code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def extract_tendency_grid(self, model_grid): var_name = model_grid.variable + "-tendency" self.attributes[var_name] = [] timesteps = np.arange(self.start_time, self.end_time + 1) for ti, t in enumerate(timesteps): t_index = t - model_grid.start_hour self.attributes[var_name].append( model_grid.data[t_index, self.i[ti], self.j[ti]] - model_grid.data[t_index - 1, self.i[ti], self.j[ti]] )
Extracts the difference in model outputs Args: model_grid: ModelOutput or ModelGrid object.
juraj-google-style
def get(self, key, default=None): if key in self.__cli: return self.__cli[key] if key in self.__config: return self.__config.get(key) if key in self.__defaults: return self.__defaults.get(key) return default
Get the value for `key`. Gives priority to command-line overrides. Args: key: str, the key to get the value for. Returns: object: The value for `key`
juraj-google-style
def _calibrate_vis(radiance, k): logger.debug('Calibrating to reflectance') refl = ((100 * k) * radiance) return refl.clip(min=0)
Convert VIS radiance to reflectance Note: Angle of incident radiation and annual variation of the earth-sun distance is not taken into account. A value of 100% corresponds to the radiance of a perfectly reflecting diffuse surface illuminated at normal incidence when the sun is at its annual-average distance from the Earth. TODO: Take angle of incident radiation (cos sza) and annual variation of the earth-sun distance into account. Reference: [VIS] Args: radiance: Radiance [mW m-2 cm-1 sr-1] k: pi / H, where H is the solar spectral irradiance at annual-average sun-earth distance, averaged over the spectral response function of the detector). Units of k: [m2 um sr W-1] Returns: Reflectance [%]
codesearchnet
def transfer(self, rights_assignment_data=None, *, from_user, to_user, rights_assignment_format='jsonld'): rights_assignment = RightsAssignment.from_data((rights_assignment_data or {}), plugin=self.plugin) transfer_payload = rights_assignment._to_format(data_format=rights_assignment_format) transfer_id = super().transfer(transfer_payload, from_user=from_user, to_user=to_user) rights_assignment.persist_id = transfer_id return rights_assignment
Transfer this Right to another owner on the backing persistence layer. Args: rights_assignment_data (dict): Model data for the resulting :class:`~.RightsAssignment` from_user (any, keyword): A user based on the model specified by the persistence layer to_user (any, keyword): A user based on the model specified by the persistence layer rights_assignment_format (str, keyword, optional): Data format of the created entity; must be one of: - 'jsonld' (default) - 'json' - 'ipld' Returns: :class:`~.RightsAssignment`: The RightsAssignment entity created from this transfer Raises: See :meth:`~.TransferrableEntity.transfer`
codesearchnet
def export(self, last_checkpoint, output_dir): logging.info('Exporting prediction graph to %s', output_dir) with tf.Session(graph=tf.Graph()) as sess: inputs, outputs = self.build_prediction_graph() signature_def_map = { 'serving_default': signature_def_utils.predict_signature_def(inputs, outputs) } init_op = tf.global_variables_initializer() sess.run(init_op) self.restore_from_checkpoint(sess, self.inception_checkpoint_file, last_checkpoint) init_op_serving = control_flow_ops.group( variables.local_variables_initializer(), tf.tables_initializer()) builder = saved_model_builder.SavedModelBuilder(output_dir) builder.add_meta_graph_and_variables( sess, [tag_constants.SERVING], signature_def_map=signature_def_map, legacy_init_op=init_op_serving) builder.save(False)
Builds a prediction graph and xports the model. Args: last_checkpoint: Path to the latest checkpoint file from training. output_dir: Path to the folder to be used to output the model.
juraj-google-style
def get_absl_log_prefix(record): created_tuple = time.localtime(record.created) created_microsecond = int(((record.created % 1.0) * 1000000.0)) critical_prefix = '' level = record.levelno if _is_non_absl_fatal_record(record): level = logging.ERROR critical_prefix = _CRITICAL_PREFIX severity = converter.get_initial_for_level(level) return ('%c%02d%02d %02d:%02d:%02d.%06d %5d %s:%d] %s' % (severity, created_tuple.tm_mon, created_tuple.tm_mday, created_tuple.tm_hour, created_tuple.tm_min, created_tuple.tm_sec, created_microsecond, _get_thread_id(), record.filename, record.lineno, critical_prefix))
Returns the absl log prefix for the log record. Args: record: logging.LogRecord, the record to get prefix for.
codesearchnet
def fibo(max_value=None): a = 1 b = 1 while True: if max_value is None or a < max_value: yield a a, b = b, a + b else: yield max_value
Generator for fibonaccial decay. Args: max_value: The maximum value to yield. Once the value in the true fibonacci sequence exceeds this, the value of max_value will forever after be yielded.
juraj-google-style
def flux_randomization(model, threshold, tfba, solver): optimize = {} for reaction_id in model.reactions: if model.is_reversible(reaction_id): optimize[reaction_id] = 2*random.random() - 1.0 else: optimize[reaction_id] = random.random() fba = _get_fba_problem(model, tfba, solver) for reaction_id, value in iteritems(threshold): fba.prob.add_linear_constraints(fba.get_flux_var(reaction_id) >= value) fba.maximize(optimize) for reaction_id in model.reactions: yield reaction_id, fba.get_flux(reaction_id)
Find a random flux solution on the boundary of the solution space. The reactions in the threshold dictionary are constrained with the associated lower bound. Args: model: MetabolicModel to solve. threshold: dict of additional lower bounds on reaction fluxes. tfba: If True enable thermodynamic constraints. solver: LP solver instance to use. Returns: An iterator of reaction ID and reaction flux pairs.
juraj-google-style
def match_objects(self, set_a, set_b, time_a, time_b): costs = self.cost_matrix(set_a, set_b, time_a, time_b) * 100 min_row_costs = costs.min(axis=1) min_col_costs = costs.min(axis=0) good_rows = np.where(min_row_costs < 100)[0] good_cols = np.where(min_col_costs < 100)[0] assignments = [] if len(good_rows) > 0 and len(good_cols) > 0: munk = Munkres() initial_assignments = munk.compute(costs[tuple(np.meshgrid(good_rows, good_cols, indexing='ij'))].tolist()) initial_assignments = [(good_rows[x[0]], good_cols[x[1]]) for x in initial_assignments] for a in initial_assignments: if costs[a[0], a[1]] < 100: assignments.append(a) return assignments
Match two sets of objects at particular times. Args: set_a: list of STObjects set_b: list of STObjects time_a: time at which set_a is being evaluated for matching time_b: time at which set_b is being evaluated for matching Returns: List of tuples containing (set_a index, set_b index) for each match
juraj-google-style
def __init__(self, port_no=None, queue_id=None, tx_bytes=None, tx_packets=None, tx_errors=None): super().__init__() self.port_no = port_no self.queue_id = queue_id self.tx_bytes = tx_bytes self.tx_packets = tx_packets self.tx_errors = tx_errors
Create a QueueStats with the optional parameters below. Args: port_no (:class:`int`, :class:`~pyof.v0x01.common.phy_port.Port`): Port Number. queue_id (int): Queue ID. tx_bytes (int): Number of transmitted bytes. tx_packets (int): Number of transmitted packets. tx_errors (int): Number of packets dropped due to overrun.
juraj-google-style
def VerifyStructure(self, parser_mediator, line): self._last_month = 0 self._year_use = parser_mediator.GetEstimatedYear() try: structure = self.FIREWALL_LINE.parseString(line) except pyparsing.ParseException as exception: logger.debug(( 'Unable to parse file as a Mac AppFirewall log file with error: ' '{0!s}').format(exception)) return False if structure.action != 'creating /var/log/appfirewall.log': logger.debug( 'Not a Mac AppFirewall log file, invalid action: {0!s}'.format( structure.action)) return False if structure.status != 'Error': logger.debug( 'Not a Mac AppFirewall log file, invalid status: {0!s}'.format( structure.status)) return False time_elements_tuple = self._GetTimeElementsTuple(structure) try: dfdatetime_time_elements.TimeElements( time_elements_tuple=time_elements_tuple) except ValueError: logger.debug(( 'Not a Mac AppFirewall log file, invalid date and time: ' '{0!s}').format(structure.date_time)) return False self._last_month = time_elements_tuple[1] return True
Verify that this file is a Mac AppFirewall log file. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. line (str): line from a text file. Returns: bool: True if the line is in the expected format, False if not.
juraj-google-style
def save(self, filename): if filename is None: filename = self.filename('.b26s') with open(filename, 'w') as outfile: outfile.write(pickle.dumps(self.__dict__))
saves the instance of the script to a file using pickle Args: filename: target filename
juraj-google-style
def add(x1, x2, output_shape=None, name=None): output_shape = convert_to_shape(output_shape) if not isinstance(x2, Tensor): return ScalarAddOperation(x1, x2).outputs[0] with tf.name_scope(name, default_name="add"): x1, x2 = binary_arguments_to_tensors(x1, x2) return AddOperation( x1, x2, output_shape=_infer_binary_broadcast_shape( x1.shape, x2.shape, output_shape)).outputs[0]
Binary addition with broadcsting. Args: x1: a Tensor x2: a Tensor output_shape: an optional Shape name: an optional string Returns: a Tensor
juraj-google-style
def search_user_directory(self, term: str) -> List[User]: response = self.api._send( 'POST', '/user_directory/search', { 'search_term': term, }, ) try: return [ User(self.api, _user['user_id'], _user['display_name']) for _user in response['results'] ] except KeyError: return []
Search user directory for a given term, returning a list of users Args: term: term to be searched for Returns: user_list: list of users returned by server-side search
juraj-google-style
def _process_thread(self, client): system_type = client.data.os_info.system print('System type: {0:s}'.format(system_type)) artifact_list = [] if self.artifacts: print('Artifacts to be collected: {0!s}'.format(self.artifacts)) artifact_list = self.artifacts else: default_artifacts = self.artifact_registry.get(system_type, None) if default_artifacts: print('Collecting default artifacts for {0:s}: {1:s}'.format(system_type, ', '.join(default_artifacts))) artifact_list.extend(default_artifacts) if self.extra_artifacts: print('Throwing in an extra {0!s}'.format(self.extra_artifacts)) artifact_list.extend(self.extra_artifacts) artifact_list = list(set(artifact_list)) if (not artifact_list): return flow_args = flows_pb2.ArtifactCollectorFlowArgs(artifact_list=artifact_list, use_tsk=self.use_tsk, ignore_interpolation_errors=True, apply_parsers=False) flow_id = self._launch_flow(client, 'ArtifactCollectorFlow', flow_args) self._await_flow(client, flow_id) collected_flow_data = self._download_files(client, flow_id) if collected_flow_data: print('{0!s}: Downloaded: {1:s}'.format(flow_id, collected_flow_data)) fqdn = client.data.os_info.fqdn.lower() self.state.output.append((fqdn, collected_flow_data))
Process a single GRR client. Args: client: a GRR client object.
codesearchnet
def get_v1_constants(module: Any) -> Sequence[str]: constants_v1 = [] tensorflow_constants_attr_v1 = API_ATTRS_V1[TENSORFLOW_API_NAME].constants if hasattr(module, tensorflow_constants_attr_v1): constants_v1.extend(getattr(module, tensorflow_constants_attr_v1)) return constants_v1
Get a list of TF 1.* constants in this module. Args: module: TensorFlow module. Returns: List of all API constants under the given module.
github-repos
def is_valid_transition(self, source: str, dest: str) -> bool: if dest not in self._states or source not in self._states: raise NotValidState elif dest not in self._transitions[source]: raise NotValidTransition return True
Checks if a transitions is registered in the FSM Args: source (str): the source state name dest (str): the destination state name Returns: bool: wether the transition is valid or not
juraj-google-style
def run_tpm(tpm, time_scale): sbs_tpm = convert.state_by_node2state_by_state(tpm) if sparse(tpm): tpm = sparse_time(sbs_tpm, time_scale) else: tpm = dense_time(sbs_tpm, time_scale) return convert.state_by_state2state_by_node(tpm)
Iterate a TPM by the specified number of time steps. Args: tpm (np.ndarray): A state-by-node tpm. time_scale (int): The number of steps to run the tpm. Returns: np.ndarray
juraj-google-style
def contains(array, ty, string): weld_obj = WeldObject(encoder_, decoder_) string_obj = weld_obj.update(string) if isinstance(string, WeldObject): string_obj = string.obj_id weld_obj.dependencies[string_obj] = string array_var = weld_obj.update(array) if isinstance(array, WeldObject): array_var = array.obj_id weld_obj.dependencies[array_var] = array (start, end) = 0, len(string) weld_template = weld_obj.weld_code = weld_template % {"array": array_var, "ty": ty, "start": start, "end": end, "cmpstr": string_obj} return weld_obj
Checks if given string is contained in each string in the array. Output is a vec of booleans. Args: array (WeldObject / Numpy.ndarray): Input array start (int): starting index size (int): length to truncate at ty (WeldType): Type of each element in the input array Returns: A WeldObject representing this computation
juraj-google-style
def query_dict_to_string(query): query_params = [] for (key, value) in query.items(): query_params.append(((key + '=') + value)) return '&'.join(query_params)
Convert an OrderedDict to a query string. Args: query (obj): The key value object with query params. Returns: str: The query string. Note: This method does the same as urllib.parse.urlencode except that it doesn't actually encode the values.
codesearchnet
def bin_to_mac(bin, size=6): if (len(bin) != size): raise Exception(('Invalid MAC address: %s' % bin)) return ':'.join([binascii.hexlify(o) for o in bin])
Convert 6 bytes into a MAC string. Args: bin (str): hex string of lenth 6. Returns: str: String representation of the MAC address in lower case. Raises: Exception: if ``len(bin)`` is not 6.
codesearchnet
def BSearchCeil(a, x, lo=0, hi=None): if len(a) == 0: return -1 hi = hi if hi is not None else len(a) pos = bisect_left(a, x, lo, hi) return pos if pos < hi else -1
Returns lowest i such as a[i] >= x, or -1 if x > all elements in a So, if x is in between two elements in a, this function will return the index of the higher element, hence "Ceil". Arguments: a -- ordered numeric sequence x -- element to search within a lo -- lowest index to consider in search hi -- highest index to consider in search
juraj-google-style
def validate_args(self, qubits: Sequence[Qid]) -> None: if len(qubits) == 0: raise ValueError( "Applied a gate to an empty set of qubits. Gate: {}".format( repr(self))) if len(qubits) != self.num_qubits(): raise ValueError( 'Wrong number of qubits for <{!r}>. ' 'Expected {} qubits but got <{!r}>.'.format( self, self.num_qubits(), qubits)) if any([not isinstance(qubit, Qid) for qubit in qubits]): raise ValueError( 'Gate was called with type different than Qid.')
Checks if this gate can be applied to the given qubits. By default checks if input is of type Qid and qubit count. Child classes can override. Args: qubits: The collection of qubits to potentially apply the gate to. Throws: ValueError: The gate can't be applied to the qubits.
juraj-google-style
def update(self, task_name, task_json): r = self.gbdx_connection.put(((self._base_url + '/') + task_name), json=task_json) raise_for_status(r) return r.json()
Updates a GBDX task. Args: task_name (str): Task name. task_json (dict): Dictionary representing updated task definition. Returns: Dictionary representing the updated task definition.
codesearchnet
def find_field(item_list, cond, comparator, target_field): for item in item_list: if comparator(item, cond) and target_field in item: return item[target_field] return None
Finds the value of a field in a dict object that satisfies certain conditions. Args: item_list: A list of dict objects. cond: A param that defines the condition. comparator: A function that checks if an dict satisfies the condition. target_field: Name of the field whose value to be returned if an item satisfies the condition. Returns: Target value or None if no item satisfies the condition.
juraj-google-style
def new_message_from_header(header): message_type = header.message_type if not isinstance(message_type, Type): try: if isinstance(message_type, str): message_type = Type[message_type] elif isinstance(message_type, int): message_type = Type(message_type) except ValueError: raise ValueError message = new_message_from_message_type(message_type) message.header.xid = header.xid message.header.length = header.length return message
Given an OF Header, return an empty message of header's message_type. Args: header (~pyof.v0x01.common.header.Header): Unpacked OpenFlow Header. Returns: Empty OpenFlow message of the same type of message_type attribute from the given header. The header attribute of the message will be populated. Raises: KytosUndefinedMessageType: Unkown Message_Type.
juraj-google-style
def ParseFileEntry(self, parser_mediator, file_entry): filename = parser_mediator.GetFilename() database = SQLiteDatabase( filename, temporary_directory=parser_mediator.temporary_directory) file_object = file_entry.GetFileObject() try: database.Open(file_object) except (IOError, ValueError, sqlite3.DatabaseError) as exception: parser_mediator.ProduceExtractionWarning( 'unable to open SQLite database with error: {0!s}'.format(exception)) file_object.close() return database_wal, wal_file_entry = self._OpenDatabaseWithWAL( parser_mediator, file_entry, file_object, filename) file_object.close() cache = SQLiteCache() try: table_names = frozenset(database.tables) for plugin in self._plugins: if not plugin.REQUIRED_TABLES.issubset(table_names): continue schema_match = plugin.CheckSchema(database) if plugin.REQUIRES_SCHEMA_MATCH and not schema_match: parser_mediator.ProduceExtractionWarning(( 'plugin: {0:s} found required tables but not a matching ' 'schema').format(plugin.NAME)) continue parser_mediator.SetFileEntry(file_entry) parser_mediator.AddEventAttribute('schema_match', schema_match) try: plugin.UpdateChainAndProcess( parser_mediator, cache=cache, database=database, database_wal=database_wal, wal_file_entry=wal_file_entry) except Exception as exception: parser_mediator.ProduceExtractionWarning(( 'plugin: {0:s} unable to parse SQLite database with error: ' '{1!s}').format(plugin.NAME, exception)) finally: parser_mediator.RemoveEventAttribute('schema_match') if not database_wal: continue schema_match = plugin.CheckSchema(database) parser_mediator.SetFileEntry(wal_file_entry) parser_mediator.AddEventAttribute('schema_match', schema_match) try: plugin.UpdateChainAndProcess( parser_mediator, cache=cache, database=database, database_wal=database_wal, wal_file_entry=wal_file_entry) except Exception as exception: parser_mediator.ProduceExtractionWarning(( 'plugin: {0:s} unable to parse SQLite database and WAL with ' 'error: {1!s}').format(plugin.NAME, exception)) finally: parser_mediator.RemoveEventAttribute('schema_match') finally: database.Close()
Parses a SQLite database file entry. Args: parser_mediator (ParserMediator): parser mediator. file_entry (dfvfs.FileEntry): file entry to be parsed. Raises: UnableToParseFile: when the file cannot be parsed.
juraj-google-style
def preprocess_na(sent, label_type): if label_type == "phonemes_and_tones": phonemes = True tones = True tgm = True elif label_type == "phonemes_and_tones_no_tgm": phonemes = True tones = True tgm = False elif label_type == "phonemes": phonemes = True tones = False tgm = False elif label_type == "tones": phonemes = False tones = True tgm = True elif label_type == "tones_notgm": phonemes = False tones = True tgm = False else: raise ValueError("Unrecognized label type: %s" % label_type) def pop_phoneme(sentence): if phonemes: if sentence[:4] in ["əəə…", "mmm…"]: return sentence[:4], sentence[4:] if sentence.startswith("ə…"): return "əəə…", sentence[2:] if sentence.startswith("m…"): return "mmm…", sentence[2:] if sentence.startswith("mm…"): return "mmm…", sentence[3:] if sentence[:3] == "wæ̃": if phonemes: return "w̃æ", sentence[3:] else: return None, sentence[3:] if sentence[:3] == "ṽ̩": if phonemes: return "ṽ̩", sentence[3:] else: return None, sentence[3:] if sentence[:3] in TRI_PHNS: if phonemes: return sentence[:3], sentence[3:] else: return None, sentence[3:] if sentence[:2] in BI_PHNS: if phonemes: return sentence[:2], sentence[2:] else: return None, sentence[2:] if sentence[:2] == "˧̩": return "˧", sentence[2:] if sentence[:2] == "˧̍": return "˧", sentence[2:] if sentence[0] in UNI_PHNS: if phonemes: return sentence[0], sentence[1:] else: return None, sentence[1:] if sentence[:2] in BI_TONES: if tones: return sentence[:2], sentence[2:] else: return None, sentence[2:] if sentence[0] in UNI_TONES: if tones: return sentence[0], sentence[1:] else: return None, sentence[1:] if sentence[0] in MISC_SYMBOLS: return None, sentence[1:] if sentence[0] in BAD_NA_SYMBOLS: return None, sentence[1:] if sentence[0] in PUNC_SYMBOLS: return None, sentence[1:] if sentence[0] in ["-", "ʰ", "/"]: return None, sentence[1:] if sentence[0] in set(["<", ">"]): return None, sentence[1:] if sentence[0] == "[": if sentence.find("]") == len(sentence)-1: return None, "" else: return None, sentence[sentence.find("]")+1:] if sentence[0] in set([" ", "\t", "\n"]): return " ", sentence[1:] if sentence[0] == "|" or sentence[0] == "ǀ" or sentence[0] == "◊": if tgm: return "|", sentence[1:] else: return None, sentence[1:] if sentence[0] in "()": return None, sentence[1:] print("***" + sentence) raise ValueError("Next character not recognized: " + sentence[:1]) def filter_for_phonemes(sentence): filtered_sentence = [] while sentence != "": phoneme, sentence = pop_phoneme(sentence) if phoneme != " ": filtered_sentence.append(phoneme) filtered_sentence = [item for item in filtered_sentence if item != None] return " ".join(filtered_sentence) if "BEGAIEMENT" in sent: return "" sent = filter_for_phonemes(sent) return sent
Preprocess Na sentences Args: sent: A sentence label_type: The type of label provided
juraj-google-style
def validate(self, profile): ij = self.load_install_json(profile.get('install_json')) print('{}{}Profile: "{}".'.format(c.Style.BRIGHT, c.Fore.BLUE, profile.get('profile_name'))) for arg in self.profile_settings_args_install_json(ij, None): if profile.get('args', {}).get('app', {}).get(arg) is None: print('{}{}Input "{}" not found.'.format(c.Style.BRIGHT, c.Fore.YELLOW, arg))
Check to see if any args are "missing" from profile. Validate all args from install.json are in the profile. This can be helpful to validate that any new args added to App are included in the profiles. .. Note:: This method does not work with layout.json Apps. Args: profile (dict): The current profile to validate.
juraj-google-style
def xmoe2_dense(sz): hparams = mtf_transformer.mtf_transformer_paper_lm(sz) hparams.attention_dropout = 0.0 hparams.relu_dropout = 0.0 hparams.layer_prepostprocess_dropout = 0.0 hparams.max_length = 1024 hparams.batch_size = 128 hparams.learning_rate_schedule = 'rsqrt_decay*linear_decay' hparams.learning_rate_decay_steps = 65536 hparams.layout = 'batch:batch;vocab:model;d_ff:model;heads:model' hparams.mesh_shape = 'batch:32' return hparams
Series of architectural experiments on language modeling. Larger models than the ones above. All models are trained on sequences of 1024 tokens. We assume infinite training data, so no dropout necessary. We process 2^36 tokens in training = 524288 steps at batch size 128 TODO(noam): find a large enough dataset for these experiments. You can use languagemodel_wiki_noref_v32k_l1k, but this is too small, (1 epoch = ~46000 steps) so training will cover about 11 epochs. Note: configurations and code are likely to change without notice. Run on TPU 4x4 for 524288 steps unless otherwise indicated. Args: sz: an integer Returns: a hparams
codesearchnet
def filter_values(cls, part_info): filtered = [] for info_list in cls.filter_parts(part_info).values(): filtered += info_list return filtered
Filter the part_info dict list looking for instances of our class Args: part_info (dict): {part_name: [Info] or None} as returned from Controller.run_hook() Returns: list: [info] where info is a subclass of cls
juraj-google-style
def DeserializeExclusiveData(self, reader): self.Type = TransactionType.IssueTransaction if self.Version > 1: raise Exception('Invalid TX Type')
Deserialize full object. Args: reader (neo.IO.BinaryReader):
juraj-google-style
def export_analytics_data_to_csv(data, output_folder, result_info_key, identifier_keys): workbook = create_excel_workbook(data, result_info_key, identifier_keys) suffix = '.csv' if not os.path.exists(output_folder): os.makedirs(output_folder) for worksheet in workbook.worksheets: file_name = utilities.convert_title_to_snake_case(worksheet.title) file_path = os.path.join(output_folder, file_name + suffix) mode = 'w' if sys.version_info[0] < 3: mode = 'wb' with io.open(file_path, mode) as output_file: csv_writer = csv.writer(output_file) for row in worksheet.rows: csv_writer.writerow([cell.value for cell in row]) print('Saved CSV files to {}'.format(output_folder))
Creates CSV files containing data returned by the Analytics API. Creates one file per requested endpoint and saves it into the specified output_folder Args: data: Analytics API data as a list of dicts output_folder: Path to a folder to save the CSV files into
juraj-google-style
def set_margin(self, top=40, bottom=30, left=50, right=10, buffer_size=8): self.set_integer('top', top) self.set_integer('bottom', bottom) self.set_integer('left', left) self.set_integer('right', right) self.set_integer('buffer', buffer_size)
Set margin of the chart. Args: top (int): size of top margin in pixels. bottom (int): size of bottom margin in pixels. left (int): size of left margin in pixels. right (int): size of right margin in pixels. buffer_size (int): buffer size in pixels between the chart and margins.
codesearchnet
def napalm_get(task: Task, getters: List[str], getters_options: GetterOptionsDict=None, **kwargs: Any) -> Result: device = task.host.get_connection('napalm', task.nornir.config) getters_options = (getters_options or {}) if isinstance(getters, str): getters = [getters] result = {} for g in getters: options = copy.deepcopy(kwargs) options.update(getters_options.get(g, {})) getter = (g if g.startswith('get_') else 'get_{}'.format(g)) method = getattr(device, getter) result[g] = method(**options) return Result(host=task.host, result=result)
Gather information from network devices using napalm Arguments: getters: getters to use getters_options (dict of dicts): When passing multiple getters you pass a dictionary where the outer key is the getter name and the included dictionary represents the options to pass to the getter **kwargs: will be passed as they are to the getters Examples: Simple example:: > nr.run(task=napalm_get, > getters=["interfaces", "facts"]) Passing options using ``**kwargs``:: > nr.run(task=napalm_get, > getters=["config"], > retrieve="all") Passing options using ``getters_options``:: > nr.run(task=napalm_get, > getters=["config", "interfaces"], > getters_options={"config": {"retrieve": "all"}}) Returns: Result object with the following attributes set: * result (``dict``): dictionary with the result of the getter
codesearchnet
def tag_match(self, tags=None): if 'tags' not in self.database.collection_names(): print 'Warning: Searching on non-existance tags collection' return None if not tags: cursor = self.database['tags'].find({}, {'_id':0, 'md5':1}) else: cursor = self.database['tags'].find({'tags': {'$in': tags}}, {'_id':0, 'md5':1}) tag_md5s = set([item['md5'] for item in cursor]) sample_md5s = set(item['md5'] for item in self.database['samples'].find({}, {'_id':0, 'md5':1})) return list(tag_md5s.intersection(sample_md5s))
List all samples that match the tags or all if tags are not specified. Args: tags: Match samples against these tags (or all if not specified) Returns: List of the md5s for the matching samples
juraj-google-style
def delete(self, delete_contents=False): if (not self.exists()): raise Exception(('Cannot delete non-existent dataset %s' % self._full_name)) try: self._api.datasets_delete(self._name_parts, delete_contents=delete_contents) except Exception as e: raise e self._info = None return None
Issues a request to delete the dataset. Args: delete_contents: if True, any tables and views in the dataset will be deleted. If False and the dataset is non-empty an exception will be raised. Returns: None on success. Raises: Exception if the delete fails (including if table was nonexistent).
codesearchnet
def symmetric_difference_update(self, other): other = self._as_multiset(other) elements = (set(self.distinct_elements()) | set(other.distinct_elements())) for element in elements: multiplicity = self[element] other_count = other[element] self[element] = ((multiplicity - other_count) if (multiplicity > other_count) else (other_count - multiplicity))
r"""Update the multiset to contain only elements in either this multiset or the other but not both. >>> ms = Multiset('aab') >>> ms.symmetric_difference_update('abc') >>> sorted(ms) ['a', 'c'] You can also use the ``^=`` operator for the same effect. However, the operator version will only accept a set as other operator, not any iterable, to avoid errors. >>> ms = Multiset('aabbbc') >>> ms ^= Multiset('abd') >>> sorted(ms) ['a', 'b', 'b', 'c', 'd'] For a variant of the operation which does not modify the multiset, but returns a new multiset instead see :meth:`symmetric_difference`. Args: other: The other set to take the symmetric difference with. Can also be any :class:`~typing.Iterable`\[~T] or :class:`~typing.Mapping`\[~T, :class:`int`] which are then converted to :class:`Multiset`\[~T].
codesearchnet
def get_inventory_str(self, keys=None): inventory = self.get_inventory(keys) lines = [] for name, hosts in inventory.viewitems(): lines.append('[{name}]'.format(name=name)) for host in sorted(hosts): lines.append(host) return '\n'.join(lines)
Convert a dict generated by ansible.LagoAnsible.get_inventory to an INI-like file. Args: keys (list of str): Path to the keys that will be used to create groups. Returns: str: INI-like Ansible inventory
juraj-google-style
def ver(self, value): if value == self._defaults['ver'] and 'ver' in self._values: del self._values['ver'] else: self._values['ver'] = value
The ver property. Args: value (int). the property value.
juraj-google-style
def _circuit_as_layers(circuit: circuits.Circuit, grouping: _QubitGrouping) -> List[_TransformsThenCzs]: frontier = {q: 0 for q in circuit.all_qubits()} layers = [] while True: any_group_matrices = False group_matrices = [] for g in grouping.groups: start_frontier = {q: frontier[q] for q in g} end_frontier = circuit.reachable_frontier_from(start_frontier) mergeable_ops = circuit.findall_operations_between(start_frontier, end_frontier) for q, v in end_frontier.items(): frontier[q] = v group_matrix = np.eye(1 << len(g)).reshape((2, 2) * len(g)) if mergeable_ops: any_group_matrices = True for _, op in mergeable_ops: group_matrix = linalg.targeted_left_multiply( left_matrix=protocols.unitary(op).reshape( (2, 2) * len(op.qubits)), right_target=group_matrix, target_axes=[grouping.loc(q)[1] for q in op.qubits]) group_matrices.append(np.transpose(group_matrix.reshape( 1 << len(g), 1 << len(g)))) end_frontier = circuit.reachable_frontier_from( frontier, is_blocker=lambda op: grouping.all_in_same_group(*op.qubits)) cz_ops = circuit.findall_operations_between(frontier, end_frontier) frontier = end_frontier cz_indices = [] for _, cz in cz_ops: a, b = cz.qubits assert cz == ops.CZ(a, b) cz_indices.append((grouping.ind(a), grouping.ind(b))) if not any_group_matrices and not cz_indices: break layer = _TransformsThenCzs(group_matrices=group_matrices, cz_indices=cz_indices) layers.append(layer) assert frontier == {q: len(circuit) for q in circuit.all_qubits()} return layers
Transforms a circuit into a series of GroupMatrix+CZ layers. Args: circuit: The circuit to transform. grouping: How the circuit's qubits are combined into groups. Returns: A list of layers. Each layer has a matrix to apply to each group of qubits, and a list of CZs to apply to pairs of qubits crossing between groups.
juraj-google-style
def _CheckCompositeMap(self, data_type_definition): if (not data_type_definition): raise errors.FormatError('Missing data type definition') members = getattr(data_type_definition, 'members', None) if (not members): raise errors.FormatError('Invalid data type definition missing members') is_composite_map = False last_member_byte_order = data_type_definition.byte_order for member_definition in members: if member_definition.IsComposite(): is_composite_map = True break if ((last_member_byte_order != definitions.BYTE_ORDER_NATIVE) and (member_definition.byte_order != definitions.BYTE_ORDER_NATIVE) and (last_member_byte_order != member_definition.byte_order)): is_composite_map = True break last_member_byte_order = member_definition.byte_order return is_composite_map
Determines if the data type definition needs a composite map. Args: data_type_definition (DataTypeDefinition): structure data type definition. Returns: bool: True if a composite map is needed, False otherwise. Raises: FormatError: if a composite map is needed cannot be determined from the data type definition.
codesearchnet
def cluster_sites(mol, tol, give_only_index=False): dists = [[np.linalg.norm(site.coords), 0] for site in mol] import scipy.cluster as spcluster f = spcluster.hierarchy.fclusterdata(dists, tol, criterion='distance') clustered_dists = defaultdict(list) for i, site in enumerate(mol): clustered_dists[f[i]].append(dists[i]) avg_dist = {label: np.mean(val) for label, val in clustered_dists.items()} clustered_sites = defaultdict(list) origin_site = None for i, site in enumerate(mol): if avg_dist[f[i]] < tol: if give_only_index: origin_site = i else: origin_site = site else: if give_only_index: clustered_sites[ (avg_dist[f[i]], site.species)].append(i) else: clustered_sites[ (avg_dist[f[i]], site.species)].append(site) return origin_site, clustered_sites
Cluster sites based on distance and species type. Args: mol (Molecule): Molecule **with origin at center of mass**. tol (float): Tolerance to use. Returns: (origin_site, clustered_sites): origin_site is a site at the center of mass (None if there are no origin atoms). clustered_sites is a dict of {(avg_dist, species_and_occu): [list of sites]}
juraj-google-style
def call(self, input_features=None, decoder_input_ids=None, decoder_attention_mask=None, decoder_position_ids=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder(input_features, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training) elif return_dict and (not isinstance(encoder_outputs, TFBaseModelOutput)): encoder_outputs = TFBaseModelOutput(last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None) decoder_outputs = self.decoder(input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training) if not return_dict: return decoder_outputs + encoder_outputs return TFSeq2SeqModelOutput(last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions)
Returns: Example: ```python >>> import tensorflow as tf >>> from transformers import TFWhisperModel, AutoFeatureExtractor >>> from datasets import load_dataset >>> model = TFWhisperModel.from_pretrained("openai/whisper-base") >>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="tf") >>> input_features = inputs.input_features >>> decoder_input_ids = tf.convert_to_tensor([[1, 1]]) * model.config.decoder_start_token_id >>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state >>> list(last_hidden_state.shape) [1, 2, 512] ```
github-repos
def conv_output_length(input_length, filter_size, padding, stride, dilation=1): if input_length is None: return None assert padding in {'same', 'valid', 'full', 'causal'} dilated_filter_size = filter_size + (filter_size - 1) * (dilation - 1) if padding in ['same', 'causal']: output_length = input_length elif padding == 'valid': output_length = input_length - dilated_filter_size + 1 elif padding == 'full': output_length = input_length + dilated_filter_size - 1 return (output_length + stride - 1)
Determines output length of a convolution given input length. Args: input_length: integer. filter_size: integer. padding: one of "same", "valid", "full", "causal" stride: integer. dilation: dilation rate, integer. Returns: The output length (integer).
github-repos
def __call__(self, *args, **kwargs): if not self._verified: model = self._get_func() concrete_func = model.get_concrete_function(*args, **kwargs) converter = lite.TFLiteConverterV2.from_concrete_functions([concrete_func], model) if self._converter_target_spec is not None: converter.target_spec = self._converter_target_spec if self._converter_allow_custom_ops is not None: converter.allow_custom_ops = self._converter_allow_custom_ops try: converter.convert() except convert.ConverterError as err: self._decode_error(err) finally: self._verified = True return self._get_func()(*args, **kwargs)
Calls decorated function object. Also verifies if the function is compatible with TFLite. Returns: A execution result of the decorated function.
github-repos
def _GetShortFlags(flags): short_flags = [f[0] for f in flags] short_flag_counts = collections.Counter(short_flags) return [v for v in short_flags if short_flag_counts[v] == 1]
Gets a list of single-character flags that uniquely identify a flag. Args: flags: list of strings representing flags Returns: List of single character short flags, where the character occurred at the start of a flag once.
github-repos
def run( self, num_episodes=-1, max_episode_timesteps=-1, episode_finished=None, summary_report=None, summary_interval=0, num_timesteps=None, deterministic=False, episodes=None, max_timesteps=None, testing=False, sleep=None ): if episodes is not None: num_episodes = episodes warnings.warn("WARNING: `episodes` parameter is deprecated, use `num_episodes` instead.", category=DeprecationWarning) assert isinstance(num_episodes, int) if max_timesteps is not None: max_episode_timesteps = max_timesteps warnings.warn("WARNING: `max_timesteps` parameter is deprecated, use `max_episode_timesteps` instead.", category=DeprecationWarning) assert isinstance(max_episode_timesteps, int) if summary_report is not None: warnings.warn("WARNING: `summary_report` parameter is deprecated, use `episode_finished` callback " "instead to generate summaries every n episodes.", category=DeprecationWarning) self.reset() self.global_episode = 0 self.global_timestep = 0 self.should_stop = False threads = [threading.Thread(target=self._run_single, args=(t, self.agent[t], self.environment[t],), kwargs={"deterministic": deterministic, "max_episode_timesteps": max_episode_timesteps, "episode_finished": episode_finished, "testing": testing, "sleep": sleep}) for t in range(len(self.agent))] self.start_time = time.time() [t.start() for t in threads] try: next_summary = 0 next_save = 0 if self.save_frequency_unit != "s" else time.time() while any([t.is_alive() for t in threads]) and self.global_episode < num_episodes or num_episodes == -1: self.time = time.time() if summary_report is not None and self.global_episode > next_summary: summary_report(self) next_summary += summary_interval if self.save_path and self.save_frequency is not None: do_save = True current = None if self.save_frequency_unit == "e" and self.global_episode > next_save: current = self.global_episode elif self.save_frequency_unit == "s" and self.time > next_save: current = self.time elif self.save_frequency_unit == "t" and self.global_timestep > next_save: current = self.global_timestep else: do_save = False if do_save: self.agent[0].save_model(self.save_path) while next_save < current: next_save += self.save_frequency time.sleep(1) except KeyboardInterrupt: print('Keyboard interrupt, sending stop command to threads') self.should_stop = True [t.join() for t in threads] print('All threads stopped')
Executes this runner by starting all Agents in parallel (each one in one thread). Args: episodes (int): Deprecated; see num_episodes. max_timesteps (int): Deprecated; see max_episode_timesteps.
juraj-google-style
def easeOutBack(n, s=1.70158): _checkRange(n) n = n - 1 return n * n * ((s + 1) * n + s) + 1
A tween function that overshoots the destination a little and then backs into the destination. Args: n (float): The time progress, starting at 0.0 and ending at 1.0. Returns: (float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine().
juraj-google-style
def compare_version(a, b): aa = string.split(a, ".") bb = string.split(b, ".") for i in range(0, 4): if aa[i] != bb[i]: return cmp(int(aa[i]), int(bb[i])) return 0
Compare two version number strings of the form W.X.Y.Z. The numbers are compared most-significant to least-significant. For example, 12.345.67.89 > 2.987.88.99. Args: a: First version number string to compare b: Second version number string to compare Returns: 0 if the numbers are identical, a positive number if 'a' is larger, and a negative number if 'b' is larger.
juraj-google-style
def log_jwt_dict_info(log, msg_str, jwt_dict): d = ts_to_str(jwt_dict) log_list = [(b, d.pop(a)) for a, b, c in CLAIM_LIST if a in d] + [ (k, d[k]) for k in sorted(d) ] list( map( log, ['{}:'.format(msg_str)] + [' {}: {}'.format(k, v) for k, v in log_list], ) )
Dump JWT to log. Args: log: Logger Logger to which to write the message. msg_str: str A message to write to the log before the JWT values. jwt_dict: dict JWT containing values to log. Returns: None
juraj-google-style
def histogram_pb(tag, data, buckets=None, description=None): bucket_count = (DEFAULT_BUCKET_COUNT if (buckets is None) else buckets) data = np.array(data).flatten().astype(float) if (data.size == 0): buckets = np.array([]).reshape((0, 3)) else: min_ = np.min(data) max_ = np.max(data) range_ = (max_ - min_) if (range_ == 0): center = min_ buckets = np.array([[(center - 0.5), (center + 0.5), float(data.size)]]) else: bucket_width = (range_ / bucket_count) offsets = (data - min_) bucket_indices = np.floor((offsets / bucket_width)).astype(int) clamped_indices = np.minimum(bucket_indices, (bucket_count - 1)) one_hots = (np.array([clamped_indices]).transpose() == np.arange(0, bucket_count)) assert (one_hots.shape == (data.size, bucket_count)), (one_hots.shape, (data.size, bucket_count)) bucket_counts = np.sum(one_hots, axis=0) edges = np.linspace(min_, max_, (bucket_count + 1)) left_edges = edges[:(- 1)] right_edges = edges[1:] buckets = np.array([left_edges, right_edges, bucket_counts]).transpose() tensor = tensor_util.make_tensor_proto(buckets, dtype=np.float64) summary_metadata = metadata.create_summary_metadata(display_name=None, description=description) summary = summary_pb2.Summary() summary.value.add(tag=tag, metadata=summary_metadata, tensor=tensor) return summary
Create a histogram summary protobuf. Arguments: tag: String tag for the summary. data: A `np.array` or array-like form of any shape. Must have type castable to `float`. buckets: Optional positive `int`. The output will have this many buckets, except in two edge cases. If there is no data, then there are no buckets. If there is data but all points have the same value, then there is one bucket whose left and right endpoints are the same. description: Optional long-form description for this summary, as a `str`. Markdown is supported. Defaults to empty. Returns: A `summary_pb2.Summary` protobuf object.
codesearchnet
def tournament_name2number(self, name): tournaments = self.get_tournaments() d = {t['name']: t['tournament'] for t in tournaments} return d.get(name, None)
Translate tournament name to tournament number. Args: name (str): tournament name to translate Returns: number (int): number of the tournament or `None` if unknown. Examples: >>> NumerAPI().tournament_name2number('delta') 4 >>> NumerAPI().tournament_name2number('foo') None
codesearchnet
def GetEntries(self, parser_mediator, match=None, **unused_kwargs): if 'RememberedNetworks' not in match: return for wifi in match['RememberedNetworks']: ssid = wifi.get('SSIDString', 'UNKNOWN_SSID') security_type = wifi.get('SecurityType', 'UNKNOWN_SECURITY_TYPE') event_data = plist_event.PlistTimeEventData() event_data.desc = ( '[WiFi] Connected to network: <{0:s}> using security {1:s}').format( ssid, security_type) event_data.key = 'item' event_data.root = '/RememberedNetworks' datetime_value = wifi.get('LastConnected', None) if datetime_value: event = time_events.PythonDatetimeEvent( datetime_value, definitions.TIME_DESCRIPTION_WRITTEN) else: date_time = dfdatetime_semantic_time.SemanticTime('Not set') event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_NOT_A_TIME) parser_mediator.ProduceEventWithEventData(event, event_data)
Extracts relevant Airport entries. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. match (Optional[dict[str: object]]): keys extracted from PLIST_KEYS.
juraj-google-style
def predecesors_pattern(element, root): def is_root_container(el): return (el.parent.parent.getTagName() == '') if ((not element.parent) or (not element.parent.parent) or is_root_container(element)): return [] trail = [[element.parent.parent.getTagName(), _params_or_none(element.parent.parent.params)], [element.parent.getTagName(), _params_or_none(element.parent.params)], [element.getTagName(), _params_or_none(element.params)]] match = root.match(*trail) if (element in match): return [PathCall('match', match.index(element), trail)]
Look for `element` by its predecesors. Args: element (obj): HTMLElement instance of the object you are looking for. root (obj): Root of the `DOM`. Returns: list: ``[PathCall()]`` - list with one :class:`PathCall` object (to \ allow use with ``.extend(predecesors_pattern())``).
codesearchnet
def _read_message(self): line = self._rfile.readline() if (not line): return None content_length = self._content_length(line) while (line and line.strip()): line = self._rfile.readline() if (not line): return None return self._rfile.read(content_length)
Reads the contents of a message. Returns: body of message if parsable else None
codesearchnet
def get_signatures_with_results(vcs): results_dir = os.path.join(vcs.private_dir(), 'results') if (not os.path.exists(results_dir)): return [] rel_paths = os.listdir(results_dir) return [p for p in rel_paths if os.path.isdir(os.path.join(results_dir, p))]
Returns the list of signatures for which test results are saved. Args: vcs (easyci.vcs.base.Vcs) Returns: List[str]
codesearchnet
def __init__(self, object_type=None, attributes=None): super(ObjectDefaults, self).__init__(tag=enums.Tags.OBJECT_DEFAULTS) self._object_type = None self._attributes = None self.object_type = object_type self.attributes = attributes
Construct an ObjectDefaults structure. Args: object_type (enum): An ObjectType enumeration identifying the type to which the defaults pertain. Optional, defaults to None. Required for read/write. attributes (structure): An Attributes structure containing attribute values that are defaults for an object type. Optional, defaults to None. Required for read/write.
juraj-google-style
class AsDict(AsSideInput): @staticmethod def _from_runtime_iterable(it, options): return dict(it) def _side_input_data(self) -> SideInputData: return SideInputData(common_urns.side_inputs.ITERABLE.urn, self._window_mapping_fn, dict)
Marker specifying a PCollection to be used as an indexable side input. Intended for use in side-argument specification---the same places where AsSingleton and AsIter are used, but returns an interface that allows key lookup. Args: pcoll: Input pcollection. All elements should be key-value pairs (i.e. 2-tuples) with unique keys. Returns: An AsDict-wrapper around a PCollection whose one element is a dict with entries for uniquely-keyed pairs in pcoll.
github-repos
def GetDevicePath(device_handle): io_service_obj = iokit.IOHIDDeviceGetService(device_handle) str_buffer = ctypes.create_string_buffer(DEVICE_PATH_BUFFER_SIZE) iokit.IORegistryEntryGetPath(io_service_obj, K_IO_SERVICE_PLANE, str_buffer) return str_buffer.value
Obtains the unique path for the device. Args: device_handle: reference to the device Returns: A unique path for the device, obtained from the IO Registry
juraj-google-style
def _get_path_for_op_id(self, id: str) -> Optional[str]: for (path_key, path_value) in self._get_spec()['paths'].items(): for method in self.METHODS: if (method in path_value): if (self.OPERATION_ID_KEY in path_value[method]): if (path_value[method][self.OPERATION_ID_KEY] == id): return path_key return None
Searches the spec for a path matching the operation id. Args: id: operation id Returns: path to the endpoint, or None if not found
codesearchnet
def _update_linear_bucket_count(a_float, dist): buckets = dist.linearBuckets if buckets is None: raise ValueError(_BAD_UNSET_BUCKETS % (u'linear buckets')) bucket_counts = dist.bucketCounts num_finite_buckets = buckets.numFiniteBuckets if len(bucket_counts) < num_finite_buckets + 2: raise ValueError(_BAD_LOW_BUCKET_COUNT) width = buckets.width lower = buckets.offset upper = lower + (num_finite_buckets * width) if a_float < lower: index = 0 elif a_float >= upper: index = num_finite_buckets + 1 else: index = 1 + int(((a_float - lower) / width)) bucket_counts[index] += 1 _logger.debug(u'upper:%f, lower:%f, width:%f, sample:%f, index:%d', upper, lower, width, a_float, index)
Adds `a_float` to `dist`, updating the its linear buckets. Args: a_float (float): a new value dist (:class:`endpoints_management.gen.servicecontrol_v1_messages.Distribution`): the Distribution being updated Raises: ValueError: if `dist` does not already have linear buckets defined ValueError: if there are not enough bucket count fields in `dist`
juraj-google-style
def learn(self, features, labels): labels = np.ravel(labels) self.__learn_labels(labels) if (len(labels) == 0): return labels = self.labels.transform(labels) if ((self.feature_length > 0) and hasattr(self.clf, 'partial_fit')): self.clf = self.clf.partial_fit(features, labels) else: self.clf = self.clf.fit(features, labels) self.feature_length = len(features[0])
Fits the classifier If it's state is empty, the classifier is fitted, if not the classifier is partially fitted. See sklearn's SGDClassifier fit and partial_fit methods. Args: features (:obj:`list` of :obj:`list` of :obj:`float`) labels (:obj:`list` of :obj:`str`): Labels for each set of features. New features are learnt.
codesearchnet
def copy(reader, writer, start, stop, insertLocation=None, tsCol=None): assert stop >= start startRows = [] copyRows = [] ts = None inc = None if tsCol is None: tsCol = reader.getTimestampFieldIdx() for i, row in enumerate(reader): if ts is None: ts = row[tsCol] elif inc is None: inc = row[tsCol] - ts if i >= start and i <= stop: copyRows.append(row) startRows.append(row) if insertLocation is None: insertLocation = stop + 1 startRows[insertLocation:insertLocation] = copyRows for row in startRows: row[tsCol] = ts writer.appendRecord(row) ts += inc
Copies a range of values to a new location in the data set. Args: reader: A FileRecordStream object with input data. writer: A FileRecordStream object to write output data to. start: The first row in the range to copy. stop: The last row in the range to copy. insertLocation: The location to insert the copied range. If not specified, the range is inserted immediately following itself.
juraj-google-style
def longest_one_seg_prefix(self, word): match = self.seg_regex.match(word) if match: return match.group(0) else: return ''
Return longest IPA Unicode prefix of `word` Args: word (unicode): word as IPA string Returns: unicode: longest single-segment prefix of `word`
juraj-google-style
def __init__(self, data=None): if data is None: data = {} self._data = data self._len = 0
Instantiate the histogram. Args: data (Mapping[str, int]): The data strucure to be used to store the underlying data. The default is an empty dictionary. This can be set to a dictionary-like object if required (for example, if a special object is needed for concurrency reasons).
juraj-google-style
def offset(self, num_to_skip): query = query_mod.Query(self) return query.offset(num_to_skip)
Skip to an offset in a query with this collection as parent. See :meth:`~.firestore_v1beta1.query.Query.offset` for more information on this method. Args: num_to_skip (int): The number of results to skip at the beginning of query results. (Must be non-negative.) Returns: ~.firestore_v1beta1.query.Query: An offset query.
juraj-google-style
def add_middleware(middleware: EFBMiddleware): global middlewares if isinstance(middleware, EFBMiddleware): middlewares.append(middleware) else: raise TypeError('Middleware instance is expected')
Register a middleware with the coordinator. Args: middleware (EFBMiddleware): Middleware to register
codesearchnet
def _TerminateProcess(self, process): pid = process.pid logger.warning('Terminating process: (PID: {0:d}).'.format(pid)) process.terminate() process.join(timeout=self._PROCESS_JOIN_TIMEOUT) if process.is_alive(): logger.warning('Killing process: (PID: {0:d}).'.format(pid)) self._KillProcess(pid)
Terminate a process. Args: process (MultiProcessBaseProcess): process to terminate.
juraj-google-style
def create_cloudwatch_event(app_name, env, region, rules): session = boto3.Session(profile_name=env, region_name=region) cloudwatch_client = session.client('events') rule_name = rules.get('rule_name') schedule = rules.get('schedule') rule_description = rules.get('rule_description') json_input = rules.get('json_input', {}) if schedule is None: LOG.critical('Schedule is required and no schedule is defined!') raise InvalidEventConfiguration('Schedule is required and no schedule is defined!') if rule_name is None: LOG.critical('Rule name is required and no rule_name is defined!') raise InvalidEventConfiguration('Rule name is required and no rule_name is defined!') else: LOG.info('%s and %s', app_name, rule_name) rule_name = "{}_{}".format(app_name, rule_name.replace(' ', '_')) if rule_description is None: rule_description = "{} - {}".format(app_name, rule_name) lambda_arn = get_lambda_arn(app=app_name, account=env, region=region) account_id = get_env_credential(env=env)['accountId'] principal = "events.amazonaws.com" statement_id = '{}_cloudwatch_{}'.format(app_name, rule_name) source_arn = 'arn:aws:events:{}:{}:rule/{}'.format(region, account_id, rule_name) add_lambda_permissions( function=lambda_arn, statement_id=statement_id, action='lambda:InvokeFunction', principal=principal, source_arn=source_arn, env=env, region=region, ) cloudwatch_client.put_rule( Name=rule_name, ScheduleExpression=schedule, State='ENABLED', Description=rule_description, ) targets = [] json_payload = '{}'.format(json.dumps(json_input)) target = { "Id": app_name, "Arn": lambda_arn, "Input": json_payload, } targets.append(target) put_targets_response = cloudwatch_client.put_targets(Rule=rule_name, Targets=targets) LOG.debug('Cloudwatch put targets response: %s', put_targets_response) LOG.info('Created Cloudwatch event "%s" with schedule: %s', rule_name, schedule)
Create cloudwatch event for lambda from rules. Args: app_name (str): name of the lambda function env (str): Environment/Account for lambda function region (str): AWS region of the lambda function rules (dict): Trigger rules from the settings
juraj-google-style
def GetMACBRepresentation(self, event): data_type = getattr(event, 'data_type', None) if (not data_type): return '....' if (data_type == 'fs:stat'): descriptions = event.timestamp_desc.split(';') return_characters = ['.', '.', '.', '.'] for description in descriptions: if (description in ('mtime', definitions.TIME_DESCRIPTION_MODIFICATION)): return_characters[0] = 'M' elif (description in ('atime', definitions.TIME_DESCRIPTION_LAST_ACCESS)): return_characters[1] = 'A' elif (description in ('ctime', definitions.TIME_DESCRIPTION_CHANGE)): return_characters[2] = 'C' elif (description in ('crtime', definitions.TIME_DESCRIPTION_CREATION)): return_characters[3] = 'B' return ''.join(return_characters) if (event.timestamp_desc in [definitions.TIME_DESCRIPTION_LAST_ACCESS, definitions.TIME_DESCRIPTION_ACCOUNT_CREATED, definitions.TIME_DESCRIPTION_LAST_VISITED, definitions.TIME_DESCRIPTION_START, definitions.TIME_DESCRIPTION_LAST_SHUTDOWN, definitions.TIME_DESCRIPTION_LAST_LOGIN, definitions.TIME_DESCRIPTION_LAST_PASSWORD_RESET, definitions.TIME_DESCRIPTION_LAST_CONNECTED, definitions.TIME_DESCRIPTION_LAST_RUN, definitions.TIME_DESCRIPTION_LAST_PRINTED]): return '.A..' if (event.timestamp_desc in [definitions.TIME_DESCRIPTION_MODIFICATION, definitions.TIME_DESCRIPTION_WRITTEN, definitions.TIME_DESCRIPTION_DELETED]): return 'M...' if (event.timestamp_desc in [definitions.TIME_DESCRIPTION_CREATION, definitions.TIME_DESCRIPTION_ADDED, definitions.TIME_DESCRIPTION_FILE_DOWNLOADED, definitions.TIME_DESCRIPTION_FIRST_CONNECTED]): return '...B' if (event.timestamp_desc in [definitions.TIME_DESCRIPTION_CHANGE, definitions.TIME_DESCRIPTION_ENTRY_MODIFICATION]): return '..C.' return '....'
Retrieves the MACB representation. Args: event (EventObject): event. Returns: str: MACB representation.
codesearchnet
def decode(self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray]=None, decoder_attention_mask: Optional[jnp.ndarray]=None, decoder_position_ids: Optional[jnp.ndarray]=None, past_key_values: Optional[dict]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, train: bool=False, params: Optional[dict]=None, dropout_rng: PRNGKey=None): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError('Make sure to provide `decoder_position_ids` when passing `past_key_values`.') decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) rngs = {} if dropout_rng is not None: rngs['dropout'] = dropout_rng inputs = {'params': params or self.params} if past_key_values: inputs['cache'] = past_key_values mutable = ['cache'] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() outputs = decoder_module(decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = module.model.variables['params']['shared']['embedding'] lm_logits = module.lm_head.apply({'params': {'kernel': shared_embedding.T}}, hidden_states) else: lm_logits = module.lm_head(hidden_states) lm_logits += module.final_logits_bias.astype(self.dtype) return (lm_logits, outputs) outputs = self.module.apply(inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype='i4'), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype='i4'), decoder_position_ids=jnp.array(decoder_position_ids, dtype='i4'), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype='i4'), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward) if past_key_values is None: lm_logits, decoder_outputs = outputs else: (lm_logits, decoder_outputs), past = outputs if return_dict: outputs = FlaxCausalLMOutputWithCrossAttentions(logits=lm_logits, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions) else: outputs = (lm_logits,) + decoder_outputs[1:] if past_key_values is not None and return_dict: outputs['past_key_values'] = unfreeze(past['cache']) return outputs elif past_key_values is not None and (not return_dict): outputs = outputs[:1] + (unfreeze(past['cache']),) + outputs[1:] return outputs
Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration >>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits ```
github-repos
def prune(self, regex='.*'): return filetree(self.root, ignore=self.ignore, regex=regex)
Prune leaves of filetree according to specified regular expression. Args: regex (str): Regular expression to use in pruning tree.
codesearchnet
def pred_to_prob(Y_h, k): Y_h = Y_h.clone() if Y_h.dim() > 1: Y_h = Y_h.squeeze() assert Y_h.dim() == 1 assert (Y_h >= 1).all() assert (Y_h <= k).all() n = Y_h.shape[0] Y_s = torch.zeros((n, k), dtype=Y_h.dtype, device=Y_h.device) for i, j in enumerate(Y_h): Y_s[i, j - 1] = 1.0 return Y_s
Converts a 1D tensor of predicted labels into a 2D tensor of probabilistic labels Args: Y_h: an [n], or [n,1] tensor of predicted (int) labels in {1,...,k} k: the largest possible label in Y_h Returns: Y_s: a torch.FloatTensor of shape [n, k] where Y_s[i, j-1] is the probabilistic label for item i and label j
juraj-google-style
def _openfile(instance, filething, filename, fileobj, writable, create): assert not create or writable if isinstance(filething, FileThing): filename = filething.filename fileobj = filething.fileobj filething = None if filething is not None: if is_fileobj(filething): fileobj = filething elif hasattr(filething, "__fspath__"): filename = filething.__fspath__() if not isinstance(filename, (bytes, text_type)): raise TypeError("expected __fspath__() to return a filename") else: filename = filething if instance is not None: if not writable: instance.filename = filename elif filename is None: filename = getattr(instance, "filename", None) if fileobj is not None: verify_fileobj(fileobj, writable=writable) yield FileThing(fileobj, filename, filename or fileobj_name(fileobj)) elif filename is not None: verify_filename(filename) inmemory_fileobj = False try: fileobj = open(filename, "rb+" if writable else "rb") except IOError as e: if writable and e.errno == errno.EOPNOTSUPP: try: with open(filename, "rb") as fileobj: fileobj = BytesIO(fileobj.read()) except IOError as e2: raise MutagenError(e2) inmemory_fileobj = True elif create and e.errno == errno.ENOENT: assert writable try: fileobj = open(filename, "wb+") except IOError as e2: raise MutagenError(e2) else: raise MutagenError(e) with fileobj as fileobj: yield FileThing(fileobj, filename, filename) if inmemory_fileobj: assert writable data = fileobj.getvalue() try: with open(filename, "wb") as fileobj: fileobj.write(data) except IOError as e: raise MutagenError(e) else: raise TypeError("Missing filename or fileobj argument")
yields a FileThing Args: filething: Either a file name, a file object or None filename: Either a file name or None fileobj: Either a file object or None writable (bool): if the file should be opened create (bool): if the file should be created if it doesn't exist. implies writable Raises: MutagenError: In case opening the file failed TypeError: in case neither a file name or a file object is passed
juraj-google-style
def add_http_endpoint(self, url, request_handler): self.app.router.add_route('*', url, request_handler)
This method provides a programatic way of added invidual routes to the http server. Args: url (str): the url to be handled by the request_handler request_handler (nautilus.network.RequestHandler): The request handler
codesearchnet
def unzip(input_layer, split_dim=0, num_splits=2): shape = input_layer.shape _check_split_dims(num_splits, split_dim, shape) splits = functions.unzip(input_layer, split_dim, shape[split_dim], num_splits) return input_layer.with_sequence(splits)
Unzips this Tensor along the split_dim into num_splits Equal chunks. Examples: * `[1, 2, 3, 4] -> [1, 3], [2, 4]` * `[[1, 1], [2, 2], [3, 3], [4, 4]] -> [[1, 1], [3, 3]], [[2, 2], [4, 4]]` Args: input_layer: The chainable object, supplied. split_dim: The dimension to split along. Defaults to batch. num_splits: The number of splits. Returns: A list of PrettyTensors. Raises: ValueError: If split_dim is out of range or isn't divided evenly by num_splits.
codesearchnet
def Trim(self, flags): logger.info('Trimming!') flags = bytearray(flags) length = (1 << (self.Depth - 1)) while (len(flags) < length): flags.append(0) MerkleTree._TrimNode(self.Root, 0, self.Depth, flags)
Trim the nodes from the tree keeping only the root hash. Args: flags: "0000" for trimming, any other value for keeping the nodes.
codesearchnet
def _get_graph(self): with self._lock: return self._graph
Returns pydot.Dot object for the pipeline graph. The purpose of this method is to avoid accessing the graph while it is updated. No one except for this method should be accessing _graph directly. Returns: (pydot.Dot)
github-repos
def stChromagram(signal, fs, win, step, PLOT=False): win = int(win) step = int(step) signal = numpy.double(signal) signal = signal / (2.0 ** 15) DC = signal.mean() MAX = (numpy.abs(signal)).max() signal = (signal - DC) / (MAX - DC) N = len(signal) cur_p = 0 count_fr = 0 nfft = int(win / 2) nChroma, nFreqsPerChroma = stChromaFeaturesInit(nfft, fs) chromaGram = numpy.array([], dtype=numpy.float64) while (cur_p + win - 1 < N): count_fr += 1 x = signal[cur_p:cur_p + win] cur_p = cur_p + step X = abs(fft(x)) X = X[0:nfft] X = X / len(X) chromaNames, C = stChromaFeatures(X, fs, nChroma, nFreqsPerChroma) C = C[:, 0] if count_fr == 1: chromaGram = C.T else: chromaGram = numpy.vstack((chromaGram, C.T)) FreqAxis = chromaNames TimeAxis = [(t * step) / fs for t in range(chromaGram.shape[0])] if (PLOT): fig, ax = plt.subplots() chromaGramToPlot = chromaGram.transpose()[::-1, :] Ratio = int(chromaGramToPlot.shape[1] / (3*chromaGramToPlot.shape[0])) if Ratio < 1: Ratio = 1 chromaGramToPlot = numpy.repeat(chromaGramToPlot, Ratio, axis=0) imgplot = plt.imshow(chromaGramToPlot) fstep = int(nfft / 5.0) ax.set_yticks(range(int(Ratio / 2), len(FreqAxis) * Ratio, Ratio)) ax.set_yticklabels(FreqAxis[::-1]) TStep = int(count_fr / 3) TimeTicks = range(0, count_fr, TStep) TimeTicksLabels = ['%.2f' % (float(t * step) / fs) for t in TimeTicks] ax.set_xticks(TimeTicks) ax.set_xticklabels(TimeTicksLabels) ax.set_xlabel('time (secs)') imgplot.set_cmap('jet') plt.colorbar() plt.show() return (chromaGram, TimeAxis, FreqAxis)
Short-term FFT mag for spectogram estimation: Returns: a numpy array (nFFT x numOfShortTermWindows) ARGUMENTS: signal: the input signal samples fs: the sampling freq (in Hz) win: the short-term window size (in samples) step: the short-term window step (in samples) PLOT: flag, 1 if results are to be ploted RETURNS:
juraj-google-style
def from_file(cls, path, fields=None, encoding='utf-8'): path = _table_filename(path) if (fields is None): fields = _get_relation_from_table_path(path) table = cls(fields) table.attach(path, encoding=encoding) return table
Instantiate a Table from a database file. This method instantiates a table attached to the file at *path*. The file will be opened and traversed to determine the number of records, but the contents will not be stored in memory unless they are modified. Args: path: the path to the table file fields: the Relation schema for the table (loaded from the relations file in the same directory if not given) encoding: the character encoding of the file at *path*
codesearchnet
def _MergeOptional(self, a, b): if (a and b): if (a != b): raise MergeError(("values must be identical if both specified ('%s' vs '%s')" % (transitfeed.EncodeUnicode(a), transitfeed.EncodeUnicode(b)))) return (a or b)
Tries to merge two values which may be None. If both values are not None, they are required to be the same and the merge is trivial. If one of the values is None and the other is not None, the merge results in the one which is not None. If both are None, the merge results in None. Args: a: The first value. b: The second value. Returns: The merged value. Raises: MergeError: If both values are not None and are not the same.
codesearchnet
def get_catalog(self, catalog_id): return self._load_data(self.CATALOGS_ENDPOINT, default=[], resource_id=catalog_id)
Return specified course catalog. Returns: dict: catalog details if it is available for the user.
codesearchnet
async def _auth_login(self, username, password): mechanism = 'LOGIN' (code, message) = (await self.do_cmd('AUTH', mechanism, SMTP.b64enc(username), success=(334,))) try: (code, message) = (await self.do_cmd(SMTP.b64enc(password), success=(235, 503))) except SMTPCommandFailedError as e: raise SMTPAuthenticationError(e.code, e.message, mechanism) return (code, message)
Performs an authentication attempt using the LOGIN mechanism. Protocol: 1. The username is base64-encoded ; 2. The string 'AUTH LOGIN' and a space character are prepended to the base64-encoded username and sent to the server ; 3. If the server replies with a 334 return code, we can go on: 1) The password is base64-encoded and sent to the server ; 2) If the server replies with a 235 return code, the user is authenticated. Args: username (str): Identifier of the user trying to authenticate. password (str): Password for the user. Raises: ConnectionResetError: If the connection with the server is unexpectedely lost. SMTPAuthenticationError: If the authentication attempt fails. Returns: (int, str): A (code, message) 2-tuple containing the server response.
codesearchnet
def _create_interval_filter(interval): def filter_fn(value): if ((not isinstance(value, six.integer_types)) and (not isinstance(value, float))): raise error.HParamsError(('Cannot use an interval filter for a value of type: %s, Value: %s' % (type(value), value))) return ((interval.min_value <= value) and (value <= interval.max_value)) return filter_fn
Returns a function that checkes whether a number belongs to an interval. Args: interval: A tensorboard.hparams.Interval protobuf describing the interval. Returns: A function taking a number (a float or an object of a type in six.integer_types) that returns True if the number belongs to (the closed) 'interval'.
codesearchnet
def find_distinct(self, collection, key): obj = getattr(self.db, collection) result = obj.distinct(key) return result
Search a collection for the distinct key values provided. Args: collection: The db collection. See main class documentation. key: The name of the key to find distinct values. For example with the indicators collection, the key could be "type". Returns: List of distinct values.
juraj-google-style
def __init__(self, fn, fullargspec=None): if not callable(fn): raise TypeError('Expected a callable object instead of: %r' % fn) self._fn = fn self._fullargspec = fullargspec if isinstance(fn, (types.BuiltinFunctionType, types.MethodType, types.FunctionType)): self.process = fn else: self.process = lambda element: fn(element) super().__init__()
Initializes a CallableWrapperDoFn object wrapping a callable. Args: fn: A callable object. Raises: TypeError: if fn parameter is not a callable type.
github-repos
def _GetLines(line_strings): lines = [] for line_string in line_strings: line = list(map(int, line_string.split('-', 1))) if line[0] < 1: raise errors.YapfError('invalid start of line range: %r' % line) if line[0] > line[1]: raise errors.YapfError('end comes before start in line range: %r' % line) lines.append(tuple(line)) return lines
Parses the start and end lines from a line string like 'start-end'. Arguments: line_strings: (array of string) A list of strings representing a line range like 'start-end'. Returns: A list of tuples of the start and end line numbers. Raises: ValueError: If the line string failed to parse or was an invalid line range.
github-repos
def get_cluster_interfaces(cluster, extra_cond=(lambda nic: True)): nics = get_nics(cluster) nics = [(nic['device'], nic['name']) for nic in nics if (nic['mountable'] and (nic['interface'] == 'Ethernet') and (not nic['management']) and extra_cond(nic))] nics = sorted(nics) return nics
Get the network interfaces names corresponding to a criteria. Note that the cluster is passed (not the individual node names), thus it is assumed that all nodes in a cluster have the same interface names same configuration. In addition to ``extra_cond``, only the mountable and Ehernet interfaces are returned. Args: cluster(str): the cluster to consider extra_cond(lambda): boolean lambda that takes the nic(dict) as parameter
codesearchnet
def __init__(self, forward_core, backward_core, name="bidir_rnn"): super(BidirectionalRNN, self).__init__(name=name) self._forward_core = forward_core self._backward_core = backward_core def _is_recurrent(core): has_rnn_core_interface = (hasattr(core, "initial_state") and hasattr(core, "output_size") and hasattr(core, "state_size")) return isinstance(core, rnn_core.RNNCore) or has_rnn_core_interface if not(_is_recurrent(forward_core) and _is_recurrent(backward_core)): raise ValueError("Forward and backward cores must both be instances of" "RNNCore.")
Construct a Bidirectional RNN core. Args: forward_core: callable RNNCore module that computes forward states. backward_core: callable RNNCore module that computes backward states. name: name of the module. Raises: ValueError: if not all the modules are recurrent.
juraj-google-style
def _from_components(self, components): raise NotImplementedError('%s._from_components()' % type(self).__name__)
Reconstructs a value from a nested structure of Tensor/CompositeTensor. Args: components: A nested structure of `tf.Tensor` or `tf.CompositeTensor`, compatible with `self._component_specs`. (Caller is responsible for ensuring compatibility.) Returns: A value that is compatible with this `TypeSpec`.
github-repos
def helper_list(access_token, oid, path): if (oid != ''): path = ''.join([path, "('", oid, "')"]) endpoint = ''.join([ams_rest_endpoint, path]) return do_ams_get(endpoint, path, access_token)
Helper Function to list a URL path. Args: access_token (str): A valid Azure authentication token. oid (str): An OID. path (str): A URL Path. Returns: HTTP response. JSON body.
codesearchnet
def unstage_signature(vcs, signature): evidence_path = _get_staged_history_path(vcs) staged = get_staged_signatures(vcs) if signature not in staged: raise NotStagedError staged.remove(signature) string = '\n'.join(staged) with open(evidence_path, 'w') as f: f.write(string)
Remove `signature` from the list of staged signatures Args: vcs (easyci.vcs.base.Vcs) signature (basestring) Raises: NotStagedError
juraj-google-style
def get_object(cls, api_token, id): load_balancer = cls(token=api_token, id=id) load_balancer.load() return load_balancer
Class method that will return a LoadBalancer object by its ID. Args: api_token (str): DigitalOcean API token id (str): Load Balancer ID
juraj-google-style
def __init__(self, message): super(CryptographicFailure, self).__init__( reason=enums.ResultReason.CRYPTOGRAPHIC_FAILURE, message=message )
Create a CryptographicFailure exception. Args: message (string): A string containing information about the error.
juraj-google-style
def element(self, using, value): return self._execute(Command.FIND_CHILD_ELEMENT, { 'using': using, 'value': value })
find an element in the current element. Support: Android iOS Web(WebView) Args: using(str): The element location strategy. value(str): The value of the location strategy. Returns: WebElement Object. Raises: WebDriverException.
juraj-google-style
def get_pending_reboot(): checks = (get_pending_update, get_pending_file_rename, get_pending_servermanager, get_pending_component_servicing, get_reboot_required_witnessed, get_pending_computer_name, get_pending_domain_join) for check in checks: if check(): return True return False
Determine whether there is a reboot pending. .. versionadded:: 2016.11.0 Returns: bool: ``True`` if the system is pending reboot, otherwise ``False`` CLI Example: .. code-block:: bash salt '*' system.get_pending_reboot
codesearchnet
def _BuildIntersection(self, type_list): type_list = tuple(type_list) if len(type_list) == 1: return type_list[0] else: return ' and '.join(type_list)
Builds a intersection of the types in type_list. Args: type_list: A list of strings representing types. Returns: A string representing the intersection of the types in type_list. Simplifies Intersection[X] to X and Intersection[X, None] to Optional[X].
github-repos
def get_watermarks(self, applied_ptransform: AppliedPTransform) -> '_TransformWatermarks': while applied_ptransform.parts: applied_ptransform = applied_ptransform.parts[-1] return self._transform_to_watermarks[applied_ptransform]
Gets the input and output watermarks for an AppliedPTransform. If the applied_ptransform has not processed any elements, return a watermark with minimum value. Args: applied_ptransform: AppliedPTransform to get the watermarks for. Returns: A snapshot (TransformWatermarks) of the input watermark and output watermark for the provided transform.
github-repos
def _AssertProtoDictEquals(self, expected_dict, actual_dict, verbose=False, update_goldens=False, additional_missing_object_message='', api_version=2): diffs = [] verbose_diffs = [] expected_keys = set(expected_dict.keys()) actual_keys = set(actual_dict.keys()) only_in_expected = expected_keys - actual_keys only_in_actual = actual_keys - expected_keys all_keys = expected_keys | actual_keys updated_keys = [] for key in all_keys: diff_message = '' verbose_diff_message = '' if key in only_in_expected: diff_message = 'Object %s expected but not found (removed). %s' % (key, additional_missing_object_message) verbose_diff_message = diff_message elif key in only_in_actual: diff_message = 'New object %s found (added).' % key verbose_diff_message = diff_message else: self.maxDiff = None try: self.assertProtoEquals(expected_dict[key], actual_dict[key]) except AssertionError as e: updated_keys.append(key) diff_message = 'Change detected in python object: %s.' % key verbose_diff_message = str(e) if diff_message: diffs.append(diff_message) verbose_diffs.append(verbose_diff_message) if diffs: diff_count = len(diffs) logging.error(self._test_readme_message) logging.error('%d differences found between API and golden.', diff_count) if update_goldens: logging.warning(self._update_golden_warning) for key in only_in_expected: filepath = _KeyToFilePath(key, api_version) file_io.delete_file(filepath) for key in only_in_actual | set(updated_keys): filepath = _KeyToFilePath(key, api_version) file_io.write_string_to_file(filepath, text_format.MessageToString(actual_dict[key])) else: for d, verbose_d in zip(diffs, verbose_diffs): logging.error(' %s', d) logging.error(' %s', verbose_d) self.fail('%d differences found between API and golden.' % diff_count) else: logging.info('No differences found between API and golden.')
Diff given dicts of protobufs and report differences a readable way. Args: expected_dict: a dict of TFAPIObject protos constructed from golden files. actual_dict: a dict of TFAPIObject protos constructed by reading from the TF package linked to the test. verbose: Whether to log the full diffs, or simply report which files were different. update_goldens: Whether to update goldens when there are diffs found. additional_missing_object_message: Message to print when a symbol is missing. api_version: TensorFlow API version to test.
github-repos