code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def from_mapping(cls, mapping):
out = cls()
for (elem, count) in mapping.items():
out._set_count(elem, count)
return out
|
Create a bag from a dict of elem->count.
Each key in the dict is added if the value is > 0.
Raises:
ValueError: If any count is < 0.
|
codesearchnet
|
def __init__(self, input_reader=None, output_writer=None):
super(ImageExportTool, self).__init__(
input_reader=input_reader, output_writer=output_writer)
self._abort = False
self._artifact_definitions_path = None
self._artifact_filters = None
self._artifacts_registry = None
self._custom_artifacts_path = None
self._destination_path = None
self._digests = {}
self._filter_collection = file_entry_filters.FileEntryFilterCollection()
self._filter_file = None
self._path_spec_extractor = extractors.PathSpecExtractor()
self._process_memory_limit = None
self._resolver_context = context.Context()
self._skip_duplicates = True
self._source_type = None
self.has_filters = False
self.list_signature_identifiers = False
|
Initializes the CLI tool object.
Args:
input_reader (Optional[InputReader]): input reader, where None indicates
that the stdin input reader should be used.
output_writer (Optional[OutputWriter]): output writer, where None
indicates that the stdout output writer should be used.
|
juraj-google-style
|
def get_tld(url):
if url not in URLHelper.__cache:
URLHelper.__cache[url] = urlparse(url)
parts = URLHelper.__cache[url].netloc.split(".")
if len(parts) == 1:
return ""
else:
return parts[-1]
|
Get the tld of the given URL.
Args:
url (str): The URL to get the tld from.
Returns:
str: The tld
|
juraj-google-style
|
def update_subscription(self, *, subscription_id, credit_card_token):
payload = {
"creditCardToken": credit_card_token
}
fmt = 'subscriptions/{}'.format(subscription_id)
return self.client._put(self.url + fmt, json=payload, headers=self.get_headers())
|
Update information associated with the specified subscription. At the moment it is only possible
to update the token of the credit card to which the charge of the subscription is made.
Args:
subscription_id: Identification of the subscription.
credit_card_token:
Returns:
|
juraj-google-style
|
def calculate_part_visibility(self, ports):
source_port_lookup = {}
for part_name, port_infos in SourcePortInfo.filter_parts(ports).items():
for port_info in port_infos:
source_port_lookup[port_info.connected_value] = (
part_name, port_info.port)
for part_name, port_infos in SinkPortInfo.filter_parts(
ports).items():
for port_info in port_infos:
if port_info.value != port_info.disconnected_value:
conn_part, port = source_port_lookup.get(
port_info.value, (None, None))
if conn_part and port == port_info.port:
if conn_part not in self.part_visibility:
self.part_visibility[conn_part] = True
if part_name not in self.part_visibility:
self.part_visibility[part_name] = True
|
Calculate what is connected to what
Args:
ports: {part_name: [PortInfo]} from other ports
|
juraj-google-style
|
def point_dist2(p1, p2):
v = vector(p1, p2)
return np.dot(v, v)
|
compute the square of the euclidian distance between two 3D points
Args:
p1, p2: indexable objects with
indices 0, 1, 2 corresponding to 3D cartesian coordinates.
Returns:
The square of the euclidian distance between the points.
|
juraj-google-style
|
def _print_task_data(self, task):
print(' {0:s} ({1:s})'.format(task['name'], task['id']))
paths = task.get('saved_paths', [])
if (not paths):
return
for path in paths:
if path.endswith('worker-log.txt'):
continue
if path.endswith('{0:s}.log'.format(task.get('id'))):
continue
if path.startswith('/'):
continue
print((' ' + path))
|
Pretty-prints task data.
Args:
task: Task dict generated by Turbinia.
|
codesearchnet
|
def read(self, length, timeout):
self._read_messages_until_true(
lambda: self._buffer_size and self._buffer_size >= length, timeout)
with self._read_buffer_lock:
data, push_back = ''.join(self._read_buffer), ''
if length:
data, push_back = data[:length], data[length:]
self._read_buffer.clear()
self._buffer_size = len(push_back)
if push_back:
self._read_buffer.appendleft(push_back)
return data
|
Read 'length' bytes from this stream transport.
Args:
length: If not 0, read this many bytes from the stream, otherwise read all
available data (at least one byte).
timeout: timeouts.PolledTimeout to use for this read operation.
Returns:
The bytes read from this stream.
|
juraj-google-style
|
def parse_mip_analysis(mip_config_raw: dict, qcmetrics_raw: dict, sampleinfo_raw: dict) -> dict:
outdata = _define_output_dict()
_config(mip_config_raw, outdata)
_qc_metrics(outdata, qcmetrics_raw)
_qc_sample_info(outdata, sampleinfo_raw)
return outdata
|
Parse the output analysis files from MIP for adding info
to trend database
Args:
mip_config_raw (dict): raw YAML input from MIP analysis config file
qcmetrics_raw (dict): raw YAML input from MIP analysis qc metric file
sampleinfo_raw (dict): raw YAML input from MIP analysis qc sample info file
Returns:
dict: parsed data
|
juraj-google-style
|
def isnan(self: EventSetOrNode) -> EventSetOrNode:
from temporian.core.operators.unary import isnan
return isnan(self)
|
Returns boolean features, `True` in the NaN elements of the
[`EventSet`][temporian.EventSet].
Note that for `int` and `bool` this will always be `False` since those types
don't support NaNs. It only makes actual sense to use on `float` (or
`tp.float32`) features.
See also `evset.notnan()`.
Example:
```python
>>> a = tp.event_set(
... timestamps=[1, 2, 3],
... features={"M":[np.nan, 5., np.nan], "N": [-1, 0, 5]},
... )
>>> b = a.isnan()
>>> b
indexes: ...
'M': [ True False True]
'N': [False False False]
...
>>> # Count nans
>>> b["M"].cast(int).cumsum()
indexes: ...
timestamps: [1. 2. 3.]
'M': [1 1 2]
...
```
Returns:
EventSet with boolean features.
|
github-repos
|
def _MergeDifferentId(self):
for a in self._GetIter(self.feed_merger.a_schedule):
for b in self._GetIter(self.feed_merger.b_schedule):
try:
self._Add(a, b, self._MergeEntities(a, b))
self._num_merged += 1
except MergeError:
continue
for a in self._GetIter(self.feed_merger.a_schedule):
if (a not in self.feed_merger.a_merge_map):
self._num_not_merged_a += 1
newid = self._HasId(self.feed_merger.b_schedule, self._GetId(a))
self._Add(a, None, self._Migrate(a, self.feed_merger.a_schedule, newid))
for b in self._GetIter(self.feed_merger.b_schedule):
if (b not in self.feed_merger.b_merge_map):
self._num_not_merged_b += 1
newid = self._HasId(self.feed_merger.a_schedule, self._GetId(b))
self._Add(None, b, self._Migrate(b, self.feed_merger.b_schedule, newid))
return self._num_merged
|
Tries to merge all possible combinations of entities.
This tries to merge every entity in the old schedule with every entity in
the new schedule. Unlike _MergeSameId, the ids do not need to match.
However, _MergeDifferentId is much slower than _MergeSameId.
This method makes use of various methods like _Merge and _Migrate which
are not implemented in the abstract DataSetMerger class. These method
should be overwritten in a subclass to allow _MergeSameId to work with
different entity types.
Returns:
The number of merged entities.
|
codesearchnet
|
def categorytree(self, category, depth=5):
def __cat_tree_rec(cat, depth, tree, level, categories, links):
' recursive function to build out the tree '
tree[cat] = dict()
tree[cat]['depth'] = level
tree[cat]['sub-categories'] = dict()
tree[cat]['links'] = list()
tree[cat]['parent-categories'] = list()
parent_cats = list()
if (cat not in categories):
tries = 0
while True:
if (tries > 10):
raise MediaWikiCategoryTreeError(cat)
try:
pag = self.page('{0}:{1}'.format(self.category_prefix, cat))
categories[cat] = pag
parent_cats = categories[cat].categories
links[cat] = self.categorymembers(cat, results=None, subcategories=True)
break
except PageError:
raise PageError('{0}:{1}'.format(self.category_prefix, cat))
except KeyboardInterrupt:
raise
except Exception:
tries = (tries + 1)
time.sleep(1)
else:
parent_cats = categories[cat].categories
tree[cat]['parent-categories'].extend(parent_cats)
tree[cat]['links'].extend(links[cat][0])
if (depth and (level >= depth)):
for ctg in links[cat][1]:
tree[cat]['sub-categories'][ctg] = None
else:
for ctg in links[cat][1]:
__cat_tree_rec(ctg, depth, tree[cat]['sub-categories'], (level + 1), categories, links)
if (not isinstance(category, list)):
cats = [category]
else:
cats = category
if ((len(cats) == 1) and ((cats[0] is None) or (cats[0] == ''))):
msg = "CategoryTree: Parameter 'category' must either be a list of one or more categories or a string; provided: '{}'".format(category)
raise ValueError(msg)
if ((depth is not None) and (depth < 1)):
msg = "CategoryTree: Parameter 'depth' must be either None (for the full tree) or be greater than 0"
raise ValueError(msg)
results = dict()
categories = dict()
links = dict()
for cat in cats:
if ((cat is None) or (cat == '')):
continue
__cat_tree_rec(cat, depth, results, 0, categories, links)
return results
|
Generate the Category Tree for the given categories
Args:
category(str or list of strings): Category name(s)
depth(int): Depth to traverse the tree
Returns:
dict: Category tree structure
Note:
Set depth to **None** to get the whole tree
Note:
Return Data Structure: Subcategory contains the same \
recursive structure
>>> {
'category': {
'depth': Number,
'links': list,
'parent-categories': list,
'sub-categories': dict
}
}
.. versionadded:: 0.3.10
|
codesearchnet
|
def find_synonym(self, word):
if (word and self.synonyms):
reverse_lookup = {}
for (k, v) in self.synonyms.items():
for i in v:
reverse_lookup[i.lower()] = k.lower()
if (word.lower() in reverse_lookup):
return reverse_lookup[word.lower()]
return word
|
Given a string and a dict of synonyms, returns the 'preferred'
word. Case insensitive.
Args:
word (str): A word.
Returns:
str: The preferred word, or the input word if not found.
Example:
>>> syn = {'snake': ['python', 'adder']}
>>> find_synonym('adder', syn)
'snake'
>>> find_synonym('rattler', syn)
'rattler'
TODO:
Make it handle case, returning the same case it received.
|
codesearchnet
|
def _set_label(self, which, label, **kwargs):
prop_default = {
'fontsize': 18,
}
for prop, default in prop_default.items():
kwargs[prop] = kwargs.get(prop, default)
setattr(self.label, which, label)
setattr(self.label, which + '_kwargs', kwargs)
return
|
Private method for setting labels.
Args:
which (str): The indicator of which part of the plots
to adjust. This currently handles `xlabel`/`ylabel`,
and `title`.
label (str): The label to be added.
fontsize (int, optional): Fontsize for associated label. Default
is None.
|
juraj-google-style
|
def enable_store_parameters_in_results(kernel):
kernel_stack = []
while (hasattr(kernel, 'parameters') and ('inner_kernel' in kernel.parameters)):
kernel_stack.append(kernel)
kernel = kernel.parameters['inner_kernel']
def _recreate_kernel(kernel, parameters):
new_parameters = kernel.parameters.copy()
new_parameters.update(parameters)
if ('store_parameters_in_results' in new_parameters):
new_parameters['store_parameters_in_results'] = True
with deprecation.silence():
return type(kernel)(**new_parameters)
if hasattr(kernel, 'parameters'):
kernel = _recreate_kernel(kernel, {})
for outer_kernel in reversed(kernel_stack):
outer_kernel = _recreate_kernel(outer_kernel, {'inner_kernel': kernel})
kernel = outer_kernel
return kernel
|
Enables the `store_parameters_in_results` parameter in a chain of kernels.
This is a temporary utility for use during the transition period of the
parameter storage methods.
Args:
kernel: A TransitionKernel.
Returns:
kernel: The same kernel, but recreated with `store_parameters_in_results`
recursively set to `True` in its parameters and its inner kernels (as
appropriate).
|
codesearchnet
|
def __validate_args(self, func_name, args, kwargs):
from pyvalid.validators import Validator
for (i, (arg_name, accepted_values)) in enumerate(self.accepted_args):
if (i < len(args)):
value = args[i]
elif (arg_name in kwargs):
value = kwargs[arg_name]
elif (i in self.optional_args):
continue
else:
raise InvalidArgumentNumberError(func_name)
is_valid = False
for accepted_val in accepted_values:
is_validator = (isinstance(accepted_val, Validator) or (isinstance(accepted_val, MethodType) and hasattr(accepted_val, '__func__') and isinstance(accepted_val.__func__, Validator)))
if is_validator:
is_valid = accepted_val(value)
elif isinstance(accepted_val, type):
is_valid = isinstance(value, accepted_val)
else:
is_valid = (value == accepted_val)
if is_valid:
break
if (not is_valid):
ord_num = self.__ordinal((i + 1))
raise ArgumentValidationError(ord_num, func_name, value, accepted_values)
|
Compare value of each required argument with list of
accepted values.
Args:
func_name (str): Function name.
args (list): Collection of the position arguments.
kwargs (dict): Collection of the keyword arguments.
Raises:
InvalidArgumentNumberError: When position or count of the arguments
is incorrect.
ArgumentValidationError: When encountered unexpected argument
value.
|
codesearchnet
|
def get_video_transcript_data(video_id, language_code):
video_transcript = VideoTranscript.get_or_none(video_id, language_code)
if video_transcript:
try:
return dict(file_name=video_transcript.filename, content=video_transcript.transcript.file.read())
except Exception:
logger.exception(
'[edx-val] Error while retrieving transcript for video=%s -- language_code=%s',
video_id,
language_code
)
raise
|
Get video transcript data
Arguments:
video_id(unicode): An id identifying the Video.
language_code(unicode): it will be the language code of the requested transcript.
Returns:
A dict containing transcript file name and its content.
|
juraj-google-style
|
def compile_date(self):
result = self._dll.JLINKARM_GetCompileDateTime()
return ctypes.cast(result, ctypes.c_char_p).value.decode()
|
Returns a string specifying the date and time at which the DLL was
translated.
Args:
self (JLink): the ``JLink`` instance
Returns:
Datetime string.
|
juraj-google-style
|
def load(self, spec):
if spec.template is not None:
return self.loader.unicode(spec.template, spec.template_encoding)
path = self._find(spec)
return self.loader.read(path, spec.template_encoding)
|
Find and return the template associated to a TemplateSpec instance.
Returns the template as a unicode string.
Arguments:
spec: a TemplateSpec instance.
|
juraj-google-style
|
def get_extended_attention_mask(self, attention_mask: torch.Tensor, input_shape: Tuple[int], device: torch.device, has_query: bool=False) -> torch.Tensor:
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
elif attention_mask.dim() == 2:
extended_attention_mask = attention_mask[:, None, None, :]
else:
raise ValueError(f'Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})')
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
return extended_attention_mask
|
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
Arguments:
attention_mask (`torch.Tensor`):
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
input_shape (`Tuple[int]`):
The shape of the input to the model.
device: (`torch.device`):
The device of the input to the model.
Returns:
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
|
github-repos
|
def validate_element(self, value):
if (not isinstance(value, self.type)):
if (isinstance(value, six.integer_types) and (self.type == float)):
return float(value)
if (value is None):
if self.required:
raise ValidationError('Required field is missing')
else:
try:
name = self.name
except AttributeError:
raise ValidationError(('Expected type %s for %s, found %s (type %s)' % (self.type, self.__class__.__name__, value, type(value))))
else:
raise ValidationError(('Expected type %s for field %s, found %s (type %s)' % (self.type, name, value, type(value))))
return value
|
Validate single element of field.
This is different from validate in that it is used on individual
values of repeated fields.
Args:
value: Value to validate.
Returns:
The value casted in the expected type.
Raises:
ValidationError if value is not expected type.
|
codesearchnet
|
def CheckTrailingSemicolon(filename, clean_lines, linenum, error):
line = clean_lines.elided[linenum]
match = Match('^(.*\\)\\s*)\\{', line)
if match:
closing_brace_pos = match.group(1).rfind(')')
opening_parenthesis = ReverseCloseExpression(clean_lines, linenum, closing_brace_pos)
if (opening_parenthesis[2] > (- 1)):
line_prefix = opening_parenthesis[0][0:opening_parenthesis[2]]
macro = Search('\\b([A-Z_][A-Z0-9_]*)\\s*$', line_prefix)
func = Match('^(.*\\])\\s*$', line_prefix)
if ((macro and (macro.group(1) not in ('TEST', 'TEST_F', 'MATCHER', 'MATCHER_P', 'TYPED_TEST', 'EXCLUSIVE_LOCKS_REQUIRED', 'SHARED_LOCKS_REQUIRED', 'LOCKS_EXCLUDED', 'INTERFACE_DEF'))) or (func and (not Search('\\boperator\\s*\\[\\s*\\]', func.group(1)))) or Search('\\b(?:struct|union)\\s+alignas\\s*$', line_prefix) or Search('\\bdecltype$', line_prefix) or Search('\\s+=\\s*$', line_prefix)):
match = None
if (match and (opening_parenthesis[1] > 1) and Search('\\]\\s*$', clean_lines.elided[(opening_parenthesis[1] - 1)])):
match = None
else:
match = Match('^(.*(?:else|\\)\\s*const)\\s*)\\{', line)
if (not match):
prevline = GetPreviousNonBlankLine(clean_lines, linenum)[0]
if (prevline and Search('[;{}]\\s*$', prevline)):
match = Match('^(\\s*)\\{', line)
if match:
(endline, endlinenum, endpos) = CloseExpression(clean_lines, linenum, len(match.group(1)))
if ((endpos > (- 1)) and Match('^\\s*;', endline[endpos:])):
raw_lines = clean_lines.raw_lines
ParseNolintSuppressions(filename, raw_lines[(endlinenum - 1)], (endlinenum - 1), error)
ParseNolintSuppressions(filename, raw_lines[endlinenum], endlinenum, error)
error(filename, endlinenum, 'readability/braces', 4, "You don't need a ; after a }")
|
Looks for redundant trailing semicolon.
Args:
filename: The name of the current file.
clean_lines: A CleansedLines instance containing the file.
linenum: The number of the line to check.
error: The function to call with any errors found.
|
codesearchnet
|
def _parameter_net(self, theta, kernel_shape=9):
with argscope(FullyConnected, nl=tf.nn.leaky_relu):
net = FullyConnected('fc1', theta, 64)
net = FullyConnected('fc2', net, 128)
pred_filter = FullyConnected('fc3', net, kernel_shape ** 2, nl=tf.identity)
pred_filter = tf.reshape(pred_filter, [BATCH, kernel_shape, kernel_shape, 1], name="pred_filter")
logger.info('Parameter net output: {}'.format(pred_filter.get_shape().as_list()))
return pred_filter
|
Estimate filters for convolution layers
Args:
theta: angle of filter
kernel_shape: size of each filter
Returns:
learned filter as [B, k, k, 1]
|
juraj-google-style
|
def _concat(self):
if len(self._variable_list) == 1:
with ops.name_scope(None):
return array_ops.identity(self._variable_list[0], name=self._name)
partition_axes = self._partition_axes()
if len(partition_axes) > 1:
raise NotImplementedError('Cannot concatenate along more than one dimension: %s. Multi-axis partition concat is not supported' % str(partition_axes))
partition_ix = partition_axes[0]
with ops.name_scope(self._name + '/ConcatPartitions/'):
concatenated = array_ops.concat(self._variable_list, partition_ix)
with ops.name_scope(None):
return array_ops.identity(concatenated, name=self._name)
|
Returns the overall concatenated value as a `Tensor`.
This is different from using the partitioned variable directly as a tensor
(through tensor conversion and `as_tensor`) in that it creates a new set of
operations that keeps the control dependencies from its scope.
Returns:
`Tensor` containing the concatenated value.
|
github-repos
|
def to_dict(self):
d = {}
d[TestResultEnums.RECORD_NAME] = self.test_name
d[TestResultEnums.RECORD_CLASS] = self.test_class
d[TestResultEnums.RECORD_BEGIN_TIME] = self.begin_time
d[TestResultEnums.RECORD_END_TIME] = self.end_time
d[TestResultEnums.RECORD_RESULT] = self.result
d[TestResultEnums.RECORD_UID] = self.uid
d[TestResultEnums.RECORD_SIGNATURE] = self.signature
d[TestResultEnums.RECORD_RETRY_PARENT] = self.retry_parent.signature if self.retry_parent else None
d[TestResultEnums.RECORD_PARENT] = {'parent': self.parent[0].signature, 'type': self.parent[1].value} if self.parent else None
d[TestResultEnums.RECORD_EXTRAS] = self.extras
d[TestResultEnums.RECORD_DETAILS] = self.details
d[TestResultEnums.RECORD_TERMINATION_SIGNAL_TYPE] = self.termination_signal_type
d[TestResultEnums.RECORD_EXTRA_ERRORS] = {key: value.to_dict() for key, value in self.extra_errors.items()}
d[TestResultEnums.RECORD_STACKTRACE] = self.stacktrace
return d
|
Gets a dictionary representating the content of this class.
Returns:
A dictionary representating the content of this class.
|
github-repos
|
def status(self, order_id):
self.logger.debug('Get status of order ' + order_id)
url = '%(base_url)s/order/%(order_id)s' % {
'base_url': self.base_url, 'order_id': order_id
}
r = self.gbdx_connection.get(url)
r.raise_for_status()
return r.json().get("acquisitions", {})
|
Checks imagery order status. There can be more than one image per
order and this function returns the status of all images
within the order.
Args:
order_id (str): The id of the order placed.
Returns:
List of dictionaries, one per image. Each dictionary consists
of the keys 'acquisition_id', 'location' and 'state'.
|
juraj-google-style
|
def remove_sites_from_neighbours( self, remove_labels ):
if type( remove_labels ) is str:
remove_labels = [ remove_labels ]
self.neighbours = set( n for n in self.neighbours if n.label not in remove_labels )
|
Removes sites from the set of neighbouring sites if these have labels in remove_labels.
Args:
Remove_labels (List) or (Str): List of Site labels to be removed from the cluster neighbour set.
Returns:
None
|
juraj-google-style
|
def dimension_values(self, dimension, expanded=True, flat=True):
index = self.get_dimension_index(dimension)
if index == 0:
return np.array([self.data if np.isscalar(self.data) else self.data[index]])
elif index == 1:
return [] if np.isscalar(self.data) else np.array([self.data[1]])
else:
return super(Annotation, self).dimension_values(dimension)
|
Return the values along the requested dimension.
Args:
dimension: The dimension to return values for
expanded (bool, optional): Whether to expand values
flat (bool, optional): Whether to flatten array
Returns:
NumPy array of values along the requested dimension
|
juraj-google-style
|
def Match(self, file_entry):
if not file_entry:
return False
filename = file_entry.name.lower()
return filename == self._filename
|
Determines if a file entry matches the filter.
Args:
file_entry (dfvfs.FileEntry): a file entry.
Returns:
bool: True if the file entry matches the filter.
|
juraj-google-style
|
def _build_request(self, verb, verb_arguments):
method = getattr(self._component, verb)
method_args = {str(k): v for k, v in verb_arguments.items()}
return method(**method_args)
|
Builds HttpRequest object.
Args:
verb (str): Request verb (ex. insert, update, delete).
verb_arguments (dict): Arguments to be passed with the request.
Returns:
httplib2.HttpRequest: HttpRequest to be sent to the API.
|
juraj-google-style
|
def extract_lookups(value):
lookups = set()
if isinstance(value, basestring):
lookups = lookups.union(extract_lookups_from_string(value))
elif isinstance(value, list):
for v in value:
lookups = lookups.union(extract_lookups(v))
elif isinstance(value, dict):
for v in value.values():
lookups = lookups.union(extract_lookups(v))
return lookups
|
Recursively extracts any stack lookups within the data structure.
Args:
value (one of str, list, dict): a structure that contains lookups to
output values
Returns:
list: list of lookups if any
|
juraj-google-style
|
def _validate_chain_strength(sampler, chain_strength):
properties = sampler.properties
if 'extended_j_range' in properties:
max_chain_strength = - min(properties['extended_j_range'])
elif 'j_range' in properties:
max_chain_strength = - min(properties['j_range'])
else:
raise ValueError("input sampler should have 'j_range' and/or 'extended_j_range' property.")
if chain_strength is None:
chain_strength = max_chain_strength
elif chain_strength > max_chain_strength:
raise ValueError("Provided chain strength exceedds the allowed range.")
return chain_strength
|
Validate the provided chain strength, checking J-ranges of the sampler's children.
Args:
chain_strength (float) The provided chain strength. Use None to use J-range.
Returns (float):
A valid chain strength, either provided or based on available J-range. Positive finite float.
|
juraj-google-style
|
def __init__(self, counter_factory, state_sampler):
self._counter_factory = counter_factory
self._state_sampler = state_sampler
self._latest_step = None
self.bytes_read_counter = None
self.scoped_state = None
|
Create a new IO read counter.
Args:
counter_factory: A counters.CounterFactory to create byte counters.
state_sampler: A statesampler.StateSampler to transition into read states.
|
github-repos
|
def partial_tile(cls, tile_assignment):
if not isinstance(tile_assignment, _np.ndarray):
raise TypeError('PartialTile assignment must be of type np.ndarray')
dims = list(tile_assignment.shape)
flattened_devices = tile_assignment.reshape(-1, order='C')
return Sharding(proto=xla_data_pb2.OpSharding(type=xla_data_pb2.OpSharding.OTHER, tile_assignment_dimensions=dims, tile_assignment_devices=list(flattened_devices), replicate_on_last_tile_dim=True))
|
Returns a partially tiled sharding attribute.
This is similar to tile(), but tile_assignment has one more dimension than
the tensor, and tiles in the last dimension of tile_assignment are
replicated.
Args:
tile_assignment: An np.ndarray describing the topology of the tiling and
which device will compute which part of the topology.
Raises:
TypeError: tile_assignment was not of np.array type.
|
github-repos
|
def has_no_error(state, incorrect_msg='Your code generated an error. Fix it and try again!'):
if state.reporter.get_errors():
state.do_test(incorrect_msg)
return state
|
Check whether the submission did not generate a runtime error.
Simply use ``Ex().has_no_error()`` in your SCT whenever you want to check for errors.
By default, after the entire SCT finished executing, ``sqlwhat`` will check
for errors before marking the exercise as correct. You can disable this behavior
by using ``Ex().allow_error()``.
Args:
incorrect_msg: If specified, this overrides the automatically generated feedback message
in case the student's query did not return a result.
|
codesearchnet
|
def entry_point(__func: Callable) -> Callable:
if __func.__module__ == '__main__':
import sys
sys.exit(__func())
else:
return __func
|
Execute function when module is run directly.
Note:
This allows fall through for importing modules that use it.
Args:
__func: Function to run
|
juraj-google-style
|
def cmd_startstop(options):
statelu = {"start": "stopped", "stop": "running"}
options.inst_state = statelu[options.command]
debg.dprint("toggle set state: ", options.inst_state)
(i_info, param_str) = gather_data(options)
(tar_inst, tar_idx) = determine_inst(i_info, param_str, options.command)
response = awsc.startstop(tar_inst, options.command)
responselu = {"start": "StartingInstances", "stop": "StoppingInstances"}
filt = responselu[options.command]
resp = {}
state_term = ('CurrentState', 'PreviousState')
for i, j in enumerate(state_term):
resp[i] = response["{0}".format(filt)][0]["{0}".format(j)]['Name']
print("Current State: {}{}{} - Previous State: {}{}{}\n".
format(C_STAT[resp[0]], resp[0], C_NORM,
C_STAT[resp[1]], resp[1], C_NORM))
|
Start or Stop the specified instance.
Finds instances that match args and instance-state expected by the
command. Then, the target instance is determined, the action is
performed on the instance, and the eturn information is displayed.
Args:
options (object): contains args and data from parser.
|
juraj-google-style
|
def predict_proba(self, a, b, idx=0, **kwargs):
return self.predict_dataset(DataFrame([[a, b]], columns=['A', 'B']))
|
Use Jarfo to predict the causal direction of a pair of vars.
Args:
a (numpy.ndarray): Variable 1
b (numpy.ndarray): Variable 2
idx (int): (optional) index number for printing purposes
Returns:
float: Causation score (Value : 1 if a->b and -1 if b->a)
|
codesearchnet
|
def _handle_message(self, message, handle_wrte=True):
if (message.command == 'OKAY'):
self._set_or_check_remote_id(message.arg0)
if (not self._expecting_okay):
raise usb_exceptions.AdbProtocolError('%s received unexpected OKAY: %s', self, message)
self._expecting_okay = False
elif (message.command == 'CLSE'):
self.closed_state = self.ClosedState.CLOSED
elif (not handle_wrte):
raise usb_exceptions.AdbProtocolError('%s received WRTE before OKAY/CLSE: %s', self, message)
else:
with self._read_buffer_lock:
self._read_buffer.append(message.data)
self._buffer_size += len(message.data)
|
Handle a message that was read for this stream.
For each message type, this means:
OKAY: Check id's and make sure we are expecting an OKAY. Clear the
self._expecting_okay flag so any pending write()'s know.
CLSE: Set our internal state to closed.
WRTE: Add the data read to our internal read buffer. Note we don't
return the actual data because it may not be this thread that needs it.
Args:
message: Message that was read.
handle_wrte: If True, we can handle WRTE messages, otherwise raise.
Raises:
AdbProtocolError: If we get a WRTE message but handle_wrte is False.
|
codesearchnet
|
def parse_date(value):
if (not value):
return None
if isinstance(value, datetime.date):
return value
return parse_datetime(value).date()
|
Attempts to parse `value` into an instance of ``datetime.date``. If
`value` is ``None``, this function will return ``None``.
Args:
value: A timestamp. This can be a string, datetime.date, or
datetime.datetime value.
|
codesearchnet
|
def get_enabled_references(self, datas, meta_references):
references = OrderedDict()
for section in meta_references:
references[section] = self.get_reference(datas, section)
return references
|
Get enabled manifest references declarations.
Enabled references are defined through meta references declaration,
every other references are ignored.
Arguments:
datas (dict): Data where to search for reference declarations.
This is commonly the fully parsed manifest.
meta_references (list): List of enabled reference names.
Returns:
collections.OrderedDict: Serialized enabled references datas.
|
juraj-google-style
|
def setup_gpu(required_gpus):
if required_gpus == 0:
return
available_gpus = tf.config.experimental.list_physical_devices('GPU')
if not available_gpus:
raise ValueError('requires at least one physical GPU')
if len(available_gpus) >= required_gpus:
tf.config.set_visible_devices(available_gpus[:required_gpus])
else:
num_logical_gpus = required_gpus - len(available_gpus) + 1
logical_gpus = [tf.config.LogicalDeviceConfiguration(memory_limit=256) for _ in range(num_logical_gpus)]
tf.config.set_logical_device_configuration(available_gpus[0], logical_gpus)
|
Sets up the GPU devices.
If there're more available GPUs than needed, it hides the additional ones. If
there're less, it creates logical devices. This is to make sure the tests see
a fixed number of GPUs regardless of the environment.
Args:
required_gpus: an integer. The number of GPUs required.
Raises:
ValueError: if num_gpus is larger than zero but no GPU is available.
|
github-repos
|
def _create_route(self, env, item):
if item.name in env:
if isinstance(env[item.name], ApiRoutesByVersion):
if item.version in env[item.name].at_version:
existing_dt = env[item.name].at_version[item.version]
raise InvalidSpec(
'Route %s at version %d already defined (%s:%d).' % (
quote(item.name), item.version, existing_dt._ast_node.path,
existing_dt._ast_node.lineno),
item.lineno, item.path)
else:
existing_dt = env[item.name]
raise InvalidSpec(
'Symbol %s already defined (%s:%d).' % (
quote(item.name), existing_dt._ast_node.path,
existing_dt._ast_node.lineno),
item.lineno, item.path)
else:
env[item.name] = ApiRoutesByVersion()
route = ApiRoute(
name=item.name,
version=item.version,
ast_node=item,
)
env[route.name].at_version[route.version] = route
return route
|
Constructs a route and adds it to the environment.
Args:
env (dict): The environment of defined symbols. A new key is added
corresponding to the name of this new route.
item (AstRouteDef): Raw route definition from the parser.
Returns:
stone.api.ApiRoutesByVersion: A group of fully-defined routes indexed by versions.
|
juraj-google-style
|
def __init__(self, unique_identifier=None, attribute_names=None):
super(GetAttributesRequestPayload, self).__init__(
enums.Tags.REQUEST_PAYLOAD)
self._unique_identifier = None
self._attribute_names = list()
self.unique_identifier = unique_identifier
self.attribute_names = attribute_names
|
Construct a GetAttributes request payload.
Args:
unique_identifier (string): The ID of the managed object with
which the retrieved attributes should be associated. Optional,
defaults to None.
attribute_names: A list of strings identifying the names of the
attributes associated with the managed object. Optional,
defaults to None.
|
juraj-google-style
|
def shadow_calc(data):
up_shadow = abs(data.high - (max(data.open, data.close)))
down_shadow = abs(data.low - (min(data.open, data.close)))
entity = abs(data.open - data.close)
towards = True if data.open < data.close else False
print('=' * 15)
print('up_shadow : {}'.format(up_shadow))
print('down_shadow : {}'.format(down_shadow))
print('entity: {}'.format(entity))
print('towards : {}'.format(towards))
return up_shadow, down_shadow, entity, data.date, data.code
|
计算上下影线
Arguments:
data {DataStruct.slice} -- 输入的是一个行情切片
Returns:
up_shadow {float} -- 上影线
down_shdow {float} -- 下影线
entity {float} -- 实体部分
date {str} -- 时间
code {str} -- 代码
|
juraj-google-style
|
def _runOneBenchmark(self, default_device, num_iters=10, static_unroll=False, steps=10):
def loop_body(i, x):
with ops.device('/gpu:0'):
nx = nn_ops.conv2d(input=x, filter=kernel, strides=[1, 1, 1, 1], padding='SAME', data_format='NHWC', name='conv2d')
ni = math_ops.add(i, 1)
return (ni, nx)
ops.reset_default_graph()
with session.Session() as sess, ops.device(default_device):
i, x, kernel = self._getInitVariables()
self.evaluate(variables.global_variables_initializer())
if static_unroll:
for _ in range(steps):
i, x = loop_body(i, x)
else:
i, x = while_loop_tf.while_loop(lambda i, _: i < steps, loop_body, [i, x], parallel_iterations=steps, swap_memory=True)
r = math_ops.reduce_sum(x)
dx, dk = gradients_impl.gradients(r, [x, kernel])
r = control_flow_ops.group(dx, dk)
for _ in range(3):
self.evaluate(r)
start_time = time.time()
for _ in range(num_iters):
self.evaluate(r)
return (time.time() - start_time) / num_iters
|
Evaluate the while loop performance.
Args:
default_device: The default device to run all ops except the loop_body.
loop_body is always run on GPU.
num_iters: Number of iterations to run.
static_unroll: If true, run unrolled version; otherwise, run while_loop.
steps: Total number of repeated steps to run the loop.
Returns:
The duration of the run in seconds.
|
github-repos
|
def _get_rest_doc(self, request, start_response):
api = request.body_json['api']
version = request.body_json['version']
generator = discovery_generator.DiscoveryGenerator(request=request)
services = [s for s in self._backend.api_services if
s.api_info.name == api and s.api_info.api_version == version]
doc = generator.pretty_print_config_to_json(services)
if not doc:
error_msg = ('Failed to convert .api to discovery doc for '
'version %s of api %s') % (version, api)
_logger.error('%s', error_msg)
return util.send_wsgi_error_response(error_msg, start_response)
return self._send_success_response(doc, start_response)
|
Sends back HTTP response with API directory.
This calls start_response and returns the response body. It will return
the discovery doc for the requested api/version.
Args:
request: An ApiRequest, the transformed request sent to the Discovery API.
start_response: A function with semantics defined in PEP-333.
Returns:
A string, the response body.
|
juraj-google-style
|
def attention_mask_autoregressive(query_pos, dtype=tf.float32):
memory_pos = rename_length_to_memory_length(query_pos)
return (mtf.cast(mtf.less(query_pos, memory_pos), dtype) * (- 1000000000.0))
|
Bias for self-attention where attention to the right is disallowed.
Args:
query_pos: a mtf.Tensor with shape [..., length_dim]
dtype: a tf.dtype
Returns:
a mtf.Tensor with shape [..., length_dim, memory_length_dim]
|
codesearchnet
|
def unwrap_or_else(self, callback: Callable[([], U)]) -> Union[(T, U)]:
return (self._val if self._is_some else callback())
|
Returns the contained value or computes it from ``callback``.
Args:
callback: The the default callback.
Returns:
The contained value if the :py:class:`Option` is ``Some``,
otherwise ``callback()``.
Examples:
>>> Some(0).unwrap_or_else(lambda: 111)
0
>>> NONE.unwrap_or_else(lambda: 'ha')
'ha'
|
codesearchnet
|
def to_barrier_key(cls, barrier_index_key):
barrier_index_path = barrier_index_key.to_path()
(pipeline_kind, dependent_pipeline_id,
unused_kind, purpose) = barrier_index_path[-4:]
barrier_record_path = (
pipeline_kind, dependent_pipeline_id,
_BarrierRecord.kind(), purpose)
return db.Key.from_path(*barrier_record_path)
|
Converts a _BarrierIndex key to a _BarrierRecord key.
Args:
barrier_index_key: db.Key for a _BarrierIndex entity.
Returns:
db.Key for the corresponding _BarrierRecord entity.
|
juraj-google-style
|
def clear_tc(self, owner, data, clear_type):
batch = self.tcex.batch(owner, action='Delete')
tc_type = data.get('type')
path = data.get('path')
if (tc_type in self.tcex.group_types):
name = self.tcex.playbook.read(data.get('name'))
name = self.path_data(name, path)
if (name is not None):
print('Deleting ThreatConnect Group: {}{}{}'.format(c.Style.BRIGHT, c.Fore.MAGENTA, name))
self.log.info('[{}] Deleting ThreatConnect {} with name: {}.'.format(clear_type, tc_type, name))
batch.group(tc_type, name)
elif (tc_type in self.tcex.indicator_types):
if (data.get('summary') is not None):
summary = self.tcex.playbook.read(data.get('summary'))
else:
resource = self.tcex.resource(tc_type)
summary = resource.summary(data)
summary = self.path_data(summary, path)
if (summary is not None):
print('Deleting ThreatConnect Indicator: {}{}{}'.format(c.Style.BRIGHT, c.Fore.MAGENTA, summary))
self.log.info('[{}] Deleting ThreatConnect {} with value: {}.'.format(clear_type, tc_type, summary))
batch.indicator(tc_type, summary)
batch_results = batch.submit()
self.log.debug('[{}] Batch Results: {}'.format(clear_type, batch_results))
for error in (batch_results.get('errors') or []):
self.log.error('[{}] Batch Error: {}'.format(clear_type, error))
|
Delete threat intel from ThreatConnect platform.
Args:
owner (str): The ThreatConnect owner.
data (dict): The data for the threat intel to clear.
clear_type (str): The type of clear action.
|
codesearchnet
|
def write(self, output_stream, kmip_version=enums.KMIPVersion.KMIP_1_0):
local_stream = BytearrayStream()
if self._unique_identifier:
self._unique_identifier.write(
local_stream,
kmip_version=kmip_version
)
else:
raise ValueError(
"Invalid struct missing the unique identifier attribute."
)
if self._cryptographic_parameters:
self._cryptographic_parameters.write(
local_stream,
kmip_version=kmip_version
)
self.length = local_stream.length()
super(MACSignatureKeyInformation, self).write(
output_stream,
kmip_version=kmip_version
)
output_stream.write(local_stream.buffer)
|
Write the data encoding the MACSignatureKeyInformation struct to a
stream.
Args:
output_stream (stream): A data stream in which to encode object
data, supporting a write method; usually a BytearrayStream
object.
kmip_version (KMIPVersion): An enumeration defining the KMIP
version with which the object will be encoded. Optional,
defaults to KMIP 1.0.
|
juraj-google-style
|
def _get_element_by_names(source, names):
if source is None:
return source
else:
if names:
head, *rest = names
if isinstance(source, dict) and head in source:
return _get_element_by_names(source[head], rest)
elif isinstance(source, list) and head.isdigit():
return _get_element_by_names(source[int(head)], rest)
elif not names[0]:
pass
else:
source = None
return source
|
Given a dict and path '/' or '.' separated. Digs into de dict to retrieve
the specified element.
Args:
source (dict): set of nested objects in which the data will be searched
path (list): list of attribute names
|
juraj-google-style
|
def from_unknown_text(text, strict=False):
if text.startswith('+'):
crs = from_proj4(text, strict)
elif text.startswith(('PROJCS[', 'GEOGCS[')):
crs = from_unknown_wkt(text, strict)
elif text.startswith('EPSG:'):
crs = from_epsg_code(text.split(':')[1])
elif text.startswith('ESRI:'):
crs = from_esri_code(text.split(':')[1])
elif text.startswith('SR-ORG:'):
crs = from_sr_code(text.split(':')[1])
else:
raise FormatError('Could not auto-detect the type of crs format, make sure it is one of the supported formats')
return crs
|
Detect crs string format and parse into crs object with appropriate function.
Arguments:
- *text*: The crs text representation of unknown type.
- *strict* (optional): When True, the parser is strict about names having to match
exactly with upper and lowercases. Default is not strict (False).
Returns:
- CRS object.
|
codesearchnet
|
def from_structures(cls, structures, constant_lattice=True, **kwargs):
frac_coords = [structure.frac_coords for structure in structures]
if constant_lattice:
lattice = structures[0].lattice.matrix
else:
lattice = [structure.lattice.matrix for structure in structures]
site_properties = [structure.site_properties for structure in structures]
return cls(lattice, structures[0].species, frac_coords, site_properties=site_properties,
constant_lattice=constant_lattice, **kwargs)
|
Convenience constructor to obtain trajectory from a list of structures.
Note: Assumes no atoms removed during simulation
Args:
structures (list): list of pymatgen Structure objects.
constant_lattice (bool): Whether the lattice changes during the simulation, such as in an NPT MD
simulation. True results in
Returns:
(Trajectory)
|
juraj-google-style
|
def get(cls, ns, key):
return getattr(db, cls.__name__).find_one((ConfigItem.namespace_prefix == ns), (ConfigItem.key == key))
|
Fetch an item by namespace and key
Args:
ns (str): Namespace prefix
key (str): Item key
Returns:
:obj:`Configitem`: Returns config item object if found, else `None`
|
codesearchnet
|
def search(self, trace_func: Callable[([List[LineSequence], float, float, float, bool], None)]=None) -> List[LineSequence]:
def search_trace(state: _STATE, temp: float, cost: float, probability: float, accepted: bool):
if trace_func:
(trace_seqs, _) = state
trace_func(trace_seqs, temp, cost, probability, accepted)
(seqs, _) = optimization.anneal_minimize(self._create_initial_solution(), self._quadratic_sum_cost, self._force_edges_active_move, self._rand.random_sample, trace_func=search_trace)
return seqs
|
Issues new linear sequence search.
Each call to this method starts new search.
Args:
trace_func: Optional callable which will be called for each simulated
annealing step with arguments: solution candidate (list of linear
sequences on the chip), current temperature (float), candidate cost
(float), probability of accepting candidate (float), and acceptance
decision (boolean).
Returns:
List of linear sequences on the chip found by this method.
|
codesearchnet
|
def CheckCompletedBlocks(self, filename, error):
for obj in self.stack:
if isinstance(obj, _ClassInfo):
error(filename, obj.starting_linenum, 'build/class', 5, ('Failed to find complete declaration of class %s' % obj.name))
elif isinstance(obj, _NamespaceInfo):
error(filename, obj.starting_linenum, 'build/namespaces', 5, ('Failed to find complete declaration of namespace %s' % obj.name))
|
Checks that all classes and namespaces have been completely parsed.
Call this when all lines in a file have been processed.
Args:
filename: The name of the current file.
error: The function to call with any errors found.
|
codesearchnet
|
def add_subassistants_to(cls, parser, assistant_tuple, level, alias=None):
name = alias or assistant_tuple[0].name
p = parser.add_parser(name,
description=assistant_tuple[0].description,
argument_default=argparse.SUPPRESS)
for arg in assistant_tuple[0].args:
arg.add_argument_to(p)
if len(assistant_tuple[1]) > 0:
subparsers = cls._add_subparsers_required(p,
dest=settings.SUBASSISTANT_N_STRING.format(level),
title=cls.subparsers_str,
description=cls.subparsers_desc)
for subas_tuple in sorted(assistant_tuple[1], key=lambda x: x[0].name):
cls.add_subassistants_to(subparsers, subas_tuple, level + 1)
elif level == 1:
subparsers = cls._add_subparsers_required(p,
dest=settings.SUBASSISTANT_N_STRING.format(level),
title=cls.subparsers_str,
description=devassistant_argparse.ArgumentParser.no_assistants_msg)
|
Adds assistant from given part of assistant tree and all its subassistants to
a given argument parser.
Args:
parser: instance of devassistant_argparse.ArgumentParser
assistant_tuple: part of assistant tree (see generate_argument_parser doc)
level: level of subassistants that given assistant is at
|
juraj-google-style
|
def nac_v(msg):
tc = typecode(msg)
if (tc != 19):
raise RuntimeError(('%s: Not an airborne velocity message, expecting TC = 19' % msg))
msgbin = common.hex2bin(msg)
NACv = common.bin2int(msgbin[42:45])
try:
HFOMr = uncertainty.NACv[NACv]['HFOMr']
VFOMr = uncertainty.NACv[NACv]['VFOMr']
except KeyError:
(HFOMr, VFOMr) = (uncertainty.NA, uncertainty.NA)
return (HFOMr, VFOMr)
|
Calculate NACv, Navigation Accuracy Category - Velocity
Args:
msg (string): 28 bytes hexadecimal message string, TC = 19
Returns:
int or string: 95% horizontal accuracy bounds for velocity, Horizontal Figure of Merit
int or string: 95% vertical accuracy bounds for velocity, Vertical Figure of Merit
|
codesearchnet
|
def metta_config(quarter, num_dimensions):
(first_day, last_day) = quarter_boundaries(quarter)
return {'start_time': first_day, 'end_time': last_day, 'prediction_window': 3, 'label_name': 'onet_soc_code', 'label_type': 'categorical', 'matrix_id': 'job_postings_{}'.format(quarter), 'feature_names': ['doc2vec_{}'.format(i) for i in range(num_dimensions)]}
|
Returns metta metadata for a quarter's SOC code classifier matrix
Args:
quarter (str) quarter, in format '2015Q1'
num_dimensions (int) Number of features in matrix
Returns: (dict) metadata suitable for metta.archive_train_test
|
codesearchnet
|
def find_library_windows(cls):
dll = (cls.get_appropriate_windows_sdk_name() + '.dll')
root = 'C:\\'
for d in os.listdir(root):
dir_path = os.path.join(root, d)
if (d.startswith('Program Files') and os.path.isdir(dir_path)):
dir_path = os.path.join(dir_path, 'SEGGER')
if (not os.path.isdir(dir_path)):
continue
ds = filter((lambda x: x.startswith('JLink')), os.listdir(dir_path))
for jlink_dir in ds:
lib_path = os.path.join(dir_path, jlink_dir, dll)
if os.path.isfile(lib_path):
(yield lib_path)
|
Loads the SEGGER DLL from the windows installation directory.
On Windows, these are found either under:
- ``C:\\Program Files\\SEGGER\\JLink``
- ``C:\\Program Files (x86)\\SEGGER\\JLink``.
Args:
cls (Library): the ``Library`` class
Returns:
The paths to the J-Link library files in the order that they are
found.
|
codesearchnet
|
def values(self, column_major=False):
if column_major:
return list(map(list, zip(*self._values)))
return [row[:] for row in self._values]
|
Return a nested list with the worksheet values.
Args:
column_major (bool): as list of columns (default list of rows)
Returns:
list: list of lists with values
|
codesearchnet
|
def _notify_mutated(self, obj, old, hint=None):
value = self.__get__(obj, obj.__class__)
value = self.property.prepare_value(obj, self.name, value)
self._real_set(obj, old, value, hint=hint)
|
A method to call when a container is mutated "behind our back"
and we detect it with our |PropertyContainer| wrappers.
Args:
obj (HasProps) :
The object who's container value was mutated
old (object) :
The "old" value of the container
In this case, somewhat weirdly, ``old`` is a copy and the
new value should already be set unless we change it due to
validation.
hint (event hint or None, optional)
An optional update event hint, e.g. ``ColumnStreamedEvent``
(default: None)
Update event hints are usually used at times when better
update performance can be obtained by special-casing in
some way (e.g. streaming or patching column data sources)
Returns:
None
|
codesearchnet
|
def _sym_missing(self) -> Dict[str, Any]:
missing = dict()
for k, v in self._sym_attributes.items():
if pg_typing.MISSING_VALUE != v and isinstance(v, base.Symbolic):
missing_child = v.sym_missing(flatten=False)
if missing_child:
missing[k] = missing_child
return missing
|
Returns missing values for Functor.
Semantically unbound arguments are not missing, thus we only return partial
bound arguments in `sym_missing`. As a result, a functor is partial only
when any of its bound arguments is partial.
Returns:
A dict of missing key (or path) to missing value.
|
github-repos
|
def code_string_to_enum_value_descriptor(code_string: str, enum_descriptor: descriptor.EnumDescriptor) -> descriptor.EnumValueDescriptor:
value_descriptor = _get_enum_value_descriptor_memo(enum_descriptor, code_string)
if value_descriptor is not None:
return value_descriptor
fhir_case_code_string = code_string.upper().replace('-', '_')
value_descriptor = enum_descriptor.values_by_name.get(fhir_case_code_string)
if value_descriptor is not None:
_set_enum_value_descriptor_memo(enum_descriptor, code_string, value_descriptor)
return value_descriptor
for value_descriptor in enum_descriptor.values:
if value_descriptor.GetOptions().HasExtension(annotations_pb2.fhir_original_code) and value_descriptor.GetOptions().Extensions[annotations_pb2.fhir_original_code] == code_string:
_set_enum_value_descriptor_memo(enum_descriptor, code_string, value_descriptor)
return value_descriptor
raise fhir_errors.InvalidFhirError(f'Failed to convert {code_string!r} to {enum_descriptor.full_name}. No matching enum found.')
|
Returns an EnumValueDescriptor for a provided EnumDescriptor and raw code.
Args:
code_string: A raw string representation of the code to retrieve.
enum_descriptor: The EnumDescriptor the desired EnumValueDescriptor belongs
to.
Returns:
An instance of EnumValueDescriptor that the code_string represents.
Raises:
fhir_errors.InvalidFhirError: In the event that a conversion from
code_string was unsuccessful.
|
github-repos
|
def _prep_noise_interpolants(self):
noise_lists = {}
self.noise_interpolants = {}
if isinstance(self.sensitivity_curves, str):
self.sensitivity_curves = [self.sensitivity_curves]
if isinstance(self.noise_type_in, list):
if (len(self.noise_type_in) != len(self.sensitivity_curves)):
raise ValueError((('noise_type_in must have same shape as sensitivity_curves if it is' + 'provided as a list.') + 'If all curves are of the same type, provide a string.'))
else:
assert isinstance(self.noise_type_in, str)
self.noise_type_in = [self.noise_type_in for _ in self.sensitivity_curves]
if isinstance(self.signal_type, str):
self.signal_type = [self.signal_type]
for (num, sc) in enumerate(self.sensitivity_curves):
if isinstance(sc, str):
(f, h_n) = read_noise_curve(sc, noise_type_in=self.noise_type_in[num], noise_type_out='char_strain')
if (sc[(- 4):] == '.txt'):
key = sc.split('.')[0].split('/')[(- 1)]
else:
key = sc
elif isinstance(sc, list):
(f, h_n) = sc
key = str(num)
else:
raise ValueError(('Sensitivity curves must either be string' + 'or list containing f_n and asd_n.'))
noise_lists[key] = [f, h_n]
if (str(self.add_wd_noise).lower() in ['true', 'both', 'yes']):
if isinstance(self.wd_noise, str):
(f_n_wd, h_n_wd) = read_noise_curve(self.wd_noise, noise_type_in=self.wd_noise_type_in, noise_type_out='char_strain')
elif isinstance(self, wd_noise, list):
(f_n_wd, h_n_wd) = self.wd_noise
trans_dict = {}
for sc in noise_lists.keys():
(f_n, h_n) = noise_lists[sc]
if (self.add_wd_noise.lower() == 'both'):
trans_dict[sc] = [f_n, h_n]
(f_n, h_n) = combine_with_wd_noise(f_n, h_n, f_n_wd, h_n_wd)
trans_dict[(sc + '_wd')] = [f_n, h_n]
noise_lists = trans_dict
for sc in noise_lists:
(f_n, h_n) = noise_lists[sc]
self.noise_interpolants[sc] = interpolate.interp1d(f_n, h_n, bounds_error=False, fill_value=1e+30)
return
|
Construct interpolated sensitivity curves
This will construct the interpolated sensitivity curves
using scipy.interpolate.interp1d. It will add wd noise
if that is requested.
Raises:
ValueError: ``len(noise_type_in) != len(sensitivity_curves)``
ValueError: Issue with sensitivity curve type provided.
|
codesearchnet
|
def print_source(self, args, screen_info=None):
del screen_info
parsed = self._arg_parsers['print_source'].parse_args(args)
device_name_regex = re.compile(parsed.device_name_filter) if parsed.device_name_filter else None
profile_data = []
data_generator = self._get_profile_data_generator()
device_count = len(self._run_metadata.step_stats.dev_stats)
for index in range(device_count):
device_stats = self._run_metadata.step_stats.dev_stats[index]
if device_name_regex and (not device_name_regex.match(device_stats.device)):
continue
profile_data.extend(data_generator(device_stats))
source_annotation = source_utils.annotate_source_against_profile(profile_data, os.path.expanduser(parsed.source_file_path), node_name_filter=parsed.node_name_filter, op_type_filter=parsed.op_type_filter)
if not source_annotation:
return debugger_cli_common.RichTextLines(['The source file %s does not contain any profile information for the previous Session run under the following filters:' % parsed.source_file_path, ' --%s: %s' % (_DEVICE_NAME_FILTER_FLAG, parsed.device_name_filter), ' --%s: %s' % (_NODE_NAME_FILTER_FLAG, parsed.node_name_filter), ' --%s: %s' % (_OP_TYPE_FILTER_FLAG, parsed.op_type_filter)])
max_total_cost = 0
for line_index in source_annotation:
total_cost = self._get_total_cost(source_annotation[line_index], parsed.cost_type)
max_total_cost = max(max_total_cost, total_cost)
source_lines, line_num_width = source_utils.load_source(parsed.source_file_path)
cost_bar_max_length = 10
total_cost_head = parsed.cost_type
column_widths = {'cost_bar': cost_bar_max_length + 3, 'total_cost': len(total_cost_head) + 3, 'num_nodes_execs': len(self._NUM_EXECS_SUB_HEAD) + 1, 'line_number': line_num_width}
head = RL(' ' * column_widths['cost_bar'] + total_cost_head + ' ' * (column_widths['total_cost'] - len(total_cost_head)) + self._NUM_NODES_HEAD + ' ' * (column_widths['num_nodes_execs'] - len(self._NUM_NODES_HEAD)), font_attr=self._LINE_COST_ATTR)
head += RL(self._LINENO_HEAD, font_attr=self._LINE_NUM_ATTR)
sub_head = RL(' ' * (column_widths['cost_bar'] + column_widths['total_cost']) + self._NUM_EXECS_SUB_HEAD + ' ' * (column_widths['num_nodes_execs'] - len(self._NUM_EXECS_SUB_HEAD)) + ' ' * column_widths['line_number'], font_attr=self._LINE_COST_ATTR)
sub_head += RL(self._SOURCE_HEAD, font_attr='bold')
lines = [head, sub_head]
output_annotations = {}
for i, line in enumerate(source_lines):
lineno = i + 1
if lineno in source_annotation:
annotation = source_annotation[lineno]
cost_bar = self._render_normalized_cost_bar(self._get_total_cost(annotation, parsed.cost_type), max_total_cost, cost_bar_max_length)
annotated_line = cost_bar
annotated_line += ' ' * (column_widths['cost_bar'] - len(cost_bar))
total_cost = RL(cli_shared.time_to_readable_str(self._get_total_cost(annotation, parsed.cost_type), force_time_unit=parsed.time_unit), font_attr=self._LINE_COST_ATTR)
total_cost += ' ' * (column_widths['total_cost'] - len(total_cost))
annotated_line += total_cost
file_path_filter = re.escape(parsed.source_file_path) + '$'
command = 'lp --file_path_filter %s --min_lineno %d --max_lineno %d' % (file_path_filter, lineno, lineno + 1)
if parsed.device_name_filter:
command += ' --%s %s' % (_DEVICE_NAME_FILTER_FLAG, parsed.device_name_filter)
if parsed.node_name_filter:
command += ' --%s %s' % (_NODE_NAME_FILTER_FLAG, parsed.node_name_filter)
if parsed.op_type_filter:
command += ' --%s %s' % (_OP_TYPE_FILTER_FLAG, parsed.op_type_filter)
menu_item = debugger_cli_common.MenuItem(None, command)
num_nodes_execs = RL('%d(%d)' % (annotation.node_count, annotation.node_exec_count), font_attr=[self._LINE_COST_ATTR, menu_item])
num_nodes_execs += ' ' * (column_widths['num_nodes_execs'] - len(num_nodes_execs))
annotated_line += num_nodes_execs
else:
annotated_line = RL(' ' * sum((column_widths[col_name] for col_name in column_widths if col_name != 'line_number')))
line_num_column = RL(' L%d' % lineno, self._LINE_NUM_ATTR)
line_num_column += ' ' * (column_widths['line_number'] - len(line_num_column))
annotated_line += line_num_column
annotated_line += line
lines.append(annotated_line)
if parsed.init_line == lineno:
output_annotations[debugger_cli_common.INIT_SCROLL_POS_KEY] = len(lines) - 1
return debugger_cli_common.rich_text_lines_from_rich_line_list(lines, annotations=output_annotations)
|
Print a Python source file with line-level profile information.
Args:
args: Command-line arguments, excluding the command prefix, as a list of
str.
screen_info: Optional dict input containing screen information such as
cols.
Returns:
Output text lines as a RichTextLines object.
|
github-repos
|
def is_active(self, node):
if (isinstance(node.value, gast.Call) and
anno.getanno(node.value, 'func', False) == utils.pop):
return True
for succ in gast.walk(node.value):
if (isinstance(succ, gast.Name) and isinstance(succ.ctx, gast.Load) and
succ.id in self.active_variables):
return True
return False
|
Checks whether a statement is active.
An assignment is active when its right hand side contains active
variables.
Args:
node: an instance of gast.Assign
Returns:
Whether the statement is active.
|
juraj-google-style
|
def __init__(self, channel):
self.ListContexts = channel.unary_unary(
'/google.cloud.dialogflow.v2beta1.Contexts/ListContexts',
request_serializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_context__pb2.ListContextsRequest.SerializeToString,
response_deserializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_context__pb2.ListContextsResponse.FromString,
)
self.GetContext = channel.unary_unary(
'/google.cloud.dialogflow.v2beta1.Contexts/GetContext',
request_serializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_context__pb2.GetContextRequest.SerializeToString,
response_deserializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_context__pb2.Context.FromString,
)
self.CreateContext = channel.unary_unary(
'/google.cloud.dialogflow.v2beta1.Contexts/CreateContext',
request_serializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_context__pb2.CreateContextRequest.SerializeToString,
response_deserializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_context__pb2.Context.FromString,
)
self.UpdateContext = channel.unary_unary(
'/google.cloud.dialogflow.v2beta1.Contexts/UpdateContext',
request_serializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_context__pb2.UpdateContextRequest.SerializeToString,
response_deserializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_context__pb2.Context.FromString,
)
self.DeleteContext = channel.unary_unary(
'/google.cloud.dialogflow.v2beta1.Contexts/DeleteContext',
request_serializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_context__pb2.DeleteContextRequest.SerializeToString,
response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString,
)
self.DeleteAllContexts = channel.unary_unary(
'/google.cloud.dialogflow.v2beta1.Contexts/DeleteAllContexts',
request_serializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_context__pb2.DeleteAllContextsRequest.SerializeToString,
response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString,
)
|
Constructor.
Args:
channel: A grpc.Channel.
|
juraj-google-style
|
def ReadSerializableArray(self, class_name, max=sys.maxsize):
module = '.'.join(class_name.split('.')[:-1])
klassname = class_name.split('.')[-1]
klass = getattr(importlib.import_module(module), klassname)
length = self.ReadVarInt(max=max)
items = []
try:
for i in range(0, length):
item = klass()
item.Deserialize(self)
items.append(item)
except Exception as e:
logger.error("Couldn't deserialize %s " % e)
return items
|
Deserialize a stream into the object specific by `class_name`.
Args:
class_name (str): a full path to the class to be deserialized into. e.g. 'neo.Core.Block.Block'
max (int): (Optional) maximum number of bytes to read.
Returns:
list: list of `class_name` objects deserialized from the stream.
|
juraj-google-style
|
def DetermineType(value):
object_type = type(value)
if not hasattr(object_type, '__name__'):
return None
type_string = getattr(object_type, '__module__', '')
if type_string:
type_string += '.'
type_string += object_type.__name__
return type_string
|
Determines the type of val, returning a "full path" string.
For example:
DetermineType(5) -> __builtin__.int
DetermineType(Foo()) -> com.google.bar.Foo
Args:
value: Any value, the value is irrelevant as only the type metadata
is checked
Returns:
Type path string. None if type cannot be determined.
|
juraj-google-style
|
def SetServerInformation(self, server, port):
self._host = server
self._port = port
logger.debug('Elasticsearch server: {0!s} port: {1:d}'.format(
server, port))
|
Set the server information.
Args:
server (str): IP address or hostname of the server.
port (int): Port number of the server.
|
juraj-google-style
|
def google_maps_geoloc_link(data):
if isinstance(data, str):
lat_lon = ip_geoloc(data)
if lat_lon is None:
return ''
lat, lon = lat_lon
else:
lat, lon = data
loc = '%s,%s' % (lat, lon)
return 'https:
'data=!3m1!4b1!4m5!3m4!1s0x0:0x0!8m2!3d%s!4d%s' % (
loc, lat, lon)
|
Get a link to google maps pointing on this IP's geolocation.
Args:
data (str/tuple): IP address or (latitude, longitude).
Returns:
str: a link to google maps pointing on this IP's geolocation.
|
juraj-google-style
|
def limit(self, count):
query = query_mod.Query(self)
return query.limit(count)
|
Create a limited query with this collection as parent.
See
:meth:`~.firestore_v1beta1.query.Query.limit` for
more information on this method.
Args:
count (int): Maximum number of documents to return that match
the query.
Returns:
~.firestore_v1beta1.query.Query: A limited query.
|
codesearchnet
|
def upload(self, resource_id, data):
self.body = data
self.content_type = 'application/octet-stream'
self.resource_id(str(resource_id))
self._request_uri = '{}/upload'.format(self._request_uri)
|
Update the request URI to upload the a document to this resource.
Args:
resource_id (integer): The group id.
data (any): The raw data to upload.
|
codesearchnet
|
def get_dataset(self, dsid, dsinfo):
data = self[dsinfo.get('file_key', dsid.name)]
data.attrs.update(dsinfo)
data.attrs['platform_name'] = self['/attr/satellite_name']
data.attrs['sensor'] = self['/attr/instrument_name']
return data
|
Get dataset function
Args:
dsid: Dataset ID
param2: Dataset Information
Returns:
Dask DataArray: Data
|
codesearchnet
|
def from_base_10_int(decimal, output_base=10):
if decimal <= 0:
return (0,)
if output_base == 1:
return (1,) * decimal
length = digits(decimal, output_base)
converted = tuple(digit(decimal, i, output_base) for i in range(length))
return converted[::-1]
|
Converts a decimal integer to a specific base.
Args:
decimal(int) A base 10 number.
output_base(int) base to convert to.
Returns:
A tuple of digits in the specified base.
Examples:
>>> from_base_10_int(255)
(2, 5, 5)
>>> from_base_10_int(255, 16)
(15, 15)
>>> from_base_10_int(9988664439, 8)
(1, 1, 2, 3, 2, 7, 5, 6, 6, 1, 6, 7)
>>> from_base_10_int(0, 17)
(0,)
|
juraj-google-style
|
def get_ogr_driver(filepath):
(filename, file_extension) = os.path.splitext(filepath)
EXTENSION = file_extension[1:]
ogr_driver_count = ogr.GetDriverCount()
for idx in range(ogr_driver_count):
driver = ogr.GetDriver(idx)
driver_extension = (driver.GetMetadataItem(str('DMD_EXTENSION')) or '')
driver_extensions = (driver.GetMetadataItem(str('DMD_EXTENSIONS')) or '')
if ((EXTENSION == driver_extension) or (EXTENSION in driver_extensions)):
return driver
else:
msg = 'No driver found for the following file extension: {}'.format(EXTENSION)
raise ValueError(msg)
|
Get the OGR driver from the provided file extension.
Args:
file_extension (str): file extension
Returns:
osgeo.ogr.Driver
Raises:
ValueError: no driver is found
|
codesearchnet
|
def generate_exact(self, model, vcpu_num, host_cpu):
nested = {'Intel': 'vmx', 'AMD': 'svm'}
cpu = ET.Element('cpu', match='exact')
ET.SubElement(cpu, 'model').text = model
cpu.append(self.generate_topology(vcpu_num))
vendor = host_cpu.findtext('vendor')
if (not nested.get(vendor)):
LOGGER.debug('Unknown vendor: {0}, did not configure nested virtualization cpu flag on guest.'.format(vendor))
return cpu
model_vendor = LibvirtCPU.get_cpu_vendor(family=model)
if (vendor != model_vendor):
LOGGER.debug('Not enabling nested virtualization feature, host vendor is: {0}, guest vendor: {1}'.format(vendor, model_vendor))
return cpu
flag = nested[vendor]
if (host_cpu.find('feature/[@name="{0}"]'.format(flag)) is not None):
cpu.append(self.generate_feature(name=flag))
else:
LOGGER.debug('missing {0} cpu flag on host, nested virtualization will probably not work.'.format(flag))
return cpu
|
Generate exact CPU model with nested virtualization CPU feature.
Args:
model(str): libvirt supported CPU model
vcpu_num(int): number of virtual cpus
host_cpu(lxml.etree.Element): the host CPU model
Returns:
lxml.etree.Element: CPU XML node
|
codesearchnet
|
def guess_task_type(name, task_defn):
parts = name.split(':')
task_type = parts[(- 1)]
if (task_type == 'parent'):
if is_action(task_defn):
task_type = 'action'
else:
task_type = 'decision'
if (task_type not in get_valid_task_types()):
raise CoTError('Invalid task type for {}!'.format(name))
return task_type
|
Guess the task type of the task.
Args:
name (str): the name of the task.
Returns:
str: the task_type.
Raises:
CoTError: on invalid task_type.
|
codesearchnet
|
def internal_convert_n_to_tensor_or_indexed_slices(values, dtype=None, name=None, as_ref=False):
if not isinstance(values, collections_abc.Iterable):
raise TypeError('Argument `values` must be iterable.')
ret = []
for i, value in enumerate(values):
if value is None:
ret.append(value)
else:
n = None if name is None else '%s_%d' % (name, i)
ret.append(internal_convert_to_tensor_or_indexed_slices(value, dtype=dtype, name=n, as_ref=as_ref))
return ret
|
Converts `values` to a list of `Tensor` or `IndexedSlices` objects.
Any `IndexedSlices` or `SparseTensor` objects in `values` are returned
unmodified.
Args:
values: An iterable of `None`, `IndexedSlices`, `SparseTensor`, or objects
that can be consumed by `convert_to_tensor()`.
dtype: (Optional.) The required `DType` of the returned `Tensor` or
`IndexedSlices`.
name: (Optional.) A name prefix to used when a new `Tensor` is created, in
which case element `i` will be given the name `name + '_' + i`.
as_ref: True if the caller wants the results as ref tensors.
Returns:
A list of `Tensor`, `IndexedSlices`, `SparseTensor` and/or `None` objects.
Raises:
TypeError: If no conversion function is registered for an element in
`values`.
RuntimeError: If a registered conversion function returns an invalid
value.
|
github-repos
|
def _decorate_block(self, start, end):
color = self._get_scope_highlight_color()
draw_order = DRAW_ORDERS.get('codefolding')
d = TextDecoration(self.editor.document(), start_line=start,
end_line=end+1, draw_order=draw_order)
d.set_background(color)
d.set_full_width(True, clear=False)
self.editor.decorations.add(d)
self._scope_decos.append(d)
|
Create a decoration and add it to the editor.
Args:
start (int) start line of the decoration
end (int) end line of the decoration
|
juraj-google-style
|
def prepare_for_send(self, full_url=False):
assert self.url
assert self.method
assert self.version
url_info = self.url_info
if ('Host' not in self.fields):
self.fields['Host'] = url_info.hostname_with_port
if (not full_url):
if url_info.query:
self.resource_path = '{0}?{1}'.format(url_info.path, url_info.query)
else:
self.resource_path = url_info.path
else:
self.resource_path = url_info.url
|
Modify the request to be suitable for HTTP server.
Args:
full_url (bool): Use full URL as the URI. By default, only
the path of the URL is given to the server.
|
codesearchnet
|
def add_arguments(cls, parser):
parser.add_argument(
'-t', '--title',
action='store',
nargs='?',
const='',
dest='title',
help="[issue] task/issue title.",
)
parser.add_argument(
'-b', '--body',
action='store',
nargs='?',
const='',
dest='body',
help="[issue] task/issue body.",
)
pass
|
Add arguments to the parser for collection in app.args.
Args:
parser:
`argparse.ArgumentParser`. Parser.
Arguments added here are server on
self.args.
|
juraj-google-style
|
def populate_ast_nsarg_orthologs(ast, species):
ortholog_namespace = 'EG'
if isinstance(ast, NSArg):
if re.match(ortholog_namespace, ast.canonical):
orthologs = bel.terms.orthologs.get_orthologs(ast.canonical, list(species.keys()))
for species_id in species:
if (species_id in orthologs):
orthologs[species_id]['species_label'] = species[species_id]
ast.orthologs = copy.deepcopy(orthologs)
if hasattr(ast, 'args'):
for arg in ast.args:
populate_ast_nsarg_orthologs(arg, species)
return ast
|
Recursively collect NSArg orthologs for BEL AST
This requires bo.collect_nsarg_norms() to be run first so NSArg.canonical is available
Args:
ast: AST at recursive point in belobj
species: dictionary of species ids vs labels for or
|
codesearchnet
|
def draw_sunpath(self, hoys=None, origin=None, scale=1, sun_scale=1, annual=True, rem_night=True):
assert ladybug.isplus, '"draw_sunpath" method can only be used in the [+] libraries.'
hoys = (hoys or ())
origin = (origin or (0, 0, 0))
try:
origin = tuple(origin)
except TypeError as e:
try:
origin = (origin.X, origin.Y, origin.Z)
except AttributeError:
raise TypeError(str(e))
scale = (scale or 1)
sun_scale = (sun_scale or 1)
assert (annual or hoys), 'For daily sunpath you need to provide at least one hour.'
radius = (200 * scale)
base_curves = plus.base_curves(origin, radius, self.north_angle)
if annual:
asuns = self._analemma_suns()
analemma_curves = plus.analemma_curves(asuns, origin, radius)
else:
analemma_curves = ()
if hoys:
suns = tuple((self.calculate_sun_from_hoy(hour) for hour in hoys))
else:
suns = ()
if rem_night:
suns = tuple((sun for sun in suns if sun.is_during_day))
sun_geos = plus.sun_geometry(suns, origin, radius)
if annual:
dts = (DateTime(m, 21) for m in xrange(1, 13))
else:
dts = (sun.datetime for sun in suns)
dsuns = self._daily_suns(dts)
daily_curves = plus.daily_curves(dsuns, origin, radius)
SPGeo = namedtuple('SunpathGeo', ('compass_curves', 'analemma_curves', 'daily_curves', 'suns', 'sun_geos'))
return SPGeo(base_curves, analemma_curves, daily_curves, suns, sun_geos)
|
Create sunpath geometry. \
This method should only be used from the + libraries.
Args:
hoys: An optional list of hours of the year(default: None).
origin: Sunpath origin(default: (0, 0, 0)).
scale: Sunpath scale(default: 1).
sun_scale: Scale for the sun spheres(default: 1).
annual: Set to True to draw an annual sunpath.
Otherwise a daily sunpath is drawn.
rem_night: Remove suns which are under the horizon(night!).
Returns:
base_curves: A collection of curves for base plot.
analemma_curves: A collection of analemma_curves.
daily_curves: A collection of daily_curves.
suns: A list of suns.
|
codesearchnet
|
def offTagAdd(self, name, func):
if '*' in name:
self.ontagaddglobs.rem(name, func)
return
cblist = self.ontagadds.get(name)
if cblist is None:
return
try:
cblist.remove(func)
except ValueError:
pass
|
Unregister a callback for tag addition.
Args:
name (str): The name of the tag or tag glob.
func (function): The callback func(node, tagname, tagval).
|
juraj-google-style
|
def orthorhombic(a: float, b: float, c: float):
return Lattice.from_parameters(a, b, c, 90, 90, 90)
|
Convenience constructor for an orthorhombic lattice.
Args:
a (float): *a* lattice parameter of the orthorhombic cell.
b (float): *b* lattice parameter of the orthorhombic cell.
c (float): *c* lattice parameter of the orthorhombic cell.
Returns:
Orthorhombic lattice of dimensions a x b x c.
|
juraj-google-style
|
def apply_filter(self, structure_filter):
def test_transformed_structure(ts):
return structure_filter.test(ts.final_structure)
self.transformed_structures = list(filter(test_transformed_structure, self.transformed_structures))
for ts in self.transformed_structures:
ts.append_filter(structure_filter)
|
Applies a structure_filter to the list of TransformedStructures
in the transmuter.
Args:
structure_filter: StructureFilter to apply.
|
codesearchnet
|
def UnwrapPyTree(tree):
unwrapper = PyTreeUnwrapper()
unwrapper.Visit(tree)
llines = unwrapper.GetLogicalLines()
llines.sort(key=lambda x: x.lineno)
return llines
|
Create and return a list of logical lines from the given pytree.
Arguments:
tree: the top-level pytree node to unwrap..
Returns:
A list of LogicalLine objects.
|
github-repos
|
def as_operation(self, timer=datetime.utcnow):
now = timer()
op = sc_messages.Operation(endTime=timestamp.to_rfc3339(now), startTime=timestamp.to_rfc3339(now), importance=sc_messages.Operation.ImportanceValueValuesEnum.LOW)
if self.operation_id:
op.operationId = self.operation_id
if self.operation_name:
op.operationName = self.operation_name
if (self.api_key and self.api_key_valid):
op.consumerId = (u'api_key:' + self.api_key)
elif self.consumer_project_id:
op.consumerId = (u'project:' + self.consumer_project_id)
return op
|
Makes an ``Operation`` from this instance.
Returns:
an ``Operation``
|
codesearchnet
|
def generate_rpn_proposals(boxes, scores, img_shape,
pre_nms_topk, post_nms_topk=None):
assert boxes.shape.ndims == 2, boxes.shape
if post_nms_topk is None:
post_nms_topk = pre_nms_topk
topk = tf.minimum(pre_nms_topk, tf.size(scores))
topk_scores, topk_indices = tf.nn.top_k(scores, k=topk, sorted=False)
topk_boxes = tf.gather(boxes, topk_indices)
topk_boxes = clip_boxes(topk_boxes, img_shape)
topk_boxes_x1y1x2y2 = tf.reshape(topk_boxes, (-1, 2, 2))
topk_boxes_x1y1, topk_boxes_x2y2 = tf.split(topk_boxes_x1y1x2y2, 2, axis=1)
wbhb = tf.squeeze(topk_boxes_x2y2 - topk_boxes_x1y1, axis=1)
valid = tf.reduce_all(wbhb > cfg.RPN.MIN_SIZE, axis=1)
topk_valid_boxes_x1y1x2y2 = tf.boolean_mask(topk_boxes_x1y1x2y2, valid)
topk_valid_scores = tf.boolean_mask(topk_scores, valid)
topk_valid_boxes_y1x1y2x2 = tf.reshape(
tf.reverse(topk_valid_boxes_x1y1x2y2, axis=[2]),
(-1, 4), name='nms_input_boxes')
nms_indices = tf.image.non_max_suppression(
topk_valid_boxes_y1x1y2x2,
topk_valid_scores,
max_output_size=post_nms_topk,
iou_threshold=cfg.RPN.PROPOSAL_NMS_THRESH)
topk_valid_boxes = tf.reshape(topk_valid_boxes_x1y1x2y2, (-1, 4))
proposal_boxes = tf.gather(topk_valid_boxes, nms_indices)
proposal_scores = tf.gather(topk_valid_scores, nms_indices)
tf.sigmoid(proposal_scores, name='probs')
return tf.stop_gradient(proposal_boxes, name='boxes'), tf.stop_gradient(proposal_scores, name='scores')
|
Sample RPN proposals by the following steps:
1. Pick top k1 by scores
2. NMS them
3. Pick top k2 by scores. Default k2 == k1, i.e. does not filter the NMS output.
Args:
boxes: nx4 float dtype, the proposal boxes. Decoded to floatbox already
scores: n float, the logits
img_shape: [h, w]
pre_nms_topk, post_nms_topk (int): See above.
Returns:
boxes: kx4 float
scores: k logits
|
juraj-google-style
|
def masked_within_block_local_attention_1d(q, k, v, block_length=64, name=None):
with tf.variable_scope(name, default_name='within_local_attention_1d', values=[q, k, v]):
(batch, heads, length, depth_k) = common_layers.shape_list(q)
depth_v = common_layers.shape_list(v)[(- 1)]
if isinstance(block_length, tf.Tensor):
const = tf.contrib.util.constant_value(block_length)
if (const is not None):
block_length = int(const)
original_length = length
padding_size = tf.mod((- length), block_length)
length += padding_size
padding = [[0, 0], [0, 0], [0, padding_size], [0, 0]]
q = tf.pad(q, padding)
k = tf.pad(k, padding)
v = tf.pad(v, padding)
num_blocks = tf.div(length, block_length)
q = tf.reshape(q, [batch, heads, num_blocks, block_length, depth_k])
k = tf.reshape(k, [batch, heads, num_blocks, block_length, depth_k])
v = tf.reshape(v, [batch, heads, num_blocks, block_length, depth_v])
attention = tf.matmul(q, k, transpose_b=True)
attention += tf.reshape(attention_bias_lower_triangle(block_length), [1, 1, 1, block_length, block_length])
attention = tf.nn.softmax(attention)
output = tf.matmul(attention, v)
output = tf.reshape(output, [batch, heads, (- 1), depth_v])
output = tf.slice(output, [0, 0, 0, 0], [(- 1), (- 1), original_length, (- 1)])
output.set_shape([(None if isinstance(dim, tf.Tensor) else dim) for dim in (batch, heads, length, depth_v)])
return output
|
Attention to the source and a neighborhood to the left within a block.
The sequence is divided into blocks of length block_length. Attention for a
given query position can only see memory positions less than or equal to the
query position in the corresponding block.
Args:
q: a Tensor with shape [batch, heads, length, depth_k]
k: a Tensor with shape [batch, heads, length, depth_k]
v: a Tensor with shape [batch, heads, length, depth_v]
block_length: an integer
name: an optional string
Returns:
a Tensor of shape [batch, heads, length, depth_v]
|
codesearchnet
|
def bdp_bds_cache(func, tickers, flds, **kwargs) -> ToQuery:
cache_data = []
log_level = kwargs.get('log', logs.LOG_LEVEL)
logger = logs.get_logger(bdp_bds_cache, level=log_level)
kwargs['has_date'] = kwargs.pop('has_date', func == 'bds')
kwargs['cache'] = kwargs.get('cache', True)
tickers = utils.flatten(tickers)
flds = utils.flatten(flds)
loaded = pd.DataFrame(data=0, index=tickers, columns=flds)
for ticker, fld in product(tickers, flds):
data_file = storage.ref_file(
ticker=ticker, fld=fld, ext='pkl', **{
k: v for k, v in kwargs.items() if k not in EXC_COLS
}
)
if not files.exists(data_file): continue
logger.debug(f'reading from {data_file} ...')
cache_data.append(pd.read_pickle(data_file))
loaded.loc[ticker, fld] = 1
to_qry = loaded.where(loaded == 0)\
.dropna(how='all', axis=1).dropna(how='all', axis=0)
return ToQuery(
tickers=to_qry.index.tolist(), flds=to_qry.columns.tolist(),
cached_data=cache_data
)
|
Find cached `BDP` / `BDS` queries
Args:
func: function name - bdp or bds
tickers: tickers
flds: fields
**kwargs: other kwargs
Returns:
ToQuery(ticker, flds, kwargs)
|
juraj-google-style
|
def convert(self, value):
if (self._type is str):
return str(value)
elif (self._type is int):
try:
return int(value)
except (UnicodeError, ValueError):
raise WorkflowArgumentError('Cannot convert {} to int'.format(value))
elif (self._type is float):
try:
return float(value)
except (UnicodeError, ValueError):
raise WorkflowArgumentError('Cannot convert {} to float'.format(value))
elif (self._type is bool):
if isinstance(value, bool):
return bool(value)
value = value.lower()
if (value in ('true', '1', 'yes', 'y')):
return True
elif (value in ('false', '0', 'no', 'n')):
return False
raise WorkflowArgumentError('Cannot convert {} to bool'.format(value))
else:
return value
|
Convert the specified value to the type of the option.
Args:
value: The value that should be converted.
Returns:
The value with the type given by the option.
|
codesearchnet
|
def to_FIB(self, other):
if (not isinstance(other, GroundedFunctionNetwork)):
raise TypeError(f'Expected GroundedFunctionNetwork, but got {type(other)}')
def shortname(var):
return var[(var.find('::') + 2):var.rfind('_')]
def shortname_vars(graph, shortname):
return [v for v in graph.nodes() if (shortname in v)]
this_var_nodes = [shortname(n) for (n, d) in self.nodes(data=True) if (d['type'] == 'variable')]
other_var_nodes = [shortname(n) for (n, d) in other.nodes(data=True) if (d['type'] == 'variable')]
shared_vars = set(this_var_nodes).intersection(set(other_var_nodes))
full_shared_vars = {full_var for shared_var in shared_vars for full_var in shortname_vars(self, shared_var)}
return ForwardInfluenceBlanket(self, full_shared_vars)
|
Creates a ForwardInfluenceBlanket object representing the
intersection of this model with the other input model.
Args:
other: The GroundedFunctionNetwork object to compare this model to.
Returns:
A ForwardInfluenceBlanket object to use for model comparison.
|
codesearchnet
|
def update_config(config):
update(bigchaindb.config, update_types(config, bigchaindb.config))
bigchaindb.config['CONFIGURED'] = True
|
Update bigchaindb.config with whatever is in the provided config dict,
and then set bigchaindb.config['CONFIGURED'] = True
Args:
config (dict): the config dict to read for changes
to the default config
|
juraj-google-style
|
def parse(self, argument):
if isinstance(argument, self.enum_class):
return argument
if argument not in self.enum_class.__members__:
raise ValueError('value should be one of <%s>' %
'|'.join(self.enum_class.__members__.keys()))
else:
return self.enum_class[argument]
|
Determines validity of argument and returns the correct element of enum.
Args:
argument: str or Enum class member, the supplied flag value.
Returns:
The first matching Enum class member in Enum class.
Raises:
ValueError: Raised when argument didn't match anything in enum.
|
juraj-google-style
|
def _update_field(self, uri, field):
payload = None
if type(field) is not StreakField:
return requests.codes.bad_request, None
payload = field.to_dict(rw = True)
try:
uri = '/'.join([
uri,
field.attributes['key']
])
except KeyError:
return requests.codes.bad_request, None
code, data = self._req('post', uri , json.dumps(payload))
return code, data
|
Updates a field with the provided attributes.
Args:
key reqiured identifier for the pipeline or box
field StreakField object
kwargs {name, type} see StreakField for details
return (status code, field dict)
|
juraj-google-style
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.