""" ) A__ : Tuple = model_inputs.pop("""end_labels""" ) A__ : str = model_inputs.pop("""pooled_labels""" ) A__ : Dict = state.apply_fn(**UpperCAmelCase__, params=state.params, train=UpperCAmelCase__ ) A__ , A__ , A__ : str = outputs A__ : Union[str, Any] = state.loss_fn(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) A__ : Optional[int] = jax.lax.pmean({"""loss""": loss}, axis_name="""batch""" ) return metrics class __SCREAMING_SNAKE_CASE ( train_state.TrainState ): snake_case_ = struct.field(pytree_node=UpperCamelCase ) @dataclass class __SCREAMING_SNAKE_CASE : snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = None def _UpperCamelCase ( self : Optional[int] , snake_case : Optional[Any] , snake_case : str , snake_case : int , snake_case : int=None ): '''simple docstring''' A__ : Tuple = model.params A__ : Dict = TrainState.create( apply_fn=model.__call__ , params=snake_case , tx=snake_case , loss_fn=snake_case , ) if ckpt_dir is not None: A__ , A__ , A__ , A__ , A__ : str = restore_checkpoint(snake_case , snake_case ) A__ : Dict = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } A__ , A__ : int = build_tx(**snake_case ) A__ : Tuple = train_state.TrainState( step=snake_case , apply_fn=model.__call__ , params=snake_case , tx=snake_case , opt_state=snake_case , ) A__ : Union[str, Any] = args A__ : Any = data_collator A__ : Any = lr A__ : Dict = params A__ : Union[str, Any] = jax_utils.replicate(snake_case ) return state def _UpperCamelCase ( self : Optional[Any] , snake_case : Dict , snake_case : Union[str, Any] , snake_case : int ): '''simple docstring''' A__ : Tuple = self.args A__ : List[str] = len(snake_case ) // args.batch_size A__ : List[str] = jax.random.PRNGKey(0 ) A__ : Tuple = jax.random.split(snake_case , jax.device_count() ) for epoch in range(args.max_epochs ): A__ : Optional[int] = jnp.array(0 , dtype=jnp.floataa ) A__ : int = get_batched_dataset(snake_case , args.batch_size , seed=snake_case ) A__ : Optional[int] = 0 for batch in tqdm(snake_case , total=snake_case , desc=F'Running EPOCH-{epoch}' ): A__ : Optional[Any] = self.data_collator(snake_case ) A__ , A__ , A__ : List[str] = self.train_step_fn(snake_case , snake_case , **snake_case ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: A__ : Optional[Any] = jax_utils.unreplicate(state.step ) A__ : List[Any] = running_loss.item() / i A__ : Union[str, Any] = self.scheduler_fn(state_step - 1 ) A__ : str = self.evaluate(snake_case , snake_case ) A__ : List[str] = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(snake_case ) ) self.logger.log(snake_case , commit=snake_case ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}' , state=snake_case ) def _UpperCamelCase ( self : Union[str, Any] , snake_case : List[Any] , snake_case : Optional[Any] ): '''simple docstring''' A__ : Union[str, Any] = get_batched_dataset(snake_case , self.args.batch_size ) A__ : str = len(snake_case ) // self.args.batch_size A__ : Optional[int] = jnp.array(0 , dtype=jnp.floataa ) A__ : Optional[int] = 0 for batch in tqdm(snake_case , total=snake_case , desc="""Evaluating ... """ ): A__ : Any = self.data_collator(snake_case ) A__ : Dict = self.val_step_fn(snake_case , **snake_case ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def _UpperCamelCase ( self : List[Any] , snake_case : Any , snake_case : str ): '''simple docstring''' A__ : int = jax_utils.unreplicate(snake_case ) print(F'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """ ) self.model_save_fn(snake_case , params=state.params ) with open(os.path.join(snake_case , """opt_state.msgpack""" ) , """wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(snake_case , """args.joblib""" ) ) joblib.dump(self.data_collator , os.path.join(snake_case , """data_collator.joblib""" ) ) with open(os.path.join(snake_case , """training_state.json""" ) , """w""" ) as f: json.dump({"""step""": state.step.item()} , snake_case ) print("""DONE""" ) def _lowerCAmelCase ( UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict ) ->List[Any]: print(f'RESTORING CHECKPOINT FROM {save_dir}', end=""" ... """ ) with open(os.path.join(UpperCAmelCase__, """flax_model.msgpack""" ), """rb""" ) as f: A__ : Optional[Any] = from_bytes(state.params, f.read() ) with open(os.path.join(UpperCAmelCase__, """opt_state.msgpack""" ), """rb""" ) as f: A__ : Optional[Any] = from_bytes(state.opt_state, f.read() ) A__ : Optional[int] = joblib.load(os.path.join(UpperCAmelCase__, """args.joblib""" ) ) A__ : Union[str, Any] = joblib.load(os.path.join(UpperCAmelCase__, """data_collator.joblib""" ) ) with open(os.path.join(UpperCAmelCase__, """training_state.json""" ), """r""" ) as f: A__ : Optional[Any] = json.load(UpperCAmelCase__ ) A__ : Union[str, Any] = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def _lowerCAmelCase ( UpperCAmelCase__ : str, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Any, UpperCAmelCase__ : List[str] ) ->Optional[Any]: A__ : List[Any] = num_train_steps - warmup_steps A__ : Tuple = optax.linear_schedule(init_value=UpperCAmelCase__, end_value=UpperCAmelCase__, transition_steps=UpperCAmelCase__ ) A__ : Union[str, Any] = optax.linear_schedule(init_value=UpperCAmelCase__, end_value=1e-7, transition_steps=UpperCAmelCase__ ) A__ : List[str] = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[warmup_steps] ) return lr def _lowerCAmelCase ( UpperCAmelCase__ : List[str], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[str] ) ->Optional[Any]: def weight_decay_mask(UpperCAmelCase__ : List[str] ): A__ : Union[str, Any] = traverse_util.flatten_dict(UpperCAmelCase__ ) A__ : Dict = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCAmelCase__ ) A__ : int = scheduler_fn(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) A__ : str = optax.adamw(learning_rate=UpperCAmelCase__, weight_decay=UpperCAmelCase__, mask=UpperCAmelCase__ ) return tx, lr
498
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'roc_bert' def __init__( self : Tuple , snake_case : Union[str, Any]=3_0522 , snake_case : Optional[Any]=768 , snake_case : Any=12 , snake_case : Tuple=12 , snake_case : Any=3072 , snake_case : Tuple="gelu" , snake_case : Optional[int]=0.1 , snake_case : List[str]=0.1 , snake_case : List[str]=512 , snake_case : int=2 , snake_case : Optional[Any]=0.02 , snake_case : str=1e-12 , snake_case : int=True , snake_case : Optional[Any]=0 , snake_case : str="absolute" , snake_case : int=None , snake_case : int=True , snake_case : Optional[int]=True , snake_case : List[Any]=768 , snake_case : Dict=910 , snake_case : Tuple=512 , snake_case : Tuple=2_4858 , snake_case : Optional[Any]=True , **snake_case : Any , ): '''simple docstring''' A__ : Optional[Any] = vocab_size A__ : Union[str, Any] = max_position_embeddings A__ : Any = hidden_size A__ : Optional[int] = num_hidden_layers A__ : Optional[Any] = num_attention_heads A__ : int = intermediate_size A__ : Optional[Any] = hidden_act A__ : Any = hidden_dropout_prob A__ : Tuple = attention_probs_dropout_prob A__ : Union[str, Any] = initializer_range A__ : str = type_vocab_size A__ : Any = layer_norm_eps A__ : List[str] = use_cache A__ : List[str] = enable_pronunciation A__ : int = enable_shape A__ : Tuple = pronunciation_embed_dim A__ : str = pronunciation_vocab_size A__ : Optional[Any] = shape_embed_dim A__ : str = shape_vocab_size A__ : List[str] = concat_input A__ : str = position_embedding_type A__ : str = classifier_dropout super().__init__(pad_token_id=snake_case , **snake_case )
498
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__=False ) -> Any: lowerCAmelCase__ : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase__ : Optional[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__=False ) -> Optional[Any]: for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase__ : Optional[Any] = "" else: lowerCAmelCase__ : Dict = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ : Optional[Any] = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowerCAmelCase__ : Optional[Any] = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ : Optional[int] = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ : Dict = in_proj_bias[: config.hidden_size] lowerCAmelCase__ : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ : Optional[Any] = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( lowercase__ ) -> Dict: lowerCAmelCase__ : Dict = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ ) -> Dict: lowerCAmelCase__ : Optional[int] = dct.pop(lowerCAmelCase__ ) lowerCAmelCase__ : List[str] = val def SCREAMING_SNAKE_CASE ( ) -> List[Any]: lowerCAmelCase__ : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ : List[str] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ) -> Dict: lowerCAmelCase__ : List[Any] = ViTConfig() lowerCAmelCase__ : Optional[int] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : Dict = int(vit_name[-1_2:-1_0] ) lowerCAmelCase__ : Optional[Any] = int(vit_name[-9:-6] ) else: lowerCAmelCase__ : str = 1_0_0_0 lowerCAmelCase__ : Optional[Any] = "huggingface/label-files" lowerCAmelCase__ : Optional[int] = "imagenet-1k-id2label.json" lowerCAmelCase__ : Optional[Any] = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) ) lowerCAmelCase__ : Any = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowerCAmelCase__ : List[Any] = idalabel lowerCAmelCase__ : Dict = {v: k for k, v in idalabel.items()} lowerCAmelCase__ : Union[str, Any] = int(vit_name[-6:-4] ) lowerCAmelCase__ : Any = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): lowerCAmelCase__ : List[str] = 1_9_2 lowerCAmelCase__ : List[str] = 7_6_8 lowerCAmelCase__ : str = 1_2 lowerCAmelCase__ : List[Any] = 3 elif vit_name[9:].startswith("small" ): lowerCAmelCase__ : Optional[Any] = 3_8_4 lowerCAmelCase__ : Dict = 1_5_3_6 lowerCAmelCase__ : Optional[int] = 1_2 lowerCAmelCase__ : List[Any] = 6 else: pass else: if vit_name[4:].startswith("small" ): lowerCAmelCase__ : Optional[int] = 7_6_8 lowerCAmelCase__ : Union[str, Any] = 2_3_0_4 lowerCAmelCase__ : int = 8 lowerCAmelCase__ : Any = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): lowerCAmelCase__ : List[Any] = 1_0_2_4 lowerCAmelCase__ : Dict = 4_0_9_6 lowerCAmelCase__ : str = 2_4 lowerCAmelCase__ : Union[str, Any] = 1_6 elif vit_name[4:].startswith("huge" ): lowerCAmelCase__ : int = 1_2_8_0 lowerCAmelCase__ : str = 5_1_2_0 lowerCAmelCase__ : List[Any] = 3_2 lowerCAmelCase__ : Union[str, Any] = 1_6 # load original model from timm lowerCAmelCase__ : Optional[Any] = timm.create_model(lowerCAmelCase__ , pretrained=lowerCAmelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase__ : Tuple = timm_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase__ ) lowerCAmelCase__ : List[str] = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # load HuggingFace model if vit_name[-5:] == "in21k": lowerCAmelCase__ : Optional[Any] = ViTModel(lowerCAmelCase__ ).eval() else: lowerCAmelCase__ : str = ViTForImageClassification(lowerCAmelCase__ ).eval() model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowerCAmelCase__ : str = DeiTImageProcessor(size=config.image_size ) else: lowerCAmelCase__ : Optional[Any] = ViTImageProcessor(size=config.image_size ) lowerCAmelCase__ : Tuple = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCAmelCase__ : int = encoding["pixel_values"] lowerCAmelCase__ : List[Any] = model(lowerCAmelCase__ ) if base_model: lowerCAmelCase__ : List[str] = timm_model.forward_features(lowerCAmelCase__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowerCAmelCase__ , outputs.pooler_output , atol=1E-3 ) else: lowerCAmelCase__ : List[str] = timm_model(lowerCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase__ , outputs.logits , atol=1E-3 ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCamelCase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
453
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate SCREAMING_SNAKE_CASE : Optional[int] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Optional[int] = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} SCREAMING_SNAKE_CASE : List[Any] = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': f'''🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results''', '''emoji''': True, }, } ] SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for log in Path().glob('''*.log'''): SCREAMING_SNAKE_CASE : Optional[Any] = 0 with open(log, '''r''') as f: for line in f: SCREAMING_SNAKE_CASE : str = json.loads(line) if line.get('''nodeid''', '''''') != "": SCREAMING_SNAKE_CASE : Optional[Any] = line['''nodeid'''] if line.get('''duration''', None) is not None: SCREAMING_SNAKE_CASE : str = f'''{line["duration"]:.4f}''' if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) SCREAMING_SNAKE_CASE : Dict = [] log.unlink() SCREAMING_SNAKE_CASE : Optional[Any] = '''''' SCREAMING_SNAKE_CASE : str = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Dict = {} for test in failed_tests: SCREAMING_SNAKE_CASE : Optional[Any] = test[0].split('''::''') SCREAMING_SNAKE_CASE : Optional[int] = data[0].split('''/''')[-1] if data[0] not in filesafailed: SCREAMING_SNAKE_CASE : Union[str, Any] = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) SCREAMING_SNAKE_CASE : Union[str, Any] = [test[0] for test in failed_table] SCREAMING_SNAKE_CASE : Union[str, Any] = list(set(files)) # Count number of instances in failed_tests SCREAMING_SNAKE_CASE : Any = [] for file in individual_files: table.append([file, len(filesafailed[file])]) SCREAMING_SNAKE_CASE : int = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_000: SCREAMING_SNAKE_CASE : str = '''Too many failed tests, please see the full report in the Action results.''' SCREAMING_SNAKE_CASE : List[Any] = len(err) + 10 SCREAMING_SNAKE_CASE : Dict = message[: 3_000 - offset] + f'''\n...\n```\n{err}''' print(f'''### {message}''') else: SCREAMING_SNAKE_CASE : Any = '''No failed tests! 🤗''' print(f'''## {message}''') payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient SCREAMING_SNAKE_CASE : str = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": SCREAMING_SNAKE_CASE : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) SCREAMING_SNAKE_CASE : str = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': f'''https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } payload.append(action_button) SCREAMING_SNAKE_CASE : List[str] = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': f'''Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}''', } ], } payload.append(date_report) SCREAMING_SNAKE_CASE : Optional[Any] = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) SCREAMING_SNAKE_CASE : Tuple = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name SCREAMING_SNAKE_CASE : str = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: SCREAMING_SNAKE_CASE : List[str] = row[0] else: SCREAMING_SNAKE_CASE : Union[str, Any] = '''''' SCREAMING_SNAKE_CASE : Union[str, Any] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': f'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```''', }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
260
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class A( UpperCamelCase , UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''nat''' UpperCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Dict , A_ : Dict=4 , A_ : int=3 , A_ : Any=64 , A_ : Any=[3, 4, 6, 5] , A_ : Any=[2, 4, 8, 16] , A_ : Optional[Any]=7 , A_ : List[Any]=3.0 , A_ : Tuple=True , A_ : int=0.0 , A_ : int=0.0 , A_ : Optional[Any]=0.1 , A_ : str="gelu" , A_ : Tuple=0.02 , A_ : Tuple=1E-5 , A_ : List[Any]=0.0 , A_ : Any=None , A_ : Any=None , **A_ : Tuple , ) -> Tuple: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = depths lowerCamelCase_ = len(A_ ) lowerCamelCase_ = num_heads lowerCamelCase_ = kernel_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase_ = int(embed_dim * 2 ** (len(A_ ) - 1) ) lowerCamelCase_ = layer_scale_init_value lowerCamelCase_ = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(A_ ) + 1 )] lowerCamelCase_ , lowerCamelCase_ = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names )
721
from __future__ import annotations from fractions import Fraction def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = 11 lowerCamelCase_ = int('1' + '0' * digit_len ) for num in range(lowercase , lowercase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowercase , lowercase ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 lowerCamelCase_ = 10 return solutions def _SCREAMING_SNAKE_CASE ( lowercase : int = 2 ): '''simple docstring''' lowerCamelCase_ = 1.0 for fraction in fraction_list(lowercase ): lowerCamelCase_ = Fraction(lowercase ) result *= frac.denominator / frac.numerator return int(lowercase ) if __name__ == "__main__": print(solution())
651
0
from pathlib import Path import fire def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) -> Optional[int]: """simple docstring""" UpperCamelCase = Path(_UpperCamelCase) UpperCamelCase = Path(_UpperCamelCase) dest_dir.mkdir(exist_ok=_UpperCamelCase) for path in src_dir.iterdir(): UpperCamelCase = [x.rstrip() for x in list(path.open().readlines())][:n] UpperCamelCase = dest_dir.joinpath(path.name) print(_UpperCamelCase) dest_path.open('w').write('\n'.join(_UpperCamelCase)) if __name__ == "__main__": fire.Fire(minify)
280
import torch from torch import nn class A__ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int]=1 , _SCREAMING_SNAKE_CASE : List[str]=False ): """simple docstring""" super().__init__() UpperCamelCase = n_token UpperCamelCase = d_embed UpperCamelCase = d_proj UpperCamelCase = cutoffs + [n_token] UpperCamelCase = [0] + self.cutoffs UpperCamelCase = div_val UpperCamelCase = self.cutoffs[0] UpperCamelCase = len(self.cutoffs ) - 1 UpperCamelCase = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCamelCase = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) UpperCamelCase = nn.Parameter(torch.zeros(self.n_clusters ) ) UpperCamelCase = nn.ModuleList() UpperCamelCase = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ) else: self.out_projs.append(_SCREAMING_SNAKE_CASE ) self.out_layers.append(nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) else: for i in range(len(self.cutoffs ) ): UpperCamelCase , UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ) self.out_layers.append(nn.Linear(_SCREAMING_SNAKE_CASE , r_idx - l_idx ) ) UpperCamelCase = keep_order def _SCREAMING_SNAKE_CASE ( self : Dict , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" if proj is None: UpperCamelCase = nn.functional.linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCamelCase = nn.functional.linear(_SCREAMING_SNAKE_CASE , proj.t().contiguous() ) UpperCamelCase = nn.functional.linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _SCREAMING_SNAKE_CASE ( self : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any]=None , _SCREAMING_SNAKE_CASE : Dict=False ): """simple docstring""" if labels is not None: # Shift so that tokens < n predict n UpperCamelCase = hidden[..., :-1, :].contiguous() UpperCamelCase = labels[..., 1:].contiguous() UpperCamelCase = hidden.view(-1 , hidden.size(-1 ) ) UpperCamelCase = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: UpperCamelCase = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: UpperCamelCase = self._compute_logit(_SCREAMING_SNAKE_CASE , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: UpperCamelCase = labels != -100 UpperCamelCase = torch.zeros_like(_SCREAMING_SNAKE_CASE , dtype=hidden.dtype , device=hidden.device ) UpperCamelCase = ( -nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: UpperCamelCase = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=-1 ) else: # construct weights and biases UpperCamelCase , UpperCamelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCamelCase , UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase = self.out_layers[0].weight[l_idx:r_idx] UpperCamelCase = self.out_layers[0].bias[l_idx:r_idx] else: UpperCamelCase = self.out_layers[i].weight UpperCamelCase = self.out_layers[i].bias if i == 0: UpperCamelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCamelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_SCREAMING_SNAKE_CASE ) biases.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase , UpperCamelCase = weights[0], biases[0], self.out_projs[0] UpperCamelCase = self._compute_logit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=1 ) if labels is None: UpperCamelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: UpperCamelCase = torch.zeros_like(_SCREAMING_SNAKE_CASE , dtype=hidden.dtype , device=hidden.device ) UpperCamelCase = 0 UpperCamelCase = [0] + self.cutoffs for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 ): UpperCamelCase , UpperCamelCase = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCamelCase = (labels >= l_idx) & (labels < r_idx) UpperCamelCase = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCamelCase = labels.index_select(0 , _SCREAMING_SNAKE_CASE ) - l_idx UpperCamelCase = head_logprob.index_select(0 , _SCREAMING_SNAKE_CASE ) UpperCamelCase = hidden.index_select(0 , _SCREAMING_SNAKE_CASE ) else: UpperCamelCase = hidden if i == 0: if labels is not None: UpperCamelCase = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: UpperCamelCase = head_logprob[:, : self.cutoffs[0]] else: UpperCamelCase , UpperCamelCase , UpperCamelCase = weights[i], biases[i], self.out_projs[i] UpperCamelCase = self._compute_logit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCamelCase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: UpperCamelCase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCamelCase = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , _SCREAMING_SNAKE_CASE , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _SCREAMING_SNAKE_CASE ( self : int , _SCREAMING_SNAKE_CASE : str ): """simple docstring""" if self.n_clusters == 0: UpperCamelCase = self._compute_logit(_SCREAMING_SNAKE_CASE , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=-1 ) else: # construct weights and biases UpperCamelCase , UpperCamelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCamelCase , UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase = self.out_layers[0].weight[l_idx:r_idx] UpperCamelCase = self.out_layers[0].bias[l_idx:r_idx] else: UpperCamelCase = self.out_layers[i].weight UpperCamelCase = self.out_layers[i].bias if i == 0: UpperCamelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCamelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_SCREAMING_SNAKE_CASE ) biases.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase , UpperCamelCase = weights[0], biases[0], self.out_projs[0] UpperCamelCase = self._compute_logit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) UpperCamelCase = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase = [0] + self.cutoffs for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 ): UpperCamelCase , UpperCamelCase = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCamelCase = head_logprob[:, : self.cutoffs[0]] else: UpperCamelCase , UpperCamelCase , UpperCamelCase = weights[i], biases[i], self.out_projs[i] UpperCamelCase = self._compute_logit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase = head_logprob[:, -i] + tail_logprob_i UpperCamelCase = logprob_i return out
280
1
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={"""vocab_file""": """spiece.model"""} __snake_case ={ """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), } } __snake_case ={ """google/bigbird-roberta-base""": 4_096, """google/bigbird-roberta-large""": 4_096, """google/bigbird-base-trivia-itc""": 4_096, } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] lowerCamelCase : List[int] = [] def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : Any="<unk>" , UpperCAmelCase__ : Union[str, Any]="<s>" , UpperCAmelCase__ : str="</s>" , UpperCAmelCase__ : List[Any]="<pad>" , UpperCAmelCase__ : Any="[SEP]" , UpperCAmelCase__ : List[Any]="[MASK]" , UpperCAmelCase__ : Optional[int]="[CLS]" , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : Tuple , ) -> None: lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else bos_token lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else eos_token lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else unk_token lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else pad_token lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else cls_token lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) lowerCAmelCase = vocab_file lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase__ ) @property def __UpperCAmelCase ( self : List[str] ) -> Tuple: return self.sp_model.get_piece_size() def __UpperCAmelCase ( self : Dict ) -> Tuple: lowerCAmelCase = {self.convert_ids_to_tokens(UpperCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Optional[int]: lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self : int , UpperCAmelCase__ : List[Any] ) -> Dict: lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : str ) -> List[str]: return self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : Optional[int] ) -> Dict: return self.sp_model.piece_to_id(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : int ) -> Optional[int]: lowerCAmelCase = self.sp_model.IdToPiece(UpperCAmelCase__ ) return token def __UpperCAmelCase ( self : int , UpperCAmelCase__ : List[str] ) -> Any: lowerCAmelCase = [] lowerCAmelCase = '' lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase__ ) + token lowerCAmelCase = True lowerCAmelCase = [] else: current_sub_tokens.append(UpperCAmelCase__ ) lowerCAmelCase = False out_string += self.sp_model.decode(UpperCAmelCase__ ) return out_string.strip() def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : int , ) -> str: lowerCAmelCase = kwargs.pop('use_source_tokenizer' , UpperCAmelCase__ ) lowerCAmelCase = self.convert_ids_to_tokens(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCAmelCase = [] lowerCAmelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase__ ) ) lowerCAmelCase = [] sub_texts.append(UpperCAmelCase__ ) else: current_sub_text.append(UpperCAmelCase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase__ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: lowerCAmelCase = re.sub(R' (\[(MASK|SEP)\])' , R'\1' , ' '.join(UpperCAmelCase__ ) ) else: lowerCAmelCase = ''.join(UpperCAmelCase__ ) lowerCAmelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCAmelCase = self.clean_up_tokenization(UpperCAmelCase__ ) return clean_text else: return text def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase = os.path.join( UpperCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase__ , 'wb' ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__ ) return (out_vocab_file,) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase__ )) + [1] return [1] + ([0] * len(UpperCAmelCase__ )) + [1] + ([0] * len(UpperCAmelCase__ )) + [1] def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
701
'''simple docstring''' class UpperCAmelCase_ : def __init__( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Union[str, Any]=None ) -> str: lowerCAmelCase = data lowerCAmelCase = previous lowerCAmelCase = next_node def __str__( self : int ) -> str: return F'''{self.data}''' def __UpperCAmelCase ( self : Optional[Any] ) -> int: return self.data def __UpperCAmelCase ( self : List[str] ) -> Dict: return self.next def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: return self.previous class UpperCAmelCase_ : def __init__( self : Tuple , UpperCAmelCase__ : List[Any] ) -> List[str]: lowerCAmelCase = head def __iter__( self : Tuple ) -> Dict: return self def __UpperCAmelCase ( self : Any ) -> List[Any]: if not self.current: raise StopIteration else: lowerCAmelCase = self.current.get_data() lowerCAmelCase = self.current.get_next() return value class UpperCAmelCase_ : def __init__( self : Optional[Any] ) -> Optional[int]: lowerCAmelCase = None # First node in list lowerCAmelCase = None # Last node in list def __str__( self : List[Any] ) -> Dict: lowerCAmelCase = self.head lowerCAmelCase = [] while current is not None: nodes.append(current.get_data() ) lowerCAmelCase = current.get_next() return " ".join(str(UpperCAmelCase__ ) for node in nodes ) def __contains__( self : List[str] , UpperCAmelCase__ : int ) -> Optional[Any]: lowerCAmelCase = self.head while current: if current.get_data() == value: return True lowerCAmelCase = current.get_next() return False def __iter__( self : int ) -> Any: return LinkedListIterator(self.head ) def __UpperCAmelCase ( self : Optional[Any] ) -> Dict: if self.head: return self.head.get_data() return None def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: if self.tail: return self.tail.get_data() return None def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : Node ) -> None: if self.head is None: lowerCAmelCase = node lowerCAmelCase = node else: self.insert_before_node(self.head , UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Node ) -> None: if self.head is None: self.set_head(UpperCAmelCase__ ) else: self.insert_after_node(self.tail , UpperCAmelCase__ ) def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : int ) -> None: lowerCAmelCase = Node(UpperCAmelCase__ ) if self.head is None: self.set_head(UpperCAmelCase__ ) else: self.set_tail(UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Node , UpperCAmelCase__ : Node ) -> None: lowerCAmelCase = node lowerCAmelCase = node.previous if node.get_previous() is None: lowerCAmelCase = node_to_insert else: lowerCAmelCase = node_to_insert lowerCAmelCase = node_to_insert def __UpperCAmelCase ( self : int , UpperCAmelCase__ : Node , UpperCAmelCase__ : Node ) -> None: lowerCAmelCase = node lowerCAmelCase = node.next if node.get_next() is None: lowerCAmelCase = node_to_insert else: lowerCAmelCase = node_to_insert lowerCAmelCase = node_to_insert def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> None: lowerCAmelCase = 1 lowerCAmelCase = Node(UpperCAmelCase__ ) lowerCAmelCase = self.head while node: if current_position == position: self.insert_before_node(UpperCAmelCase__ , UpperCAmelCase__ ) return current_position += 1 lowerCAmelCase = node.next self.insert_after_node(self.tail , UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : int ) -> Node: lowerCAmelCase = self.head while node: if node.get_data() == item: return node lowerCAmelCase = node.get_next() raise Exception('Node not found' ) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : int ) -> Dict: if (node := self.get_node(UpperCAmelCase__ )) is not None: if node == self.head: lowerCAmelCase = self.head.get_next() if node == self.tail: lowerCAmelCase = self.tail.get_previous() self.remove_node_pointers(UpperCAmelCase__ ) @staticmethod def __UpperCAmelCase ( UpperCAmelCase__ : Node ) -> None: if node.get_next(): lowerCAmelCase = node.previous if node.get_previous(): lowerCAmelCase = node.next lowerCAmelCase = None lowerCAmelCase = None def __UpperCAmelCase ( self : Any ) -> List[str]: return self.head is None def a_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
513
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): UpperCAmelCase__ = DanceDiffusionPipeline UpperCAmelCase__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS UpperCAmelCase__ = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } UpperCAmelCase__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS UpperCAmelCase__ = False UpperCAmelCase__ = False def lowerCamelCase__ ( self : Union[str, Any] ) -> List[Any]: torch.manual_seed(0 ) __magic_name__: Dict = UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=__snake_case , use_timestep_embedding=__snake_case , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , ) __magic_name__: Tuple = IPNDMScheduler() __magic_name__: Union[str, Any] = { """unet""": unet, """scheduler""": scheduler, } return components def lowerCamelCase__ ( self : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[str]=0 ) -> str: if str(__snake_case ).startswith("""mps""" ): __magic_name__: List[str] = torch.manual_seed(__snake_case ) else: __magic_name__: Union[str, Any] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__: int = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def lowerCamelCase__ ( self : str ) -> Optional[int]: __magic_name__: int = """cpu""" # ensure determinism for the device-dependent torch.Generator __magic_name__: List[Any] = self.get_dummy_components() __magic_name__: Dict = DanceDiffusionPipeline(**__snake_case ) __magic_name__: List[str] = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__: Union[str, Any] = self.get_dummy_inputs(__snake_case ) __magic_name__: Any = pipe(**__snake_case ) __magic_name__: int = output.audios __magic_name__: Optional[int] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) __magic_name__: Optional[Any] = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def lowerCamelCase__ ( self : Dict ) -> Optional[int]: return super().test_save_load_local() @skip_mps def lowerCamelCase__ ( self : int ) -> Union[str, Any]: return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def lowerCamelCase__ ( self : List[Any] ) -> List[str]: return super().test_save_load_optional_components() @skip_mps def lowerCamelCase__ ( self : Tuple ) -> Any: return super().test_attention_slicing_forward_pass() def lowerCamelCase__ ( self : Dict ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def lowerCamelCase__ ( self : Any ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : Tuple ) -> Optional[int]: __magic_name__: Tuple = torch_device __magic_name__: Union[str, Any] = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) __magic_name__: Optional[Any] = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__: List[str] = torch.manual_seed(0 ) __magic_name__: Any = pipe(generator=__snake_case , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) __magic_name__: Union[str, Any] = output.audios __magic_name__: Optional[int] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __magic_name__: int = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : int ) -> int: __magic_name__: int = torch_device __magic_name__: List[Any] = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa ) __magic_name__: List[str] = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__: Tuple = torch.manual_seed(0 ) __magic_name__: List[Any] = pipe(generator=__snake_case , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) __magic_name__: str = output.audios __magic_name__: Optional[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __magic_name__: Any = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
96
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE__ : Union[str, Any] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } SCREAMING_SNAKE_CASE__ : List[Any] = { '''camembert-base''': 5_1_2, } SCREAMING_SNAKE_CASE__ : Any = '''▁''' class a__( snake_case__ ): a_ : Tuple = VOCAB_FILES_NAMES a_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP a_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : str = ['''input_ids''', '''attention_mask'''] a_ : Union[str, Any] = CamembertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ) -> str: # Mask token behave like a normal word, i.e. include the space before it snake_case__ =AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) snake_case__ =vocab_file snake_case__ =False if not self.vocab_file else True def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ =[self.cls_token_id] snake_case__ =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> List[int]: snake_case__ =[self.sep_token_id] snake_case__ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ =os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
538
0
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() a__ : Any = logging.get_logger(__name__) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: __SCREAMING_SNAKE_CASE = 128 elif "12-12" in model_name: __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 12 elif "14-14" in model_name: __SCREAMING_SNAKE_CASE = 14 __SCREAMING_SNAKE_CASE = 14 elif "16-16" in model_name: __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = 16 else: raise ValueError("Model not supported" ) __SCREAMING_SNAKE_CASE = "huggingface/label-files" if "speech-commands" in model_name: __SCREAMING_SNAKE_CASE = 35 __SCREAMING_SNAKE_CASE = "speech-commands-v2-id2label.json" else: __SCREAMING_SNAKE_CASE = 527 __SCREAMING_SNAKE_CASE = "audioset-id2label.json" __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="dataset" ) , "r" ) ) __SCREAMING_SNAKE_CASE = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if "module.v" in name: __SCREAMING_SNAKE_CASE = name.replace("module.v" , "audio_spectrogram_transformer" ) if "cls_token" in name: __SCREAMING_SNAKE_CASE = name.replace("cls_token" , "embeddings.cls_token" ) if "dist_token" in name: __SCREAMING_SNAKE_CASE = name.replace("dist_token" , "embeddings.distillation_token" ) if "pos_embed" in name: __SCREAMING_SNAKE_CASE = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: __SCREAMING_SNAKE_CASE = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) # transformer blocks if "blocks" in name: __SCREAMING_SNAKE_CASE = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: __SCREAMING_SNAKE_CASE = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __SCREAMING_SNAKE_CASE = name.replace("attn" , "attention.self" ) if "norm1" in name: __SCREAMING_SNAKE_CASE = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __SCREAMING_SNAKE_CASE = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __SCREAMING_SNAKE_CASE = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __SCREAMING_SNAKE_CASE = name.replace("mlp.fc2" , "output.dense" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: __SCREAMING_SNAKE_CASE = name.replace("audio_spectrogram_transformer.norm" , "audio_spectrogram_transformer.layernorm" ) # classifier head if "module.mlp_head.0" in name: __SCREAMING_SNAKE_CASE = name.replace("module.mlp_head.0" , "classifier.layernorm" ) if "module.mlp_head.1" in name: __SCREAMING_SNAKE_CASE = name.replace("module.mlp_head.1" , "classifier.dense" ) return name def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE = orig_state_dict.pop(lowerCAmelCase_ ) if "qkv" in key: __SCREAMING_SNAKE_CASE = key.split("." ) __SCREAMING_SNAKE_CASE = int(key_split[3] ) __SCREAMING_SNAKE_CASE = config.hidden_size if "weight" in key: __SCREAMING_SNAKE_CASE = val[:dim, :] __SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] __SCREAMING_SNAKE_CASE = val[-dim:, :] else: __SCREAMING_SNAKE_CASE = val[:dim] __SCREAMING_SNAKE_CASE = val[dim : dim * 2] __SCREAMING_SNAKE_CASE = val[-dim:] else: __SCREAMING_SNAKE_CASE = val return orig_state_dict def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ "module.v.head.weight", "module.v.head.bias", "module.v.head_dist.weight", "module.v.head_dist.bias", ] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) @torch.no_grad() def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_audio_spectrogram_transformer_config(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = { "ast-finetuned-audioset-10-10-0.4593": ( "https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.450": ( "https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448": ( "https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448-v2": ( "https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1" ), "ast-finetuned-audioset-12-12-0.447": ( "https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1" ), "ast-finetuned-audioset-14-14-0.443": ( "https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1" ), "ast-finetuned-audioset-16-16-0.442": ( "https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1" ), "ast-finetuned-speech-commands-v2": ( "https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1" ), } # load original state_dict __SCREAMING_SNAKE_CASE = model_name_to_url[model_name] __SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="cpu" ) # remove some keys remove_keys(lowerCAmelCase_ ) # rename some keys __SCREAMING_SNAKE_CASE = convert_state_dict(lowerCAmelCase_ , lowerCAmelCase_ ) # load 🤗 model __SCREAMING_SNAKE_CASE = ASTForAudioClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 __SCREAMING_SNAKE_CASE = -4.2677393 if "speech-commands" not in model_name else -6.845978 __SCREAMING_SNAKE_CASE = 4.5689974 if "speech-commands" not in model_name else 5.5654526 __SCREAMING_SNAKE_CASE = 1024 if "speech-commands" not in model_name else 128 __SCREAMING_SNAKE_CASE = ASTFeatureExtractor(mean=lowerCAmelCase_ , std=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) if "speech-commands" in model_name: __SCREAMING_SNAKE_CASE = load_dataset("speech_commands" , "v0.02" , split="validation" ) __SCREAMING_SNAKE_CASE = dataset[0]["audio"]["array"] else: __SCREAMING_SNAKE_CASE = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torchaudio.load(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = waveform.squeeze().numpy() __SCREAMING_SNAKE_CASE = feature_extractor(lowerCAmelCase_ , sampling_rate=1_6000 , return_tensors="pt" ) # forward pass __SCREAMING_SNAKE_CASE = model(**lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": __SCREAMING_SNAKE_CASE = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": __SCREAMING_SNAKE_CASE = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": __SCREAMING_SNAKE_CASE = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": __SCREAMING_SNAKE_CASE = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": __SCREAMING_SNAKE_CASE = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": __SCREAMING_SNAKE_CASE = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": __SCREAMING_SNAKE_CASE = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": __SCREAMING_SNAKE_CASE = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError("Unknown model name" ) if not torch.allclose(logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ): raise ValueError("Logits don't match" ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(f"""Saving feature extractor to {pytorch_dump_folder_path}""" ) feature_extractor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print("Pushing model and feature extractor to the hub..." ) model.push_to_hub(f"""MIT/{model_name}""" ) feature_extractor.push_to_hub(f"""MIT/{model_name}""" ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''ast-finetuned-audioset-10-10-0.4593''', type=str, help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a__ : Union[str, Any] = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
553
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False")) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env") @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ]) class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : Dict ) -> Any: if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=UpperCAmelCase__ , ) assert hasattr(self , "env" ) def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : int ) -> Any: __SCREAMING_SNAKE_CASE = F"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}""" # distributed data settings __SCREAMING_SNAKE_CASE = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=UpperCAmelCase__ , instance_count=UpperCAmelCase__ , instance_type=self.instance_type , debugger_hook_config=UpperCAmelCase__ , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=UpperCAmelCase__ , py_version="py36" , ) def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : Optional[int] ) -> Optional[Any]: TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : Optional[Any] ) -> List[str]: # create estimator __SCREAMING_SNAKE_CASE = self.create_estimator(UpperCAmelCase__ ) # run training estimator.fit() # result dataframe __SCREAMING_SNAKE_CASE = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __SCREAMING_SNAKE_CASE = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) __SCREAMING_SNAKE_CASE = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __SCREAMING_SNAKE_CASE = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , UpperCAmelCase__ )
553
1
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : str , _snake_case : str ) -> bool: '''simple docstring''' _A = get_failure_array(_snake_case ) # 2) Step through text searching for pattern _A , _A = 0, 0 # index into text, pattern while i < len(_snake_case ): if pattern[j] == text[i]: if j == (len(_snake_case ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _A = failure[j - 1] continue i += 1 return False def _snake_case ( _snake_case : str ) -> list[int]: '''simple docstring''' _A = [0] _A = 0 _A = 1 while j < len(_snake_case ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _A = failure[i - 1] continue j += 1 failure.append(_snake_case ) return failure if __name__ == "__main__": # Test 1) a = '''abc1abc12''' a = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' a = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) a = '''ABABX''' a = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) a = '''AAAB''' a = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) a = '''abcdabcy''' a = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) a = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
7
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''gpt_bigcode''' UpperCAmelCase : str = ['''past_key_values'''] UpperCAmelCase : Dict = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Tuple , _UpperCAmelCase : Dict=50_257 , _UpperCAmelCase : List[Any]=1_024 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : str="gelu_pytorch_tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=1E-5 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[Any]=50_256 , _UpperCAmelCase : Dict=50_256 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Any=True , **_UpperCAmelCase : Any , ): _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = n_inner _A = activation_function _A = resid_pdrop _A = embd_pdrop _A = attn_pdrop _A = layer_norm_epsilon _A = initializer_range _A = scale_attn_weights _A = use_cache _A = attention_softmax_in_fpaa _A = scale_attention_softmax_in_fpaa _A = multi_query _A = bos_token_id _A = eos_token_id super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
7
1
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str ) -> List[Any]: # picklable for multiprocessing return x.sum() def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: # picklable for multiprocessing return i + 1 @dataclass class __a : __a : int __a : str class __a (lowerCamelCase ): def UpperCAmelCase__ ( self : Tuple ) -> int: """simple docstring""" UpperCAmelCase_ : List[str] = {} UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : str = 1 UpperCAmelCase_ : int = [1, 2] UpperCAmelCase_ : str = {'''a''': 1, '''b''': 2} UpperCAmelCase_ : str = {'''a''': [1, 2], '''b''': [3, 4]} UpperCAmelCase_ : str = {'''a''': {'''1''': 1}, '''b''': 2} UpperCAmelCase_ : List[str] = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} UpperCAmelCase_ : Dict = {} UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[int] = 2 UpperCAmelCase_ : Optional[Any] = [2, 3] UpperCAmelCase_ : List[str] = {'''a''': 2, '''b''': 3} UpperCAmelCase_ : int = {'''a''': [2, 3], '''b''': [4, 5]} UpperCAmelCase_ : List[str] = {'''a''': {'''1''': 2}, '''b''': 3} UpperCAmelCase_ : Optional[int] = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) UpperCAmelCase_ : Dict = 2 self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) UpperCAmelCase_ : Optional[int] = {'''a''': np.eye(2 ), '''b''': np.zeros(3 ), '''c''': np.ones(2 )} UpperCAmelCase_ : str = {'''a''': 2, '''b''': 0, '''c''': 2} UpperCAmelCase_ : int = { '''a''': np.eye(2 ).astype(__magic_name__ ), '''b''': np.zeros(3 ).astype(__magic_name__ ), '''c''': np.ones(2 ).astype(__magic_name__ ), } self.assertEqual(map_nested(__magic_name__ , __magic_name__ , map_numpy=__magic_name__ ) , __magic_name__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__magic_name__ , __magic_name__ , map_numpy=__magic_name__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , map_numpy=__magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__magic_name__ , __magic_name__ , map_numpy=__magic_name__ , num_proc=__magic_name__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(__magic_name__ ): # can't pickle a local lambda map_nested(lambda __magic_name__ : x + 1 , __magic_name__ , num_proc=__magic_name__ ) def UpperCAmelCase__ ( self : Dict ) -> int: """simple docstring""" UpperCAmelCase_ : Optional[Any] = {'''a''': 1, '''b''': 2} UpperCAmelCase_ : Optional[int] = {'''a''': 3, '''b''': 4} UpperCAmelCase_ : Optional[int] = {'''a''': 5, '''b''': 6} UpperCAmelCase_ : Optional[int] = sorted([('''a''', (1, 3, 5)), ('''b''', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(__magic_name__ , __magic_name__ , __magic_name__ ) ) , __magic_name__ ) def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" class __a : __a : List[str] = "bar" UpperCAmelCase_ : Union[str, Any] = Foo() self.assertEqual(foo.my_attr , '''bar''' ) with temporary_assignment(__magic_name__ , '''my_attr''' , '''BAR''' ): self.assertEqual(foo.my_attr , '''BAR''' ) self.assertEqual(foo.my_attr , '''bar''' ) @pytest.mark.parametrize( '''iterable_length, num_proc, expected_num_proc''', [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ], ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]: with patch('''datasets.utils.py_utils._single_map_nested''' ) as mock_single_map_nested, patch( '''datasets.parallel.parallel.Pool''' ) as mock_multiprocessing_pool: UpperCAmelCase_ : List[str] = {F"""{i}""": i for i in range(SCREAMING_SNAKE_CASE__ )} UpperCAmelCase_ : int = map_nested(lambda SCREAMING_SNAKE_CASE__ : x + 10, SCREAMING_SNAKE_CASE__, num_proc=SCREAMING_SNAKE_CASE__, parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class __a (lowerCamelCase ): @require_tf def UpperCAmelCase__ ( self : str ) -> List[str]: """simple docstring""" import tensorflow as tf from tensorflow.keras import layers UpperCAmelCase_ : int = layers.Dense(2 ) def gen_random_output(): UpperCAmelCase_ : int = tf.random.uniform((1, 3) ) return model(__magic_name__ ).numpy() with temp_seed(42 , set_tensorflow=__magic_name__ ): UpperCAmelCase_ : int = gen_random_output() with temp_seed(42 , set_tensorflow=__magic_name__ ): UpperCAmelCase_ : List[Any] = gen_random_output() UpperCAmelCase_ : Optional[int] = gen_random_output() np.testing.assert_equal(__magic_name__ , __magic_name__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def UpperCAmelCase__ ( self : Optional[int] ) -> str: """simple docstring""" import torch def gen_random_output(): UpperCAmelCase_ : Optional[Any] = torch.nn.Linear(3 , 2 ) UpperCAmelCase_ : Tuple = torch.rand(1 , 3 ) return model(__magic_name__ ).detach().numpy() with temp_seed(42 , set_pytorch=__magic_name__ ): UpperCAmelCase_ : Union[str, Any] = gen_random_output() with temp_seed(42 , set_pytorch=__magic_name__ ): UpperCAmelCase_ : List[Any] = gen_random_output() UpperCAmelCase_ : List[Any] = gen_random_output() np.testing.assert_equal(__magic_name__ , __magic_name__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): UpperCAmelCase_ : List[str] = gen_random_output() with temp_seed(42 ): UpperCAmelCase_ : List[str] = gen_random_output() UpperCAmelCase_ : str = gen_random_output() np.testing.assert_equal(__magic_name__ , __magic_name__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize('''input_data''', [{}] ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any ) -> str: UpperCAmelCase_ : List[str] = NestedDataStructure(SCREAMING_SNAKE_CASE__ ).data assert output_data == input_data @pytest.mark.parametrize( '''data, expected_output''', [ ({}, []), ([], []), ('''foo''', ['''foo''']), (['''foo''', '''bar'''], ['''foo''', '''bar''']), ([['''foo''', '''bar''']], ['''foo''', '''bar''']), ([[['''foo'''], ['''bar''']]], ['''foo''', '''bar''']), ([[['''foo'''], '''bar''']], ['''foo''', '''bar''']), ({'''a''': 1, '''b''': 2}, [1, 2]), ({'''a''': [1, 2], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[[3], [4]]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, [4]]}, [1, 2, 3, 4]), ({'''a''': {'''1''': 1}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': [2]}, [1, 2]), ], ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : str ) -> Optional[Any]: UpperCAmelCase_ : List[str] = NestedDataStructure(SCREAMING_SNAKE_CASE__ ).flatten() assert output == expected_output def lowerCamelCase_ ( ) -> Dict: UpperCAmelCase_ : Union[str, Any] = A(x=1, y='''foobar''' ) UpperCAmelCase_ : int = {'''x''': 1, '''y''': '''foobar'''} assert asdict(SCREAMING_SNAKE_CASE__ ) == expected_output UpperCAmelCase_ : Tuple = {'''a''': {'''b''': A(x=10, y='''foo''' )}, '''c''': [A(x=20, y='''bar''' )]} UpperCAmelCase_ : List[Any] = {'''a''': {'''b''': {'''x''': 10, '''y''': '''foo'''}}, '''c''': [{'''x''': 20, '''y''': '''bar'''}]} assert asdict(SCREAMING_SNAKE_CASE__ ) == expected_output with pytest.raises(SCREAMING_SNAKE_CASE__ ): asdict([1, A(x=10, y='''foo''' )] ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]: return text.split() def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]: yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def lowerCamelCase_ ( ) -> Optional[int]: with Pool(2 ) as pool: UpperCAmelCase_ : List[Any] = list(iflatmap_unordered(SCREAMING_SNAKE_CASE__, _split_text, kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(SCREAMING_SNAKE_CASE__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: UpperCAmelCase_ : Optional[int] = list(iflatmap_unordered(SCREAMING_SNAKE_CASE__, _split_text, kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(SCREAMING_SNAKE_CASE__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: UpperCAmelCase_ : str = [] for yield_time, content in iflatmap_unordered( SCREAMING_SNAKE_CASE__, _aseconds_generator_of_aitems_with_timing, kwargs_iterable=[{'''content''': '''a'''}, {'''content''': '''b'''}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(SCREAMING_SNAKE_CASE__ ) assert out.count('''a''' ) == 2 assert out.count('''b''' ) == 2 assert len(SCREAMING_SNAKE_CASE__ ) == 4
644
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ : str = logging.get_logger(__name__) snake_case_ : int = "▁" snake_case_ : str = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} snake_case_ : int = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } snake_case_ : Optional[Any] = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } snake_case_ : Dict = { "ernie-m-base": 5_14, "ernie-m-large": 5_14, } snake_case_ : Any = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class __a (lowerCamelCase ): __a : List[str] = ["input_ids"] __a : Union[str, Any] = VOCAB_FILES_NAMES __a : Tuple = PRETRAINED_INIT_CONFIGURATION __a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = RESOURCE_FILES_NAMES def __init__( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : int=None , __magic_name__ : str=False , __magic_name__ : int="utf8" , __magic_name__ : Optional[int]="[UNK]" , __magic_name__ : Dict="[SEP]" , __magic_name__ : List[Any]="[PAD]" , __magic_name__ : str="[CLS]" , __magic_name__ : Optional[int]="[MASK]" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Union[str, Any] , ) -> None: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCAmelCase_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , vocab_file=__magic_name__ , encoding=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) UpperCAmelCase_ : Optional[Any] = do_lower_case UpperCAmelCase_ : List[str] = sentencepiece_model_ckpt UpperCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__magic_name__ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCAmelCase_ : List[Any] = self.load_vocab(filepath=__magic_name__ ) else: UpperCAmelCase_ : str = {self.sp_model.id_to_piece(__magic_name__ ): id for id in range(self.sp_model.get_piece_size() )} UpperCAmelCase_ : int = {v: k for k, v in self.vocab.items()} def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Any ) -> Any: """simple docstring""" if text is None: return None UpperCAmelCase_ : str = self.tokenize(__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ : str = '''''', [] for i, ch in enumerate(__magic_name__ ): if ch in self.SP_CHAR_MAPPING: UpperCAmelCase_ : Optional[int] = self.SP_CHAR_MAPPING.get(__magic_name__ ) else: UpperCAmelCase_ : Union[str, Any] = unicodedata.normalize('''NFKC''' , __magic_name__ ) if self.is_whitespace(__magic_name__ ): continue normalized_text += ch char_mapping.extend([i] * len(__magic_name__ ) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = normalized_text, [], 0 if self.do_lower_case: UpperCAmelCase_ : Optional[int] = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCAmelCase_ : Tuple = token[1:] UpperCAmelCase_ : int = text[offset:].index(__magic_name__ ) + offset UpperCAmelCase_ : Optional[int] = start + len(__magic_name__ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCAmelCase_ : int = end return token_mapping @property def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" return len(self.vocab ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : str ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.__dict__.copy() UpperCAmelCase_ : Optional[Any] = None return state def __setstate__( self : str , __magic_name__ : Any ) -> Dict: """simple docstring""" UpperCAmelCase_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase_ : int = {} UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Any ) -> List[str]: """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(__magic_name__ , __magic_name__ ) for c in text) ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Any=False , __magic_name__ : List[str]=64 , __magic_name__ : List[str]=0.1 ) -> List[str]: """simple docstring""" if self.sp_model_kwargs.get('''enable_sampling''' ) is True: UpperCAmelCase_ : Dict = True if self.sp_model_kwargs.get('''alpha''' ) is not None: UpperCAmelCase_ : Union[str, Any] = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: UpperCAmelCase_ : Any = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: UpperCAmelCase_ : Dict = self.sp_model.EncodeAsPieces(__magic_name__ ) else: UpperCAmelCase_ : Dict = self.sp_model.SampleEncodeAsPieces(__magic_name__ , __magic_name__ , __magic_name__ ) UpperCAmelCase_ : List[Any] = [] for pi, piece in enumerate(__magic_name__ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__magic_name__ ) and pi != 0: new_pieces.append(__magic_name__ ) continue else: continue UpperCAmelCase_ : List[str] = 0 for i, chunk in enumerate(__magic_name__ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__magic_name__ ) or self.is_punct(__magic_name__ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__magic_name__ ) UpperCAmelCase_ : List[Any] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase_ : List[str] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase_ : str = i if len(__magic_name__ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip() return out_string def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : str = self.convert_ids_to_tokens(__magic_name__ ) UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip() return out_string def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.reverse_vocab.get(__magic_name__ , self.unk_token ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any , __magic_name__ : Union[str, Any]=None ) -> Any: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id] UpperCAmelCase_ : List[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None , __magic_name__ : Optional[Any]=False ) -> Optional[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1] return [1] + ([0] * len(__magic_name__ )) + [1] def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(__magic_name__ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__magic_name__ ) + 1) + [1] * (len(__magic_name__ ) + 3) def UpperCAmelCase__ ( self : Dict , __magic_name__ : str ) -> Tuple: """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[int] ) -> str: """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] ) -> Dict: """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__magic_name__ ) == 1: UpperCAmelCase_ : Optional[Any] = unicodedata.category(__magic_name__ ) if cat == "Zs": return True return False def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Tuple ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = {} with io.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(__magic_name__ ): UpperCAmelCase_ : List[Any] = line.rstrip('''\n''' ) UpperCAmelCase_ : Dict = int(__magic_name__ ) return token_to_idx def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = 0 if os.path.isdir(__magic_name__ ): UpperCAmelCase_ : Any = os.path.join( __magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: UpperCAmelCase_ : List[str] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __magic_name__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) UpperCAmelCase_ : Dict = token_index writer.write(token + '''\n''' ) index += 1 UpperCAmelCase_ : Union[str, Any] = os.path.join(__magic_name__ , '''sentencepiece.bpe.model''' ) with open(__magic_name__ , '''wb''' ) as fi: UpperCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (vocab_file,)
644
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = """deta""" _a = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , lowerCAmelCase=None , lowerCAmelCase=900 , lowerCAmelCase=2_048 , lowerCAmelCase=6 , lowerCAmelCase=2_048 , lowerCAmelCase=8 , lowerCAmelCase=6 , lowerCAmelCase=1_024 , lowerCAmelCase=8 , lowerCAmelCase=0.0 , lowerCAmelCase=True , lowerCAmelCase="relu" , lowerCAmelCase=256 , lowerCAmelCase=0.1 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.02 , lowerCAmelCase=1.0 , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase="sine" , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=4 , lowerCAmelCase=True , lowerCAmelCase=300 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=1 , lowerCAmelCase=5 , lowerCAmelCase=2 , lowerCAmelCase=1 , lowerCAmelCase=1 , lowerCAmelCase=5 , lowerCAmelCase=2 , lowerCAmelCase=0.1 , lowerCAmelCase=0.25 , **lowerCAmelCase , ) -> Tuple: '''simple docstring''' if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _lowercase =CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4'] ) else: if isinstance(lowerCAmelCase , lowerCAmelCase ): _lowercase =backbone_config.pop('model_type' ) _lowercase =CONFIG_MAPPING[backbone_model_type] _lowercase =config_class.from_dict(lowerCAmelCase ) _lowercase =backbone_config _lowercase =num_queries _lowercase =max_position_embeddings _lowercase =d_model _lowercase =encoder_ffn_dim _lowercase =encoder_layers _lowercase =encoder_attention_heads _lowercase =decoder_ffn_dim _lowercase =decoder_layers _lowercase =decoder_attention_heads _lowercase =dropout _lowercase =attention_dropout _lowercase =activation_dropout _lowercase =activation_function _lowercase =init_std _lowercase =init_xavier_std _lowercase =encoder_layerdrop _lowercase =auxiliary_loss _lowercase =position_embedding_type # deformable attributes _lowercase =num_feature_levels _lowercase =encoder_n_points _lowercase =decoder_n_points _lowercase =two_stage _lowercase =two_stage_num_proposals _lowercase =with_box_refine _lowercase =assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher _lowercase =class_cost _lowercase =bbox_cost _lowercase =giou_cost # Loss coefficients _lowercase =mask_loss_coefficient _lowercase =dice_loss_coefficient _lowercase =bbox_loss_coefficient _lowercase =giou_loss_coefficient _lowercase =eos_coefficient _lowercase =focal_alpha super().__init__(is_encoder_decoder=lowerCAmelCase , **lowerCAmelCase ) @property def A__ ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def A__ ( self ) -> int: '''simple docstring''' return self.d_model def A__ ( self ) -> int: '''simple docstring''' _lowercase =copy.deepcopy(self.__dict__ ) _lowercase =self.backbone_config.to_dict() _lowercase =self.__class__.model_type return output
291
import os import re import shutil import sys import tempfile import unittest import black lowercase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. lowercase_ = ' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class __lowerCAmelCase ( unittest.TestCase ): def A__ ( self ) -> Tuple: '''simple docstring''' _lowercase =tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , 'models/bert/' ) ) _lowercase =self.transformer_dir shutil.copy( os.path.join(lowerCAmelCase , 'src/transformers/models/bert/modeling_bert.py' ) , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py' ) , ) def A__ ( self ) -> Optional[int]: '''simple docstring''' _lowercase ='src/transformers' shutil.rmtree(self.transformer_dir ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None ) -> str: '''simple docstring''' _lowercase =comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _lowercase =comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _lowercase =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowercase =black.format_str(lowerCAmelCase , mode=lowerCAmelCase ) _lowercase =os.path.join(self.transformer_dir , 'new_code.py' ) with open(lowerCAmelCase , 'w' , newline='\n' ) as f: f.write(lowerCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase ) with open(lowerCAmelCase , 'r' ) as f: self.assertTrue(f.read() , lowerCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' _lowercase =check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def A__ ( self ) -> str: '''simple docstring''' self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , lowerCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , lowerCAmelCase ) , ) # Copy consistency with a really long name _lowercase ='TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub('Bert' , lowerCAmelCase , lowerCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , lowerCAmelCase , overwrite_result=re.sub('Bert' , 'TestModel' , lowerCAmelCase ) , ) def A__ ( self ) -> List[str]: '''simple docstring''' _lowercase =check_copies.LOCALIZED_READMES['README_zh-hans.md'] _lowercase =( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) _lowercase =( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowercase =( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) _lowercase , _lowercase =check_copies.convert_to_localized_md( lowerCAmelCase , lowerCAmelCase , localized_readme['format_model_list'] ) self.assertFalse(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) _lowercase , _lowercase =check_copies.convert_to_localized_md( lowerCAmelCase , lowerCAmelCase , localized_readme['format_model_list'] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCAmelCase ) _lowercase =( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) _lowercase =( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowercase =( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowercase , _lowercase =check_copies.convert_to_localized_md( lowerCAmelCase , lowerCAmelCase , localized_readme['format_model_list'] ) # Check if the model link is synchronized. self.assertEqual(lowerCAmelCase , lowerCAmelCase )
291
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ : List[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[str] , *lowercase__ : List[str] , **lowercase__ : List[Any] ) ->None: '''simple docstring''' warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , lowercase__ , ) super().__init__(*lowercase__ , **lowercase__ )
204
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCAmelCase_ : int = logging.get_logger(__name__) lowerCAmelCase_ : Any = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__ = '''gptj''' UpperCAmelCase__ = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Optional[Any] , lowercase__ : Union[str, Any]=50_400 , lowercase__ : Union[str, Any]=2_048 , lowercase__ : Tuple=4_096 , lowercase__ : List[str]=28 , lowercase__ : Optional[int]=16 , lowercase__ : str=64 , lowercase__ : Any=None , lowercase__ : Any="gelu_new" , lowercase__ : Union[str, Any]=0.0 , lowercase__ : Optional[Any]=0.0 , lowercase__ : Any=0.0 , lowercase__ : Tuple=1e-5 , lowercase__ : Any=0.0_2 , lowercase__ : int=True , lowercase__ : int=50_256 , lowercase__ : Any=50_256 , lowercase__ : Tuple=False , **lowercase__ : str , ) ->Optional[Any]: '''simple docstring''' _UpperCamelCase : Dict = vocab_size _UpperCamelCase : List[str] = n_positions _UpperCamelCase : Union[str, Any] = n_embd _UpperCamelCase : Union[str, Any] = n_layer _UpperCamelCase : Optional[Any] = n_head _UpperCamelCase : Dict = n_inner _UpperCamelCase : Optional[Any] = rotary_dim _UpperCamelCase : Tuple = activation_function _UpperCamelCase : List[Any] = resid_pdrop _UpperCamelCase : Any = embd_pdrop _UpperCamelCase : Optional[Any] = attn_pdrop _UpperCamelCase : Optional[Any] = layer_norm_epsilon _UpperCamelCase : Union[str, Any] = initializer_range _UpperCamelCase : Optional[int] = use_cache _UpperCamelCase : str = bos_token_id _UpperCamelCase : Any = eos_token_id super().__init__( bos_token_id=lowercase__ , eos_token_id=lowercase__ , tie_word_embeddings=lowercase__ , **lowercase__ ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[int] , lowercase__ : PretrainedConfig , lowercase__ : str = "default" , lowercase__ : List[PatchingSpec] = None , lowercase__ : bool = False , ) ->Union[str, Any]: '''simple docstring''' super().__init__(lowercase__ , task=lowercase__ , patching_specs=lowercase__ , use_past=lowercase__ ) if not getattr(self._config , "pad_token_id" , lowercase__ ): # TODO: how to do that better? _UpperCamelCase : Optional[int] = 0 @property def snake_case__ ( self : List[str] ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' _UpperCamelCase : List[str] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(lowercase__ , direction="inputs" ) _UpperCamelCase : str = {0: "batch", 1: "past_sequence + sequence"} else: _UpperCamelCase : Optional[Any] = {0: "batch", 1: "sequence"} return common_inputs @property def snake_case__ ( self : int ) ->int: '''simple docstring''' return self._config.n_layer @property def snake_case__ ( self : Dict ) ->int: '''simple docstring''' return self._config.n_head def snake_case__ ( self : int , lowercase__ : PreTrainedTokenizer , lowercase__ : int = -1 , lowercase__ : int = -1 , lowercase__ : bool = False , lowercase__ : Optional[TensorType] = None , ) ->Mapping[str, Any]: '''simple docstring''' _UpperCamelCase : int = super(lowercase__ , self ).generate_dummy_inputs( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__ ) # We need to order the input in the way they appears in the forward() _UpperCamelCase : Tuple = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _UpperCamelCase , _UpperCamelCase : Optional[Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values _UpperCamelCase : Optional[int] = seqlen + 2 _UpperCamelCase : str = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _UpperCamelCase : Dict = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(self.num_layers ) ] _UpperCamelCase : str = common_inputs["attention_mask"] if self.use_past: _UpperCamelCase : int = ordered_inputs["attention_mask"].dtype _UpperCamelCase : Optional[int] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(lowercase__ , lowercase__ , dtype=lowercase__ )] , dim=1 ) return ordered_inputs @property def snake_case__ ( self : Tuple ) ->int: '''simple docstring''' return 13
204
1
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType a_ : int = get_logger(__name__) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=0 ): """simple docstring""" os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) with FSDP.state_dict_type( UpperCAmelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowerCamelCase = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowerCamelCase = F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" lowerCamelCase = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) if accelerator.process_index == 0: logger.info(F"""Saving model to {output_model_file}""" ) torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowerCamelCase = ( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) lowerCamelCase = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) logger.info(F"""Saving model to {output_model_file}""" ) torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowerCamelCase = os.path.join(UpperCAmelCase__ , F"""{MODEL_NAME}_{model_index}""" ) os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) logger.info(F"""Saving model to {ckpt_dir}""" ) lowerCamelCase = {"model": state_dict} dist_cp.save_state_dict( state_dict=UpperCAmelCase__ , storage_writer=dist_cp.FileSystemWriter(UpperCAmelCase__ ) , planner=DefaultSavePlanner() , ) logger.info(F"""Model saved to {ckpt_dir}""" ) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=0 ): """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( UpperCAmelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(UpperCAmelCase__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return lowerCamelCase = F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" lowerCamelCase = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) logger.info(F"""Loading model from {input_model_file}""" ) lowerCamelCase = torch.load(UpperCAmelCase__ ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowerCamelCase = ( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) lowerCamelCase = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) logger.info(F"""Loading model from {input_model_file}""" ) lowerCamelCase = torch.load(UpperCAmelCase__ ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowerCamelCase = ( os.path.join(UpperCAmelCase__ , F"""{MODEL_NAME}_{model_index}""" ) if F"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading model from {ckpt_dir}""" ) lowerCamelCase = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=UpperCAmelCase__ , storage_reader=dist_cp.FileSystemReader(UpperCAmelCase__ ) , planner=DefaultLoadPlanner() , ) lowerCamelCase = state_dict["model"] logger.info(F"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(UpperCAmelCase__ ) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=0 ): """simple docstring""" os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) with FSDP.state_dict_type( UpperCAmelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowerCamelCase = FSDP.optim_state_dict(UpperCAmelCase__ , UpperCAmelCase__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: lowerCamelCase = ( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) lowerCamelCase = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) logger.info(F"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) logger.info(F"""Optimizer state saved in {output_optimizer_file}""" ) else: lowerCamelCase = os.path.join(UpperCAmelCase__ , F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) logger.info(F"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(UpperCAmelCase__ ) , planner=DefaultSavePlanner() , ) logger.info(F"""Optimizer state saved in {ckpt_dir}""" ) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=0 ): """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( UpperCAmelCase__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowerCamelCase = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: lowerCamelCase = ( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) lowerCamelCase = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) logger.info(F"""Loading Optimizer state from {input_optimizer_file}""" ) lowerCamelCase = torch.load(UpperCAmelCase__ ) logger.info(F"""Optimizer state loaded from {input_optimizer_file}""" ) else: lowerCamelCase = ( os.path.join(UpperCAmelCase__ , F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if F"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading Optimizer from {ckpt_dir}""" ) lowerCamelCase = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(UpperCAmelCase__ ) , ) lowerCamelCase = optim_state["optimizer"] logger.info(F"""Optimizer loaded from {ckpt_dir}""" ) lowerCamelCase = FSDP.optim_state_dict_to_load(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) optimizer.load_state_dict(UpperCAmelCase__ )
623
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ : Tuple = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys a_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
623
1
import heapq def _SCREAMING_SNAKE_CASE ( a ) -> set[int]: __A : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(a , [-1 * len(a ), (key, value)] ) # chosen_vertices = set of chosen vertices __A : List[str] = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __A : str = heapq.heappop(a )[1][0] chosen_vertices.add(a ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __A : Optional[int] = elem[1][1].index(a ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(a ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : Union[str, Any] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
77
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class _A( nn.Module ): """simple docstring""" def __init__( self ): super().__init__() __A : List[str] = nn.Linear(3 , 4 ) __A : Optional[Any] = nn.BatchNormad(4 ) __A : List[Any] = nn.Linear(4 , 5 ) def UpperCAmelCase_ ( self , _A ): return self.lineara(self.batchnorm(self.lineara(_A ) ) ) class _A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): __A : Dict = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(_A , model.state_dict() ) __A : str = os.path.join(_A , 'index.json' ) self.assertTrue(os.path.isfile(_A ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: __A : Optional[int] = os.path.join(_A , F"""{key}.dat""" ) self.assertTrue(os.path.isfile(_A ) ) # TODO: add tests on the fact weights are properly loaded def UpperCAmelCase_ ( self ): __A : Dict = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: __A : Tuple = torch.randn(2 , 3 , dtype=_A ) with TemporaryDirectory() as tmp_dir: __A : int = offload_weight(_A , 'weight' , _A , {} ) __A : Union[str, Any] = os.path.join(_A , 'weight.dat' ) self.assertTrue(os.path.isfile(_A ) ) self.assertDictEqual(_A , {'weight': {'shape': [2, 3], 'dtype': str(_A ).split('.' )[1]}} ) __A : List[str] = load_offloaded_weight(_A , index['weight'] ) self.assertTrue(torch.equal(_A , _A ) ) def UpperCAmelCase_ ( self ): __A : int = ModelForTest() __A : Union[str, Any] = model.state_dict() __A : Optional[Any] = {k: v for k, v in state_dict.items() if 'linear2' not in k} __A : str = {k: v for k, v in state_dict.items() if 'linear2' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(_A , _A ) __A : List[str] = OffloadedWeightsLoader(state_dict=_A , save_folder=_A ) # Every key is there with the right value self.assertEqual(sorted(_A ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_A , weight_map[key] ) ) __A : Union[str, Any] = {k: v for k, v in state_dict.items() if 'weight' in k} __A : List[Any] = {k: v for k, v in state_dict.items() if 'weight' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(_A , _A ) __A : Optional[int] = OffloadedWeightsLoader(state_dict=_A , save_folder=_A ) # Every key is there with the right value self.assertEqual(sorted(_A ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_A , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(_A , _A ) # Duplicates are removed __A : str = OffloadedWeightsLoader(state_dict=_A , save_folder=_A ) # Every key is there with the right value self.assertEqual(sorted(_A ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_A , weight_map[key] ) ) def UpperCAmelCase_ ( self ): __A : Dict = {'a.1': 0, 'a.10': 1, 'a.2': 2} __A : str = extract_submodules_state_dict(_A , ['a.1', 'a.2'] ) self.assertDictEqual(_A , {'a.1': 0, 'a.2': 2} ) __A : Optional[Any] = {'a.1.a': 0, 'a.10.a': 1, 'a.2.a': 2} __A : Any = extract_submodules_state_dict(_A , ['a.1', 'a.2'] ) self.assertDictEqual(_A , {'a.1.a': 0, 'a.2.a': 2} )
77
1