code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
58
def UpperCamelCase ( snake_case__ : list ): '''simple docstring''' if not grid or not grid[0]: raise TypeError("""The grid does not contain the appropriate information""" ) for cell_n in range(1 ,len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] __snake_case :str = grid[0] for row_n in range(1 ,len(snake_case__ ) ): __snake_case :Optional[int] = grid[row_n] __snake_case :Optional[Any] = fill_row(snake_case__ ,snake_case__ ) __snake_case :Dict = grid[row_n] return grid[-1][-1] def UpperCamelCase ( snake_case__ : list ,snake_case__ : list ): '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 ,len(snake_case__ ) ): current_row[cell_n] += min(current_row[cell_n - 1] ,row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
455
0
'''simple docstring''' def __UpperCAmelCase ( UpperCamelCase__ :Optional[Any] , UpperCamelCase__ :str ) -> Dict: return price * (1 + tax_rate) if __name__ == "__main__": print(F"{price_plus_tax(100, 0.25) = }") print(F"{price_plus_tax(125.50, 0.05) = }")
709
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any ={ "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict =["ConditionalDetrFeatureExtractor"] _lowercase : Optional[int] =["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] =[ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
574
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _snake_case = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } _snake_case = {'''mobilebert-uncased''': 512} _snake_case = {} class _snake_case ( _lowercase ): lowerCamelCase__: Any = VOCAB_FILES_NAMES lowerCamelCase__: Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: int = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__: Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: List[Any] = MobileBertTokenizer def __init__( self: Dict , __lowerCamelCase: List[str]=None , __lowerCamelCase: str=None , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: List[Any]="[UNK]" , __lowerCamelCase: int="[SEP]" , __lowerCamelCase: Optional[Any]="[PAD]" , __lowerCamelCase: Optional[Any]="[CLS]" , __lowerCamelCase: Optional[Any]="[MASK]" , __lowerCamelCase: List[str]=True , __lowerCamelCase: Tuple=None , **__lowerCamelCase: Optional[int] , ) -> str: super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __lowerCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __lowerCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __lowerCamelCase ) != tokenize_chinese_chars ): __UpperCAmelCase : str = getattr(__lowerCamelCase , normalizer_state.pop("type" ) ) __UpperCAmelCase : Dict = do_lower_case __UpperCAmelCase : Union[str, Any] = strip_accents __UpperCAmelCase : Tuple = tokenize_chinese_chars __UpperCAmelCase : Union[str, Any] = normalizer_class(**__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = do_lower_case def _lowerCamelCase ( self: int , __lowerCamelCase: Optional[int] , __lowerCamelCase: Union[str, Any]=None ) -> Tuple: __UpperCAmelCase : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self: str , __lowerCamelCase: List[str] , __lowerCamelCase: Any = None ) -> List[int]: __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self: Any , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] = None ) -> Tuple[str]: __UpperCAmelCase : List[Any] = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase )
382
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. UpperCAmelCase_ = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class __lowercase ( unittest.TestCase ): _a = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _a = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _a = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _a = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Optional[Any]: __a = ZeroShotClassificationPipeline( model=UpperCamelCase , tokenizer=UpperCamelCase , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase ) -> Tuple: __a = classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(UpperCamelCase , {'sequence': ANY(UpperCamelCase ), 'labels': [ANY(UpperCamelCase )], 'scores': [ANY(UpperCamelCase )]} ) # No kwarg __a = classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(UpperCamelCase , {'sequence': ANY(UpperCamelCase ), 'labels': [ANY(UpperCamelCase )], 'scores': [ANY(UpperCamelCase )]} ) __a = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(UpperCamelCase , {'sequence': ANY(UpperCamelCase ), 'labels': [ANY(UpperCamelCase )], 'scores': [ANY(UpperCamelCase )]} ) __a = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( UpperCamelCase , {'sequence': ANY(UpperCamelCase ), 'labels': [ANY(UpperCamelCase ), ANY(UpperCamelCase )], 'scores': [ANY(UpperCamelCase ), ANY(UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) __a = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( UpperCamelCase , {'sequence': ANY(UpperCamelCase ), 'labels': [ANY(UpperCamelCase ), ANY(UpperCamelCase )], 'scores': [ANY(UpperCamelCase ), ANY(UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) __a = classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(UpperCamelCase , {'sequence': ANY(UpperCamelCase ), 'labels': [ANY(UpperCamelCase )], 'scores': [ANY(UpperCamelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 __a = classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( UpperCamelCase , [ {'sequence': ANY(UpperCamelCase ), 'labels': [ANY(UpperCamelCase ), ANY(UpperCamelCase )], 'scores': [ANY(UpperCamelCase ), ANY(UpperCamelCase )]} for i in range(1 ) ] , ) __a = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( UpperCamelCase , [ {'sequence': ANY(UpperCamelCase ), 'labels': [ANY(UpperCamelCase ), ANY(UpperCamelCase )], 'scores': [ANY(UpperCamelCase ), ANY(UpperCamelCase )]} for i in range(2 ) ] , ) with self.assertRaises(UpperCamelCase ): classifier('' , candidate_labels='politics' ) with self.assertRaises(UpperCamelCase ): classifier(UpperCamelCase , candidate_labels='politics' ) with self.assertRaises(UpperCamelCase ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(UpperCamelCase ): classifier('Who are you voting for in 2020?' , candidate_labels=UpperCamelCase ) with self.assertRaises(UpperCamelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(UpperCamelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=UpperCamelCase , ) self.run_entailment_id(UpperCamelCase ) def UpperCamelCase__ ( self , UpperCamelCase ) -> Optional[int]: __a = zero_shot_classifier.model.config __a = config.labelaid __a = zero_shot_classifier.entailment_id __a = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) __a = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) __a = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) __a = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) __a = original_labelaid self.assertEqual(UpperCamelCase , zero_shot_classifier.entailment_id ) @require_torch def UpperCamelCase__ ( self ) -> Tuple: __a = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def UpperCamelCase__ ( self ) -> List[str]: __a = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) __a = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCamelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } , ) @require_tf def UpperCamelCase__ ( self ) -> Dict: __a = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) __a = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCamelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], } , ) @slow @require_torch def UpperCamelCase__ ( self ) -> List[str]: __a = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) __a = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCamelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } , ) __a = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=UpperCamelCase , ) self.assertEqual( nested_simplify(UpperCamelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def UpperCamelCase__ ( self ) -> Union[str, Any]: __a = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) __a = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCamelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], } , ) __a = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=UpperCamelCase , ) self.assertEqual( nested_simplify(UpperCamelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], } , )
539
0
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin a__ : int = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class a_ ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaTokenizer __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : List[str] = True def __lowerCAmelCase ( self ) ->Dict: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Union[str, Any] = SpeechTaTokenizer(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = AddedToken('''<mask>''' , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : List[str] = "this is a test" SCREAMING_SNAKE_CASE : Union[str, Any] = "this is a test" return input_text, output_text def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=20 , _lowerCamelCase=5 ) ->int: SCREAMING_SNAKE_CASE : Optional[int] = self.get_input_output_texts(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = tokenizer.decode(_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) return text, ids def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : str = "<pad>" SCREAMING_SNAKE_CASE : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-4] , '''œ''' ) self.assertEqual(vocab_keys[-2] , '''<mask>''' ) self.assertEqual(vocab_keys[-1] , '''<ctc_blank>''' ) self.assertEqual(len(_lowerCamelCase ) , 81 ) def __lowerCAmelCase ( self ) ->Any: self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Dict = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): SCREAMING_SNAKE_CASE : int = tokenizer.vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = len(_lowerCamelCase ) self.assertNotEqual(_lowerCamelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) SCREAMING_SNAKE_CASE : Dict = ["aaaaa bbbbbb", "cccccccccdddddddd"] SCREAMING_SNAKE_CASE : Dict = tokenizer.add_tokens(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.vocab_size SCREAMING_SNAKE_CASE : List[str] = len(_lowerCamelCase ) self.assertNotEqual(_lowerCamelCase , 0 ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(_lowerCamelCase , len(_lowerCamelCase ) ) self.assertEqual(_lowerCamelCase , all_size + len(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=_lowerCamelCase ) self.assertGreaterEqual(len(_lowerCamelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) SCREAMING_SNAKE_CASE : Optional[int] = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} SCREAMING_SNAKE_CASE : List[Any] = tokenizer.add_special_tokens(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.vocab_size SCREAMING_SNAKE_CASE : Optional[int] = len(_lowerCamelCase ) self.assertNotEqual(_lowerCamelCase , 0 ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(_lowerCamelCase , len(_lowerCamelCase ) ) self.assertEqual(_lowerCamelCase , all_size_a + len(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Dict = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=_lowerCamelCase ) self.assertGreaterEqual(len(_lowerCamelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def __lowerCAmelCase ( self ) ->List[Any]: pass def __lowerCAmelCase ( self ) ->Any: pass def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : str = tokenizer.tokenize('''This is a test''' ) # fmt: off self.assertListEqual(_lowerCamelCase , [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t'''] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) # fmt: off self.assertListEqual(_lowerCamelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) @slow def __lowerCAmelCase ( self ) ->Union[str, Any]: # Use custom sequence because this tokenizer does not handle numbers. SCREAMING_SNAKE_CASE : List[str] = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off SCREAMING_SNAKE_CASE : Dict = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''microsoft/speecht5_asr''' , revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' , sequences=_lowerCamelCase , )
715
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = AutoencoderKL __SCREAMING_SNAKE_CASE : Optional[int] = 'sample' __SCREAMING_SNAKE_CASE : Any = 1E-2 @property def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[Any] = 4 SCREAMING_SNAKE_CASE : List[Any] = 3 SCREAMING_SNAKE_CASE : int = (32, 32) SCREAMING_SNAKE_CASE : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCamelCase ) return {"sample": image} @property def __lowerCAmelCase ( self ) ->str: return (3, 32, 32) @property def __lowerCAmelCase ( self ) ->Dict: return (3, 32, 32) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def __lowerCAmelCase ( self ) ->Dict: pass def __lowerCAmelCase ( self ) ->Optional[Any]: pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def __lowerCAmelCase ( self ) ->Dict: # enable deterministic behavior for gradient checkpointing SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE : Optional[Any] = self.model_class(**_lowerCamelCase ) model.to(_lowerCamelCase ) assert not model.is_gradient_checkpointing and model.training SCREAMING_SNAKE_CASE : Tuple = model(**_lowerCamelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn_like(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing SCREAMING_SNAKE_CASE : str = self.model_class(**_lowerCamelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_lowerCamelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training SCREAMING_SNAKE_CASE : Any = model_a(**_lowerCamelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() SCREAMING_SNAKE_CASE : Tuple = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) SCREAMING_SNAKE_CASE : List[Any] = dict(model.named_parameters() ) SCREAMING_SNAKE_CASE : Optional[int] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) SCREAMING_SNAKE_CASE : Dict = model.to(_lowerCamelCase ) model.eval() if torch_device == "mps": SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) else: SCREAMING_SNAKE_CASE : Optional[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE : List[Any] = image.to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(_lowerCamelCase , sample_posterior=_lowerCamelCase , generator=_lowerCamelCase ).sample SCREAMING_SNAKE_CASE : Union[str, Any] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": SCREAMING_SNAKE_CASE : str = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: SCREAMING_SNAKE_CASE : Dict = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(_lowerCamelCase , _lowerCamelCase , rtol=1e-2 ) ) @slow class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Union[str, Any]: return F"""gaussian_noise_s={seed}_shape={"_".join([str(_lowerCamelCase ) for s in shape] )}.npy""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self , _lowerCamelCase=0 , _lowerCamelCase=(4, 3, 512, 512) , _lowerCamelCase=False ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = torch.floataa if fpaa else torch.floataa SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(load_hf_numpy(self.get_file_format(_lowerCamelCase , _lowerCamelCase ) ) ).to(_lowerCamelCase ).to(_lowerCamelCase ) return image def __lowerCAmelCase ( self , _lowerCamelCase="CompVis/stable-diffusion-v1-4" , _lowerCamelCase=False ) ->List[Any]: SCREAMING_SNAKE_CASE : List[str] = '''fp16''' if fpaa else None SCREAMING_SNAKE_CASE : Dict = torch.floataa if fpaa else torch.floataa SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL.from_pretrained( _lowerCamelCase , subfolder='''vae''' , torch_dtype=_lowerCamelCase , revision=_lowerCamelCase , ) model.to(_lowerCamelCase ).eval() return model def __lowerCAmelCase ( self , _lowerCamelCase=0 ) ->Optional[int]: if torch_device == "mps": return torch.manual_seed(_lowerCamelCase ) return torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : List[str] = self.get_sd_image(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.get_generator(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , generator=_lowerCamelCase , sample_posterior=_lowerCamelCase ).sample assert sample.shape == image.shape SCREAMING_SNAKE_CASE : Any = sample[-1, -2:, -2:, :2].flatten().float().cpu() SCREAMING_SNAKE_CASE : Any = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_sd_vae_model(fpaa=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_sd_image(_lowerCamelCase , fpaa=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.get_generator(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(_lowerCamelCase , generator=_lowerCamelCase , sample_posterior=_lowerCamelCase ).sample assert sample.shape == image.shape SCREAMING_SNAKE_CASE : Optional[int] = sample[-1, -2:, :2, -2:].flatten().float().cpu() SCREAMING_SNAKE_CASE : str = torch.tensor(_lowerCamelCase ) assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Optional[int]: SCREAMING_SNAKE_CASE : Dict = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : List[str] = self.get_sd_image(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model(_lowerCamelCase ).sample assert sample.shape == image.shape SCREAMING_SNAKE_CASE : Dict = sample[-1, -2:, -2:, :2].flatten().float().cpu() SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : str = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : List[str] = self.get_sd_image(_lowerCamelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model.decode(_lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] SCREAMING_SNAKE_CASE : Any = sample[-1, -2:, :2, -2:].flatten().cpu() SCREAMING_SNAKE_CASE : Tuple = torch.tensor(_lowerCamelCase ) assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : int = self.get_sd_vae_model(fpaa=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_sd_image(_lowerCamelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model.decode(_lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] SCREAMING_SNAKE_CASE : str = sample[-1, -2:, :2, -2:].flatten().float().cpu() SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(_lowerCamelCase ) assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_sd_vae_model(fpaa=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_sd_image(_lowerCamelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model.decode(_lowerCamelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model.decode(_lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : int = self.get_sd_image(_lowerCamelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model.decode(_lowerCamelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model.decode(_lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : int = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : List[str] = self.get_sd_image(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.get_generator(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model.encode(_lowerCamelCase ).latent_dist SCREAMING_SNAKE_CASE : int = dist.sample(generator=_lowerCamelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] SCREAMING_SNAKE_CASE : Optional[Any] = sample[0, -1, -3:, -3:].flatten().cpu() SCREAMING_SNAKE_CASE : List[str] = torch.tensor(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = 3e-3 if torch_device != '''mps''' else 1e-2 assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=_lowerCamelCase )
333
0
"""simple docstring""" import unittest from knapsack import knapsack as k class snake_case_ ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ): """simple docstring""" A__ = 0 A__ = [0] A__ = [0] A__ = len(__a ) self.assertEqual(k.knapsack(__a , __a , __a , __a ) , 0 ) A__ = [60] A__ = [10] A__ = len(__a ) self.assertEqual(k.knapsack(__a , __a , __a , __a ) , 0 ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = 3 A__ = [1, 2, 3] A__ = [3, 2, 1] A__ = len(__a ) self.assertEqual(k.knapsack(__a , __a , __a , __a ) , 5 ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = 50 A__ = [60, 100, 120] A__ = [10, 20, 30] A__ = len(__a ) self.assertEqual(k.knapsack(__a , __a , __a , __a ) , 220 ) if __name__ == "__main__": unittest.main()
260
"""simple docstring""" from collections.abc import Callable def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): A__ = a A__ = b if function(lowerCAmelCase__ ) == 0: # one of the a or b is a root for the function return a elif function(lowerCAmelCase__ ) == 0: return b elif ( function(lowerCAmelCase__ ) * function(lowerCAmelCase__ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: A__ = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(lowerCAmelCase__ ) == 0: return mid elif function(lowerCAmelCase__ ) * function(lowerCAmelCase__ ) < 0: A__ = mid else: A__ = mid A__ = start + (end - start) / 2.0 return mid def __lowerCamelCase ( lowerCAmelCase__ ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
260
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ : str = logging.get_logger(__name__) lowerCamelCase_ : List[Any] = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ : Any = """mobilenet_v1""" def __init__( self , snake_case_=3 , snake_case_=2_2_4 , snake_case_=1.0 , snake_case_=8 , snake_case_="relu6" , snake_case_=True , snake_case_=0.9_99 , snake_case_=0.02 , snake_case_=0.0_01 , **snake_case_ , ): """simple docstring""" super().__init__(**snake_case_ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) A_ : List[Any] = num_channels A_ : Optional[int] = image_size A_ : List[Any] = depth_multiplier A_ : List[Any] = min_depth A_ : str = hidden_act A_ : Any = tf_padding A_ : int = classifier_dropout_prob A_ : int = initializer_range A_ : Optional[Any] = layer_norm_eps class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ : Dict = version.parse("""1.11""" ) @property def lowerCamelCase_ ( self ): """simple docstring""" return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def lowerCamelCase_ ( self ): """simple docstring""" if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def lowerCamelCase_ ( self ): """simple docstring""" return 1E-4
302
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) lowerCamelCase_ : Optional[Any] = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ['BeitFeatureExtractor'] lowerCamelCase_ : Optional[Any] = ['BeitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[int] = [ 'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BeitForImageClassification', 'BeitForMaskedImageModeling', 'BeitForSemanticSegmentation', 'BeitModel', 'BeitPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = [ 'FlaxBeitForImageClassification', 'FlaxBeitForMaskedImageModeling', 'FlaxBeitModel', 'FlaxBeitPreTrainedModel', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
1
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __a: Any = datasets.utils.logging.get_logger(__name__) __a: str = ["""names""", """prefix"""] __a: str = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] __a: Any = ["""encoding_errors""", """on_bad_lines"""] __a: Any = ["""date_format"""] @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): '''simple docstring''' _lowerCamelCase = ''',''' _lowerCamelCase = None _lowerCamelCase = '''infer''' _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = True _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = False _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = True _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = True _lowerCamelCase = None _lowerCamelCase = '''.''' _lowerCamelCase = None _lowerCamelCase = '''"''' _lowerCamelCase = 0 _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = True _lowerCamelCase = True _lowerCamelCase = 0 _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = None _lowerCamelCase = 10000 _lowerCamelCase = None _lowerCamelCase = '''strict''' _lowerCamelCase = '''error''' _lowerCamelCase = None def lowerCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" if self.delimiter is not None: _UpperCAmelCase = self.delimiter if self.column_names is not None: _UpperCAmelCase = self.column_names @property def lowerCamelCase ( self : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , snake_case__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ): '''simple docstring''' _lowerCamelCase = CsvConfig def lowerCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase ( self : str , lowerCamelCase : List[str] ) -> Any: """simple docstring""" if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case__ , (str, list, tuple) ): _UpperCAmelCase = data_files if isinstance(snake_case__ , snake_case__ ): _UpperCAmelCase = [files] _UpperCAmelCase = [dl_manager.iter_files(snake_case__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] _UpperCAmelCase = [] for split_name, files in data_files.items(): if isinstance(snake_case__ , snake_case__ ): _UpperCAmelCase = [files] _UpperCAmelCase = [dl_manager.iter_files(snake_case__ ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case__ , gen_kwargs={"""files""": files} ) ) return splits def lowerCamelCase ( self : str , lowerCamelCase : Any ) -> List[str]: """simple docstring""" if self.config.features is not None: _UpperCAmelCase = self.config.features.arrow_schema if all(not require_storage_cast(snake_case__ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=snake_case__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase = table_cast(snake_case__ , snake_case__ ) return pa_table def lowerCamelCase ( self : Optional[int] , lowerCamelCase : Optional[int] ) -> int: """simple docstring""" _UpperCAmelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(snake_case__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case__ ) ): _UpperCAmelCase = pd.read_csv(snake_case__ , iterator=snake_case__ , dtype=snake_case__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(snake_case__ ): _UpperCAmelCase = pa.Table.from_pandas(snake_case__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(snake_case__ ) except ValueError as e: logger.error(f"""Failed to read file \'{file}\' with error {type(snake_case__ )}: {e}""" ) raise
108
'''simple docstring''' from __future__ import annotations from math import gcd def lowercase (_A , _A = 2 , _A = 1 , _A = 3 , ): """simple docstring""" if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(_A , _A , _A ) -> int: return (pow(_A , 2 ) + step) % modulus for _ in range(_A ): # These track the position within the cycle detection logic. _lowerCAmelCase : Dict = seed _lowerCAmelCase : int = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. _lowerCAmelCase : str = rand_fn(_A , _A , _A ) _lowerCAmelCase : Optional[int] = rand_fn(_A , _A , _A ) _lowerCAmelCase : Union[str, Any] = rand_fn(_A , _A , _A ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. _lowerCAmelCase : Optional[int] = gcd(hare - tortoise , _A ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. _lowerCAmelCase : Tuple = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """num""", type=int, help="""The value to find a divisor of""", ) parser.add_argument( """--attempts""", type=int, default=3, help="""The number of attempts before giving up""", ) lowerCAmelCase : List[str] = parser.parse_args() lowerCAmelCase : List[str] = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F'''{args.num} is probably prime''') else: lowerCAmelCase : Union[str, Any] = args.num // divisor print(F'''{args.num} = {divisor} * {quotient}''')
444
0
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE : str = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class snake_case : """simple docstring""" def __init__( self, _lowercase, _lowercase ) -> List[str]: SCREAMING_SNAKE_CASE_ = graph # mapping node to its parent in resulting breadth first tree SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = source_vertex def a__ ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = {self.source_vertex} SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = [self.source_vertex] # first in first out queue while queue: SCREAMING_SNAKE_CASE_ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_snake_case ) SCREAMING_SNAKE_CASE_ = vertex queue.append(_snake_case ) def a__ ( self, _lowercase ) -> Optional[Any]: if target_vertex == self.source_vertex: return self.source_vertex SCREAMING_SNAKE_CASE_ = self.parent.get(_snake_case ) if target_vertex_parent is None: SCREAMING_SNAKE_CASE_ = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(_snake_case ) return self.shortest_path(_snake_case ) + f"""->{target_vertex}""" if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
708
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : str = { "configuration_pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ "PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST", "PegasusXForConditionalGeneration", "PegasusXModel", "PegasusXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
238
0
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCAmelCase_ = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class __magic_name__ ( __a ): """simple docstring""" lowerCAmelCase : int = '''ernie_m''' lowerCAmelCase : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : str , _lowercase : int = 250_002 , _lowercase : int = 768 , _lowercase : int = 12 , _lowercase : int = 12 , _lowercase : int = 3_072 , _lowercase : str = "gelu" , _lowercase : float = 0.1 , _lowercase : float = 0.1 , _lowercase : int = 514 , _lowercase : float = 0.02 , _lowercase : int = 1 , _lowercase : float = 1E-05 , _lowercase : Tuple=None , _lowercase : Optional[int]=False , _lowercase : Union[str, Any]=0.0 , **_lowercase : Union[str, Any] , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , **_lowercase ) _UpperCamelCase: Any = vocab_size _UpperCamelCase: Union[str, Any] = hidden_size _UpperCamelCase: Any = num_hidden_layers _UpperCamelCase: Optional[Any] = num_attention_heads _UpperCamelCase: Any = intermediate_size _UpperCamelCase: str = hidden_act _UpperCamelCase: List[Any] = hidden_dropout_prob _UpperCamelCase: List[Any] = attention_probs_dropout_prob _UpperCamelCase: Tuple = max_position_embeddings _UpperCamelCase: Optional[Any] = initializer_range _UpperCamelCase: Optional[int] = layer_norm_eps _UpperCamelCase: str = classifier_dropout _UpperCamelCase: Any = is_decoder _UpperCamelCase: List[Any] = act_dropout
271
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , _lowercase : List[str] , _lowercase : Dict=13 , _lowercase : Any=7 , _lowercase : List[str]=True , _lowercase : Any=True , _lowercase : Optional[int]=True , _lowercase : int=True , _lowercase : str=99 , _lowercase : Union[str, Any]=32 , _lowercase : Any=5 , _lowercase : Dict=4 , _lowercase : Tuple=37 , _lowercase : Optional[Any]="gelu" , _lowercase : Optional[int]=0.1 , _lowercase : Any=0.1 , _lowercase : Union[str, Any]=512 , _lowercase : Dict=16 , _lowercase : int=2 , _lowercase : Union[str, Any]=0.02 , _lowercase : Dict=4 , ): """simple docstring""" _UpperCamelCase: List[str] = parent _UpperCamelCase: Optional[int] = batch_size _UpperCamelCase: Any = seq_length _UpperCamelCase: List[str] = is_training _UpperCamelCase: Union[str, Any] = use_attention_mask _UpperCamelCase: Union[str, Any] = use_token_type_ids _UpperCamelCase: str = use_labels _UpperCamelCase: List[str] = vocab_size _UpperCamelCase: Dict = hidden_size _UpperCamelCase: List[Any] = num_hidden_layers _UpperCamelCase: List[Any] = num_attention_heads _UpperCamelCase: Tuple = intermediate_size _UpperCamelCase: Optional[Any] = hidden_act _UpperCamelCase: Any = hidden_dropout_prob _UpperCamelCase: int = attention_probs_dropout_prob _UpperCamelCase: Optional[int] = max_position_embeddings _UpperCamelCase: List[Any] = type_vocab_size _UpperCamelCase: List[Any] = type_sequence_label_size _UpperCamelCase: List[Any] = initializer_range _UpperCamelCase: Optional[int] = num_choices def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" _UpperCamelCase: int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase: Optional[int] = None if self.use_attention_mask: _UpperCamelCase: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase: Optional[int] = None if self.use_token_type_ids: _UpperCamelCase: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase: str = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" _UpperCamelCase: Optional[Any] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase: Any = config_and_inputs _UpperCamelCase: List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def lowerCAmelCase ( self : Dict ): """simple docstring""" _UpperCamelCase: Any = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase: str = config_and_inputs _UpperCamelCase: int = True _UpperCamelCase: Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCamelCase: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __magic_name__ ( __a , unittest.TestCase ): """simple docstring""" lowerCAmelCase : Dict = True lowerCAmelCase : List[Any] = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase ( self : Dict ): """simple docstring""" _UpperCamelCase: Dict = FlaxBertModelTester(self ) @slow def lowerCAmelCase ( self : Tuple ): """simple docstring""" _UpperCamelCase: Dict = FlaxBertModel.from_pretrained('''bert-base-cased''' ) _UpperCamelCase: int = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase )
271
1
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def _lowerCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : float | Decimal , __lowerCamelCase : float = 10**-10 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = a while True: __SCREAMING_SNAKE_CASE : Optional[int] = Decimal(__lowerCamelCase ) - ( Decimal(eval(__lowerCamelCase ) ) / Decimal(eval(str(diff(__lowerCamelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__lowerCamelCase ) ) < precision: # noqa: S307 return float(__lowerCamelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(f'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(f'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(f'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
447
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = """https://openaipublic.azureedge.net/jukebox/models/""" _lowerCamelCase = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def _lowerCAmelCase ( __lowerCamelCase : Any ): """simple docstring""" if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: __SCREAMING_SNAKE_CASE : Dict = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: __SCREAMING_SNAKE_CASE : Tuple = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: __SCREAMING_SNAKE_CASE : Dict = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: __SCREAMING_SNAKE_CASE : List[str] = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: __SCREAMING_SNAKE_CASE : List[Any] = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: __SCREAMING_SNAKE_CASE : Dict = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: __SCREAMING_SNAKE_CASE : Optional[Any] = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: __SCREAMING_SNAKE_CASE : Any = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def _lowerCAmelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = {} import re __SCREAMING_SNAKE_CASE : str = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) __SCREAMING_SNAKE_CASE : Tuple = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) __SCREAMING_SNAKE_CASE : Tuple = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) __SCREAMING_SNAKE_CASE : int = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) __SCREAMING_SNAKE_CASE : List[str] = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) __SCREAMING_SNAKE_CASE : int = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) __SCREAMING_SNAKE_CASE : List[str] = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) __SCREAMING_SNAKE_CASE : Dict = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__lowerCamelCase ): __SCREAMING_SNAKE_CASE : List[Any] = re_encoder_block_conv_in.match(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = regex_match.groups() __SCREAMING_SNAKE_CASE : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) __SCREAMING_SNAKE_CASE : int = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" __SCREAMING_SNAKE_CASE : Union[str, Any] = re_encoder_block_conv_in.sub(__lowerCamelCase , __lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(__lowerCamelCase ): __SCREAMING_SNAKE_CASE : Dict = re_encoder_block_resnet.match(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = regex_match.groups() __SCREAMING_SNAKE_CASE : List[str] = int(groups[2] ) * 2 + int(groups[3] ) __SCREAMING_SNAKE_CASE : Any = {"1": 1, "3": 2}[groups[-2]] __SCREAMING_SNAKE_CASE : Union[str, Any] = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" __SCREAMING_SNAKE_CASE : List[str] = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __SCREAMING_SNAKE_CASE : Any = prefix + resnet_block __SCREAMING_SNAKE_CASE : List[str] = re_encoder_block_resnet.sub(__lowerCamelCase , __lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(__lowerCamelCase ): __SCREAMING_SNAKE_CASE : Any = re_encoder_block_proj_out.match(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = regex_match.groups() __SCREAMING_SNAKE_CASE : Optional[int] = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" __SCREAMING_SNAKE_CASE : Dict = re_encoder_block_proj_out.sub(__lowerCamelCase , __lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__lowerCamelCase ): __SCREAMING_SNAKE_CASE : List[str] = re_decoder_block_conv_out.match(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = regex_match.groups() __SCREAMING_SNAKE_CASE : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 __SCREAMING_SNAKE_CASE : List[Any] = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" __SCREAMING_SNAKE_CASE : Optional[Any] = re_decoder_block_conv_out.sub(__lowerCamelCase , __lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(__lowerCamelCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = re_decoder_block_resnet.match(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = regex_match.groups() __SCREAMING_SNAKE_CASE : Union[str, Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 __SCREAMING_SNAKE_CASE : Any = {"1": 1, "3": 2}[groups[-2]] __SCREAMING_SNAKE_CASE : Tuple = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" __SCREAMING_SNAKE_CASE : List[Any] = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __SCREAMING_SNAKE_CASE : List[Any] = prefix + resnet_block __SCREAMING_SNAKE_CASE : Union[str, Any] = re_decoder_block_resnet.sub(__lowerCamelCase , __lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(__lowerCamelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = re_decoder_block_proj_in.match(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = regex_match.groups() __SCREAMING_SNAKE_CASE : List[str] = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" __SCREAMING_SNAKE_CASE : int = re_decoder_block_proj_in.sub(__lowerCamelCase , __lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__lowerCamelCase ): __SCREAMING_SNAKE_CASE : List[Any] = re_prior_cond_conv_out.match(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = regex_match.groups() __SCREAMING_SNAKE_CASE : str = int(groups[1] ) * 2 + int(groups[2] ) - 2 __SCREAMING_SNAKE_CASE : Union[str, Any] = F"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" __SCREAMING_SNAKE_CASE : Any = re_prior_cond_conv_out.sub(__lowerCamelCase , __lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(__lowerCamelCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = re_prior_cond_resnet.match(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = regex_match.groups() __SCREAMING_SNAKE_CASE : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2 __SCREAMING_SNAKE_CASE : str = {"1": 1, "3": 2}[groups[-2]] __SCREAMING_SNAKE_CASE : Any = F"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" __SCREAMING_SNAKE_CASE : Union[str, Any] = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __SCREAMING_SNAKE_CASE : Any = prefix + resnet_block __SCREAMING_SNAKE_CASE : Union[str, Any] = re_prior_cond_resnet.sub(__lowerCamelCase , __lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(__lowerCamelCase ): __SCREAMING_SNAKE_CASE : Tuple = re_prior_cond_proj_in.match(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = regex_match.groups() __SCREAMING_SNAKE_CASE : Dict = F"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" __SCREAMING_SNAKE_CASE : int = re_prior_cond_proj_in.sub(__lowerCamelCase , __lowerCamelCase ) # keep original key else: __SCREAMING_SNAKE_CASE : Tuple = original_key __SCREAMING_SNAKE_CASE : Union[str, Any] = replace_key(__lowerCamelCase ) if F"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(F"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[F"""{key_prefix}.{key}"""].shape: __SCREAMING_SNAKE_CASE : List[str] = model_state_dict[F"""{key_prefix}.{key}"""] print(F"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) __SCREAMING_SNAKE_CASE : str = original_key __SCREAMING_SNAKE_CASE : List[str] = original_key __SCREAMING_SNAKE_CASE : Union[str, Any] = value return new_dict @torch.no_grad() def _lowerCAmelCase ( __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[Any]=None ): """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): __SCREAMING_SNAKE_CASE : Dict = requests.get(F"""{PREFIX}{file}""" , allow_redirects=__lowerCamelCase ) os.makedirs(F"""{pytorch_dump_folder_path}/""" , exist_ok=__lowerCamelCase ) open(F"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , "wb" ).write(r.content ) __SCREAMING_SNAKE_CASE : int = MODEL_MAPPING[model_name.split("/" )[-1]] __SCREAMING_SNAKE_CASE : List[str] = JukeboxConfig.from_pretrained(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = JukeboxModel(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : Optional[int] = {} for i, dict_name in enumerate(__lowerCamelCase ): __SCREAMING_SNAKE_CASE : str = torch.load(F"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["model"] __SCREAMING_SNAKE_CASE : Optional[int] = {} for k in old_dic.keys(): if k.endswith(".b" ): __SCREAMING_SNAKE_CASE : Optional[int] = old_dic[k] elif k.endswith(".w" ): __SCREAMING_SNAKE_CASE : int = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: __SCREAMING_SNAKE_CASE : Optional[Any] = old_dic[k] else: __SCREAMING_SNAKE_CASE : Optional[int] = old_dic[k] __SCREAMING_SNAKE_CASE : Optional[Any] = "vqvae" if i == 0 else F"""priors.{3 - i}""" __SCREAMING_SNAKE_CASE : int = fix_jukebox_keys(__lowerCamelCase , model.state_dict() , __lowerCamelCase , __lowerCamelCase ) weight_dict.append(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = weight_dict.pop(0 ) model.vqvae.load_state_dict(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) with open(F"""{pytorch_dump_folder_path}/mapping.json""" , "w" ) as txtfile: json.dump(__lowerCamelCase , __lowerCamelCase ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) return weight_dict if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) _lowerCamelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
447
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __snake_case :Tuple =get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __snake_case :Optional[int] =128022 __snake_case :int =128028 @require_sentencepiece class lowerCAmelCase__ ( _lowerCamelCase , unittest.TestCase ): A_ : Optional[int] = MaMaaaTokenizer A_ : str = False A_ : Union[str, Any] = False A_ : Dict = True def __UpperCamelCase ( self : int ) -> Optional[Any]: super().setUp() A = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] A = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) A = Path(self.tmpdirname ) save_json(__UpperCamelCase , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__UpperCamelCase , save_dir / VOCAB_FILES_NAMES['spm_file'] ) A = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self : Optional[int] , **__UpperCamelCase : List[str] ) -> List[str]: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Dict ) -> int: return ( "This is a test", "This is a test", ) def __UpperCamelCase ( self : str ) -> int: A = '</s>' A = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def __UpperCamelCase ( self : int ) -> Union[str, Any]: A = self.get_tokenizer() A = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<s>' ) self.assertEqual(len(__UpperCamelCase ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('Skip this test while all models are still to be uploaded.' ) def __UpperCamelCase ( self : List[str] ) -> Dict: pass def __UpperCamelCase ( self : List[str] ) -> str: A = self.get_tokenizer() A = tokenizer.tokenize('This is a test' ) self.assertListEqual(__UpperCamelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [2, 3, 4, 5, 6] , ) A = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(__UpperCamelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) A = tokenizer.convert_tokens_to_string(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , 'This is a test' ) @slow def __UpperCamelCase ( self : str ) -> Optional[Any]: # fmt: off A = {'input_ids': [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name='facebook/m2m100_418M' , revision='c168bae485c864188cf9aa0e4108b0b6934dc91e' , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): A_ : Optional[Any] = 'facebook/m2m100_418M' A_ : Dict = [ 'In my opinion, there are two levels of response from the French government.', 'NSA Affair Emphasizes Complete Lack of Debate on Intelligence', ] A_ : List[Any] = [ 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', ] # fmt: off A_ : Dict = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2] @classmethod def __UpperCamelCase ( cls : Tuple ) -> Union[str, Any]: A = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en' , tgt_lang='fr' ) A = 1 return cls def __UpperCamelCase ( self : Tuple ) -> Tuple: self.assertEqual(self.tokenizer.get_lang_id('ar' ) , 128_006 ) self.assertEqual(self.tokenizer.get_lang_id('en' ) , 128_022 ) self.assertEqual(self.tokenizer.get_lang_id('ro' ) , 128_076 ) self.assertEqual(self.tokenizer.get_lang_id('mr' ) , 128_063 ) def __UpperCamelCase ( self : List[str] ) -> List[Any]: A = self.tokenizer.get_vocab() self.assertEqual(len(__UpperCamelCase ) , self.tokenizer.vocab_size ) self.assertEqual(vocab['<unk>'] , 3 ) self.assertIn(self.tokenizer.get_lang_token('en' ) , __UpperCamelCase ) def __UpperCamelCase ( self : Any ) -> Dict: A = 'en' A = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __UpperCamelCase ) def __UpperCamelCase ( self : List[Any] ) -> Dict: self.assertIn(__UpperCamelCase , self.tokenizer.all_special_ids ) # fmt: off A = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2] # fmt: on A = self.tokenizer.decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) A = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) self.assertNotIn(self.tokenizer.eos_token , __UpperCamelCase ) def __UpperCamelCase ( self : int ) -> Any: A = tempfile.mkdtemp() A = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(__UpperCamelCase ) A = MaMaaaTokenizer.from_pretrained(__UpperCamelCase ) self.assertDictEqual(new_tok.lang_token_to_id , __UpperCamelCase ) @require_torch def __UpperCamelCase ( self : Any ) -> str: A = 'en' A = 'fr' A = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__UpperCamelCase , return_tensors='pt' ) A = shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: A = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __UpperCamelCase ( self : Any ) -> List[Any]: A = 'mr' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) A = 'zh' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __UpperCamelCase ( self : Optional[Any] ) -> str: A = 'mr' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) A = 'zh' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __UpperCamelCase ( self : str ) -> Optional[int]: A = self.tokenizer._build_translation_inputs('A test' , return_tensors='pt' , src_lang='en' , tgt_lang='ar' ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { # en_XX, A, test, EOS 'input_ids': [[128_022, 58, 4_183, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 128_006, } , )
106
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : Any ) -> Tuple: # A mock response for an HTTP head request to emulate server down A = mock.Mock() A = 500 A = {} A = HTTPError A = {} # Download this model to make sure it's in the cache. A = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=__UpperCamelCase ) as mock_head: A = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: # A mock response for an HTTP head request to emulate server down A = mock.Mock() A = 500 A = {} A = HTTPError A = {} # Download this model to make sure it's in the cache. A = GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=__UpperCamelCase ) as mock_head: A = GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: # This test is for deprecated behavior and can be removed in v5 try: A = tempfile.mktemp() with open(__UpperCamelCase , 'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , __UpperCamelCase ) A = AlbertTokenizer.from_pretrained(__UpperCamelCase ) finally: os.remove(__UpperCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , __UpperCamelCase ) A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def __UpperCamelCase ( self : str ) -> int: # This test is for deprecated behavior and can be removed in v5 A = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): A_ : str = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def __UpperCamelCase ( cls : Tuple ) -> Dict: A = TOKEN HfFolder.save_token(__UpperCamelCase ) @classmethod def __UpperCamelCase ( cls : Any ) -> Dict: try: delete_repo(token=cls._token , repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: with tempfile.TemporaryDirectory() as tmp_dir: A = os.path.join(__UpperCamelCase , 'vocab.txt' ) with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) A = BertTokenizer(__UpperCamelCase ) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token ) A = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__UpperCamelCase , repo_id='test-tokenizer' , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) A = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def __UpperCamelCase ( self : List[str] ) -> Tuple: with tempfile.TemporaryDirectory() as tmp_dir: A = os.path.join(__UpperCamelCase , 'vocab.txt' ) with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) A = BertTokenizer(__UpperCamelCase ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token ) A = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( __UpperCamelCase , repo_id='valid_org/test-tokenizer-org' , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) A = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def __UpperCamelCase ( self : Any ) -> Union[str, Any]: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: A = os.path.join(__UpperCamelCase , 'vocab.txt' ) with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) A = CustomTokenizer(__UpperCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) A = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=__UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: A = os.path.join(__UpperCamelCase , 'vocab.txt' ) with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) A = BertTokenizerFast.from_pretrained(__UpperCamelCase ) bert_tokenizer.save_pretrained(__UpperCamelCase ) A = CustomTokenizerFast.from_pretrained(__UpperCamelCase ) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) A = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=__UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' ) A = AutoTokenizer.from_pretrained( f'''{USER}/test-dynamic-tokenizer''' , use_fast=__UpperCamelCase , trust_remote_code=__UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ) -> Any: A = Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def __UpperCamelCase ( self : Dict ) -> Tuple: A = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] ) def __UpperCamelCase ( self : Any ) -> Optional[int]: A = Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] ) def __UpperCamelCase ( self : Union[str, Any] ) -> str: A = Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: A = Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def __UpperCamelCase ( self : List[str] ) -> Tuple: A = Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: A = Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: # Even if the offsets are wrong, we necessarily output correct string # parts. A = Trie() A = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(__UpperCamelCase , ['AB', 'C'] )
106
1
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _UpperCAmelCase = "bart" _UpperCAmelCase = True @st.cache(allow_output_mutation=_a ) def _lowerCamelCase ( ): """simple docstring""" if LOAD_DENSE_INDEX: _lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) _lowerCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) _lowerCamelCase = qar_model.eval() else: _lowerCamelCase , _lowerCamelCase = (None, None) if MODEL_TYPE == "bart": _lowerCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) _lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) _lowerCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) _lowerCamelCase = sas_model.eval() else: _lowerCamelCase , _lowerCamelCase = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_a ) def _lowerCamelCase ( ): """simple docstring""" if LOAD_DENSE_INDEX: _lowerCamelCase = faiss.StandardGpuResources() _lowerCamelCase = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] _lowerCamelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_2_8) , ) _lowerCamelCase = faiss.IndexFlatIP(1_2_8 ) _lowerCamelCase = faiss.index_cpu_to_gpu(_a , 1 , _a ) wikiaab_gpu_index_flat.add(_a ) # TODO fix for larger GPU else: _lowerCamelCase , _lowerCamelCase = (None, None) _lowerCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_a ) def _lowerCamelCase ( ): """simple docstring""" _lowerCamelCase = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) _lowerCamelCase = elia['''train_eli5'''] _lowerCamelCase = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_2_8) ) _lowerCamelCase = faiss.IndexFlatIP(1_2_8 ) eli5_train_q_index.add(_a ) return (elia_train, eli5_train_q_index) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = load_indexes() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = load_models() _UpperCAmelCase , _UpperCAmelCase = load_train_data() def _lowerCamelCase ( _a , _a=1_0 ): """simple docstring""" _lowerCamelCase = embed_questions_for_retrieval([question] , _a , _a ) _lowerCamelCase , _lowerCamelCase = eli5_train_q_index.search(_a , _a ) _lowerCamelCase = [elia_train[int(_a )] for i in I[0]] return nn_examples def _lowerCamelCase ( _a , _a="wiki40b" , _a="dense" , _a=1_0 ): """simple docstring""" if source == "none": _lowerCamelCase , _lowerCamelCase = (''' <P> '''.join(['''''' for _ in range(1_1 )] ).strip(), []) else: if method == "dense": _lowerCamelCase , _lowerCamelCase = query_qa_dense_index( _a , _a , _a , _a , _a , _a ) else: _lowerCamelCase , _lowerCamelCase = query_es_index( _a , _a , index_name='''english_wiki40b_snippets_100w''' , n_results=_a , ) _lowerCamelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] _lowerCamelCase = '''question: {} context: {}'''.format(_a , _a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _a : None), } ) def _lowerCamelCase ( _a , _a , _a , _a=6_4 , _a=2_5_6 , _a=False , _a=2 , _a=0.95 , _a=0.8 ): """simple docstring""" with torch.no_grad(): _lowerCamelCase = qa_sas_generate( _a , _a , _a , num_answers=1 , num_beams=_a , min_len=_a , max_len=_a , do_sample=_a , temp=_a , top_p=_a , top_k=_a , max_input_length=1_0_2_4 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar _UpperCAmelCase = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" _UpperCAmelCase = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _UpperCAmelCase = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) _UpperCAmelCase = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] _UpperCAmelCase = st.sidebar.checkbox("Demo options") if demo_options: _UpperCAmelCase = st.sidebar.selectbox( "", action_list, index=3, ) _UpperCAmelCase = action_list.index(action_st) _UpperCAmelCase = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) _UpperCAmelCase = show_type == "Show full text of passages" else: _UpperCAmelCase = 3 _UpperCAmelCase = True _UpperCAmelCase = st.sidebar.checkbox("Retrieval options") if retrieval_options: _UpperCAmelCase = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) _UpperCAmelCase = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) _UpperCAmelCase = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: _UpperCAmelCase = "wiki40b" _UpperCAmelCase = "dense" _UpperCAmelCase = "beam" _UpperCAmelCase = 2 _UpperCAmelCase = 64 _UpperCAmelCase = 256 _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = st.sidebar.checkbox("Generation options") if generate_options: _UpperCAmelCase = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) _UpperCAmelCase = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) _UpperCAmelCase = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) _UpperCAmelCase = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": _UpperCAmelCase = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _UpperCAmelCase = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) _UpperCAmelCase = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) _UpperCAmelCase = None # start main text _UpperCAmelCase = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] _UpperCAmelCase = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": _UpperCAmelCase = st.text_input("Enter your question here:", "") else: _UpperCAmelCase = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": _UpperCAmelCase , _UpperCAmelCase = make_support(question, source=wiki_source, method="dense", n_results=10) _UpperCAmelCase , _UpperCAmelCase = make_support(question, source=wiki_source, method="sparse", n_results=10) _UpperCAmelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _UpperCAmelCase = support_list[:10] _UpperCAmelCase = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: _UpperCAmelCase , _UpperCAmelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _UpperCAmelCase , _UpperCAmelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): _UpperCAmelCase = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) _UpperCAmelCase = res[1].strip() if sec_titles == "": _UpperCAmelCase = "[{}]({})".format(res[0], wiki_url) else: _UpperCAmelCase = sec_titles.split(" & ") _UpperCAmelCase = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: _UpperCAmelCase = find_nearest_training(question) _UpperCAmelCase = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) _UpperCAmelCase = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) _UpperCAmelCase = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
297
from __future__ import annotations from collections.abc import MutableSequence class __magic_name__ : """simple docstring""" def __init__( self , a__ , a__ ): if len(a__ ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) _lowerCamelCase = list(a__ ) _lowerCamelCase = degree def __add__( self , a__ ): if self.degree > polynomial_a.degree: _lowerCamelCase = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , a__ ) else: _lowerCamelCase = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , a__ ) def __sub__( self , a__ ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , a__ ): _lowerCamelCase = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , a__ ) def _UpperCAmelCase ( self , a__ ): _lowerCamelCase = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ): _lowerCamelCase = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(a__ ) return polynomial def __repr__( self ): return self.__str__() def _UpperCAmelCase ( self ): _lowerCamelCase = [0] * self.degree for i in range(self.degree ): _lowerCamelCase = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , a__ ) def _UpperCAmelCase ( self , a__ = 0 ): _lowerCamelCase = [0] * (self.degree + 2) _lowerCamelCase = constant for i in range(self.degree + 1 ): _lowerCamelCase = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , a__ ) def __eq__( self , a__ ): if not isinstance(a__ , a__ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , a__ ): return not self.__eq__(a__ )
297
1
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser a_ = logging.getLogger(__name__) torch.set_grad_enabled(False) a_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _a ( UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=100 , UpperCamelCase_ : Any=" " ) -> List[str]: """simple docstring""" lowerCAmelCase__ = text.split(UpperCamelCase_ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(UpperCamelCase_ ) , UpperCamelCase_ )] def _a ( UpperCamelCase_ : dict ) -> dict: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(UpperCamelCase_ ): titles.append(title if title is not None else "" ) texts.append(UpperCamelCase_ ) return {"title": titles, "text": texts} def _a ( UpperCamelCase_ : dict , UpperCamelCase_ : DPRContextEncoder , UpperCamelCase_ : DPRContextEncoderTokenizerFast ) -> dict: """simple docstring""" lowerCAmelCase__ = ctx_tokenizer( documents["title"] , documents["text"] , truncation=UpperCamelCase_ , padding="longest" , return_tensors="pt" )["input_ids"] lowerCAmelCase__ = ctx_encoder(input_ids.to(device=UpperCamelCase_ ) , return_dict=UpperCamelCase_ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def _a ( UpperCamelCase_ : "RagExampleArguments" , UpperCamelCase_ : "ProcessingArguments" , UpperCamelCase_ : "IndexHnswArguments" , ) -> int: """simple docstring""" logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowerCAmelCase__ = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowerCAmelCase__ = dataset.map(UpperCamelCase_ , batched=UpperCamelCase_ , num_proc=processing_args.num_proc ) # And compute the embeddings lowerCAmelCase__ = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=UpperCamelCase_ ) lowerCAmelCase__ = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) lowerCAmelCase__ = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space lowerCAmelCase__ = dataset.map( partial(UpperCamelCase_ , ctx_encoder=UpperCamelCase_ , ctx_tokenizer=UpperCamelCase_ ) , batched=UpperCamelCase_ , batch_size=processing_args.batch_size , features=UpperCamelCase_ , ) # And finally save your dataset lowerCAmelCase__ = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(UpperCamelCase_ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowerCAmelCase__ = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=UpperCamelCase_ ) # And save the index lowerCAmelCase__ = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(UpperCamelCase_ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowercase__ : a_ =field( default=str(Path(_UpperCAmelCase ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ), metadata={"""help""": """Path to a tab-separated csv file with columns 'title' and 'text'"""}, ) a_ =field( default=_UpperCAmelCase, metadata={"""help""": """Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."""}, ) a_ =field( default="""facebook/rag-sequence-nq""", metadata={"""help""": """The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"""}, ) a_ =field( default="""facebook/dpr-ctx_encoder-multiset-base""", metadata={ """help""": ( """The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or""" """ 'facebook/dpr-ctx_encoder-multiset-base'""" ) }, ) a_ =field( default=str(Path(_UpperCAmelCase ).parent / """test_run""" / """dummy-kb""" ), metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""}, ) @dataclass class lowercase__ : a_ =field( default=_UpperCAmelCase, metadata={ """help""": """The number of processes to use to split the documents into passages. Default is single process.""" }, ) a_ =field( default=16, metadata={ """help""": """The batch size to use when computing the passages embeddings using the DPR context encoder.""" }, ) @dataclass class lowercase__ : a_ =field( default=768, metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""}, ) a_ =field( default=128, metadata={ """help""": ( """The number of bi-directional links created for every new element during the HNSW index construction.""" ) }, ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) a_ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) a_, a_, a_ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: a_ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
339
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCAmelCase__ = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__UpperCAmelCase ) , torch_builtin(__UpperCAmelCase ) ) ) self.assertFalse(torch.allclose(gelu_python(__UpperCAmelCase ) , gelu_new(__UpperCAmelCase ) ) ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCAmelCase__ = get_activation("gelu" ) lowerCAmelCase__ = get_activation("gelu_10" ) lowerCAmelCase__ = torch_builtin(__UpperCAmelCase ) lowerCAmelCase__ = geluaa(__UpperCAmelCase ) lowerCAmelCase__ = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(__UpperCAmelCase ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def UpperCAmelCase ( self )-> int: '''simple docstring''' get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__UpperCAmelCase ): get_activation("bogus" ) with self.assertRaises(__UpperCAmelCase ): get_activation(__UpperCAmelCase ) def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = get_activation("gelu" ) lowerCAmelCase__ = 1 lowerCAmelCase__ = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__UpperCAmelCase ): lowerCAmelCase__ = acta.a
339
1
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _lowercase : Any =logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class _SCREAMING_SNAKE_CASE (lowercase__ ): def __init__( self : int , *__UpperCamelCase : Union[str, Any] , **__UpperCamelCase : Any ) -> Any: """simple docstring""" super().__init__(*__UpperCamelCase , **__UpperCamelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def lowerCAmelCase ( self : List[Any] , __UpperCamelCase : int=None , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : str=None ) -> Optional[Any]: """simple docstring""" snake_case__ : Optional[int] = {} snake_case__ : Optional[Any] = {} if prompt is not None: snake_case__ : Tuple = prompt if generate_kwargs is not None: snake_case__ : Any = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: snake_case__ : str = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) snake_case__ : Dict = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[str] , __UpperCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__UpperCamelCase : List[Any] ) -> Optional[int]: """simple docstring""" return super().__call__(__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase ( self : int , __UpperCamelCase : int , __UpperCamelCase : Optional[int]=None ) -> Dict: """simple docstring""" snake_case__ : Dict = load_image(__UpperCamelCase ) if prompt is not None: if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError( F'''Received an invalid text input, got - {type(__UpperCamelCase )} - but expected a single string. ''' '''Note also that one single text can be provided for conditional image to text generation.''' ) snake_case__ : Optional[int] = self.model.config.model_type if model_type == "git": snake_case__ : int = self.image_processor(images=__UpperCamelCase , return_tensors=self.framework ) snake_case__ : List[Any] = self.tokenizer(text=__UpperCamelCase , add_special_tokens=__UpperCamelCase ).input_ids snake_case__ : Any = [self.tokenizer.cls_token_id] + input_ids snake_case__ : str = torch.tensor(__UpperCamelCase ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": snake_case__ : Optional[Any] = self.image_processor(images=__UpperCamelCase , header_text=__UpperCamelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation snake_case__ : Union[str, Any] = self.image_processor(images=__UpperCamelCase , return_tensors=self.framework ) snake_case__ : List[Any] = self.tokenizer(__UpperCamelCase , return_tensors=self.framework ) model_inputs.update(__UpperCamelCase ) else: raise ValueError(F'''Model type {model_type} does not support conditional text generation''' ) else: snake_case__ : Tuple = self.image_processor(images=__UpperCamelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: snake_case__ : List[str] = None return model_inputs def lowerCAmelCase ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Dict=None ) -> List[Any]: """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , __UpperCamelCase ) and all(x is None for x in model_inputs['''input_ids'''] ) ): snake_case__ : Dict = None if generate_kwargs is None: snake_case__ : List[Any] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. snake_case__ : Optional[int] = model_inputs.pop(self.model.main_input_name ) snake_case__ : Union[str, Any] = self.model.generate(__UpperCamelCase , **__UpperCamelCase , **__UpperCamelCase ) return model_outputs def lowerCAmelCase ( self : Union[str, Any] , __UpperCamelCase : int ) -> Union[str, Any]: """simple docstring""" snake_case__ : Optional[int] = [] for output_ids in model_outputs: snake_case__ : Dict = { '''generated_text''': self.tokenizer.decode( __UpperCamelCase , skip_special_tokens=__UpperCamelCase , ) } records.append(__UpperCamelCase ) return records
574
'''simple docstring''' import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap _lowercase : Any ="Usage of script: script_name <size_of_canvas:int>" _lowercase : Optional[Any] =[0] * 100 + [1] * 10 random.shuffle(choice) def __UpperCAmelCase ( UpperCamelCase__ :int ) -> list[list[bool]]: snake_case__ : List[str] = [[False for i in range(UpperCamelCase__ )] for j in range(UpperCamelCase__ )] return canvas def __UpperCAmelCase ( UpperCamelCase__ :list[list[bool]] ) -> None: for i, row in enumerate(UpperCamelCase__ ): for j, _ in enumerate(UpperCamelCase__ ): snake_case__ : Optional[Any] = bool(random.getrandbits(1 ) ) def __UpperCAmelCase ( UpperCamelCase__ :list[list[bool]] ) -> list[list[bool]]: snake_case__ : Any = np.array(UpperCamelCase__ ) snake_case__ : Union[str, Any] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(UpperCamelCase__ ): for c, pt in enumerate(UpperCamelCase__ ): snake_case__ : List[str] = __judge_point( UpperCamelCase__ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) snake_case__ : List[str] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. snake_case__ : list[list[bool]] = current_canvas.tolist() return return_canvas def __UpperCAmelCase ( UpperCamelCase__ :bool , UpperCamelCase__ :list[list[bool]] ) -> bool: snake_case__ : int = 0 snake_case__ : List[str] = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. snake_case__ : int = pt if pt: if alive < 2: snake_case__ : int = False elif alive == 2 or alive == 3: snake_case__ : Dict = True elif alive > 3: snake_case__ : Optional[Any] = False else: if alive == 3: snake_case__ : int = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) _lowercase : int =int(sys.argv[1]) # main working structure of this module. _lowercase : Union[str, Any] =create_canvas(canvas_size) seed(c) _lowercase , _lowercase : Tuple =plt.subplots() fig.show() _lowercase : List[Any] =ListedColormap(["w", "k"]) try: while True: _lowercase : Optional[int] =run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
574
1
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask UpperCAmelCase = logging.getLogger(__name__) class lowercase ( lowercase__ ): def __init__(self : Any ,SCREAMING_SNAKE_CASE_ : Tuple=-1 ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = label_idx def UpperCAmelCase (self : str ,SCREAMING_SNAKE_CASE_ : int ,SCREAMING_SNAKE_CASE_ : Union[Split, str] ) -> List[InputExample]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): lowerCAmelCase = mode.value lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ ,F"""{mode}.txt""" ) lowerCAmelCase = 1 lowerCAmelCase = [] with open(SCREAMING_SNAKE_CASE_ ,encoding='''utf-8''' ) as f: lowerCAmelCase = [] lowerCAmelCase = [] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" ,words=SCREAMING_SNAKE_CASE_ ,labels=SCREAMING_SNAKE_CASE_ ) ) guid_index += 1 lowerCAmelCase = [] lowerCAmelCase = [] else: lowerCAmelCase = line.split(''' ''' ) words.append(splits[0] ) if len(SCREAMING_SNAKE_CASE_ ) > 1: labels.append(splits[self.label_idx].replace('''\n''' ,'''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" ,words=SCREAMING_SNAKE_CASE_ ,labels=SCREAMING_SNAKE_CASE_ ) ) return examples def UpperCAmelCase (self : List[str] ,SCREAMING_SNAKE_CASE_ : TextIO ,SCREAMING_SNAKE_CASE_ : TextIO ,SCREAMING_SNAKE_CASE_ : List ) -> Dict: """simple docstring""" lowerCAmelCase = 0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(SCREAMING_SNAKE_CASE_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowerCAmelCase = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(SCREAMING_SNAKE_CASE_ ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' ,line.split()[0] ) def UpperCAmelCase (self : Union[str, Any] ,SCREAMING_SNAKE_CASE_ : str ) -> List[str]: """simple docstring""" if path: with open(SCREAMING_SNAKE_CASE_ ,'''r''' ) as f: lowerCAmelCase = f.read().splitlines() if "O" not in labels: lowerCAmelCase = ['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowercase ( lowercase__ ): def __init__(self : List[Any] ) -> Any: """simple docstring""" super().__init__(label_idx=-2 ) def UpperCAmelCase (self : Union[str, Any] ,SCREAMING_SNAKE_CASE_ : str ) -> List[str]: """simple docstring""" if path: with open(SCREAMING_SNAKE_CASE_ ,'''r''' ) as f: lowerCAmelCase = f.read().splitlines() if "O" not in labels: lowerCAmelCase = ['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowercase ( lowercase__ ): def UpperCAmelCase (self : List[str] ,SCREAMING_SNAKE_CASE_ : List[Any] ,SCREAMING_SNAKE_CASE_ : Union[Split, str] ) -> List[InputExample]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): lowerCAmelCase = mode.value lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ ,F"""{mode}.txt""" ) lowerCAmelCase = 1 lowerCAmelCase = [] with open(SCREAMING_SNAKE_CASE_ ,encoding='''utf-8''' ) as f: for sentence in parse_incr(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase = [] lowerCAmelCase = [] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" ,words=SCREAMING_SNAKE_CASE_ ,labels=SCREAMING_SNAKE_CASE_ ) ) guid_index += 1 return examples def UpperCAmelCase (self : Optional[int] ,SCREAMING_SNAKE_CASE_ : TextIO ,SCREAMING_SNAKE_CASE_ : TextIO ,SCREAMING_SNAKE_CASE_ : List ) -> List[Any]: """simple docstring""" lowerCAmelCase = 0 for sentence in parse_incr(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase = preds_list[example_id] lowerCAmelCase = '''''' for token in sentence: out += F"""{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) """ out += "\n" writer.write(SCREAMING_SNAKE_CASE_ ) example_id += 1 def UpperCAmelCase (self : Any ,SCREAMING_SNAKE_CASE_ : str ) -> List[str]: """simple docstring""" if path: with open(SCREAMING_SNAKE_CASE_ ,'''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
535
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging UpperCAmelCase = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowercase ( lowercase__ ): def __init__(self : int ,SCREAMING_SNAKE_CASE_ : int = 101 ) -> List[str]: """simple docstring""" lowerCAmelCase = length def __len__(self : Any ) -> List[Any]: """simple docstring""" return self.length def __getitem__(self : str ,SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int: """simple docstring""" return i class lowercase : def __call__(self : List[Any] ,SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[Any]: """simple docstring""" return {"input_ids": torch.tensor(SCREAMING_SNAKE_CASE_ ), "labels": torch.tensor(SCREAMING_SNAKE_CASE_ )} class lowercase ( nn.Module ): def __init__(self : List[str] ) -> List[Any]: """simple docstring""" super().__init__() # Add some (unused) params otherwise DDP will complain. lowerCAmelCase = nn.Linear(120 ,80 ) def UpperCAmelCase (self : Optional[int] ,SCREAMING_SNAKE_CASE_ : str ,SCREAMING_SNAKE_CASE_ : Optional[int]=None ) -> Union[str, Any]: """simple docstring""" if labels is not None: return torch.tensor(0.0 ,device=input_ids.device ), input_ids else: return input_ids class lowercase ( lowercase__ ): @require_torch_neuroncore def UpperCAmelCase (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = F"""--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() lowerCAmelCase = self.get_auto_remove_tmp_dir() lowerCAmelCase = F"""--output_dir {output_dir}""".split() lowerCAmelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(SCREAMING_SNAKE_CASE_ ,env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class lowercase ( lowercase__ ): @require_torch_multi_gpu def UpperCAmelCase (self : List[str] ) -> List[str]: """simple docstring""" lowerCAmelCase = F"""--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() lowerCAmelCase = self.get_auto_remove_tmp_dir() lowerCAmelCase = F"""--output_dir {output_dir}""".split() lowerCAmelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(SCREAMING_SNAKE_CASE_ ,env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py UpperCAmelCase = HfArgumentParser((TrainingArguments,)) UpperCAmelCase = parser.parse_args_into_dataclasses()[0] logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ f"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_0_1, 4_0, 7]: UpperCAmelCase = DummyDataset(dataset_length) def __magic_name__ ( _lowerCamelCase: EvalPrediction ) -> Dict: '''simple docstring''' lowerCAmelCase = list(range(len(_lowerCamelCase ) ) ) lowerCAmelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' F"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" ) return {"success": success} UpperCAmelCase = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) UpperCAmelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) UpperCAmelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) UpperCAmelCase = 2 UpperCAmelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) UpperCAmelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) UpperCAmelCase = None
535
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowercase__ : int = DDIMPipeline lowercase__ : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowercase__ : List[str] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """latents""", """callback""", """callback_steps""", } lowercase__ : Union[str, Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS lowercase__ : int = False def lowercase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) A__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) A__ = DDIMScheduler() A__ = {"unet": unet, "scheduler": scheduler} return components def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ): '''simple docstring''' if str(UpperCamelCase__ ).startswith("mps" ): A__ = torch.manual_seed(UpperCamelCase__ ) else: A__ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A__ = { "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowercase_ ( self ): '''simple docstring''' A__ = "cpu" A__ = self.get_dummy_components() A__ = self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ = self.get_dummy_inputs(UpperCamelCase__ ) A__ = pipe(**UpperCamelCase__ ).images A__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) A__ = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) A__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1e-3 ) def lowercase_ ( self ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def lowercase_ ( self ): '''simple docstring''' super().test_save_load_local(expected_max_difference=3e-3 ) def lowercase_ ( self ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3e-3 ) def lowercase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def lowercase_ ( self ): '''simple docstring''' A__ = "google/ddpm-cifar10-32" A__ = UNetaDModel.from_pretrained(UpperCamelCase__ ) A__ = DDIMScheduler() A__ = DDIMPipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) ddim.to(UpperCamelCase__ ) ddim.set_progress_bar_config(disable=UpperCamelCase__ ) A__ = torch.manual_seed(0 ) A__ = ddim(generator=UpperCamelCase__ , eta=0.0 , output_type="numpy" ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self ): '''simple docstring''' A__ = "google/ddpm-ema-bedroom-256" A__ = UNetaDModel.from_pretrained(UpperCamelCase__ ) A__ = DDIMScheduler.from_pretrained(UpperCamelCase__ ) A__ = DDIMPipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) ddpm.to(UpperCamelCase__ ) ddpm.set_progress_bar_config(disable=UpperCamelCase__ ) A__ = torch.manual_seed(0 ) A__ = ddpm(generator=UpperCamelCase__ , output_type="numpy" ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) A__ = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
261
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __UpperCAmelCase ="""base_with_context""" def __a ( A , A ) -> str: '''simple docstring''' A__ = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) ) A__ = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=A ) for lyr_num, lyr in enumerate(model.encoders ): A__ = weights[f"""layers_{lyr_num}"""] A__ = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) A__ = ly_weight["attention"] A__ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def __a ( A , A ) -> Dict: '''simple docstring''' A__ = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) ) A__ = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=A ) for lyr_num, lyr in enumerate(model.encoders ): A__ = weights[f"""layers_{lyr_num}"""] A__ = ly_weight["attention"] A__ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) A__ = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) A__ = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def __a ( A , A ) -> Union[str, Any]: '''simple docstring''' A__ = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) ) A__ = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=A ) A__ = nn.Parameter( torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) ) for lyr_num, lyr in enumerate(model.decoders ): A__ = weights[f"""layers_{lyr_num}"""] A__ = nn.Parameter( torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) ) A__ = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) ) A__ = ly_weight["self_attention"] A__ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) A__ = ly_weight["MultiHeadDotProductAttention_0"] A__ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) A__ = nn.Parameter( torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) A__ = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) A__ = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) ) A__ = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) ) return model def __a ( A ) -> str: '''simple docstring''' A__ = checkpoints.load_tax_checkpoint(args.checkpoint_path ) A__ = jnp.tree_util.tree_map(onp.array , A ) A__ = [ "from __gin__ import dynamic_registration", "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", ] A__ = os.path.join(args.checkpoint_path , ".." , "config.gin" ) A__ = inference.parse_training_gin_file(A , A ) A__ = inference.InferenceModel(args.checkpoint_path , A ) A__ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" , variance_type="fixed_large" ) A__ = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["inputs"] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) A__ = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["targets_context"] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) A__ = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["targets_context"] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) A__ = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] , A ) A__ = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] , A ) A__ = load_decoder(ta_checkpoint["target"]["decoder"] , A ) A__ = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" ) A__ = SpectrogramDiffusionPipeline( notes_encoder=A , continuous_encoder=A , decoder=A , scheduler=A , melgan=A , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help="""Path to the original jax model checkpoint.""", ) __UpperCAmelCase =parser.parse_args() main(args)
261
1
'''simple docstring''' def lowercase__ ( __UpperCamelCase : int = 2000000 ): '''simple docstring''' __lowercase = [0 for i in range(n + 1 )] __lowercase = 1 __lowercase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , __UpperCamelCase ): __lowercase = 1 __lowercase = 0 for i in range(__UpperCamelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
566
'''simple docstring''' import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def lowercase__ ( *__UpperCamelCase : Optional[Any] ): '''simple docstring''' if not isinstance(__UpperCamelCase , __UpperCamelCase ): __lowercase = list(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): __lowercase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def lowercase__ ( __UpperCamelCase : Exception ): '''simple docstring''' __lowercase = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(__UpperCamelCase , __UpperCamelCase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def lowercase__ ( __UpperCamelCase : callable = None , __UpperCamelCase : int = 128 ): '''simple docstring''' if function is None: return functools.partial(__UpperCamelCase , starting_batch_size=__UpperCamelCase ) __lowercase = starting_batch_size def decorator(*__UpperCamelCase : List[Any] , **__UpperCamelCase : Optional[Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __lowercase = list(inspect.signature(__UpperCamelCase ).parameters.keys() ) # Guard against user error if len(__UpperCamelCase ) < (len(__UpperCamelCase ) + 1): __lowercase = """, """.join([F'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'''Batch size was passed into `{function.__name__}` as the first argument when called.''' F'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) except Exception as e: if should_reduce_batch_size(__UpperCamelCase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
566
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def A ( self ) -> List[str]: '''simple docstring''' __lowercase = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=_lowercase ).to(_lowercase ) __lowercase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __lowercase = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids __lowercase = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids __lowercase = model(input_ids.to(_lowercase ) , labels=labels.to(_lowercase ) ).loss __lowercase = -(labels.shape[-1] * loss.item()) __lowercase = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
721
import unittest from knapsack import knapsack as k class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def A ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = 0 __lowercase = [0] __lowercase = [0] __lowercase = len(snake_case_ ) self.assertEqual(k.knapsack(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) , 0 ) __lowercase = [6_0] __lowercase = [1_0] __lowercase = len(snake_case_ ) self.assertEqual(k.knapsack(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) , 0 ) def A ( self ) -> Tuple: '''simple docstring''' __lowercase = 3 __lowercase = [1, 2, 3] __lowercase = [3, 2, 1] __lowercase = len(snake_case_ ) self.assertEqual(k.knapsack(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) , 5 ) def A ( self ) -> str: '''simple docstring''' __lowercase = 5_0 __lowercase = [6_0, 1_0_0, 1_2_0] __lowercase = [1_0, 2_0, 3_0] __lowercase = len(snake_case_ ) self.assertEqual(k.knapsack(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) , 2_2_0 ) if __name__ == "__main__": unittest.main()
527
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class snake_case ( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase : Any = """beit""" def __init__( self : List[Any] , lowerCAmelCase_ : Any=8_192 , lowerCAmelCase_ : List[Any]=768 , lowerCAmelCase_ : Optional[int]=12 , lowerCAmelCase_ : List[Any]=12 , lowerCAmelCase_ : Optional[int]=3_072 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : List[Any]=0.0 , lowerCAmelCase_ : Optional[Any]=0.02 , lowerCAmelCase_ : Union[str, Any]=1e-12 , lowerCAmelCase_ : Tuple=224 , lowerCAmelCase_ : int=16 , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Any=[3, 5, 7, 11] , lowerCAmelCase_ : Optional[int]=[1, 2, 3, 6] , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : List[str]=0.4 , lowerCAmelCase_ : Dict=256 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Dict=255 , **lowerCAmelCase_ : int , ) -> str: """simple docstring""" super().__init__(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = use_mask_token SCREAMING_SNAKE_CASE_ = use_absolute_position_embeddings SCREAMING_SNAKE_CASE_ = use_relative_position_bias SCREAMING_SNAKE_CASE_ = use_shared_relative_position_bias SCREAMING_SNAKE_CASE_ = layer_scale_init_value SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = use_mean_pooling # decode head attributes (semantic segmentation) SCREAMING_SNAKE_CASE_ = out_indices SCREAMING_SNAKE_CASE_ = pool_scales # auxiliary head attributes (semantic segmentation) SCREAMING_SNAKE_CASE_ = use_auxiliary_head SCREAMING_SNAKE_CASE_ = auxiliary_loss_weight SCREAMING_SNAKE_CASE_ = auxiliary_channels SCREAMING_SNAKE_CASE_ = auxiliary_num_convs SCREAMING_SNAKE_CASE_ = auxiliary_concat_input SCREAMING_SNAKE_CASE_ = semantic_loss_ignore_index class snake_case ( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase : Tuple = version.parse("""1.11""" ) @property def _lowercase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowercase ( self : List[Any] ) -> float: """simple docstring""" return 1e-4
393
def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase )-> list: '''simple docstring''' SCREAMING_SNAKE_CASE_ = len(UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = [[0] * n for i in range(UpperCAmelCase )] for i in range(UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = y_points[i] for i in range(2 ,UpperCAmelCase ): for j in range(UpperCAmelCase ,UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
393
1
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class SCREAMING_SNAKE_CASE_ : '''simple docstring''' lowercase : List[str] lowercase : Optional[str] = None # Automatically constructed lowercase : ClassVar[str] = "dict" lowercase : ClassVar[Any] = None lowercase : str = field(default="Translation" , init=lowerCAmelCase_ , repr=lowerCAmelCase_ ) def __call__( self : Optional[int] ) -> Any: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class SCREAMING_SNAKE_CASE_ : '''simple docstring''' lowercase : Optional[List] = None lowercase : Optional[int] = None lowercase : Optional[str] = None # Automatically constructed lowercase : ClassVar[str] = "dict" lowercase : ClassVar[Any] = None lowercase : str = field(default="TranslationVariableLanguages" , init=lowerCAmelCase_ , repr=lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Union[str, Any]: A : Tuple =sorted(set(self.languages ) ) if self.languages else None A : Optional[Any] =len(self.languages ) if self.languages else None def __call__( self : Optional[int] ) -> Dict: return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Tuple ) -> List[str]: A : Tuple =set(self.languages ) if self.languages and set(SCREAMING_SNAKE_CASE__ ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(SCREAMING_SNAKE_CASE__ ) - lang_set ) )}) are not in valid set ({", ".join(SCREAMING_SNAKE_CASE__ )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. A : List[str] =[] for lang, text in translation_dict.items(): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. A , A : Any =zip(*sorted(SCREAMING_SNAKE_CASE__ ) ) return {"language": languages, "translation": translations} def SCREAMING_SNAKE_CASE_ ( self : str ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
661
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def A__ ( *lowercase: Tuple, lowercase: Optional[Union[Dict, Any]] = None, lowercase: Dict=True, lowercase: Any=2 ) -> List[Any]: from .. import __version__ A : Optional[Any] =take_from A : Union[str, Any] =() if not isinstance(args[0], lowercase ): A : List[str] =(args,) for attribute, version_name, message in args: if version.parse(version.parse(lowercase ).base_version ) >= version.parse(lowercase ): raise ValueError( F'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'' F' version {__version__} is >= {version_name}' ) A : Tuple =None if isinstance(lowercase, lowercase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(lowercase ),) A : Union[str, Any] =F'The `{attribute}` argument is deprecated and will be removed in version {version_name}.' elif hasattr(lowercase, lowercase ): values += (getattr(lowercase, lowercase ),) A : Optional[Any] =F'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.' elif deprecated_kwargs is None: A : List[Any] =F'`{attribute}` is deprecated and will be removed in version {version_name}.' if warning is not None: A : List[Any] =warning + ' ' if standard_warn else '' warnings.warn(warning + message, lowercase, stacklevel=lowercase ) if isinstance(lowercase, lowercase ) and len(lowercase ) > 0: A : Any =inspect.getouterframes(inspect.currentframe() )[1] A : int =call_frame.filename A : int =call_frame.lineno A : Optional[int] =call_frame.function A , A : int =next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' ) if len(lowercase ) == 0: return elif len(lowercase ) == 1: return values[0] return values
661
1
from __future__ import annotations __magic_name__ = 8.988E9 # units = N * m^s * C^-2 def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : Optional[int] = abs(chargea * chargea) if (force, chargea, chargea, distance).count(0) != 1: raise ValueError("One and only one argument must be 0") if distance < 0: raise ValueError("Distance cannot be negative") if force == 0: lowerCamelCase_ : Tuple = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowerCamelCase_ : Optional[Any] = abs(lowerCAmelCase_) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowerCamelCase_ : List[Any] = abs(lowerCAmelCase_) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowerCamelCase_ : Optional[Any] = (COULOMBS_CONSTANT * charge_product / abs(lowerCAmelCase_)) ** 0.5 return {"distance": distance} raise ValueError("Exactly one argument must be 0") if __name__ == "__main__": import doctest doctest.testmod()
250
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( __lowerCamelCase, unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[str] = CanineTokenizer __UpperCAmelCase : int = False def _UpperCamelCase ( self ): super().setUp() lowerCamelCase_ : int = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ): return CanineTokenizer.from_pretrained("google/canine-s" ) def _UpperCamelCase ( self , **a_ ): lowerCamelCase_ : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname , **a_ ) lowerCamelCase_ : Dict = 1024 return tokenizer @require_torch def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[Any] = self.canine_tokenizer lowerCamelCase_ : str = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off lowerCamelCase_ : Dict = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on lowerCamelCase_ : List[Any] = tokenizer(a_ , padding=a_ , return_tensors="pt" ) self.assertIsInstance(a_ , a_ ) lowerCamelCase_ : List[str] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(a_ , a_ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _UpperCamelCase ( self ): lowerCamelCase_ : Any = self.canine_tokenizer lowerCamelCase_ : Tuple = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] lowerCamelCase_ : Union[str, Any] = tokenizer(a_ , padding=a_ , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , a_ ) self.assertIn("attention_mask" , a_ ) self.assertIn("token_type_ids" , a_ ) @require_torch def _UpperCamelCase ( self ): lowerCamelCase_ : int = self.canine_tokenizer lowerCamelCase_ : Tuple = [ "What's the weater?", "It's about 25 degrees.", ] lowerCamelCase_ : Optional[Any] = tokenizer( text_target=a_ , max_length=32 , padding="max_length" , truncation=a_ , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _UpperCamelCase ( self ): # safety check on max_len default value so we are sure the test works lowerCamelCase_ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCamelCase_ : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase_ : Optional[int] = tempfile.mkdtemp() lowerCamelCase_ : Dict = " He is very happy, UNwant\u00E9d,running" lowerCamelCase_ : Optional[int] = tokenizer.encode(a_ , add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) lowerCamelCase_ : Union[str, Any] = tokenizer.__class__.from_pretrained(a_ ) lowerCamelCase_ : List[Any] = after_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) shutil.rmtree(a_ ) lowerCamelCase_ : List[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase_ : List[Any] = tempfile.mkdtemp() lowerCamelCase_ : Tuple = " He is very happy, UNwant\u00E9d,running" lowerCamelCase_ : Dict = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: lowerCamelCase_ : List[str] = chr(0Xe007 ) additional_special_tokens.append(a_ ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowerCamelCase_ : List[str] = tokenizer.encode(a_ , add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) lowerCamelCase_ : Any = tokenizer.__class__.from_pretrained(a_ ) lowerCamelCase_ : Any = after_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) self.assertIn(a_ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCamelCase_ : int = tokenizer.__class__.from_pretrained(a_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(a_ ) def _UpperCamelCase ( self ): lowerCamelCase_ : List[str] = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ ,lowerCamelCase_ : str = self.get_clean_sequence(a_ ) # a special token for Canine can be defined as follows: lowerCamelCase_ : Tuple = 0Xe005 lowerCamelCase_ : Dict = chr(a_ ) tokenizer.add_special_tokens({"cls_token": special_token} ) lowerCamelCase_ : List[str] = tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertEqual(len(a_ ) , 1 ) lowerCamelCase_ : List[Any] = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=a_ ) lowerCamelCase_ : List[Any] = tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCamelCase_ : Dict = tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCamelCase_ : Any = tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertEqual(a_ , input_encoded + special_token_id ) lowerCamelCase_ : Optional[int] = tokenizer.decode(a_ , skip_special_tokens=a_ ) self.assertTrue(special_token not in decoded ) def _UpperCamelCase ( self ): lowerCamelCase_ : Tuple = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ : Optional[int] = chr(0Xe005 ) lowerCamelCase_ : str = chr(0Xe006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=a_ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) lowerCamelCase_ : Tuple = tokenizer.tokenize(a_ ) lowerCamelCase_ : List[Any] = tokenizer.tokenize(a_ ) self.assertEqual(len(a_ ) , 1 ) self.assertEqual(len(a_ ) , 1 ) self.assertEqual(token_a[0] , a_ ) self.assertEqual(token_a[0] , a_ ) @require_tokenizers def _UpperCamelCase ( self ): lowerCamelCase_ : Tuple = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # a special token for Canine can be defined as follows: lowerCamelCase_ : List[str] = 0Xe006 lowerCamelCase_ : Any = chr(a_ ) lowerCamelCase_ : str = AddedToken(a_ , lstrip=a_ ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(a_ ) tokenizer.from_pretrained(a_ ) def _UpperCamelCase ( self ): lowerCamelCase_ : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) with open(os.path.join(a_ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: lowerCamelCase_ : List[Any] = json.load(a_ ) with open(os.path.join(a_ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: lowerCamelCase_ : int = json.load(a_ ) # a special token for Canine can be defined as follows: lowerCamelCase_ : Any = 0Xe006 lowerCamelCase_ : List[Any] = chr(a_ ) lowerCamelCase_ : Any = [new_token_a] lowerCamelCase_ : Optional[Any] = [new_token_a] with open(os.path.join(a_ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(a_ , a_ ) with open(os.path.join(a_ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(a_ , a_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase_ : str = tokenizer_class.from_pretrained(a_ , extra_ids=0 ) self.assertIn(a_ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) lowerCamelCase_ : Optional[int] = 0Xe007 lowerCamelCase_ : List[str] = chr(a_ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase_ : int = [AddedToken(a_ , lstrip=a_ )] lowerCamelCase_ : Dict = tokenizer_class.from_pretrained( a_ , additional_special_tokens=a_ , extra_ids=0 ) self.assertIn(a_ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _UpperCamelCase ( self ): lowerCamelCase_ : Dict = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ : Union[str, Any] = "hello world" if self.space_between_special_tokens: lowerCamelCase_ : int = "[CLS] hello world [SEP]" else: lowerCamelCase_ : int = input lowerCamelCase_ : Optional[Any] = tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCamelCase_ : Any = tokenizer.decode(a_ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(a_ , [output, output.lower()] ) def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ : Tuple = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowerCamelCase_ : Optional[int] = "a" lowerCamelCase_ : Dict = ord(a_ ) for attr in attributes_list: setattr(a_ , attr + "_id" , a_ ) self.assertEqual(getattr(a_ , a_ ) , a_ ) self.assertEqual(getattr(a_ , attr + "_id" ) , a_ ) setattr(a_ , attr + "_id" , a_ ) self.assertEqual(getattr(a_ , a_ ) , a_ ) self.assertEqual(getattr(a_ , attr + "_id" ) , a_ ) setattr(a_ , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(a_ , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(a_ , "additional_special_tokens_ids" ) , [] ) lowerCamelCase_ : Optional[int] = 0Xe006 lowerCamelCase_ : List[str] = chr(a_ ) setattr(a_ , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(a_ , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(a_ , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass
250
1
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def snake_case (): '''simple docstring''' lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=UpperCamelCase , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=UpperCamelCase , default=5 ) parser.add_argument("""--batch_size""" , type=UpperCamelCase , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=UpperCamelCase , default=1 ) parser.add_argument("""--freeze""" , type=UpperCamelCase , default=UpperCamelCase ) parser.add_argument("""--learning_rate""" , type=UpperCamelCase , default=5e-4 ) parser.add_argument("""--seed""" , type=UpperCamelCase , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=UpperCamelCase , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=UpperCamelCase , default=10 ) parser.add_argument("""--weight_decay""" , type=UpperCamelCase , default=0.0_1 ) parser.add_argument("""--output_dir""" , type=UpperCamelCase , default="""./results""" ) return parser.parse_args() a__ : Union[str, Any] = load("""accuracy""") def snake_case (UpperCamelCase : str ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = eval_pred lowerCamelCase__ = np.argmax(UpperCamelCase , axis=1 ) return metric.compute(predictions=UpperCamelCase , references=UpperCamelCase ) class lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : List[Any] , a_ : Optional[int] ): """simple docstring""" super().__init__() lowerCamelCase__ = trainer def _UpperCamelCase ( self : List[str] , a_ : Tuple , a_ : Any , a_ : Optional[Any] , **a_ : Optional[Any] ): """simple docstring""" if control.should_evaluate: lowerCamelCase__ = deepcopy(a_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def snake_case (): '''simple docstring''' lowerCamelCase__ = get_args() set_seed(args.seed ) lowerCamelCase__ = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) lowerCamelCase__ = dataset.train_test_split(test_size=0.2 ) lowerCamelCase__ = train_test["""test"""].train_test_split(test_size=0.5 ) lowerCamelCase__ = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) lowerCamelCase__ = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCamelCase__ = tokenizer.eos_token lowerCamelCase__ = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) lowerCamelCase__ = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): lowerCamelCase__ = False lowerCamelCase__ = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(UpperCamelCase : Optional[Any] ): lowerCamelCase__ = tokenizer(example["""src"""] , truncation=UpperCamelCase , max_length=1024 ) lowerCamelCase__ = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } lowerCamelCase__ = train_test_validation.map( UpperCamelCase , batched=UpperCamelCase , remove_columns=train_test_validation["""train"""].column_names , ) lowerCamelCase__ = DataCollatorWithPadding(tokenizer=UpperCamelCase ) lowerCamelCase__ = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.0_1 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) lowerCamelCase__ = Trainer( model=UpperCamelCase , args=UpperCamelCase , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=UpperCamelCase , data_collator=UpperCamelCase , compute_metrics=UpperCamelCase , ) print("""Training...""" ) trainer.add_callback(CustomCallback(UpperCamelCase ) ) trainer.train() if __name__ == "__main__": main()
235
def snake_case (UpperCamelCase : int ): '''simple docstring''' return str(UpperCamelCase ) == str(UpperCamelCase )[::-1] def snake_case (UpperCamelCase : int ): '''simple docstring''' return int(UpperCamelCase ) + int(str(UpperCamelCase )[::-1] ) def snake_case (UpperCamelCase : int = 10000 ): '''simple docstring''' lowerCamelCase__ = [] for num in range(1 , UpperCamelCase ): lowerCamelCase__ = 0 lowerCamelCase__ = num while iterations < 50: lowerCamelCase__ = sum_reverse(UpperCamelCase ) iterations += 1 if is_palindrome(UpperCamelCase ): break else: lychrel_nums.append(UpperCamelCase ) return len(UpperCamelCase ) if __name__ == "__main__": print(f'''{solution() = }''')
235
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _A : List[str] = logging.get_logger(__name__) _A : Tuple = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Tuple = """gpt_neo""" _SCREAMING_SNAKE_CASE : Dict = ["""past_key_values"""] _SCREAMING_SNAKE_CASE : Dict = {"""num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any]=5_02_57 , SCREAMING_SNAKE_CASE__ : List[str]=20_48 , SCREAMING_SNAKE_CASE__ : str=20_48 , SCREAMING_SNAKE_CASE__ : Optional[Any]=24 , SCREAMING_SNAKE_CASE__ : Tuple=[[["global", "local"], 12]] , SCREAMING_SNAKE_CASE__ : Any=16 , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Any=2_56 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu_new" , SCREAMING_SNAKE_CASE__ : Any=0.0 , SCREAMING_SNAKE_CASE__ : Any=0.0 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Dict=1e-5 , SCREAMING_SNAKE_CASE__ : int=0.0_2 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Tuple=5_02_56 , SCREAMING_SNAKE_CASE__ : List[Any]=5_02_56 , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> List[str]: __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = hidden_size __lowerCAmelCase = num_layers __lowerCAmelCase = num_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = window_size __lowerCAmelCase = activation_function __lowerCAmelCase = resid_dropout __lowerCAmelCase = embed_dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = classifier_dropout __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id __lowerCAmelCase = attention_types __lowerCAmelCase = self.expand_attention_types_params(SCREAMING_SNAKE_CASE__ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ f"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ f"""`config.num_layers = {self.num_layers}`. """ """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @staticmethod def a ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[str]: __lowerCAmelCase = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def UpperCamelCase_ ( snake_case_ : str , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Tuple ) -> List[Any]: '''simple docstring''' import torch __lowerCAmelCase = input.size() __lowerCAmelCase = len(snake_case_ ) __lowerCAmelCase = shape[dimension] __lowerCAmelCase = torch.arange(0 , snake_case_ , snake_case_ ) __lowerCAmelCase = torch.div(sizedim - size , snake_case_ , rounding_mode="""floor""" ) + 1 __lowerCAmelCase = torch.arange(snake_case_ ) + low_indices[:min_length][:, None] __lowerCAmelCase = [slice(snake_case_ )] * rank __lowerCAmelCase = indices __lowerCAmelCase = input[s] __lowerCAmelCase = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(snake_case_ ) def UpperCamelCase_ ( snake_case_ : Tuple , snake_case_ : List[Any] ) -> List[Any]: '''simple docstring''' import torch __lowerCAmelCase = torch.arange(1 , snake_case_ ) __lowerCAmelCase = torch.remainder(snake_case_ , snake_case_ ) __lowerCAmelCase = remainders == 0 __lowerCAmelCase = candidates[divisor_indices] __lowerCAmelCase = torch.max(snake_case_ ) return largest_divisor, torch.div(snake_case_ , snake_case_ , rounding_mode="""floor""" ) class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' @property def a ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: __lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE__ , direction="""inputs""" ) __lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def a ( self : List[str] ) -> int: return self._config.num_heads def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : PreTrainedTokenizer , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: __lowerCAmelCase = super(SCREAMING_SNAKE_CASE__ , self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , seq_length=SCREAMING_SNAKE_CASE__ , is_pair=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase = [ (torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ )] , dim=1 ) return ordered_inputs @property def a ( self : str ) -> int: return 13
427
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : str ) -> str: '''simple docstring''' return "".join(chr(ord(snake_case_ ) - 32 ) if """a""" <= char <= """z""" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
427
1
from __future__ import annotations from scipy.special import comb # type: ignore class lowerCAmelCase__ : def __init__( self , a ) -> Dict: '''simple docstring''' _UpperCamelCase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _UpperCamelCase = len(a ) - 1 def A_ ( self , a ) -> list[float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." _UpperCamelCase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , a ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(a ) , 5 ) == 1 return output_values def A_ ( self , a ) -> tuple[float, float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." _UpperCamelCase = self.basis_function(a ) _UpperCamelCase = 0.0 _UpperCamelCase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def A_ ( self , a = 0.01 ) -> Any: '''simple docstring''' from matplotlib import pyplot as plt # type: ignore _UpperCamelCase = [] # x coordinates of points to plot _UpperCamelCase = [] # y coordinates of points to plot _UpperCamelCase = 0.0 while t <= 1: _UpperCamelCase = self.bezier_curve_function(a ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _UpperCamelCase = [i[0] for i in self.list_of_points] _UpperCamelCase = [i[1] for i in self.list_of_points] plt.plot( a , a , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(a , a , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
202
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = "x" , lowerCAmelCase = 1_0**-1_0 , lowerCAmelCase = 1 , ) -> complex: """simple docstring""" _UpperCamelCase = symbols(lowerCAmelCase ) _UpperCamelCase = lambdify(lowerCAmelCase , lowerCAmelCase ) _UpperCamelCase = lambdify(lowerCAmelCase , diff(lowerCAmelCase , lowerCAmelCase ) ) _UpperCamelCase = starting_point while True: if diff_function(lowerCAmelCase ) != 0: _UpperCamelCase = prev_guess - multiplicity * func(lowerCAmelCase ) / diff_function( lowerCAmelCase ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCamelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", F"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F"""{newton_raphson("exp(x) - 1", 10, precision=0.0_05)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
202
1
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList SCREAMING_SNAKE_CASE : Union[str, Any] = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase=1) -> Union[str, Any]: """simple docstring""" _lowercase : str = tokenizer _lowercase : str = dataset _lowercase : str = len(__A) if n_tasks is None else n_tasks _lowercase : str = n_copies def __iter__( self) -> Optional[Any]: """simple docstring""" _lowercase : str = [] for task in range(self.n_tasks): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip()) _lowercase : Optional[int] = self.tokenizer(__A, padding=__A, return_tensors='pt') for task in range(self.n_tasks): for _ in range(self.n_copies): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> str: """simple docstring""" _lowercase : Tuple = start_length _lowercase : Tuple = eof_strings _lowercase : int = tokenizer def __call__( self, lowerCamelCase, lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" _lowercase : List[Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :]) _lowercase : Any = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings)) return all(__A) def UpperCamelCase_( lowerCamelCase_ ) -> List[Any]: _lowercase : int = re.split('(%s)' % '|'.join(_lowercase ) , _lowercase ) # last string should be "" return "".join(string_list[:-2] ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=20 , **lowerCamelCase_ ) -> Union[str, Any]: _lowercase : Union[str, Any] = defaultdict(_lowercase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowercase ) ): with torch.no_grad(): _lowercase : Optional[Any] = batch['ids'].shape[-1] _lowercase : List[str] = accelerator.unwrap_model(_lowercase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowercase , **_lowercase ) # each task is generated batch_size times _lowercase : Optional[Any] = batch['task_id'].repeat(_lowercase ) _lowercase : Tuple = accelerator.pad_across_processes( _lowercase , dim=1 , pad_index=tokenizer.pad_token_id ) _lowercase , _lowercase : Optional[Any] = accelerator.gather((generated_tokens, generated_tasks) ) _lowercase : int = generated_tokens.cpu().numpy() _lowercase : List[str] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowercase , _lowercase ): gen_token_dict[task].append(_lowercase ) _lowercase : Any = [[] for _ in range(_lowercase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _lowercase : int = tokenizer.decode(_lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase ) code_gens[task].append(remove_last_block(_lowercase ) ) return code_gens def UpperCamelCase_( ) -> List[Any]: _lowercase : Optional[Any] = HfArgumentParser(_lowercase ) _lowercase : Optional[int] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _lowercase : Optional[Any] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _lowercase : int = 'false' if args.num_workers is None: _lowercase : Any = multiprocessing.cpu_count() # Use dataset load to feed to accelerate _lowercase : Optional[int] = Accelerator() set_seed(args.seed , device_specific=_lowercase ) # Load model and tokenizer _lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(args.model_ckpt ) _lowercase : str = tokenizer.eos_token _lowercase : Optional[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _lowercase : Tuple = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowercase , _lowercase )] ), } # Load evaluation dataset and metric _lowercase : Any = load_dataset('openai_humaneval' ) _lowercase : List[Any] = load_metric('code_eval' ) _lowercase : Any = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) _lowercase : List[str] = args.n_samples // args.batch_size _lowercase : Optional[int] = TokenizedDataset(_lowercase , human_eval['test'] , n_copies=_lowercase , n_tasks=_lowercase ) # do not confuse args.batch_size, which is actually the num_return_sequences _lowercase : Any = DataLoader(_lowercase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _lowercase : str = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception _lowercase , _lowercase : Any = accelerator.prepare(_lowercase , _lowercase ) _lowercase : Dict = complete_code( _lowercase , _lowercase , _lowercase , _lowercase , n_tasks=_lowercase , batch_size=args.batch_size , **_lowercase , ) if accelerator.is_main_process: _lowercase : Optional[Any] = [] for task in tqdm(range(_lowercase ) ): _lowercase : str = human_eval['test'][task]['test'] _lowercase : List[Any] = F'''check({human_eval["test"][task]["entry_point"]})''' references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric _lowercase , _lowercase : Any = code_eval_metric.compute( references=_lowercase , predictions=_lowercase , num_workers=args.num_workers ) print(F'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowercase , _lowercase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
89
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __A = 2 class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self: int , *, # begin keyword-only arguments __A: Any="<s>" , __A: List[str]="<pad>" , __A: Optional[Any]="</s>" , __A: Dict="<unk>" , __A: Any=None , ) -> Tuple: _A ,_A ,_A ,_A = bos, unk, pad, eos _A = [] _A = [] _A = {} _A = self.add_symbol(__A ) _A = self.add_symbol(__A ) _A = self.add_symbol(__A ) _A = self.add_symbol(__A ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(__A ) _A = len(self.symbols ) def __eq__( self: Any , __A: Any ) -> Optional[Any]: return self.indices == other.indices def __getitem__( self: Tuple , __A: Optional[int] ) -> int: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self: Optional[Any] ) -> Optional[Any]: return len(self.symbols ) def __contains__( self: Dict , __A: List[str] ) -> Union[str, Any]: return sym in self.indices @classmethod def __A ( cls: Tuple , __A: Optional[Any] ) -> Optional[Any]: _A = cls() d.add_from_file(__A ) return d def __A ( self: List[Any] , __A: List[str] , __A: List[Any]=1 , __A: List[Any]=False ) -> Optional[Any]: if word in self.indices and not overwrite: _A = self.indices[word] _A = self.count[idx] + n return idx else: _A = len(self.symbols ) _A = idx self.symbols.append(__A ) self.count.append(__A ) return idx def __A ( self: Optional[Any] , __A: Optional[int] ) -> str: return 0 def __A ( self: List[str] , __A: Optional[Any] ) -> List[Any]: if isinstance(__A , __A ): try: with open(__A , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(__A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(__A ) ) return _A = f.readlines() _A = self._load_meta(__A ) for line in lines[indices_start_line:]: try: _A ,_A = line.rstrip().rsplit(''' ''' , 1 ) if field == "#fairseq:overwrite": _A = True _A ,_A = line.rsplit(''' ''' , 1 ) else: _A = False _A = int(__A ) _A = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(__A ) ) self.add_symbol(__A , n=__A , overwrite=__A ) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' ) def __A ( _lowercase ): '''simple docstring''' _A = dict((re.sub(R'''@@$''' , '''''' , _lowercase ), v) if k.endswith('''@@''' ) else (re.sub(R'''$''' , '''</w>''' , _lowercase ), v) for k, v in d.items() ) _A = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] _A = d[k] # restore return da def __A ( _lowercase , _lowercase ): '''simple docstring''' if not os.path.exists(_lowercase ): raise ValueError(f"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(_lowercase , exist_ok=_lowercase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models _A = os.path.join(_lowercase , '''checkpoint.pt''' ) if not os.path.isfile(_lowercase ): raise ValueError(f"""path to the file {checkpoint_file} does not exist!""" ) _A = torch.load(_lowercase , map_location='''cpu''' ) _A = chkpt['''cfg''']['''model'''] # dicts _A = os.path.join(_lowercase , '''dict.txt''' ) if not os.path.isfile(_lowercase ): raise ValueError(f"""path to the file {dict_file} does not exist!""" ) _A = Dictionary.load(_lowercase ) _A = rewrite_dict_keys(src_dict.indices ) _A = len(_lowercase ) _A = os.path.join(_lowercase , VOCAB_FILES_NAMES['''vocab_file'''] ) print(f"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_lowercase , ensure_ascii=_lowercase , indent=_lowercase ) ) # merges_file (bpecodes) _A = os.path.join(_lowercase , '''bpecodes''' ) if not os.path.isfile(_lowercase ): raise ValueError(f"""path to the file {bpecodes_file} does not exist!""" ) _A = os.path.join(_lowercase , VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(_lowercase , _lowercase ) # model config _A = os.path.join(_lowercase , '''config.json''' ) _A = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.02, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1e-12, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(f"""Generating {biogpt_model_config_file}""" ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_lowercase , ensure_ascii=_lowercase , indent=_lowercase ) ) # tokenizer config _A = os.path.join(_lowercase , _lowercase ) _A = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 10_24, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(f"""Generating {biogpt_tokenizer_config_file}""" ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_lowercase , ensure_ascii=_lowercase , indent=_lowercase ) ) # model _A = chkpt['''model'''] # remove unneeded keys _A = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(_lowercase , _lowercase ) _A = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): _A = model_state_dict.pop(_lowercase ) else: _A = model_state_dict.pop(_lowercase ) _A = BioGptConfig.from_pretrained(_lowercase ) _A = BioGptForCausalLM(_lowercase ) # check that it loads ok model_new.load_state_dict(_lowercase ) # save _A = os.path.join(_lowercase , _lowercase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(_lowercase , _lowercase ) print('''Conversion is done!''' ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __A = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
484
0
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __UpperCamelCase (__lowercase , unittest.TestCase ): __A = CTRLTokenizer __A = False __A = False def _a ( self ) -> List[str]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] lowercase = dict(zip(_A , range(len(_A ) ) ) ) lowercase = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] lowercase = {"""unk_token""": """<unk>"""} lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_A ) ) def _a ( self , **_lowerCAmelCase ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_A ) def _a ( self , _lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase = """adapt react readapt apt""" lowercase = """adapt react readapt apt""" return input_text, output_text def _a ( self ) -> Dict: '''simple docstring''' lowercase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase = """adapt react readapt apt""" lowercase = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() lowercase = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) lowercase = tokens + [tokenizer.unk_token] lowercase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A )
705
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase_ : Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def SCREAMING_SNAKE_CASE ( lowercase_ : np.ndarray , lowercase_ : float , lowercase_ : int = 1_6000 ): lowercase = int(round(sample_rate * max_length ) ) if len(lowercase_ ) <= sample_length: return wav lowercase = randint(0 , len(lowercase_ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __UpperCamelCase : __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the training audio paths and labels.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''A file containing the validation audio paths and labels.'''} ) __A = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __A = field( default='''validation''' , metadata={ '''help''': ( '''The name of the training data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) __A = field( default='''audio''' , metadata={'''help''': '''The name of the dataset column containing the audio data. Defaults to \'audio\''''} , ) __A = field( default='''label''' , metadata={'''help''': '''The name of the dataset column containing the labels. Defaults to \'label\''''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) __A = field( default=20 , metadata={'''help''': '''Audio clips will be randomly cut to this length during training if the value is set.'''} , ) @dataclass class __UpperCamelCase : __A = field( default='''facebook/wav2vec2-base''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from the Hub'''} ) __A = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature encoder layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to generate an attention mask in the feature extractor.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def _a ( self ) -> List[Any]: '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , _lowerCAmelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , lowercase_ , lowercase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase = training_args.get_process_log_level() logger.setLevel(lowercase_ ) transformers.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. lowercase = DatasetDict() lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--audio_column_name` to the correct audio column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ """Make sure to set `--label_column_name` to the correct text column - one of """ F"""{', '.join(raw_datasets['train'].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowercase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowercase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowercase = feature_extractor.model_input_names[0] def train_transforms(lowercase_ : int ): lowercase = [] for audio in batch[data_args.audio_column_name]: lowercase = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowercase_ ) lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowercase_ : Dict ): lowercase = [audio["""array"""] for audio in batch[data_args.audio_column_name]] lowercase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) lowercase = {model_input_name: inputs.get(lowercase_ )} lowercase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase = raw_datasets["""train"""].features[data_args.label_column_name].names lowercase , lowercase = {}, {} for i, label in enumerate(lowercase_ ): lowercase = str(lowercase_ ) lowercase = label # Load the accuracy metric from the datasets package lowercase = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowercase_ : Tuple ): lowercase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowercase_ , references=eval_pred.label_ids ) lowercase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowercase_ ) , labelaid=lowercase_ , idalabel=lowercase_ , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowercase = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowercase_ , output_all_columns=lowercase_ ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowercase = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowercase_ , output_all_columns=lowercase_ ) # Initialize our trainer lowercase = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) # Training if training_args.do_train: lowercase = None if training_args.resume_from_checkpoint is not None: lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase = last_checkpoint lowercase = trainer.train(resume_from_checkpoint=lowercase_ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase_ ) trainer.save_metrics("""eval""" , lowercase_ ) # Write model card and (optionally) push to hub lowercase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase_ ) else: trainer.create_model_card(**lowercase_ ) if __name__ == "__main__": main()
653
0
def _a ( lowercase__ : list , lowercase__ : int = 0 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = length or len(lowercase__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE__ : Optional[Any] = True return list_data if not swapped else bubble_sort(lowercase__ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
85
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def UpperCAmelCase_ ( _UpperCAmelCase :str , _UpperCAmelCase :Optional[Any] ) -> Optional[int]: '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer A_ = flax_key_tuple[:-1] + ('''weight''',) A_ = torch.permute(_UpperCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCAmelCase ): # linear layer A_ = flax_key_tuple[:-1] + ('''weight''',) A_ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: A_ = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def UpperCAmelCase_ ( _UpperCAmelCase :Optional[int] , _UpperCAmelCase :str , _UpperCAmelCase :Any ) -> Dict: '''simple docstring''' if "metadata" in layer: A_ = layer.split('''metadata''' ) A_ = ''''''.join(split_layer[0] )[:-1] A_ = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: A_ = layer.split('''kvstore''' ) A_ = ''''''.join(split_layer[0] )[:-1] A_ = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: A_ = layer.split('''/''' ) A_ = '''/'''.join(split_layer[:-1] ) A_ = (split_layer[-1],) if "kvstore/path" in layer: A_ = f'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: A_ = '''file''' else: A_ = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def UpperCAmelCase_ ( _UpperCAmelCase :int , _UpperCAmelCase :Union[str, Any] ) -> Any: '''simple docstring''' A_ = rename_keys(_UpperCAmelCase ) A_ = {} for k, v in current_block.items(): A_ = v A_ = new_current_block torch.save(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase_ ( _UpperCAmelCase :Union[str, Any] , _UpperCAmelCase :str , _UpperCAmelCase :List[Any] , _UpperCAmelCase :str , _UpperCAmelCase :str = WEIGHTS_NAME ) -> Optional[int]: '''simple docstring''' A_ = convert_file_size_to_int(_UpperCAmelCase ) A_ = [] A_ = {} A_ = 0 A_ = 0 os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp: A_ = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] A_ = flatten_dict(_UpperCAmelCase , sep='''/''' ) A_ = {} for layer in checkpoint_info.keys(): A_ , A_ , A_ = get_key_and_tensorstore_dict( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if curr_real_layer_name in all_layers: A_ = content else: A_ = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file A_ = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() A_ = torch.tensor(_UpperCAmelCase ) A_ = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts A_ , A_ = rename_base_flax_keys(tuple(key.split('''/''' ) ) , _UpperCAmelCase ) A_ = '''/'''.join(_UpperCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: A_ = os.path.join( _UpperCAmelCase , weights_name.replace('''.bin''' , f'-{len(_UpperCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_UpperCAmelCase , _UpperCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block A_ = {} A_ = 0 A_ = raw_weights.to(getattr(_UpperCAmelCase , _UpperCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block A_ = os.path.join(_UpperCAmelCase , weights_name.replace('''.bin''' , f'-{len(_UpperCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_UpperCAmelCase , _UpperCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_UpperCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index A_ = {} A_ = {} for idx, shard in enumerate(_UpperCAmelCase ): A_ = weights_name.replace( '''.bin''' , f'-{idx+1:05d}-of-{len(_UpperCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} A_ = os.path.join(_UpperCAmelCase , weights_name.replace('''.bin''' , f'-{idx+1:05d}-of-???.bin' ) ) os.rename(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) A_ = shard for key in shard: A_ = shard_file # Add the metadata A_ = {'''total_size''': total_size} A_ = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , '''w''' , encoding='''utf-8''' ) as f: A_ = json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase ) + '''\n''' f.write(_UpperCAmelCase ) return metadata, index if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) a__ : Tuple = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def UpperCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer A_ = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) A_ = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' ) A_ = TaTokenizer.from_pretrained('''t5-small''' ) A_ = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' A_ = tokenizer(_UpperCAmelCase , return_tensors='''pt''' ).input_ids A_ = model.generate(_UpperCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
188
0
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() lowercase : Dict = logging.get_logger(__name__) lowercase : int = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] lowercase : List[str] = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any) -> Tuple: '''simple docstring''' __UpperCamelCase : Optional[Any] = torch.load(_lowerCamelCase , map_location="cpu") return sd def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple=rename_keys_prefix) -> str: '''simple docstring''' __UpperCamelCase : Optional[Any] = OrderedDict() __UpperCamelCase : Optional[int] = torch.arange(config.max_position_embeddings).expand((1, -1)) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __UpperCamelCase : Union[str, Any] = key for name_pair in rename_keys_prefix: __UpperCamelCase : Any = new_key.replace(name_pair[0] , name_pair[1]) __UpperCamelCase : List[str] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __UpperCamelCase : str = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : str) -> Dict: '''simple docstring''' assert ( checkpoint_path.split("/")[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: __UpperCamelCase : List[Any] = "pretraining" if "vcr" in checkpoint_path: __UpperCamelCase : Optional[Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: __UpperCamelCase : Any = {"visual_embedding_dim": 2_048} elif "vqa" in checkpoint_path: __UpperCamelCase : str = {"visual_embedding_dim": 2_048} elif "nlvr" in checkpoint_path: __UpperCamelCase : Optional[Any] = {"visual_embedding_dim": 1_024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.') else: if "vcr" in checkpoint_path: __UpperCamelCase : Union[str, Any] = {"visual_embedding_dim": 512} __UpperCamelCase : str = "multichoice" elif "vqa_advanced" in checkpoint_path: __UpperCamelCase : Optional[int] = {"visual_embedding_dim": 2_048} __UpperCamelCase : Optional[int] = "vqa_advanced" elif "vqa" in checkpoint_path: __UpperCamelCase : int = {"visual_embedding_dim": 2_048, "num_labels": 3_129} __UpperCamelCase : List[Any] = "vqa" elif "nlvr" in checkpoint_path: __UpperCamelCase : Any = { "visual_embedding_dim": 1_024, "num_labels": 2, } __UpperCamelCase : Tuple = "nlvr" __UpperCamelCase : Union[str, Any] = VisualBertConfig(**_lowerCamelCase) # Load State Dict __UpperCamelCase : List[str] = load_state_dict(_lowerCamelCase) __UpperCamelCase : str = get_new_dict(_lowerCamelCase , _lowerCamelCase) if model_type == "pretraining": __UpperCamelCase : List[str] = VisualBertForPreTraining(_lowerCamelCase) elif model_type == "vqa": __UpperCamelCase : Any = VisualBertForQuestionAnswering(_lowerCamelCase) elif model_type == "nlvr": __UpperCamelCase : Dict = VisualBertForVisualReasoning(_lowerCamelCase) elif model_type == "multichoice": __UpperCamelCase : List[Any] = VisualBertForMultipleChoice(_lowerCamelCase) model.load_state_dict(_lowerCamelCase) # Save Checkpoints Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) model.save_pretrained(_lowerCamelCase) if __name__ == "__main__": lowercase : str = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') lowercase : Dict = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
701
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int=32 , _lowerCamelCase : str=10 , _lowerCamelCase : Dict=100 , _lowerCamelCase : int=1_026 , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : str="data/tokenized_stories_train_wikitext103.jbl" , _lowerCamelCase : Any="igf_context_pairs.jbl" , ) -> str: '''simple docstring''' set_seed(3) # generate train_data and objective_set __UpperCamelCase , __UpperCamelCase : Union[str, Any] = generate_datasets( _lowerCamelCase , _lowerCamelCase , number=_lowerCamelCase , min_len=1_026 , trim=_lowerCamelCase) # keeps model same across runs set_seed(4) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? __UpperCamelCase : Dict = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # load pretrained model __UpperCamelCase : str = load_gpta("gpt2").to(_lowerCamelCase) print("computing perplexity on objective set") __UpperCamelCase : Union[str, Any] = compute_perplexity(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase).item() print("perplexity on objective set:" , _lowerCamelCase) # collect igf pairs and save to file demo.jbl collect_objective_set(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] , _lowerCamelCase : Any=15 , _lowerCamelCase : Union[str, Any]=128 , _lowerCamelCase : Any=100 , _lowerCamelCase : List[Any]="igf_model.pt" , ) -> Any: '''simple docstring''' set_seed(42) # Load pre-trained model __UpperCamelCase : int = GPTaLMHeadModel.from_pretrained("gpt2") # Initialize secondary learner to use embedding weights of model __UpperCamelCase : Any = SecondaryLearner(_lowerCamelCase) # Train secondary learner __UpperCamelCase : Union[str, Any] = train_secondary_learner( _lowerCamelCase , _lowerCamelCase , max_epochs=_lowerCamelCase , batch_size=_lowerCamelCase , eval_freq=100 , igf_model_path=_lowerCamelCase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : int=32 , _lowerCamelCase : Tuple=1_000 , _lowerCamelCase : Dict=16 , _lowerCamelCase : Union[str, Any]=1.0 , _lowerCamelCase : Optional[Any]=recopy_gpta , _lowerCamelCase : List[Any]=None , _lowerCamelCase : Optional[Any]=10 , _lowerCamelCase : Union[str, Any]="gpt2_finetuned.pt" , ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : Optional[Any] = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") __UpperCamelCase : List[Any] = RandomSampler(_lowerCamelCase) __UpperCamelCase : Any = DataLoader(_lowerCamelCase , sampler=_lowerCamelCase) __UpperCamelCase : Tuple = max_steps // (len(_lowerCamelCase)) + 1 __UpperCamelCase : List[Any] = 0 __UpperCamelCase : List[Any] = torch.zeros((1, context_len) , dtype=torch.long , device=_lowerCamelCase) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[Any] = recopy_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) model.train() if secondary_learner is not None: secondary_learner.to(_lowerCamelCase) secondary_learner.eval() __UpperCamelCase : Union[str, Any] = [] __UpperCamelCase : Any = 0 __UpperCamelCase : List[Any] = [] __UpperCamelCase : Any = [] # Compute the performance of the transformer model at the beginning __UpperCamelCase : str = compute_perplexity(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) test_perps.append(_lowerCamelCase) print("Test perplexity, step" , _lowerCamelCase , ":" , _lowerCamelCase) for epoch in range(int(_lowerCamelCase)): for step, example in enumerate(_lowerCamelCase): torch.cuda.empty_cache() __UpperCamelCase : Optional[Any] = random.randint(0 , example.size(2) - context_len - 1) __UpperCamelCase : Optional[Any] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() __UpperCamelCase : List[Any] = model(_lowerCamelCase , labels=_lowerCamelCase) __UpperCamelCase : int = True if secondary_learner is not None: __UpperCamelCase : Optional[int] = secondary_learner.forward( torch.tensor(_lowerCamelCase , dtype=torch.long , device=_lowerCamelCase).unsqueeze(0))[0].item() observed_qs.append(float(_lowerCamelCase)) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: __UpperCamelCase : List[str] = -1 if predicted_q < threshold: __UpperCamelCase : Optional[int] = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu())) __UpperCamelCase : Optional[Any] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() __UpperCamelCase : str = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: __UpperCamelCase : List[Any] = compute_perplexity(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) test_perps.append(_lowerCamelCase) print("Test perplexity, step" , _lowerCamelCase , ":" , _lowerCamelCase) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , _lowerCamelCase) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : Tuple = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task") # Required parameters parser.add_argument( "--data_dir" , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help="The input data dir. Should contain data files for WikiText." , ) parser.add_argument( "--model_name_or_path" , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--data_file" , type=_lowerCamelCase , default=_lowerCamelCase , help=( "A jbl file containing tokenized data which can be split as objective dataset, " "train_dataset and test_dataset." ) , ) parser.add_argument( "--igf_data_file" , type=_lowerCamelCase , default=_lowerCamelCase , help="A jbl file containing the context and information gain pairs to train secondary learner." , ) parser.add_argument( "--output_dir" , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help="The output directory where the final fine-tuned model is stored." , ) parser.add_argument( "--tokenizer_name" , default=_lowerCamelCase , type=_lowerCamelCase , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument("--seed" , type=_lowerCamelCase , default=_lowerCamelCase , help="A seed for reproducible training.") parser.add_argument( "--context_len" , default=32 , type=_lowerCamelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--size_objective_set" , default=100 , type=_lowerCamelCase , help="number of articles that are long enough to be used as our objective set" , ) parser.add_argument( "--eval_freq" , default=100 , type=_lowerCamelCase , help="secondary model evaluation is triggered at eval_freq") parser.add_argument("--max_steps" , default=1_000 , type=_lowerCamelCase , help="To calculate training epochs") parser.add_argument( "--secondary_learner_batch_size" , default=128 , type=_lowerCamelCase , help="batch size of training data for secondary learner" , ) parser.add_argument( "--batch_size" , default=16 , type=_lowerCamelCase , help="batch size of training data of language model(gpt2) ") parser.add_argument( "--eval_interval" , default=10 , type=_lowerCamelCase , help=( "decay the selectivity of our secondary learner filter from" "1 standard deviation above average to 1 below average after 10 batches" ) , ) parser.add_argument( "--number" , default=100 , type=_lowerCamelCase , help="The number of examples split to be used as objective_set/test_data") parser.add_argument( "--min_len" , default=1_026 , type=_lowerCamelCase , help="The minimum length of the article to be used as objective set") parser.add_argument( "--secondary_learner_max_epochs" , default=15 , type=_lowerCamelCase , help="number of epochs to train secondary learner") parser.add_argument("--trim" , default=_lowerCamelCase , type=_lowerCamelCase , help="truncate the example if it exceeds context length") parser.add_argument( "--threshold" , default=1.0 , type=_lowerCamelCase , help=( "The threshold value used by secondary learner to filter the train_data and allow only" " informative data as input to the model" ) , ) parser.add_argument("--finetuned_model_name" , default="gpt2_finetuned.pt" , type=_lowerCamelCase , help="finetuned_model_name") parser.add_argument( "--recopy_model" , default=_lowerCamelCase , type=_lowerCamelCase , help="Reset the model to the original pretrained GPT-2 weights after each iteration" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1_026 , trim=_lowerCamelCase , data_file="data/tokenized_stories_train_wikitext103.jbl" , igf_data_file="igf_context_pairs.jbl" , ) # Load train data for secondary learner __UpperCamelCase : Any = joblib.load("data/IGF_values.jbl") # Train secondary learner __UpperCamelCase : Optional[Any] = training_secondary_learner( _lowerCamelCase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="igf_model.pt" , ) # load pretrained gpt2 model __UpperCamelCase : int = GPTaLMHeadModel.from_pretrained("gpt2") set_seed(42) # Generate train and test data to train and evaluate gpt2 model __UpperCamelCase , __UpperCamelCase : Union[str, Any] = generate_datasets( context_len=32 , file="data/tokenized_stories_train_wikitext103.jbl" , number=100 , min_len=1_026 , trim=_lowerCamelCase) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , context_len=32 , max_steps=1_000 , batch_size=16 , threshold=1.0 , recopy_model=_lowerCamelCase , secondary_learner=_lowerCamelCase , eval_interval=10 , finetuned_model_name="gpt2_finetuned.pt" , ) if __name__ == "__main__": main()
94
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'google/vit-base-patch16-224': 'https://huggingface.co/vit-base-patch16-224/resolve/main/config.json', # See all ViT models at https://huggingface.co/models?filter=vit } class UpperCAmelCase_ ( snake_case ): UpperCamelCase ="vit" def __init__( self , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=2_24 , UpperCamelCase_=16 , UpperCamelCase_=3 , UpperCamelCase_=True , UpperCamelCase_=16 , **UpperCamelCase_ , ) -> Any: super().__init__(**UpperCamelCase_ ) __lowercase : Tuple = hidden_size __lowercase : List[str] = num_hidden_layers __lowercase : List[Any] = num_attention_heads __lowercase : List[str] = intermediate_size __lowercase : str = hidden_act __lowercase : Optional[Any] = hidden_dropout_prob __lowercase : Any = attention_probs_dropout_prob __lowercase : Optional[Any] = initializer_range __lowercase : int = layer_norm_eps __lowercase : Optional[int] = image_size __lowercase : List[str] = patch_size __lowercase : Union[str, Any] = num_channels __lowercase : str = qkv_bias __lowercase : int = encoder_stride class UpperCAmelCase_ ( snake_case ): UpperCamelCase =version.parse("1.11" ) @property def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowerCamelCase ( self ) -> float: return 1E-4
76
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase): """simple docstring""" lowerCAmelCase_ = StableDiffusionSAGPipeline lowerCAmelCase_ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase_ = False def UpperCamelCase__ ( self : List[str] ) -> Optional[int]: torch.manual_seed(0 ) _UpperCamelCase =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) _UpperCamelCase =DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , ) torch.manual_seed(0 ) _UpperCamelCase =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCamelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _UpperCamelCase =CLIPTextModel(UpperCamelCase__ ) _UpperCamelCase =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _UpperCamelCase ={ '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCamelCase__ ( self : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any]=0 ) -> Tuple: if str(UpperCamelCase__ ).startswith('''mps''' ): _UpperCamelCase =torch.manual_seed(UpperCamelCase__ ) else: _UpperCamelCase =torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) _UpperCamelCase ={ '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def UpperCamelCase__ ( self : Union[str, Any] ) -> str: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self : Tuple ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : str ) -> int: _UpperCamelCase =StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) _UpperCamelCase =sag_pipe.to(UpperCamelCase__ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _UpperCamelCase ='''.''' _UpperCamelCase =torch.manual_seed(0 ) _UpperCamelCase =sag_pipe( [prompt] , generator=UpperCamelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) _UpperCamelCase =output.images _UpperCamelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCamelCase =np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def UpperCamelCase__ ( self : int ) -> Tuple: _UpperCamelCase =StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _UpperCamelCase =sag_pipe.to(UpperCamelCase__ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _UpperCamelCase ='''.''' _UpperCamelCase =torch.manual_seed(0 ) _UpperCamelCase =sag_pipe( [prompt] , generator=UpperCamelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) _UpperCamelCase =output.images _UpperCamelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCamelCase =np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def UpperCamelCase__ ( self : str ) -> Tuple: _UpperCamelCase =StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) _UpperCamelCase =sag_pipe.to(UpperCamelCase__ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _UpperCamelCase ='''.''' _UpperCamelCase =torch.manual_seed(0 ) _UpperCamelCase =sag_pipe( [prompt] , width=768 , height=512 , generator=UpperCamelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) _UpperCamelCase =output.images assert image.shape == (1, 512, 768, 3)
404
0
import argparse import json from tqdm import tqdm def a (): __a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--src_path""" , type=lowerCAmelCase__ , default="""biencoder-nq-dev.json""" , help="""Path to raw DPR training data""" , ) parser.add_argument( """--evaluation_set""" , type=lowerCAmelCase__ , help="""where to store parsed evaluation_set file""" , ) parser.add_argument( """--gold_data_path""" , type=lowerCAmelCase__ , help="""where to store parsed gold_data_path file""" , ) __a = parser.parse_args() with open(args.src_path , """r""" ) as src_file, open(args.evaluation_set , """w""" ) as eval_file, open( args.gold_data_path , """w""" ) as gold_file: __a = json.load(lowerCAmelCase__ ) for dpr_record in tqdm(lowerCAmelCase__ ): __a = dpr_record["""question"""] __a = [context["""title"""] for context in dpr_record["""positive_ctxs"""]] eval_file.write(question + """\n""" ) gold_file.write("""\t""".join(lowerCAmelCase__ ) + """\n""" ) if __name__ == "__main__": main()
706
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = """imagegpt""" _lowerCamelCase = ["""past_key_values"""] _lowerCamelCase = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __A=512 + 1 , __A=32 * 32 , __A=512 , __A=24 , __A=8 , __A=None , __A="quick_gelu" , __A=0.1 , __A=0.1 , __A=0.1 , __A=1E-5 , __A=0.02 , __A=True , __A=True , __A=False , __A=False , __A=False , **__A , ): __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = n_inner __a = activation_function __a = resid_pdrop __a = embd_pdrop __a = attn_pdrop __a = layer_norm_epsilon __a = initializer_range __a = scale_attn_weights __a = use_cache __a = scale_attn_by_inverse_layer_idx __a = reorder_and_upcast_attn __a = tie_word_embeddings super().__init__(tie_word_embeddings=__A , **__A ) class __UpperCAmelCase ( __A ): """simple docstring""" @property def snake_case_ ( self ): return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def snake_case_ ( self , __A , __A = 1 , __A = -1 , __A = False , __A = None , __A = 3 , __A = 32 , __A = 32 , ): __a = self._generate_dummy_images(__A , __A , __A , __A ) __a = dict(preprocessor(images=__A , return_tensors=__A ) ) return inputs
209
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _UpperCAmelCase : int = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _UpperCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE ) -> int: if n == 1 or not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return 0 elif n == 2: return 1 else: __lowerCAmelCase: Tuple = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def a__ ( __SCREAMING_SNAKE_CASE ) -> int: __lowerCAmelCase: str = 0 __lowerCAmelCase: Any = 2 while digits < n: index += 1 __lowerCAmelCase: Optional[int] = len(str(fibonacci(__SCREAMING_SNAKE_CASE ) ) ) return index def a__ ( __SCREAMING_SNAKE_CASE = 1_0_0_0 ) -> int: return fibonacci_digits_index(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
346
0
'''simple docstring''' def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: List[Any] ) -> int: """simple docstring""" assert ( isinstance(UpperCamelCase__, UpperCamelCase__ ) and number_of_steps > 0 ), f"""number_of_steps needs to be positive integer, your input {number_of_steps}""" if number_of_steps == 1: return 1 __a , __a = 1, 1 for _ in range(number_of_steps - 1 ): __a , __a = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
703
'''simple docstring''' from maths.prime_factors import prime_factors def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: int ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): __a = f"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE__ ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(SCREAMING_SNAKE_CASE__ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
270
0
"""simple docstring""" from __future__ import annotations UpperCAmelCase = 10 def _snake_case ( __snake_case : list[int] ): """simple docstring""" _lowerCamelCase : Any = 1 _lowerCamelCase : Dict = max(snake_case__ ) while placement <= max_digit: # declare and initialize empty buckets _lowerCamelCase : list[list] = [[] for _ in range(snake_case__ )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCamelCase : List[str] = int((i / placement) % RADIX ) buckets[tmp].append(snake_case__ ) # put each buckets' contents into list_of_ints _lowerCamelCase : Dict = 0 for b in range(snake_case__ ): for i in buckets[b]: _lowerCamelCase : str = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
88
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" _snake_case : int = str(snake_case__ ) return len(snake_case__ ) == 9 and set(snake_case__ ) == set("""123456789""" ) def UpperCAmelCase__ (): """simple docstring""" for base_num in range(99_99 , 49_99 , -1 ): _snake_case : List[Any] = 10_00_02 * base_num if is_9_pandigital(snake_case__ ): return candidate for base_num in range(3_33 , 99 , -1 ): _snake_case : List[str] = 1_00_20_03 * base_num if is_9_pandigital(snake_case__ ): return candidate return None if __name__ == "__main__": print(F'''{solution() = }''')
609
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
700
"""simple docstring""" from __future__ import annotations from typing import Any class lowercase : def __init__( self , lowercase , lowercase , lowercase = 0 ) -> None: lowerCAmelCase , lowerCAmelCase = row, column lowerCAmelCase = [[default_value for c in range(lowercase )] for r in range(lowercase )] def __str__( self ) -> str: lowerCAmelCase = f'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier lowerCAmelCase = 0 for row_vector in self.array: for obj in row_vector: lowerCAmelCase = max(lowercase , len(str(lowercase ) ) ) lowerCAmelCase = f'%{max_element_length}s' # Make string and return def single_line(lowercase ) -> str: nonlocal string_format_identifier lowerCAmelCase = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(lowercase ) for row_vector in self.array ) return s def __repr__( self ) -> str: return str(self ) def _snake_case ( self , lowercase ) -> bool: if not (isinstance(lowercase , (list, tuple) ) and len(lowercase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , lowercase ) -> Any: assert self.validate_indicies(lowercase ) return self.array[loc[0]][loc[1]] def __setitem__( self , lowercase , lowercase ) -> None: assert self.validate_indicies(lowercase ) lowerCAmelCase = value def __add__( self , lowercase ) -> Matrix: assert isinstance(lowercase , lowercase ) assert self.row == another.row and self.column == another.column # Add lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] + another[r, c] return result def __neg__( self ) -> Matrix: lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = -self[r, c] return result def __sub__( self , lowercase ) -> Matrix: return self + (-another) def __mul__( self , lowercase ) -> Matrix: if isinstance(lowercase , (int, float) ): # Scalar multiplication lowerCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] * another return result elif isinstance(lowercase , lowercase ): # Matrix multiplication assert self.column == another.row lowerCAmelCase = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCAmelCase = f'Unsupported type given for another ({type(lowercase )})' raise TypeError(lowercase ) def _snake_case ( self ) -> Matrix: lowerCAmelCase = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowerCAmelCase = self[r, c] return result def _snake_case ( self , lowercase , lowercase ) -> Any: assert isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCAmelCase = v.transpose() lowerCAmelCase = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCAmelCase = 1 print(F'a^(-1) is {ainv}' ) # u, v lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1, 2, -3 lowerCAmelCase = Matrix(3 , 1 , 0 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 4, -2, 5 print(F'u is {u}' ) print(F'v is {v}' ) print(F'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(F'(a + uv^T)^(-1) is {ainv.sherman_morrison(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}' ) def UpperCAmelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() testa()
393
0
A_ : Optional[Any] = '0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
303
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar A_ : int = TypeVar('T') def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return (position - 1) // 2 def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return (2 * position) + 1 def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return (2 * position) + 2 class A_ ( Generic[T] ): '''simple docstring''' def __init__(self ) -> None: __UpperCAmelCase = [] __UpperCAmelCase = {} __UpperCAmelCase = 0 def __len__(self ) -> int: return self.elements def __repr__(self ) -> str: return str(self.heap ) def lowerCAmelCase_ (self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) __UpperCAmelCase = self.elements self.elements += 1 self._bubble_up(lowercase__ ) def lowerCAmelCase_ (self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __UpperCAmelCase , __UpperCAmelCase = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __UpperCAmelCase , __UpperCAmelCase = self.heap[0] self._bubble_down(lowercase__ ) return elem def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> None: # Update the weight of the given key __UpperCAmelCase = self.position_map[elem] __UpperCAmelCase = (elem, weight) if position > 0: __UpperCAmelCase = get_parent_position(lowercase__ ) __UpperCAmelCase , __UpperCAmelCase = self.heap[parent_position] if parent_weight > weight: self._bubble_up(lowercase__ ) else: self._bubble_down(lowercase__ ) else: self._bubble_down(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] __UpperCAmelCase = self.position_map[elem] if curr_pos == 0: return None __UpperCAmelCase = get_parent_position(lowercase__ ) __UpperCAmelCase , __UpperCAmelCase = self.heap[curr_pos] __UpperCAmelCase , __UpperCAmelCase = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(lowercase__ , lowercase__ ) return self._bubble_up(lowercase__ ) return None def lowerCAmelCase_ (self , lowercase__ ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] __UpperCAmelCase = self.position_map[elem] __UpperCAmelCase , __UpperCAmelCase = self.heap[curr_pos] __UpperCAmelCase = get_child_left_position(lowercase__ ) __UpperCAmelCase = get_child_right_position(lowercase__ ) if child_left_position < self.elements and child_right_position < self.elements: __UpperCAmelCase , __UpperCAmelCase = self.heap[child_left_position] __UpperCAmelCase , __UpperCAmelCase = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(lowercase__ , lowercase__ ) return self._bubble_down(lowercase__ ) if child_left_position < self.elements: __UpperCAmelCase , __UpperCAmelCase = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(lowercase__ , lowercase__ ) return self._bubble_down(lowercase__ ) else: return None if child_right_position < self.elements: __UpperCAmelCase , __UpperCAmelCase = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(lowercase__ , lowercase__ ) return self._bubble_down(lowercase__ ) return None def lowerCAmelCase_ (self , lowercase__ , lowercase__ ) -> None: # Swap the nodes at the given positions __UpperCAmelCase = self.heap[nodea_pos][0] __UpperCAmelCase = self.heap[nodea_pos][0] __UpperCAmelCase , __UpperCAmelCase = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __UpperCAmelCase = nodea_pos __UpperCAmelCase = nodea_pos class A_ ( Generic[T] ): '''simple docstring''' def __init__(self ) -> None: __UpperCAmelCase = {} __UpperCAmelCase = 0 def __repr__(self ) -> str: return str(self.connections ) def __len__(self ) -> int: return self.nodes def lowerCAmelCase_ (self , lowercase__ ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: __UpperCAmelCase = {} self.nodes += 1 def lowerCAmelCase_ (self , lowercase__ , lowercase__ , lowercase__ ) -> None: # Add an edge between 2 nodes in the graph self.add_node(lowercase__ ) self.add_node(lowercase__ ) __UpperCAmelCase = weight __UpperCAmelCase = weight def __a ( SCREAMING_SNAKE_CASE , ) -> tuple[dict[T, int], dict[T, T | None]]: '''simple docstring''' __UpperCAmelCase = {node: maxsize for node in graph.connections} __UpperCAmelCase = {node: None for node in graph.connections} __UpperCAmelCase = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if priority_queue.is_empty(): return dist, parent # initialization __UpperCAmelCase = priority_queue.extract_min() __UpperCAmelCase = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __UpperCAmelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(SCREAMING_SNAKE_CASE , dist[neighbour] ) __UpperCAmelCase = node # running prim's algorithm while not priority_queue.is_empty(): __UpperCAmelCase = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __UpperCAmelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(SCREAMING_SNAKE_CASE , dist[neighbour] ) __UpperCAmelCase = node return dist, parent
303
1
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker __a : str = """CompVis/stable-diffusion-v1-1""" __a : Any = """CompVis/stable-diffusion-v1-2""" __a : List[str] = """CompVis/stable-diffusion-v1-3""" __a : str = """CompVis/stable-diffusion-v1-4""" class __UpperCAmelCase ( snake_case__ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True , ) -> List[Any]: """simple docstring""" super()._init_() UpperCamelCase = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline( vae=SCREAMING_SNAKE_CASE , text_encoder=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , safety_checker=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE , requires_safety_checker=SCREAMING_SNAKE_CASE , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __lowerCAmelCase ( self ) -> Dict[str, Any]: """simple docstring""" return {k: getattr(self , SCREAMING_SNAKE_CASE ) for k in self.config.keys() if not k.startswith("_" )} def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE = "auto" ) -> Optional[Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" self.enable_attention_slicing(SCREAMING_SNAKE_CASE ) @torch.no_grad() def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 512 , SCREAMING_SNAKE_CASE = 512 , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = 7.5 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , **SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" return self.pipea( prompt=SCREAMING_SNAKE_CASE , height=SCREAMING_SNAKE_CASE , width=SCREAMING_SNAKE_CASE , num_inference_steps=SCREAMING_SNAKE_CASE , guidance_scale=SCREAMING_SNAKE_CASE , negative_prompt=SCREAMING_SNAKE_CASE , num_images_per_prompt=SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , latents=SCREAMING_SNAKE_CASE , output_type=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , callback=SCREAMING_SNAKE_CASE , callback_steps=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) @torch.no_grad() def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 512 , SCREAMING_SNAKE_CASE = 512 , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = 7.5 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , **SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" return self.pipea( prompt=SCREAMING_SNAKE_CASE , height=SCREAMING_SNAKE_CASE , width=SCREAMING_SNAKE_CASE , num_inference_steps=SCREAMING_SNAKE_CASE , guidance_scale=SCREAMING_SNAKE_CASE , negative_prompt=SCREAMING_SNAKE_CASE , num_images_per_prompt=SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , latents=SCREAMING_SNAKE_CASE , output_type=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , callback=SCREAMING_SNAKE_CASE , callback_steps=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) @torch.no_grad() def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 512 , SCREAMING_SNAKE_CASE = 512 , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = 7.5 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , **SCREAMING_SNAKE_CASE , ) -> Tuple: """simple docstring""" return self.pipea( prompt=SCREAMING_SNAKE_CASE , height=SCREAMING_SNAKE_CASE , width=SCREAMING_SNAKE_CASE , num_inference_steps=SCREAMING_SNAKE_CASE , guidance_scale=SCREAMING_SNAKE_CASE , negative_prompt=SCREAMING_SNAKE_CASE , num_images_per_prompt=SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , latents=SCREAMING_SNAKE_CASE , output_type=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , callback=SCREAMING_SNAKE_CASE , callback_steps=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) @torch.no_grad() def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 512 , SCREAMING_SNAKE_CASE = 512 , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = 7.5 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , **SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" return self.pipea( prompt=SCREAMING_SNAKE_CASE , height=SCREAMING_SNAKE_CASE , width=SCREAMING_SNAKE_CASE , num_inference_steps=SCREAMING_SNAKE_CASE , guidance_scale=SCREAMING_SNAKE_CASE , negative_prompt=SCREAMING_SNAKE_CASE , num_images_per_prompt=SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , latents=SCREAMING_SNAKE_CASE , output_type=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , callback=SCREAMING_SNAKE_CASE , callback_steps=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) @torch.no_grad() def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 512 , SCREAMING_SNAKE_CASE = 512 , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = 7.5 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , **SCREAMING_SNAKE_CASE , ) -> Optional[int]: """simple docstring""" UpperCamelCase = "cuda" if torch.cuda.is_available() else "cpu" self.to(SCREAMING_SNAKE_CASE ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' ) # Get first result from Stable Diffusion Checkpoint v1.1 UpperCamelCase = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE , height=SCREAMING_SNAKE_CASE , width=SCREAMING_SNAKE_CASE , num_inference_steps=SCREAMING_SNAKE_CASE , guidance_scale=SCREAMING_SNAKE_CASE , negative_prompt=SCREAMING_SNAKE_CASE , num_images_per_prompt=SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , latents=SCREAMING_SNAKE_CASE , output_type=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , callback=SCREAMING_SNAKE_CASE , callback_steps=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCamelCase = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE , height=SCREAMING_SNAKE_CASE , width=SCREAMING_SNAKE_CASE , num_inference_steps=SCREAMING_SNAKE_CASE , guidance_scale=SCREAMING_SNAKE_CASE , negative_prompt=SCREAMING_SNAKE_CASE , num_images_per_prompt=SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , latents=SCREAMING_SNAKE_CASE , output_type=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , callback=SCREAMING_SNAKE_CASE , callback_steps=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCamelCase = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE , height=SCREAMING_SNAKE_CASE , width=SCREAMING_SNAKE_CASE , num_inference_steps=SCREAMING_SNAKE_CASE , guidance_scale=SCREAMING_SNAKE_CASE , negative_prompt=SCREAMING_SNAKE_CASE , num_images_per_prompt=SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , latents=SCREAMING_SNAKE_CASE , output_type=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , callback=SCREAMING_SNAKE_CASE , callback_steps=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCamelCase = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE , height=SCREAMING_SNAKE_CASE , width=SCREAMING_SNAKE_CASE , num_inference_steps=SCREAMING_SNAKE_CASE , guidance_scale=SCREAMING_SNAKE_CASE , negative_prompt=SCREAMING_SNAKE_CASE , num_images_per_prompt=SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , latents=SCREAMING_SNAKE_CASE , output_type=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , callback=SCREAMING_SNAKE_CASE , callback_steps=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
414
import os import jsonlines import numpy as np from tqdm import tqdm __a : int = 2_0_4_8 __a : Optional[int] = 4_0_9_6 __a : Optional[int] = 4_2 __a : Optional[Any] = os.environ.pop("""PROCESS_TRAIN""", """false""") __a : Dict = {"""null""": 0, """short""": 1, """long""": 2, """yes""": 3, """no""": 4} def __magic_name__ ( lowercase_ ) -> List[Any]: '''simple docstring''' def choose_first(lowercase_ , lowercase_=False ): assert isinstance(lowercase_ , lowercase_ ) if len(lowercase_ ) == 1: UpperCamelCase = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: UpperCamelCase = {k: [a[k]] for k in a} if len(a["start_token"] ) > 0: break return a UpperCamelCase = {"id": example["id"]} UpperCamelCase = example["annotations"] UpperCamelCase = annotation["yes_no_answer"] if 0 in yes_no_answer or 1 in yes_no_answer: UpperCamelCase = ["yes"] if 1 in yes_no_answer else ["no"] UpperCamelCase = UpperCamelCase = [] UpperCamelCase = UpperCamelCase = [] UpperCamelCase = ["<cls>"] else: UpperCamelCase = ["short"] UpperCamelCase = choose_first(annotation["short_answers"] ) if len(out["start_token"] ) == 0: # answer will be long if short is not available UpperCamelCase = ["long"] UpperCamelCase = choose_first(annotation["long_answer"] , is_long_answer=lowercase_ ) UpperCamelCase = [] answer.update(lowercase_ ) # disregard some samples if len(answer["start_token"] ) > 1 or answer["start_token"] == answer["end_token"]: UpperCamelCase = True else: UpperCamelCase = False UpperCamelCase = ["start_token", "end_token", "start_byte", "end_byte", "text"] if not all(isinstance(answer[k] , lowercase_ ) for k in cols ): raise ValueError("Issue in ID" , example["id"] ) return answer def __magic_name__ ( lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' UpperCamelCase = _get_single_answer(lowercase_ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCamelCase = example["document"]["tokens"] UpperCamelCase = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) return { "context": " ".join(lowercase_ ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples UpperCamelCase = ["start_token", "end_token"] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 UpperCamelCase = example["document"]["tokens"] UpperCamelCase = answer["start_token"] UpperCamelCase = answer["end_token"] UpperCamelCase = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 UpperCamelCase = " ".join(context[start_token:end_token] ) # checking above code if assertion: UpperCamelCase = doc["is_html"][answer["start_token"] : answer["end_token"]] UpperCamelCase = doc["token"][answer["start_token"] : answer["end_token"]] UpperCamelCase = " ".join([old[i] for i in range(len(lowercase_ ) ) if not is_html[i]] ) if new != old: print("ID:" , example["id"] ) print("New:" , lowercase_ , end="\n" ) print("Old:" , lowercase_ , end="\n\n" ) return { "context": " ".join(lowercase_ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def __magic_name__ ( lowercase_ , lowercase_ , lowercase_=2048 , lowercase_=4096 , lowercase_=True ) -> int: '''simple docstring''' UpperCamelCase = get_context_and_ans(lowercase_ , assertion=lowercase_ ) UpperCamelCase = out["answer"] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } UpperCamelCase = tokenizer(example["question"]["text"] , out["context"] ).input_ids UpperCamelCase = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = input_ids[:q_len] UpperCamelCase = range(lowercase_ , len(lowercase_ ) , max_length - doc_stride ) for i in doc_start_indices: UpperCamelCase = i + max_length - q_len UpperCamelCase = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["category"][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(lowercase_ ), "end_token": [-100] * len(lowercase_ ), "category": category, }, } UpperCamelCase = out["context"].split() UpperCamelCase = splitted_context[answer["end_token"]] UpperCamelCase = len( tokenizer( " ".join(splitted_context[: answer["start_token"]] ) , add_special_tokens=lowercase_ , ).input_ids ) UpperCamelCase = len( tokenizer(" ".join(splitted_context[: answer["end_token"]] ) , add_special_tokens=lowercase_ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token UpperCamelCase = len(tokenizer(lowercase_ , add_special_tokens=lowercase_ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 UpperCamelCase = input_ids[answer["start_token"] : answer["end_token"] + 1] # right & left are inclusive UpperCamelCase = answer["start_token"] UpperCamelCase = answer["end_token"] if assertion: UpperCamelCase = tokenizer.decode(lowercase_ ) if answer["span"] != new: print("ISSUE IN TOKENIZATION" ) print("OLD:" , answer["span"] ) print("NEW:" , lowercase_ , end="\n\n" ) if len(lowercase_ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } UpperCamelCase = input_ids[:q_len] UpperCamelCase = range(lowercase_ , len(lowercase_ ) , max_length - doc_stride ) UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] # null, yes, no, long, short for i in doc_start_indices: UpperCamelCase = i + max_length - q_len UpperCamelCase = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: UpperCamelCase = start_token - i + q_len UpperCamelCase = end_token - i + q_len answers_category.append(answer["category"][0] ) # ["short"] -> "short" else: UpperCamelCase = -100 UpperCamelCase = -100 answers_category.append("null" ) UpperCamelCase = inputs[-1][start_token : end_token + 1] answers_start_token.append(lowercase_ ) answers_end_token.append(lowercase_ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("ISSUE in strided for ID:" , example["id"] ) print("New:" , tokenizer.decode(lowercase_ ) ) print("Old:" , tokenizer.decode(lowercase_ ) , end="\n\n" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def __magic_name__ ( lowercase_ , lowercase_ , lowercase_=2048 , lowercase_=4096 , lowercase_=False ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = get_strided_contexts_and_ans( lowercase_ , lowercase_ , doc_stride=lowercase_ , max_length=lowercase_ , assertion=lowercase_ , ) return example def __magic_name__ ( lowercase_ , lowercase_ ) -> Any: '''simple docstring''' with jsonlines.open(lowercase_ , "a" ) as writer: for example in tqdm(lowercase_ , total=len(lowercase_ ) , desc="Saving samples ... " ): UpperCamelCase = example["labels"] for ids, start, end, cat in zip( example["input_ids"] , labels["start_token"] , labels["end_token"] , labels["category"] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { "input_ids": ids, "start_token": start, "end_token": end, "category": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer __a : Dict = load_dataset("""natural_questions""") __a : int = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""") __a : List[Any] = data["""train""" if PROCESS_TRAIN == """true""" else """validation"""] __a : Tuple = { """tokenizer""": tokenizer, """doc_stride""": DOC_STRIDE, """max_length""": MAX_LENGTH, """assertion""": False, } __a : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs) __a : Optional[int] = data.remove_columns(["""annotations""", """document""", """id""", """question"""]) print(data) np.random.seed(SEED) __a : List[Any] = """nq-training.jsonl""" if PROCESS_TRAIN == """true""" else """nq-validation.jsonl""" save_to_disk(data, file_name=cache_file_name)
414
1
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , **__lowerCamelCase : Optional[int] ): snake_case : Optional[Any] = AutoConfig.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) snake_case : List[Any] = AutoModelForSeqaSeqLM.from_config(_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) AutoTokenizer.from_pretrained(_UpperCAmelCase ).save_pretrained(_UpperCAmelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
204
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class lowerCAmelCase : def __init__( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Any=3 , UpperCAmelCase : List[str]=7 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : Dict=False , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=99 , UpperCAmelCase : Tuple=32 , UpperCAmelCase : int=5 , UpperCAmelCase : str=4 , UpperCAmelCase : Optional[Any]=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : List[str]=512 , UpperCAmelCase : Dict=16 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Optional[Any]=0.0_2 , UpperCAmelCase : Dict=3 , UpperCAmelCase : int=4 , UpperCAmelCase : List[str]=None , ) -> Dict: lowerCamelCase__ : Optional[Any] = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : int = seq_length lowerCamelCase__ : Optional[Any] = is_training lowerCamelCase__ : Any = use_input_mask lowerCamelCase__ : Dict = use_token_type_ids lowerCamelCase__ : Dict = use_labels lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : List[Any] = hidden_size lowerCamelCase__ : List[Any] = num_hidden_layers lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : Tuple = intermediate_size lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : Any = type_sequence_label_size lowerCamelCase__ : Tuple = initializer_range lowerCamelCase__ : Union[str, Any] = num_labels lowerCamelCase__ : str = num_choices lowerCamelCase__ : int = scope def A_ ( self : Dict ) -> Any: lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : str = None if self.use_input_mask: lowerCamelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Any = None lowerCamelCase__ : Tuple = None lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : Optional[int] = None if self.use_labels: lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self : Any ) -> Any: return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=UpperCAmelCase , ) def A_ ( self : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] ) -> Tuple: lowerCamelCase__ : Tuple = FalconModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : List[str] = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) lowerCamelCase__ : List[Any] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , ) -> Optional[Any]: lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Optional[Any] = FalconModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : str = model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , ) lowerCamelCase__ : Union[str, Any] = model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , ) lowerCamelCase__ : Dict = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : str , ) -> List[str]: lowerCamelCase__ : Optional[Any] = FalconForCausalLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : int = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , ) -> List[str]: lowerCamelCase__ : int = True lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : str = FalconForCausalLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() # first forward pass lowerCamelCase__ : List[str] = model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , use_cache=UpperCAmelCase , ) lowerCamelCase__ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase__ : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase__ : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCamelCase__ : str = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase__ : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCamelCase__ : Union[str, Any] = model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , output_hidden_states=UpperCAmelCase , )['hidden_states'][0] lowerCamelCase__ : Tuple = model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , output_hidden_states=UpperCAmelCase , )['hidden_states'][0] # select random slice lowerCamelCase__ : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase__ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase__ : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def A_ ( self : Optional[Any] ) -> Optional[int]: lowerCamelCase__ : Any = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Union[str, Any] = config_and_inputs lowerCamelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase__ = (FalconForCausalLM,) if is_torch_available() else () UpperCAmelCase__ = ( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False def A_ ( self : List[str] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = FalconModelTester(self ) lowerCamelCase__ : List[Any] = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A_ ( self : Optional[int] ) -> int: self.config_tester.run_common_tests() def A_ ( self : Dict ) -> Dict: lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A_ ( self : List[str] ) -> int: lowerCamelCase__ , *lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: lowerCamelCase__ : List[Any] = alibi self.model_tester.create_and_check_model(UpperCAmelCase , *UpperCAmelCase ) def A_ ( self : Optional[int] ) -> Optional[int]: lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : int = 3 lowerCamelCase__ : List[str] = input_dict['input_ids'] lowerCamelCase__ : Dict = input_ids.ne(1 ).to(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase__ : int = FalconForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : List[str] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A_ ( self : Optional[Any] ) -> Optional[Any]: lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Tuple = 3 lowerCamelCase__ : List[str] = 'single_label_classification' lowerCamelCase__ : Optional[int] = input_dict['input_ids'] lowerCamelCase__ : Union[str, Any] = input_ids.ne(1 ).to(UpperCAmelCase ) lowerCamelCase__ : List[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase__ : Union[str, Any] = FalconForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Any = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A_ ( self : Any ) -> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : List[str] = input_dict['input_ids'] lowerCamelCase__ : Optional[Any] = FalconForCausalLM(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Any = model(UpperCAmelCase , use_cache=UpperCAmelCase ) lowerCamelCase__ : int = input_ids.shape[0] lowerCamelCase__ : str = model._convert_to_rw_cache(result.past_key_values ) lowerCamelCase__ : Optional[Any] = model._convert_cache_to_standard_format(UpperCAmelCase , UpperCAmelCase ) for layer in range(len(UpperCAmelCase ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def A_ ( self : List[str] ) -> str: lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[Any] = 3 lowerCamelCase__ : List[str] = 'multi_label_classification' lowerCamelCase__ : Optional[int] = input_dict['input_ids'] lowerCamelCase__ : Tuple = input_ids.ne(1 ).to(UpperCAmelCase ) lowerCamelCase__ : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCamelCase__ : Any = FalconForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Any = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A_ ( self : Any ) -> Tuple: # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(UpperCAmelCase , 'use_cache' ): return lowerCamelCase__ : Dict = model_class(UpperCAmelCase ).to(UpperCAmelCase ) if "use_cache" not in inputs: lowerCamelCase__ : Optional[Any] = True lowerCamelCase__ : Any = model(**UpperCAmelCase ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return lowerCamelCase__ : Any = ( getattr(UpperCAmelCase , 'decoder_layers' , UpperCAmelCase ) or getattr(UpperCAmelCase , 'num_decoder_layers' , UpperCAmelCase ) or config.num_hidden_layers ) lowerCamelCase__ : Dict = getattr(UpperCAmelCase , 'num_kv_heads' , config.num_attention_heads ) lowerCamelCase__ : Dict = getattr(UpperCAmelCase , 'd_model' , config.hidden_size ) lowerCamelCase__ : str = embed_dim // num_attention_heads lowerCamelCase__ : List[Any] = outputs['past_key_values'] self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Any = inputs['input_ids'].shape for i in range(UpperCAmelCase ): if config.new_decoder_architecture: lowerCamelCase__ : int = config.num_attention_heads elif config.multi_query: lowerCamelCase__ : Optional[Any] = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class lowerCAmelCase ( unittest.TestCase ): @slow def A_ ( self : int ) -> Union[str, Any]: lowerCamelCase__ : str = AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b' ) lowerCamelCase__ : List[Any] = FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b' ) model.eval() model.to(UpperCAmelCase ) lowerCamelCase__ : Any = tokenizer('My favorite food is' , return_tensors='pt' ).to(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = ( 'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.' ) lowerCamelCase__ : Optional[Any] = model.generate(**UpperCAmelCase , do_sample=UpperCAmelCase , max_new_tokens=19 ) lowerCamelCase__ : Union[str, Any] = tokenizer.batch_decode(UpperCAmelCase )[0] self.assertEqual(UpperCAmelCase , UpperCAmelCase ) @slow def A_ ( self : Any ) -> int: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: lowerCamelCase__ : str = AutoTokenizer.from_pretrained(UpperCAmelCase ) lowerCamelCase__ : int = FalconForCausalLM.from_pretrained(UpperCAmelCase ) model.eval() model.to(UpperCAmelCase ) lowerCamelCase__ : Tuple = tokenizer('My favorite food is' , return_tensors='pt' ).to(UpperCAmelCase ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**UpperCAmelCase , do_sample=UpperCAmelCase , max_new_tokens=4 ) model.generate(**UpperCAmelCase , do_sample=UpperCAmelCase , max_new_tokens=4 ) model.generate(**UpperCAmelCase , num_beams=2 , max_new_tokens=4 ) @slow def A_ ( self : Union[str, Any] ) -> str: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: lowerCamelCase__ : Dict = AutoTokenizer.from_pretrained(UpperCAmelCase ) lowerCamelCase__ : Tuple = FalconForCausalLM.from_pretrained(UpperCAmelCase ) model.eval() model.to(device=UpperCAmelCase ) lowerCamelCase__ : Any = tokenizer('My favorite food is' , return_tensors='pt' ).to(UpperCAmelCase ) # Test results are the same with and without cache lowerCamelCase__ : List[str] = model.generate(**UpperCAmelCase , do_sample=UpperCAmelCase , max_new_tokens=20 , use_cache=UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = model.generate(**UpperCAmelCase , do_sample=UpperCAmelCase , max_new_tokens=20 , use_cache=UpperCAmelCase ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
295
0
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = 42 A_ = jnp.floataa A_ = True def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" super().setup() _lowerCamelCase = nn.Dense(5 , dtype=self.dtype ) def __call__( self , *A_ , **A_ ) -> int: """simple docstring""" _lowerCamelCase = super().__call__(*A_ , **A_ ) _lowerCamelCase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class UpperCamelCase ( __lowercase ): '''simple docstring''' A_ = FlaxBigBirdForNaturalQuestionsModule def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' def cross_entropy(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ): _lowerCamelCase = logits.shape[-1] _lowerCamelCase = (labels[..., None] == jnp.arange(__UpperCAmelCase )[None]).astype('''f4''' ) _lowerCamelCase = jax.nn.log_softmax(__UpperCAmelCase , axis=-1 ) _lowerCamelCase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: _lowerCamelCase = reduction(__UpperCAmelCase ) return loss _lowerCamelCase = partial(__UpperCAmelCase , reduction=jnp.mean ) _lowerCamelCase = cross_entropy(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = cross_entropy(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = cross_entropy(__UpperCAmelCase , __UpperCAmelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class UpperCamelCase : '''simple docstring''' A_ = 'google/bigbird-roberta-base' A_ = 3_000 A_ = 10_500 A_ = 128 A_ = 3 A_ = 1 A_ = 5 # tx_args A_ = 3E-5 A_ = 0.0 A_ = 20_000 A_ = 0.00_95 A_ = 'bigbird-roberta-natural-questions' A_ = 'training-expt' A_ = 'data/nq-training.jsonl' A_ = 'data/nq-validation.jsonl' def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" os.makedirs(self.base_dir , exist_ok=A_ ) _lowerCamelCase = os.path.join(self.base_dir , self.save_dir ) _lowerCamelCase = self.batch_size_per_device * jax.device_count() @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = 4_096 # no dynamic padding on TPUs def __call__( self , A_ ) -> Any: """simple docstring""" _lowerCamelCase = self.collate_fn(A_ ) _lowerCamelCase = jax.tree_util.tree_map(A_ , A_ ) return batch def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase , _lowerCamelCase = self.fetch_inputs(features['''input_ids'''] ) _lowerCamelCase = { '''input_ids''': jnp.array(A_ , dtype=jnp.intaa ), '''attention_mask''': jnp.array(A_ , dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] , dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] , dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def UpperCamelCase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = [self._fetch_inputs(A_ ) for ids in input_ids] return zip(*A_ ) def UpperCamelCase_ ( self , A_ ) -> Any: """simple docstring""" _lowerCamelCase = [1 for _ in range(len(A_ ) )] while len(A_ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> Union[str, Any]: '''simple docstring''' if seed is not None: _lowerCamelCase = dataset.shuffle(seed=__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) // batch_size ): _lowerCamelCase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(__UpperCAmelCase ) @partial(jax.pmap , axis_name='''batch''' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' def loss_fn(__UpperCAmelCase ): _lowerCamelCase = model_inputs.pop('''start_labels''' ) _lowerCamelCase = model_inputs.pop('''end_labels''' ) _lowerCamelCase = model_inputs.pop('''pooled_labels''' ) _lowerCamelCase = state.apply_fn(**__UpperCAmelCase , params=__UpperCAmelCase , dropout_rng=__UpperCAmelCase , train=__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = outputs return state.loss_fn( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) _lowerCamelCase , _lowerCamelCase = jax.random.split(__UpperCAmelCase ) _lowerCamelCase = jax.value_and_grad(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = grad_fn(state.params ) _lowerCamelCase = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) _lowerCamelCase = jax.lax.pmean(__UpperCAmelCase , '''batch''' ) _lowerCamelCase = state.apply_gradients(grads=__UpperCAmelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def __magic_name__( __UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: '''simple docstring''' _lowerCamelCase = model_inputs.pop('''start_labels''' ) _lowerCamelCase = model_inputs.pop('''end_labels''' ) _lowerCamelCase = model_inputs.pop('''pooled_labels''' ) _lowerCamelCase = state.apply_fn(**__UpperCAmelCase , params=state.params , train=__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = outputs _lowerCamelCase = state.loss_fn(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class UpperCamelCase ( train_state.TrainState ): '''simple docstring''' A_ = struct.field(pytree_node=__lowercase ) @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = 42 A_ = 42 A_ = 42 A_ = 42 A_ = 42 A_ = None def UpperCamelCase_ ( self , A_ , A_ , A_ , A_=None ) -> List[str]: """simple docstring""" _lowerCamelCase = model.params _lowerCamelCase = TrainState.create( apply_fn=model.__call__ , params=A_ , tx=A_ , loss_fn=A_ , ) if ckpt_dir is not None: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = restore_checkpoint(A_ , A_ ) _lowerCamelCase = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } _lowerCamelCase , _lowerCamelCase = build_tx(**A_ ) _lowerCamelCase = train_state.TrainState( step=A_ , apply_fn=model.__call__ , params=A_ , tx=A_ , opt_state=A_ , ) _lowerCamelCase = args _lowerCamelCase = data_collator _lowerCamelCase = lr _lowerCamelCase = params _lowerCamelCase = jax_utils.replicate(A_ ) return state def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Tuple: """simple docstring""" _lowerCamelCase = self.args _lowerCamelCase = len(A_ ) // args.batch_size _lowerCamelCase = jax.random.PRNGKey(0 ) _lowerCamelCase = jax.random.split(A_ , jax.device_count() ) for epoch in range(args.max_epochs ): _lowerCamelCase = jnp.array(0 , dtype=jnp.floataa ) _lowerCamelCase = get_batched_dataset(A_ , args.batch_size , seed=A_ ) _lowerCamelCase = 0 for batch in tqdm(A_ , total=A_ , desc=F'Running EPOCH-{epoch}' ): _lowerCamelCase = self.data_collator(A_ ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self.train_step_fn(A_ , A_ , **A_ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: _lowerCamelCase = jax_utils.unreplicate(state.step ) _lowerCamelCase = running_loss.item() / i _lowerCamelCase = self.scheduler_fn(state_step - 1 ) _lowerCamelCase = self.evaluate(A_ , A_ ) _lowerCamelCase = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(A_ ) ) self.logger.log(A_ , commit=A_ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}' , state=A_ ) def UpperCamelCase_ ( self , A_ , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = get_batched_dataset(A_ , self.args.batch_size ) _lowerCamelCase = len(A_ ) // self.args.batch_size _lowerCamelCase = jnp.array(0 , dtype=jnp.floataa ) _lowerCamelCase = 0 for batch in tqdm(A_ , total=A_ , desc='''Evaluating ... ''' ): _lowerCamelCase = self.data_collator(A_ ) _lowerCamelCase = self.val_step_fn(A_ , **A_ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def UpperCamelCase_ ( self , A_ , A_ ) -> Optional[int]: """simple docstring""" _lowerCamelCase = jax_utils.unreplicate(A_ ) print(F'SAVING CHECKPOINT IN {save_dir}' , end=''' ... ''' ) self.model_save_fn(A_ , params=state.params ) with open(os.path.join(A_ , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(A_ , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(A_ , '''data_collator.joblib''' ) ) with open(os.path.join(A_ , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , A_ ) print('''DONE''' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=''' ... ''' ) with open(os.path.join(__UpperCAmelCase , '''flax_model.msgpack''' ) , '''rb''' ) as f: _lowerCamelCase = from_bytes(state.params , f.read() ) with open(os.path.join(__UpperCAmelCase , '''opt_state.msgpack''' ) , '''rb''' ) as f: _lowerCamelCase = from_bytes(state.opt_state , f.read() ) _lowerCamelCase = joblib.load(os.path.join(__UpperCAmelCase , '''args.joblib''' ) ) _lowerCamelCase = joblib.load(os.path.join(__UpperCAmelCase , '''data_collator.joblib''' ) ) with open(os.path.join(__UpperCAmelCase , '''training_state.json''' ) , '''r''' ) as f: _lowerCamelCase = json.load(__UpperCAmelCase ) _lowerCamelCase = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase = num_train_steps - warmup_steps _lowerCamelCase = optax.linear_schedule(init_value=__UpperCAmelCase , end_value=__UpperCAmelCase , transition_steps=__UpperCAmelCase ) _lowerCamelCase = optax.linear_schedule(init_value=__UpperCAmelCase , end_value=1E-7 , transition_steps=__UpperCAmelCase ) _lowerCamelCase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' def weight_decay_mask(__UpperCAmelCase ): _lowerCamelCase = traverse_util.flatten_dict(__UpperCAmelCase ) _lowerCamelCase = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(__UpperCAmelCase ) _lowerCamelCase = scheduler_fn(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = optax.adamw(learning_rate=__UpperCAmelCase , weight_decay=__UpperCAmelCase , mask=__UpperCAmelCase ) return tx, lr
707
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger() @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def UpperCamelCase_ ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" _lowerCamelCase = len(list(m.modules() ) ) == 1 or isinstance(A_ , nn.Convad ) or isinstance(A_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(A_ ) def __call__( self , A_ ) -> Tuple: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A_ ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase : '''simple docstring''' A_ = 42 A_ = 42 A_ = 0 A_ = field(default_factory=__lowercase ) A_ = field(default_factory=__lowercase ) def __call__( self , A_ ) -> List[Any]: """simple docstring""" _lowerCamelCase = Tracker(self.dest )(A_ ).parametrized _lowerCamelCase = Tracker(self.src )(A_ ).parametrized _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.src_skip , A_ ) ) _lowerCamelCase = list(filter(lambda A_ : type(A_ ) not in self.dest_skip , A_ ) ) if len(A_ ) != len(A_ ): raise Exception( F'Numbers of operations are different. Source module has {len(A_ )} operations while' F' destination module has {len(A_ )}.' ) for dest_m, src_m in zip(A_ , A_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' print(F'Converting {name}...' ) with torch.no_grad(): _lowerCamelCase = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ).eval() _lowerCamelCase = ResNetForImageClassification(__UpperCAmelCase ).eval() _lowerCamelCase = ModuleTransfer(src=__UpperCAmelCase , dest=__UpperCAmelCase ) _lowerCamelCase = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCAmelCase ) assert torch.allclose(from_model(__UpperCAmelCase ) , our_model(__UpperCAmelCase ).logits ), "The model logits don't match the original one." _lowerCamelCase = F'resnet{"-".join(name.split("resnet" ) )}' print(__UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__UpperCAmelCase , ) # we can use the convnext one _lowerCamelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__UpperCAmelCase , ) print(F'Pushed {checkpoint_name}' ) def __magic_name__( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = True ) -> Optional[int]: '''simple docstring''' _lowerCamelCase = '''imagenet-1k-id2label.json''' _lowerCamelCase = 1000 _lowerCamelCase = (1, num_labels) _lowerCamelCase = '''huggingface/label-files''' _lowerCamelCase = num_labels _lowerCamelCase = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} _lowerCamelCase = partial(__UpperCAmelCase , num_labels=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase ) _lowerCamelCase = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__UpperCAmelCase , names_to_config[model_name] , __UpperCAmelCase , __UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) snake_case__ = parser.parse_args() snake_case__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
638
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowercase_ : int = {'''configuration_speech_encoder_decoder''': ['''SpeechEncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[int] = ['''SpeechEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Dict = ['''FlaxSpeechEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowercase_ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
588
'''simple docstring''' import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> List[str]: '''simple docstring''' lowercase = """hf-internal-testing/tiny-random-t5""" lowercase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) lowercase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ) lowercase = tokenizer("""This is me""" , return_tensors="""pt""" ) lowercase = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowercase = model.generate(**_lowerCAmelCase ) lowercase = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) lowercase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowercase = model_reloaded.generate(**_lowerCAmelCase ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase ) ) def _a ( self ) -> str: '''simple docstring''' lowercase = """hf-internal-testing/tiny-random-t5""" lowercase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ) lowercase = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_lowerCAmelCase ): model.save_pretrained(_lowerCAmelCase ) lowercase = model.reverse_bettertransformer() model.save_pretrained(_lowerCAmelCase )
588
1
"""simple docstring""" from itertools import product def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> list[int]: """simple docstring""" A = sides_number A = max_face_number * dice_number A = [0] * (max_total + 1) A = 1 A = range(UpperCamelCase__ , max_face_number + 1 ) for dice_numbers in product(UpperCamelCase__ , repeat=UpperCamelCase__ ): A = sum(UpperCamelCase__ ) totals_frequencies[total] += 1 return totals_frequencies def __snake_case ( ) -> float: """simple docstring""" A = total_frequency_distribution( sides_number=4 , dice_number=9 ) A = total_frequency_distribution( sides_number=6 , dice_number=6 ) A = 0 A = 9 A = 4 * 9 A = 6 for peter_total in range(UpperCamelCase__ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) A = (4**9) * (6**6) A = peter_wins_count / total_games_number A = round(UpperCamelCase__ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
91
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : Dict = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys UpperCamelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
91
1
from bisect import bisect from itertools import accumulate def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : Tuple ,__UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" A_ = sorted(zip(__UpperCamelCase ,__UpperCamelCase ) ,key=lambda __UpperCamelCase : x[0] / x[1] ,reverse=__UpperCamelCase ) A_ , A_ = [i[0] for i in r], [i[1] for i in r] A_ = list(accumulate(__UpperCamelCase ) ) A_ = bisect(__UpperCamelCase ,__UpperCamelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
86
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
88
0
'''simple docstring''' __SCREAMING_SNAKE_CASE ={ 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
720
from __future__ import annotations __SCREAMING_SNAKE_CASE ={ """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class __magic_name__ : '''simple docstring''' def __init__( self: List[Any] , _lowerCamelCase: dict[str, list[str]] , _lowerCamelCase: str ): SCREAMING_SNAKE_CASE_ = graph # mapping node to its parent in resulting breadth first tree SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = source_vertex def _A ( self: Tuple ): SCREAMING_SNAKE_CASE_ = {self.source_vertex} SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = [self.source_vertex] # first in first out queue while queue: SCREAMING_SNAKE_CASE_ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = vertex queue.append(_lowerCamelCase ) def _A ( self: List[str] , _lowerCamelCase: str ): if target_vertex == self.source_vertex: return self.source_vertex SCREAMING_SNAKE_CASE_ = self.parent.get(_lowerCamelCase ) if target_vertex_parent is None: SCREAMING_SNAKE_CASE_ = ( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(_lowerCamelCase ) return self.shortest_path(_lowerCamelCase ) + f"->{target_vertex}" if __name__ == "__main__": __SCREAMING_SNAKE_CASE =Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
89
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase__ : Any = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = ['''OwlViTFeatureExtractor'''] UpperCamelCase__ : Optional[int] = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[str] = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys UpperCamelCase__ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
387
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase__ : """simple docstring""" @staticmethod def lowercase_ ( *__lowerCamelCase : int , **__lowerCamelCase : List[Any] ) -> List[str]: pass def UpperCAmelCase_ ( _A ): '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. _SCREAMING_SNAKE_CASE : Optional[Any] = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" a = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def lowercase_ ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = pipeline( '''document-question-answering''' , model=__lowerCamelCase , tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = INVOICE_URL SCREAMING_SNAKE_CASE__ = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , '''''' ) ) ) SCREAMING_SNAKE_CASE__ = '''What is the placebo?''' SCREAMING_SNAKE_CASE__ = [ { '''image''': load_image(__lowerCamelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def lowercase_ ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = dqa_pipeline(__lowerCamelCase , top_k=2 ) self.assertEqual( __lowerCamelCase , [ [ {'''score''': ANY(__lowerCamelCase ), '''answer''': ANY(__lowerCamelCase ), '''start''': ANY(__lowerCamelCase ), '''end''': ANY(__lowerCamelCase )}, {'''score''': ANY(__lowerCamelCase ), '''answer''': ANY(__lowerCamelCase ), '''start''': ANY(__lowerCamelCase ), '''end''': ANY(__lowerCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def lowercase_ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) SCREAMING_SNAKE_CASE__ = INVOICE_URL SCREAMING_SNAKE_CASE__ = '''How many cats are there?''' SCREAMING_SNAKE_CASE__ = [ {'''score''': 0.0001, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0001, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] SCREAMING_SNAKE_CASE__ = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably SCREAMING_SNAKE_CASE__ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' SCREAMING_SNAKE_CASE__ = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes SCREAMING_SNAKE_CASE__ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , words=__lowerCamelCase , boxes=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def lowercase_ ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) SCREAMING_SNAKE_CASE__ = INVOICE_URL SCREAMING_SNAKE_CASE__ = '''What is the invoice number?''' SCREAMING_SNAKE_CASE__ = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE__ = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE__ = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def lowercase_ ( self : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE__ = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) SCREAMING_SNAKE_CASE__ = INVOICE_URL SCREAMING_SNAKE_CASE__ = '''What is the invoice number?''' SCREAMING_SNAKE_CASE__ = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE__ = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE__ = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def lowercase_ ( self : Dict ) -> int: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=__lowerCamelCase , revision='''3dc6de3''' , ) SCREAMING_SNAKE_CASE__ = INVOICE_URL SCREAMING_SNAKE_CASE__ = '''What is the invoice number?''' SCREAMING_SNAKE_CASE__ = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) SCREAMING_SNAKE_CASE__ = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) SCREAMING_SNAKE_CASE__ = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) SCREAMING_SNAKE_CASE__ = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , '''''' ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE__ = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def lowercase_ ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=__lowerCamelCase , revision='''3dc6de3''' , max_seq_len=50 , ) SCREAMING_SNAKE_CASE__ = INVOICE_URL SCREAMING_SNAKE_CASE__ = '''What is the invoice number?''' SCREAMING_SNAKE_CASE__ = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE__ = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) SCREAMING_SNAKE_CASE__ = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , '''''' ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE__ = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def lowercase_ ( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) SCREAMING_SNAKE_CASE__ = INVOICE_URL SCREAMING_SNAKE_CASE__ = '''What is the invoice number?''' SCREAMING_SNAKE_CASE__ = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def lowercase_ ( self : Union[str, Any] ) -> Optional[Any]: pass
493
0
import math from datetime import datetime, timedelta def _snake_case ( __snake_case ) -> datetime: '''simple docstring''' UpperCAmelCase_ : Optional[int] = year % 1_9 UpperCAmelCase_ : List[str] = year % 4 UpperCAmelCase_ : str = year % 7 UpperCAmelCase_ : Dict = math.floor(year / 1_0_0 ) UpperCAmelCase_ : int = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) UpperCAmelCase_ : Tuple = leap_day_inhibits / 4 UpperCAmelCase_ : Union[str, Any] = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 UpperCAmelCase_ : Union[str, Any] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCAmelCase_ : Tuple = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon UpperCAmelCase_ : Union[str, Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(__snake_case , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(__snake_case , 4 , 1_8 ) else: return datetime(__snake_case , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): __lowerCamelCase = '''will be''' if year > datetime.now().year else '''was''' print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
455
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class snake_case_ (lowercase__ ): """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = 42 class snake_case_ (lowercase__ , lowercase__ ): """simple docstring""" _lowerCamelCase = 1 @register_to_config def __init__( self ,lowercase = 2000 ,lowercase = 0.15 ,lowercase = 0.01 ,lowercase = 1348.0 ,lowercase = 1E-5 ,lowercase = 1 ,): """simple docstring""" UpperCAmelCase_ : Optional[int] = sigma_max # setable values UpperCAmelCase_ : Optional[int] = None self.set_sigmas(lowercase ,lowercase ,lowercase ,lowercase) def A_ ( self ,lowercase ,lowercase = None): """simple docstring""" return sample def A_ ( self ,lowercase ,lowercase = None ,lowercase = None): """simple docstring""" UpperCAmelCase_ : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps UpperCAmelCase_ : List[Any] = torch.linspace(1 ,lowercase ,lowercase ,device=lowercase) def A_ ( self ,lowercase ,lowercase = None ,lowercase = None ,lowercase = None): """simple docstring""" UpperCAmelCase_ : Any = sigma_min if sigma_min is not None else self.config.sigma_min UpperCAmelCase_ : int = sigma_max if sigma_max is not None else self.config.sigma_max UpperCAmelCase_ : Union[str, Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowercase ,lowercase) UpperCAmelCase_ : Union[str, Any] = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) UpperCAmelCase_ : Optional[int] = torch.exp(torch.linspace(math.log(lowercase) ,math.log(lowercase) ,lowercase)) UpperCAmelCase_ : Any = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def A_ ( self ,lowercase ,lowercase): """simple docstring""" return torch.where( timesteps == 0 ,torch.zeros_like(t.to(timesteps.device)) ,self.discrete_sigmas[timesteps - 1].to(timesteps.device) ,) def A_ ( self ,lowercase ,lowercase ,lowercase ,lowercase = None ,lowercase = True ,): """simple docstring""" if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") UpperCAmelCase_ : Optional[int] = timestep * torch.ones( sample.shape[0] ,device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) UpperCAmelCase_ : Tuple = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda UpperCAmelCase_ : Optional[int] = timesteps.to(self.discrete_sigmas.device) UpperCAmelCase_ : Optional[Any] = self.discrete_sigmas[timesteps].to(sample.device) UpperCAmelCase_ : Optional[Any] = self.get_adjacent_sigma(lowercase ,lowercase).to(sample.device) UpperCAmelCase_ : Any = torch.zeros_like(lowercase) UpperCAmelCase_ : Dict = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods UpperCAmelCase_ : Dict = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): UpperCAmelCase_ : List[str] = diffusion.unsqueeze(-1) UpperCAmelCase_ : List[Any] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of UpperCAmelCase_ : Union[str, Any] = randn_tensor( sample.shape ,layout=sample.layout ,generator=lowercase ,device=sample.device ,dtype=sample.dtype) UpperCAmelCase_ : Any = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? UpperCAmelCase_ : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowercase ,prev_sample_mean=lowercase) def A_ ( self ,lowercase ,lowercase ,lowercase = None ,lowercase = True ,): """simple docstring""" if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction UpperCAmelCase_ : int = randn_tensor(sample.shape ,layout=sample.layout ,generator=lowercase).to(sample.device) # compute step size from the model_output, the noise, and the snr UpperCAmelCase_ : Union[str, Any] = torch.norm(model_output.reshape(model_output.shape[0] ,-1) ,dim=-1).mean() UpperCAmelCase_ : Optional[Any] = torch.norm(noise.reshape(noise.shape[0] ,-1) ,dim=-1).mean() UpperCAmelCase_ : List[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 UpperCAmelCase_ : Optional[Any] = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term UpperCAmelCase_ : Any = step_size.flatten() while len(step_size.shape) < len(sample.shape): UpperCAmelCase_ : Tuple = step_size.unsqueeze(-1) UpperCAmelCase_ : Dict = sample + step_size * model_output UpperCAmelCase_ : int = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowercase) def A_ ( self ,lowercase ,lowercase ,lowercase ,): """simple docstring""" UpperCAmelCase_ : Any = timesteps.to(original_samples.device) UpperCAmelCase_ : List[str] = self.discrete_sigmas.to(original_samples.device)[timesteps] UpperCAmelCase_ : Tuple = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowercase) * sigmas[:, None, None, None] ) UpperCAmelCase_ : Tuple = noise + original_samples return noisy_samples def __len__( self): """simple docstring""" return self.config.num_train_timesteps
455
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) __UpperCAmelCase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class __SCREAMING_SNAKE_CASE (enum.Enum ): """simple docstring""" _a : Tuple = 0 _a : List[str] = 1 _a : int = 2 @add_end_docstrings(__A ) class __SCREAMING_SNAKE_CASE (__A ): """simple docstring""" _a : str = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. a_ = None if self.model.config.prefix is not None: a_ = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. a_ = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. a_ , a_ , a_ = self._sanitize_parameters(prefix=UpperCamelCase__ , **self._forward_params ) a_ = {**self._preprocess_params, **preprocess_params} a_ = {**self._forward_params, **forward_params} def _a ( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ): """simple docstring""" a_ = {} if prefix is not None: a_ = prefix if prefix: a_ = self.tokenizer( UpperCamelCase__ , padding=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors=self.framework ) a_ = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected' ' [None, \'hole\']' ) a_ = handle_long_generation preprocess_params.update(UpperCamelCase__ ) a_ = generate_kwargs a_ = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) a_ = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) a_ = ReturnType.TENSORS if return_type is not None: a_ = return_type if clean_up_tokenization_spaces is not None: a_ = clean_up_tokenization_spaces if stop_sequence is not None: a_ = self.tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) if len(UpperCamelCase__ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) a_ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _a ( self , *UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*UpperCamelCase__ , **UpperCamelCase__ ) def __call__( self , UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" return super().__call__(UpperCamelCase__ , **UpperCamelCase__ ) def _a ( self , UpperCamelCase__ , UpperCamelCase__="" , UpperCamelCase__=None , **UpperCamelCase__ ): """simple docstring""" a_ = self.tokenizer( prefix + prompt_text , padding=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors=self.framework ) a_ = prompt_text if handle_long_generation == "hole": a_ = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: a_ = generate_kwargs['max_new_tokens'] else: a_ = generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: a_ = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) a_ = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: a_ = inputs['attention_mask'][:, -keep_length:] return inputs def _a ( self , UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" a_ = model_inputs['input_ids'] a_ = model_inputs.get('attention_mask' , UpperCamelCase__ ) # Allow empty prompts if input_ids.shape[1] == 0: a_ = None a_ = None a_ = 1 else: a_ = input_ids.shape[0] a_ = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. a_ = generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: a_ = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: a_ = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length a_ = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL a_ = self.model.generate(input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ , **UpperCamelCase__ ) a_ = generated_sequence.shape[0] if self.framework == "pt": a_ = generated_sequence.reshape(UpperCamelCase__ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": a_ = tf.reshape(UpperCamelCase__ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _a ( self , UpperCamelCase__ , UpperCamelCase__=ReturnType.FULL_TEXT , UpperCamelCase__=True ): """simple docstring""" a_ = model_outputs['generated_sequence'][0] a_ = model_outputs['input_ids'] a_ = model_outputs['prompt_text'] a_ = generated_sequence.numpy().tolist() a_ = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: a_ = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text a_ = self.tokenizer.decode( UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: a_ = 0 else: a_ = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ , ) ) if return_type == ReturnType.FULL_TEXT: a_ = prompt_text + text[prompt_length:] else: a_ = text[prompt_length:] a_ = {'generated_text': all_text} records.append(UpperCamelCase__ ) return records
536
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class A_ ( metaclass=__a ): lowerCAmelCase__ = ['transformers', 'torch', 'note_seq'] def __init__( self: Optional[int] ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' requires_backends(self ,["transformers", "torch", "note_seq"] ) @classmethod def _lowercase ( cls: Union[str, Any] ,*__lowerCAmelCase: Union[str, Any] ,**__lowerCAmelCase: Dict ): '''simple docstring''' requires_backends(cls ,["transformers", "torch", "note_seq"] ) @classmethod def _lowercase ( cls: List[str] ,*__lowerCAmelCase: Any ,**__lowerCAmelCase: str ): '''simple docstring''' requires_backends(cls ,["transformers", "torch", "note_seq"] )
700
"""simple docstring""" _lowerCAmelCase : List[Any] = 256 # Modulus to hash a string _lowerCAmelCase : Tuple = 100_0003 def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> bool: '''simple docstring''' _lowerCamelCase : Union[str, Any] = len(_lowerCamelCase ) _lowerCamelCase : Dict = len(_lowerCamelCase ) if p_len > t_len: return False _lowerCamelCase : Any = 0 _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Optional[int] = 1 # Calculating the hash of pattern and substring of text for i in range(_lowerCamelCase ): _lowerCamelCase : Dict = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _lowerCamelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _lowerCamelCase : Optional[int] = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _lowerCamelCase : str = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : List[str] = "abc1abc12" _lowerCamelCase : str = "alskfjaldsabc1abc1abc12k23adsfabcabc" _lowerCamelCase : Any = "alskfjaldsk23adsfabcabc" assert rabin_karp(_lowerCamelCase , _lowerCamelCase ) and not rabin_karp(_lowerCamelCase , _lowerCamelCase ) # Test 2) _lowerCamelCase : Optional[int] = "ABABX" _lowerCamelCase : Dict = "ABABZABABYABABX" assert rabin_karp(_lowerCamelCase , _lowerCamelCase ) # Test 3) _lowerCamelCase : Optional[int] = "AAAB" _lowerCamelCase : Tuple = "ABAAAAAB" assert rabin_karp(_lowerCamelCase , _lowerCamelCase ) # Test 4) _lowerCamelCase : Dict = "abcdabcy" _lowerCamelCase : str = "abcxabcdabxabcdabcdabcy" assert rabin_karp(_lowerCamelCase , _lowerCamelCase ) # Test 5) _lowerCamelCase : List[Any] = "Lü" _lowerCamelCase : List[str] = "Lüsai" assert rabin_karp(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : str = "Lue" assert not rabin_karp(_lowerCamelCase , _lowerCamelCase ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
386
0
def A__ ( lowercase: list, lowercase: int, lowercase: int = 0, lowercase: int = 0 ) -> int: A : List[str] =right or len(lowercase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowercase, lowercase, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
305
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class SCREAMING_SNAKE_CASE_ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int = 16 , SCREAMING_SNAKE_CASE__ : int = 88 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : int = 32 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "geglu" , SCREAMING_SNAKE_CASE__ : Optional[int] = None , ) -> Optional[int]: super().__init__() A : Tuple =nn.ModuleList( [ TransformeraDModel( num_attention_heads=SCREAMING_SNAKE_CASE__ , attention_head_dim=SCREAMING_SNAKE_CASE__ , in_channels=SCREAMING_SNAKE_CASE__ , num_layers=SCREAMING_SNAKE_CASE__ , dropout=SCREAMING_SNAKE_CASE__ , norm_num_groups=SCREAMING_SNAKE_CASE__ , cross_attention_dim=SCREAMING_SNAKE_CASE__ , attention_bias=SCREAMING_SNAKE_CASE__ , sample_size=SCREAMING_SNAKE_CASE__ , num_vector_embeds=SCREAMING_SNAKE_CASE__ , activation_fn=SCREAMING_SNAKE_CASE__ , num_embeds_ada_norm=SCREAMING_SNAKE_CASE__ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference A : List[Any] =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` A : str =[77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` A : Optional[int] =[1, 0] def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : bool = True , ) -> Dict: A : Any =hidden_states A : int =[] A : str =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens A : Optional[int] =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] A : str =self.transformer_index_for_condition[i] A : str =self.transformers[transformer_index]( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ , cross_attention_kwargs=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] A : str =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) A : Any =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=SCREAMING_SNAKE_CASE__ )
305
1
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __A : Any = ['''text''', '''image''', '''audio'''] def lowercase ( __snake_case : List[str] ): lowercase_ : Optional[Any] = [] for input_type in input_types: if input_type == "text": inputs.append('''Text input''' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((5_1_2, 5_1_2) ) ) elif input_type == "audio": inputs.append(torch.ones(3_0_0_0 ) ) elif isinstance(__snake_case , __snake_case ): inputs.append(create_inputs(__snake_case ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def lowercase ( __snake_case : List ): lowercase_ : List[Any] = [] for output in outputs: if isinstance(__snake_case , (str, AgentText) ): output_types.append('''text''' ) elif isinstance(__snake_case , (Image.Image, AgentImage) ): output_types.append('''image''' ) elif isinstance(__snake_case , (torch.Tensor, AgentAudio) ): output_types.append('''audio''' ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class _UpperCAmelCase : def A ( self : Optional[Any] ) -> Union[str, Any]: self.assertTrue(hasattr(self.tool , '''inputs''' ) ) self.assertTrue(hasattr(self.tool , '''outputs''' ) ) lowercase_ : Optional[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , A ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowercase_ : List[str] = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def A ( self : Any ) -> Dict: lowercase_ : List[Any] = create_inputs(self.tool.inputs ) lowercase_ : Optional[Any] = self.tool(*A ) # There is a single output if len(self.tool.outputs ) == 1: lowercase_ : Any = [outputs] self.assertListEqual(output_types(A ) , self.tool.outputs ) def A ( self : Union[str, Any] ) -> Tuple: self.assertTrue(hasattr(self.tool , '''description''' ) ) self.assertTrue(hasattr(self.tool , '''default_checkpoint''' ) ) self.assertTrue(self.tool.description.startswith('''This is a tool that''' ) ) def A ( self : Union[str, Any] ) -> Union[str, Any]: lowercase_ : Dict = create_inputs(self.tool.inputs ) lowercase_ : List[str] = self.tool(*A ) if not isinstance(A , A ): lowercase_ : List[Any] = [outputs] self.assertEqual(len(A ) , len(self.tool.outputs ) ) for output, output_type in zip(A , self.tool.outputs ): lowercase_ : Union[str, Any] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(A , A ) ) def A ( self : List[Any] ) -> Union[str, Any]: lowercase_ : Union[str, Any] = create_inputs(self.tool.inputs ) lowercase_ : List[str] = [] for _input, input_type in zip(A , self.tool.inputs ): if isinstance(A , A ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowercase_ : Any = self.tool(*A ) if not isinstance(A , A ): lowercase_ : Union[str, Any] = [outputs] self.assertEqual(len(A ) , len(self.tool.outputs ) )
714
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _UpperCAmelCase ( _A ): def __init__( self : Optional[int] , A : Optional[Any]=0.01 , A : int=10_00 ) -> Optional[int]: lowercase_ : Dict = p_stop lowercase_ : Optional[Any] = max_length def __iter__( self : Dict ) -> Dict: lowercase_ : str = 0 lowercase_ : Optional[int] = False while not stop and count < self.max_length: yield count count += 1 lowercase_ : List[str] = random.random() < self.p_stop class _UpperCAmelCase ( unittest.TestCase ): def A ( self : List[Any] , A : Any , A : Union[str, Any] , A : Optional[Any]=False , A : Dict=True ) -> str: lowercase_ : Tuple = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] lowercase_ : Optional[Any] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def A ( self : Dict ) -> Tuple: # Check the shards when the dataset is a round multiple of total batch size. lowercase_ : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) lowercase_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) lowercase_ : Tuple = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowercase_ : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) lowercase_ : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) lowercase_ : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) lowercase_ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowercase_ : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) lowercase_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) lowercase_ : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) lowercase_ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowercase_ : Tuple = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) lowercase_ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) lowercase_ : Any = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) lowercase_ : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. lowercase_ : str = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) lowercase_ : Optional[Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) lowercase_ : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) lowercase_ : List[str] = [[], []] self.check_batch_sampler_shards(A , A ) def A ( self : str ) -> str: # Check the shards when the dataset is a round multiple of batch size. lowercase_ : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) lowercase_ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) lowercase_ : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. lowercase_ : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) lowercase_ : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) lowercase_ : Any = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) lowercase_ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowercase_ : Tuple = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) lowercase_ : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) lowercase_ : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) lowercase_ : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. lowercase_ : Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) lowercase_ : Dict = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) lowercase_ : Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) lowercase_ : str = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def A ( self : str ) -> int: # Check the shards when the dataset is a round multiple of total batch size. lowercase_ : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) lowercase_ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) lowercase_ : Dict = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowercase_ : List[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) lowercase_ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) lowercase_ : List[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) lowercase_ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowercase_ : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) lowercase_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) lowercase_ : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) lowercase_ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowercase_ : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) lowercase_ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) lowercase_ : str = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) lowercase_ : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. lowercase_ : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) lowercase_ : Tuple = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) lowercase_ : List[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) lowercase_ : Optional[Any] = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def A ( self : Optional[Any] ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of batch size. lowercase_ : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) lowercase_ : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) lowercase_ : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. lowercase_ : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) lowercase_ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) lowercase_ : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) lowercase_ : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowercase_ : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) lowercase_ : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) lowercase_ : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) lowercase_ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. lowercase_ : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) lowercase_ : Union[str, Any] = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) lowercase_ : List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) lowercase_ : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def A ( self : str ) -> str: lowercase_ : str = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] lowercase_ : Tuple = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def A ( self : Union[str, Any] , A : Union[str, Any] , A : Tuple , A : Dict , A : str=False , A : Any=2 , A : Optional[int]=False ) -> Optional[Any]: random.seed(A ) lowercase_ : Any = list(A ) lowercase_ : Optional[int] = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] lowercase_ : Any = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) lowercase_ : List[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size lowercase_ : Dict = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) lowercase_ : Optional[int] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def A ( self : Optional[Any] ) -> List[str]: lowercase_ : int = 42 lowercase_ : Tuple = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset lowercase_ : List[str] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def A ( self : Optional[Any] ) -> Tuple: lowercase_ : List[str] = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) lowercase_ : int = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A ( self : List[str] ) -> Union[str, Any]: lowercase_ : int = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A ( self : Dict ) -> int: lowercase_ : Optional[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) lowercase_ : Union[str, Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A ( self : List[str] ) -> str: lowercase_ : Any = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def A ( self : Optional[Any] ) -> Optional[int]: Accelerator() lowercase_ : Tuple = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
141
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer __A : Union[str, Any] = logging.get_logger(__name__) __A : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A : Any = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } __A : Union[str, Any] = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } __A : List[str] = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_INIT_CONFIGURATION __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = SqueezeBertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) _A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , snake_case_ ) != do_lower_case or normalizer_state.get('strip_accents' , snake_case_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , snake_case_ ) != tokenize_chinese_chars ): _A = getattr(snake_case_ , normalizer_state.pop('type' ) ) _A = do_lower_case _A = strip_accents _A = tokenize_chinese_chars _A = normalizer_class(**snake_case_ ) _A = do_lower_case def lowerCAmelCase__ ( self , snake_case_ , snake_case_=None ): _A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): _A = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
27
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _UpperCAmelCase : str = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple[int, int]: def constraint_to_multiple_of(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=0 , _UpperCAmelCase=None ): lowerCamelCase__ : List[str] = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowerCamelCase__ : Optional[Any] = math.floor(val / multiple ) * multiple if x < min_val: lowerCamelCase__ : List[Any] = math.ceil(val / multiple ) * multiple return x lowerCamelCase__ : Dict = (output_size, output_size) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else output_size lowerCamelCase__ , lowerCamelCase__ : str = get_image_size(_UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Dict = output_size # determine new height and width lowerCamelCase__ : List[str] = output_height / input_height lowerCamelCase__ : str = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowerCamelCase__ : Optional[int] = scale_width else: # fit height lowerCamelCase__ : Tuple = scale_height lowerCamelCase__ : str = constraint_to_multiple_of(scale_height * input_height , multiple=_UpperCAmelCase ) lowerCamelCase__ : Any = constraint_to_multiple_of(scale_width * input_width , multiple=_UpperCAmelCase ) return (new_height, new_width) class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = ["""pixel_values"""] def __init__( self : Any , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = False , UpperCAmelCase : int = 1 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[int, float] = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , **UpperCAmelCase : Optional[int] , ) -> None: super().__init__(**UpperCAmelCase ) lowerCamelCase__ : Optional[int] = size if size is not None else {'height': 384, 'width': 384} lowerCamelCase__ : Optional[Any] = get_size_dict(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = do_resize lowerCamelCase__ : List[str] = size lowerCamelCase__ : List[Any] = keep_aspect_ratio lowerCamelCase__ : Dict = ensure_multiple_of lowerCamelCase__ : str = resample lowerCamelCase__ : int = do_rescale lowerCamelCase__ : Any = rescale_factor lowerCamelCase__ : List[str] = do_normalize lowerCamelCase__ : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase__ : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def A_ ( self : int , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : bool = False , UpperCAmelCase : int = 1 , UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: lowerCamelCase__ : Tuple = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowerCamelCase__ : List[Any] = get_resize_output_image_size( UpperCAmelCase , output_size=(size['height'], size['width']) , keep_aspect_ratio=UpperCAmelCase , multiple=UpperCAmelCase , ) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : int , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Dict , ) -> str: return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : List[Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Tuple , ) -> np.ndarray: return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : Optional[Any] , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : int = None , UpperCAmelCase : bool = None , UpperCAmelCase : int = None , UpperCAmelCase : PILImageResampling = None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : Union[str, Any] , ) -> PIL.Image.Image: lowerCamelCase__ : int = do_resize if do_resize is not None else self.do_resize lowerCamelCase__ : Optional[Any] = size if size is not None else self.size lowerCamelCase__ : List[str] = get_size_dict(UpperCAmelCase ) lowerCamelCase__ : int = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowerCamelCase__ : Dict = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowerCamelCase__ : List[str] = resample if resample is not None else self.resample lowerCamelCase__ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ : Any = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__ : List[Any] = image_mean if image_mean is not None else self.image_mean lowerCamelCase__ : int = image_std if image_std is not None else self.image_std lowerCamelCase__ : Any = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase__ : Dict = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: lowerCamelCase__ : Dict = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: lowerCamelCase__ : Tuple = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowerCamelCase__ : int = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowerCamelCase__ : Optional[Any] = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowerCamelCase__ : Any = {'pixel_values': images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase ) def A_ ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Tuple] = None ) -> Dict: lowerCamelCase__ : Tuple = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(UpperCAmelCase ): lowerCamelCase__ : List[str] = target_sizes.numpy() lowerCamelCase__ : Tuple = [] for idx in range(len(UpperCAmelCase ) ): lowerCamelCase__ : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=UpperCAmelCase ) lowerCamelCase__ : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase ) else: lowerCamelCase__ : Dict = logits.argmax(dim=1 ) lowerCamelCase__ : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
295
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' __snake_case = '''vit_msn''' def __init__( self , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.02 , __lowerCamelCase=1E-06 , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=True , **__lowerCamelCase , ) -> str: super().__init__(**_A ) _SCREAMING_SNAKE_CASE : str = hidden_size _SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers _SCREAMING_SNAKE_CASE : Dict = num_attention_heads _SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size _SCREAMING_SNAKE_CASE : List[Any] = hidden_act _SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : str = initializer_range _SCREAMING_SNAKE_CASE : str = layer_norm_eps _SCREAMING_SNAKE_CASE : List[str] = image_size _SCREAMING_SNAKE_CASE : Any = patch_size _SCREAMING_SNAKE_CASE : Optional[int] = num_channels _SCREAMING_SNAKE_CASE : Union[str, Any] = qkv_bias
711
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ ={ 'configuration_clipseg': [ 'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPSegConfig', 'CLIPSegTextConfig', 'CLIPSegVisionConfig', ], 'processing_clipseg': ['CLIPSegProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ =[ 'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPSegModel', 'CLIPSegPreTrainedModel', 'CLIPSegTextModel', 'CLIPSegVisionModel', 'CLIPSegForImageSegmentation', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys UpperCamelCase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
381
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=True , __lowerCamelCase="pt" ): __a = {'add_prefix_space': True} if isinstance(__lowerCamelCase , __lowerCamelCase ) and not line.startswith(' ' ) else {} __a = padding_side return tokenizer( [line] , max_length=__lowerCamelCase , padding='max_length' if pad_to_max_length else None , truncation=__lowerCamelCase , return_tensors=__lowerCamelCase , add_special_tokens=__lowerCamelCase , **__lowerCamelCase , ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , ): __a = input_ids.ne(__lowerCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class a__ ( __snake_case ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="train" , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="" , ) -> List[str]: super().__init__() __a = Path(UpperCAmelCase ).joinpath(type_path + '.source' ) __a = Path(UpperCAmelCase ).joinpath(type_path + '.target' ) __a = self.get_char_lens(self.src_file ) __a = max_source_length __a = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' __a = tokenizer __a = prefix if n_obs is not None: __a = self.src_lens[:n_obs] __a = src_lang __a = tgt_lang def __len__( self ) -> Optional[Any]: return len(self.src_lens ) def __getitem__( self , UpperCAmelCase ) -> Dict[str, torch.Tensor]: __a = index + 1 # linecache starts at 1 __a = self.prefix + linecache.getline(str(self.src_file ) , UpperCAmelCase ).rstrip('\n' ) __a = linecache.getline(str(self.tgt_file ) , UpperCAmelCase ).rstrip('\n' ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , UpperCAmelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __a = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , UpperCAmelCase ) else self.tokenizer ) __a = self.tokenizer.generator if isinstance(self.tokenizer , UpperCAmelCase ) else self.tokenizer __a = encode_line(UpperCAmelCase , UpperCAmelCase , self.max_source_length , 'right' ) __a = encode_line(UpperCAmelCase , UpperCAmelCase , self.max_target_length , 'right' ) __a = source_inputs['input_ids'].squeeze() __a = target_inputs['input_ids'].squeeze() __a = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __SCREAMING_SNAKE_CASE ( UpperCAmelCase ) -> Optional[Any]: return [len(UpperCAmelCase ) for x in Path(UpperCAmelCase ).open().readlines()] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> Dict[str, torch.Tensor]: __a = torch.stack([x['input_ids'] for x in batch] ) __a = torch.stack([x['attention_mask'] for x in batch] ) __a = torch.stack([x['decoder_input_ids'] for x in batch] ) __a = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , UpperCAmelCase ) else self.tokenizer.pad_token_id ) __a = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , UpperCAmelCase ) else self.tokenizer.pad_token_id ) __a = trim_batch(UpperCAmelCase , UpperCAmelCase ) __a , __a = trim_batch(UpperCAmelCase , UpperCAmelCase , attention_mask=UpperCAmelCase ) __a = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch lowerCamelCase_ : Tuple = getLogger(__name__) def lowerCAmelCase( __lowerCamelCase ): return list(itertools.chain.from_iterable(__lowerCamelCase ) ) def lowerCAmelCase( __lowerCamelCase ): __a = get_git_info() save_json(__lowerCamelCase , os.path.join(__lowerCamelCase , 'git_log.json' ) ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=4 , **__lowerCamelCase ): with open(__lowerCamelCase , 'w' ) as f: json.dump(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase( __lowerCamelCase ): with open(__lowerCamelCase ) as f: return json.load(__lowerCamelCase ) def lowerCAmelCase( ): __a = git.Repo(search_parent_directories=__lowerCamelCase ) __a = { 'repo_id': str(__lowerCamelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): return list(map(__lowerCamelCase , __lowerCamelCase ) ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): with open(__lowerCamelCase , 'wb' ) as f: return pickle.dump(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase( __lowerCamelCase ): def remove_articles(__lowerCamelCase ): return re.sub(r'\b(a|an|the)\b' , ' ' , __lowerCamelCase ) def white_space_fix(__lowerCamelCase ): return " ".join(text.split() ) def remove_punc(__lowerCamelCase ): __a = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCamelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCamelCase ) ) ) ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): __a = normalize_answer(__lowerCamelCase ).split() __a = normalize_answer(__lowerCamelCase ).split() __a = Counter(__lowerCamelCase ) & Counter(__lowerCamelCase ) __a = sum(common.values() ) if num_same == 0: return 0 __a = 1.0 * num_same / len(__lowerCamelCase ) __a = 1.0 * num_same / len(__lowerCamelCase ) __a = (2 * precision * recall) / (precision + recall) return fa def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): return normalize_answer(__lowerCamelCase ) == normalize_answer(__lowerCamelCase ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): assert len(__lowerCamelCase ) == len(__lowerCamelCase ) __a = 0 for hypo, pred in zip(__lowerCamelCase , __lowerCamelCase ): em += exact_match_score(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: em /= len(__lowerCamelCase ) return {"em": em} def lowerCAmelCase( __lowerCamelCase ): return model_prefix.startswith('rag' ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __a = 'dropout_rate' for p in extra_params: if getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): if not hasattr(__lowerCamelCase , __lowerCamelCase ) and not hasattr(__lowerCamelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(__lowerCamelCase ) ) delattr(__lowerCamelCase , __lowerCamelCase ) continue __a = p if hasattr(__lowerCamelCase , __lowerCamelCase ) else equivalent_param[p] setattr(__lowerCamelCase , __lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) delattr(__lowerCamelCase , __lowerCamelCase ) return hparams, config
559
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCamelCase_ : Optional[int] = logging.get_logger(__name__) class a__ ( __snake_case ): def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> None: warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
559
1
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py A = 'src/diffusers' # Matches is_xxx_available() A = re.compile(R'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla A = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') A = '\n{0} = None\n' A = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' A = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def _lowerCamelCase( lowerCAmelCase__ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = _re_backend.findall(__lowerCAmelCase ) if len(__lowerCAmelCase ) == 0: return None return "_and_".join(__lowerCAmelCase ) def _lowerCamelCase( ): '''simple docstring''' with open(os.path.join(__lowerCAmelCase , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: SCREAMING_SNAKE_CASE_ : int = f.readlines() # Get to the point we do the actual imports for type checking SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Tuple = {} # Go through the end of the file while line_index < len(__lowerCAmelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block SCREAMING_SNAKE_CASE_ : str = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE_ : Any = [] # Until we unindent, add backend objects to the list while line_index < len(__lowerCAmelCase ) and len(lines[line_index] ) > 1: SCREAMING_SNAKE_CASE_ : Optional[int] = lines[line_index] SCREAMING_SNAKE_CASE_ : List[str] = _re_single_line_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__lowerCAmelCase ) > 0: SCREAMING_SNAKE_CASE_ : str = objects else: line_index += 1 return backend_specific_objects def _lowerCamelCase( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict ): '''simple docstring''' if name.isupper(): return DUMMY_CONSTANT.format(__lowerCAmelCase ) elif name.islower(): return DUMMY_FUNCTION.format(__lowerCAmelCase , __lowerCAmelCase ) else: return DUMMY_CLASS.format(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase( lowerCAmelCase__ : Optional[int]=None ): '''simple docstring''' if backend_specific_objects is None: SCREAMING_SNAKE_CASE_ : List[Any] = read_init() # For special correspondence backend to module name as used in the function requires_modulename SCREAMING_SNAKE_CASE_ : int = {} for backend, objects in backend_specific_objects.items(): SCREAMING_SNAKE_CASE_ : str = '[' + ', '.join(F'''"{b}"''' for b in backend.split('_and_' ) ) + ']' SCREAMING_SNAKE_CASE_ : List[str] = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__lowerCAmelCase , __lowerCAmelCase ) for o in objects] ) SCREAMING_SNAKE_CASE_ : List[str] = dummy_file return dummy_files def _lowerCamelCase( lowerCAmelCase__ : List[str]=False ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py SCREAMING_SNAKE_CASE_ : str = {'torch': 'pt'} # Locate actual dummy modules and read their content. SCREAMING_SNAKE_CASE_ : Dict = os.path.join(__lowerCAmelCase , 'utils' ) SCREAMING_SNAKE_CASE_ : Dict = { backend: os.path.join(__lowerCAmelCase , F'''dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py''' ) for backend in dummy_files.keys() } SCREAMING_SNAKE_CASE_ : Any = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__lowerCAmelCase ): with open(__lowerCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = f.read() else: SCREAMING_SNAKE_CASE_ : Tuple = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py as the main ''' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' F'''diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py. Run `make fix-copies` ''' 'to fix this.' ) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') A = parser.parse_args() check_dummies(args.fix_and_overwrite)
709
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL A = logging.get_logger(__name__) def _lowerCamelCase( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[int, Iterable[int]] , lowerCAmelCase__ : bool , lowerCAmelCase__ : int ): '''simple docstring''' def constraint_to_multiple_of(lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any]=0 , lowerCAmelCase__ : Any=None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: SCREAMING_SNAKE_CASE_ : Union[str, Any] = math.floor(val / multiple ) * multiple if x < min_val: SCREAMING_SNAKE_CASE_ : Dict = math.ceil(val / multiple ) * multiple return x SCREAMING_SNAKE_CASE_ : str = (output_size, output_size) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else output_size SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = get_image_size(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = output_size # determine new height and width SCREAMING_SNAKE_CASE_ : Optional[int] = output_height / input_height SCREAMING_SNAKE_CASE_ : Union[str, Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width SCREAMING_SNAKE_CASE_ : str = scale_width else: # fit height SCREAMING_SNAKE_CASE_ : Optional[Any] = scale_height SCREAMING_SNAKE_CASE_ : Any = constraint_to_multiple_of(scale_height * input_height , multiple=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = constraint_to_multiple_of(scale_width * input_width , multiple=lowerCAmelCase__ ) return (new_height, new_width) class __a ( __A ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ["""pixel_values"""] def __init__( self , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = PILImageResampling.BILINEAR , UpperCamelCase__ = False , UpperCamelCase__ = 1 , UpperCamelCase__ = True , UpperCamelCase__ = 1 / 255 , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = None , **UpperCamelCase__ , ): super().__init__(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Any = size if size is not None else {'height': 384, 'width': 384} SCREAMING_SNAKE_CASE_ : str = get_size_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : str = do_resize SCREAMING_SNAKE_CASE_ : str = size SCREAMING_SNAKE_CASE_ : int = keep_aspect_ratio SCREAMING_SNAKE_CASE_ : Tuple = ensure_multiple_of SCREAMING_SNAKE_CASE_ : Optional[int] = resample SCREAMING_SNAKE_CASE_ : int = do_rescale SCREAMING_SNAKE_CASE_ : int = rescale_factor SCREAMING_SNAKE_CASE_ : str = do_normalize SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE_ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = 1 , UpperCamelCase__ = PILImageResampling.BICUBIC , UpperCamelCase__ = None , **UpperCamelCase__ , ): SCREAMING_SNAKE_CASE_ : List[Any] = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) SCREAMING_SNAKE_CASE_ : Optional[int] = get_resize_output_image_size( UpperCamelCase__ , output_size=(size['height'], size['width']) , keep_aspect_ratio=UpperCamelCase__ , multiple=UpperCamelCase__ , ) return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ): return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ): return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = ChannelDimension.FIRST , **UpperCamelCase__ , ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ : Optional[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE_ : str = get_size_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio SCREAMING_SNAKE_CASE_ : str = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of SCREAMING_SNAKE_CASE_ : Union[str, Any] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ : Dict = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ : Optional[int] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_ : Dict = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_ : List[Any] = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ : Any = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE_ : Tuple = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_ : Any = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_ : Any = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ ) for image in images] SCREAMING_SNAKE_CASE_ : str = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] SCREAMING_SNAKE_CASE_ : Dict = {'pixel_values': images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : int = target_sizes.numpy() SCREAMING_SNAKE_CASE_ : Tuple = [] for idx in range(len(UpperCamelCase__ ) ): SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE_ : List[Any] = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE_ : Any = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
97
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def __init__( self , A_ , A_=7 , A_=3 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , A_=True , A_=1 / 255 , A_=True , )-> int: '''simple docstring''' UpperCamelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std UpperCamelCase = do_rescale UpperCamelCase = rescale_factor UpperCamelCase = do_pad def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase_ ( self , A_ , A_=False )-> Union[str, Any]: '''simple docstring''' if not batched: UpperCamelCase = image_inputs[0] if isinstance(A_ , Image.Image ): UpperCamelCase , UpperCamelCase = image.size else: UpperCamelCase , UpperCamelCase = image.shape[1], image.shape[2] if w < h: UpperCamelCase = int(self.size['shortest_edge'] * h / w ) UpperCamelCase = self.size['shortest_edge'] elif w > h: UpperCamelCase = self.size['shortest_edge'] UpperCamelCase = int(self.size['shortest_edge'] * w / h ) else: UpperCamelCase = self.size['shortest_edge'] UpperCamelCase = self.size['shortest_edge'] else: UpperCamelCase = [] for image in image_inputs: UpperCamelCase , UpperCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase = max(A_ , key=lambda A_ : item[0] )[0] UpperCamelCase = max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase): lowerCAmelCase_ = DeformableDetrImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = DeformableDetrImageProcessingTester(self ) @property def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'do_rescale' ) ) self.assertTrue(hasattr(A_ , 'do_pad' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , A_ ) UpperCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A_ ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , A_ ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' pass def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: UpperCamelCase = json.loads(f.read() ) UpperCamelCase = {'image_id': 39769, 'annotations': target} # encode them UpperCamelCase = DeformableDetrImageProcessor() UpperCamelCase = image_processing(images=A_ , annotations=A_ , return_tensors='pt' ) # verify pixel values UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , A_ ) UpperCamelCase = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , A_ , atol=1e-4 ) ) # verify area UpperCamelCase = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , A_ ) ) # verify boxes UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , A_ ) UpperCamelCase = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , A_ , atol=1e-3 ) ) # verify image_id UpperCamelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , A_ ) ) # verify is_crowd UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , A_ ) ) # verify class_labels UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , A_ ) ) # verify orig_size UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , A_ ) ) # verify size UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , A_ ) ) @slow def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: UpperCamelCase = json.loads(f.read() ) UpperCamelCase = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} UpperCamelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them UpperCamelCase = DeformableDetrImageProcessor(format='coco_panoptic' ) UpperCamelCase = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors='pt' ) # verify pixel values UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , A_ ) UpperCamelCase = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , A_ , atol=1e-4 ) ) # verify area UpperCamelCase = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , A_ ) ) # verify boxes UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , A_ ) UpperCamelCase = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , A_ , atol=1e-3 ) ) # verify image_id UpperCamelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , A_ ) ) # verify is_crowd UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , A_ ) ) # verify class_labels UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , A_ ) ) # verify masks UpperCamelCase = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , A_ ) # verify orig_size UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , A_ ) ) # verify size UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , A_ ) )
3
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset _a = random.Random() def lowerCAmelCase__(__snake_case ,__snake_case=1.0 ,__snake_case=None ,__snake_case=None ) -> Union[str, Any]: '''simple docstring''' if rng is None: lowerCamelCase__ = global_rng lowerCamelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __A ( unittest.TestCase ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=7 , __lowerCAmelCase=4_0_0 , __lowerCAmelCase=2_0_0_0 , __lowerCAmelCase=2_0_4_8 , __lowerCAmelCase=1_2_8 , __lowerCAmelCase=1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=3_0 , __lowerCAmelCase=4_4_1_0_0 , ): '''simple docstring''' lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = min_seq_length lowerCamelCase__ = max_seq_length lowerCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase__ = spectrogram_length lowerCamelCase__ = feature_size lowerCamelCase__ = num_audio_channels lowerCamelCase__ = hop_length lowerCamelCase__ = chunk_length lowerCamelCase__ = sampling_rate def __lowerCamelCase ( self ): '''simple docstring''' return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def __lowerCamelCase ( self , __lowerCAmelCase=False , __lowerCAmelCase=False ): '''simple docstring''' def _flatten(__lowerCAmelCase ): return list(itertools.chain(*__lowerCAmelCase ) ) if equal_length: lowerCamelCase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCamelCase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCamelCase__ = [np.asarray(__lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __A ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = TvltFeatureExtractor def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = TvltFeatureExtractionTester(self ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''spectrogram_length''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''feature_size''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''num_audio_channels''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''hop_length''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''chunk_length''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''sampling_rate''' ) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ = feat_extract_first.save_pretrained(__lowerCAmelCase )[0] check_json_file_has_correct_format(__lowerCAmelCase ) lowerCamelCase__ = self.feature_extraction_class.from_pretrained(__lowerCAmelCase ) lowerCamelCase__ = feat_extract_first.to_dict() lowerCamelCase__ = feat_extract_second.to_dict() lowerCamelCase__ = dict_first.pop('''mel_filters''' ) lowerCamelCase__ = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ = os.path.join(__lowerCAmelCase , '''feat_extract.json''' ) feat_extract_first.to_json_file(__lowerCAmelCase ) lowerCamelCase__ = self.feature_extraction_class.from_json_file(__lowerCAmelCase ) lowerCamelCase__ = feat_extract_first.to_dict() lowerCamelCase__ = feat_extract_second.to_dict() lowerCamelCase__ = dict_first.pop('''mel_filters''' ) lowerCamelCase__ = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCamelCase__ = [np.asarray(__lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input lowerCamelCase__ = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched lowerCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking lowerCamelCase__ = feature_extractor( __lowerCAmelCase , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=__lowerCAmelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. lowerCamelCase__ = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCamelCase__ = np.asarray(__lowerCAmelCase ) lowerCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech lowerCamelCase__ = ds.sort('''id''' ).select(range(__lowerCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self._load_datasamples(1 ) lowerCamelCase__ = TvltFeatureExtractor() lowerCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) lowerCamelCase__ = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , __lowerCAmelCase , atol=1E-4 ) )
481
0
import random class a : """simple docstring""" @staticmethod def __snake_case ( lowerCamelCase : str ) -> tuple[list[int], list[int]]: __snake_case : int = [ord(lowerCamelCase ) for i in text] __snake_case : int = [] __snake_case : str = [] for i in plain: __snake_case : Union[str, Any] = random.randint(1 , 300 ) __snake_case : Dict = (i + k) * k cipher.append(lowerCamelCase ) key.append(lowerCamelCase ) return cipher, key @staticmethod def __snake_case ( lowerCamelCase : list[int] , lowerCamelCase : list[int] ) -> str: __snake_case : List[Any] = [] for i in range(len(lowerCamelCase ) ): __snake_case : int = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(lowerCamelCase ) ) return "".join(lowerCamelCase ) if __name__ == "__main__": _snake_case : int = Onepad().encrypt("Hello") print(c, k) print(Onepad().decrypt(c, k))
718
from __future__ import annotations _snake_case : Union[str, Any] = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class a : """simple docstring""" def __init__( self : Tuple , lowerCamelCase : dict[str, list[str]] , lowerCamelCase : str ) -> None: __snake_case : Tuple = graph # mapping node to its parent in resulting breadth first tree __snake_case : dict[str, str | None] = {} __snake_case : Dict = source_vertex def __snake_case ( self : Optional[int] ) -> None: __snake_case : Dict = {self.source_vertex} __snake_case : List[str] = None __snake_case : Optional[Any] = [self.source_vertex] # first in first out queue while queue: __snake_case : List[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(lowerCamelCase ) __snake_case : Any = vertex queue.append(lowerCamelCase ) def __snake_case ( self : Optional[Any] , lowerCamelCase : str ) -> str: if target_vertex == self.source_vertex: return self.source_vertex __snake_case : Optional[Any] = self.parent.get(lowerCamelCase ) if target_vertex_parent is None: __snake_case : Optional[Any] = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(lowerCamelCase ) return self.shortest_path(lowerCamelCase ) + F'->{target_vertex}' if __name__ == "__main__": _snake_case : Optional[Any] = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
203
0
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase_ ( UpperCamelCase__): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , ): """simple docstring""" super().__init__() self.register_modules(transformer=_UpperCAmelCase , vae=_UpperCAmelCase , scheduler=_UpperCAmelCase ) # create a imagenet -> id dictionary for easier use a_ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(""",""" ): a_ = int(_UpperCAmelCase ) a_ = dict(sorted(self.labels.items() ) ) def lowercase__ ( self , _UpperCAmelCase ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): a_ = list(_UpperCAmelCase ) for l in label: if l not in self.labels: raise ValueError( f"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}." ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , _UpperCAmelCase , _UpperCAmelCase = 4.0 , _UpperCAmelCase = None , _UpperCAmelCase = 50 , _UpperCAmelCase = "pil" , _UpperCAmelCase = True , ): """simple docstring""" a_ = len(_UpperCAmelCase ) a_ = self.transformer.config.sample_size a_ = self.transformer.config.in_channels a_ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_UpperCAmelCase , device=self.device , dtype=self.transformer.dtype , ) a_ = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents a_ = torch.tensor(_UpperCAmelCase , device=self.device ).reshape(-1 ) a_ = torch.tensor([1_000] * batch_size , device=self.device ) a_ = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: a_ = latent_model_input[: len(_UpperCAmelCase ) // 2] a_ = torch.cat([half, half] , dim=0 ) a_ = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) a_ = t if not torch.is_tensor(_UpperCAmelCase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) a_ = latent_model_input.device.type == """mps""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): a_ = torch.floataa if is_mps else torch.floataa else: a_ = torch.intaa if is_mps else torch.intaa a_ = torch.tensor([timesteps] , dtype=_UpperCAmelCase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: a_ = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML a_ = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output a_ = self.transformer( _UpperCAmelCase , timestep=_UpperCAmelCase , class_labels=_UpperCAmelCase ).sample # perform guidance if guidance_scale > 1: a_ , a_ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] a_ , a_ = torch.split(_UpperCAmelCase , len(_UpperCAmelCase ) // 2 , dim=0 ) a_ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) a_ = torch.cat([half_eps, half_eps] , dim=0 ) a_ = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: a_ , a_ = torch.split(_UpperCAmelCase , _UpperCAmelCase , dim=1 ) else: a_ = noise_pred # compute previous image: x_t -> x_t-1 a_ = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample if guidance_scale > 1: a_ , a_ = latent_model_input.chunk(2 , dim=0 ) else: a_ = latent_model_input a_ = 1 / self.vae.config.scaling_factor * latents a_ = self.vae.decode(_UpperCAmelCase ).sample a_ = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 a_ = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a_ = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=_UpperCAmelCase )
483
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowercase_ : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=sys.maxsize ): """simple docstring""" a_ = """bilinear""" a_ = max_size a_ = short_edge_length def __call__( self , _UpperCAmelCase ): """simple docstring""" a_ = [] for img in imgs: a_ , a_ = img.shape[:2] # later: provide list and randomly choose index for resize a_ = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img a_ = size * 1.0 / min(_UpperCAmelCase , _UpperCAmelCase ) if h < w: a_ , a_ = size, scale * w else: a_ , a_ = scale * h, size if max(_UpperCAmelCase , _UpperCAmelCase ) > self.max_size: a_ = self.max_size * 1.0 / max(_UpperCAmelCase , _UpperCAmelCase ) a_ = newh * scale a_ = neww * scale a_ = int(neww + 0.5 ) a_ = int(newh + 0.5 ) if img.dtype == np.uinta: a_ = Image.fromarray(_UpperCAmelCase ) a_ = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) a_ = np.asarray(_UpperCAmelCase ) else: a_ = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw a_ = nn.functional.interpolate( _UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_UpperCAmelCase ).squeeze(0 ) img_augs.append(_UpperCAmelCase ) return img_augs class lowercase_ : """simple docstring""" def __init__( self , _UpperCAmelCase ): """simple docstring""" a_ = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) a_ = cfg.INPUT.FORMAT a_ = cfg.SIZE_DIVISIBILITY a_ = cfg.PAD_VALUE a_ = cfg.INPUT.MAX_SIZE_TEST a_ = cfg.MODEL.DEVICE a_ = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) a_ = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) a_ = lambda _UpperCAmelCase : (x - self.pixel_mean) / self.pixel_std def lowercase__ ( self , _UpperCAmelCase ): """simple docstring""" a_ = tuple(max(_UpperCAmelCase ) for s in zip(*[img.shape for img in images] ) ) a_ = [im.shape[-2:] for im in images] a_ = [ nn.functional.pad( _UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_UpperCAmelCase , _UpperCAmelCase ) ] return torch.stack(_UpperCAmelCase ), torch.tensor(_UpperCAmelCase ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase=False ): """simple docstring""" with torch.no_grad(): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): a_ = [images] if single_image: assert len(_UpperCAmelCase ) == 1 for i in range(len(_UpperCAmelCase ) ): if isinstance(images[i] , torch.Tensor ): images.insert(_UpperCAmelCase , images.pop(_UpperCAmelCase ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( _UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge a_ = torch.tensor([im.shape[:2] for im in images] ) a_ = self.aug(_UpperCAmelCase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic a_ = [self.normalizer(_UpperCAmelCase ) for x in images] # now pad them to do the following operations a_ , a_ = self.pad(_UpperCAmelCase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad a_ = torch.true_divide(_UpperCAmelCase , _UpperCAmelCase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" assert torch.isfinite(UpperCAmelCase__ ).all(), "Box tensor contains infinite or NaN!" a_ , a_ = box_size tensor[:, 0].clamp_(min=0 , max=UpperCAmelCase__ ) tensor[:, 1].clamp_(min=0 , max=UpperCAmelCase__ ) tensor[:, 2].clamp_(min=0 , max=UpperCAmelCase__ ) tensor[:, 3].clamp_(min=0 , max=UpperCAmelCase__ )
483
1
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed UpperCamelCase__ : List[Any] = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCAmelCase_ ( _lowerCamelCase: List[Any] ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any] , _lowerCamelCase: List[Any] ): if args.student_type == "roberta": __SCREAMING_SNAKE_CASE : List[str] = False elif args.student_type == "gpt2": __SCREAMING_SNAKE_CASE : Dict = False def lowerCAmelCase_ ( _lowerCamelCase: List[Any] , _lowerCamelCase: str ): if args.student_type == "roberta": __SCREAMING_SNAKE_CASE : str = False def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=_lowerCamelCase , required=_lowerCamelCase , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=_lowerCamelCase , required=_lowerCamelCase , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=_lowerCamelCase , choices=["""distilbert""", """roberta""", """gpt2"""] , required=_lowerCamelCase , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=_lowerCamelCase , required=_lowerCamelCase , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=_lowerCamelCase , type=_lowerCamelCase , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=_lowerCamelCase , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=_lowerCamelCase , required=_lowerCamelCase , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=_lowerCamelCase , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=_lowerCamelCase , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=_lowerCamelCase , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=_lowerCamelCase , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=_lowerCamelCase , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=_lowerCamelCase , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=_lowerCamelCase , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=_lowerCamelCase , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=_lowerCamelCase , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=_lowerCamelCase , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=_lowerCamelCase , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=_lowerCamelCase , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=_lowerCamelCase , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=_lowerCamelCase , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=_lowerCamelCase , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=_lowerCamelCase , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=_lowerCamelCase , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5E-4 , type=_lowerCamelCase , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-6 , type=_lowerCamelCase , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=_lowerCamelCase , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.02 , type=_lowerCamelCase , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=_lowerCamelCase , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=_lowerCamelCase , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=_lowerCamelCase , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=_lowerCamelCase , default=56 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=_lowerCamelCase , default=5_00 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=_lowerCamelCase , default=40_00 , help="""Checkpoint interval.""" ) __SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() sanity_checks(_lowerCamelCase ) # ARGS # init_gpu_params(_lowerCamelCase ) set_seed(_lowerCamelCase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite" """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"Experiment will be dumped and logged in {args.dump_path}" ) # SAVE PARAMS # logger.info(F"Param: {args}" ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(_lowerCamelCase ) , _lowerCamelCase , indent=4 ) git_log(args.dump_path ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = MODEL_CLASSES[args.student_type] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __SCREAMING_SNAKE_CASE : Union[str, Any] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __SCREAMING_SNAKE_CASE : Optional[int] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __SCREAMING_SNAKE_CASE : str = tokenizer.all_special_tokens.index(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer.all_special_ids[idx] logger.info(F"Special tokens {special_tok_ids}" ) __SCREAMING_SNAKE_CASE : Dict = special_tok_ids __SCREAMING_SNAKE_CASE : str = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"Loading data from {args.data_file}" ) with open(args.data_file , """rb""" ) as fp: __SCREAMING_SNAKE_CASE : List[Any] = pickle.load(_lowerCamelCase ) if args.mlm: logger.info(F"Loading token counts from {args.token_counts} (already pre-computed)" ) with open(args.token_counts , """rb""" ) as fp: __SCREAMING_SNAKE_CASE : List[str] = pickle.load(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = np.maximum(_lowerCamelCase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __SCREAMING_SNAKE_CASE : Optional[int] = 0.0 # do not predict special tokens __SCREAMING_SNAKE_CASE : Optional[int] = torch.from_numpy(_lowerCamelCase ) else: __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : List[Any] = LmSeqsDataset(params=_lowerCamelCase , data=_lowerCamelCase ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(F"Loading student config from {args.student_config}" ) __SCREAMING_SNAKE_CASE : List[Any] = student_config_class.from_pretrained(args.student_config ) __SCREAMING_SNAKE_CASE : Tuple = True if args.student_pretrained_weights is not None: logger.info(F"Loading pretrained weights from {args.student_pretrained_weights}" ) __SCREAMING_SNAKE_CASE : int = student_model_class.from_pretrained(args.student_pretrained_weights , config=_lowerCamelCase ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = student_model_class(_lowerCamelCase ) if args.n_gpu > 0: student.to(F"cuda:{args.local_rank}" ) logger.info("""Student loaded.""" ) # TEACHER # __SCREAMING_SNAKE_CASE : Tuple = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_lowerCamelCase ) if args.n_gpu > 0: teacher.to(F"cuda:{args.local_rank}" ) logger.info(F"Teacher loaded from {args.teacher_name}." ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_lowerCamelCase , _lowerCamelCase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_lowerCamelCase , _lowerCamelCase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __SCREAMING_SNAKE_CASE : Dict = Distiller( params=_lowerCamelCase , dataset=_lowerCamelCase , token_probs=_lowerCamelCase , student=_lowerCamelCase , teacher=_lowerCamelCase ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
178
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor UpperCamelCase__ : List[str] = logging.get_logger(__name__) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : Union[str, Any] , *lowerCAmelCase__ : str , **lowerCAmelCase__ : Any ): """simple docstring""" warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
178
1
'''simple docstring''' from __future__ import annotations def __snake_case ( UpperCAmelCase_ : int ): lowerCamelCase_ = str(__a ) return len(__a ) == 9 and set(__a ) == set("123456789" ) def __snake_case ( ): for base_num in range(9999 , 4999 , -1 ): lowerCamelCase_ = 100002 * base_num if is_9_pandigital(__a ): return candidate for base_num in range(333 , 99 , -1 ): lowerCamelCase_ = 1002003 * base_num if is_9_pandigital(__a ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
675
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a_ = logging.get_logger(__name__) class A_(SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , *A , **A ): warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , A , ) super().__init__(*A , **A )
437
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) def lowerCamelCase ( _snake_case ): UpperCAmelCase__ : Optional[int] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: UpperCAmelCase__ : str = [144, 192, 240] UpperCAmelCase__ : Optional[int] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: UpperCAmelCase__ : int = [96, 120, 144] UpperCAmelCase__ : Any = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: UpperCAmelCase__ : Optional[Any] = [64, 80, 96] UpperCAmelCase__ : Optional[Any] = [16, 16, 24, 48, 64, 80, 320] UpperCAmelCase__ : Any = 0.05 UpperCAmelCase__ : List[Any] = 2.0 if mobilevit_name.startswith('deeplabv3_' ): UpperCAmelCase__ : List[Any] = 512 UpperCAmelCase__ : List[Any] = 16 UpperCAmelCase__ : Optional[int] = 21 UpperCAmelCase__ : Union[str, Any] = 'pascal-voc-id2label.json' else: UpperCAmelCase__ : int = 1000 UpperCAmelCase__ : Optional[int] = 'imagenet-1k-id2label.json' UpperCAmelCase__ : Dict = 'huggingface/label-files' UpperCAmelCase__ : Any = json.load(open(hf_hub_download(_snake_case ,_snake_case ,repo_type='dataset' ) ,'r' ) ) UpperCAmelCase__ : int = {int(_snake_case ): v for k, v in idalabel.items()} UpperCAmelCase__ : str = idalabel UpperCAmelCase__ : List[Any] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase ( _snake_case ,_snake_case=False ): for i in range(1 ,6 ): if F'''layer_{i}.''' in name: UpperCAmelCase__ : int = name.replace(F'''layer_{i}.''' ,F'''encoder.layer.{i - 1}.''' ) if "conv_1." in name: UpperCAmelCase__ : Tuple = name.replace('conv_1.' ,'conv_stem.' ) if ".block." in name: UpperCAmelCase__ : List[str] = name.replace('.block.' ,'.' ) if "exp_1x1" in name: UpperCAmelCase__ : Tuple = name.replace('exp_1x1' ,'expand_1x1' ) if "red_1x1" in name: UpperCAmelCase__ : Tuple = name.replace('red_1x1' ,'reduce_1x1' ) if ".local_rep.conv_3x3." in name: UpperCAmelCase__ : Optional[Any] = name.replace('.local_rep.conv_3x3.' ,'.conv_kxk.' ) if ".local_rep.conv_1x1." in name: UpperCAmelCase__ : str = name.replace('.local_rep.conv_1x1.' ,'.conv_1x1.' ) if ".norm." in name: UpperCAmelCase__ : Optional[Any] = name.replace('.norm.' ,'.normalization.' ) if ".conv." in name: UpperCAmelCase__ : List[str] = name.replace('.conv.' ,'.convolution.' ) if ".conv_proj." in name: UpperCAmelCase__ : Any = name.replace('.conv_proj.' ,'.conv_projection.' ) for i in range(0 ,2 ): for j in range(0 ,4 ): if F'''.{i}.{j}.''' in name: UpperCAmelCase__ : Dict = name.replace(F'''.{i}.{j}.''' ,F'''.{i}.layer.{j}.''' ) for i in range(2 ,6 ): for j in range(0 ,4 ): if F'''.{i}.{j}.''' in name: UpperCAmelCase__ : Optional[int] = name.replace(F'''.{i}.{j}.''' ,F'''.{i}.''' ) if "expand_1x1" in name: UpperCAmelCase__ : str = name.replace('expand_1x1' ,'downsampling_layer.expand_1x1' ) if "conv_3x3" in name: UpperCAmelCase__ : Any = name.replace('conv_3x3' ,'downsampling_layer.conv_3x3' ) if "reduce_1x1" in name: UpperCAmelCase__ : List[str] = name.replace('reduce_1x1' ,'downsampling_layer.reduce_1x1' ) for i in range(2 ,5 ): if F'''.global_rep.{i}.weight''' in name: UpperCAmelCase__ : Any = name.replace(F'''.global_rep.{i}.weight''' ,'.layernorm.weight' ) if F'''.global_rep.{i}.bias''' in name: UpperCAmelCase__ : Tuple = name.replace(F'''.global_rep.{i}.bias''' ,'.layernorm.bias' ) if ".global_rep." in name: UpperCAmelCase__ : Tuple = name.replace('.global_rep.' ,'.transformer.' ) if ".pre_norm_mha.0." in name: UpperCAmelCase__ : Union[str, Any] = name.replace('.pre_norm_mha.0.' ,'.layernorm_before.' ) if ".pre_norm_mha.1.out_proj." in name: UpperCAmelCase__ : str = name.replace('.pre_norm_mha.1.out_proj.' ,'.attention.output.dense.' ) if ".pre_norm_ffn.0." in name: UpperCAmelCase__ : Optional[Any] = name.replace('.pre_norm_ffn.0.' ,'.layernorm_after.' ) if ".pre_norm_ffn.1." in name: UpperCAmelCase__ : Optional[int] = name.replace('.pre_norm_ffn.1.' ,'.intermediate.dense.' ) if ".pre_norm_ffn.4." in name: UpperCAmelCase__ : Union[str, Any] = name.replace('.pre_norm_ffn.4.' ,'.output.dense.' ) if ".transformer." in name: UpperCAmelCase__ : List[str] = name.replace('.transformer.' ,'.transformer.layer.' ) if ".aspp_layer." in name: UpperCAmelCase__ : Optional[int] = name.replace('.aspp_layer.' ,'.' ) if ".aspp_pool." in name: UpperCAmelCase__ : Dict = name.replace('.aspp_pool.' ,'.' ) if "seg_head." in name: UpperCAmelCase__ : str = name.replace('seg_head.' ,'segmentation_head.' ) if "segmentation_head.classifier.classifier." in name: UpperCAmelCase__ : List[str] = name.replace('segmentation_head.classifier.classifier.' ,'segmentation_head.classifier.' ) if "classifier.fc." in name: UpperCAmelCase__ : Dict = name.replace('classifier.fc.' ,'classifier.' ) elif (not base_model) and ("segmentation_head." not in name): UpperCAmelCase__ : Optional[int] = 'mobilevit.' + name return name def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case=False ): if base_model: UpperCAmelCase__ : int = '' else: UpperCAmelCase__ : List[Any] = 'mobilevit.' for key in orig_state_dict.copy().keys(): UpperCAmelCase__ : str = orig_state_dict.pop(_snake_case ) if key[:8] == "encoder.": UpperCAmelCase__ : Optional[int] = key[8:] if "qkv" in key: UpperCAmelCase__ : Optional[int] = key.split('.' ) UpperCAmelCase__ : Dict = int(key_split[0][6:] ) - 1 UpperCAmelCase__ : Dict = int(key_split[3] ) UpperCAmelCase__ : List[Any] = model.get_submodule(F'''{model_prefix}encoder.layer.{layer_num}''' ) UpperCAmelCase__ : Union[str, Any] = layer.transformer.layer[transformer_num].attention.attention.all_head_size UpperCAmelCase__ : Tuple = ( F'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.''' ) if "weight" in key: UpperCAmelCase__ : List[Any] = val[:dim, :] UpperCAmelCase__ : Optional[int] = val[dim : dim * 2, :] UpperCAmelCase__ : str = val[-dim:, :] else: UpperCAmelCase__ : List[str] = val[:dim] UpperCAmelCase__ : Union[str, Any] = val[dim : dim * 2] UpperCAmelCase__ : int = val[-dim:] else: UpperCAmelCase__ : Dict = val return orig_state_dict def lowerCamelCase ( ): UpperCAmelCase__ : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCAmelCase__ : Union[str, Any] = Image.open(requests.get(_snake_case ,stream=_snake_case ).raw ) return im @torch.no_grad() def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case ,_snake_case=False ): UpperCAmelCase__ : Optional[Any] = get_mobilevit_config(_snake_case ) # load original state_dict UpperCAmelCase__ : List[str] = torch.load(_snake_case ,map_location='cpu' ) # load 🤗 model if mobilevit_name.startswith('deeplabv3_' ): UpperCAmelCase__ : Dict = MobileViTForSemanticSegmentation(_snake_case ).eval() else: UpperCAmelCase__ : Tuple = MobileViTForImageClassification(_snake_case ).eval() UpperCAmelCase__ : List[str] = convert_state_dict(_snake_case ,_snake_case ) model.load_state_dict(_snake_case ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase__ : Union[str, Any] = MobileViTImageProcessor(crop_size=config.image_size ,size=config.image_size + 32 ) UpperCAmelCase__ : Tuple = image_processor(images=prepare_img() ,return_tensors='pt' ) UpperCAmelCase__ : Dict = model(**_snake_case ) UpperCAmelCase__ : int = outputs.logits if mobilevit_name.startswith('deeplabv3_' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": UpperCAmelCase__ : Optional[Any] = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": UpperCAmelCase__ : int = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": UpperCAmelCase__ : Tuple = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3, :3, :3] ,_snake_case ,atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": UpperCAmelCase__ : Union[str, Any] = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": UpperCAmelCase__ : Tuple = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": UpperCAmelCase__ : str = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3] ,_snake_case ,atol=1e-4 ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(F'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: UpperCAmelCase__ : Dict = { 'mobilevit_s': 'mobilevit-small', 'mobilevit_xs': 'mobilevit-x-small', 'mobilevit_xxs': 'mobilevit-xx-small', 'deeplabv3_mobilevit_s': 'deeplabv3-mobilevit-small', 'deeplabv3_mobilevit_xs': 'deeplabv3-mobilevit-x-small', 'deeplabv3_mobilevit_xxs': 'deeplabv3-mobilevit-xx-small', } print('Pushing to the hub...' ) UpperCAmelCase__ : Optional[Any] = model_mapping[mobilevit_name] image_processor.push_to_hub(_snake_case ,organization='apple' ) model.push_to_hub(_snake_case ,organization='apple' ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--mobilevit_name', default='mobilevit_s', type=str, help=( 'Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',' ' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.' ), ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCamelCase__ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
701
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf UpperCamelCase__ = logging.get_logger(__name__) @dataclass class a ( lowercase ): UpperCamelCase : Dict = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **UpperCamelCase_ ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCAmelCase__ : int = deprecated_arg[3:] UpperCAmelCase__ : Tuple = not kwargs.pop(UpperCamelCase_ ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) UpperCAmelCase__ : Dict = kwargs.pop('tpu_name' , self.tpu_name ) UpperCAmelCase__ : Tuple = kwargs.pop('device_idx' , self.device_idx ) UpperCAmelCase__ : List[str] = kwargs.pop('eager_mode' , self.eager_mode ) UpperCAmelCase__ : Any = kwargs.pop('use_xla' , self.use_xla ) super().__init__(**UpperCamelCase_ ) UpperCamelCase : str = field( default=lowercase , metadata={"""help""": """Name of TPU"""} , ) UpperCamelCase : int = field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) UpperCamelCase : bool = field(default=lowercase , metadata={"""help""": """Benchmark models in eager model."""} ) UpperCamelCase : bool = field( default=lowercase , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def __snake_case ( self ): requires_backends(self , ['tf'] ) UpperCAmelCase__ : Optional[Any] = None if self.tpu: try: if self.tpu_name: UpperCAmelCase__ : str = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: UpperCAmelCase__ : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: UpperCAmelCase__ : Tuple = None return tpu @cached_property def __snake_case ( self ): requires_backends(self , ['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) UpperCAmelCase__ : Union[str, Any] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU' ) UpperCAmelCase__ : Any = tf.distribute.OneDeviceStrategy(device=F'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , 'GPU' ) # disable GPU UpperCAmelCase__ : Any = tf.distribute.OneDeviceStrategy(device=F'''/cpu:{self.device_idx}''' ) return strategy @property def __snake_case ( self ): requires_backends(self , ['tf'] ) return self._setup_tpu is not None @property def __snake_case ( self ): requires_backends(self , ['tf'] ) return self._setup_strategy @property def __snake_case ( self ): requires_backends(self , ['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def __snake_case ( self ): requires_backends(self , ['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __snake_case ( self ): return self.n_gpu > 0
254
0
'''simple docstring''' def snake_case_ ( lowercase__ = "The quick brown fox jumps over the lazy dog" , ): UpperCAmelCase__ : Dict = set() # Replace all the whitespace in our sentence UpperCAmelCase__ : str = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(lowercase__ ) == 2_6 def snake_case_ ( lowercase__ = "The quick brown fox jumps over the lazy dog" , ): UpperCAmelCase__ : str = [False] * 2_6 for char in input_str: if char.islower(): UpperCAmelCase__ : List[Any] = True elif char.isupper(): UpperCAmelCase__ : List[Any] = True return all(lowercase__ ) def snake_case_ ( lowercase__ = "The quick brown fox jumps over the lazy dog" , ): return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def snake_case_ ( ): from timeit import timeit UpperCAmelCase__ : Union[str, Any] = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=lowercase__ ) ) print(timeit("is_pangram_faster()" , setup=lowercase__ ) ) print(timeit("is_pangram_fastest()" , setup=lowercase__ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
199
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE = """RegNetConfig""" # Base docstring SCREAMING_SNAKE_CASE = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE = [1, 1_0_8_8, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE = """tabby, tabby cat""" SCREAMING_SNAKE_CASE = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : str , snake_case__ : int , snake_case__ : int = 3 , snake_case__ : int = 1 , snake_case__ : int = 1 , snake_case__ : Optional[str] = "relu" , **snake_case__ : Dict , ): '''simple docstring''' super().__init__(**snake_case__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb UpperCAmelCase__ : Any = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) UpperCAmelCase__ : Union[str, Any] = tf.keras.layers.ConvaD( filters=snake_case__ , kernel_size=snake_case__ , strides=snake_case__ , padding="VALID" , groups=snake_case__ , use_bias=snake_case__ , name="convolution" , ) UpperCAmelCase__ : Any = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) UpperCAmelCase__ : Tuple = ACTaFN[activation] if activation is not None else tf.identity def UpperCamelCase ( self : str , snake_case__ : str ): '''simple docstring''' UpperCAmelCase__ : str = self.convolution(self.padding(snake_case__ ) ) UpperCAmelCase__ : Dict = self.normalization(snake_case__ ) UpperCAmelCase__ : Any = self.activation(snake_case__ ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[Any] , snake_case__ : RegNetConfig , **snake_case__ : Optional[int] ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : Any = config.num_channels UpperCAmelCase__ : Optional[Any] = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def UpperCamelCase ( self : int , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : Tuple = shape_list(snake_case__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) UpperCAmelCase__ : List[str] = tf.transpose(snake_case__ , perm=(0, 2, 3, 1) ) UpperCAmelCase__ : Dict = self.embedder(snake_case__ ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Optional[int] , snake_case__ : int , snake_case__ : int = 2 , **snake_case__ : Optional[int] ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : int = tf.keras.layers.ConvaD( filters=snake_case__ , kernel_size=1 , strides=snake_case__ , use_bias=snake_case__ , name="convolution" ) UpperCAmelCase__ : str = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) def UpperCamelCase ( self : str , snake_case__ : tf.Tensor , snake_case__ : bool = False ): '''simple docstring''' return self.normalization(self.convolution(snake_case__ ) , training=snake_case__ ) class UpperCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] , snake_case__ : int , snake_case__ : int , **snake_case__ : Union[str, Any] ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : Any = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case__ , name="pooler" ) UpperCAmelCase__ : Optional[Any] = [ tf.keras.layers.ConvaD(filters=snake_case__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=snake_case__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def UpperCamelCase ( self : Optional[int] , snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.pooler(snake_case__ ) for layer_module in self.attention: UpperCAmelCase__ : Dict = layer_module(snake_case__ ) UpperCAmelCase__ : int = hidden_state * pooled return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] , snake_case__ : RegNetConfig , snake_case__ : int , snake_case__ : int , snake_case__ : int = 1 , **snake_case__ : str ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : Optional[Any] = in_channels != out_channels or stride != 1 UpperCAmelCase__ : Optional[int] = max(1 , out_channels // config.groups_width ) UpperCAmelCase__ : Tuple = ( TFRegNetShortCut(snake_case__ , stride=snake_case__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. UpperCAmelCase__ : int = [ TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( snake_case__ , stride=snake_case__ , groups=snake_case__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=snake_case__ , name="layer.2" ), ] UpperCAmelCase__ : List[Any] = ACTaFN[config.hidden_act] def UpperCamelCase ( self : Tuple , snake_case__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = hidden_state for layer_module in self.layers: UpperCAmelCase__ : List[str] = layer_module(snake_case__ ) UpperCAmelCase__ : Optional[Any] = self.shortcut(snake_case__ ) hidden_state += residual UpperCAmelCase__ : Union[str, Any] = self.activation(snake_case__ ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[Any] , snake_case__ : RegNetConfig , snake_case__ : int , snake_case__ : int , snake_case__ : int = 1 , **snake_case__ : List[Any] ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : int = in_channels != out_channels or stride != 1 UpperCAmelCase__ : Union[str, Any] = max(1 , out_channels // config.groups_width ) UpperCAmelCase__ : Dict = ( TFRegNetShortCut(snake_case__ , stride=snake_case__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) UpperCAmelCase__ : Optional[Any] = [ TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( snake_case__ , stride=snake_case__ , groups=snake_case__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(snake_case__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=snake_case__ , name="layer.3" ), ] UpperCAmelCase__ : Dict = ACTaFN[config.hidden_act] def UpperCamelCase ( self : Optional[int] , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = hidden_state for layer_module in self.layers: UpperCAmelCase__ : Tuple = layer_module(snake_case__ ) UpperCAmelCase__ : Dict = self.shortcut(snake_case__ ) hidden_state += residual UpperCAmelCase__ : List[Any] = self.activation(snake_case__ ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[Any] , snake_case__ : RegNetConfig , snake_case__ : int , snake_case__ : int , snake_case__ : int = 2 , snake_case__ : int = 2 , **snake_case__ : Any ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : Any = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer UpperCAmelCase__ : int = [ # downsampling is done in the first layer with stride of 2 layer(snake_case__ , snake_case__ , snake_case__ , stride=snake_case__ , name="layers.0" ), *[layer(snake_case__ , snake_case__ , snake_case__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def UpperCamelCase ( self : Dict , snake_case__ : Tuple ): '''simple docstring''' for layer_module in self.layers: UpperCAmelCase__ : Tuple = layer_module(snake_case__ ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Dict , snake_case__ : RegNetConfig , **snake_case__ : Any ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( snake_case__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) UpperCAmelCase__ : List[Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(snake_case__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(snake_case__ , snake_case__ , snake_case__ , depth=snake_case__ , name=F"""stages.{i+1}""" ) ) def UpperCamelCase ( self : Dict , snake_case__ : tf.Tensor , snake_case__ : bool = False , snake_case__ : bool = True ): '''simple docstring''' UpperCAmelCase__ : Tuple = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCAmelCase__ : Optional[Any] = hidden_states + (hidden_state,) UpperCAmelCase__ : Dict = stage_module(snake_case__ ) if output_hidden_states: UpperCAmelCase__ : Any = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=snake_case__ , hidden_states=snake_case__ ) @keras_serializable class UpperCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' lowercase_ : Dict = RegNetConfig def __init__( self : int , snake_case__ : str , **snake_case__ : Union[str, Any] ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : List[Any] = config UpperCAmelCase__ : Dict = TFRegNetEmbeddings(snake_case__ , name="embedder" ) UpperCAmelCase__ : int = TFRegNetEncoder(snake_case__ , name="encoder" ) UpperCAmelCase__ : int = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case__ , name="pooler" ) @unpack_inputs def UpperCamelCase ( self : Dict , snake_case__ : tf.Tensor , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , snake_case__ : bool = False , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase__ : Tuple = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ : str = self.embedder(snake_case__ , training=snake_case__ ) UpperCAmelCase__ : Optional[Any] = self.encoder( snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , training=snake_case__ ) UpperCAmelCase__ : Optional[int] = encoder_outputs[0] UpperCAmelCase__ : Optional[Any] = self.pooler(snake_case__ ) # Change to NCHW output format have uniformity in the modules UpperCAmelCase__ : List[Any] = tf.transpose(snake_case__ , perm=(0, 3, 1, 2) ) UpperCAmelCase__ : Any = tf.transpose(snake_case__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: UpperCAmelCase__ : Optional[int] = tuple([tf.transpose(snake_case__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case__ , pooler_output=snake_case__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class UpperCAmelCase_ ( A ): '''simple docstring''' lowercase_ : List[Any] = RegNetConfig lowercase_ : Optional[int] = "regnet" lowercase_ : Optional[Any] = "pixel_values" @property def UpperCamelCase ( self : Any ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} SCREAMING_SNAKE_CASE = R""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ SCREAMING_SNAKE_CASE = R""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , A , ) class UpperCAmelCase_ ( A ): '''simple docstring''' def __init__( self : Union[str, Any] , snake_case__ : RegNetConfig , *snake_case__ : Any , **snake_case__ : List[str] ): '''simple docstring''' super().__init__(snake_case__ , *snake_case__ , **snake_case__ ) UpperCAmelCase__ : Any = TFRegNetMainLayer(snake_case__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self : Optional[int] , snake_case__ : tf.Tensor , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , snake_case__ : int=False , ): '''simple docstring''' UpperCAmelCase__ : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase__ : str = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ : List[str] = self.regnet( pixel_values=snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , training=snake_case__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , A , ) class UpperCAmelCase_ ( A , A ): '''simple docstring''' def __init__( self : List[str] , snake_case__ : RegNetConfig , *snake_case__ : Optional[Any] , **snake_case__ : int ): '''simple docstring''' super().__init__(snake_case__ , *snake_case__ , **snake_case__ ) UpperCAmelCase__ : Optional[Any] = config.num_labels UpperCAmelCase__ : str = TFRegNetMainLayer(snake_case__ , name="regnet" ) # classification head UpperCAmelCase__ : Optional[int] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self : List[str] , snake_case__ : tf.Tensor = None , snake_case__ : tf.Tensor = None , snake_case__ : bool = None , snake_case__ : bool = None , snake_case__ : List[Any]=False , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase__ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ : Dict = self.regnet( snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , training=snake_case__ ) UpperCAmelCase__ : Dict = outputs.pooler_output if return_dict else outputs[1] UpperCAmelCase__ : Union[str, Any] = self.classifier[0](snake_case__ ) UpperCAmelCase__ : str = self.classifier[1](snake_case__ ) UpperCAmelCase__ : Any = None if labels is None else self.hf_compute_loss(labels=snake_case__ , logits=snake_case__ ) if not return_dict: UpperCAmelCase__ : Tuple = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=snake_case__ , logits=snake_case__ , hidden_states=outputs.hidden_states )
199
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __lowercase : int = logging.get_logger(__name__) __lowercase : Optional[int] = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class _A ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ : Dict = '''deberta-v2''' def __init__( self : Union[str, Any] , A_ : Union[str, Any]=128_100 , A_ : List[Any]=1_536 , A_ : List[str]=24 , A_ : Dict=24 , A_ : Union[str, Any]=6_144 , A_ : Optional[Any]="gelu" , A_ : Dict=0.1 , A_ : Optional[int]=0.1 , A_ : List[str]=512 , A_ : Tuple=0 , A_ : List[str]=0.02 , A_ : Tuple=1E-7 , A_ : str=False , A_ : Dict=-1 , A_ : str=0 , A_ : Any=True , A_ : Optional[int]=None , A_ : str=0 , A_ : List[Any]="gelu" , **A_ : List[str] , ) -> List[str]: super().__init__(**A_ ) __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = relative_attention __snake_case = max_relative_positions __snake_case = pad_token_id __snake_case = position_biased_input # Backwards compatibility if type(A_ ) == str: __snake_case = [x.strip() for x in pos_att_type.lower().split('''|''' )] __snake_case = pos_att_type __snake_case = vocab_size __snake_case = layer_norm_eps __snake_case = kwargs.get('''pooler_hidden_size''' , A_ ) __snake_case = pooler_dropout __snake_case = pooler_hidden_act class _A ( _UpperCAmelCase ): """simple docstring""" @property def lowercase ( self : Dict ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __snake_case = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __snake_case = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def lowercase ( self : Tuple ) -> int: return 12 def lowercase ( self : Optional[int] , A_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , A_ : int = -1 , A_ : int = -1 , A_ : int = -1 , A_ : bool = False , A_ : Optional["TensorType"] = None , A_ : int = 3 , A_ : int = 40 , A_ : int = 40 , A_ : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]: __snake_case = super().generate_dummy_inputs(preprocessor=A_ , framework=A_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
706
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Dict = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def lowercase ( self : Optional[int] , A_ : List[str]=0 ) -> int: __snake_case = floats_tensor((1, 3, 128, 128) , rng=random.Random(A_ ) ) __snake_case = np.random.RandomState(A_ ) __snake_case = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.75, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowercase ( self : Optional[Any] ) -> List[Any]: __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=A_ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**A_ ).images __snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def lowercase ( self : Tuple ) -> Optional[int]: __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=A_ ) pipe.set_progress_bar_config(disable=A_ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**A_ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowercase ( self : Optional[int] ) -> str: __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) # warmup pass to apply optimizations __snake_case = pipe(**self.get_dummy_inputs() ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**A_ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowercase ( self : str ) -> List[str]: __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**A_ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowercase ( self : Optional[int] ) -> Union[str, Any]: __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**A_ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowercase ( self : List[str] ) -> Any: __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**A_ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _A ( unittest.TestCase ): """simple docstring""" @property def lowercase ( self : str ) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase ( self : Dict ) -> Union[str, Any]: __snake_case = ort.SessionOptions() __snake_case = False return options def lowercase ( self : Optional[Any] ) -> Union[str, Any]: __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case = init_image.resize((768, 512) ) # using the PNDM scheduler by default __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=A_ , feature_extractor=A_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A_ ) __snake_case = '''A fantasy landscape, trending on artstation''' __snake_case = np.random.RandomState(0 ) __snake_case = pipe( prompt=A_ , image=A_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=A_ , output_type='''np''' , ) __snake_case = output.images __snake_case = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __snake_case = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def lowercase ( self : str ) -> Optional[int]: __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case = init_image.resize((768, 512) ) __snake_case = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=A_ , safety_checker=A_ , feature_extractor=A_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A_ ) __snake_case = '''A fantasy landscape, trending on artstation''' __snake_case = np.random.RandomState(0 ) __snake_case = pipe( prompt=A_ , image=A_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=A_ , output_type='''np''' , ) __snake_case = output.images __snake_case = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __snake_case = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
93
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class UpperCAmelCase ( snake_case_ ): def __init__( self :Any , lowercase_ :Tuple = None , lowercase_ :int = None , lowercase_ :Union[str, Any] = None , lowercase_ :int = None , lowercase_ :Union[str, Any] = False , lowercase_ :Tuple = False , lowercase_ :Optional[Any] = None , **lowercase_ :Any , )-> Optional[Any]: A__ = path_or_paths A__ = split if split or isinstance(lowercase_ , lowercase_ ) else "train" A__ = features A__ = cache_dir A__ = keep_in_memory A__ = streaming A__ = num_proc A__ = kwargs @abstractmethod def UpperCAmelCase_ ( self :int )-> List[Any]: pass class UpperCAmelCase ( snake_case_ ): def __init__( self :int , lowercase_ :List[Any] = None , lowercase_ :List[Any] = None , lowercase_ :Tuple = False , lowercase_ :Optional[int] = False , lowercase_ :List[Any] = None , **lowercase_ :str , )-> Any: A__ = features A__ = cache_dir A__ = keep_in_memory A__ = streaming A__ = num_proc A__ = kwargs @abstractmethod def UpperCAmelCase_ ( self :Tuple )-> List[str]: pass
440
"""simple docstring""" from __future__ import annotations import math def _lowerCamelCase( a , a ): __a = u for i in range(1 , a ): __a = temp * (u - i) return temp def _lowerCamelCase( ): __a = int(input("enter the numbers of values: " ) ) __a = [] for _ in range(a ): y.append([] ) for i in range(a ): for j in range(a ): y[i].append(a ) __a = 0 print("enter the values of parameters in a list: " ) __a = list(map(a , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(a ): __a = float(input() ) __a = int(input("enter the value to interpolate: " ) ) __a = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , a ): for j in range(n - i ): __a = y[j + 1][i - 1] - y[j][i - 1] __a = y[0][0] for i in range(1 , a ): summ += (ucal(a , a ) * y[0][i]) / math.factorial(a ) print(F"the value at {value} is {summ}" ) if __name__ == "__main__": main()
528
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : Any = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __snake_case : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
365
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case : Tuple = {"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = ["""GLPNFeatureExtractor"""] __snake_case : Optional[Any] = ["""GLPNImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple = [ """GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""", """GLPNForDepthEstimation""", """GLPNLayer""", """GLPNModel""", """GLPNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __snake_case : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
365
1
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self , _UpperCamelCase , _UpperCamelCase=7 , _UpperCamelCase=3 , _UpperCamelCase=18 , _UpperCamelCase=30 , _UpperCamelCase=400 , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=None , )-> Dict: _A = size if size is not None else {'height': 20, 'width': 20} _A = parent _A = batch_size _A = num_channels _A = image_size _A = min_resolution _A = max_resolution _A = size _A = do_normalize _A = do_convert_rgb _A = [512, 1024, 2048, 4096] _A = patch_size if patch_size is not None else {'height': 16, 'width': 16} def UpperCamelCase ( self )-> Dict: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def UpperCamelCase ( self )-> Tuple: _A = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' _A = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class lowerCAmelCase_ ( UpperCAmelCase , unittest.TestCase ): __UpperCAmelCase =PixaStructImageProcessor if is_vision_available() else None def UpperCamelCase ( self )-> Optional[int]: _A = PixaStructImageProcessingTester(self ) @property def UpperCamelCase ( self )-> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self )-> List[Any]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_convert_rgb' ) ) def UpperCamelCase ( self )-> Any: _A = self.image_processor_tester.prepare_dummy_image() _A = self.image_processing_class(**self.image_processor_dict ) _A = 2048 _A = image_processor(_UpperCamelCase , return_tensors='pt' , max_patches=_UpperCamelCase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def UpperCamelCase ( self )-> int: # Initialize image_processor _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input _A = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _A = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _A = image_processor( _UpperCamelCase , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCamelCase ( self )-> List[str]: # Initialize image_processor _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input _A = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 _A = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_UpperCamelCase ): _A = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches _A = 'Hello' _A = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCamelCase , header_text=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _A = image_processor( _UpperCamelCase , return_tensors='pt' , max_patches=_UpperCamelCase , header_text=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCamelCase ( self )-> Optional[int]: # Initialize image_processor _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray ) _A = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _A = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _A = image_processor( _UpperCamelCase , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCamelCase ( self )-> Union[str, Any]: # Initialize image_processor _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor ) # Test not batched input _A = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _A = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _A = image_processor( _UpperCamelCase , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class lowerCAmelCase_ ( UpperCAmelCase , unittest.TestCase ): __UpperCAmelCase =PixaStructImageProcessor if is_vision_available() else None def UpperCamelCase ( self )-> str: _A = PixaStructImageProcessingTester(self , num_channels=4 ) _A = 3 @property def UpperCamelCase ( self )-> str: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self )-> Any: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_convert_rgb' ) ) def UpperCamelCase ( self )-> Optional[Any]: # Initialize image_processor _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input _A = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _A = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _A = image_processor( _UpperCamelCase , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
292
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase ( self )-> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self )-> Union[str, Any]: _A = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) _A = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) sd_pipe.set_scheduler('sample_euler' ) _A = 'A painting of a squirrel eating a burger' _A = torch.manual_seed(0 ) _A = sd_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) _A = output.images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _A = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self )-> Optional[Any]: _A = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) _A = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) sd_pipe.set_scheduler('sample_euler' ) _A = 'A painting of a squirrel eating a burger' _A = torch.manual_seed(0 ) _A = sd_pipe([prompt] , generator=_UpperCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) _A = output.images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _A = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def UpperCamelCase ( self )-> Optional[int]: _A = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) _A = sd_pipe.to(_UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCamelCase ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) _A = 'A painting of a squirrel eating a burger' _A = torch.manual_seed(0 ) _A = sd_pipe( [prompt] , generator=_UpperCamelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=_UpperCamelCase , ) _A = output.images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _A = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
292
1
'''simple docstring''' def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : str = [1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = 0, 0, 0 _UpperCAmelCase : Any = ugly_nums[ia] * 2 _UpperCAmelCase : List[Any] = ugly_nums[ia] * 3 _UpperCAmelCase : List[str] = ugly_nums[ia] * 5 for _ in range(1, a_ ): _UpperCAmelCase : str = min(a_, a_, a_ ) ugly_nums.append(a_ ) if next_num == next_a: ia += 1 _UpperCAmelCase : str = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 _UpperCAmelCase : int = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 _UpperCAmelCase : Any = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'{ugly_numbers(200) = }')
257
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar __a = TypeVar('T') class A__ ( Generic[T] ): """simple docstring""" UpperCamelCase_ : deque[T] # Cache store of keys UpperCamelCase_ : set[T] # References of the keys in cache UpperCamelCase_ : int = 10 # Maximum capacity of cache def __init__( self : Dict , lowerCAmelCase__ : int ) -> None: """simple docstring""" _UpperCAmelCase : List[str] = deque() _UpperCAmelCase : Any = set() if not n: _UpperCAmelCase : Dict = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: _UpperCAmelCase : List[Any] = n def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : T ) -> None: """simple docstring""" if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _UpperCAmelCase : int = self.dq_store.pop() self.key_reference.remove(lowerCAmelCase__ ) else: self.dq_store.remove(lowerCAmelCase__ ) self.dq_store.appendleft(lowerCAmelCase__ ) self.key_reference.add(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> None: """simple docstring""" for k in self.dq_store: print(lowerCAmelCase__ ) def __repr__( self : Tuple ) -> str: """simple docstring""" return F"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() __a = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
257
1
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class snake_case ( UpperCamelCase_ ): lowercase_ = 42 lowercase_ = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
85
"""simple docstring""" import numpy as np def A ( snake_case__ ): '''simple docstring''' return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
196
0
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Dict ): with open(snake_case_ ) as metadata_file: __magic_name__ = json.load(snake_case_ ) __magic_name__ = LukeConfig(use_entity_aware_attention=snake_case_ , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path __magic_name__ = torch.load(snake_case_ , map_location='''cpu''' )["module"] # Load the entity vocab file __magic_name__ = load_original_entity_vocab(snake_case_ ) # add an entry for [MASK2] __magic_name__ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __magic_name__ = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks __magic_name__ = AddedToken('''<ent>''' , lstrip=snake_case_ , rstrip=snake_case_ ) __magic_name__ = AddedToken('''<ent2>''' , lstrip=snake_case_ , rstrip=snake_case_ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(snake_case_ ) with open(os.path.join(snake_case_ , '''tokenizer_config.json''' ) , '''r''' ) as f: __magic_name__ = json.load(snake_case_ ) __magic_name__ = "MLukeTokenizer" with open(os.path.join(snake_case_ , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(snake_case_ , snake_case_ ) with open(os.path.join(snake_case_ , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(snake_case_ , snake_case_ ) __magic_name__ = MLukeTokenizer.from_pretrained(snake_case_ ) # Initialize the embeddings of the special tokens __magic_name__ = tokenizer.convert_tokens_to_ids(['''@'''] )[0] __magic_name__ = tokenizer.convert_tokens_to_ids(['''#'''] )[0] __magic_name__ = state_dict["embeddings.word_embeddings.weight"] __magic_name__ = word_emb[ent_init_index].unsqueeze(0 ) __magic_name__ = word_emb[enta_init_index].unsqueeze(0 ) __magic_name__ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __magic_name__ = state_dict[bias_name] __magic_name__ = decoder_bias[ent_init_index].unsqueeze(0 ) __magic_name__ = decoder_bias[enta_init_index].unsqueeze(0 ) __magic_name__ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __magic_name__ = f'encoder.layer.{layer_index}.attention.self.' __magic_name__ = state_dict[prefix + matrix_name] __magic_name__ = state_dict[prefix + matrix_name] __magic_name__ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __magic_name__ = state_dict["entity_embeddings.entity_embeddings.weight"] __magic_name__ = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) __magic_name__ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __magic_name__ = state_dict["entity_predictions.bias"] __magic_name__ = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) __magic_name__ = torch.cat([entity_prediction_bias, entity_mask_bias] ) __magic_name__ = LukeForMaskedLM(config=snake_case_ ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) __magic_name__ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): __magic_name__ = state_dict[key] else: __magic_name__ = state_dict[key] __magic_name__ = model.load_state_dict(snake_case_ , strict=snake_case_ ) if set(snake_case_ ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(snake_case_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __magic_name__ = MLukeTokenizer.from_pretrained(snake_case_ , task='''entity_classification''' ) __magic_name__ = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." __magic_name__ = (0, 9) __magic_name__ = tokenizer(snake_case_ , entity_spans=[span] , return_tensors='''pt''' ) __magic_name__ = model(**snake_case_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __magic_name__ = torch.Size((1, 33, 768) ) __magic_name__ = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case_ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __magic_name__ = torch.Size((1, 1, 768) ) __magic_name__ = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , snake_case_ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction __magic_name__ = MLukeTokenizer.from_pretrained(snake_case_ ) __magic_name__ = "Tokyo is the capital of <mask>." __magic_name__ = (24, 30) __magic_name__ = tokenizer(snake_case_ , entity_spans=[span] , return_tensors='''pt''' ) __magic_name__ = model(**snake_case_ ) __magic_name__ = encoding["input_ids"][0].tolist() __magic_name__ = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) __magic_name__ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(snake_case_ ) __magic_name__ = outputs.entity_logits[0][0].argmax().item() __magic_name__ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(snake_case_ ) ) model.save_pretrained(snake_case_ ) def _SCREAMING_SNAKE_CASE ( snake_case_ : List[str] ): __magic_name__ = ["[MASK]", "[PAD]", "[UNK]"] __magic_name__ = [json.loads(snake_case_ ) for line in open(snake_case_ )] __magic_name__ = {} for entry in data: __magic_name__ = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __magic_name__ = entity_id break __magic_name__ = f'{language}:{entity_name}' __magic_name__ = entity_id return new_mapping if __name__ == "__main__": a_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) a_ : Dict = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
721
def _SCREAMING_SNAKE_CASE ( snake_case_ : list[int] , snake_case_ : list[int] ): __magic_name__ = len(snake_case_ ) print('''The following activities are selected:''' ) # The first activity is always selected __magic_name__ = 0 print(snake_case_ , end=''',''' ) # Consider rest of the activities for j in range(snake_case_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case_ , end=''',''' ) __magic_name__ = j if __name__ == "__main__": import doctest doctest.testmod() a_ : Dict = [1, 3, 0, 5, 8, 5] a_ : Union[str, Any] = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
678
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class __lowerCamelCase (_a ): _lowercase = """data2vec-text""" def __init__( self: Any,A_: Union[str, Any]=3_0522,A_: Optional[Any]=768,A_: Optional[int]=12,A_: int=12,A_: int=3072,A_: Tuple="gelu",A_: List[str]=0.1,A_: str=0.1,A_: str=512,A_: Union[str, Any]=2,A_: Union[str, Any]=0.0_2,A_: Optional[int]=1E-12,A_: Dict=1,A_: str=0,A_: Any=2,A_: Optional[int]="absolute",A_: Tuple=True,A_: int=None,**A_: List[Any],): '''simple docstring''' super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class __lowerCamelCase (_a ): @property def snake_case_ ( self: Dict ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
1
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __snake_case = logging.getLogger(__name__) @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowercase = field( default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) _lowercase = field( default=_a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowercase = field(default=_a , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _lowercase = field( default=_a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __lowerCamelCase : _lowercase = field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) _lowercase = field( default=_a , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , ) _lowercase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowercase = field( default=_a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _A ( ) -> str: """simple docstring""" __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) __UpperCamelCase = import_module('tasks' ) try: __UpperCamelCase = getattr(_lowercase , model_args.task_type ) __UpperCamelCase = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowercase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task __UpperCamelCase = token_classification_task.get_labels(data_args.labels ) __UpperCamelCase = dict(enumerate(_lowercase ) ) __UpperCamelCase = len(_lowercase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowercase , idalabel=_lowercase , labelaid={label: i for i, label in enumerate(_lowercase )} , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) __UpperCamelCase = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( TokenClassificationDataset( token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( TokenClassificationDataset( token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(_lowercase , _lowercase ) -> Tuple[List[int], List[int]]: __UpperCamelCase = np.argmax(_lowercase , axis=2 ) __UpperCamelCase, __UpperCamelCase = preds.shape __UpperCamelCase = [[] for _ in range(_lowercase )] __UpperCamelCase = [[] for _ in range(_lowercase )] for i in range(_lowercase ): for j in range(_lowercase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(_lowercase ) -> Dict: __UpperCamelCase, __UpperCamelCase = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(_lowercase , _lowercase ), "precision": precision_score(_lowercase , _lowercase ), "recall": recall_score(_lowercase , _lowercase ), "f1": fa_score(_lowercase , _lowercase ), } # Data collator __UpperCamelCase = DataCollatorWithPadding(_lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=_lowercase , args=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , compute_metrics=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(_lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowercase ) # Predict if training_args.do_predict: __UpperCamelCase = TokenClassificationDataset( token_classification_task=_lowercase , data_dir=data_args.data_dir , tokenizer=_lowercase , labels=_lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = trainer.predict(_lowercase ) __UpperCamelCase, __UpperCamelCase = align_predictions(_lowercase , _lowercase ) __UpperCamelCase = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(_lowercase , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , _lowercase , _lowercase ) writer.write('%s = %s\n' % (key, value) ) # Save predictions __UpperCamelCase = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(_lowercase , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(_lowercase , _lowercase , _lowercase ) return results def _A ( _lowercase ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
1
1
def __UpperCamelCase ( _A ): if not numbers: return 0 if not isinstance(_A , (list, tuple) ) or not all( isinstance(_A , _A ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) lowerCAmelCase_ = lowerCAmelCase_ = lowerCAmelCase_ = numbers[0] for i in range(1 , len(_A ) ): # update the maximum and minimum subarray products lowerCAmelCase_ = numbers[i] if number < 0: lowerCAmelCase_ , lowerCAmelCase_ = min_till_now, max_till_now lowerCAmelCase_ = max(_A , max_till_now * number ) lowerCAmelCase_ = min(_A , min_till_now * number ) # update the maximum product found till now lowerCAmelCase_ = max(_A , _A ) return max_prod
714
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __UpperCAmelCase , unittest.TestCase ): __snake_case = KandinskyVaaInpaintPipeline __snake_case = ['image_embeds', 'negative_image_embeds', 'image', 'mask_image'] __snake_case = [ 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] __snake_case = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __snake_case = False @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return 32 @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return 32 @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.time_input_dim @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return 100 @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase_ = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowerCAmelCase_ = UNetaDConditionModel(**UpperCamelCase__ ) return model @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase_ = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.dummy_unet lowerCAmelCase_ = self.dummy_movq lowerCAmelCase_ = DDIMScheduler( num_train_timesteps=1000, beta_schedule='''linear''', beta_start=0.00_085, beta_end=0.012, clip_sample=UpperCamelCase__, set_alpha_to_one=UpperCamelCase__, steps_offset=1, prediction_type='''epsilon''', thresholding=UpperCamelCase__, ) lowerCAmelCase_ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__=0 ): """simple docstring""" lowerCAmelCase_ = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowerCAmelCase_ = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( UpperCamelCase__ ) # create init_image lowerCAmelCase_ = floats_tensor((1, 3, 64, 64), rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) lowerCAmelCase_ = image.cpu().permute(0, 2, 3, 1 )[0] lowerCAmelCase_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert('''RGB''' ).resize((256, 256) ) # create mask lowerCAmelCase_ = np.ones((64, 64), dtype=np.floataa ) lowerCAmelCase_ = 0 if str(UpperCamelCase__ ).startswith('''mps''' ): lowerCAmelCase_ = torch.manual_seed(UpperCamelCase__ ) else: lowerCAmelCase_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) lowerCAmelCase_ = { '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = '''cpu''' lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = self.pipeline_class(**UpperCamelCase__ ) lowerCAmelCase_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) lowerCAmelCase_ = output.images lowerCAmelCase_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ), return_dict=UpperCamelCase__, )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ = np.array( [0.50_775_903, 0.49_527_195, 0.48_824_543, 0.50_192_237, 0.48_644_906, 0.49_373_814, 0.4_780_598, 0.47_234_827, 0.48_327_848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy''' ) lowerCAmelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowerCAmelCase_ = np.ones((768, 768), dtype=np.floataa ) lowerCAmelCase_ = 0 lowerCAmelCase_ = '''a hat''' lowerCAmelCase_ = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''', torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase__ ) lowerCAmelCase_ = KandinskyVaaInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder-inpaint''', torch_dtype=torch.floataa ) lowerCAmelCase_ = pipeline.to(UpperCamelCase__ ) pipeline.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowerCAmelCase_ , lowerCAmelCase_ = pipe_prior( UpperCamelCase__, generator=UpperCamelCase__, num_inference_steps=5, negative_prompt='''''', ).to_tuple() lowerCAmelCase_ = pipeline( image=UpperCamelCase__, mask_image=UpperCamelCase__, image_embeds=UpperCamelCase__, negative_image_embeds=UpperCamelCase__, generator=UpperCamelCase__, num_inference_steps=100, height=768, width=768, output_type='''np''', ) lowerCAmelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase__, UpperCamelCase__ )
325
0
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor __SCREAMING_SNAKE_CASE : Tuple =logging.get_logger(__name__) class A_ ( _UpperCAmelCase ): def __init__( self : Union[str, Any] , *snake_case__ : List[Any] , **snake_case__ : str ): warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
428
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase ( _UpperCAmelCase , unittest.TestCase ): lowercase : str = KandinskyVaaControlnetPipeline lowercase : Any = ['image_embeds', 'negative_image_embeds', 'hint'] lowercase : List[str] = ['image_embeds', 'negative_image_embeds', 'hint'] lowercase : Dict = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowercase : Dict = False @property def a_ ( self ): return 32 @property def a_ ( self ): return 32 @property def a_ ( self ): return self.time_input_dim @property def a_ ( self ): return self.time_input_dim * 4 @property def a_ ( self ): return 100 @property def a_ ( self ): torch.manual_seed(0 ) UpperCamelCase : Tuple = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } UpperCamelCase : List[str] = UNetaDConditionModel(**SCREAMING_SNAKE_CASE_ ) return model @property def a_ ( self ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a_ ( self ): torch.manual_seed(0 ) UpperCamelCase : str = VQModel(**self.dummy_movq_kwargs ) return model def a_ ( self ): UpperCamelCase : Optional[Any] = self.dummy_unet UpperCamelCase : int = self.dummy_movq UpperCamelCase : List[str] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Optional[int] = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ): UpperCamelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( SCREAMING_SNAKE_CASE_ ) # create hint UpperCamelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ): UpperCamelCase : int = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def a_ ( self ): UpperCamelCase : Dict = """cpu""" UpperCamelCase : Union[str, Any] = self.get_dummy_components() UpperCamelCase : Dict = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Union[str, Any] = output.images UpperCamelCase : Union[str, Any] = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) , return_dict=SCREAMING_SNAKE_CASE_ , )[0] UpperCamelCase : int = image[0, -3:, -3:, -1] UpperCamelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase : List[Any] = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def a_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self ): UpperCamelCase : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) UpperCamelCase : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) UpperCamelCase : Any = torch.from_numpy(np.array(SCREAMING_SNAKE_CASE_ ) ).float() / 255.0 UpperCamelCase : int = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCamelCase : Any = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) UpperCamelCase : str = pipeline.to(SCREAMING_SNAKE_CASE_ ) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = """A robot, 4k photo""" UpperCamelCase : Optional[Any] = torch.Generator(device="""cuda""" ).manual_seed(0 ) UpperCamelCase , UpperCamelCase : List[Any] = pipe_prior( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() UpperCamelCase : List[Any] = torch.Generator(device="""cuda""" ).manual_seed(0 ) UpperCamelCase : Dict = pipeline( image_embeds=SCREAMING_SNAKE_CASE_ , negative_image_embeds=SCREAMING_SNAKE_CASE_ , hint=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=100 , output_type="""np""" , ) UpperCamelCase : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
499
0
from random import randint, random def lowercase ( _a ,_a ,_a ,_a = False ,_a = False ,_a = 5 ,) -> list: UpperCAmelCase_: List[str] = [[-1] * number_of_cells] # Create a highway without any car UpperCAmelCase_: Tuple = 0 UpperCAmelCase_: List[str] = max(_a ,0 ) while i < number_of_cells: UpperCAmelCase_: List[Any] = ( randint(0 ,_a ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 ,max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowercase ( _a ,_a ) -> int: UpperCAmelCase_: List[Any] = 0 UpperCAmelCase_: Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(_a ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(_a ,-1 ) def lowercase ( _a ,_a ,_a ) -> list: UpperCAmelCase_: Dict = len(_a ) # Beforce calculations, the highway is empty UpperCAmelCase_: Dict = [-1] * number_of_cells for car_index in range(_a ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed UpperCAmelCase_: Optional[int] = min(highway_now[car_index] + 1 ,_a ) # Number of empty cell before the next car UpperCAmelCase_: int = get_distance(_a ,_a ) - 1 # We can't have the car causing an accident UpperCAmelCase_: Optional[Any] = min(next_highway[car_index] ,_a ) if random() < probability: # Randomly, a driver will slow down UpperCAmelCase_: Dict = max(next_highway[car_index] - 1 ,0 ) return next_highway def lowercase ( _a ,_a ,_a ,_a ) -> list: UpperCAmelCase_: List[str] = len(highway[0] ) for i in range(_a ): UpperCAmelCase_: str = update(highway[i] ,_a ,_a ) UpperCAmelCase_: Dict = [-1] * number_of_cells for car_index in range(_a ): UpperCAmelCase_: Optional[int] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) UpperCAmelCase_: Any = (car_index + speed) % number_of_cells # Commit the change of position UpperCAmelCase_: Optional[int] = speed highway.append(_a ) return highway if __name__ == "__main__": import doctest doctest.testmod()
306
import copy import random from transformers import CLIPTokenizer class UpperCAmelCase__ ( snake_case__ ): def __init__( self , *A__ , **A__ ): """simple docstring""" super().__init__(*A__ , **A__ ) UpperCAmelCase_: Tuple = {} def snake_case_ ( self , A__ , *A__ , **A__ ): """simple docstring""" UpperCAmelCase_: List[str] = super().add_tokens(A__ , *A__ , **A__ ) if num_added_tokens == 0: raise ValueError( F"The tokenizer already contains the token {placeholder_token}. Please pass a different" " `placeholder_token` that is not already in the tokenizer." ) def snake_case_ ( self , A__ , *A__ , A__=1 , **A__ ): """simple docstring""" UpperCAmelCase_: Dict = [] if num_vec_per_token == 1: self.try_adding_tokens(A__ , *A__ , **A__ ) output.append(A__ ) else: UpperCAmelCase_: Any = [] for i in range(A__ ): UpperCAmelCase_: Dict = placeholder_token + F"_{i}" self.try_adding_tokens(A__ , *A__ , **A__ ) output.append(A__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"The tokenizer already has placeholder token {token} that can get confused with" F" {placeholder_token}keep placeholder tokens independent" ) UpperCAmelCase_: Any = output def snake_case_ ( self , A__ , A__=False , A__=1.0 ): """simple docstring""" if isinstance(A__ , A__ ): UpperCAmelCase_: int = [] for i in range(len(A__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=A__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: UpperCAmelCase_: Union[str, Any] = self.token_map[placeholder_token] UpperCAmelCase_: Union[str, Any] = tokens[: 1 + int(len(A__ ) * prop_tokens_to_load )] if vector_shuffle: UpperCAmelCase_: Tuple = copy.copy(A__ ) random.shuffle(A__ ) UpperCAmelCase_: str = text.replace(A__ , " ".join(A__ ) ) return text def __call__( self , A__ , *A__ , A__=False , A__=1.0 , **A__ ): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( A__ , vector_shuffle=A__ , prop_tokens_to_load=A__ ) , *A__ , **A__ , ) def snake_case_ ( self , A__ , *A__ , A__=False , A__=1.0 , **A__ ): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( A__ , vector_shuffle=A__ , prop_tokens_to_load=A__ ) , *A__ , **A__ , )
306
1
_lowerCamelCase : int = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) _lowerCamelCase : Union[str, Any] = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 12, """Pm""": 15, """Em""": 18, """Zm""": 21, """Ym""": 24, } def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> float: """simple docstring""" A__ = from_type.lower().strip('''s''' ) A__ = to_type.lower().strip('''s''' ) A__ = UNIT_SYMBOL.get(lowercase_ , lowercase_ ) A__ = UNIT_SYMBOL.get(lowercase_ , lowercase_ ) if from_sanitized not in METRIC_CONVERSION: A__ = ( f"""Invalid 'from_type' value: {from_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(lowercase_ )}""" ) raise ValueError(lowercase_ ) if to_sanitized not in METRIC_CONVERSION: A__ = ( f"""Invalid 'to_type' value: {to_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(lowercase_ )}""" ) raise ValueError(lowercase_ ) A__ = METRIC_CONVERSION[from_sanitized] A__ = METRIC_CONVERSION[to_sanitized] A__ = 1 if from_exponent > to_exponent: A__ = from_exponent - to_exponent else: A__ = -(to_exponent - from_exponent) return value * pow(10 , lowercase_ ) if __name__ == "__main__": from doctest import testmod testmod()
87
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : int ,__lowerCamelCase : List[str] ,__lowerCamelCase : Optional[int]=7 ,__lowerCamelCase : Optional[int]=3 ,__lowerCamelCase : Any=18 ,__lowerCamelCase : List[Any]=30 ,__lowerCamelCase : Optional[Any]=4_00 ,__lowerCamelCase : Dict=True ,__lowerCamelCase : Optional[int]=None ,__lowerCamelCase : int=True ,__lowerCamelCase : List[str]=False ,__lowerCamelCase : Dict=True ,__lowerCamelCase : Dict=True ,__lowerCamelCase : Union[str, Any]=[0.5, 0.5, 0.5] ,__lowerCamelCase : Optional[int]=[0.5, 0.5, 0.5] ,): '''simple docstring''' a = parent a = batch_size a = num_channels a = image_size a = min_resolution a = max_resolution a = do_resize a = size if size is not None else {'''height''': 18, '''width''': 20} a = do_thumbnail a = do_align_axis a = do_pad a = do_normalize a = image_mean a = image_std def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase_ ( a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = DonutImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = DonutImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''size''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_thumbnail''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_align_long_axis''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_pad''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''image_std''' ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''height''': 18, '''width''': 20} ) a = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order a = self.image_processing_class.from_dict(self.image_processor_dict ,size=(42, 84) ) self.assertEqual(image_processor.size ,{'''height''': 84, '''width''': 42} ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' pass @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,Image.Image ) # Test not batched input a = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched a = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ,numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,np.ndarray ) # Test not batched input a = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched a = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ,torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,torch.Tensor ) # Test not batched input a = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched a = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,)
387
0
def lowerCAmelCase__(__snake_case ) -> List[Any]: '''simple docstring''' stooge(__snake_case ,0 ,len(__snake_case ) - 1 ) return arr def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ) -> Optional[Any]: '''simple docstring''' if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowerCamelCase__ , lowerCamelCase__ = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowerCamelCase__ = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(__snake_case ,__snake_case ,(h - t) ) # Recursively sort last 2/3 elements stooge(__snake_case ,i + t ,(__snake_case) ) # Recursively sort first 2/3 elements stooge(__snake_case ,__snake_case ,(h - t) ) if __name__ == "__main__": _a : List[Any] = input("Enter numbers separated by a comma:\n").strip() _a : List[str] = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
716
_a = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _a = [{"type": "code", "content": INSTALL_CONTENT}] _a = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
29
0
"""simple docstring""" import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _UpperCamelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.14.0', 'To fix: pip install -r examples/pytorch/audio-classification/requirements.txt') def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int = 16000 ): '''simple docstring''' __lowerCamelCase : Tuple =int(round(sample_rate * max_length ) ) if len(SCREAMING_SNAKE_CASE ) <= sample_length: return wav __lowerCamelCase : Tuple =randint(0 , len(SCREAMING_SNAKE_CASE ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" __snake_case : Optional[str] = field(default=snake_case__ , metadata={"""help""": """Name of a dataset from the datasets package"""} ) __snake_case : Optional[str] = field( default=snake_case__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __snake_case : Optional[str] = field( default=snake_case__ , metadata={"""help""": """A file containing the training audio paths and labels."""} ) __snake_case : Optional[str] = field( default=snake_case__ , metadata={"""help""": """A file containing the validation audio paths and labels."""} ) __snake_case : str = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) __snake_case : str = field( default="""validation""" , metadata={ """help""": ( """The name of the training data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) __snake_case : str = field( default="""audio""" , metadata={"""help""": """The name of the dataset column containing the audio data. Defaults to 'audio'"""} , ) __snake_case : str = field( default="""label""" , metadata={"""help""": """The name of the dataset column containing the labels. Defaults to 'label'"""} ) __snake_case : Optional[int] = field( default=snake_case__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __snake_case : Optional[int] = field( default=snake_case__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) __snake_case : float = field( default=20 , metadata={"""help""": """Audio clips will be randomly cut to this length during training if the value is set."""} , ) @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" __snake_case : str = field( default="""facebook/wav2vec2-base""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) __snake_case : Optional[str] = field( default=snake_case__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __snake_case : Optional[str] = field( default=snake_case__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from the Hub"""} ) __snake_case : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __snake_case : Optional[str] = field( default=snake_case__ , metadata={"""help""": """Name or path of preprocessor config."""} ) __snake_case : bool = field( default=snake_case__ , metadata={"""help""": """Whether to freeze the feature encoder layers of the model."""} ) __snake_case : bool = field( default=snake_case__ , metadata={"""help""": """Whether to generate an attention mask in the feature extractor."""} ) __snake_case : bool = field( default=snake_case__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) __snake_case : Optional[bool] = field( default=snake_case__ , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) __snake_case : bool = field( default=snake_case__ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def __lowercase ( self :Union[str, Any] ): if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , __lowercase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''' ) def lowerCAmelCase_ ( ): '''simple docstring''' __lowerCamelCase : int =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[str] =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowerCamelCase : List[str] =training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. __lowerCamelCase : Dict =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCamelCase : List[str] =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to train from scratch.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset and prepare it for the audio classification task. __lowerCamelCase : str =DatasetDict() __lowerCamelCase : Union[str, Any] =load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCamelCase : int =load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' F'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' '''Make sure to set `--label_column_name` to the correct text column - one of ''' F'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy __lowerCamelCase : Optional[int] =AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. __lowerCamelCase : str =raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) __lowerCamelCase : Optional[int] =feature_extractor.model_input_names[0] def train_transforms(SCREAMING_SNAKE_CASE : str ): __lowerCamelCase : List[Any] =[] for audio in batch[data_args.audio_column_name]: __lowerCamelCase : Any =random_subsample( audio['''array'''] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(SCREAMING_SNAKE_CASE ) __lowerCamelCase : int =feature_extractor(SCREAMING_SNAKE_CASE , sampling_rate=feature_extractor.sampling_rate ) __lowerCamelCase : str ={model_input_name: inputs.get(SCREAMING_SNAKE_CASE )} __lowerCamelCase : List[str] =list(batch[data_args.label_column_name] ) return output_batch def val_transforms(SCREAMING_SNAKE_CASE : Optional[int] ): __lowerCamelCase : Optional[int] =[audio['''array'''] for audio in batch[data_args.audio_column_name]] __lowerCamelCase : str =feature_extractor(SCREAMING_SNAKE_CASE , sampling_rate=feature_extractor.sampling_rate ) __lowerCamelCase : Tuple ={model_input_name: inputs.get(SCREAMING_SNAKE_CASE )} __lowerCamelCase : str =list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __lowerCamelCase : Union[str, Any] =raw_datasets['''train'''].features[data_args.label_column_name].names __lowerCamelCase , __lowerCamelCase : int ={}, {} for i, label in enumerate(SCREAMING_SNAKE_CASE ): __lowerCamelCase : List[str] =str(SCREAMING_SNAKE_CASE ) __lowerCamelCase : List[Any] =label # Load the accuracy metric from the datasets package __lowerCamelCase : Any =evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(SCREAMING_SNAKE_CASE : Union[str, Any] ): __lowerCamelCase : Tuple =np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=SCREAMING_SNAKE_CASE , references=eval_pred.label_ids ) __lowerCamelCase : List[Any] =AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(SCREAMING_SNAKE_CASE ) , labelaid=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , finetuning_task='''audio-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCamelCase : Union[str, Any] =AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: __lowerCamelCase : List[Any] =( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(SCREAMING_SNAKE_CASE , output_all_columns=SCREAMING_SNAKE_CASE ) if training_args.do_eval: if data_args.max_eval_samples is not None: __lowerCamelCase : int =( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(SCREAMING_SNAKE_CASE , output_all_columns=SCREAMING_SNAKE_CASE ) # Initialize our trainer __lowerCamelCase : Tuple =Trainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , train_dataset=raw_datasets['''train'''] if training_args.do_train else None , eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None , compute_metrics=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: __lowerCamelCase : Any =None if training_args.resume_from_checkpoint is not None: __lowerCamelCase : Tuple =training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCamelCase : Any =last_checkpoint __lowerCamelCase : int =trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __lowerCamelCase : Union[str, Any] =trainer.evaluate() trainer.log_metrics('''eval''' , SCREAMING_SNAKE_CASE ) trainer.save_metrics('''eval''' , SCREAMING_SNAKE_CASE ) # Write model card and (optionally) push to hub __lowerCamelCase : List[str] ={ '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
179
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _UpperCamelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" __snake_case : Optional[int] = ["""pixel_values"""] def __init__( self :Optional[Any] , __lowercase :bool = True , __lowercase :Optional[Dict[str, int]] = None , __lowercase :PILImageResampling = PILImageResampling.BILINEAR , __lowercase :bool = True , __lowercase :Dict[str, int] = None , __lowercase :bool = True , __lowercase :Union[int, float] = 1 / 255 , __lowercase :bool = True , __lowercase :Optional[Union[float, List[float]]] = None , __lowercase :Optional[Union[float, List[float]]] = None , **__lowercase :Tuple , ): super().__init__(**__lowercase ) __lowerCamelCase : int =size if size is not None else {'''shortest_edge''': 256} __lowerCamelCase : int =get_size_dict(__lowercase , default_to_square=__lowercase ) __lowerCamelCase : Optional[Any] =crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __lowerCamelCase : List[str] =get_size_dict(__lowercase , param_name='''crop_size''' ) __lowerCamelCase : List[str] =do_resize __lowerCamelCase : Optional[Any] =size __lowerCamelCase : Tuple =resample __lowerCamelCase : int =do_center_crop __lowerCamelCase : Optional[Any] =crop_size __lowerCamelCase : int =do_rescale __lowerCamelCase : str =rescale_factor __lowerCamelCase : int =do_normalize __lowerCamelCase : Union[str, Any] =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCamelCase : Tuple =image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowercase ( self :Union[str, Any] , __lowercase :np.ndarray , __lowercase :Dict[str, int] , __lowercase :PILImageResampling = PILImageResampling.BICUBIC , __lowercase :Optional[Union[str, ChannelDimension]] = None , **__lowercase :str , ): __lowerCamelCase : Tuple =get_size_dict(__lowercase , default_to_square=__lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __lowerCamelCase : List[Any] =get_resize_output_image_size(__lowercase , size=size['''shortest_edge'''] , default_to_square=__lowercase ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def __lowercase ( self :Union[str, Any] , __lowercase :np.ndarray , __lowercase :Dict[str, int] , __lowercase :Optional[Union[str, ChannelDimension]] = None , **__lowercase :int , ): __lowerCamelCase : List[Any] =get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(__lowercase , size=(size['''height'''], size['''width''']) , data_format=__lowercase , **__lowercase ) def __lowercase ( self :str , __lowercase :np.ndarray , __lowercase :float , __lowercase :Optional[Union[str, ChannelDimension]] = None , **__lowercase :str ): return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def __lowercase ( self :Union[str, Any] , __lowercase :np.ndarray , __lowercase :Union[float, List[float]] , __lowercase :Union[float, List[float]] , __lowercase :Optional[Union[str, ChannelDimension]] = None , **__lowercase :Union[str, Any] , ): return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def __lowercase ( self :List[str] , __lowercase :ImageInput , __lowercase :Optional[bool] = None , __lowercase :Dict[str, int] = None , __lowercase :PILImageResampling = None , __lowercase :bool = None , __lowercase :Dict[str, int] = None , __lowercase :Optional[bool] = None , __lowercase :Optional[float] = None , __lowercase :Optional[bool] = None , __lowercase :Optional[Union[float, List[float]]] = None , __lowercase :Optional[Union[float, List[float]]] = None , __lowercase :Optional[Union[str, TensorType]] = None , __lowercase :Union[str, ChannelDimension] = ChannelDimension.FIRST , **__lowercase :Optional[Any] , ): __lowerCamelCase : Optional[Any] =do_resize if do_resize is not None else self.do_resize __lowerCamelCase : Optional[Any] =size if size is not None else self.size __lowerCamelCase : List[str] =get_size_dict(__lowercase , default_to_square=__lowercase ) __lowerCamelCase : List[str] =resample if resample is not None else self.resample __lowerCamelCase : Optional[int] =do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase : Any =crop_size if crop_size is not None else self.crop_size __lowerCamelCase : Union[str, Any] =get_size_dict(__lowercase , param_name='''crop_size''' ) __lowerCamelCase : Any =do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase : List[str] =rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase : List[Any] =do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase : List[Any] =image_mean if image_mean is not None else self.image_mean __lowerCamelCase : int =image_std if image_std is not None else self.image_std __lowerCamelCase : int =make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __lowerCamelCase : int =[to_numpy_array(__lowercase ) for image in images] if do_resize: __lowerCamelCase : Tuple =[self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] if do_center_crop: __lowerCamelCase : Any =[self.center_crop(image=__lowercase , size=__lowercase ) for image in images] if do_rescale: __lowerCamelCase : Optional[Any] =[self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: __lowerCamelCase : Tuple =[self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] __lowerCamelCase : List[str] =[to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __lowerCamelCase : Union[str, Any] ={'''pixel_values''': images} return BatchFeature(data=__lowercase , tensor_type=__lowercase ) def __lowercase ( self :Dict , __lowercase :Dict , __lowercase :List[Tuple] = None ): __lowerCamelCase : Dict =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__lowercase ) != len(__lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(__lowercase ): __lowerCamelCase : Optional[int] =target_sizes.numpy() __lowerCamelCase : List[Any] =[] for idx in range(len(__lowercase ) ): __lowerCamelCase : Optional[int] =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=__lowercase ) __lowerCamelCase : Union[str, Any] =resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__lowercase ) else: __lowerCamelCase : Union[str, Any] =logits.argmax(dim=1 ) __lowerCamelCase : Optional[int] =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
179
1
"""simple docstring""" import os def __UpperCAmelCase ( _snake_case : str = "input.txt" ): with open(os.path.join(os.path.dirname(_lowercase ), _lowercase ) ) as input_file: _lowercase = [ [int(_lowercase ) for element in line.split("," )] for line in input_file.readlines() ] _lowercase = len(_lowercase ) _lowercase = len(matrix[0] ) _lowercase = [[-1 for _ in range(_lowercase )] for _ in range(_lowercase )] for i in range(_lowercase ): _lowercase = matrix[i][0] for j in range(1, _lowercase ): for i in range(_lowercase ): _lowercase = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1, _lowercase ): _lowercase = min( minimal_path_sums[i][j], minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2, -1, -1 ): _lowercase = min( minimal_path_sums[i][j], minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
718
"""simple docstring""" from __future__ import annotations __UpperCamelCase : List[Any] = 1.6021E-19 # units = C def __UpperCAmelCase ( _snake_case : float, _snake_case : float, _snake_case : float, ): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif conductivity < 0: raise ValueError("Conductivity cannot be negative" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative" ) elif mobility < 0: raise ValueError("mobility cannot be negative" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
227
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class __lowercase (unittest.TestCase ): _lowerCamelCase = MODEL_FOR_CAUSAL_LM_MAPPING _lowerCamelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def __UpperCamelCase ( self : int): UpperCamelCase__ : Tuple = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt') # Using `do_sample=False` to force deterministic output UpperCamelCase__ : Dict = text_generator('This is a test' , do_sample=UpperCAmelCase_) self.assertEqual( UpperCAmelCase_ , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) UpperCamelCase__ : int = text_generator(['This is a test', 'This is a second test']) self.assertEqual( UpperCAmelCase_ , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) UpperCamelCase__ : List[str] = text_generator('This is a test' , do_sample=UpperCAmelCase_ , num_return_sequences=2 , return_tensors=UpperCAmelCase_) self.assertEqual( UpperCAmelCase_ , [ {'generated_token_ids': ANY(UpperCAmelCase_)}, {'generated_token_ids': ANY(UpperCAmelCase_)}, ] , ) UpperCamelCase__ : List[Any] = text_generator.model.config.eos_token_id UpperCamelCase__ : Optional[int] = '<pad>' UpperCamelCase__ : str = text_generator( ['This is a test', 'This is a second test'] , do_sample=UpperCAmelCase_ , num_return_sequences=2 , batch_size=2 , return_tensors=UpperCAmelCase_ , ) self.assertEqual( UpperCAmelCase_ , [ [ {'generated_token_ids': ANY(UpperCAmelCase_)}, {'generated_token_ids': ANY(UpperCAmelCase_)}, ], [ {'generated_token_ids': ANY(UpperCAmelCase_)}, {'generated_token_ids': ANY(UpperCAmelCase_)}, ], ] , ) @require_tf def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Any = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf') # Using `do_sample=False` to force deterministic output UpperCamelCase__ : Union[str, Any] = text_generator('This is a test' , do_sample=UpperCAmelCase_) self.assertEqual( UpperCAmelCase_ , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) UpperCamelCase__ : Union[str, Any] = text_generator(['This is a test', 'This is a second test'] , do_sample=UpperCAmelCase_) self.assertEqual( UpperCAmelCase_ , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Optional[Any] = TextGenerationPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_) return text_generator, ["This is a test", "Another test"] def __UpperCamelCase ( self : str): UpperCamelCase__ : List[str] = 'Hello I believe in' UpperCamelCase__ : List[str] = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2') UpperCamelCase__ : Optional[int] = text_generator(UpperCAmelCase_) self.assertEqual( UpperCAmelCase_ , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) UpperCamelCase__ : List[str] = text_generator(UpperCAmelCase_ , stop_sequence=' fe') self.assertEqual(UpperCAmelCase_ , [{'generated_text': 'Hello I believe in fe'}]) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]): UpperCamelCase__ : int = text_generator.model UpperCamelCase__ : Any = text_generator.tokenizer UpperCamelCase__ : Dict = text_generator('This is a test') self.assertEqual(UpperCAmelCase_ , [{'generated_text': ANY(UpperCAmelCase_)}]) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test')) UpperCamelCase__ : int = text_generator('This is a test' , return_full_text=UpperCAmelCase_) self.assertEqual(UpperCAmelCase_ , [{'generated_text': ANY(UpperCAmelCase_)}]) self.assertNotIn('This is a test' , outputs[0]['generated_text']) UpperCamelCase__ : List[Any] = pipeline(task='text-generation' , model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , return_full_text=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = text_generator('This is a test') self.assertEqual(UpperCAmelCase_ , [{'generated_text': ANY(UpperCAmelCase_)}]) self.assertNotIn('This is a test' , outputs[0]['generated_text']) UpperCamelCase__ : str = text_generator('This is a test' , return_full_text=UpperCAmelCase_) self.assertEqual(UpperCAmelCase_ , [{'generated_text': ANY(UpperCAmelCase_)}]) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test')) UpperCamelCase__ : List[Any] = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=UpperCAmelCase_) self.assertEqual( UpperCAmelCase_ , [ [{'generated_text': ANY(UpperCAmelCase_)}, {'generated_text': ANY(UpperCAmelCase_)}], [{'generated_text': ANY(UpperCAmelCase_)}, {'generated_text': ANY(UpperCAmelCase_)}], ] , ) if text_generator.tokenizer.pad_token is not None: UpperCamelCase__ : Any = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=UpperCAmelCase_) self.assertEqual( UpperCAmelCase_ , [ [{'generated_text': ANY(UpperCAmelCase_)}, {'generated_text': ANY(UpperCAmelCase_)}], [{'generated_text': ANY(UpperCAmelCase_)}, {'generated_text': ANY(UpperCAmelCase_)}], ] , ) with self.assertRaises(UpperCAmelCase_): UpperCamelCase__ : Union[str, Any] = text_generator('test' , return_full_text=UpperCAmelCase_ , return_text=UpperCAmelCase_) with self.assertRaises(UpperCAmelCase_): UpperCamelCase__ : List[str] = text_generator('test' , return_full_text=UpperCAmelCase_ , return_tensors=UpperCAmelCase_) with self.assertRaises(UpperCAmelCase_): UpperCamelCase__ : int = text_generator('test' , return_text=UpperCAmelCase_ , return_tensors=UpperCAmelCase_) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): UpperCamelCase__ : Optional[Any] = text_generator('') self.assertEqual(UpperCAmelCase_ , [{'generated_text': ANY(UpperCAmelCase_)}]) else: with self.assertRaises((ValueError, AssertionError)): UpperCamelCase__ : Optional[int] = text_generator('') if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. UpperCamelCase__ : Dict = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 10_000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError)): text_generator('This is a test' * 500 , max_new_tokens=20) UpperCamelCase__ : List[str] = text_generator('This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=20) # Hole strategy cannot work with self.assertRaises(UpperCAmelCase_): text_generator( 'This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def __UpperCamelCase ( self : int): import torch # Classic `model_kwargs` UpperCamelCase__ : Tuple = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0)) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa) UpperCamelCase__ : List[str] = pipe('This is a test') self.assertEqual( UpperCAmelCase_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) UpperCamelCase__ : List[str] = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa) self.assertEqual(pipe.model.device , torch.device(0)) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa) UpperCamelCase__ : List[Any] = pipe('This is a test') self.assertEqual( UpperCAmelCase_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 UpperCamelCase__ : int = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto') self.assertEqual(pipe.model.device , torch.device(0)) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa) UpperCamelCase__ : Any = pipe('This is a test') self.assertEqual( UpperCAmelCase_ , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def __UpperCamelCase ( self : Dict): import torch UpperCamelCase__ : Dict = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa) pipe('This is a test') @require_torch @require_accelerate @require_torch_gpu def __UpperCamelCase ( self : Tuple): import torch UpperCamelCase__ : Dict = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa) pipe('This is a test' , do_sample=UpperCAmelCase_ , top_p=0.5) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : List[Any] = 'Hello world' UpperCamelCase__ : Optional[Any] = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2') if text_generator.model.framework == "tf": UpperCamelCase__ : Union[str, Any] = logging.get_logger('transformers.generation.tf_utils') else: UpperCamelCase__ : List[Any] = logging.get_logger('transformers.generation.utils') UpperCamelCase__ : Any = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(UpperCAmelCase_) as cl: UpperCamelCase__ : List[str] = text_generator(UpperCAmelCase_ , max_length=10 , max_new_tokens=1) self.assertIn(UpperCAmelCase_ , cl.out) # The user only sets one -> no warning with CaptureLogger(UpperCAmelCase_) as cl: UpperCamelCase__ : Tuple = text_generator(UpperCAmelCase_ , max_new_tokens=1) self.assertNotIn(UpperCAmelCase_ , cl.out) with CaptureLogger(UpperCAmelCase_) as cl: UpperCamelCase__ : List[Any] = text_generator(UpperCAmelCase_ , max_length=10) self.assertNotIn(UpperCAmelCase_ , cl.out)
596
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __UpperCAmelCase ( ) -> Dict: UpperCamelCase__ : List[Any] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } UpperCamelCase__ : int = Dataset.from_dict(lowerCamelCase_) return dataset class __lowercase (__lowerCamelCase ): def __UpperCamelCase ( self : Any): UpperCamelCase__ : str = get_dataset() UpperCamelCase__ : Dict = make_duplicate_clusters(UpperCAmelCase_ , 0.85) self.assertEqual(len(duplicate_clusters[0]) , 2) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Any = get_dataset() UpperCamelCase__, UpperCamelCase__ : Tuple = deduplicate_dataset(UpperCAmelCase_) self.assertEqual(len(UpperCAmelCase_) , 2) print(UpperCAmelCase_) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCAmelCase_)
596
1
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class a__ ( unittest.TestCase ): @require_torch def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_: Dict = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) lowerCamelCase_: List[Any] = load_dataset("""ashraq/esc50""" ) lowerCamelCase_: str = dataset["""train"""]["""audio"""][-1]["""array"""] lowerCamelCase_: Dict = audio_classifier(A_ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(A_ ) , [{"""score""": 0.501, """label""": """Sound of a dog"""}, {"""score""": 0.499, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" pass @slow @require_torch def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_: Optional[Any] = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog lowerCamelCase_: Optional[Any] = load_dataset("""ashraq/esc50""" ) lowerCamelCase_: Optional[int] = dataset["""train"""]["""audio"""][-1]["""array"""] lowerCamelCase_: Tuple = audio_classifier(A_ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(A_ ) , [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ] , ) lowerCamelCase_: str = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(A_ ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) lowerCamelCase_: Tuple = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(A_ ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" pass
711
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowercase : str = sys.version_info >= (3, 1_0) def UpperCAmelCase_ ( _UpperCAmelCase=None , _UpperCAmelCase=None ): return field(default_factory=lambda: default , metadata=_UpperCAmelCase ) @dataclass class a__ : _A = 42 _A = 42 _A = 42 _A = 42 @dataclass class a__ : _A = 42 _A = field(default="toto" , metadata={"help": "help message"} ) @dataclass class a__ : _A = False _A = True _A = None class a__ ( __SCREAMING_SNAKE_CASE ): _A = "titi" _A = "toto" class a__ ( __SCREAMING_SNAKE_CASE ): _A = "titi" _A = "toto" _A = 42 @dataclass class a__ : _A = "toto" def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" lowerCamelCase_: Any = BasicEnum(self.foo ) @dataclass class a__ : _A = "toto" def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_: Optional[int] = MixedTypeEnum(self.foo ) @dataclass class a__ : _A = None _A = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "help message"} ) _A = None _A = list_field(default=[] ) _A = list_field(default=[] ) @dataclass class a__ : _A = list_field(default=[] ) _A = list_field(default=[1, 2, 3] ) _A = list_field(default=["Hallo", "Bonjour", "Hello"] ) _A = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class a__ : _A = field() _A = field() _A = field() def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_: int = BasicEnum(self.required_enum ) @dataclass class a__ : _A = 42 _A = field() _A = None _A = field(default="toto" , metadata={"help": "help message"} ) _A = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class a__ : _A = False _A = True _A = None @dataclass class a__ : _A = None _A = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "help message"} ) _A = None _A = list_field(default=[] ) _A = list_field(default=[] ) class a__ ( unittest.TestCase ): def lowerCAmelCase ( self : Any , A_ : argparse.ArgumentParser , A_ : argparse.ArgumentParser ) -> List[Any]: """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowerCamelCase_: Any = {k: v for k, v in vars(A_ ).items() if k != """container"""} lowerCamelCase_: Any = {k: v for k, v in vars(A_ ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , A_ ) and yy.get("""choices""" , A_ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](A_ ) , yy["""type"""](A_ ) ) del xx["type"], yy["type"] self.assertEqual(A_ , A_ ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_: str = HfArgumentParser(A_ ) lowerCamelCase_: str = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=A_ , required=A_ ) expected.add_argument("""--bar""" , type=A_ , required=A_ ) expected.add_argument("""--baz""" , type=A_ , required=A_ ) expected.add_argument("""--flag""" , type=A_ , default=A_ , const=A_ , nargs="""?""" ) self.argparsersEqual(A_ , A_ ) lowerCamelCase_: List[Any] = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] ((lowerCamelCase_) , ): int = parser.parse_args_into_dataclasses(A_ , look_for_args_file=A_ ) self.assertFalse(example.flag ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" lowerCamelCase_: int = HfArgumentParser(A_ ) lowerCamelCase_: int = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=A_ ) expected.add_argument("""--baz""" , default="""toto""" , type=A_ , help="""help message""" ) self.argparsersEqual(A_ , A_ ) def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" lowerCamelCase_: Optional[Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=A_ , default=A_ , const=A_ , nargs="""?""" ) expected.add_argument("""--baz""" , type=A_ , default=A_ , const=A_ , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=A_ , dest="""baz""" ) expected.add_argument("""--opt""" , type=A_ , default=A_ ) lowerCamelCase_: int = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(A_ ) for dataclass_type in dataclass_types: lowerCamelCase_: Any = HfArgumentParser(A_ ) self.argparsersEqual(A_ , A_ ) lowerCamelCase_: int = parser.parse_args([] ) self.assertEqual(A_ , Namespace(foo=A_ , baz=A_ , opt=A_ ) ) lowerCamelCase_: List[str] = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(A_ , Namespace(foo=A_ , baz=A_ , opt=A_ ) ) lowerCamelCase_: List[str] = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(A_ , Namespace(foo=A_ , baz=A_ , opt=A_ ) ) lowerCamelCase_: List[Any] = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(A_ , Namespace(foo=A_ , baz=A_ , opt=A_ ) ) lowerCamelCase_: int = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(A_ , Namespace(foo=A_ , baz=A_ , opt=A_ ) ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" lowerCamelCase_: int = HfArgumentParser(A_ ) lowerCamelCase_: str = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(A_ , A_ ) lowerCamelCase_: Union[str, Any] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) lowerCamelCase_: List[str] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowerCamelCase_: List[Any] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) lowerCamelCase_: Union[str, Any] = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowerCamelCase_: Any = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) lowerCamelCase_: Union[str, Any] = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" @dataclass class a__ : _A = "toto" lowerCamelCase_: Union[str, Any] = HfArgumentParser(A_ ) lowerCamelCase_: List[Any] = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(A_ , A_ ) lowerCamelCase_: List[str] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) lowerCamelCase_: Any = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) lowerCamelCase_: Optional[Any] = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_: List[Any] = HfArgumentParser(A_ ) lowerCamelCase_: Optional[Any] = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=A_ ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=A_ ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=A_ ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=A_ ) self.argparsersEqual(A_ , A_ ) lowerCamelCase_: List[str] = parser.parse_args([] ) self.assertEqual( A_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) lowerCamelCase_: Union[str, Any] = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(A_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" lowerCamelCase_: Dict = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=A_ , type=A_ ) expected.add_argument("""--bar""" , default=A_ , type=A_ , help="""help message""" ) expected.add_argument("""--baz""" , default=A_ , type=A_ ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=A_ ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=A_ ) lowerCamelCase_: Union[str, Any] = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(A_ ) for dataclass_type in dataclass_types: lowerCamelCase_: Tuple = HfArgumentParser(A_ ) self.argparsersEqual(A_ , A_ ) lowerCamelCase_: Union[str, Any] = parser.parse_args([] ) self.assertEqual(A_ , Namespace(foo=A_ , bar=A_ , baz=A_ , ces=[] , des=[] ) ) lowerCamelCase_: Optional[int] = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(A_ , Namespace(foo=12 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" lowerCamelCase_: Optional[int] = HfArgumentParser(A_ ) lowerCamelCase_: Optional[int] = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=A_ , required=A_ ) expected.add_argument("""--required_str""" , type=A_ , required=A_ ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=A_ , ) self.argparsersEqual(A_ , A_ ) def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_: Any = HfArgumentParser(A_ ) lowerCamelCase_: Tuple = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=A_ , required=A_ ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=A_ , ) expected.add_argument("""--opt""" , type=A_ , default=A_ ) expected.add_argument("""--baz""" , default="""toto""" , type=A_ , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=A_ ) self.argparsersEqual(A_ , A_ ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" lowerCamelCase_: Tuple = HfArgumentParser(A_ ) lowerCamelCase_: List[Any] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } lowerCamelCase_: Optional[int] = parser.parse_dict(A_ )[0] lowerCamelCase_: Optional[Any] = BasicExample(**A_ ) self.assertEqual(A_ , A_ ) def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_: Optional[int] = HfArgumentParser(A_ ) lowerCamelCase_: Tuple = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(A_ , parser.parse_dict , A_ , allow_extra_keys=A_ ) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_: Union[str, Any] = HfArgumentParser(A_ ) lowerCamelCase_: int = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase_: Union[str, Any] = os.path.join(A_ , """temp_json""" ) os.mkdir(A_ ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(A_ , A_ ) lowerCamelCase_: List[str] = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] lowerCamelCase_: List[str] = BasicExample(**A_ ) self.assertEqual(A_ , A_ ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" lowerCamelCase_: str = HfArgumentParser(A_ ) lowerCamelCase_: List[Any] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase_: Tuple = os.path.join(A_ , """temp_yaml""" ) os.mkdir(A_ ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(A_ , A_ ) lowerCamelCase_: List[Any] = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] lowerCamelCase_: str = BasicExample(**A_ ) self.assertEqual(A_ , A_ ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" lowerCamelCase_: List[str] = HfArgumentParser(A_ ) self.assertIsNotNone(A_ )
584
0
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None )-> Optional[Any]: """simple docstring""" if attention_mask is None: UpperCamelCase = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class __a : UpperCamelCase_ : Dict = OPTConfig UpperCamelCase_ : List[Any] = {} UpperCamelCase_ : Union[str, Any] = "gelu" def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Optional[int]=99 , UpperCAmelCase_ : List[Any]=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Union[str, Any]=20 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Dict=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : List[Any]=16 , UpperCAmelCase_ : str=16 , )-> Any: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = eos_token_id UpperCamelCase = pad_token_id UpperCamelCase = bos_token_id UpperCamelCase = embed_dim UpperCamelCase = word_embed_proj_dim UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : str )-> Tuple: """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=UpperCAmelCase_ , **self.config_updates , ) UpperCamelCase = prepare_opt_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ ) return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] )-> List[Any]: """simple docstring""" UpperCamelCase = TFOPTModel(config=UpperCAmelCase_ ) UpperCamelCase = inputs_dict["input_ids"] UpperCamelCase = input_ids[:1, :] UpperCamelCase = inputs_dict["attention_mask"][:1, :] UpperCamelCase = 1 # first forward pass UpperCamelCase = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) UpperCamelCase , UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] UpperCamelCase = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1e-3 ) @require_tf class __a ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): UpperCamelCase_ : List[str] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () UpperCamelCase_ : Dict = (TFOPTForCausalLM,) if is_tf_available() else () UpperCamelCase_ : Tuple = ( {"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {} ) UpperCamelCase_ : Any = False UpperCamelCase_ : int = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : List[str] = 10 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> str: """simple docstring""" UpperCamelCase = TFOPTModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Any )-> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : int )-> Optional[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict )-> Dict: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] ): if hasattr(UpperCAmelCase_ , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(UpperCAmelCase_ , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings UpperCamelCase = model_class(config=UpperCAmelCase_ ) UpperCamelCase = _get_word_embedding_weight(UpperCAmelCase_ , model.get_input_embeddings() ) UpperCamelCase = _get_word_embedding_weight(UpperCAmelCase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(UpperCAmelCase_ ) UpperCamelCase = _get_word_embedding_weight(UpperCAmelCase_ , model.get_input_embeddings() ) UpperCamelCase = _get_word_embedding_weight(UpperCAmelCase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. UpperCamelCase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , UpperCAmelCase_ ) # check that weights remain the same after resizing UpperCamelCase = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: UpperCamelCase = False self.assertTrue(UpperCAmelCase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , UpperCAmelCase_ ) UpperCamelCase = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: UpperCamelCase = False self.assertTrue(UpperCAmelCase_ ) def lowerCamelCase__ ( UpperCAmelCase_ )-> str: """simple docstring""" return tf.constant(__lowerCamelCase , dtype=tf.intaa ) @require_tf class __a ( unittest.TestCase ): UpperCamelCase_ : int = 99 def _SCREAMING_SNAKE_CASE ( self : Any )-> int: """simple docstring""" UpperCamelCase = tf.ones((4, 1) , dtype=tf.intaa ) * 2 UpperCamelCase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) UpperCamelCase = input_ids.shape[0] UpperCamelCase = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class __a ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> Optional[Any]: """simple docstring""" UpperCamelCase = TFOPTModel.from_pretrained("facebook/opt-350m" ) UpperCamelCase = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) UpperCamelCase = tf.not_equal(UpperCAmelCase_ , model.config.pad_token_id ) with tf.GradientTape(): UpperCamelCase = model(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ).last_hidden_state UpperCamelCase = (1, 11, 512) self.assertEqual(output.shape , UpperCAmelCase_ ) UpperCamelCase = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=4e-3 ) ) UpperCamelCase = tf.function(UpperCAmelCase_ , jit_compile=UpperCAmelCase_ ) UpperCamelCase = xla_generate(UpperCAmelCase_ , UpperCAmelCase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=4e-2 ) ) @require_tf @slow class __a ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : int )-> str: """simple docstring""" super().setUp() UpperCamelCase = "facebook/opt-350m" def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Tuple: """simple docstring""" UpperCamelCase = TFOPTForCausalLM.from_pretrained(self.path_model ) UpperCamelCase = GPTaTokenizer.from_pretrained(self.path_model ) UpperCamelCase = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False UpperCamelCase = tokenizer(UpperCAmelCase_ , return_tensors="tf" , padding=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) UpperCamelCase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) UpperCamelCase = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1e-4 ) ) UpperCamelCase = tf.function(UpperCAmelCase_ , jit_compile=UpperCAmelCase_ ) UpperCamelCase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1e-4 ) ) @require_tf @slow class __a ( unittest.TestCase ): @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Optional[int]: """simple docstring""" return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _SCREAMING_SNAKE_CASE ( self : int )-> Union[str, Any]: """simple docstring""" UpperCamelCase = "facebook/opt-125m" UpperCamelCase = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] UpperCamelCase = [] UpperCamelCase = GPTaTokenizer.from_pretrained(UpperCAmelCase_ ) UpperCamelCase = TFOPTForCausalLM.from_pretrained(UpperCAmelCase_ ) for prompt in self.prompts: UpperCamelCase = tokenizer(UpperCAmelCase_ , return_tensors="tf" ).input_ids UpperCamelCase = model.generate(UpperCAmelCase_ , max_length=10 ) UpperCamelCase = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Any )-> List[Any]: """simple docstring""" UpperCamelCase = "facebook/opt-350m" UpperCamelCase = GPTaTokenizer.from_pretrained(UpperCAmelCase_ ) UpperCamelCase = TFOPTForCausalLM.from_pretrained(UpperCAmelCase_ ) UpperCamelCase = "left" # use different length sentences to test batching UpperCamelCase = [ "Hello, my dog is a little", "Today, I", ] UpperCamelCase = tokenizer(UpperCAmelCase_ , return_tensors="tf" , padding=UpperCAmelCase_ ) UpperCamelCase = inputs["input_ids"] UpperCamelCase = model.generate(input_ids=UpperCAmelCase_ , attention_mask=inputs["attention_mask"] ) UpperCamelCase = tokenizer(sentences[0] , return_tensors="tf" ).input_ids UpperCamelCase = model.generate(input_ids=UpperCAmelCase_ ) UpperCamelCase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) UpperCamelCase = tokenizer(sentences[1] , return_tensors="tf" ).input_ids UpperCamelCase = model.generate(input_ids=UpperCAmelCase_ , max_length=model.config.max_length - num_paddings ) UpperCamelCase = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) UpperCamelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase_ ) UpperCamelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase_ ) UpperCamelCase = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [non_padded_sentence, padded_sentence] ) def _SCREAMING_SNAKE_CASE ( self : List[str] )-> Optional[Any]: """simple docstring""" UpperCamelCase = "facebook/opt-350m" UpperCamelCase = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] UpperCamelCase = [] UpperCamelCase = GPTaTokenizer.from_pretrained(UpperCAmelCase_ ) UpperCamelCase = TFOPTForCausalLM.from_pretrained(UpperCAmelCase_ ) for prompt in self.prompts: UpperCamelCase = tokenizer(UpperCAmelCase_ , return_tensors="tf" ).input_ids UpperCamelCase = model.generate(UpperCAmelCase_ , max_length=10 ) UpperCamelCase = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
554
'''simple docstring''' import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( "kwargs, expected" , [ ({"num_shards": 0, "max_num_jobs": 1}, []), ({"num_shards": 10, "max_num_jobs": 1}, [range(10 )]), ({"num_shards": 10, "max_num_jobs": 10}, [range(__lowerCamelCase , i + 1 ) for i in range(10 )]), ({"num_shards": 1, "max_num_jobs": 10}, [range(1 )]), ({"num_shards": 10, "max_num_jobs": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"num_shards": 3, "max_num_jobs": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def _lowerCamelCase (__lowerCamelCase : List[Any] , __lowerCamelCase : int ) -> Optional[int]: a__ = _distribute_shards(**__lowerCamelCase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, max_num_jobs, expected" , [ ({"foo": 0}, 10, [{"foo": 0}]), ({"shards": [0, 1, 2, 3]}, 1, [{"shards": [0, 1, 2, 3]}]), ({"shards": [0, 1, 2, 3]}, 4, [{"shards": [0]}, {"shards": [1]}, {"shards": [2]}, {"shards": [3]}]), ({"shards": [0, 1]}, 4, [{"shards": [0]}, {"shards": [1]}]), ({"shards": [0, 1, 2, 3]}, 2, [{"shards": [0, 1]}, {"shards": [2, 3]}]), ] , ) def _lowerCamelCase (__lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : int ) -> int: a__ = _split_gen_kwargs(__lowerCamelCase , __lowerCamelCase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, expected" , [ ({"foo": 0}, 1), ({"shards": [0]}, 1), ({"shards": [0, 1, 2, 3]}, 4), ({"shards": [0, 1, 2, 3], "foo": 0}, 4), ({"shards": [0, 1, 2, 3], "other": (0, 1)}, 4), ({"shards": [0, 1, 2, 3], "shards2": [0, 1]}, RuntimeError), ] , ) def _lowerCamelCase (__lowerCamelCase : Any , __lowerCamelCase : int ) -> Union[str, Any]: if expected is RuntimeError: with pytest.raises(__lowerCamelCase ): _number_of_shards_in_gen_kwargs(__lowerCamelCase ) else: a__ = _number_of_shards_in_gen_kwargs(__lowerCamelCase ) assert out == expected
489
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowercase = 2_5_0_0_0_4 lowercase = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class __A( lowerCamelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = MBartaaTokenizer SCREAMING_SNAKE_CASE = MBartaaTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def lowercase__ ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ = MBartaaTokenizer(__UpperCamelCase , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=__UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : str ): lowerCamelCase_ = """<s>""" lowerCamelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def lowercase__ ( self : Optional[int] ): lowerCamelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__UpperCamelCase ) , 1_0_5_4 ) def lowercase__ ( self : Optional[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_5_4 ) def lowercase__ ( self : str ): lowerCamelCase_ = MBartaaTokenizer(__UpperCamelCase , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=__UpperCamelCase ) lowerCamelCase_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__UpperCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowerCamelCase_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __UpperCamelCase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def lowercase__ ( self : Optional[int] ): # fmt: off lowerCamelCase_ = {"""input_ids""": [[2_5_0_0_0_4, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [2_5_0_0_0_4, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_0_0_0_4, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name="""facebook/mbart-large-50""" , revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" , ) def lowercase__ ( self : Dict ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase_ = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(__UpperCamelCase ) lowerCamelCase_ = tokenizer_p.save_pretrained(__UpperCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) lowerCamelCase_ = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(__UpperCamelCase , __UpperCamelCase ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = tokenizer_p.from_pretrained(__UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCamelCase , __UpperCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__UpperCamelCase ) # Save tokenizer rust, legacy_format=True lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(__UpperCamelCase , legacy_format=__UpperCamelCase ) lowerCamelCase_ = tokenizer_p.save_pretrained(__UpperCamelCase ) # Checks it save with the same files self.assertSequenceEqual(__UpperCamelCase , __UpperCamelCase ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = tokenizer_p.from_pretrained(__UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCamelCase , __UpperCamelCase ) ) shutil.rmtree(__UpperCamelCase ) # Save tokenizer rust, legacy_format=False lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(__UpperCamelCase , legacy_format=__UpperCamelCase ) lowerCamelCase_ = tokenizer_p.save_pretrained(__UpperCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = tokenizer_p.from_pretrained(__UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCamelCase , __UpperCamelCase ) ) shutil.rmtree(__UpperCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class __A( unittest.TestCase ): SCREAMING_SNAKE_CASE = '''facebook/mbart-large-50-one-to-many-mmt''' SCREAMING_SNAKE_CASE = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] SCREAMING_SNAKE_CASE = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] SCREAMING_SNAKE_CASE = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def lowercase__ ( cls : Optional[Any] ): lowerCamelCase_ = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) lowerCamelCase_ = 1 return cls def lowercase__ ( self : Union[str, Any] ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 2_5_0_0_2_0 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] , 2_5_0_0_3_8 ) def lowercase__ ( self : Optional[Any] ): lowerCamelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __UpperCamelCase ) def lowercase__ ( self : Tuple ): self.assertIn(__UpperCamelCase , self.tokenizer.all_special_ids ) lowerCamelCase_ = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] lowerCamelCase_ = self.tokenizer.decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) lowerCamelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) self.assertNotIn(self.tokenizer.eos_token , __UpperCamelCase ) def lowercase__ ( self : Any ): lowerCamelCase_ = ["""this is gunna be a long sentence """ * 2_0] assert isinstance(src_text[0] , __UpperCamelCase ) lowerCamelCase_ = 1_0 lowerCamelCase_ = self.tokenizer(__UpperCamelCase , max_length=__UpperCamelCase , truncation=__UpperCamelCase ).input_ids[0] self.assertEqual(ids[0] , __UpperCamelCase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) def lowercase__ ( self : Any ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [2_5_0_0_5_3, 2_5_0_0_0_1] ) def lowercase__ ( self : Dict ): lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__UpperCamelCase ) lowerCamelCase_ = MBartaaTokenizer.from_pretrained(__UpperCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __UpperCamelCase ) @require_torch def lowercase__ ( self : Optional[Any] ): lowerCamelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__UpperCamelCase , return_tensors="""pt""" ) lowerCamelCase_ = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def lowercase__ ( self : Optional[int] ): lowerCamelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) lowerCamelCase_ = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) lowerCamelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __UpperCamelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = self.tokenizer(self.src_text , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=3 , return_tensors="""pt""" ) lowerCamelCase_ = self.tokenizer( text_target=self.tgt_text , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=1_0 , return_tensors="""pt""" ) lowerCamelCase_ = targets["""input_ids"""] lowerCamelCase_ = shift_tokens_right(__UpperCamelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { # en_XX, A, test, EOS """input_ids""": [[2_5_0_0_0_4, 6_2, 3_0_3_4, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 2_5_0_0_0_1, } , )
700
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowerCAmelCase ( UpperCAmelCase__ : Any ) -> List[str]: if is_torch_version("""<""" , """2.0.0""" ) or not hasattr(UpperCAmelCase__ , """_dynamo""" ): return False return isinstance(UpperCAmelCase__ , torch._dynamo.eval_frame.OptimizedModule ) def __lowerCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : bool = True ) -> str: lowerCamelCase_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowerCamelCase_ = is_compiled_module(UpperCAmelCase__ ) if is_compiled: lowerCamelCase_ = model lowerCamelCase_ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCamelCase_ = model.module if not keep_fpaa_wrapper: lowerCamelCase_ = getattr(UpperCAmelCase__ , """forward""" ) lowerCamelCase_ = model.__dict__.pop("""_original_forward""" , UpperCAmelCase__ ) if original_forward is not None: while hasattr(UpperCAmelCase__ , """__wrapped__""" ): lowerCamelCase_ = forward.__wrapped__ if forward == original_forward: break lowerCamelCase_ = forward if getattr(UpperCAmelCase__ , """_converted_to_transformer_engine""" , UpperCAmelCase__ ): convert_model(UpperCAmelCase__ , to_transformer_engine=UpperCAmelCase__ ) if is_compiled: lowerCamelCase_ = model lowerCamelCase_ = compiled_model return model def __lowerCAmelCase ( ) -> Any: PartialState().wait_for_everyone() def __lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple ) -> Dict: if PartialState().distributed_type == DistributedType.TPU: xm.save(UpperCAmelCase__ , UpperCAmelCase__ ) elif PartialState().local_process_index == 0: torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) @contextmanager def __lowerCAmelCase ( **UpperCAmelCase__ : Any ) -> Dict: for key, value in kwargs.items(): lowerCamelCase_ = str(UpperCAmelCase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] ) -> str: if not hasattr(UpperCAmelCase__ , """__qualname__""" ) and not hasattr(UpperCAmelCase__ , """__name__""" ): lowerCamelCase_ = getattr(UpperCAmelCase__ , """__class__""" , UpperCAmelCase__ ) if hasattr(UpperCAmelCase__ , """__qualname__""" ): return obj.__qualname__ if hasattr(UpperCAmelCase__ , """__name__""" ): return obj.__name__ return str(UpperCAmelCase__ ) def __lowerCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] ) -> Dict: for key, value in source.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCamelCase_ = destination.setdefault(UpperCAmelCase__ , {} ) merge_dicts(UpperCAmelCase__ , UpperCAmelCase__ ) else: lowerCamelCase_ = value return destination def __lowerCAmelCase ( UpperCAmelCase__ : int = None ) -> bool: if port is None: lowerCamelCase_ = 2_9_5_0_0 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("""localhost""", port) ) == 0
103
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : int , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : str , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ = crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : float , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) UpperCAmelCase_ = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ = int(shortest_edge / crop_pct ) UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[Any] , ) -> Optional[int]: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : List[str] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : List[str] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , crop_pct=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
82
"""simple docstring""" def a__ ( lowerCAmelCase__ ): if number > 0: raise ValueError("input must be a negative integer" ) UpperCAmelCase_ = len(bin(lowerCAmelCase__ )[3:] ) UpperCAmelCase_ = bin(abs(lowerCAmelCase__ ) - (1 << binary_number_length) )[3:] UpperCAmelCase_ = ( ( "1" + "0" * (binary_number_length - len(lowerCAmelCase__ )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
82
1
'''simple docstring''' from __future__ import annotations import math def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(lowerCAmelCase__ ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) return min( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) def __A ( ): _UpperCAmelCase : List[str] = [90, 23, 6, 33, 21, 65, 123, 3_4423] _UpperCAmelCase : Union[str, Any] = math.log(len(lowerCAmelCase__ ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
709
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCAmelCase ( __a , unittest.TestCase ): snake_case : List[str] = KandinskyVaaControlnetImgaImgPipeline snake_case : str = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] snake_case : Tuple = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] snake_case : List[Any] = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] snake_case : Tuple = False @property def snake_case_ (self ): return 3_2 @property def snake_case_ (self ): return 3_2 @property def snake_case_ (self ): return self.time_input_dim @property def snake_case_ (self ): return self.time_input_dim * 4 @property def snake_case_ (self ): return 1_0_0 @property def snake_case_ (self ): torch.manual_seed(0 ) _UpperCAmelCase : Dict = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _UpperCAmelCase : Dict = UNetaDConditionModel(**lowerCAmelCase__ ) return model @property def snake_case_ (self ): return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def snake_case_ (self ): torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ (self ): _UpperCAmelCase : Union[str, Any] = self.dummy_unet _UpperCAmelCase : str = self.dummy_movq _UpperCAmelCase : Union[str, Any] = { """num_train_timesteps""": 1_0_0_0, """beta_schedule""": """linear""", """beta_start""": 0.0_0_0_8_5, """beta_end""": 0.0_1_2, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _UpperCAmelCase : List[str] = DDIMScheduler(**lowerCAmelCase__ ) _UpperCAmelCase : Dict = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__=0 ): _UpperCAmelCase : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCAmelCase__ ) # create init_image _UpperCAmelCase : str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : Tuple = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("""RGB""" ).resize((2_5_6, 2_5_6) ) # create hint _UpperCAmelCase : Union[str, Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) if str(lowerCAmelCase__ ).startswith("""mps""" ): _UpperCAmelCase : int = torch.manual_seed(lowerCAmelCase__ ) else: _UpperCAmelCase : List[Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 6_4, """width""": 6_4, """num_inference_steps""": 1_0, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def snake_case_ (self ): _UpperCAmelCase : Dict = """cpu""" _UpperCAmelCase : str = self.get_dummy_components() _UpperCAmelCase : Tuple = self.pipeline_class(**lowerCAmelCase__ ) _UpperCAmelCase : str = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : Tuple = pipe( **self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0] _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _UpperCAmelCase : Dict = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def snake_case_ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ (self ): _UpperCAmelCase : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) _UpperCAmelCase : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _UpperCAmelCase : str = init_image.resize((5_1_2, 5_1_2) ) _UpperCAmelCase : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) _UpperCAmelCase : Any = torch.from_numpy(np.array(lowerCAmelCase__ ) ).float() / 2_5_5.0 _UpperCAmelCase : List[str] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _UpperCAmelCase : List[Any] = """A robot, 4k photo""" _UpperCAmelCase : Optional[Any] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase__ ) _UpperCAmelCase : Any = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) _UpperCAmelCase : List[str] = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) _UpperCAmelCase , _UpperCAmelCase : List[str] = pipe_prior( lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.8_5 , generator=lowerCAmelCase__ , negative_prompt="""""" , ).to_tuple() _UpperCAmelCase : Optional[Any] = pipeline( image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , hint=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=5_1_2 , width=5_1_2 , strength=0.5 , output_type="""np""" , ) _UpperCAmelCase : Optional[Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
156
0
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a : """simple docstring""" def __init__( self : str , __lowercase : Dict , __lowercase : Optional[Any]=13 , __lowercase : str=32 , __lowercase : Union[str, Any]=3 , __lowercase : int=4 , __lowercase : int=[10, 20, 30, 40] , __lowercase : List[str]=[2, 2, 3, 2] , __lowercase : Dict=True , __lowercase : List[Any]=True , __lowercase : str=37 , __lowercase : Tuple="gelu" , __lowercase : int=10 , __lowercase : Dict=0.02 , __lowercase : Dict=["stage2", "stage3", "stage4"] , __lowercase : Optional[int]=[2, 3, 4] , __lowercase : List[Any]=None , ) -> Dict: __UpperCAmelCase : List[str] = parent __UpperCAmelCase : str = batch_size __UpperCAmelCase : Optional[Any] = image_size __UpperCAmelCase : Union[str, Any] = num_channels __UpperCAmelCase : Any = num_stages __UpperCAmelCase : str = hidden_sizes __UpperCAmelCase : Optional[int] = depths __UpperCAmelCase : List[str] = is_training __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : int = hidden_act __UpperCAmelCase : List[Any] = num_labels __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : List[str] = out_features __UpperCAmelCase : Tuple = out_indices __UpperCAmelCase : List[Any] = scope def UpperCAmelCase ( self : List[str] ) -> int: __UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Union[str, Any] = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Dict ) -> str: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowercase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def UpperCAmelCase ( self : Tuple , __lowercase : Tuple , __lowercase : Union[str, Any] , __lowercase : Any ) -> List[Any]: __UpperCAmelCase : Tuple = ConvNextVaModel(config=__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowercase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase ( self : Optional[int] , __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : List[Any] ) -> Tuple: __UpperCAmelCase : Optional[int] = ConvNextVaForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : Union[str, Any] = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Tuple , __lowercase : List[str] ) -> Tuple: __UpperCAmelCase : int = ConvNextVaBackbone(config=__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : List[Any] = model(__lowercase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __UpperCAmelCase : List[str] = None __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : List[str] = model(__lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict def UpperCAmelCase ( self : Tuple ) -> Tuple: __UpperCAmelCase : List[str] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs __UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class a ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" a : int = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) a : List[Any] = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) a : List[str] = False a : Union[str, Any] = False a : Optional[Any] = False a : Optional[Any] = False a : Tuple = False def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __UpperCAmelCase : Tuple = ConvNextVaModelTester(self ) __UpperCAmelCase : str = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 ) def UpperCAmelCase ( self : int ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : Any ) -> str: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def UpperCAmelCase ( self : Tuple ) -> str: pass def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : int = True if model_class.__name__ in [ *get_values(__lowercase ), *get_values(__lowercase ), ]: continue __UpperCAmelCase : List[str] = model_class(__lowercase ) model.to(__lowercase ) model.train() __UpperCAmelCase : Dict = self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) __UpperCAmelCase : str = model(**__lowercase ).loss loss.backward() def UpperCAmelCase ( self : Optional[int] ) -> List[str]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : Any = False __UpperCAmelCase : str = True if ( model_class.__name__ in [*get_values(__lowercase ), *get_values(__lowercase )] or not model_class.supports_gradient_checkpointing ): continue __UpperCAmelCase : Tuple = model_class(__lowercase ) model.to(__lowercase ) model.gradient_checkpointing_enable() model.train() __UpperCAmelCase : int = self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) __UpperCAmelCase : int = model(**__lowercase ).loss loss.backward() def UpperCAmelCase ( self : str ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(__lowercase ) __UpperCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[str] = [*signature.parameters.keys()] __UpperCAmelCase : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowercase ) def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def UpperCAmelCase ( self : Dict ) -> List[Any]: def check_hidden_states_output(__lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : Dict ): __UpperCAmelCase : str = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): __UpperCAmelCase : str = model(**self._prepare_for_class(__lowercase , __lowercase ) ) __UpperCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(__lowercase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Dict = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Optional[int] = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def UpperCAmelCase ( self : Dict ) -> str: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = ConvNextVaModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowerCamelCase__ ( ): __UpperCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def UpperCAmelCase ( self : Dict ) -> int: __UpperCAmelCase : Optional[int] = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(__lowercase ) __UpperCAmelCase : int = self.default_image_processor __UpperCAmelCase : Optional[int] = prepare_img() __UpperCAmelCase : List[Any] = preprocessor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(**__lowercase ) # verify the logits __UpperCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowercase ) __UpperCAmelCase : int = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1e-4 ) )
63
'''simple docstring''' import torch from transformers import AutoModel class lowerCAmelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , _UpperCAmelCase : List[str]="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(_UpperCAmelCase , self ).__init__() UpperCAmelCase__ = AutoModel.from_pretrained(_UpperCAmelCase , return_dict=_UpperCAmelCase ) UpperCAmelCase__ = torch.nn.CosineSimilarity(3 , 1E-08 ) UpperCAmelCase__ = torch.nn.Softmax(dim=1 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , **_UpperCAmelCase : List[str] ): """simple docstring""" return self.bert(**_UpperCAmelCase ).last_hidden_state def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : List[str] ): """simple docstring""" return token_embeddings.sum(2 , keepdim=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any]=1 ): """simple docstring""" return self.softmax(T * self.cos(_UpperCAmelCase , _UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ): """simple docstring""" UpperCAmelCase__ = W_supports["""sizes"""].tolist() UpperCAmelCase__ = W_supports["""start_token_id"""].item() UpperCAmelCase__ = W_supports["""end_token_id"""].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCAmelCase__ = self.BERT(**_UpperCAmelCase ) UpperCAmelCase__ = self.BERT(**_UpperCAmelCase ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = W_supports["""input_ids"""] == start_token_id UpperCAmelCase__ = W_supports["""input_ids"""] == end_token_id for i, size in enumerate(_UpperCAmelCase ): if i == 0: UpperCAmelCase__ = 0 else: UpperCAmelCase__ = support_sizes[i - 1] UpperCAmelCase__ = S[s : s + size][start_token_masks[s : s + size]] UpperCAmelCase__ = S[s : s + size][end_token_masks[s : s + size]] UpperCAmelCase__ = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCAmelCase__ = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCAmelCase__ = torch.vstack((p_starts, p_start) ) UpperCAmelCase__ = torch.vstack((p_ends, p_end) ) else: UpperCAmelCase__ = p_start UpperCAmelCase__ = p_end return p_starts, p_ends
603
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A : List[str] =logging.get_logger(__name__) _A : int ={ '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class _lowercase ( _lowercase ): a = """roberta""" def __init__( self: Optional[Any] , UpperCamelCase__: Union[str, Any]=50_265 , UpperCamelCase__: Any=768 , UpperCamelCase__: Optional[int]=12 , UpperCamelCase__: Any=12 , UpperCamelCase__: Optional[Any]=3_072 , UpperCamelCase__: Tuple="gelu" , UpperCamelCase__: int=0.1 , UpperCamelCase__: str=0.1 , UpperCamelCase__: Optional[int]=512 , UpperCamelCase__: List[Any]=2 , UpperCamelCase__: Tuple=0.02 , UpperCamelCase__: Optional[Any]=1e-12 , UpperCamelCase__: Union[str, Any]=1 , UpperCamelCase__: str=0 , UpperCamelCase__: List[str]=2 , UpperCamelCase__: Optional[Any]="absolute" , UpperCamelCase__: Optional[Any]=True , UpperCamelCase__: Tuple=None , **UpperCamelCase__: Union[str, Any] , ): super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase__ : Tuple = vocab_size lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : Any = num_hidden_layers lowerCamelCase__ : Union[str, Any] = num_attention_heads lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Optional[int] = intermediate_size lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : Dict = attention_probs_dropout_prob lowerCamelCase__ : Optional[int] = max_position_embeddings lowerCamelCase__ : Tuple = type_vocab_size lowerCamelCase__ : Union[str, Any] = initializer_range lowerCamelCase__ : List[str] = layer_norm_eps lowerCamelCase__ : str = position_embedding_type lowerCamelCase__ : Union[str, Any] = use_cache lowerCamelCase__ : Any = classifier_dropout class _lowercase ( _lowercase ): @property def lowerCamelCase_ ( self: Tuple ): if self.task == "multiple-choice": lowerCamelCase__ : int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCamelCase__ : Union[str, Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
631
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
631
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ : Tuple = { """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[Any] = ["""MobileViTFeatureExtractor"""] SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Dict = [ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
0
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( __snake_case , unittest.TestCase ): lowercase = ConsistencyModelPipeline lowercase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowercase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt lowercase = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet""" , ) return unet @property def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet_class_cond""" , ) return unet def lowerCamelCase_ ( self : Any , __magic_name__ : Tuple=False ): """simple docstring""" if class_cond: UpperCamelCase = self.dummy_cond_unet else: UpperCamelCase = self.dummy_uncond_unet # Default to CM multistep sampler UpperCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCamelCase = { """unet""": unet, """scheduler""": scheduler, } return components def lowerCamelCase_ ( self : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : int=0 ): """simple docstring""" if str(__magic_name__ ).startswith("""mps""" ): UpperCamelCase = torch.manual_seed(__magic_name__ ) else: UpperCamelCase = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) UpperCamelCase = { """batch_size""": 1, """num_inference_steps""": None, """timesteps""": [2_2, 0], """generator""": generator, """output_type""": """np""", } return inputs def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = ConsistencyModelPipeline(**__magic_name__ ) UpperCamelCase = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase = self.get_dummy_inputs(__magic_name__ ) UpperCamelCase = pipe(**__magic_name__ ).images assert image.shape == (1, 3_2, 3_2, 3) UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components(class_cond=__magic_name__ ) UpperCamelCase = ConsistencyModelPipeline(**__magic_name__ ) UpperCamelCase = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase = self.get_dummy_inputs(__magic_name__ ) UpperCamelCase = 0 UpperCamelCase = pipe(**__magic_name__ ).images assert image.shape == (1, 3_2, 3_2, 3) UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = ConsistencyModelPipeline(**__magic_name__ ) UpperCamelCase = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase = self.get_dummy_inputs(__magic_name__ ) UpperCamelCase = 1 UpperCamelCase = None UpperCamelCase = pipe(**__magic_name__ ).images assert image.shape == (1, 3_2, 3_2, 3) UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components(class_cond=__magic_name__ ) UpperCamelCase = ConsistencyModelPipeline(**__magic_name__ ) UpperCamelCase = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase = self.get_dummy_inputs(__magic_name__ ) UpperCamelCase = 1 UpperCamelCase = None UpperCamelCase = 0 UpperCamelCase = pipe(**__magic_name__ ).images assert image.shape == (1, 3_2, 3_2, 3) UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : Union[str, Any] , __magic_name__ : str=0 , __magic_name__ : List[Any]=False , __magic_name__ : List[str]="cpu" , __magic_name__ : List[Any]=torch.floataa , __magic_name__ : List[str]=(1, 3, 6_4, 6_4) ): """simple docstring""" UpperCamelCase = torch.manual_seed(__magic_name__ ) UpperCamelCase = { """num_inference_steps""": None, """timesteps""": [2_2, 0], """class_labels""": 0, """generator""": generator, """output_type""": """np""", } if get_fixed_latents: UpperCamelCase = self.get_fixed_latents(seed=__magic_name__ , device=__magic_name__ , dtype=__magic_name__ , shape=__magic_name__ ) UpperCamelCase = latents return inputs def lowerCamelCase_ ( self : Optional[int] , __magic_name__ : List[str]=0 , __magic_name__ : str="cpu" , __magic_name__ : Dict=torch.floataa , __magic_name__ : Tuple=(1, 3, 6_4, 6_4) ): """simple docstring""" if type(__magic_name__ ) == str: UpperCamelCase = torch.device(__magic_name__ ) UpperCamelCase = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) UpperCamelCase = randn_tensor(__magic_name__ , generator=__magic_name__ , device=__magic_name__ , dtype=__magic_name__ ) return latents def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) UpperCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCamelCase = ConsistencyModelPipeline(unet=__magic_name__ , scheduler=__magic_name__ ) pipe.to(torch_device=__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase = self.get_inputs() UpperCamelCase = pipe(**__magic_name__ ).images assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = np.array([0.0_888, 0.0_881, 0.0_666, 0.0_479, 0.0_292, 0.0_195, 0.0_201, 0.0_163, 0.0_254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) UpperCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCamelCase = ConsistencyModelPipeline(unet=__magic_name__ , scheduler=__magic_name__ ) pipe.to(torch_device=__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase = self.get_inputs() UpperCamelCase = 1 UpperCamelCase = None UpperCamelCase = pipe(**__magic_name__ ).images assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = np.array([0.0_340, 0.0_152, 0.0_063, 0.0_267, 0.0_221, 0.0_107, 0.0_416, 0.0_186, 0.0_217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) UpperCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCamelCase = ConsistencyModelPipeline(unet=__magic_name__ , scheduler=__magic_name__ ) pipe.to(torch_device=__magic_name__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase = self.get_inputs(get_fixed_latents=__magic_name__ , device=__magic_name__ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__magic_name__ , enable_math=__magic_name__ , enable_mem_efficient=__magic_name__ ): UpperCamelCase = pipe(**__magic_name__ ).images assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = np.array([0.1_875, 0.1_428, 0.1_289, 0.2_151, 0.2_092, 0.1_477, 0.1_877, 0.1_641, 0.1_353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) UpperCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCamelCase = ConsistencyModelPipeline(unet=__magic_name__ , scheduler=__magic_name__ ) pipe.to(torch_device=__magic_name__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase = self.get_inputs(get_fixed_latents=__magic_name__ , device=__magic_name__ ) UpperCamelCase = 1 UpperCamelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__magic_name__ , enable_math=__magic_name__ , enable_mem_efficient=__magic_name__ ): UpperCamelCase = pipe(**__magic_name__ ).images assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = np.array([0.1_663, 0.1_948, 0.2_275, 0.1_680, 0.1_204, 0.1_245, 0.1_858, 0.1_338, 0.2_095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
386
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __magic_name__ = None __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __magic_name__ = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } __magic_name__ = { 'google/bigbird-roberta-base': 4_096, 'google/bigbird-roberta-large': 4_096, 'google/bigbird-base-trivia-itc': 4_096, } __magic_name__ = '▁' class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = BigBirdTokenizer a_ = ["""input_ids""", """attention_mask"""] a_ = [] def __init__( self : str ,_a : Any=None ,_a : Optional[Any]=None ,_a : str="<unk>" ,_a : Union[str, Any]="<s>" ,_a : Optional[Any]="</s>" ,_a : Any="<pad>" ,_a : str="[SEP]" ,_a : Dict="[MASK]" ,_a : int="[CLS]" ,**_a : List[Any] ,): '''simple docstring''' A_ : Optional[Any] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else bos_token A_ : Optional[Any] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else eos_token A_ : Union[str, Any] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else unk_token A_ : Dict = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else pad_token A_ : Union[str, Any] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else cls_token A_ : Optional[Any] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else sep_token # Mask token behave like a normal word, i.e. include the space before it A_ : Optional[Any] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else mask_token super().__init__( _a ,tokenizer_file=_a ,bos_token=_a ,eos_token=_a ,unk_token=_a ,sep_token=_a ,pad_token=_a ,cls_token=_a ,mask_token=_a ,**_a ,) A_ : int = vocab_file A_ : str = False if not self.vocab_file else True def _a ( self : Any ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' A_ : List[Any] = [self.sep_token_id] A_ : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _a ( self : Tuple ,_a : List[int] ,_a : Optional[List[int]] = None ,_a : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] def _a ( self : str ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' A_ : Union[str, Any] = [self.sep_token_id] A_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self : Union[str, Any] ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A_ : Union[str, Any] = os.path.join( _a ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file ,_a ) return (out_vocab_file,)
27
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : str=True , lowerCamelCase : Optional[Any]="pt"): A_ : Optional[int] = {"""add_prefix_space""": True} if isinstance(lowerCamelCase , lowerCamelCase) and not line.startswith(""" """) else {} A_ : Optional[int] = padding_side return tokenizer( [line] , max_length=lowerCamelCase , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase , return_tensors=lowerCamelCase , add_special_tokens=lowerCamelCase , **lowerCamelCase , ) def lowerCamelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any]=None , ): A_ : Dict = input_ids.ne(lowerCamelCase).any(dim=0) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] ,_a : Optional[Any] ,_a : Tuple ,_a : Dict ,_a : Tuple ,_a : Tuple="train" ,_a : Optional[int]=None ,_a : Any=None ,_a : int=None ,_a : Union[str, Any]="" ,): '''simple docstring''' super().__init__() A_ : Union[str, Any] = Path(_a ).joinpath(type_path + """.source""" ) A_ : Any = Path(_a ).joinpath(type_path + """.target""" ) A_ : Dict = self.get_char_lens(self.src_file ) A_ : Optional[int] = max_source_length A_ : List[str] = max_target_length assert min(self.src_lens ) > 0, f'found empty line in {self.src_file}' A_ : List[Any] = tokenizer A_ : Optional[Any] = prefix if n_obs is not None: A_ : Any = self.src_lens[:n_obs] A_ : Optional[int] = src_lang A_ : Tuple = tgt_lang def __len__( self : Tuple ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self : List[str] ,_a : Tuple ): '''simple docstring''' A_ : int = index + 1 # linecache starts at 1 A_ : Union[str, Any] = self.prefix + linecache.getline(str(self.src_file ) ,_a ).rstrip("""\n""" ) A_ : Dict = linecache.getline(str(self.tgt_file ) ,_a ).rstrip("""\n""" ) assert source_line, f'empty source line for index {index}' assert tgt_line, f'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer ,_a ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A_ : List[str] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,_a ) else self.tokenizer ) A_ : Any = self.tokenizer.generator if isinstance(self.tokenizer ,_a ) else self.tokenizer A_ : Optional[int] = encode_line(_a ,_a ,self.max_source_length ,"""right""" ) A_ : Optional[int] = encode_line(_a ,_a ,self.max_target_length ,"""right""" ) A_ : Optional[Any] = source_inputs["""input_ids"""].squeeze() A_ : Dict = target_inputs["""input_ids"""].squeeze() A_ : Union[str, Any] = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _a ( _a : int ): '''simple docstring''' return [len(_a ) for x in Path(_a ).open().readlines()] def _a ( self : Optional[int] ,_a : Dict ): '''simple docstring''' A_ : str = torch.stack([x["""input_ids"""] for x in batch] ) A_ : Optional[Any] = torch.stack([x["""attention_mask"""] for x in batch] ) A_ : str = torch.stack([x["""decoder_input_ids"""] for x in batch] ) A_ : Union[str, Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,_a ) else self.tokenizer.pad_token_id ) A_ : str = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,_a ) else self.tokenizer.pad_token_id ) A_ : List[str] = trim_batch(_a ,_a ) A_ , A_ : Union[str, Any] = trim_batch(_a ,_a ,attention_mask=_a ) A_ : List[str] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __magic_name__ = getLogger(__name__) def lowerCamelCase ( lowerCamelCase : List[List]): return list(itertools.chain.from_iterable(lowerCamelCase)) def lowerCamelCase ( lowerCamelCase : str): A_ : Union[str, Any] = get_git_info() save_json(lowerCamelCase , os.path.join(lowerCamelCase , """git_log.json""")) def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : List[str]=4 , **lowerCamelCase : List[str]): with open(lowerCamelCase , """w""") as f: json.dump(lowerCamelCase , lowerCamelCase , indent=lowerCamelCase , **lowerCamelCase) def lowerCamelCase ( lowerCamelCase : Any): with open(lowerCamelCase) as f: return json.load(lowerCamelCase) def lowerCamelCase ( ): A_ : List[str] = git.Repo(search_parent_directories=lowerCamelCase) A_ : Union[str, Any] = { """repo_id""": str(lowerCamelCase), """repo_sha""": str(repo.head.object.hexsha), """repo_branch""": str(repo.active_branch), """hostname""": str(socket.gethostname()), } return repo_infos def lowerCamelCase ( lowerCamelCase : Callable , lowerCamelCase : Iterable): return list(map(lowerCamelCase , lowerCamelCase)) def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : Union[str, Any]): with open(lowerCamelCase , """wb""") as f: return pickle.dump(lowerCamelCase , lowerCamelCase) def lowerCamelCase ( lowerCamelCase : List[str]): def remove_articles(lowerCamelCase : Any): return re.sub(r"""\b(a|an|the)\b""" , """ """ , lowerCamelCase) def white_space_fix(lowerCamelCase : List[Any]): return " ".join(text.split()) def remove_punc(lowerCamelCase : Union[str, Any]): A_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(lowerCamelCase : List[str]): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase)))) def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : int): A_ : Tuple = normalize_answer(lowerCamelCase).split() A_ : Dict = normalize_answer(lowerCamelCase).split() A_ : int = Counter(lowerCamelCase) & Counter(lowerCamelCase) A_ : Any = sum(common.values()) if num_same == 0: return 0 A_ : Any = 1.0 * num_same / len(lowerCamelCase) A_ : Any = 1.0 * num_same / len(lowerCamelCase) A_ : Any = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Any): return normalize_answer(lowerCamelCase) == normalize_answer(lowerCamelCase) def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : List[str]): assert len(lowerCamelCase) == len(lowerCamelCase) A_ : Any = 0 for hypo, pred in zip(lowerCamelCase , lowerCamelCase): em += exact_match_score(lowerCamelCase , lowerCamelCase) if len(lowerCamelCase) > 0: em /= len(lowerCamelCase) return {"em": em} def lowerCamelCase ( lowerCamelCase : Union[str, Any]): return model_prefix.startswith("""rag""") def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Union[str, Any]): A_ : Optional[Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A_ : Tuple = """dropout_rate""" for p in extra_params: if getattr(lowerCamelCase , lowerCamelCase , lowerCamelCase): if not hasattr(lowerCamelCase , lowerCamelCase) and not hasattr(lowerCamelCase , equivalent_param[p]): logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase)) delattr(lowerCamelCase , lowerCamelCase) continue A_ : Tuple = p if hasattr(lowerCamelCase , lowerCamelCase) else equivalent_param[p] setattr(lowerCamelCase , lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase)) delattr(lowerCamelCase , lowerCamelCase) return hparams, config
27
1
import logging from transformers import PretrainedConfig _A : Optional[Any] = logging.getLogger(__name__) _A : List[Any] = { """bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""", } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : Tuple = """bertabs""" def __init__( self , A_=3_05_22 , A_=5_12 , A_=6 , A_=5_12 , A_=8 , A_=5_12 , A_=0.2 , A_=6 , A_=7_68 , A_=8 , A_=20_48 , A_=0.2 , **A_ , ): '''simple docstring''' super().__init__(**A_ ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = max_pos SCREAMING_SNAKE_CASE__ = enc_layers SCREAMING_SNAKE_CASE__ = enc_hidden_size SCREAMING_SNAKE_CASE__ = enc_heads SCREAMING_SNAKE_CASE__ = enc_ff_size SCREAMING_SNAKE_CASE__ = enc_dropout SCREAMING_SNAKE_CASE__ = dec_layers SCREAMING_SNAKE_CASE__ = dec_hidden_size SCREAMING_SNAKE_CASE__ = dec_heads SCREAMING_SNAKE_CASE__ = dec_ff_size SCREAMING_SNAKE_CASE__ = dec_dropout
100
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[str] = tempfile.mkdtemp() # fmt: off _SCREAMING_SNAKE_CASE : Any = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _SCREAMING_SNAKE_CASE : Union[str, Any] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) _SCREAMING_SNAKE_CASE : str = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] _SCREAMING_SNAKE_CASE : Any = {"""unk_token""": """<unk>"""} _SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__snake_case ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__snake_case ) ) _SCREAMING_SNAKE_CASE : Any = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } _SCREAMING_SNAKE_CASE : List[str] = os.path.join(self.tmpdirname , __snake_case ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__snake_case , __snake_case ) def UpperCAmelCase_ ( self , **__snake_case ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def UpperCAmelCase_ ( self , **__snake_case ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__snake_case ) def UpperCAmelCase_ ( self , **__snake_case ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **__snake_case ) def UpperCAmelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _SCREAMING_SNAKE_CASE : List[str] = [Image.fromarray(np.moveaxis(__snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() _SCREAMING_SNAKE_CASE : int = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE : Dict = self.get_image_processor() _SCREAMING_SNAKE_CASE : str = CLIPSegProcessor(tokenizer=__snake_case , image_processor=__snake_case ) processor_slow.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE : List[str] = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=__snake_case ) _SCREAMING_SNAKE_CASE : Any = CLIPSegProcessor(tokenizer=__snake_case , image_processor=__snake_case ) processor_fast.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __snake_case ) self.assertIsInstance(processor_fast.tokenizer , __snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __snake_case ) self.assertIsInstance(processor_fast.image_processor , __snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : int = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE : str = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _SCREAMING_SNAKE_CASE : List[str] = self.get_image_processor(do_normalize=__snake_case , padding_value=1.0 ) _SCREAMING_SNAKE_CASE : Tuple = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Optional[Any] = self.get_image_processor() _SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer() _SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPSegProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _SCREAMING_SNAKE_CASE : List[Any] = self.prepare_image_inputs() _SCREAMING_SNAKE_CASE : List[Any] = image_processor(__snake_case , return_tensors="""np""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = processor(images=__snake_case , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[str] = self.get_image_processor() _SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() _SCREAMING_SNAKE_CASE : Optional[Any] = CLIPSegProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _SCREAMING_SNAKE_CASE : str = """lower newer""" _SCREAMING_SNAKE_CASE : Any = processor(text=__snake_case ) _SCREAMING_SNAKE_CASE : Tuple = tokenizer(__snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_image_processor() _SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() _SCREAMING_SNAKE_CASE : Dict = CLIPSegProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _SCREAMING_SNAKE_CASE : Any = """lower newer""" _SCREAMING_SNAKE_CASE : List[Any] = self.prepare_image_inputs() _SCREAMING_SNAKE_CASE : List[str] = processor(text=__snake_case , images=__snake_case ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__snake_case ): processor() def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Dict = self.get_image_processor() _SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer() _SCREAMING_SNAKE_CASE : List[Any] = CLIPSegProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _SCREAMING_SNAKE_CASE : str = self.prepare_image_inputs() _SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_image_inputs() _SCREAMING_SNAKE_CASE : List[Any] = processor(images=__snake_case , visual_prompt=__snake_case ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """conditional_pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__snake_case ): processor() def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_image_processor() _SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() _SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPSegProcessor(tokenizer=__snake_case , image_processor=__snake_case ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _SCREAMING_SNAKE_CASE : int = processor.batch_decode(__snake_case ) _SCREAMING_SNAKE_CASE : int = tokenizer.batch_decode(__snake_case ) self.assertListEqual(__snake_case , __snake_case )
533
0
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel __snake_case : List[Any] = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } __snake_case : List[str] = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def _lowercase ( __snake_case ,__snake_case=False ) -> List[Any]: __lowerCAmelCase : Union[str, Any] = create_model( "HTSAT-tiny" ,"roberta" ,__snake_case ,precision="fp32" ,device="cuda:0" if torch.cuda.is_available() else "cpu" ,enable_fusion=__snake_case ,fusion_type="aff_2d" if enable_fusion else None ,) return model, model_cfg def _lowercase ( __snake_case ) -> Optional[int]: __lowerCAmelCase : int = {} __lowerCAmelCase : str = R'.*sequential.(\d+).*' __lowerCAmelCase : Dict = R'.*_projection.(\d+).*' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __lowerCAmelCase : List[Any] = key.replace(__snake_case ,__snake_case ) if re.match(__snake_case ,__snake_case ): # replace sequential layers with list __lowerCAmelCase : Dict = re.match(__snake_case ,__snake_case ).group(1 ) __lowerCAmelCase : str = key.replace(F"""sequential.{sequential_layer}.""" ,F"""layers.{int(__snake_case )//3}.linear.""" ) elif re.match(__snake_case ,__snake_case ): __lowerCAmelCase : str = int(re.match(__snake_case ,__snake_case ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __lowerCAmelCase : Any = 1 if projecton_layer == 0 else 2 __lowerCAmelCase : Optional[Any] = key.replace(F"""_projection.{projecton_layer}.""" ,F"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value __lowerCAmelCase : str = value __lowerCAmelCase : int = mixed_qkv.size(0 ) // 3 __lowerCAmelCase : Union[str, Any] = mixed_qkv[:qkv_dim] __lowerCAmelCase : Dict = mixed_qkv[qkv_dim : qkv_dim * 2] __lowerCAmelCase : str = mixed_qkv[qkv_dim * 2 :] __lowerCAmelCase : Optional[int] = query_layer __lowerCAmelCase : List[str] = key_layer __lowerCAmelCase : Dict = value_layer else: __lowerCAmelCase : Union[str, Any] = value return model_state_dict def _lowercase ( __snake_case ,__snake_case ,__snake_case ,__snake_case=False ) -> str: __lowerCAmelCase : Any = init_clap(__snake_case ,enable_fusion=__snake_case ) clap_model.eval() __lowerCAmelCase : List[str] = clap_model.state_dict() __lowerCAmelCase : Tuple = rename_state_dict(__snake_case ) __lowerCAmelCase : int = ClapConfig() __lowerCAmelCase : Tuple = enable_fusion __lowerCAmelCase : List[str] = ClapModel(__snake_case ) # ignore the spectrogram embedding layer model.load_state_dict(__snake_case ,strict=__snake_case ) model.save_pretrained(__snake_case ) transformers_config.save_pretrained(__snake_case ) if __name__ == "__main__": __snake_case : List[str] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') __snake_case : List[Any] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
717
"""simple docstring""" import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class A__ : '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Optional[Any]: """simple docstring""" return self.get_dummy_input() @property def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> str: """simple docstring""" if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""") def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: Union[str, Any]=True , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Union[str, Any]=False , _SCREAMING_SNAKE_CASE: Dict=False , ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = 4 __lowerCAmelCase : List[str] = 32 __lowerCAmelCase : str = (32, 32) __lowerCAmelCase : int = torch.manual_seed(0) __lowerCAmelCase : Dict = torch.device(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = (batch_size, num_channels) + sizes __lowerCAmelCase : Dict = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = {"hidden_states": hidden_states} if include_temb: __lowerCAmelCase : List[str] = 128 __lowerCAmelCase : Dict = randn_tensor((batch_size, temb_channels) , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE) if include_res_hidden_states_tuple: __lowerCAmelCase : Dict = torch.manual_seed(1) __lowerCAmelCase : int = (randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE),) if include_encoder_hidden_states: __lowerCAmelCase : int = floats_tensor((batch_size, 32, 32)).to(_SCREAMING_SNAKE_CASE) if include_skip_sample: __lowerCAmelCase : Optional[Any] = randn_tensor(((batch_size, 3) + sizes) , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE) return dummy_input def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Any: """simple docstring""" __lowerCAmelCase : Optional[int] = { "in_channels": 32, "out_channels": 32, "temb_channels": 128, } if self.block_type == "up": __lowerCAmelCase : Tuple = 32 if self.block_type == "mid": init_dict.pop("out_channels") __lowerCAmelCase : str = self.dummy_input return init_dict, inputs_dict def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: List[str]) -> Optional[int]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : List[Any] = self.prepare_init_args_and_inputs_for_common() __lowerCAmelCase : Dict = self.block_class(**_SCREAMING_SNAKE_CASE) unet_block.to(_SCREAMING_SNAKE_CASE) unet_block.eval() with torch.no_grad(): __lowerCAmelCase : int = unet_block(**_SCREAMING_SNAKE_CASE) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : List[Any] = output[0] self.assertEqual(output.shape , self.output_shape) __lowerCAmelCase : str = output[0, -1, -3:, -3:] __lowerCAmelCase : List[Any] = torch.tensor(_SCREAMING_SNAKE_CASE).to(_SCREAMING_SNAKE_CASE) assert torch_all_close(output_slice.flatten() , _SCREAMING_SNAKE_CASE , atol=5e-3) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps") def _SCREAMING_SNAKE_CASE ( self: int) -> Tuple: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = self.prepare_init_args_and_inputs_for_common() __lowerCAmelCase : str = self.block_class(**_SCREAMING_SNAKE_CASE) model.to(_SCREAMING_SNAKE_CASE) model.train() __lowerCAmelCase : Union[str, Any] = model(**_SCREAMING_SNAKE_CASE) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : Union[str, Any] = output[0] __lowerCAmelCase : List[Any] = torch.device(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = randn_tensor(output.shape , device=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = torch.nn.functional.mse_loss(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) loss.backward()
615
0
'''simple docstring''' def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ ) ->list[int]: snake_case__ = int(UpperCAmelCase_ ) # Initialize Result snake_case__ = [] # Traverse through all denomination for denomination in reversed(UpperCAmelCase_ ): # Find denominations while int(UpperCAmelCase_ ) >= int(UpperCAmelCase_ ): total_value -= int(UpperCAmelCase_ ) answer.append(UpperCAmelCase_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": a__ : int = [] a__ : Any = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): a__ : Union[str, Any] = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(f"""Denomination {i}: """).strip())) a__ : Tuple = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter a__ : Optional[Any] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] a__ : Any = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(f"""Following is minimal change for {value}: """) a__ : List[Any] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
368
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL a__ : Optional[int] = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=False , ) ->Optional[int]: output_path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCAmelCase_ , UpperCAmelCase_ , f=output_path.as_posix() , input_names=UpperCAmelCase_ , output_names=UpperCAmelCase_ , dynamic_axes=UpperCAmelCase_ , do_constant_folding=UpperCAmelCase_ , use_external_data_format=UpperCAmelCase_ , enable_onnx_checker=UpperCAmelCase_ , opset_version=UpperCAmelCase_ , ) else: export( UpperCAmelCase_ , UpperCAmelCase_ , f=output_path.as_posix() , input_names=UpperCAmelCase_ , output_names=UpperCAmelCase_ , dynamic_axes=UpperCAmelCase_ , do_constant_folding=UpperCAmelCase_ , opset_version=UpperCAmelCase_ , ) @torch.no_grad() def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = False ) ->Union[str, Any]: snake_case__ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): snake_case__ = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: snake_case__ = 'cpu' snake_case__ = Path(UpperCAmelCase_ ) # VAE DECODER snake_case__ = AutoencoderKL.from_pretrained(model_path + '/vae' ) snake_case__ = vae_decoder.config.latent_channels # forward only through the decoder part snake_case__ = vae_decoder.decode onnx_export( UpperCAmelCase_ , model_args=( torch.randn(1 , UpperCAmelCase_ , 25 , 25 ).to(device=UpperCAmelCase_ , dtype=UpperCAmelCase_ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCAmelCase_ , ) del vae_decoder if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') a__ : List[str] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
368
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : Dict ={ '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any =[ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] _lowercase : Optional[Any] =['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys _lowercase : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
700
_lowercase : Dict ='''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
661
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCAmelCase :Tuple = logging.get_logger(__name__) def lowerCamelCase_ (UpperCamelCase__ : Optional[int] ): if isinstance(UpperCamelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(UpperCamelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(UpperCamelCase__ ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class _UpperCAmelCase ( a ): '''simple docstring''' a__ =['''pixel_values'''] def __init__( self , A = True , A = None , A = PILImageResampling.BILINEAR , A = True , A = None , A = True , A = 1 / 2_5_5 , A = True , A = None , A = None , **A , ) -> None: super().__init__(**a_ ) _UpperCAmelCase : Any = size if size is not None else {"shortest_edge": 2_2_4} _UpperCAmelCase : List[str] = get_size_dict(a_ , default_to_square=a_ ) _UpperCAmelCase : Optional[int] = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} _UpperCAmelCase : List[str] = get_size_dict(a_ , param_name='''crop_size''' ) _UpperCAmelCase : int = do_resize _UpperCAmelCase : int = size _UpperCAmelCase : Tuple = do_center_crop _UpperCAmelCase : Dict = crop_size _UpperCAmelCase : List[str] = resample _UpperCAmelCase : Dict = do_rescale _UpperCAmelCase : Optional[int] = rescale_factor _UpperCAmelCase : Optional[int] = do_normalize _UpperCAmelCase : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self , A , A , A = PILImageResampling.BILINEAR , A = None , **A , ) -> np.ndarray: _UpperCAmelCase : Dict = get_size_dict(a_ , default_to_square=a_ ) if "shortest_edge" in size: _UpperCAmelCase : int = get_resize_output_image_size(a_ , size['''shortest_edge'''] , default_to_square=a_ ) elif "height" in size and "width" in size: _UpperCAmelCase : Union[str, Any] = (size["height"], size["width"]) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ ) def __lowerCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: _UpperCAmelCase : Optional[int] = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(a_ , size=(size['''height'''], size['''width''']) , data_format=a_ , **a_ ) def __lowerCAmelCase ( self , A , A , A = None , **A , ) -> Optional[Any]: return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def __lowerCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(a_ , mean=a_ , std=a_ , data_format=a_ , **a_ ) def __lowerCAmelCase ( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase : Union[str, Any] = to_numpy_array(a_ ) if do_resize: _UpperCAmelCase : str = self.resize(image=a_ , size=a_ , resample=a_ ) if do_center_crop: _UpperCAmelCase : Dict = self.center_crop(a_ , size=a_ ) if do_rescale: _UpperCAmelCase : Tuple = self.rescale(image=a_ , scale=a_ ) if do_normalize: _UpperCAmelCase : str = self.normalize(image=a_ , mean=a_ , std=a_ ) _UpperCAmelCase : Union[str, Any] = to_channel_dimension_format(a_ , a_ ) return image def __lowerCAmelCase ( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: _UpperCAmelCase : int = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : List[str] = resample if resample is not None else self.resample _UpperCAmelCase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase : int = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase : str = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : Dict = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase : List[Any] = image_std if image_std is not None else self.image_std _UpperCAmelCase : List[Any] = size if size is not None else self.size _UpperCAmelCase : Optional[int] = get_size_dict(a_ , default_to_square=a_ ) _UpperCAmelCase : Optional[int] = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase : List[str] = get_size_dict(a_ , param_name='''crop_size''' ) if not valid_images(a_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) _UpperCAmelCase : str = make_batched(a_ ) _UpperCAmelCase : List[str] = [ [ self._preprocess_image( image=a_ , do_resize=a_ , size=a_ , resample=a_ , do_center_crop=a_ , crop_size=a_ , do_rescale=a_ , rescale_factor=a_ , do_normalize=a_ , image_mean=a_ , image_std=a_ , data_format=a_ , ) for img in video ] for video in videos ] _UpperCAmelCase : Tuple = {"pixel_values": videos} return BatchFeature(data=a_ , tensor_type=a_ )
506
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCAmelCase : List[str] = re.compile("""[^A-Za-z_0-9]""") # parameters used in DuplicationIndex lowerCAmelCase : Union[str, Any] = 1_0 lowerCAmelCase : Optional[Any] = 2_5_6 def _A ( A ) -> Optional[MinHash]: if len(A ) < MIN_NUM_TOKENS: return None lowercase : List[Any] = MinHash(num_perm=A ) for token in set(A ): min_hash.update(token.encode() ) return min_hash def _A ( A ) -> Set[str]: return {t for t in NON_ALPHA.split(A ) if len(t.strip() ) > 0} class _UpperCamelCase : '''simple docstring''' def __init__( self , *, a_ = 0.85 , ) -> List[str]: lowercase : Any = duplication_jaccard_threshold lowercase : str = NUM_PERM lowercase : Union[str, Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) lowercase : Any = defaultdict(a_ ) def a__ ( self , a_ , a_ ) -> None: lowercase : Dict = self._index.query(a_ ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(a_ , a_ ) if len(a_ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(a_ ) break else: self._duplicate_clusters[close_duplicates[0]].add(a_ ) def a__ ( self ) -> List[List[Dict]]: lowercase : str = [] for base, duplicates in self._duplicate_clusters.items(): lowercase : str = [base] + list(a_ ) # reformat the cluster to be a list of dict lowercase : Optional[Any] = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster] duplicate_clusters.append(a_ ) return duplicate_clusters def a__ ( self , a_ ) -> None: lowercase : Tuple = self.get_duplicate_clusters() with open(a_ , "w" ) as f: json.dump(a_ , a_ ) def _A ( A ) -> Dict: lowercase , lowercase : List[str] = element lowercase : int = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _A ( A ) -> Any: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash ,ThreadedIterator(A ,max_queue_size=1_0_0_0_0 ) ,chunksize=1_0_0 ,): if data is not None: yield data def _A ( A ,A ) -> List[str]: lowercase : Dict = DuplicationIndex(duplication_jaccard_threshold=A ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(A ) ) ,max_queue_size=1_0_0 ) ): di.add(A ,A ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _A ( A ,A ) -> float: lowercase : int = get_tokens(A ) lowercase : Dict = get_tokens(A ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCAmelCase : List[str] = None def _A ( A ,A ) -> Union[str, Any]: lowercase : int = [] for elementa in cluster: lowercase : Any = _shared_dataset[elementa["base_index"]]["content"] for elementa in extremes: lowercase : Optional[int] = _shared_dataset[elementa["base_index"]]["content"] if jaccard_similarity(A ,A ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowercase : List[Any] = 1 extremes.append(A ) return extremes def _A ( A ,A ,A ) -> Optional[Any]: global _shared_dataset lowercase : Dict = dataset lowercase : int = [] lowercase : int = partial(_find_cluster_extremes_shared ,jaccard_threshold=A ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( A ,A ,) ,total=len(A ) ,): extremes_list.append(A ) return extremes_list def _A ( A ,A = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: lowercase : Dict = make_duplicate_clusters(A ,A ) lowercase : List[str] = {x["base_index"] for cluster in duplicate_clusters for x in cluster} lowercase : Any = {} lowercase : int = find_extremes(A ,A ,A ) for extremes in extremes_clusters: for element in extremes: lowercase : str = element lowercase : str = duplicate_indices - set(extreme_dict.keys() ) lowercase : Any = dataset.filter(lambda A ,A : idx not in remove_indices ,with_indices=A ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowercase : List[str] = element["base_index"] in extreme_dict if element["is_extreme"]: lowercase : str = extreme_dict[element["base_index"]]["copies"] print(F'''Original dataset size: {len(A )}''' ) print(F'''Number of duplicate clusters: {len(A )}''' ) print(F'''Files in duplicate cluster: {len(A )}''' ) print(F'''Unique files in duplicate cluster: {len(A )}''' ) print(F'''Filtered dataset size: {len(A )}''' ) return ds_filter, duplicate_clusters
372
0
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""1.0.0a"""): raise Exception("""requires fairseq >= 1.0.0a""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : Optional[int] = """Hello world! cécé herlolip""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = FairseqRobertaModel.from_pretrained(_lowercase ) roberta.eval() # disable dropout UpperCAmelCase : int = roberta.model.encoder.sentence_encoder UpperCAmelCase : str = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: UpperCAmelCase : Tuple = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our RoBERTa config:""" , _lowercase ) UpperCAmelCase : List[str] = XLMRobertaXLForSequenceClassification(_lowercase ) if classification_head else XLMRobertaXLForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : str = roberta_sent_encoder.embed_tokens.weight UpperCAmelCase : Any = roberta_sent_encoder.embed_positions.weight UpperCAmelCase : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. UpperCAmelCase : List[str] = roberta_sent_encoder.layer_norm.weight UpperCAmelCase : Any = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : str = model.roberta.encoder.layer[i] UpperCAmelCase : Tuple = roberta_sent_encoder.layers[i] UpperCAmelCase : Optional[Any] = layer.attention UpperCAmelCase : Optional[int] = roberta_layer.self_attn_layer_norm.weight UpperCAmelCase : Optional[int] = roberta_layer.self_attn_layer_norm.bias # self attention UpperCAmelCase : int = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) UpperCAmelCase : List[str] = roberta_layer.self_attn.q_proj.weight UpperCAmelCase : str = roberta_layer.self_attn.q_proj.bias UpperCAmelCase : Union[str, Any] = roberta_layer.self_attn.k_proj.weight UpperCAmelCase : Any = roberta_layer.self_attn.k_proj.bias UpperCAmelCase : str = roberta_layer.self_attn.v_proj.weight UpperCAmelCase : Union[str, Any] = roberta_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : List[Any] = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape UpperCAmelCase : Any = roberta_layer.self_attn.out_proj.weight UpperCAmelCase : Optional[Any] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm UpperCAmelCase : int = roberta_layer.final_layer_norm.weight UpperCAmelCase : List[Any] = roberta_layer.final_layer_norm.bias # intermediate UpperCAmelCase : List[Any] = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape UpperCAmelCase : List[Any] = roberta_layer.fca.weight UpperCAmelCase : List[str] = roberta_layer.fca.bias # output UpperCAmelCase : Dict = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape UpperCAmelCase : Dict = roberta_layer.fca.weight UpperCAmelCase : List[str] = roberta_layer.fca.bias # end of layer if classification_head: UpperCAmelCase : Union[str, Any] = roberta.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Optional[Any] = roberta.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : Any = roberta.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Optional[int] = roberta.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Union[str, Any] = roberta.model.encoder.lm_head.dense.weight UpperCAmelCase : Tuple = roberta.model.encoder.lm_head.dense.bias UpperCAmelCase : Union[str, Any] = roberta.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : Tuple = roberta.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : Optional[Any] = roberta.model.encoder.lm_head.weight UpperCAmelCase : str = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : List[str] = roberta.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : int = roberta.model.classification_heads["""mnli"""](roberta.extract_features(_lowercase ) ) else: UpperCAmelCase : Tuple = roberta.model(_lowercase )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Any = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) pathlib.Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--roberta_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : int = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
701
'''simple docstring''' def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowercase ) == 2_6 def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Tuple = [False] * 2_6 for char in input_str: if char.islower(): UpperCAmelCase : Any = True elif char.isupper(): UpperCAmelCase : Union[str, Any] = True return all(_lowercase ) def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def __lowerCamelCase ( ) -> None: from timeit import timeit UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=_lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=_lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
672
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Optional[int] = { """configuration_rembert""": ["""REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RemBertConfig""", """RemBertOnnxConfig"""] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = ["""RemBertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ["""RemBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ """REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RemBertForCausalLM""", """RemBertForMaskedLM""", """RemBertForMultipleChoice""", """RemBertForQuestionAnswering""", """RemBertForSequenceClassification""", """RemBertForTokenClassification""", """RemBertLayer""", """RemBertModel""", """RemBertPreTrainedModel""", """load_tf_weights_in_rembert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ """TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRemBertForCausalLM""", """TFRemBertForMaskedLM""", """TFRemBertForMultipleChoice""", """TFRemBertForQuestionAnswering""", """TFRemBertForSequenceClassification""", """TFRemBertForTokenClassification""", """TFRemBertLayer""", """TFRemBertModel""", """TFRemBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
80
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_50, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''pytorch''', '''script''': '''run_ddp.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_00, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf_dist.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_00, '''eval_accuracy''': 0.6, '''eval_loss''': 0.7}, }, ] ) class _a (unittest.TestCase ): '''simple docstring''' def __A ( self ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=A__ , ) assert hasattr(self , """env""" ) def __A ( self , A__ ): A__ : int = F"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}""" # distributed data settings A__ : str = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=A__ , instance_count=A__ , instance_type=self.instance_type , debugger_hook_config=A__ , hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=A__ , py_version="""py36""" , ) def __A ( self , A__ ): TrainingJobAnalytics(A__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def __A ( self , A__ ): # create estimator A__ : str = self.create_estimator(A__ ) # run training estimator.fit() # result dataframe A__ : str = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis A__ : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) A__ : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping A__ : str = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , A__ )
456
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def __UpperCamelCase ( a : List[Any]=None ) ->List[str]: snake_case = argparse.ArgumentParser(add_help=a , allow_abbrev=a ) # The main config parser snake_case = config_command_parser(a ) # The subparser to add commands to snake_case = config_parser.add_subparsers(title='''subcommands''' , dest='''subcommand''' ) # Then add other parsers with the parent parser default_command_parser(a , parents=[parent_parser] ) update_command_parser(a , parents=[parent_parser] ) return config_parser def __UpperCamelCase ( ) ->List[str]: snake_case = get_config_parser() snake_case = config_parser.parse_args() if not hasattr(a , '''func''' ): config_parser.print_help() exit(1 ) # Run args.func(a ) if __name__ == "__main__": main()
44
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class _lowercase : def __init__( self , A__ ) -> None: snake_case = value snake_case = None snake_case = None class _lowercase : def __init__( self , A__ ) -> None: snake_case = tree def UpperCamelCase ( self , A__ ) -> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ) -> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
44
1
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = FlaxAutoencoderKL @property def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = 4 lowerCamelCase_ = 3 lowerCamelCase_ = (32, 32) lowerCamelCase_ = jax.random.PRNGKey(0 ) lowerCamelCase_ = jax.random.uniform(A_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def a__ ( self : List[str] ) -> List[str]: """simple docstring""" lowerCamelCase_ = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } lowerCamelCase_ = self.dummy_input return init_dict, inputs_dict
70
from __future__ import annotations def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_UpperCAmelCase) if n > 1: factors.append(_UpperCAmelCase) return factors if __name__ == "__main__": import doctest doctest.testmod()
73
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''facebook/deit-base-distilled-patch16-224''': ( '''https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json''' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE ): A_ : Tuple = 'deit' def __init__( self : List[Any] , UpperCamelCase_ : List[Any]=7_68 , UpperCamelCase_ : Any=12 , UpperCamelCase_ : str=12 , UpperCamelCase_ : List[Any]=30_72 , UpperCamelCase_ : List[str]="gelu" , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Optional[Any]=0.0 , UpperCamelCase_ : int=0.02 , UpperCamelCase_ : Any=1e-12 , UpperCamelCase_ : Optional[Any]=2_24 , UpperCamelCase_ : int=16 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Any=True , UpperCamelCase_ : int=16 , **UpperCamelCase_ : List[Any] , ) -> List[Any]: super().__init__(**UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE__ :Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE__ :Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE__ :Tuple = intermediate_size SCREAMING_SNAKE_CASE__ :List[str] = hidden_act SCREAMING_SNAKE_CASE__ :int = hidden_dropout_prob SCREAMING_SNAKE_CASE__ :Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ :Any = initializer_range SCREAMING_SNAKE_CASE__ :Tuple = layer_norm_eps SCREAMING_SNAKE_CASE__ :Any = image_size SCREAMING_SNAKE_CASE__ :int = patch_size SCREAMING_SNAKE_CASE__ :Dict = num_channels SCREAMING_SNAKE_CASE__ :List[Any] = qkv_bias SCREAMING_SNAKE_CASE__ :str = encoder_stride class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE ): A_ : int = version.parse('1.11' ) @property def __lowerCamelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowerCamelCase ( self : Optional[int] ) -> float: return 1e-4
706
'''simple docstring''' from jiwer import compute_measures import datasets UpperCamelCase_ = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' UpperCamelCase_ = '''\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. ''' UpperCamelCase_ = ''' Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> wer = datasets.load_metric("wer") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE( datasets.Metric ): def __lowerCamelCase ( self : str ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] , ) def __lowerCamelCase ( self : List[Any] , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Dict=False ) -> List[Any]: if concatenate_texts: return compute_measures(UpperCamelCase_ , UpperCamelCase_ )["wer"] else: SCREAMING_SNAKE_CASE__ :List[str] = 0 SCREAMING_SNAKE_CASE__ :Tuple = 0 for prediction, reference in zip(UpperCamelCase_ , UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ :Tuple = compute_measures(UpperCamelCase_ , UpperCamelCase_ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
320
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'microsoft/unispeech-large-1500h-cv': ( 'https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : List[str] = '''unispeech''' def __init__( self : Optional[int] , lowerCAmelCase__ : int=3_2 , lowerCAmelCase__ : Optional[int]=7_6_8 , lowerCAmelCase__ : List[Any]=1_2 , lowerCAmelCase__ : List[Any]=1_2 , lowerCAmelCase__ : str=3_0_7_2 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : int=0.0 , lowerCAmelCase__ : Any=0.0 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Tuple=1e-5 , lowerCAmelCase__ : Tuple="group" , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : List[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowerCAmelCase__ : str=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__ : Tuple=(1_0, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : int=1_2_8 , lowerCAmelCase__ : Union[str, Any]=1_6 , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : List[str]=0.05 , lowerCAmelCase__ : List[str]=1_0 , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : Optional[Any]=1_0 , lowerCAmelCase__ : Dict=0 , lowerCAmelCase__ : Tuple=3_2_0 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : Optional[Any]=1_0_0 , lowerCAmelCase__ : Any=2_5_6 , lowerCAmelCase__ : List[str]=2_5_6 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Union[str, Any]="mean" , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : str=False , lowerCAmelCase__ : List[str]=2_5_6 , lowerCAmelCase__ : Tuple=8_0 , lowerCAmelCase__ : List[str]=0 , lowerCAmelCase__ : Dict=1 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : Dict=0.5 , **lowerCAmelCase__ : List[Any] , ) -> int: """simple docstring""" super().__init__(**lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : Union[str, Any] = feat_extract_norm _UpperCAmelCase : Dict = feat_extract_activation _UpperCAmelCase : Tuple = list(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = list(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = list(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = conv_bias _UpperCAmelCase : int = num_conv_pos_embeddings _UpperCAmelCase : List[str] = num_conv_pos_embedding_groups _UpperCAmelCase : Optional[int] = len(self.conv_dim ) _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : Optional[int] = intermediate_size _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : List[str] = hidden_dropout _UpperCAmelCase : Tuple = attention_dropout _UpperCAmelCase : Dict = activation_dropout _UpperCAmelCase : List[str] = feat_proj_dropout _UpperCAmelCase : str = final_dropout _UpperCAmelCase : Optional[Any] = layerdrop _UpperCAmelCase : Tuple = layer_norm_eps _UpperCAmelCase : Dict = initializer_range _UpperCAmelCase : List[str] = num_ctc_classes _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : Optional[int] = do_stable_layer_norm _UpperCAmelCase : str = use_weighted_layer_sum _UpperCAmelCase : List[str] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCAmelCase : List[str] = apply_spec_augment _UpperCAmelCase : Optional[Any] = mask_time_prob _UpperCAmelCase : Dict = mask_time_length _UpperCAmelCase : str = mask_time_min_masks _UpperCAmelCase : Dict = mask_feature_prob _UpperCAmelCase : int = mask_feature_length _UpperCAmelCase : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _UpperCAmelCase : Optional[int] = num_codevectors_per_group _UpperCAmelCase : Dict = num_codevector_groups _UpperCAmelCase : Optional[int] = contrastive_logits_temperature _UpperCAmelCase : Optional[Any] = feat_quantizer_dropout _UpperCAmelCase : Dict = num_negatives _UpperCAmelCase : Union[str, Any] = codevector_dim _UpperCAmelCase : Dict = proj_codevector_dim _UpperCAmelCase : Optional[Any] = diversity_loss_weight # ctc loss _UpperCAmelCase : Any = ctc_loss_reduction _UpperCAmelCase : List[str] = ctc_zero_infinity # pretraining loss _UpperCAmelCase : Optional[Any] = replace_prob @property def _lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
494
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging __a = logging.get_logger(__name__) __a = { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = '''blenderbot-small''' UpperCamelCase_ : Tuple = ['''past_key_values'''] UpperCamelCase_ : Optional[int] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , lowerCAmelCase__ : Dict=5_0_2_6_5 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=8 , lowerCAmelCase__ : str=2_0_4_8 , lowerCAmelCase__ : Optional[int]=1_6 , lowerCAmelCase__ : List[str]=8 , lowerCAmelCase__ : Optional[int]=2_0_4_8 , lowerCAmelCase__ : List[Any]=1_6 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Any=5_1_2 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Optional[int]=0.0 , lowerCAmelCase__ : Any=0.0 , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Optional[int]=1 , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Dict=0 , lowerCAmelCase__ : Any=1 , lowerCAmelCase__ : List[Any]=2 , lowerCAmelCase__ : str=2 , **lowerCAmelCase__ : Optional[Any] , ) -> Any: """simple docstring""" _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Tuple = max_position_embeddings _UpperCAmelCase : Optional[Any] = d_model _UpperCAmelCase : List[str] = encoder_ffn_dim _UpperCAmelCase : Union[str, Any] = encoder_layers _UpperCAmelCase : List[Any] = encoder_attention_heads _UpperCAmelCase : Tuple = decoder_ffn_dim _UpperCAmelCase : Union[str, Any] = decoder_layers _UpperCAmelCase : Union[str, Any] = decoder_attention_heads _UpperCAmelCase : List[Any] = dropout _UpperCAmelCase : int = attention_dropout _UpperCAmelCase : int = activation_dropout _UpperCAmelCase : Union[str, Any] = activation_function _UpperCAmelCase : Any = init_std _UpperCAmelCase : Optional[Any] = encoder_layerdrop _UpperCAmelCase : Tuple = decoder_layerdrop _UpperCAmelCase : List[Any] = use_cache _UpperCAmelCase : str = encoder_layers _UpperCAmelCase : Dict = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , forced_eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) class A__ ( UpperCamelCase ): """simple docstring""" @property def _lowerCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _UpperCAmelCase : Tuple = {0: "batch"} _UpperCAmelCase : Union[str, Any] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: _UpperCAmelCase : Dict = {0: "batch", 1: "decoder_sequence"} _UpperCAmelCase : int = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. _UpperCAmelCase : str = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self.num_layers for i in range(lowerCAmelCase__ ): _UpperCAmelCase : str = {0: "batch", 2: "past_sequence + sequence"} _UpperCAmelCase : List[str] = {0: "batch", 2: "past_sequence + sequence"} else: _UpperCAmelCase : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def _lowerCAmelCase ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase : Any = super().outputs else: _UpperCAmelCase : Union[str, Any] = super(lowerCAmelCase__ , self ).outputs if self.use_past: _UpperCAmelCase , _UpperCAmelCase : int = self.num_layers for i in range(lowerCAmelCase__ ): _UpperCAmelCase : List[str] = {0: "batch", 2: "past_sequence + sequence"} _UpperCAmelCase : str = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : PreTrainedTokenizer , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" _UpperCAmelCase : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Generate decoder inputs _UpperCAmelCase : Any = seq_length if not self.use_past else 1 _UpperCAmelCase : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} _UpperCAmelCase : Union[str, Any] = dict(**lowerCAmelCase__ , **lowerCAmelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _UpperCAmelCase , _UpperCAmelCase : Dict = common_inputs["input_ids"].shape _UpperCAmelCase : Optional[Any] = common_inputs["decoder_input_ids"].shape[1] _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.num_attention_heads _UpperCAmelCase : List[str] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _UpperCAmelCase : Tuple = decoder_seq_length + 3 _UpperCAmelCase : Tuple = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _UpperCAmelCase : Union[str, Any] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ )] , dim=1 ) _UpperCAmelCase : Tuple = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _UpperCAmelCase , _UpperCAmelCase : str = self.num_layers _UpperCAmelCase : Optional[int] = min(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = max(lowerCAmelCase__ , lowerCAmelCase__ ) - min_num_layers _UpperCAmelCase : List[Any] = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(lowerCAmelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ ), ) ) # TODO: test this. _UpperCAmelCase : Tuple = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(lowerCAmelCase__ , lowerCAmelCase__ ): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) ) return common_inputs def _lowerCAmelCase ( self : int , lowerCAmelCase__ : PreTrainedTokenizer , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" _UpperCAmelCase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _UpperCAmelCase , _UpperCAmelCase : Any = common_inputs["input_ids"].shape # Not using the same length for past_key_values _UpperCAmelCase : Any = seqlen + 2 _UpperCAmelCase , _UpperCAmelCase : Any = self.num_layers _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.num_attention_heads _UpperCAmelCase : Optional[Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _UpperCAmelCase : List[str] = common_inputs["attention_mask"].dtype _UpperCAmelCase : Tuple = torch.cat( [common_inputs["attention_mask"], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ , dtype=lowerCAmelCase__ )] , dim=1 ) _UpperCAmelCase : Any = [ (torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) for _ in range(lowerCAmelCase__ ) ] return common_inputs def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : PreTrainedTokenizer , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = compute_effective_axis_dimension( lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCAmelCase : str = tokenizer.num_special_tokens_to_add(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = compute_effective_axis_dimension( lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase__ ) # Generate dummy inputs according to compute batch and sequence _UpperCAmelCase : Any = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size _UpperCAmelCase : Tuple = dict(tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) ) return common_inputs def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : PreTrainedTokenizer , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase : List[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) elif self.task == "causal-lm": _UpperCAmelCase : List[Any] = self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) else: _UpperCAmelCase : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) return common_inputs def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] ) -> str: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase : List[Any] = super()._flatten_past_key_values_(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: _UpperCAmelCase : List[Any] = super(lowerCAmelCase__ , self )._flatten_past_key_values_( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
494
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase_ = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class __magic_name__ ( __a ): """simple docstring""" lowerCAmelCase : str = VOCAB_FILES_NAMES lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Dict = ['''input_ids''', '''attention_mask'''] lowerCAmelCase : Optional[int] = None def __init__( self : int , _lowercase : Optional[int]=None , _lowercase : Union[str, Any]=None , _lowercase : Optional[int]=None , _lowercase : Union[str, Any]="<unk>" , _lowercase : Optional[Any]="<s>" , _lowercase : List[Any]="</s>" , _lowercase : List[str]="<pad>" , _lowercase : Any=False , _lowercase : Tuple=False , **_lowercase : Any , ): """simple docstring""" super().__init__( _lowercase , _lowercase , tokenizer_file=_lowercase , unk_token=_lowercase , bos_token=_lowercase , eos_token=_lowercase , pad_token=_lowercase , add_prefix_space=_lowercase , clean_up_tokenization_spaces=_lowercase , **_lowercase , ) _UpperCamelCase: Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _lowercase ) != add_prefix_space: _UpperCamelCase: Dict = getattr(_lowercase , pre_tok_state.pop('''type''' ) ) _UpperCamelCase: Optional[int] = add_prefix_space _UpperCamelCase: Optional[int] = pre_tok_class(**_lowercase ) _UpperCamelCase: Dict = add_prefix_space def lowerCAmelCase ( self : List[str] , *_lowercase : Optional[int] , **_lowercase : int ): """simple docstring""" _UpperCamelCase: int = kwargs.get('''is_split_into_words''' , _lowercase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*_lowercase , **_lowercase ) def lowerCAmelCase ( self : Any , *_lowercase : List[str] , **_lowercase : List[Any] ): """simple docstring""" _UpperCamelCase: Union[str, Any] = kwargs.get('''is_split_into_words''' , _lowercase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._encode_plus(*_lowercase , **_lowercase ) def lowerCAmelCase ( self : int , _lowercase : str , _lowercase : Optional[str] = None ): """simple docstring""" _UpperCamelCase: Tuple = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase ) def lowerCAmelCase ( self : Optional[Any] , _lowercase : "Conversation" ): """simple docstring""" _UpperCamelCase: List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowercase , add_special_tokens=_lowercase ) + [self.eos_token_id] ) if len(_lowercase ) > self.model_max_length: _UpperCamelCase: List[Any] = input_ids[-self.model_max_length :] return input_ids
264
def lowerCAmelCase_ ( lowercase: float ) -> float: '''simple docstring''' if edge <= 0 or not isinstance(lowercase , lowercase ): raise ValueError('''Length must be a positive.''' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def lowerCAmelCase_ ( lowercase: float ) -> float: '''simple docstring''' if edge <= 0 or not isinstance(lowercase , lowercase ): raise ValueError('''Length must be a positive.''' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
264
1
'''simple docstring''' import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _UpperCamelCase (_lowerCamelCase : List[str] , _lowerCamelCase : Any , _lowerCamelCase : Dict )-> Optional[int]: '''simple docstring''' __snake_case = AlbertConfig.from_json_file(_lowerCamelCase ) print(f'''Building PyTorch model from configuration: {config}''' ) __snake_case = AlbertForPreTraining(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_albert(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase_ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
24
from __future__ import annotations def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : list[list[int]] = [] create_all_state(1 , lowerCAmelCase_ , lowerCAmelCase_ , [] , lowerCAmelCase_) return result def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): '''simple docstring''' if level == 0: total_list.append(current_list[:]) return for i in range(lowerCAmelCase_ , total_number - level + 2): current_list.append(lowerCAmelCase_) create_all_state(i + 1 , lowerCAmelCase_ , level - 1 , lowerCAmelCase_ , lowerCAmelCase_) current_list.pop() def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' for i in total_list: print(*lowerCAmelCase_) if __name__ == "__main__": __magic_name__ = 4 __magic_name__ = 2 __magic_name__ = generate_all_combinations(n, k) print_all_state(total_list)
250
0
'''simple docstring''' def _a ( ): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] _snake_case : Tuple = generate_large_matrix() _snake_case : Optional[int] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def _a ( _SCREAMING_SNAKE_CASE : list[list[int]] ): assert all(row == sorted(_SCREAMING_SNAKE_CASE , reverse=_SCREAMING_SNAKE_CASE ) for row in grid ) assert all(list(_SCREAMING_SNAKE_CASE ) == sorted(_SCREAMING_SNAKE_CASE , reverse=_SCREAMING_SNAKE_CASE ) for col in zip(*_SCREAMING_SNAKE_CASE ) ) def _a ( _SCREAMING_SNAKE_CASE : list[int] ): _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(_SCREAMING_SNAKE_CASE ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _SCREAMING_SNAKE_CASE = (left + right) // 2 _SCREAMING_SNAKE_CASE = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _SCREAMING_SNAKE_CASE = mid + 1 else: _SCREAMING_SNAKE_CASE = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(_SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE : list[list[int]] ): _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = len(grid[0] ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): _SCREAMING_SNAKE_CASE = find_negative_index(grid[i][:bound] ) total += bound return (len(_SCREAMING_SNAKE_CASE ) * len(grid[0] )) - total def _a ( _SCREAMING_SNAKE_CASE : list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def _a ( _SCREAMING_SNAKE_CASE : list[list[int]] ): _SCREAMING_SNAKE_CASE = 0 for row in grid: for i, number in enumerate(_SCREAMING_SNAKE_CASE ): if number < 0: total += len(_SCREAMING_SNAKE_CASE ) - i break return total def _a ( ): from timeit import timeit print("Running benchmarks" ) _SCREAMING_SNAKE_CASE = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _SCREAMING_SNAKE_CASE = timeit(F'{func}(grid=grid)' , setup=_SCREAMING_SNAKE_CASE , number=500 ) print(F'{func}() took {time:0.4f} seconds' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
717
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : Dict = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : Tuple = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : str = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : Tuple = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : List[Any] = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : Any = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : Any = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : int = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : str = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : Any = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : Any = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : Optional[Any] = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : Union[str, Any] = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : Optional[Any] = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : str = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : Union[str, Any] = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : int = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : Dict = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : List[str] = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : Optional[Any] = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : Optional[int] = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : Dict = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : Dict = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : str = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : Optional[Any] = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : Tuple = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : Union[str, Any] = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : str = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : Optional[int] = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : Optional[Any] = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] ) class lowerCAmelCase ( metaclass=__UpperCAmelCase ): a : Dict = ["""sentencepiece"""] def __init__( self , *UpperCamelCase , **UpperCamelCase ): requires_backends(self , ["sentencepiece"] )
493
0
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _A : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = num_patches + 1 def UpperCAmelCase ( self ): _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = ViTMSNModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = self.type_sequence_label_size _UpperCAmelCase = ViTMSNForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = ViTMSNForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): __a = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __a = ( {"""feature-extraction""": ViTMSNModel, """image-classification""": ViTMSNForImageClassification} if is_torch_available() else {} ) __a = False __a = False __a = False __a = False def UpperCAmelCase ( self ): _UpperCAmelCase = ViTMSNModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def UpperCAmelCase ( self ): pass def UpperCAmelCase ( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCAmelCase ( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase ( self ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = ViTMSNModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( ) -> Dict: _UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def UpperCAmelCase ( self ): torch.manual_seed(2 ) _UpperCAmelCase = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
518
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): a = yaml.safe_load( "\\nname: \"\"\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: \"Dataset Card for X\" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: \"Table of Contents\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Dataset Description\"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: \"Dataset Summary\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Supported Tasks and Leaderboards\"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n" ) a = { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } a = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" a = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" a = { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Extra Ignored Subsection", "text": "", "is_empty_text": True, "subsections": [], } ], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } a = "\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" a = ( "The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README." ) a = "\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" a = ( "The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README." ) a = "\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" a = "The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README." a = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" a = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored)." a = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n" a = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'." a = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n" a = "The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`." a = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n" a = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty." a = "\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" a = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README." a = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n" a = "The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README." a = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" a = "The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README." a = "" a = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README." a = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" a = "The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections." @pytest.mark.parametrize( """readme_md, expected_dict""" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> Dict: assert ReadMe.from_string(snake_case , snake_case ).to_dict() == expected_dict @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> Union[str, Any]: with pytest.raises(snake_case , match=re.escape(expected_error.format(path="""root""" ) ) ): _UpperCAmelCase = ReadMe.from_string(snake_case , snake_case ) readme.validate() @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> Tuple: with pytest.raises(snake_case , match=re.escape(expected_error.format(path="""root""" ) ) ): ReadMe.from_string(snake_case , snake_case ) @pytest.mark.parametrize( """readme_md,""" , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def _SCREAMING_SNAKE_CASE ( snake_case ) -> Union[str, Any]: ReadMe.from_string(snake_case , snake_case , suppress_parsing_errors=snake_case ) @pytest.mark.parametrize( """readme_md, expected_dict""" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = Path(snake_case ) / """README.md""" with open(snake_case , """w+""" ) as readme_file: readme_file.write(snake_case ) _UpperCAmelCase = ReadMe.from_readme(snake_case , snake_case ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = Path(snake_case ) / """README.md""" with open(snake_case , """w+""" ) as readme_file: readme_file.write(snake_case ) _UpperCAmelCase = expected_error.format(path=snake_case ) with pytest.raises(snake_case , match=re.escape(snake_case ) ): _UpperCAmelCase = ReadMe.from_readme(snake_case , snake_case ) readme.validate() @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> str: with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = Path(snake_case ) / """README.md""" with open(snake_case , """w+""" ) as readme_file: readme_file.write(snake_case ) _UpperCAmelCase = expected_error.format(path=snake_case ) with pytest.raises(snake_case , match=re.escape(snake_case ) ): ReadMe.from_readme(snake_case , snake_case ) @pytest.mark.parametrize( """readme_md,""" , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def _SCREAMING_SNAKE_CASE ( snake_case ) -> Tuple: with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = Path(snake_case ) / """README.md""" with open(snake_case , """w+""" ) as readme_file: readme_file.write(snake_case ) ReadMe.from_readme(snake_case , snake_case , suppress_parsing_errors=snake_case )
518
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A( __snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = KandinskyVaaPipeline SCREAMING_SNAKE_CASE__ = [ 'image_embeds', 'negative_image_embeds', ] SCREAMING_SNAKE_CASE__ = ['image_embeds', 'negative_image_embeds'] SCREAMING_SNAKE_CASE__ = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] SCREAMING_SNAKE_CASE__ = False @property def UpperCAmelCase_ (self ): return 32 @property def UpperCAmelCase_ (self ): return 32 @property def UpperCAmelCase_ (self ): return self.time_input_dim @property def UpperCAmelCase_ (self ): return self.time_input_dim * 4 @property def UpperCAmelCase_ (self ): return 1_00 @property def UpperCAmelCase_ (self ): torch.manual_seed(0 ) UpperCamelCase__ = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCamelCase__ = UNetaDConditionModel(**A_ ) return model @property def UpperCAmelCase_ (self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase_ (self ): torch.manual_seed(0 ) UpperCamelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase_ (self ): UpperCamelCase__ = self.dummy_unet UpperCamelCase__ = self.dummy_movq UpperCamelCase__ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=A_ , set_alpha_to_one=A_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=A_ , ) UpperCamelCase__ = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ): UpperCamelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( A_ ) if str(A_ ).startswith("""mps""" ): UpperCamelCase__ = torch.manual_seed(A_ ) else: UpperCamelCase__ = torch.Generator(device=A_ ).manual_seed(A_ ) UpperCamelCase__ = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def UpperCAmelCase_ (self ): UpperCamelCase__ = "cpu" UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = self.pipeline_class(**A_ ) UpperCamelCase__ = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase__ = pipe(**self.get_dummy_inputs(A_ ) ) UpperCamelCase__ = output.images UpperCamelCase__ = pipe( **self.get_dummy_inputs(A_ ) , return_dict=A_ , )[0] UpperCamelCase__ = image[0, -3:, -3:, -1] UpperCamelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ = np.array( [0.623_7976, 1.0, 0.3644_1332, 1.0, 0.7063_9634, 0.2987_7186, 0.8565_2125, 0.521_6843, 0.5445_4046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ (self ): UpperCamelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy""" ) UpperCamelCase__ = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(A_ ) UpperCamelCase__ = KandinskyVaaPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) UpperCamelCase__ = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) UpperCamelCase__ = "red cat, 4k photo" UpperCamelCase__ = torch.Generator(device="""cuda""" ).manual_seed(0 ) UpperCamelCase__ = pipe_prior( A_ , generator=A_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() UpperCamelCase__ = torch.Generator(device="""cuda""" ).manual_seed(0 ) UpperCamelCase__ = pipeline( image_embeds=A_ , negative_image_embeds=A_ , generator=A_ , num_inference_steps=1_00 , output_type="""np""" , ) UpperCamelCase__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(A_ , A_ )
716
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def __magic_name__ ( __a : int , __a : List[str] , __a : str=[] ): '''simple docstring''' UpperCamelCase__ = size[0] - overlap_pixels * 2 UpperCamelCase__ = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels UpperCamelCase__ = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 UpperCamelCase__ = np.pad(__a , mode="""linear_ramp""" , pad_width=__a , end_values=0 ) if "l" in remove_borders: UpperCamelCase__ = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: UpperCamelCase__ = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: UpperCamelCase__ = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: UpperCamelCase__ = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def __magic_name__ ( __a : int , __a : Dict , __a : Optional[int] ): '''simple docstring''' return max(__a , min(__a , __a ) ) def __magic_name__ ( __a : [int] , __a : [int] , __a : [int] ): '''simple docstring''' return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def __magic_name__ ( __a : [int] , __a : int , __a : [int] ): '''simple docstring''' UpperCamelCase__ = list(__a ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap UpperCamelCase__ = clamp_rect(__a , [0, 0] , [image_size[0], image_size[1]] ) return rect def __magic_name__ ( __a : Optional[int] , __a : Tuple , __a : str , __a : List[Any] ): '''simple docstring''' UpperCamelCase__ = Image.new("""RGB""" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(__a , (original_slice, 0) ) return result def __magic_name__ ( __a : int , __a : int ): '''simple docstring''' UpperCamelCase__ = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) UpperCamelCase__ = tile.crop(__a ) return tile def __magic_name__ ( __a : List[str] , __a : Any ): '''simple docstring''' UpperCamelCase__ = n % d return n - divisor class __A( __lowerCamelCase ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 3_50 , ): super().__init__( vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , low_res_scheduler=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , max_noise_level=SCREAMING_SNAKE_CASE_ , ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): torch.manual_seed(0 ) UpperCamelCase__ = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) UpperCamelCase__ = add_overlap_rect(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , image.size ) UpperCamelCase__ = image.crop(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] UpperCamelCase__ = translated_slice_x - (original_image_slice / 2) UpperCamelCase__ = max(0 , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = squeeze_tile(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = to_input.size UpperCamelCase__ = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) UpperCamelCase__ = super(SCREAMING_SNAKE_CASE_ , self ).__call__(image=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).images[0] UpperCamelCase__ = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) UpperCamelCase__ = unsqueeze_tile(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) UpperCamelCase__ = [] if x == 0: remove_borders.append("""l""" ) elif crop_rect[2] == image.size[0]: remove_borders.append("""r""" ) if y == 0: remove_borders.append("""t""" ) elif crop_rect[3] == image.size[1]: remove_borders.append("""b""" ) UpperCamelCase__ = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=SCREAMING_SNAKE_CASE_ ) , mode="""L""" , ) final_image.paste( SCREAMING_SNAKE_CASE_ , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 75 , SCREAMING_SNAKE_CASE_ = 9.0 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 1_28 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 32 , ): UpperCamelCase__ = Image.new("""RGB""" , (image.size[0] * 4, image.size[1] * 4) ) UpperCamelCase__ = math.ceil(image.size[0] / tile_size ) UpperCamelCase__ = math.ceil(image.size[1] / tile_size ) UpperCamelCase__ = tcx * tcy UpperCamelCase__ = 0 for y in range(SCREAMING_SNAKE_CASE_ ): for x in range(SCREAMING_SNAKE_CASE_ ): self._process_tile( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , prompt=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , noise_level=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , ) current_count += 1 if callback is not None: callback({"""progress""": current_count / total_tile_count, """image""": final_image} ) return final_image def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = """stabilityai/stable-diffusion-x4-upscaler""" UpperCamelCase__ = StableDiffusionTiledUpscalePipeline.from_pretrained(__a , revision="""fp16""" , torch_dtype=torch.floataa ) UpperCamelCase__ = pipe.to("""cuda""" ) UpperCamelCase__ = Image.open("""../../docs/source/imgs/diffusers_library.jpg""" ) def callback(__a : Optional[int] ): print(f"progress: {obj['progress']:.4f}" ) obj["image"].save("""diffusers_library_progress.jpg""" ) UpperCamelCase__ = pipe(image=__a , prompt="""Black font, white background, vector""" , noise_level=40 , callback=__a ) final_image.save("""diffusers_library.jpg""" ) if __name__ == "__main__": main()
86
0