code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def expected_rs(n): front = (n - 0.5) / n i = np.arange(1,n) back = np.sum(np.sqrt((n - i) / i)) if n <= 340: middle = math.gamma((n-1) * 0.5) / math.sqrt(math.pi) / math.gamma(n * 0.5) else: middle = 1.0 / math.sqrt(n * math.pi * 0.5) return front * middle * back
Calculates the expected (R/S)_n for white noise for a given n. This is used as a correction factor in the function hurst_rs. It uses the formula of Anis-Lloyd-Peters (see [h_3]_). Args: n (int): the value of n for which the expected (R/S)_n should be calculated Returns: float: expected (R/S)_n for white noise
juraj-google-style
def sample_variants(self, variants, sample_name, category='snv'): LOG.info('Retrieving variants for subject : {0}'.format(sample_name)) has_allele = re.compile('1|2') query = {'$and': [{'_id': {'$in': variants}}, {'category': category}, {'samples': {'$elemMatch': {'display_name': sample_name, 'genotype_call': {'$regex': has_allele}}}}]} result = self.variant_collection.find(query) return result
Given a list of variants get variant objects found in a specific patient Args: variants(list): a list of variant ids sample_name(str): a sample display name category(str): 'snv', 'sv' .. Returns: result(iterable(Variant))
codesearchnet
def AddrStrToScriptHash(address): data = b58decode(address) if (len(data) != 25): raise ValueError('Not correct Address, wrong length.') if (data[0] != settings.ADDRESS_VERSION): raise ValueError('Not correct Coin Version') checksum = Crypto.Default().Hash256(data[:21])[:4] if (checksum != data[21:]): raise Exception('Address format error') return UInt160(data=data[1:21])
Convert a public address to a script hash. Args: address (str): base 58 check encoded public address. Raises: ValueError: if the address length of address version is incorrect. Exception: if the address checksum fails. Returns: UInt160:
codesearchnet
def query(self, s): s1 = np.sort([self.order[token] for token in s if (token in self.order)]) logging.debug('{} original tokens and {} tokens after applying frequency order.'.format(len(s), len(s1))) prefix = self._get_prefix(s1) candidates = set([i for (p1, token) in enumerate(prefix) for (i, p2) in self.index[token] if self.position_filter_func(s1, self.sets[i], p1, p2, self.similarity_threshold)]) logging.debug('{} candidates found.'.format(len(candidates))) results = deque([]) for i in candidates: s2 = self.sets[i] sim = self.similarity_func(s1, s2) if (sim < self.similarity_threshold): continue results.append((i, sim)) logging.debug('{} verified sets found.'.format(len(results))) return list(results)
Query the search index for sets similar to the query set. Args: s (Iterable): the query set. Returns (list): a list of tuples `(index, similarity)` where the index is the index of the matching sets in the original list of sets.
codesearchnet
def inv(a): amean = gvar.mean(a) if ((amean.ndim != 2) or (amean.shape[0] != amean.shape[1])): raise ValueError(('bad matrix shape: ' + str(a.shape))) da = (a - amean) ainv = numpy.linalg.inv(amean) return (ainv - ainv.dot(da.dot(ainv)))
Inverse of matrix ``a``. Args: a: Two-dimensional, square matrix/array of numbers and/or :class:`gvar.GVar`\s. Returns: The inverse of matrix ``a``. Raises: ValueError: If matrix is not square and two-dimensional.
codesearchnet
def mimic_adam_with_adafactor(hparams): assert "adam" in hparams.optimizer hparams.optimizer = "adafactor" hparams.optimizer_adafactor_beta1 = hparams.optimizer_adam_beta1 hparams.optimizer_adafactor_beta2 = hparams.optimizer_adam_beta2 hparams.optimizer_adafactor_multiply_by_parameter_scale = False hparams.optimizer_adafactor_factored = False hparams.optimizer_adafactor_clipping_threshold = None hparams.optimizer_adafactor_decay_type = "adam"
Switch from Adam to Adafactor, approximating the behavior of Adam. Some minor things may be different, like epsilon and beta1 correction. Args: hparams: model hyperparameters where "adam" in hparams.optimizer
juraj-google-style
def __init__(self, artifacts_registry, knowledge_base): super(ArtifactDefinitionsFilterHelper, self).__init__() self._artifacts_registry = artifacts_registry self._knowledge_base = knowledge_base self.file_system_artifact_names = set() self.file_system_find_specs = [] self.registry_artifact_names = set() self.registry_find_specs = []
Initializes an artifact definitions filter helper. Args: artifacts_registry (artifacts.ArtifactDefinitionsRegistry): artifact definitions registry. knowledge_base (KnowledgeBase): contains information from the source data needed for filtering.
juraj-google-style
def __init__(self, select2attrs=None, *args, **kwargs): self.select2attrs = select2attrs or {} assert_msg = "select2attrs attribute must be dict, not {}" assert isinstance(self.select2attrs, dict), assert_msg.format( self.select2attrs.__class__.__name__ ) if 'width' not in self.select2attrs: self.select2attrs.update({'width': '250px'}) super(Select2Mixin, self).__init__(*args, **kwargs)
Initialize default select2 attributes. If width is not provided, sets Select2 width to 250px. Args: select2attrs: a dictionary, which then passed to Select2 constructor function as options.
juraj-google-style
def __init__(self, columns: list[str], name: Optional[str]=None): self.name = name super().__init__(columns)
Deduplicates each row (0th dimension) of the provided tensor. Args: columns: A list of the columns to apply the transformation on. name: optional. A name for this operation.
github-repos
def add_resource(self, feature_column, resource_name, resource): self._cols_to_resources_map[feature_column][resource_name] = resource if self._layer is not None and isinstance(resource, trackable.Trackable): if feature_column.name not in self._layer._resources: self._layer._resources[feature_column.name] = data_structures.Mapping() if resource_name not in self._layer._resources[feature_column.name]: self._layer._resources[feature_column.name][resource_name] = resource
Creates a new resource. Resources can be things such as tables, variables, trackables, etc. Args: feature_column: A `FeatureColumn` object this resource corresponds to. resource_name: Name of the resource. resource: The resource. Returns: The created resource.
github-repos
def ExtractEvents(self, parser_mediator, registry_key, **kwargs): version_value = registry_key.GetValueByName('Version') count_subkey = registry_key.GetSubkeyByName('Count') if not version_value: parser_mediator.ProduceExtractionWarning('missing version value') return if not version_value.DataIsInteger(): parser_mediator.ProduceExtractionWarning( 'unsupported version value data type') return format_version = version_value.GetDataAsObject() if format_version not in (3, 5): parser_mediator.ProduceExtractionWarning( 'unsupported format version: {0:d}'.format(format_version)) return if not count_subkey: parser_mediator.ProduceExtractionWarning('missing count subkey') return userassist_entry_index = 0 for registry_value in count_subkey.GetValues(): try: value_name = codecs.decode(registry_value.name, 'rot-13') except UnicodeEncodeError as exception: logger.debug(( 'Unable to decode UserAssist string: {0:s} with error: {1!s}.\n' 'Attempting piecewise decoding.').format( registry_value.name, exception)) characters = [] for char in registry_value.name: if ord(char) < 128: try: characters.append(char.decode('rot-13')) except UnicodeEncodeError: characters.append(char) else: characters.append(char) value_name = ''.join(characters) if format_version == 5: path_segments = value_name.split('\\') for segment_index, path_segment in enumerate(path_segments): guid = path_segments[segment_index][1:-1] path_segments[segment_index] = known_folder_ids.PATHS.get( guid, path_segment) value_name = '\\'.join(path_segments) if '%' in value_name: environment_variables = self._knowledge_base.GetEnvironmentVariables() value_name = path_helper.PathHelper.ExpandWindowsPath( value_name, environment_variables) if value_name == 'UEME_CTLSESSION': continue if format_version == 3: entry_map = self._GetDataTypeMap('user_assist_entry_v3') elif format_version == 5: entry_map = self._GetDataTypeMap('user_assist_entry_v5') else: parser_mediator.ProduceExtractionWarning( 'unsupported format version: {0:d}'.format(format_version)) continue if not registry_value.DataIsBinaryData(): parser_mediator.ProduceExtractionWarning( 'unsupported value data type: {0:s}'.format( registry_value.data_type_string)) continue entry_data_size = entry_map.GetByteSize() value_data_size = len(registry_value.data) if entry_data_size != value_data_size: parser_mediator.ProduceExtractionWarning( 'unsupported value data size: {0:d}'.format(value_data_size)) continue try: user_assist_entry = self._ReadStructureFromByteStream( registry_value.data, 0, entry_map) except (ValueError, errors.ParseError) as exception: parser_mediator.ProduceExtractionWarning( 'unable to parse UserAssist entry value with error: {0!s}'.format( exception)) continue event_data = UserAssistWindowsRegistryEventData() event_data.key_path = count_subkey.path event_data.number_of_executions = user_assist_entry.number_of_executions event_data.value_name = value_name if format_version == 3: if event_data.number_of_executions > 5: event_data.number_of_executions -= 5 elif format_version == 5: userassist_entry_index += 1 event_data.application_focus_count = ( user_assist_entry.application_focus_count) event_data.application_focus_duration = ( user_assist_entry.application_focus_duration) event_data.entry_index = userassist_entry_index timestamp = user_assist_entry.last_execution_time if not timestamp: date_time = dfdatetime_semantic_time.SemanticTime('Not set') else: date_time = dfdatetime_filetime.Filetime(timestamp=timestamp) event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_LAST_RUN) parser_mediator.ProduceEventWithEventData(event, event_data)
Extracts events from a Windows Registry key. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. registry_key (dfwinreg.WinRegistryKey): Windows Registry key.
juraj-google-style
def add_state(self, name: str, state: State, initial: bool=False): if (not issubclass(state.__class__, State)): raise AttributeError('state must be subclass of spade.behaviour.State') self._states[name] = state if initial: self.current_state = name
Adds a new state to the FSM. Args: name (str): the name of the state, which is used as its identifier. state (spade.behaviour.State): The state class initial (bool, optional): wether the state is the initial state or not. (Only one initial state is allowed) (Default value = False)
codesearchnet
def plot_internal_energy(self, tmin, tmax, ntemp, ylim=None, **kwargs): temperatures = np.linspace(tmin, tmax, ntemp) if self.structure: ylabel = r"$\Delta E$ (kJ/mol)" else: ylabel = r"$\Delta E$ (kJ/mol-c)" fig = self._plot_thermo(self.dos.internal_energy, temperatures, ylabel=ylabel, ylim=ylim, factor=1e-3, **kwargs) return fig
Plots the vibrational internal energy in a temperature range. Args: tmin: minimum temperature tmax: maximum temperature ntemp: number of steps ylim: tuple specifying the y-axis limits. kwargs: kwargs passed to the matplotlib function 'plot'. Returns: matplotlib figure
juraj-google-style
def _checkResponseRegisterAddress(payload, registeraddress): _checkString(payload, minlength=2, description='payload') _checkRegisteraddress(registeraddress) BYTERANGE_FOR_STARTADDRESS = slice(0, 2) bytesForStartAddress = payload[BYTERANGE_FOR_STARTADDRESS] receivedStartAddress = _twoByteStringToNum(bytesForStartAddress) if receivedStartAddress != registeraddress: raise ValueError('Wrong given write start adress: {0}, but commanded is {1}. The data payload is: {2!r}'.format( \ receivedStartAddress, registeraddress, payload))
Check that the start adress as given in the response is correct. The first two bytes in the payload holds the address value. Args: * payload (string): The payload * registeraddress (int): The register address (use decimal numbers, not hex). Raises: TypeError, ValueError
juraj-google-style
def create_graph_from_data(self, data): self.arguments['{SCORE}'] = self.scores[self.score] self.arguments['{VERBOSE}'] = str(self.verbose).upper() results = self._run_gies(data, verbose=self.verbose) return nx.relabel_nodes(nx.DiGraph(results), {idx: i for (idx, i) in enumerate(data.columns)})
Run the GIES algorithm. Args: data (pandas.DataFrame): DataFrame containing the data Returns: networkx.DiGraph: Solution given by the GIES algorithm.
codesearchnet
def add_perm(self, subj_str, perm_str): self._assert_valid_permission(perm_str) self._perm_dict.setdefault(perm_str, set()).add(subj_str)
Add a permission for a subject. Args: subj_str : str Subject for which to add permission(s) perm_str : str Permission to add. Implicitly adds all lower permissions. E.g., ``write`` will also add ``read``.
juraj-google-style
def scan(self, folder, sub=None, next_=None): if (not sub): sub = '' assert isinstance(sub, string_types) assert (isinstance(next_, int) or (next_ is None)) return self.post('scan', params={'folder': folder, 'sub': sub, 'next': next_})
Request immediate rescan of a folder, or a specific path within a folder. Args: folder (str): Folder ID. sub (str): Path relative to the folder root. If sub is omitted the entire folder is scanned for changes, otherwise only the given path children are scanned. next_ (int): Delays Syncthing's automated rescan interval for a given amount of seconds. Returns: str
codesearchnet
def load_yaml(path): with open(path, 'rt') as f: yamldict = yaml.load(f.read(), Loader=yamlloader.ordereddict.CSafeLoader) if (not yamldict): raise LoadError(('YAML file: %s is empty!' % path)) return yamldict
Load YAML file into an ordered dictionary Args: path (str): Path to YAML file Returns: OrderedDict: Ordered dictionary containing loaded YAML file
codesearchnet
def create_slot(primary, val, name, colocate_with_primary=True, *, copy_xla_sharding=False): validate_shape = val.get_shape().is_fully_defined() if isinstance(primary, variables.Variable): prefix = primary._shared_name else: prefix = primary.op.name with variable_scope.variable_scope(None, prefix + '/' + name): if colocate_with_primary: distribution_strategy = distribute_lib.get_strategy() with distribution_strategy.extended.colocate_vars_with(primary): return _create_slot_var(primary, val, '', validate_shape, None, None, copy_xla_sharding=copy_xla_sharding) else: return _create_slot_var(primary, val, '', validate_shape, None, None, copy_xla_sharding=copy_xla_sharding)
Create a slot initialized to the given value. The type of the slot is determined by the given value. Args: primary: The primary `Variable` or `Tensor`. val: A `Tensor` specifying the initial value of the slot. name: Name to use for the slot variable. colocate_with_primary: Boolean. If True the slot is located on the same device as `primary`. copy_xla_sharding: Boolean. If True also copies XLA sharding from primary. Returns: A `Variable` object.
github-repos
def annotate(label, since, current, extra_message, custom_message=None): warning_message = _WarningMessage(label=label, since=since, current=current, extra_message=extra_message, custom_message=custom_message) def _annotate(fnc): if inspect.isclass(fnc): old_new = fnc.__new__ def wrapped_new(cls, *args, **kwargs): warning_message.emit_warning(fnc.__name__) if old_new is object.__new__: return old_new(cls) return old_new(cls, *args, **kwargs) fnc.__new__ = staticmethod(wrapped_new) if label == 'deprecated': fnc.__doc__ = _add_deprecation_notice_to_docstring(fnc.__doc__, warning_message.message.replace('%name%', fnc.__name__)) return fnc else: @wraps(fnc) def inner(*args, **kwargs): warning_message.emit_warning(fnc.__name__) return fnc(*args, **kwargs) if label == 'deprecated': inner.__doc__ = _add_deprecation_notice_to_docstring(fnc.__doc__, warning_message.message.replace('%name%', fnc.__name__)) return inner return _annotate
Decorates an API with a deprecated or experimental annotation. Args: label: the kind of annotation ('deprecated' or 'experimental'). since: the version that causes the annotation. current: the suggested replacement function. extra_message: an optional additional message. custom_message: if the default message does not suffice, the message can be changed using this argument. A string whit replacement tokens. A replecement string is were the previus args will be located on the custom message. The following replacement strings can be used: %name% -> API.__name__ %since% -> since (Mandatory for the decapreted annotation) %current% -> current %extra% -> extra_message Returns: The decorator for the API.
github-repos
def resources(self, absolute_url=None): if absolute_url: return Resources(mode="server", root_url=absolute_url + self._prefix, path_versioner=StaticHandler.append_version) return Resources(mode="server", root_url=self._prefix, path_versioner=StaticHandler.append_version)
Provide a :class:`~bokeh.resources.Resources` that specifies where Bokeh application sessions should load BokehJS resources from. Args: absolute_url (bool): An absolute URL prefix to use for locating resources. If None, relative URLs are used (default: None)
juraj-google-style
def __is_function_action(self, action_function): is_function_action = True if not hasattr(action_function, '__call__'): return False try: for end_string, context in action_function(): if not isinstance(end_string, basestring): self.log_error("Action function must return end of filename as a string as first argument") if not isinstance(context, dict): self.log_error("Action function must return context as a dict as second argument") break except Exception: is_function_action = False return is_function_action
Detect if given function is really an action function. Args: action_function: Function to test. Note: We don't care if the variable refer to a function but rather if it is callable or not.
juraj-google-style
def _get_status_code(self, http_status): try: return int(http_status.split(' ', 1)[0]) except TypeError: _logger.warning('Unable to find status code in HTTP status %r.', http_status) return 500
Get the HTTP status code from an HTTP status string. Args: http_status: A string containing a HTTP status code and reason. Returns: An integer with the status code number from http_status.
codesearchnet
def __init__(self, project, query, checksum, timeout_secs=0): if bigquery is None: raise ImportError('Bigquery dependencies are not installed.') if not query or not isinstance(query, str): raise ValueError('Invalid argument: query. Please use non-empty string') if not checksum or not isinstance(checksum, str): raise ValueError('Invalid argument: checksum. Please use non-empty string') self.project = project self.query = query self.expected_checksum = checksum self.checksum = None self.timeout_secs = timeout_secs
Initialize BigQueryMatcher object. Args: project: The name (string) of the project. query: The query (string) to perform. checksum: SHA-1 hash generated from a sorted list of lines read from expected output. timeout_secs: Duration to retry query until checksum matches. This is useful for DF streaming pipelines or BQ streaming inserts. The default (0) never retries.
github-repos
def reshape_data(tensor, per_example_length=1): dims = [1, 0] for i in xrange(2, tensor.get_shape().ndims): dims.append(i) return pt.wrap(tf.transpose(tensor, dims)).reshape([(- 1), per_example_length])
Reshapes input so that it is appropriate for sequence_lstm.. The expected format for sequence lstms is [timesteps * batch, per_example_length] and the data produced by the utilities is [batch, timestep, *optional* expected_length]. The result can be cleaved so that there is a Tensor per timestep. Args: tensor: The tensor to reshape. per_example_length: The number of examples at each timestep. Returns: A Pretty Tensor that is compatible with cleave and then sequence_lstm.
codesearchnet
def _Scroll(self, lines=None): if lines is None: lines = self._cli_lines if lines < 0: self._displayed -= self._cli_lines self._displayed += lines if self._displayed < 0: self._displayed = 0 self._lines_to_show = self._cli_lines else: self._lines_to_show = lines self._lastscroll = lines
Set attributes to scroll the buffer correctly. Args: lines: An int, number of lines to scroll. If None, scrolls by the terminal length.
juraj-google-style
def __init__(self, config, http_client_session=None): self.verify = config.get("verify", True) self.output = config.get("output", []) self.validation_results = [] config_variables = config.get("variables", {}) testcase_setup_hooks = config.get("setup_hooks", []) self.testcase_teardown_hooks = config.get("teardown_hooks", []) self.http_client_session = http_client_session or HttpSession() self.session_context = SessionContext(config_variables) if testcase_setup_hooks: self.do_hook_actions(testcase_setup_hooks, "setup")
run testcase or testsuite. Args: config (dict): testcase/testsuite config dict { "name": "ABC", "variables": {}, "setup_hooks", [], "teardown_hooks", [] } http_client_session (instance): requests.Session(), or locust.client.Session() instance.
juraj-google-style
def parse_commit_message(commit_message: str) -> Dict[str, bool]: if commit_message is None: return {'skip': False, 'no_filter': False, 'test_all': False} command_search = re.search('\\[([^\\]]*)\\]', commit_message) if command_search is not None: command = command_search.groups()[0] command = command.lower().replace('-', ' ').replace('_', ' ') skip = command in ['ci skip', 'skip ci', 'circleci skip', 'skip circleci'] no_filter = set(command.split(' ')) == {'no', 'filter'} test_all = set(command.split(' ')) == {'test', 'all'} return {'skip': skip, 'no_filter': no_filter, 'test_all': test_all} else: return {'skip': False, 'no_filter': False, 'test_all': False}
Parses the commit message to detect if a command is there to skip, force all or part of the CI. Args: commit_message (`str`): The commit message of the current commit. Returns: `Dict[str, bool]`: A dictionary of strings to bools with keys the following keys: `"skip"`, `"test_all_models"` and `"test_all"`.
github-repos
def html2text(__html: str, *, width: int = 80, ascii_replacements: bool = False) -> str: html2.BODY_WIDTH = width html2.UNICODE_SNOB = ascii_replacements return html2.html2text(__html).strip()
HTML to plain text renderer. See also: :pypi:`html2text` Args: __html: Text to process width: Paragraph width ascii_replacements: Use pseudo-ASCII replacements for Unicode Returns: Rendered text
juraj-google-style
def get_parent(self, tree, alt=None): parent = self.parent_db.get(tree.path) if not parent: return alt return list(parent)[0]
Get parent for given `tree` or `alt` if not found. Args: tree (obj): :class:`.Tree` instance, which is already stored in DB. alt (obj, default None): Alternative value returned when `tree` is not found. Returns: obj: :class:`.Tree` parent to given `tree`.
juraj-google-style
def minimum_eigen_vector(x, num_steps, learning_rate, vector_prod_fn): x = tf.nn.l2_normalize(x) for _ in range(num_steps): x = eig_one_step(x, learning_rate, vector_prod_fn) return x
Computes eigenvector which corresponds to minimum eigenvalue. Args: x: initial value of eigenvector. num_steps: number of optimization steps. learning_rate: learning rate. vector_prod_fn: function which takes x and returns product H*x. Returns: approximate value of eigenvector. This function finds approximate value of eigenvector of matrix H which corresponds to smallest (by absolute value) eigenvalue of H. It works by solving optimization problem x^{T}*H*x -> min.
codesearchnet
def _parse_ospf_process_id(self, config): match = re.search(r'^router ospf (\d+)', config) return dict(ospf_process_id=int(match.group(1)))
Parses config file for the OSPF proc ID Args: config(str): Running configuration Returns: dict: key: ospf_process_id (int)
juraj-google-style
def apply_formatting_dict(obj: Any, formatting: Dict[(str, Any)]) -> Any: new_obj = obj if isinstance(obj, str): if ('$' not in obj): new_obj = string.Formatter().vformat(obj, (), formatting_dict(**formatting)) elif isinstance(obj, dict): new_obj = {} for (k, v) in obj.items(): new_obj[k] = apply_formatting_dict(v, formatting) elif isinstance(obj, list): new_obj = [] for (i, el) in enumerate(obj): new_obj.append(apply_formatting_dict(el, formatting)) elif (isinstance(obj, int) or isinstance(obj, float) or (obj is None)): pass elif isinstance(obj, enum.Enum): pass else: logger.debug(f"Unrecognized obj '{obj}' of type '{type(obj)}'") return new_obj
Recursively apply a formatting dict to all strings in a configuration. Note that it skips applying the formatting if the string appears to contain latex (specifically, if it contains an "$"), since the formatting fails on nested brackets. Args: obj: Some configuration object to recursively applying the formatting to. formatting (dict): String formatting options to apply to each configuration field. Returns: dict: Configuration with formatting applied to every field.
codesearchnet
def apply_cut(self, cut): return Subsystem(self.network, self.state, self.node_indices, cut=cut, mice_cache=self._mice_cache)
Return a cut version of this |Subsystem|. Args: cut (Cut): The cut to apply to this |Subsystem|. Returns: Subsystem: The cut subsystem.
juraj-google-style
def filter_dict(d, exclude): ret = {} for (key, value) in d.items(): if (key not in exclude): ret.update({key: value}) return ret
Return a new dict with specified keys excluded from the origional dict Args: d (dict): origional dict exclude (list): The keys that are excluded
codesearchnet
def ParseFileObject(self, parser_mediator, file_object): esedb_file = pyesedb.file() try: esedb_file.open_file_object(file_object) except IOError as exception: parser_mediator.ProduceExtractionWarning('unable to open file with error: {0!s}'.format(exception)) return cache = ESEDBCache() try: table_names = frozenset(self._GetTableNames(esedb_file)) for plugin in self._plugins: if parser_mediator.abort: break if (not plugin.required_tables.issubset(table_names)): continue try: plugin.UpdateChainAndProcess(parser_mediator, cache=cache, database=esedb_file) except Exception as exception: parser_mediator.ProduceExtractionWarning('plugin: {0:s} unable to parse ESE database with error: {1!s}'.format(plugin.NAME, exception)) finally: esedb_file.close()
Parses an ESE database file-like object. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. file_object (dfvfs.FileIO): file-like object.
codesearchnet
def prepare_run_debug_urls(self, fetches, feed_dict): self._run_counter_lock.acquire() run_dir = os.path.join(self._session_root, 'run_%d_%d' % (int(time.time() * 1000000.0), self._run_counter)) self._run_counter += 1 self._run_counter_lock.release() gfile.MkDir(run_dir) fetches_event = event_pb2.Event() fetches_event.log_message.message = repr(fetches) fetches_path = os.path.join(run_dir, debug_data.METADATA_FILE_PREFIX + debug_data.FETCHES_INFO_FILE_TAG) with gfile.Open(os.path.join(fetches_path), 'wb') as f: f.write(fetches_event.SerializeToString()) feed_keys_event = event_pb2.Event() feed_keys_event.log_message.message = repr(feed_dict.keys()) if feed_dict else repr(feed_dict) feed_keys_path = os.path.join(run_dir, debug_data.METADATA_FILE_PREFIX + debug_data.FEED_KEYS_INFO_FILE_TAG) with gfile.Open(os.path.join(feed_keys_path), 'wb') as f: f.write(feed_keys_event.SerializeToString()) return ['file:
Implementation of abstract method in superclass. See doc of `NonInteractiveDebugWrapperSession.prepare_run_debug_urls()` for details. This implementation creates a run-specific subdirectory under self._session_root and stores information regarding run `fetches` and `feed_dict.keys()` in the subdirectory. Args: fetches: Same as the `fetches` argument to `Session.run()` feed_dict: Same as the `feed_dict` argument to `Session.run()` Returns: debug_urls: (`str` or `list` of `str`) file:// debug URLs to be used in this `Session.run()` call.
github-repos
def get_class_weights(y, smooth_factor=0): from collections import Counter counter = Counter(y) if (smooth_factor > 0): p = (max(counter.values()) * smooth_factor) for k in counter.keys(): counter[k] += p majority = max(counter.values()) return {cls: float((majority / count)) for (cls, count) in counter.items()}
Returns the weights for each class based on the frequencies of the samples. Args: y: A list of true labels (the labels must be hashable). smooth_factor: A factor that smooths extremely uneven weights. Returns: A dictionary with the weight for each class.
codesearchnet
def BuildFilterFindSpecs(self, artifact_definitions_path, custom_artifacts_path, knowledge_base_object, artifact_filter_names=None, filter_file_path=None): environment_variables = knowledge_base_object.GetEnvironmentVariables() find_specs = None if artifact_filter_names: logger.debug('building find specification based on artifacts: {0:s}'.format(', '.join(artifact_filter_names))) artifacts_registry_object = BaseEngine.BuildArtifactsRegistry(artifact_definitions_path, custom_artifacts_path) self._artifacts_filter_helper = artifact_filters.ArtifactDefinitionsFilterHelper(artifacts_registry_object, knowledge_base_object) self._artifacts_filter_helper.BuildFindSpecs(artifact_filter_names, environment_variables=environment_variables) if self._artifacts_filter_helper.registry_find_specs: self._artifacts_filter_helper.BuildFindSpecs(self._WINDOWS_REGISTRY_FILES_ARTIFACT_NAMES, environment_variables=environment_variables) find_specs = self._artifacts_filter_helper.file_system_find_specs if (not find_specs): raise errors.InvalidFilter('No valid file system find specifications were built from artifacts.') elif filter_file_path: logger.debug('building find specification based on filter file: {0:s}'.format(filter_file_path)) filter_file_object = filter_file.FilterFile(filter_file_path) find_specs = filter_file_object.BuildFindSpecs(environment_variables=environment_variables) if (not find_specs): raise errors.InvalidFilter('No valid file system find specifications were built from filter file.') return find_specs
Builds find specifications from artifacts or filter file if available. Args: artifact_definitions_path (str): path to artifact definitions file. custom_artifacts_path (str): path to custom artifact definitions file. knowledge_base_object (KnowledgeBase): knowledge base. artifact_filter_names (Optional[list[str]]): names of artifact definitions that are used for filtering file system and Windows Registry key paths. filter_file_path (Optional[str]): path of filter file. Returns: list[dfvfs.FindSpec]: find specifications for the file source type. Raises: InvalidFilter: if no valid FindSpecs are built.
codesearchnet
def convert_dt_time(duration, return_iter=False): try: days, hours, minutes, seconds = convert_timedelta(duration) if return_iter: return days, hours, minutes, seconds if days > 0: format_string = ( '{} day{}, {} hour{}'.format( days, 's' if days != 1 else '', hours, 's' if hours != 1 else '')) elif hours > 1: format_string = ( '{} hour{}, {} minute{}'.format( hours, 's' if hours != 1 else '', minutes, 's' if minutes != 1 else '')) else: format_string = ( '{} minute{}, {} sec{}'.format( minutes, 's' if minutes != 1 else '', seconds, 's' if seconds != 1 else '')) except AttributeError as e: logger.exception( '%s: Type mismatch when converting timedelta objects (Code: %s)' % (inspect.stack()[0][3], str(e))) except Exception as e: logger.exception( '%s: Unknown error when converting datetime objects (Code: %s)' % (inspect.stack()[0][3], str(e))) return format_string
Summary: convert timedelta objects to human readable output Args: :duration (datetime.timedelta): time duration to convert :return_iter (tuple): tuple containing time sequence Returns: days, hours, minutes, seconds | TYPE: tuple (integers), OR human readable, notated units | TYPE: string
juraj-google-style
def preds(self, nodeids=None): if nodeids is None: nodeids = self._nodeids _eps = self._eps return [_eps[nid][1] for nid in nodeids]
Return the Pred objects for *nodeids*, or all Preds. Args: nodeids: an iterable of nodeids of predications to return Preds from; if `None`, return all Preds
juraj-google-style
def dataflow_to_dataset(df, types): assert isinstance(df, DataFlow), df assert isinstance(types, (list, tuple)), types df = MapData(df, (lambda dp: tuple(dp))) df.reset_state() ds = tf.data.Dataset.from_generator(df.get_data, tuple(types)) return ds
Wrap a dataflow to tf.data.Dataset. This function will also reset the dataflow. If the dataflow itself is finite, the returned dataset is also finite. Therefore, if used for training, you'll need to add `.repeat()` on the returned dataset. Args: df (DataFlow): a dataflow which produces lists types([tf.DType]): list of types Returns: (tf.data.Dataset)
codesearchnet
def get_entry_type(self, tag): if tag.findParent().get('kind') in ['class', 'struct']: return u'Method' return super(functionTagProcessor, self).get_entry_type(tag)
Override that returns u'Method' for class/struct methods. Override as necessary. Args: tag: A BeautifulSoup Tag for a function. Returns: If this is a class/struct method, returns u'Method', otherwise returns the value from the inherited implementation of get_entry_type (which should be u'Function').
juraj-google-style
def fill_memory_slot(memory, value, index): mask = tf.to_float(tf.one_hot(index, tf.shape(memory)[0])[(:, None, None, None)]) fill_memory = (((1 - mask) * memory) + (mask * value[(None, ...)])) return fill_memory
Fills the memory slot at a particular index with the given value. Args: memory: a 4-d tensor [memory_size, batch, length, channel] containing the state of all steps value: a 3-d tensor [batch, length, channel] as the sate index: integer in [0, memory_size) Returns: filled memory
codesearchnet
def evalAsync(self, amplstatements, callback, **kwargs): if self._langext is not None: amplstatements = self._langext.translate(amplstatements, **kwargs) def async_call(): self._lock.acquire() try: self._impl.eval(amplstatements) self._errorhandler_wrapper.check() except Exception: self._lock.release() raise else: self._lock.release() callback.run() Thread(target=async_call).start()
Interpret the given AMPL statement asynchronously. Args: amplstatements: A collection of AMPL statements and declarations to be passed to the interpreter. callback: Callback to be executed when the statement has been interpreted. Raises: RuntimeError: if the input is not a complete AMPL statement (e.g. if it does not end with semicolon) or if the underlying interpreter is not running.
juraj-google-style
def set(self, key, value): data = self._load_file() data[key] = value self._save_file(data)
Set the value of a key Args: key (string): The key used to store this value value (string): The value to store
juraj-google-style
def RegisterPlugin(cls, plugin_class): plugin_name = plugin_class.NAME.lower() if (plugin_name in cls._plugin_classes): raise KeyError('Plugin class already set for name: {0:s}.'.format(plugin_class.NAME)) cls._plugin_classes[plugin_name] = plugin_class
Registers a plugin class. The plugin classes are identified based on their lower case name. Args: plugin_class (type): class of the plugin. Raises: KeyError: if plugin class is already set for the corresponding name.
codesearchnet
def precipitable_water(self, value=999.0): if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `precipitable_water`'.format(value)) self._precipitable_water = value
Corresponds to IDD Field `precipitable_water` Args: value (float): value for IDD Field `precipitable_water` Unit: mm Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
juraj-google-style
def case(self, case_id=None): cases = self.cases() if case_id: for case in cases: if case.case_id == case_id: return case else: if cases: return cases[0] return None
Return a Case object If no case_id is given return one case Args: case_id (str): A case id Returns: case(Case): A Case object
juraj-google-style
def class_logit(layer, label): def inner(T): if isinstance(label, int): class_n = label else: class_n = T('labels').index(label) logits = T(layer) logit = tf.reduce_sum(logits[(:, class_n)]) return logit return inner
Like channel, but for softmax layers. Args: layer: A layer name string. label: Either a string (refering to a label in model.labels) or an int label position. Returns: Objective maximizing a logit.
codesearchnet
def configure_attributes(self, json_data): env = boto3.session.Session(profile_name=self.env, region_name=self.region) elbclient = env.client('elb') elb_settings = self.properties['elb'] LOG.debug('Block ELB Settings Pre Configure Load Balancer Attributes:\n%s', pformat(elb_settings)) for job in json.loads(json_data)['job']: load_balancer_attributes = { 'CrossZoneLoadBalancing': { 'Enabled': True }, 'AccessLog': { 'Enabled': False, }, 'ConnectionDraining': { 'Enabled': False, }, 'ConnectionSettings': { 'IdleTimeout': 60 } } if elb_settings.get('connection_draining_timeout'): connection_draining_timeout = int(elb_settings['connection_draining_timeout']) LOG.info('Applying Custom Load Balancer Connection Draining Timeout: %d', connection_draining_timeout) load_balancer_attributes['ConnectionDraining'] = { 'Enabled': True, 'Timeout': connection_draining_timeout } if elb_settings.get('idle_timeout'): idle_timeout = int(elb_settings['idle_timeout']) LOG.info('Applying Custom Load Balancer Idle Timeout: %d', idle_timeout) load_balancer_attributes['ConnectionSettings'] = {'IdleTimeout': idle_timeout} if elb_settings.get('access_log'): access_log_bucket_name = elb_settings['access_log']['bucket_name'] access_log_bucket_prefix = elb_settings['access_log']['bucket_prefix'] access_log_emit_interval = int(elb_settings['access_log']['emit_interval']) LOG.info('Applying Custom Load Balancer Access Log: %s/%s every %d minutes', access_log_bucket_name, access_log_bucket_prefix, access_log_emit_interval) load_balancer_attributes['AccessLog'] = { 'Enabled': True, 'S3BucketName': access_log_bucket_name, 'EmitInterval': access_log_emit_interval, 'S3BucketPrefix': access_log_bucket_prefix } LOG.info('Applying Load Balancer Attributes') LOG.debug('Load Balancer Attributes:\n%s', pformat(load_balancer_attributes)) elbclient.modify_load_balancer_attributes( LoadBalancerName=self.app, LoadBalancerAttributes=load_balancer_attributes)
Configure load balancer attributes such as idle timeout, connection draining, etc Args: json_data (json): return data from ELB upsert
juraj-google-style
def get_features(self, tokenizer, max_length=None, pad_on_left=False, pad_token=0, mask_padding_with_zero=True, return_tensors=None): if max_length is None: max_length = tokenizer.max_len label_map = {label: i for i, label in enumerate(self.labels)} all_input_ids = [] for ex_index, example in enumerate(self.examples): if ex_index % 10000 == 0: logger.info(f'Tokenizing example {ex_index}') input_ids = tokenizer.encode(example.text_a, add_special_tokens=True, max_length=min(max_length, tokenizer.max_len)) all_input_ids.append(input_ids) batch_length = max((len(input_ids) for input_ids in all_input_ids)) features = [] for ex_index, (input_ids, example) in enumerate(zip(all_input_ids, self.examples)): if ex_index % 10000 == 0: logger.info(f'Writing example {ex_index}/{len(self.examples)}') attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) padding_length = batch_length - len(input_ids) if pad_on_left: input_ids = [pad_token] * padding_length + input_ids attention_mask = [0 if mask_padding_with_zero else 1] * padding_length + attention_mask else: input_ids = input_ids + [pad_token] * padding_length attention_mask = attention_mask + [0 if mask_padding_with_zero else 1] * padding_length if len(input_ids) != batch_length: raise ValueError(f'Error with input length {len(input_ids)} vs {batch_length}') if len(attention_mask) != batch_length: raise ValueError(f'Error with input length {len(attention_mask)} vs {batch_length}') if self.mode == 'classification': label = label_map[example.label] elif self.mode == 'regression': label = float(example.label) else: raise ValueError(self.mode) if ex_index < 5 and self.verbose: logger.info('*** Example ***') logger.info(f'guid: {example.guid}') logger.info(f'input_ids: {' '.join([str(x) for x in input_ids])}') logger.info(f'attention_mask: {' '.join([str(x) for x in attention_mask])}') logger.info(f'label: {example.label} (id = {label})') features.append(InputFeatures(input_ids=input_ids, attention_mask=attention_mask, label=label)) if return_tensors is None: return features elif return_tensors == 'tf': if not is_tf_available(): raise RuntimeError("return_tensors set to 'tf' but TensorFlow 2.0 can't be imported") import tensorflow as tf def gen(): for ex in features: yield ({'input_ids': ex.input_ids, 'attention_mask': ex.attention_mask}, ex.label) dataset = tf.data.Dataset.from_generator(gen, ({'input_ids': tf.int32, 'attention_mask': tf.int32}, tf.int64), ({'input_ids': tf.TensorShape([None]), 'attention_mask': tf.TensorShape([None])}, tf.TensorShape([]))) return dataset elif return_tensors == 'pt': if not is_torch_available(): raise RuntimeError("return_tensors set to 'pt' but PyTorch can't be imported") import torch from torch.utils.data import TensorDataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) if self.mode == 'classification': all_labels = torch.tensor([f.label for f in features], dtype=torch.long) elif self.mode == 'regression': all_labels = torch.tensor([f.label for f in features], dtype=torch.float) dataset = TensorDataset(all_input_ids, all_attention_mask, all_labels) return dataset else: raise ValueError("return_tensors should be one of 'tf' or 'pt'")
Convert examples in a list of `InputFeatures` Args: tokenizer: Instance of a tokenizer that will tokenize the examples max_length: Maximum example length pad_on_left: If set to `True`, the examples will be padded on the left rather than on the right (default) pad_token: Padding token mask_padding_with_zero: If set to `True`, the attention mask will be filled by `1` for actual values and by `0` for padded values. If set to `False`, inverts it (`1` for padded values, `0` for actual values) Returns: If the `examples` input is a `tf.data.Dataset`, will return a `tf.data.Dataset` containing the task-specific features. If the input is a list of `InputExamples`, will return a list of task-specific `InputFeatures` which can be fed to the model.
github-repos
def display_task_progress(self, instance, project, region, request_id=None, user=None, poll_interval=60): total_completed = 0 while True: task_results = self.client.get_task_data(instance, project, region, request_id=request_id, user=user) tasks = {task['id']: task for task in task_results} completed_tasks = set() pending_tasks = set() for task in tasks.values(): if (task.get('successful') is not None): completed_tasks.add(task['id']) else: pending_tasks.add(task['id']) if ((len(completed_tasks) > total_completed) or (not completed_tasks)): total_completed = len(completed_tasks) print('Task status update (completed: {0:d} | pending: {1:d})'.format(len(completed_tasks), len(pending_tasks))) print('Completed tasks:') for task_id in completed_tasks: self._print_task_data(tasks[task_id]) print('Pending tasks:') for task_id in pending_tasks: self._print_task_data(tasks[task_id]) if ((len(completed_tasks) == len(task_results)) and completed_tasks): print('All {0:d} Tasks completed'.format(len(task_results))) return time.sleep(poll_interval)
Displays the overall progress of tasks in a Turbinia job. Args: instance (string): The name of the Turbinia instance project (string): The project containing the disk to process region (string): Region where turbinia is configured. request_id (string): The request ID provided by Turbinia. user (string): The username to filter tasks by. poll_interval (int): The interval at which to poll for new results.
codesearchnet
def VerifyStructure(self, parser_mediator, line): try: structure = self._LINE.parseString(line) except pyparsing.ParseException: logger.debug('Not a SkyDrive old log file') return False (day_of_month, month, year, hours, minutes, seconds, milliseconds) = structure.date_time time_elements_tuple = (year, month, day_of_month, hours, minutes, seconds, milliseconds) try: dfdatetime_time_elements.TimeElementsInMilliseconds(time_elements_tuple=time_elements_tuple) except ValueError: logger.debug('Not a SkyDrive old log file, invalid date and time: {0!s}'.format(structure.date_time)) return False return True
Verify that this file is a SkyDrive old log file. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. line (str): line from a text file. Returns: bool: True if the line is in the expected format, False if not.
codesearchnet
def for_executor(cls, executor: Optional[Executor]) -> 'Subsystem': if isinstance(executor, ThreadPoolExecutor): return _ThreadingSubsystem(executor) elif executor is None: return _AsyncioSubsystem() else: raise TypeError(executor)
Return a subsystem based on the given executor. If ``executor`` is None, use :mod:`asyncio`. If ``executor`` is a :class:`concurrent.futures.ThreadPoolExecutor`, use :mod:`threading`. Args: executor: The executor in use, if any.
juraj-google-style
def start(self, hostname=None, port=None, templates_path=None): self.hostname = hostname if hostname else "localhost" if port: self.port = port elif not self.port: self.port = unused_port(self.hostname) if templates_path: self.loaders.insert(0, jinja2.FileSystemLoader(templates_path)) self._set_loaders() self.setup_routes() self.runner = aioweb.AppRunner(self.app) return self.agent.submit(start_server_in_loop(self.runner, self.hostname, self.port, self.agent))
Starts the web interface. Args: hostname (str, optional): host name to listen from. (Default value = None) port (int, optional): port to listen from. (Default value = None) templates_path (str, optional): path to look for templates. (Default value = None)
juraj-google-style
def _call_and_return_none_on_error(func: Callable[[], NotNoneT], error_msg: str) -> Optional[NotNoneT]: try: return func() except Exception as ex: traceback.print_exception(ex) logging.error(error_msg) return None
Calls `func` and returns `None` on error. This is used to gracefully return the 'error status' represented as `None`, as raising exceptions from `PyFunctionLibrary` methods crashes the program. Args: func: The function to run. The function should be a callable returning a non-None value. error_msg: The error message to log upon error. Used for debugging purposes. Returns: `None` if the function raises an exception. The return value of `func` otherwise.
github-repos
def get_next_as_optional(iterator): return iterator.get_next_as_optional()
Returns a `tf.experimental.Optional` with the next element of the iterator. If the iterator has reached the end of the sequence, the returned `tf.experimental.Optional` will have no value. Args: iterator: A `tf.data.Iterator`. Returns: A `tf.experimental.Optional` object which either contains the next element of the iterator (if it exists) or no value.
github-repos
def segs(self, word): return [m.group('all') for m in self.seg_regex.finditer(word)]
Returns a list of segments from a word Args: word (unicode): input word as Unicode IPA string Returns: list: list of strings corresponding to segments found in `word`
codesearchnet
def alt40fms(msg): d = hex2bin(data(msg)) if d[13] == '0': return None alt = bin2int(d[14:26]) * 16 return alt
Selected altitude, FMS Args: msg (String): 28 bytes hexadecimal message (BDS40) string Returns: int: altitude in feet
juraj-google-style
def __init__(self, regularizer=None, activity_regularizer=None, use_operator=False, var_name='v', **kwargs): self._regularizer = regularizer if isinstance(regularizer, dict): self._regularizer = regularizers.deserialize(regularizer, custom_objects=globals()) self._activity_regularizer = activity_regularizer if isinstance(activity_regularizer, dict): self._activity_regularizer = regularizers.deserialize(activity_regularizer, custom_objects=globals()) self._use_operator = use_operator self._var_name = var_name super(MultiplyLayer, self).__init__(activity_regularizer=self._activity_regularizer, **kwargs)
Initializes the MultiplyLayer. Args: regularizer: The weight regularizer on the scalar variable. activity_regularizer: The activity regularizer. use_operator: If True, add using the * operator. If False, add using tf.multiply. var_name: The name of the variable. It can be useful to pass a name other than 'v', to test having the attribute name (self.v) being different from the variable name. **kwargs: Passed to AssertTypeLayer constructor.
github-repos
def create(self, params): sh_id = params.get('id', str(uuid4())) if sh_id in self: raise ShardedClusterError( "Sharded cluster with id %s already exists." % sh_id) params['id'] = sh_id cluster = ShardedCluster(params) self[cluster.id] = cluster return cluster.id
create new ShardedCluster Args: params - dictionary with specific params for instance Return cluster_id where cluster_id - id which can use to take the cluster from servers collection
juraj-google-style
def set_hook_data(self, key, data): if (not isinstance(data, collections.Mapping)): raise ValueError(('Hook (key: %s) data must be an instance of collections.Mapping (a dictionary for example).' % key)) if (key in self.hook_data): raise KeyError('Hook data for key %s already exists, each hook must have a unique data_key.', key) self.hook_data[key] = data
Set hook data for the given key. Args: key(str): The key to store the hook data in. data(:class:`collections.Mapping`): A dictionary of data to store, as returned from a hook.
codesearchnet
def usermacro_get(macro=None, hostids=None, templateids=None, hostmacroids=None, globalmacroids=None, globalmacro=False, **kwargs): conn_args = _login(**kwargs) ret = {} try: if conn_args: method = 'usermacro.get' params = {'output': 'extend', 'filter': {}} if macro: if isinstance(macro, dict): macro = (('{' + six.text_type(macro.keys()[0])) + '}') if ((not macro.startswith('{')) and (not macro.endswith('}'))): macro = (('{' + macro) + '}') params['filter'].setdefault('macro', macro) if hostids: params.setdefault('hostids', hostids) elif templateids: params.setdefault('templateids', hostids) if hostmacroids: params.setdefault('hostmacroids', hostmacroids) elif globalmacroids: globalmacro = True params.setdefault('globalmacroids', globalmacroids) if globalmacro: params = _params_extend(params, globalmacro=True) params = _params_extend(params, **kwargs) ret = _query(method, params, conn_args['url'], conn_args['auth']) return (ret['result'] if ret['result'] else False) else: raise KeyError except KeyError: return ret
Retrieve user macros according to the given parameters. Args: macro: name of the usermacro hostids: Return macros for the given hostids templateids: Return macros for the given templateids hostmacroids: Return macros with the given hostmacroids globalmacroids: Return macros with the given globalmacroids (implies globalmacro=True) globalmacro: if True, returns only global macros optional kwargs: _connection_user: zabbix user (can also be set in opts or pillar, see module's docstring) _connection_password: zabbix password (can also be set in opts or pillar, see module's docstring) _connection_url: url of zabbix frontend (can also be set in opts or pillar, see module's docstring) Returns: Array with usermacro details, False if no usermacro found or on failure. CLI Example: .. code-block:: bash salt '*' zabbix.usermacro_get macro='{$SNMP_COMMUNITY}'
codesearchnet
def dump(self, format='ttl'): return self.rdf.graph.serialize(format=format).decode('utf-8')
Convenience method to return RDF data for resource, optionally selecting serialization format. Inspired by .dump from Samvera. Args: format (str): expecting serialization formats accepted by rdflib.serialization(format=)
codesearchnet
def realtime(widget, url_name=None, url_regex=None, time_interval=None): if not hasattr(widget, 'get_updated_content'): raise AttributeError('Widget %s must implement get_updated_content ' 'method.' % widget) elif not callable(widget.get_updated_content): raise ValueError('get_updated_content in widget %s is not callable' % widget) if url_name is None: if getattr(widget, 'url_name', None) is not None: url_name = widget.url_name else: url_name = widget.__class__.__name__ if url_name in [w.url_name for w in REALTIME_WIDGETS]: raise ValueError('URL name %s is already used by another ' 'real time widget.' % url_name) if url_regex is None: if getattr(widget, 'url_regex', None) is not None: url_regex = widget.url_regex else: url_regex = sha256(url_name.encode('utf-8')) url_regex = url_regex.hexdigest()[:32] url_regex = 'realtime/' + url_regex if url_regex in [w.url_regex for w in REALTIME_WIDGETS]: raise ValueError('URL regex %s is already used by another ' 'real time widget.' % url_regex) if time_interval is None: if getattr(widget, 'time_interval', None) is not None: time_interval = widget.time_interval else: time_interval = app_settings.default_time_interval from django.views.generic import View from braces.views import AjaxResponseMixin, JSONResponseMixin class PartialResponse(JSONResponseMixin, AjaxResponseMixin, View): def get_data(self): return widget.get_updated_content() def get(self, request, *args, **kwargs): return self.get_ajax(request, *args, **kwargs) def get_ajax(self, request, *args, **kwargs): return self.render_json_response(self.get_data()) PartialResponse.url_name = url_name PartialResponse.url_regex = url_regex PartialResponse.time_interval = time_interval REALTIME_WIDGETS.append(PartialResponse) if not hasattr(widget, 'url_name'): widget.url_name = url_name if not hasattr(widget, 'url_regex'): widget.url_regex = url_regex if not hasattr(widget, 'time_interval'): widget.time_interval = time_interval return widget
Return a widget as real-time. Args: widget (Widget): the widget to register and return as real-time. url_name (str): the URL name to call to get updated content. url_regex (regex): the URL regex to be matched. time_interval (int): the interval of refreshment in milliseconds. Returns: Widget: the "real-timed" widget.
juraj-google-style
def discount_rate(self, date: Optional[types.DateTensor]=None, time: Optional[types.FloatTensor]=None, context=None) -> tf.Tensor: pass
Returns the discount rates to a specified set of dates. Args: date: A `DateTensor` specifying the dates at which to evaluate the discount rates. The function expects either `date` or `time` to be specified. time: A real `Tensor` specifying the times at which to evaluate the discount rates. The function expects either `date` or `time` to be specified. context: The context object, e.g., curve_type. Returns: A `Tensor` of the same shape as `dates` with the corresponding discount rates.
github-repos
def seek(self, offset, whence=os.SEEK_SET): if not self._is_open: raise IOError('Not opened.') if self._current_offset < 0: raise IOError( 'Invalid current offset: {0:d} value less than zero.'.format( self._current_offset)) if whence == os.SEEK_CUR: offset += self._current_offset elif whence == os.SEEK_END: if self._decoded_stream_size is None: self._decoded_stream_size = self._GetDecodedStreamSize() if self._decoded_stream_size is None: raise IOError('Invalid decoded stream size.') offset += self._decoded_stream_size elif whence != os.SEEK_SET: raise IOError('Unsupported whence.') if offset < 0: raise IOError('Invalid offset value less than zero.') if offset != self._current_offset: self._current_offset = offset self._realign_offset = True
Seeks to an offset within the file-like object. Args: offset (int): offset to seek to. whence (Optional(int)): value that indicates whether offset is an absolute or relative position within the file. Raises: IOError: if the seek failed. OSError: if the seek failed.
juraj-google-style
def _CanSkipContentExtraction(self, file_entry): location = getattr(file_entry.path_spec, 'location', None) if not location: return False data_stream_name = getattr(file_entry.path_spec, 'data_stream', None) if data_stream_name: return False file_system = file_entry.GetFileSystem() path_segments = file_system.SplitPath(location) if not path_segments: return False if self._CHROME_CACHE_DATA_FILE_RE.match(path_segments[-1]): location_segments = path_segments[:-1] location_segments.append('index') location = file_system.JoinPath(location_segments) index_path_spec = path_spec_factory.Factory.NewPathSpec( file_entry.type_indicator, location=location, parent=file_entry.path_spec.parent) if file_system.FileEntryExistsByPathSpec(index_path_spec): return True elif self._FIREFOX_CACHE_DATA_FILE_RE.match(path_segments[-1]): location_segments = path_segments[:-4] location_segments.append('_CACHE_MAP_') location = file_system.JoinPath(location_segments) cache_map_path_spec = path_spec_factory.Factory.NewPathSpec( file_entry.type_indicator, location=location, parent=file_entry.path_spec.parent) if file_system.FileEntryExistsByPathSpec(cache_map_path_spec): return True elif self._FIREFOX_CACHE2_DATA_FILE_RE.match(path_segments[-1]): location_segments = path_segments[:-2] location_segments.append('index') location = file_system.JoinPath(location_segments) index_path_spec = path_spec_factory.Factory.NewPathSpec( file_entry.type_indicator, location=location, parent=file_entry.path_spec.parent) if file_system.FileEntryExistsByPathSpec(index_path_spec): return True elif len(path_segments) == 1 and path_segments[0].lower() in ( 'hiberfil.sys', 'pagefile.sys', 'swapfile.sys'): return True return False
Determines if content extraction of a file entry can be skipped. Args: file_entry (dfvfs.FileEntry): file entry of which to determine content extraction can be skipped. Returns: bool: True if content extraction can be skipped.
juraj-google-style
def _filter_var(self, node, var): bindings = var.Bindings(node) if len(var.bindings) > 1 else var.bindings if not bindings: return None if len(bindings) == len(var.bindings) and (not any((isinstance(b.data, abstract.TypeParameterInstance) for b in bindings))): return var ret = self.ctx.program.NewVariable() for binding in bindings: val = binding.data if isinstance(val, abstract.TypeParameterInstance): var = val.instance.get_instance_type_parameter(val.name) var_bindings = var.Bindings(node) if var_bindings: bindings.extend(var_bindings) elif val.param.constraints or val.param.bound: ret.PasteVariable(val.param.instantiate(node)) else: ret.AddBinding(self.ctx.convert.empty, [], node) else: ret.AddBinding(val, {binding}, node) if ret.bindings: return ret else: return None
Filter the variable by the node. Filters the variable data, including recursively expanded type parameter instances, by visibility at the node. A type parameter instance needs to be filtered at the moment of access because its value may change later. Args: node: The current node. var: A variable to filter. Returns: The filtered variable.
github-repos
def _resolve_path(obj, path=None): if path: for attr_name in path.split('__'): obj = getattr(obj, attr_name) return obj
Resolve django-like path eg. object2__object3 for object Args: obj: The object the view is displaying. path (str, optional): Description Returns: A oject at end of resolved path
juraj-google-style
def replace_nones(list_, repl=(- 1)): repl_list = [(repl if (item is None) else (replace_nones(item, repl) if isinstance(item, list) else item)) for item in list_] return repl_list
r""" Recursively removes Nones in all lists and sublists and replaces them with the repl variable Args: list_ (list): repl (obj): replacement value Returns: list CommandLine: python -m utool.util_list --test-replace_nones Example: >>> # ENABLE_DOCTEST >>> from utool.util_list import * # NOQA >>> # build test data >>> list_ = [None, 0, 1, 2] >>> repl = -1 >>> # execute function >>> repl_list = replace_nones(list_, repl) >>> # verify results >>> result = str(repl_list) >>> print(result) [-1, 0, 1, 2]
codesearchnet
def __init__(self, replicaset=None, ssl=None, login=None, password=None, ca_cert=None, certfile=None, keyfile=None, keyfile_passphrase=None, crlfile=None, **kwargs): super().__init__(**kwargs) self.replicaset = replicaset or bigchaindb.config['database'].get('replicaset') self.ssl = ssl if ssl is not None else bigchaindb.config['database'].get('ssl', False) self.login = login or bigchaindb.config['database'].get('login') self.password = password or bigchaindb.config['database'].get('password') self.ca_cert = ca_cert or bigchaindb.config['database'].get('ca_cert', None) self.certfile = certfile or bigchaindb.config['database'].get('certfile', None) self.keyfile = keyfile or bigchaindb.config['database'].get('keyfile', None) self.keyfile_passphrase = keyfile_passphrase or bigchaindb.config['database'].get('keyfile_passphrase', None) self.crlfile = crlfile or bigchaindb.config['database'].get('crlfile', None)
Create a new Connection instance. Args: replicaset (str, optional): the name of the replica set to connect to. **kwargs: arbitrary keyword arguments provided by the configuration's ``database`` settings
juraj-google-style
def report_sink_lineage(path): FileSystems.get_filesystem(path).report_lineage(path, Lineage.sinks())
Report sink :class:`~apache_beam.metrics.metric.Lineage`. Args: path: string path to be reported.
github-repos
def _ParseEntry(self, key, val): if (key in self._repeated): setting = self.section.setdefault(key, []) setting.extend(val) else: self.section.setdefault(key, val)
Adds an entry for a configuration setting. Args: key: The name of the setting. val: The value of the setting.
codesearchnet
def cumulative_distribution(self, X, U=0): self.check_fit() low_bounds = self.model.dataset.mean() - (5 * self.model.dataset.std()) return self.model.integrate_box_1d(low_bounds, X) - U
Computes the integral of a 1-D pdf between two bounds Args: X(float): a datapoint. U(float): cdf value in [0,1], only used in get_ppf Returns: float: estimated cumulative distribution.
juraj-google-style
def dense_shape_and_type(matrix): if not isinstance(matrix, tensor_lib.Tensor): raise TypeError('matrix should be a tensor, but saw: %s' % (matrix,)) if matrix.dtype != dtypes.variant: raise TypeError('expected matrix to be type tf.variant, but saw: %s' % (matrix.dtype,)) handle_data = _get_handle_data(matrix) if not handle_data or not handle_data.is_set: raise ValueError('matrix has missing handle data: %s' % (matrix,)) if len(handle_data.shape_and_type) != 1: raise ValueError("len(matrix.handle_data.shape_and_type) != 1: '%s'" % (handle_data.shape_and_type,)) return DenseShapeAndType(tensor_shape.TensorShape(handle_data.shape_and_type[0].shape), dtypes.DType(handle_data.shape_and_type[0].dtype))
Get dense shape and dtype of the tf.Tensor containing the matrix. Args: matrix: A `tf.Tensor` of type `tf.variant` storing a sparse matrix. Returns: An instance of `ShapeAndType` with properties `shape` (a `tf.TensorShape`) and `dtype` (a `tf.DType`). Raises: TypeError: if `matrix` is not a tensor or its dtype is not variant. ValueError: if `matrix` lacks static handle data containing the dense shape and dtype.
github-repos
def convert_lrelu(params, w_name, scope_name, inputs, layers, weights, names): print('Converting lrelu ...') if (names == 'short'): tf_name = ('lRELU' + random_string(3)) elif (names == 'keep'): tf_name = w_name else: tf_name = (w_name + str(random.random())) leakyrelu = keras.layers.LeakyReLU(alpha=params['alpha'], name=tf_name) layers[scope_name] = leakyrelu(layers[inputs[0]])
Convert leaky relu layer. Args: params: dictionary with layer parameters w_name: name prefix in state_dict scope_name: pytorch scope name inputs: pytorch node inputs layers: dictionary with keras tensors weights: pytorch state_dict names: use short names for keras layers
codesearchnet
def main(params=None): if params == None: parser = getParser() args = parser.parse_args(params) else: args = params print(general.title(banner.text)) extraWords = args.extra_words try: if args.name == None and args.surname1 == None and args.surname2 == None and args.city == None and args.country == None and args.year == None: print("\nCollecting information about the profile") print("----------------------------------------\n") args.name = raw_input(general.emphasis("Insert a name: ".ljust(35, " "))).replace(' ','') args.surname1 = raw_input(general.emphasis("Insert the first surname: ".ljust(35, " "))).replace(' ','') args.surname2 = raw_input(general.emphasis("Insert the second surname: ".ljust(35, " "))).replace(' ','') args.year = raw_input(general.emphasis("Insert a year (e. g.: birthyear): ".ljust(35, " "))).replace(' ','') args.city = raw_input(general.emphasis("Insert a city: ".ljust(35, " "))).replace(' ','') args.country = raw_input(general.emphasis("Insert a country: ".ljust(35, " "))).replace(' ','') if args.extra_words == []: print("\nAdditional transformations to be added") print("--------------------------------------\n") inputText = raw_input(general.emphasis("Extra words to add (',' separated): ".ljust(35, " "))).replace(' ','') extraWords += inputText.lower().split(',') except KeyboardInterrupt: print("\n\nThe user manually aborted the program. Exiting...") sys.exit(2) lista=[] print("\nInput data:") print("-----------\n") if args.name != "": print("Name: ".ljust(20, " ") + args.name) if args.surname1 != "": print("First Surname: ".ljust(20, " ") + args.surname1) if args.surname2 != "": print("Second Surname: ".ljust(20, " ") + args.surname2) if args.year != "": print("Year: ".ljust(20, " ") + args.year) if args.city != "": print("City: ".ljust(20, " ") + args.city) if args.country != "": print("Country: ".ljust(20, " ") + args.country) aliases = generate( name=args.name, surname1=args.surname1, surname2=args.surname2, city=args.city, country=args.country, year=args.year, useNumbers=args.numbers, useCommonWords=args.common_words, useLeet=args.leet, useLocales=args.locales, extraWords=extraWords ) print("Writing the results onto the file:\n\t" + general.emphasis(args.outputFile)) oF=open(args.outputFile, "w") for l in aliases: oF.write(l+"\n") oF.close() print(banner.footer)
Main function to launch alias_generator. Args: ----- params: A list with the parameters as grabbed by the terminal. It is None when this is called by an entry_point. If it is called by osrf the data is already parsed.
juraj-google-style
def diff_text2(self, diffs): text = [] for (op, data) in diffs: if op != self.DIFF_DELETE: text.append(data) return "".join(text)
Compute and return the destination text (all equalities and insertions). Args: diffs: Array of diff tuples. Returns: Destination text.
juraj-google-style
def datetimeobj_YmdHMS(value): i = int(value) S = i M = S H = M d = H m = d Y = m return datetime.datetime( Y % 10000, m % 100, d % 100, H % 100, M % 100, S % 100, tzinfo=TZ_GMT )
Convert timestamp string to a datetime object. Timestamps strings like '20130618120000' are able to be converted by this function. Args: value: A timestamp string in the format '%Y%m%d%H%M%S'. Returns: A datetime object. Raises: ValueError: If timestamp is invalid. Note: The timezone is assumed to be UTC/GMT.
juraj-google-style
def zip_ll(data, means, M): genes, cells = data.shape clusters = means.shape[1] ll = np.zeros((cells, clusters)) d0 = (data==0) d1 = (data>0) for i in range(clusters): means_i = np.tile(means[:,i], (cells, 1)) means_i = means_i.transpose() L_i = np.tile(M[:,i], (cells, 1)) L_i = L_i.transpose() ll_0 = np.log(L_i + (1 - L_i)*np.exp(-means_i)) ll_0 = np.where((L_i==0) & (means_i==0), -means_i, ll_0) ll_1 = np.log(1 - L_i) + xlogy(data, means_i) - means_i ll_0 = np.where(d0, ll_0, 0.0) ll_1 = np.where(d1, ll_1, 0.0) ll[:,i] = np.sum(ll_0 + ll_1, 0) return ll
Calculates the zero-inflated Poisson log-likelihood. Args: data (array): genes x cells means (array): genes x k M (array): genes x k - this is the zero-inflation parameter. Returns: cells x k array of log-likelihood for each cell/cluster pair.
juraj-google-style
def text(self, x, y, text): for i, char in enumerate(text): self.point(x + i, y, char)
Print a text on ASCII canvas. Args: x (int): x coordinate where the text should start. y (int): y coordinate where the text should start. text (str): string that should be printed.
juraj-google-style
def git_ls_remote(self, uri, ref): logger.debug('Invoking git to retrieve commit id for repo %s...', uri) lsremote_output = subprocess.check_output(['git', 'ls-remote', uri, ref]) if (b'\t' in lsremote_output): commit_id = lsremote_output.split(b'\t')[0] logger.debug('Matching commit id found: %s', commit_id) return commit_id else: raise ValueError(('Ref "%s" not found for repo %s.' % (ref, uri)))
Determine the latest commit id for a given ref. Args: uri (string): git URI ref (string): git ref Returns: str: A commit id
codesearchnet
def value_splitter(self, reference, prop, value, mode): items = [] if (mode == 'json-list'): try: items = json.loads(value) except json.JSONDecodeError as e: print(value) msg = "Reference '{ref}' raised JSON decoder error when splitting values from '{prop}': {err}'" raise SerializerError(msg.format(ref=reference, prop=prop, err=e)) elif (len(value) > 0): items = value.split(' ') return items
Split a string into a list items. Default behavior is to split on white spaces. Arguments: reference (string): Reference name used when raising possible error. prop (string): Property name used when raising possible error. value (string): Property value to split. mode (string): Splitter mode. Default should come from ``ManifestSerializer._DEFAULT_SPLITTER``. Available splitter are: * ``white-space``: Simply split a string on white spaces; * ``json-list``: Assume the string is a JSON list to parse; Returns: list:
codesearchnet
def append_transformation(self, transformation, return_alternatives=False, clear_redo=True): if clear_redo: self._undone = [] if (return_alternatives and transformation.is_one_to_many): ranked_list = transformation.apply_transformation(self.final_structure, return_ranked_list=return_alternatives) input_structure = self.final_structure.as_dict() alts = [] for x in ranked_list[1:]: s = x.pop('structure') actual_transformation = x.pop('transformation', transformation) hdict = actual_transformation.as_dict() hdict['input_structure'] = input_structure hdict['output_parameters'] = x self.final_structure = s d = self.as_dict() d['history'].append(hdict) d['final_structure'] = s.as_dict() alts.append(TransformedStructure.from_dict(d)) x = ranked_list[0] s = x.pop('structure') actual_transformation = x.pop('transformation', transformation) hdict = actual_transformation.as_dict() hdict['input_structure'] = self.final_structure.as_dict() hdict['output_parameters'] = x self.history.append(hdict) self.final_structure = s return alts else: s = transformation.apply_transformation(self.final_structure) hdict = transformation.as_dict() hdict['input_structure'] = self.final_structure.as_dict() hdict['output_parameters'] = {} self.history.append(hdict) self.final_structure = s
Appends a transformation to the TransformedStructure. Args: transformation: Transformation to append return_alternatives: Whether to return alternative TransformedStructures for one-to-many transformations. return_alternatives can be a number, which stipulates the total number of structures to return. clear_redo: Boolean indicating whether to clear the redo list. By default, this is True, meaning any appends clears the history of undoing. However, when using append_transformation to do a redo, the redo list should not be cleared to allow multiple redos.
codesearchnet
def concatenate(self, other): other = as_shape(other) if self.dims is None or other.dims is None: return unknown_shape() else: return TensorShape(self.dims + other.dims)
Returns the concatenation of the dimension in `self` and `other`. *N.B.* If either `self` or `other` is completely unknown, concatenation will discard information about the other shape. In future, we might support concatenation that preserves this information for use with slicing. Args: other: Another `TensorShape`. Returns: A `TensorShape` whose dimensions are the concatenation of the dimensions in `self` and `other`.
github-repos
def _bbox(nodes): (left, bottom) = np.min(nodes, axis=1) (right, top) = np.max(nodes, axis=1) return (left, right, bottom, top)
Get the bounding box for set of points. .. note:: There is also a Fortran implementation of this function, which will be used if it can be built. Args: nodes (numpy.ndarray): A set of points. Returns: Tuple[float, float, float, float]: The left, right, bottom and top bounds for the box.
codesearchnet
def _assert_same_base_type(items, expected_type=None): original_expected_type = expected_type mismatch = False for item in items: if (item is not None): item_type = base_dtype(item.dtype) if (not expected_type): expected_type = item_type elif (expected_type != item_type): mismatch = True break if mismatch: expected_type = original_expected_type original_item_str = None get_name = (lambda x: (x.name if hasattr(x, 'name') else str(x))) for item in items: if (item is not None): item_type = base_dtype(item.dtype) if (not expected_type): expected_type = item_type original_item_str = get_name(item) elif (expected_type != item_type): raise ValueError('{}, type={}, must be of the same type ({}){}.'.format(get_name(item), item_type, expected_type, (' as {}'.format(original_item_str) if original_item_str else ''))) return expected_type else: return expected_type
r"""Asserts all items are of the same base type. Args: items: List of graph items (e.g., `Variable`, `Tensor`, `SparseTensor`, `Operation`, or `IndexedSlices`). Can include `None` elements, which will be ignored. expected_type: Expected type. If not specified, assert all items are of the same base type. Returns: Validated type, or none if neither expected_type nor items provided. Raises: ValueError: If any types do not match.
codesearchnet
def intersect(df, other, index=False, keep='first'): validate_set_ops(df, other) if index: df_reset_index = df.reset_index() other_reset_index = other.reset_index() index_cols = [col for col in df_reset_index.columns if (col not in df.columns)] df_index_names = df.index.names return_df = pd.merge(df_reset_index, other_reset_index, how='inner', left_on=df_reset_index.columns.values.tolist(), right_on=df_reset_index.columns.values.tolist()).set_index(index_cols) return_df.index.names = df_index_names return_df = return_df.drop_duplicates(keep=keep) return return_df else: return_df = pd.merge(df, other, how='inner', left_on=df.columns.values.tolist(), right_on=df.columns.values.tolist()) return_df = return_df.drop_duplicates(keep=keep) return return_df
Returns rows that appear in both DataFrames. Args: df (pandas.DataFrame): data passed in through the pipe. other (pandas.DataFrame): other DataFrame to use for set operation with the first. Kwargs: index (bool): Boolean indicating whether to consider the pandas index as part of the set operation (default `False`). keep (str): Indicates which duplicate should be kept. Options are `'first'` and `'last'`.
codesearchnet
def wait(timeout=None, flush=True): if (timeout is not None): timeout = (timeout + _time.clock()) while True: if _eventQueue: return _eventQueue.pop(0) if flush: _tdl.flush() if (timeout and (_time.clock() >= timeout)): return None _time.sleep(0.001) _processEvents()
Wait for an event. Args: timeout (Optional[int]): The time in seconds that this function will wait before giving up and returning None. With the default value of None, this will block forever. flush (bool): If True a call to :any:`tdl.flush` will be made before listening for events. Returns: Type[Event]: An event, or None if the function has timed out. Anything added via :any:`push` will also be returned.
codesearchnet
def rescale(self, image: 'torch.Tensor', scale: float, offset: Optional[bool]=True, **kwargs) -> 'torch.Tensor': rescaled_image = image * scale if offset: rescaled_image -= 1 return rescaled_image
Rescale an image by a scale factor. If `offset` is `True`, the image has its values rescaled by `scale` and then offset by 1. If `scale` is 1/127.5, the image is rescaled between [-1, 1]. image = image * scale - 1 If `offset` is `False`, and `scale` is 1/255, the image is rescaled between [0, 1]. image = image * scale Args: image (`torch.Tensor`): Image to rescale. scale (`float`): The scaling factor to rescale pixel values by. offset (`bool`, *optional*): Whether to scale the image in both negative and positive directions. Returns: `torch.Tensor`: The rescaled image.
github-repos
def get_variable(mesh, name, shape, dtype=tf.float32, master_dtype=None, slice_dtype=None, activation_dtype=None, initializer=None, trainable=True, **kwargs): if (dtype is None): dtype = VariableDType(master_dtype, slice_dtype, activation_dtype) elif isinstance(dtype, tf.DType): dtype = VariableDType((master_dtype or dtype), (slice_dtype or dtype), (activation_dtype or dtype)) elif (not isinstance(dtype, VariableDType)): raise ValueError('dtype should be a tf.dtype or a mtf.VariableDType') scope_name = tf.get_variable_scope().name if scope_name: full_name = ((scope_name + '/') + name) else: full_name = name if (full_name in mesh.graph.name_to_variable): var = mesh.graph.name_to_variable[full_name] else: var = Variable(mesh, name, convert_to_shape(shape), dtype, initializer, trainable, **kwargs) if (var.name != full_name): raise ValueError(('Expected var.name == full_name. %s vs %s' % (var.name, full_name))) mesh.graph.name_to_variable[full_name] = var return var.outputs[0]
Create a new variable or retrieve an already-created one. Args: mesh: a Mesh name: a string (uses the existing tf.variable_scope()) shape: a Shape dtype: a VariableDType or a tf.DType master_dtype: an optional tf.DType (deprecated - use dtype arg) slice_dtype: an optional tf.DType (deprecated - use dtype arg) activation_dtype: an optional tf.DType (deprecated - use dtype arg) initializer: an optional tf initializer function trainable: a boolean **kwargs: additional keyword arguments to tf.get_variable Returns: a Tensor with the given shape and dtype equal to dtype.activation_dtype
codesearchnet
def incrementKeySequenceCounter(self, iIncrementValue=1): print '%s call incrementKeySequenceCounter' % self.port print iIncrementValue currentKeySeq = '' try: currentKeySeq = self.getKeySequenceCounter() keySequence = int(currentKeySeq, 10) + iIncrementValue print keySequence return self.setKeySequenceCounter(keySequence) except Exception, e: ModuleHelper.WriteIntoDebugLogger('incrementKeySequenceCounter() Error: ' + str(e))
increment the key sequence with a given value Args: iIncrementValue: specific increment value to be added Returns: True: successful to increment the key sequence with a given value False: fail to increment the key sequence with a given value
juraj-google-style
def __init__(self, rs_params): self.server_map = {} self.auth_key = rs_params.get('auth_key', None) self.login = rs_params.get('login', '') self.auth_source = rs_params.get('authSource', 'admin') self.password = rs_params.get('password', '') self.admin_added = False self.repl_id = rs_params.get('id', None) or str(uuid4()) self._version = rs_params.get('version') self.sslParams = rs_params.get('sslParams', {}) self.kwargs = {} self.restart_required = self.login or self.auth_key self.x509_extra_user = False if self.sslParams: self.kwargs.update(DEFAULT_SSL_OPTIONS) members = rs_params.get('members', []) self.enable_ipv6 = ipv6_enabled_repl(rs_params) config = {"_id": self.repl_id, "members": [ self.member_create(member, index) for index, member in enumerate(members) ]} if 'rsSettings' in rs_params: config['settings'] = rs_params['rsSettings'] self._write_concern = len( [m for m in members if not m.get('rsParams', {}).get('arbiterOnly')] ) logger.debug("replica config: {config}".format(**locals())) if not self.repl_init(config): self.cleanup() raise ReplicaSetError("Could not create replica set.") if not self.waiting_config_state(): raise ReplicaSetError( "Could not actualize replica set configuration.") if self.login: for member in members: proc_params = member.get('procParams', {}) set_params = proc_params.get('setParameter', {}) auth_mechs = set_params.get('authenticationMechanisms', '') auth_mechs = auth_mechs.split(',') if len(auth_mechs) == 1 and auth_mechs[0] == 'MONGODB-X509': self.x509_extra_user = True break if config["members"]: server_id = self._servers.host_to_server_id( self.member_id_to_host(0)) version = self._servers.version(server_id) else: version = (2, 4, 0) self._add_users(self.connection()[self.auth_source], version) if self.restart_required: for idx, member in enumerate(members): server_id = self._servers.host_to_server_id( self.member_id_to_host(idx)) server = self._servers._storage[server_id] if not member.get('rsParams', {}).get('arbiterOnly'): server.x509_extra_user = self.x509_extra_user server.auth_source = self.auth_source server.login = self.login server.password = self.password def add_auth(config): if self.auth_key: config['keyFile'] = self.key_file config.update(member.get('procParams', {})) return config server.restart(config_callback=add_auth) self.restart_required = False if not self.waiting_member_state() and self.waiting_config_state(): raise ReplicaSetError( "Could not actualize replica set configuration.") for i in range(100): if self.connection().primary: break time.sleep(0.1) else: raise ReplicaSetError("No primary was ever elected.")
create replica set according members config Args: rs_params - replica set configuration
juraj-google-style
def _generate_graph_update_dicts(self): transform_dict = {} pcoll_dict = {} for transform_id, transform_proto in self._top_level_transforms(): transform_dict[transform_proto.unique_name] = {'required': transform_id in self._required_transforms} for pcoll_id in transform_proto.outputs.values(): pcoll_dict[pcoll_id] = {'cached': pcoll_id in self._cached_pcollections, 'referenced': pcoll_id in self._referenced_pcollections} def vertex_properties_to_attributes(vertex): attrs = {} if 'leaf' in vertex: attrs['style'] = 'invis' elif vertex.get('required'): attrs['color'] = 'blue' attrs['fontcolor'] = 'blue' else: attrs['color'] = 'grey' return attrs def edge_properties_to_attributes(edge): attrs = {} if edge.get('cached'): attrs['color'] = 'red' elif edge.get('referenced'): attrs['color'] = 'black' else: attrs['color'] = 'grey' return attrs vertex_dict = {} edge_dict = {} for transform_name, transform_properties in transform_dict.items(): vertex_dict[transform_name] = vertex_properties_to_attributes(transform_properties) for pcoll_id, pcoll_properties in pcoll_dict.items(): edge_dict[pcoll_id] = edge_properties_to_attributes(pcoll_properties) return (vertex_dict, edge_dict)
Generate updates specific to interactive pipeline. Returns: vertex_dict: (Dict[str, Dict[str, str]]) maps vertex name to attributes edge_dict: (Dict[str, Dict[str, str]]) maps vertex name to attributes
github-repos
def format_level_1_memory(memory): formatted_memory = _list_to_complex_array(memory) if (not (1 <= len(formatted_memory.shape) <= 2)): raise QiskitError('Level one memory is not of correct shape.') return formatted_memory
Format an experiment result memory object for measurement level 1. Args: memory (list): Memory from experiment with `meas_level==1`. `avg` or `single` will be inferred from shape of result memory. Returns: np.ndarray: Measurement level 1 complex numpy array Raises: QiskitError: If the returned numpy array does not have 1 (avg) or 2 (single) indicies.
codesearchnet
def __getattr__(self, item): if item in self.METHOD_NO_PROXY: return super(AuthProxy, self).__getattr__(item) attr = getattr(self.proxy_class, item) if callable(attr): return self.auth_proxy(attr)
Override attribute getter to act as a proxy for``proxy_class``. If ``item`` is contained in ``METHOD_NO_PROXY``, it will not be proxied to the ``proxy_class`` and will instead return the attribute on this object. Args: item (str): Name of attribute to get.
juraj-google-style
def get_el_amount(self, element): return sum([self._all_comp[i][element] * abs(self._coeffs[i]) for i in range(len(self._all_comp))]) / 2
Returns the amount of the element in the reaction. Args: element (Element/Specie): Element in the reaction Returns: Amount of that element in the reaction.
juraj-google-style
def to_file(self, filename): d = {'mass_info': self.mass_info, 'nonbond_coeffs': self.nonbond_coeffs, 'topo_coeffs': self.topo_coeffs} yaml = YAML(typ='safe') with open(filename, 'w') as f: yaml.dump(d, f)
Saves object to a file in YAML format. Args: filename (str): Filename.
codesearchnet