code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def create_index(self, model, waiting_models):
bucket_name = model._get_bucket_name()
bucket_type = client.bucket_type(settings.DEFAULT_BUCKET_TYPE)
index_name = "%s_%s" % (settings.DEFAULT_BUCKET_TYPE, bucket_name)
bucket = bucket_type.bucket(bucket_name)
try:
client.get_search_index(index_name)
if not (bucket.get_property('search_index') == index_name):
bucket.set_property('search_index', index_name)
print("+ %s (%s) search index is created." % (model.__name__, index_name))
except RiakError:
try:
client.create_search_index(index_name, index_name, self.n_val)
bucket.set_property('search_index', index_name)
print("+ %s (%s) search index is created." % (model.__name__, index_name))
except RiakError:
print("+ %s (%s) search index checking operation is taken to queue." % (
model.__name__, index_name))
waiting_models.append(model)
|
Creates search indexes.
Args:
model: model to execute
waiting_models: if riak can't return response immediately, model is taken to queue.
After first execution session, method is executed with waiting models and controlled.
And be ensured that all given models are executed properly.
Returns:
|
juraj-google-style
|
def getConfig(self, section = None):
data = {}
if section is None:
for s in self.config.sections():
if '/' in s:
parent, _s = s.split('/')
data[parent][_s] = dict(self.config.items(s))
else:
data[s] = dict(self.config.items(s))
else:
data = dict(self.config.items(section))
return data
|
Returns a dictionary which contains the current config. If a section is setted,
only will returns the section config
Args:
section (str): (Optional) Section name.
Returns:
dict: Representation of current config
|
juraj-google-style
|
def _parse_state(self, config):
value = STATE_RE.search(config).group('value')
return dict(state=value)
|
_parse_state scans the provided configuration block and extracts
the vlan state value. The config block is expected to always return
the vlan state config. The return dict is inteded to be merged into
the response dict.
Args:
config (str): The vlan configuration block from the nodes
running configuration
Returns:
dict: resource dict attribute
|
juraj-google-style
|
def _validate_namespace(self, namespace):
if (self._namespace_regex.fullmatch(namespace) is None):
LOGGER.debug('Invalid namespace: %s', namespace)
raise _ResponseFailed(self._status.INVALID_ADDRESS)
|
Validates a namespace, raising a ResponseFailed error if invalid.
Args:
state_root (str): The state_root to validate
Raises:
ResponseFailed: The state_root was invalid, and a status of
INVALID_ROOT will be sent with the response.
|
codesearchnet
|
def subtract_business_days(self, date_tensor, num_days, roll_convention=constants.BusinessDayConvention.NONE):
pass
|
Adds given number of business days to given dates.
Note that this is different from calling `subtract_period_and_roll` with
PeriodType.DAY. For example, subtracting 5 business days from Friday gives
the previous Friday (unless there are holidays on this week or previous
Friday). Subtracting 5 days and rolling means landing on Sunday and then
rolling either to Monday or to Friday, depending on the roll convention.
If any of the dates in `date_tensor` are not business days, they will be
rolled to business days before doing the subtraction. If `roll_convention`
is `NONE`, and any dates are not business days, an exception is raised.
Args:
date_tensor: DateTensor of dates to advance from.
num_days: Tensor of int32 type broadcastable to `date_tensor`.
roll_convention: BusinessDayConvention. Determines how to roll a date that
falls on a holiday.
Returns:
The resulting DateTensor.
|
github-repos
|
def _find_bad_transition(self, mma, w_string):
conj_out = mma.consume_input(w_string)
targ_out = self._membership_query(w_string)
length = min(len(conj_out), len(targ_out))
diff = [i for i in range(length)
if conj_out[i] != targ_out[i]]
if len(diff) == 0:
diff_index = len(targ_out)
else:
diff_index = diff[0]
low = 0
high = len(w_string)
while True:
i = (low + high) / 2
length = len(self._membership_query(w_string[:i]))
if length == diff_index + 1:
return w_string[:i]
elif length < diff_index + 1:
low = i + 1
else:
high = i - 1
|
Checks for bad DFA transitions using the examined string
Args:
mma (DFA): The hypothesis automaton
w_string (str): The examined string to be consumed
Returns:
str: The prefix of the examined string that matches
|
juraj-google-style
|
def get_pk_attrnames(obj) -> List[str]:
return [attrname
for attrname, column in gen_columns(obj)
if column.primary_key]
|
Asks an SQLAlchemy ORM object: "what are your primary key(s)?"
Args:
obj: SQLAlchemy ORM object
Returns:
list of attribute names of primary-key columns
|
juraj-google-style
|
def _get_edges(self):
if (self._edges is None):
self._edges = self._compute_edges()
return self._edges
|
Get the edges for the current surface.
If they haven't been computed yet, first compute and store them.
This is provided as a means for internal calls to get the edges
without copying (since :attr:`.edges` copies before giving to
a user to keep the stored data immutable).
Returns:
Tuple[~bezier.curve.Curve, ~bezier.curve.Curve, \
~bezier.curve.Curve]: The edges of
the surface.
|
codesearchnet
|
def _eval_once(saver, summary_writer, top_1_op, top_5_op, summary_op):
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
print("ckpt.model_checkpoint_path: {0}".format(ckpt.model_checkpoint_path))
saver.restore(sess, ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
print('Successfully loaded model from %s at step=%s.' %
(ckpt.model_checkpoint_path, global_step))
else:
print('No checkpoint file found')
return
coord = tf.train.Coordinator()
try:
threads = []
for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS):
threads.extend(qr.create_threads(sess, coord=coord, daemon=True,
start=True))
num_iter = int(math.ceil(FLAGS.num_examples / FLAGS.batch_size))
count_top_1 = 0.0
count_top_5 = 0.0
total_sample_count = num_iter * FLAGS.batch_size
step = 0
print('%s: starting evaluation on (%s).' % (datetime.now(), FLAGS.subset))
start_time = time.time()
while step < num_iter and not coord.should_stop():
top_1, top_5 = sess.run([top_1_op, top_5_op])
count_top_1 += np.sum(top_1)
count_top_5 += np.sum(top_5)
step += 1
if step % 20 == 0:
duration = time.time() - start_time
sec_per_batch = duration / 20.0
examples_per_sec = FLAGS.batch_size / sec_per_batch
print('%s: [%d batches out of %d] (%.1f examples/sec; %.3f'
'sec/batch)' % (datetime.now(), step, num_iter,
examples_per_sec, sec_per_batch))
start_time = time.time()
precision_at_1 = count_top_1 / total_sample_count
recall_at_5 = count_top_5 / total_sample_count
print('%s: precision @ 1 = %.4f recall @ 5 = %.4f [%d examples]' %
(datetime.now(), precision_at_1, recall_at_5, total_sample_count))
summary = tf.Summary()
summary.ParseFromString(sess.run(summary_op))
summary.value.add(tag='Precision @ 1', simple_value=precision_at_1)
summary.value.add(tag='Recall @ 5', simple_value=recall_at_5)
summary_writer.add_summary(summary, global_step)
except Exception as e:
coord.request_stop(e)
coord.request_stop()
coord.join(threads, stop_grace_period_secs=10)
|
Runs Eval once.
Args:
saver: Saver.
summary_writer: Summary writer.
top_1_op: Top 1 op.
top_5_op: Top 5 op.
summary_op: Summary op.
|
juraj-google-style
|
def _next_dna(self, dna: Optional[DNA]=None) -> Optional[DNA]:
if self.next_dna_fn is None:
cls_name = self.hyper_type or self.__class__.__name__
raise NotImplementedError(f'`next_dna` is not supported on {cls_name!r}.')
return self.next_dna_fn(dna)
|
Returns the next DNA in the space represented by this spec.
Args:
dna: The DNA whose next will be returned. If None, `next_dna` will return
the first DNA.
Returns:
The next DNA or None if there is no next DNA.
|
github-repos
|
def reshape(self, shape: tf.TensorShape) -> 'TensorFluent':
t = tf.reshape(self.tensor, shape)
scope = self.scope.as_list()
batch = self.batch
return TensorFluent(t, scope, batch=batch)
|
Returns a TensorFluent for the reshape operation with given `shape`.
Args:
shape: The output's shape.
Returns:
A TensorFluent wrapping the reshape operation.
|
juraj-google-style
|
def devno_alloc(self):
devno_int = self._devno_pool.alloc()
devno = '{:04X}'.format(devno_int)
return devno
|
Allocates a device number unique to this partition, in the range of
0x8000 to 0xFFFF.
Returns:
string: The device number as four hexadecimal digits in upper case.
Raises:
ValueError: No more device numbers available in that range.
|
codesearchnet
|
def set_default(self, name, value):
fl = self._flags()
if (name not in fl):
self._set_unknown_flag(name, value)
return
fl[name]._set_default(value)
self._assert_validators(fl[name].validators)
|
Changes the default value of the named flag object.
The flag's current value is also updated if the flag is currently using
the default value, i.e. not specified in the command line, and not set
by FLAGS.name = value.
Args:
name: str, the name of the flag to modify.
value: The new default value.
Raises:
UnrecognizedFlagError: Raised when there is no registered flag named name.
IllegalFlagValueError: Raised when value is not valid.
|
codesearchnet
|
def get_content_of_file(self, name, full_path=False):
if self.handle:
for member in self.handle.getmembers():
if ((full_path and (member.name == name)) or ((not full_path) and (os.path.basename(member.name) == name))):
extracted = self.handle.extractfile(member)
return extracted.read().decode(locale.getpreferredencoding())
return None
|
Returns content of file from archive.
If full_path is set to False and two files with given name exist,
content of one is returned (it is not specified which one that is).
If set to True, returns content of exactly that file.
Args:
name: name of the file to get content of
Returns:
Content of the file with given name or None, if no such.
|
codesearchnet
|
def _pre_action(self, action):
assert (len(action) == self.dof), 'environment got invalid action dimension'
(low, high) = self.action_spec
action = np.clip(action, low, high)
if self.has_gripper:
arm_action = action[:self.mujoco_robot.dof]
gripper_action_in = action[self.mujoco_robot.dof:(self.mujoco_robot.dof + self.gripper.dof)]
gripper_action_actual = self.gripper.format_action(gripper_action_in)
action = np.concatenate([arm_action, gripper_action_actual])
ctrl_range = self.sim.model.actuator_ctrlrange
bias = (0.5 * (ctrl_range[(:, 1)] + ctrl_range[(:, 0)]))
weight = (0.5 * (ctrl_range[(:, 1)] - ctrl_range[(:, 0)]))
applied_action = (bias + (weight * action))
self.sim.data.ctrl[:] = applied_action
self.sim.data.qfrc_applied[self._ref_joint_vel_indexes] = self.sim.data.qfrc_bias[self._ref_joint_vel_indexes]
if self.use_indicator_object:
self.sim.data.qfrc_applied[self._ref_indicator_vel_low:self._ref_indicator_vel_high] = self.sim.data.qfrc_bias[self._ref_indicator_vel_low:self._ref_indicator_vel_high]
|
Overrides the superclass method to actuate the robot with the
passed joint velocities and gripper control.
Args:
action (numpy array): The control to apply to the robot. The first
@self.mujoco_robot.dof dimensions should be the desired
normalized joint velocities and if the robot has
a gripper, the next @self.gripper.dof dimensions should be
actuation controls for the gripper.
|
codesearchnet
|
def resolve(self, method, path):
if method in self._literal and path in self._literal[method]:
return self._literal[method][path], [], {}
else:
return self._resolve_non_literal_route(method, path)
|
Resolve a request to a route handler.
Arguments:
method (str): HTTP method, e.g. GET, POST, etc. (type: str)
path (str): Request path
Returns:
tuple or None: A tuple of three items:
1. Route handler (callable)
2. Positional arguments (list)
3. Keyword arguments (dict)
``None`` if no route matches the request.
|
juraj-google-style
|
def find_in_matrix_2d(val, matrix):
dim = len(matrix[0])
item_index = 0
for row in matrix:
for i in row:
if (i == val):
break
item_index += 1
if (i == val):
break
loc = (int((item_index / dim)), (item_index % dim))
return loc
|
Returns a tuple representing the index of an item in a 2D matrix.
Arguments:
- val (str) Value to look for
- matrix (list) 2D matrix to search for val in
Returns:
- (tuple) Ordered pair representing location of val
|
codesearchnet
|
def bulk_insert_extras(dialect_name: str,
fileobj: TextIO,
start: bool) -> None:
lines = []
if dialect_name == SqlaDialectName.MYSQL:
if start:
lines = [
"SET autocommit=0;",
"SET unique_checks=0;",
"SET foreign_key_checks=0;",
]
else:
lines = [
"SET foreign_key_checks=1;",
"SET unique_checks=1;",
"COMMIT;",
]
writelines_nl(fileobj, lines)
|
Writes bulk ``INSERT`` preamble (start=True) or end (start=False).
For MySQL, this temporarily switches off autocommit behaviour and index/FK
checks, for speed, then re-enables them at the end and commits.
Args:
dialect_name: SQLAlchemy dialect name (see :class:`SqlaDialectName`)
fileobj: file-like object to write to
start: if ``True``, write preamble; if ``False``, write end
|
juraj-google-style
|
def stop_ec2_instance(client, resource):
instance = EC2Instance.get(resource.id)
if instance.state in ('stopped', 'terminated'):
return ActionStatus.IGNORED, {}
client.stop_instances(InstanceIds=[resource.id])
return ActionStatus.SUCCEED, {'instance_type': resource.instance_type, 'public_ip': resource.public_ip}
|
Stop an EC2 Instance
This function will attempt to stop a running instance.
Args:
client (:obj:`boto3.session.Session.client`): A boto3 client object
resource (:obj:`Resource`): The resource object to stop
Returns:
`ActionStatus`
|
juraj-google-style
|
def _trychar(char, fallback, asciimode=None):
if asciimode is True:
return fallback
if hasattr(sys.stdout, 'encoding') and sys.stdout.encoding:
try:
char.encode(sys.stdout.encoding)
except Exception:
pass
else:
return char
return fallback
|
Logic from IPython timeit to handle terminals that cant show mu
Args:
char (str): character, typically unicode, to try to use
fallback (str): ascii character to use if stdout cannot encode char
asciimode (bool): if True, always use fallback
Example:
>>> char = _trychar('µs', 'us')
>>> print('char = {}'.format(char))
>>> assert _trychar('µs', 'us', asciimode=True) == 'us'
|
juraj-google-style
|
def _model_to_dict(model, ignore):
return {attr: value for (attr, value) in model.__dict__.items() if ((not attr.startswith('_')) and (attr not in ignore))}
|
Convert OSS model to dict.
Args:
model (oss2.models.RequestResult): Model.
ignore (tuple of str): Keys to not insert to dict.
Returns:
dict: Model dict version.
|
codesearchnet
|
def verify_link_ed25519_cot_signature(chain, link, unsigned_path, signature_path):
if chain.context.config['verify_cot_signature']:
log.debug('Verifying the {} {} {} ed25519 chain of trust signature'.format(link.name, link.task_id, link.worker_impl))
signature = read_from_file(signature_path, file_type='binary', exception=CoTError)
binary_contents = read_from_file(unsigned_path, file_type='binary', exception=CoTError)
errors = []
verify_key_seeds = chain.context.config['ed25519_public_keys'].get(link.worker_impl, [])
for seed in verify_key_seeds:
try:
verify_key = ed25519_public_key_from_string(seed)
verify_ed25519_signature(verify_key, binary_contents, signature, "{} {}: {} ed25519 cot signature doesn't verify against {}: %(exc)s".format(link.name, link.task_id, link.worker_impl, seed))
log.debug('{} {}: ed25519 cot signature verified.'.format(link.name, link.task_id))
break
except ScriptWorkerEd25519Error as exc:
errors.append(str(exc))
else:
errors = (errors or ['{} {}: Unknown error verifying ed25519 cot signature. worker_impl {} verify_keys {}'.format(link.name, link.task_id, link.worker_impl, verify_key_seeds)])
message = '\n'.join(errors)
raise CoTError(message)
link.cot = load_json_or_yaml(unsigned_path, is_path=True, exception=CoTError, message='{} {}: Invalid unsigned cot json body! %(exc)s'.format(link.name, link.task_id))
|
Verify the ed25519 signatures of the chain of trust artifacts populated in ``download_cot``.
Populate each link.cot with the chain of trust json body.
Args:
chain (ChainOfTrust): the chain of trust to add to.
Raises:
(CoTError, ScriptWorkerEd25519Error): on signature verification failure.
|
codesearchnet
|
def unpack_archive(*components, **kwargs) -> str:
path = fs.abspath(*components)
compression = kwargs.get('compression', 'bz2')
dir = kwargs.get('dir', fs.dirname(path))
fs.cd(dir)
tar = tarfile.open(path, ('r:' + compression))
tar.extractall()
tar.close()
fs.cdpop()
return dir
|
Unpack a compressed archive.
Arguments:
*components (str[]): Absolute path.
**kwargs (dict, optional): Set "compression" to compression type.
Default: bz2. Set "dir" to destination directory. Defaults to the
directory of the archive.
Returns:
str: Path to directory.
|
codesearchnet
|
def __frontend_limit_descriptor(self, api_info):
if (api_info.frontend_limits is None):
return None
descriptor = {}
for (propname, descname) in (('unregistered_user_qps', 'unregisteredUserQps'), ('unregistered_qps', 'unregisteredQps'), ('unregistered_daily', 'unregisteredDaily')):
if (getattr(api_info.frontend_limits, propname) is not None):
descriptor[descname] = getattr(api_info.frontend_limits, propname)
rules = self.__frontend_limit_rules_descriptor(api_info)
if rules:
descriptor['rules'] = rules
return descriptor
|
Builds a frontend limit descriptor from API info.
Args:
api_info: An _ApiInfo object.
Returns:
A dictionary with frontend limit information.
|
codesearchnet
|
def Deserialize(self, reader):
self.PrevHash = reader.ReadUInt256()
self.PrevIndex = reader.ReadUInt16()
|
Deserialize full object.
Args:
reader (neo.IO.BinaryReader):
|
juraj-google-style
|
def _guess_format_from_extension(ext):
ext = ext.strip('.')
formats = []
for fmt in FILE_FORMATS:
if ext in FILE_FORMATS[fmt]:
formats.append(fmt)
if formats == [] or len(formats) > 1:
return False
return formats[0]
|
Guess the appropriate data type from file extension.
Arguments:
ext: The file extension (period optional)
Returns:
String. The format (without leading period),
or False if none was found or couldn't be guessed
|
juraj-google-style
|
def handle_upnp_error(self, xml_error):
xml_error = xml_error.encode('utf-8')
error = XML.fromstring(xml_error)
log.debug('Error %s', xml_error)
error_code = error.findtext('.
if (error_code is not None):
description = self.UPNP_ERRORS.get(int(error_code), '')
raise SoCoUPnPException(message='UPnP Error {} received: {} from {}'.format(error_code, description, self.soco.ip_address), error_code=error_code, error_description=description, error_xml=xml_error)
else:
log.error('Unknown error received from %s', self.soco.ip_address)
raise UnknownSoCoException(xml_error)
|
Disect a UPnP error, and raise an appropriate exception.
Args:
xml_error (str): a unicode string containing the body of the
UPnP/SOAP Fault response. Raises an exception containing the
error code.
|
codesearchnet
|
def get_signature_def(meta_graph, signature_key):
signature_def_map = meta_graph.signature_def
signature_def_keys = set(signature_def_map.keys())
logging.info('The given SavedModel MetaGraphDef contains SignatureDefs with the following keys: %s', signature_def_keys)
if signature_key not in signature_def_keys:
raise ValueError("No '{}' in the SavedModel's SignatureDefs. Possible values are '{}'.".format(signature_key, ','.join(signature_def_keys)))
return signature_def_map[signature_key]
|
Get the signature def from meta_graph with given signature_key.
Args:
meta_graph: meta_graph_def.
signature_key: signature_def in the meta_graph_def.
Returns:
The signature_def used for tflite conversion.
Raises:
ValueError: Given signature_key is not valid for this meta_graph.
|
github-repos
|
def get_m49_from_iso3(cls, iso3, use_live=True, exception=None):
countriesdata = cls.countriesdata(use_live=use_live)
m49 = countriesdata['m49iso3'].get(iso3)
if (m49 is not None):
return m49
if (exception is not None):
raise exception
return None
|
Get M49 from ISO3 code
Args:
iso3 (str): ISO3 code for which to get M49 code
use_live (bool): Try to get use latest data from web rather than file in package. Defaults to True.
exception (Optional[ExceptionUpperBound]): An exception to raise if country not found. Defaults to None.
Returns:
Optional[int]: M49 code
|
codesearchnet
|
def agent_version(self, value):
if value == self._defaults['ai.internal.agentVersion'] and 'ai.internal.agentVersion' in self._values:
del self._values['ai.internal.agentVersion']
else:
self._values['ai.internal.agentVersion'] = value
|
The agent_version property.
Args:
value (string). the property value.
|
juraj-google-style
|
def byte_str(nBytes, unit='bytes', precision=2):
if unit.lower().startswith('b'):
nUnit = nBytes
elif unit.lower().startswith('k'):
nUnit = (nBytes / (2.0 ** 10))
elif unit.lower().startswith('m'):
nUnit = (nBytes / (2.0 ** 20))
elif unit.lower().startswith('g'):
nUnit = (nBytes / (2.0 ** 30))
elif unit.lower().startswith('t'):
nUnit = (nBytes / (2.0 ** 40))
else:
raise NotImplementedError(('unknown nBytes=%r unit=%r' % (nBytes, unit)))
return ((repr2(nUnit, precision=precision) + ' ') + unit)
|
representing the number of bytes with the chosen unit
Returns:
str
|
codesearchnet
|
def report_error(self, read_tuple_name, error_name, wrong="", message="", warning=False):
if (not self.report_only_first) or (error_name not in self.reported_errors):
print("\t".join(["error" if warning == False else "warning", read_tuple_name, error_name, wrong, message]))
self.reported_errors.add(error_name)
if warning:
self.warning_has_been_reported = True
else:
self.error_has_been_reported = True
|
Report an error.
Args:
read_tuple_name (): Name of the read tuple.
error_name (): Name of the error.
wrong (str): What is wrong.
message (str): Additional msessage to be printed.
warning (bool): Warning (not an error).
|
juraj-google-style
|
def activate_absence_with_duration(self, duration: int):
data = {"duration": duration}
return self._restCall(
"home/heating/activateAbsenceWithDuration", json.dumps(data)
)
|
activates the absence mode for a given time
Args:
duration(int): the absence duration in minutes
|
juraj-google-style
|
def wb004(self, value=None):
if (value is not None):
try:
value = float(value)
except ValueError:
raise ValueError('value {} need to be of type float for field `wb004`'.format(value))
self._wb004 = value
|
Corresponds to IDD Field `wb004`
Wet-bulb temperature corresponding to 0.4% annual cumulative frequency of occurrence
Args:
value (float): value for IDD Field `wb004`
Unit: C
if `value` is None it will not be checked against the
specification and is assumed to be a missing value
Raises:
ValueError: if `value` is not a valid value
|
codesearchnet
|
async def download_cot(chain):
artifact_tasks = []
for link in chain.links:
task_id = link.task_id
parent_dir = link.cot_dir
urls = []
unsigned_url = get_artifact_url(chain.context, task_id, 'public/chain-of-trust.json')
urls.append(unsigned_url)
if chain.context.config['verify_cot_signature']:
urls.append(
get_artifact_url(chain.context, task_id, 'public/chain-of-trust.json.sig')
)
artifact_tasks.append(
asyncio.ensure_future(
download_artifacts(
chain.context, urls, parent_dir=parent_dir,
valid_artifact_task_ids=[task_id]
)
)
)
artifacts_paths = await raise_future_exceptions(artifact_tasks)
for path in artifacts_paths:
sha = get_hash(path[0])
log.debug("{} downloaded; hash is {}".format(path[0], sha))
|
Download the signed chain of trust artifacts.
Args:
chain (ChainOfTrust): the chain of trust to add to.
Raises:
BaseDownloadError: on failure.
|
juraj-google-style
|
def rtm(self, url: Optional[str]=None, bot_id: Optional[str]=None) -> Iterator[events.Event]:
while True:
bot_id = (bot_id or self._find_bot_id())
url = (url or self._find_rtm_url())
for event in self._incoming_from_rtm(url, bot_id):
(yield event)
url = None
|
Iterate over event from the RTM API
Args:
url: Websocket connection url
bot_id: Connecting bot ID
Returns:
:class:`slack.events.Event` or :class:`slack.events.Message`
|
codesearchnet
|
class InputExample:
guid: str
text_a: str
text_b: Optional[str] = None
label: Optional[str] = None
def to_json_string(self):
return json.dumps(dataclasses.asdict(self), indent=2) + '\n'
|
A single training/test example for simple sequence classification.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
|
github-repos
|
def _use_gl(objs):
from ..models.plots import Plot
return _any(objs, lambda obj: isinstance(obj, Plot) and obj.output_backend == "webgl")
|
Whether a collection of Bokeh objects contains a plot requesting WebGL
Args:
objs (seq[Model or Document]) :
Returns:
bool
|
juraj-google-style
|
def _encode_slice_definition(self, root_builder: expressions.Builder, slice_: _fhir_path_data_types.Slice) -> List[validation_pb2.SqlRequirement]:
if slice_.relative_path:
slice_builder = self._get_new_child_builder(root_builder, slice_.relative_path)
else:
slice_builder = root_builder
if slice_builder is None:
return []
element_constraints = []
for rule_path, rule_def in slice_.slice_rules:
if not rule_def.HasField('fixed') and (not rule_def.HasField('pattern')):
continue
slice_element_builder = root_builder
for path_component in rule_path.split('.'):
slice_element_builder = slice_element_builder.__getattr__(path_component)
if slice_element_builder.return_type.returns_polymorphic():
type_codes = _utils.element_type_codes(slice_element_builder.return_type.root_element_definition)
if len(type_codes) > 1:
self._error_reporter.report_fhir_path_error(cast(Any, rule_def).path.value, str(slice_element_builder), f'Element `{slice_element_builder}` in slice `{cast(Any, slice_.slice_def).id.value}` is a choice type with more than one choice which is not currently supported.')
return []
slice_element_builder = slice_element_builder.ofType(type_codes[0])
fixed_constraint = self._constraint_for_fixed_slice_element(slice_element_builder, rule_def)
if fixed_constraint is not None:
element_constraints.append(fixed_constraint)
pattern_constraint = self._constraint_for_pattern_slice_element(slice_element_builder, rule_def)
if pattern_constraint is not None:
element_constraints.append(pattern_constraint)
if not element_constraints:
return []
element_predicate = functools.reduce(operator.and_, element_constraints)
elements_in_slice = slice_builder.where(element_predicate)
slice_constraints = []
min_size: int = cast(Any, slice_.slice_def).min.value
max_size: str = cast(Any, slice_.slice_def).max.value
if str(min_size) == max_size:
slice_constraints.append(elements_in_slice.count() == min_size)
else:
if min_size == 1:
slice_constraints.append(elements_in_slice.exists())
elif min_size > 1:
slice_constraints.append(elements_in_slice.count() >= min_size)
if max_size.isdigit():
slice_constraints.append(elements_in_slice.count() <= int(max_size))
if not slice_constraints:
return []
slice_constraint = functools.reduce(operator.and_, slice_constraints)
constraint_sql = self._encode_fhir_path_builder_constraint(slice_constraint, None)
if constraint_sql is None:
return []
slice_id = cast(Any, slice_.slice_def).id.value
slice_path = self._abs_path_invocation(root_builder)
slice_name = cast(Any, slice_.slice_def).slice_name.value
column_name = f'{_path_to_sql_column_name(slice_path)}_{_path_to_sql_column_name(slice_id)}_slice_cardinality'
description = f'Slice {slice_id} requires at least {min_size} and at most {max_size} elements in {slice_builder} to conform to slice {slice_name}.'
return [validation_pb2.SqlRequirement(column_name=column_name, sql_expression=constraint_sql.sql, fhir_path_sql_expression=constraint_sql.fhir_path_sql, severity=validation_pb2.ValidationSeverity.SEVERITY_ERROR, type=validation_pb2.ValidationType.VALIDATION_TYPE_CARDINALITY, element_path=root_builder.node.get_root_node().to_fhir_path(), description=description, fhir_path_key=column_name.replace('_', '-'), fhir_path_expression=constraint_sql.builder.fhir_path, fields_referenced_by_expression=sorted(constraint_sql.builder.node.find_paths_referenced()))]
|
Encodes constraints for slices.
Args:
root_builder: The builder representing a path to the structure definition
defining the slice.
slice_: A slice defined by the structure definition at `root_builder`.
Returns:
A constraint enforcing the cardinality of `slice_` if `slice_` imposes a
non-zero or non-* min or max cardinality. Otherwise, an empty list.
|
github-repos
|
def Convert(self, metadata, stat_entry, token=None):
if stat_entry.pathspec.pathtype != rdf_paths.PathSpec.PathType.REGISTRY:
return []
result = ExportedRegistryKey(
metadata=metadata,
urn=stat_entry.AFF4Path(metadata.client_urn),
last_modified=stat_entry.st_mtime)
if (stat_entry.HasField("registry_type") and
stat_entry.HasField("registry_data")):
result.type = stat_entry.registry_type
data = stat_entry.registry_data.GetValue()
if isinstance(data, bytes):
result.data = data
else:
result.data = str(data).encode("utf-8")
return [result]
|
Converts StatEntry to ExportedRegistryKey.
Does nothing if StatEntry corresponds to a file and not a registry entry.
Args:
metadata: ExportedMetadata to be used for conversion.
stat_entry: StatEntry to be converted.
token: Security token.
Returns:
List or generator with resulting RDFValues. Empty list if StatEntry
corresponds to a file and not to a registry entry.
|
juraj-google-style
|
def __init__(self, on_exception=Exception, limit=5, interval=None,
validator=None):
self.attempts = 0
self._on_exception = on_exception
self._setup_limit(limit)
self._setup_interval(interval)
self._setup_validator(validator)
|
Configure how a function should be retried.
Args:
on_exception (BaseException): The exception to catch. Use this to
set which exception and it's subclasses to catch.
limit ()
|
juraj-google-style
|
def _handle_agg_function(gb, agg_func, agg_name, *args, **kwargs):
if _is_associative(agg_func):
return _liftable_agg(agg_func)(gb, *args, **kwargs)
elif _is_liftable_with_sum(agg_func):
return _liftable_agg(agg_func, postagg_meth='sum')(gb, *args, **kwargs)
elif _is_unliftable(agg_func):
return _unliftable_agg(agg_func)(gb, *args, **kwargs)
elif callable(agg_func):
return DeferredDataFrame(expressions.ComputedExpression(agg_name, lambda gb_val: gb_val.agg(agg_func, *args, **kwargs), [gb._expr], requires_partition_by=partitionings.Index(), preserves_partition_by=partitionings.Singleton()))
else:
raise NotImplementedError(f'GroupBy.agg(func={agg_func!r})')
|
Handles the aggregation logic based on the function type passed.
Args:
gb: The groupby instance (DeferredGroupBy).
agg_name: The name/label of the aggregation function.
fn: The aggregation function to apply.
*args: Additional arguments to pass to the aggregation function.
**kwargs: Keyword arguments to pass to the aggregation function.
Returns:
A DeferredDataFrame or the result of the aggregation function.
Raises:
NotImplementedError: If the aggregation function type is unsupported.
|
github-repos
|
def register_ops_if_needed(graph_ops):
missing_ops = (graph_ops - set(op_def_registry.get_registered_ops().keys()))
if (not missing_ops):
return
p_buffer = c_api.TF_GetAllOpList()
cpp_op_list = op_def_pb2.OpList()
cpp_op_list.ParseFromString(c_api.TF_GetBuffer(p_buffer))
cpp_registry_ops = {op.name: op for op in cpp_op_list.op}
missing_op_list = op_def_pb2.OpList()
for missing_op in missing_ops:
if (missing_op not in cpp_registry_ops):
logging.info('Op %s is missing from both the python and C++ registry.', missing_op)
else:
missing_op_list.op.extend([cpp_registry_ops[missing_op]])
logging.info('Adding op %s from c++ registry to python registry.', missing_op)
op_def_registry.register_op_list(missing_op_list)
if (not (missing_ops <= set(cpp_registry_ops.keys()))):
raise RuntimeError(('Graph ops missing from the python registry (%s) are also absent from the c++ registry.' % missing_ops.difference(set(cpp_registry_ops.keys()))))
|
Register graph ops absent in op_def_registry, if present in c++ registry.
Args:
graph_ops: set with graph op names to register.
Raises:
RuntimeError: if `graph_ops` contains ops that are not in either python or
c++ registry.
|
codesearchnet
|
async def dist(self, mesg):
if self.isfini:
return ()
ret = []
for func in self._syn_funcs.get(mesg[0], ()):
try:
ret.append(await s_coro.ornot(func, mesg))
except asyncio.CancelledError:
raise
except Exception:
logger.exception('base %s error with mesg %s', self, mesg)
for func in self._syn_links:
try:
ret.append(await func(mesg))
except asyncio.CancelledError:
raise
except Exception:
logger.exception('base %s error with mesg %s', self, mesg)
return ret
|
Distribute an existing event tuple.
Args:
mesg ((str,dict)): An event tuple.
Example:
await base.dist( ('foo',{'bar':'baz'}) )
|
juraj-google-style
|
def extract_tree_with(self, labels, suppress_unifurcations=True):
return self.extract_tree(labels, False, suppress_unifurcations)
|
Extract a copy of this ``Tree`` with only the leaves labeled by the strings in ``labels``
Args:
``leaves`` (``set``): Set of leaf labels to include.
``suppress_unifurcations`` (``bool``): ``True`` to suppress unifurcations, otherwise ``False``
Returns:
Tree: Copy of this Tree, including only the leaves labeled by the strings in ``labels``
|
codesearchnet
|
def _clone_layers_and_model_config(model, input_layers, layer_fn):
created_layers = {}
def _copy_layer(layer):
if layer in input_layers:
created_layers[layer.name] = input_layers[layer]
elif layer in model._input_layers:
created_layers[layer.name] = InputLayer(**layer.get_config())
else:
created_layers[layer.name] = layer_fn(layer)
return {}
config = functional.get_network_config(model, serialize_layer_fn=_copy_layer)
return (config, created_layers)
|
Clones all layers, and returns the model config without serializing layers.
This function ensures that only the node graph is retrieved when getting the
model config. The `layer_fn` used to clone layers might not rely on
`layer.get_config()`, so some custom layers do not define `get_config`.
Trying to retrieve the config results in errors.
Args:
model: A Functional model.
input_layers: Dictionary mapping input layers in `model` to new input layers
layer_fn: Function used to clone all non-input layers.
Returns:
Model config object, and a dictionary of newly created layers.
|
github-repos
|
def _convert_validators_to_mapping(validators):
validators_mapping = {}
for validator in validators:
if (not isinstance(validator['check'], collections.Hashable)):
check = json.dumps(validator['check'])
else:
check = validator['check']
key = (check, validator['comparator'])
validators_mapping[key] = validator
return validators_mapping
|
convert validators list to mapping.
Args:
validators (list): validators in list
Returns:
dict: validators mapping, use (check, comparator) as key.
Examples:
>>> validators = [
{"check": "v1", "expect": 201, "comparator": "eq"},
{"check": {"b": 1}, "expect": 200, "comparator": "eq"}
]
>>> _convert_validators_to_mapping(validators)
{
("v1", "eq"): {"check": "v1", "expect": 201, "comparator": "eq"},
('{"b": 1}', "eq"): {"check": {"b": 1}, "expect": 200, "comparator": "eq"}
}
|
codesearchnet
|
def get(self, secret_id):
return self.prepare_model(self.client.api.inspect_secret(secret_id))
|
Get a secret.
Args:
secret_id (str): Secret ID.
Returns:
(:py:class:`Secret`): The secret.
Raises:
:py:class:`docker.errors.NotFound`
If the secret does not exist.
:py:class:`docker.errors.APIError`
If the server returns an error.
|
codesearchnet
|
def filing_history(self, num, transaction=None, **kwargs):
baseuri = self._BASE_URI + "company/{}/filing-history".format(num)
if transaction is not None:
baseuri += "/{}".format(transaction)
res = self.session.get(baseuri, params=kwargs)
self.handle_http_error(res)
return res
|
Search for a company's filling history by company number.
Args:
num (str): Company number to search on.
transaction (Optional[str]): Filing record number.
kwargs (dict): additional keywords passed into
requests.session.get params keyword.
|
juraj-google-style
|
def binary_arguments_to_tensors(x1, x2):
if not isinstance(x1, Tensor) and not isinstance(x2, Tensor):
raise ValueError("at least one of x1 and x2 must be an mtf Tensor")
elif isinstance(x1, Tensor) and isinstance(x2, Tensor):
return x1, x2
elif isinstance(x1, Tensor):
return x1, import_tf_tensor(
x1.mesh, tf.convert_to_tensor(x2, dtype=x1.dtype), Shape([]))
else:
return import_tf_tensor(x2.mesh, tf.convert_to_tensor(x1, dtype=x2.dtype),
Shape([])), x2
|
Convert argument of a binary operation to Tensors.
Args:
x1: a Tensor or something convertible to a tf Scalar
x2: a Tensor or something convertible to a tf Scalar
Returns:
new_x1: a Tensor
new_x2: a Tensor
Raises:
ValueError: on failure
|
juraj-google-style
|
def _stride(stride_spec):
if stride_spec is None:
return [1, 1, 1, 1]
elif isinstance(stride_spec, tf.compat.integral_types):
return [1, stride_spec, stride_spec, 1]
elif len(stride_spec) == 1:
return [1, stride_spec[0], stride_spec[0], 1]
elif len(stride_spec) == 2:
return [1, stride_spec[0], stride_spec[1], 1]
else:
assert len(stride_spec) == 4
return stride_spec
|
Expands the stride spec into a length 4 list.
Args:
stride_spec: If length 0, 1 or 2 then assign the inner dimensions, otherwise
return stride_spec if it is length 4.
Returns:
A length 4 list.
|
juraj-google-style
|
def to_str(self, separator=''):
if self.closed():
raise ValueError('Attempt to call to_str() on a closed Queryable.')
return str(separator).join(self.select(str))
|
Build a string from the source sequence.
The elements of the query result will each coerced to a string and then
the resulting strings concatenated to return a single string. This
allows the natural processing of character sequences as strings. An
optional separator which will be inserted between each item may be
specified.
Note: this method uses immediate execution.
Args:
separator: An optional separator which will be coerced to a string
and inserted between each source item in the resulting string.
Returns:
A single string which is the result of stringifying each element
and concatenating the results into a single string.
Raises:
TypeError: If any element cannot be coerced to a string.
TypeError: If the separator cannot be coerced to a string.
ValueError: If the Queryable is closed.
|
codesearchnet
|
def properties(self, value):
if value == self._defaults['properties'] and 'properties' in self._values:
del self._values['properties']
else:
self._values['properties'] = value
|
The properties property.
Args:
value (hash). the property value.
|
juraj-google-style
|
def report_line(zipfilename: str, contentsfilename: str, line: str,
show_inner_file: bool) -> None:
if show_inner_file:
print("{} [{}]: {}".format(zipfilename, contentsfilename, line))
else:
print("{}: {}".format(zipfilename, line))
|
Prints a line from a file, with the ``.zip`` filename and optionally also
the inner filename.
Args:
zipfilename: filename of the ``.zip`` file
contentsfilename: filename of the inner file
line: the line from the inner file
show_inner_file: if ``True``, show both filenames; if ``False``, show
just the ``.zip`` filename
|
juraj-google-style
|
def _send(self, **req_kwargs):
auth_token = self._auth.getAuthToken()
if auth_token is None:
raise exception.LoginException('Not logged in')
req_kwargs.setdefault('headers', {
'Authorization': 'OAuth ' + auth_token
})
return self._session.request(**req_kwargs)
|
Send an authenticated request to a Google API.
Args:
**req_kwargs: Arbitrary keyword arguments to pass to Requests.
Return:
requests.Response: The raw response.
Raises:
LoginException: If :py:meth:`login` has not been called.
|
juraj-google-style
|
def _CheckGrayscaleImage(image, require_static=True):
try:
if image.get_shape().ndims is None:
image_shape = image.get_shape().with_rank(2)
else:
image_shape = image.get_shape().with_rank_at_least(2)
except ValueError:
raise ValueError('A grayscale image (shape %s) must be at least two-dimensional.' % image.shape)
if require_static and (not image_shape.is_fully_defined()):
raise ValueError("'image' must be fully defined.")
if image_shape.is_fully_defined():
if image_shape[-1] != 1:
raise ValueError('Last dimension of a grayscale image should be size 1.')
if not image_shape.is_fully_defined():
return [check_ops.assert_equal(array_ops.shape(image)[-1], 1, message='Last dimension of a grayscale image should be size 1.'), check_ops.assert_greater_equal(array_ops.rank(image), 3, message='A grayscale image must be at least two-dimensional.')]
else:
return []
|
Assert that we are working with properly shaped grayscale image.
Args:
image: >= 2-D Tensor of size [*, 1]
require_static: Boolean, whether static shape is required.
Raises:
ValueError: if image.shape is not a [>= 2] vector or if
last dimension is not size 1.
Returns:
An empty list, if `image` has fully defined dimensions. Otherwise, a list
containing an assert op is returned.
|
github-repos
|
def post_process_video_grounding(self, logits, video_durations):
start, end = (round(logits.tolist()[0][0] * video_durations, 1), round(logits.tolist()[0][1] * video_durations, 1))
return (start, end)
|
Compute the time of the video.
Args:
logits (`torch.Tensor`):
The logits output of TvpForVideoGrounding.
video_durations (`float`):
The video's duration.
Returns:
start (`float`):
The start time of the video.
end (`float`):
The end time of the video.
|
github-repos
|
def get_commit_tree(profile, sha):
data = commits.get_commit(profile, sha)
tree = data.get("tree")
sha = tree.get("sha")
return sha
|
Get the SHA of a commit's tree.
Args:
profile
A profile generated from ``simplygithub.authentication.profile``.
Such profiles tell this module (i) the ``repo`` to connect to,
and (ii) the ``token`` to connect with.
sha
The SHA of a commit.
Returns:
The SHA of the commit's tree.
|
juraj-google-style
|
def diffusion_mds(means, weights, d, diffusion_rounds=10):
for i in range(diffusion_rounds):
weights = (weights * weights)
weights = (weights / weights.sum(0))
X = dim_reduce(means, weights, d)
if (X.shape[0] == 2):
return X.dot(weights)
else:
return X.T.dot(weights)
|
Dimensionality reduction using MDS, while running diffusion on W.
Args:
means (array): genes x clusters
weights (array): clusters x cells
d (int): desired dimensionality
Returns:
W_reduced (array): array of shape (d, cells)
|
codesearchnet
|
def WaitUntilDone(self, timeout=None):
utils.Poll(
generator=self.GetState,
condition=lambda s: s != self.__class__.STATE_RUNNING,
timeout=timeout)
self.target_file = self.target_file.Get()
return self
|
Wait until the operation is done.
Args:
timeout: timeout in seconds. None means default timeout (1 hour).
0 means no timeout (wait forever).
Returns:
Operation object with refreshed target_file.
Raises:
PollTimeoutError: if timeout is reached.
|
juraj-google-style
|
def _compile_arithmetic_expression(self,
expr: Expression,
scope: Dict[str, TensorFluent],
batch_size: Optional[int] = None,
noise: Optional[List[tf.Tensor]] = None) -> TensorFluent:
etype = expr.etype
args = expr.args
if len(args) == 1:
etype2op = {
'+': lambda x: x,
'-': lambda x: -x
}
if etype[1] not in etype2op:
raise ValueError('Invalid binary arithmetic expression:\n{}'.format(expr))
op = etype2op[etype[1]]
x = self._compile_expression(args[0], scope, batch_size, noise)
fluent = op(x)
else:
etype2op = {
'+': lambda x, y: x + y,
'-': lambda x, y: x - y,
'*': lambda x, y: x * y,
'/': lambda x, y: x / y,
}
if etype[1] not in etype2op:
raise ValueError('Invalid binary arithmetic expression:\n{}'.format(expr))
op = etype2op[etype[1]]
x = self._compile_expression(args[0], scope, batch_size, noise)
y = self._compile_expression(args[1], scope, batch_size, noise)
fluent = op(x, y)
return fluent
|
Compile an arithmetic expression `expr` into a TensorFluent
in the given `scope` with optional batch size.
Args:
expr (:obj:`rddl2tf.expr.Expression`): A RDDL arithmetic expression.
scope (Dict[str, :obj:`rddl2tf.fluent.TensorFluent`]): A fluent scope.
batch_size (Optional[size]): The batch size.
Returns:
:obj:`rddl2tf.fluent.TensorFluent`: The compiled expression as a TensorFluent.
|
juraj-google-style
|
def _check_etag(self, etag):
if (etag is None):
return
elif (self._etag is None):
self._etag = etag
elif (self._etag != etag):
raise ValueError('File on GCS has changed while reading.')
|
Check if etag is the same across requests to GCS.
If self._etag is None, set it. If etag is set, check that the new
etag equals the old one.
In the __init__ method, we fire one HEAD and one GET request using
ndb tasklet. One of them would return first and set the first value.
Args:
etag: etag from a GCS HTTP response. None if etag is not part of the
response header. It could be None for example in the case of GCS
composite file.
Raises:
ValueError: if two etags are not equal.
|
codesearchnet
|
def stop_site(name):
ps_cmd = ['Stop-WebSite', "'{0}'".format(name)]
cmd_ret = _srvmgr(ps_cmd)
return (cmd_ret['retcode'] == 0)
|
Stop a Web Site in IIS.
.. versionadded:: 2017.7.0
Args:
name (str): The name of the website to stop.
Returns:
bool: True if successful, otherwise False
CLI Example:
.. code-block:: bash
salt '*' win_iis.stop_site name='My Test Site'
|
codesearchnet
|
def assignSchedule(self, schedule, period, hour, minute, tariff):
if ((schedule not in range(Extents.Schedules)) or (period not in range(Extents.Tariffs)) or (hour < 0) or (hour > 23) or (minute < 0) or (minute > 59) or (tariff < 0)):
ekm_log(('Out of bounds in Schedule_' + str((schedule + 1))))
return False
period += 1
idx_min = ('Min_' + str(period))
idx_hour = ('Hour_' + str(period))
idx_rate = ('Tariff_' + str(period))
if (idx_min not in self.m_schedule_params):
ekm_log(('Incorrect index: ' + idx_min))
return False
if (idx_hour not in self.m_schedule_params):
ekm_log(('Incorrect index: ' + idx_hour))
return False
if (idx_rate not in self.m_schedule_params):
ekm_log(('Incorrect index: ' + idx_rate))
return False
self.m_schedule_params[idx_rate] = tariff
self.m_schedule_params[idx_hour] = hour
self.m_schedule_params[idx_min] = minute
self.m_schedule_params['Schedule'] = schedule
return True
|
Assign one schedule tariff period to meter bufffer.
Args:
schedule (int): A :class:`~ekmmeters.Schedules` value or in range(Extents.Schedules).
tariff (int): :class:`~ekmmeters.Tariffs` value or in range(Extents.Tariffs).
hour (int): Hour from 0-23.
minute (int): Minute from 0-59.
tariff (int): Rate value.
Returns:
bool: True on completed assignment.
|
codesearchnet
|
def disease_term(self, disease_identifier):
query = {}
try:
disease_identifier = int(disease_identifier)
query['disease_nr'] = disease_identifier
except ValueError:
query['_id'] = disease_identifier
return self.disease_term_collection.find_one(query)
|
Return a disease term
Checks if the identifier is a disease number or a id
Args:
disease_identifier(str)
Returns:
disease_obj(dict)
|
codesearchnet
|
def get_pool_context(self):
context = {self.current.lane_id: self.current.role, 'self': self.current.role}
for (lane_id, role_id) in self.current.pool.items():
if role_id:
context[lane_id] = lazy_object_proxy.Proxy((lambda : self.role_model(super_context).objects.get(role_id)))
return context
|
Builds context for the WF pool.
Returns:
Context dict.
|
codesearchnet
|
def semantic_eq(node1, node2):
if 'barrier' == node1.name == node2.name:
return set(node1.qargs) == set(node2.qargs)
return node1.data_dict == node2.data_dict
|
Check if DAG nodes are considered equivalent, e.g. as a node_match for nx.is_isomorphic.
Args:
node1 (DAGNode): A node to compare.
node2 (DAGNode): The other node to compare.
Return:
Bool: If node1 == node2
|
juraj-google-style
|
def match(self, name):
if self.method == Ex.Method.PREFIX:
return name.startswith(self.value)
elif self.method == Ex.Method.SUFFIX:
return name.endswith(self.value)
elif self.method == Ex.Method.CONTAINS:
return self.value in name
elif self.method == Ex.Method.EXACT:
return self.value == name
elif self.method == Ex.Method.REGEX:
return re.search(self.value, name)
return False
|
Check if given name matches.
Args:
name (str): name to check.
Returns:
bool: matches name.
|
juraj-google-style
|
class Rescaling(TFDataLayer):
def __init__(self, scale, offset=0.0, **kwargs):
super().__init__(**kwargs)
self.scale = scale
self.offset = offset
self.supports_masking = True
def call(self, inputs):
dtype = self.compute_dtype
scale = self.backend.cast(self.scale, dtype)
offset = self.backend.cast(self.offset, dtype)
scale_shape = self.backend.core.shape(scale)
if len(scale_shape) > 0 and backend.image_data_format() == 'channels_first':
scale = self.backend.numpy.reshape(scale, scale_shape + (1,) * (3 - len(scale_shape)))
return self.backend.cast(inputs, dtype) * scale + offset
def compute_output_shape(self, input_shape):
return input_shape
def get_config(self):
config = super().get_config()
config.update({'scale': serialization_lib.serialize_keras_object(self.scale), 'offset': serialization_lib.serialize_keras_object(self.offset)})
return config
@classmethod
def from_config(cls, config, custom_objects=None):
config = config.copy()
config['scale'] = serialization_lib.deserialize_keras_object(config['scale'], custom_objects=custom_objects)
config['offset'] = serialization_lib.deserialize_keras_object(config['offset'], custom_objects=custom_objects)
return cls(**config)
|
A preprocessing layer which rescales input values to a new range.
This layer rescales every value of an input (often an image) by multiplying
by `scale` and adding `offset`.
For instance:
1. To rescale an input in the `[0, 255]` range
to be in the `[0, 1]` range, you would pass `scale=1./255`.
2. To rescale an input in the `[0, 255]` range to be in the `[-1, 1]` range,
you would pass `scale=1./127.5, offset=-1`.
The rescaling is applied both during training and inference. Inputs can be
of integer or floating point dtype, and by default the layer will output
floats.
**Note:** This layer is safe to use inside a `tf.data` pipeline
(independently of which backend you're using).
Args:
scale: Float, the scale to apply to the inputs.
offset: Float, the offset to apply to the inputs.
**kwargs: Base layer keyword arguments, such as `name` and `dtype`.
|
github-repos
|
def render(self, container, descender, state, space_below=0, first_line_only=False):
indent_first = (float(self.get_style('indent_first', container)) if state.initial else 0)
line_width = float(container.width)
line_spacing = self.get_style('line_spacing', container)
text_align = self.get_style('text_align', container)
tab_stops = self.get_style('tab_stops', container)
if (not tab_stops):
tab_width = (2 * self.get_style('font_size', container))
tab_stops = DefaultTabStops(tab_width)
saved_state = copy(state)
prev_state = copy(state)
max_line_width = 0
def typeset_line(line, last_line=False):
"Typeset `line` and, if no exception is raised, update the\n paragraph's internal rendering state."
nonlocal state, saved_state, max_line_width, descender, space_below
max_line_width = max(max_line_width, line.cursor)
advance = (line.ascender(container) if (descender is None) else line_spacing.advance(line, descender, container))
descender = line.descender(container)
line.advance = advance
total_advance = ((advance + (space_below if last_line else 0)) - descender)
if (container.remaining_height < total_advance):
raise EndOfContainer(saved_state)
assert container.advance2(advance)
line.typeset(container, text_align, last_line)
assert container.advance2((- descender))
state.initial = False
saved_state = copy(state)
return Line(tab_stops, line_width, container, significant_whitespace=self.significant_whitespace)
first_line = line = Line(tab_stops, line_width, container, indent_first, self.significant_whitespace)
while True:
try:
word = state.next_word()
except StopIteration:
break
try:
if (not line.append_word(word)):
for (first, second) in word.hyphenate(container):
if line.append_word(first):
state.prepend_word(second)
break
else:
state = prev_state
line = typeset_line(line)
if first_line_only:
break
continue
except NewLineException:
line.append(word.glyphs_span)
line = typeset_line(line, last_line=True)
if first_line_only:
break
prev_state = copy(state)
if line:
typeset_line(line, last_line=True)
if (self._width(container) == FlowableWidth.AUTO):
if (text_align == TextAlign.CENTER):
container.left -= (float((container.width - max_line_width)) / 2)
if (text_align == TextAlign.RIGHT):
container.left -= float((container.width - max_line_width))
return (max_line_width, first_line.advance, descender)
|
Typeset the paragraph
The paragraph is typeset in the given container starting below the
current cursor position of the container. When the end of the container
is reached, the rendering state is preserved to continue setting the
rest of the paragraph when this method is called with a new container.
Args:
container (Container): the container to render to
descender (float or None): descender height of the preceeding line
state (ParagraphState): the state where rendering will continue
first_line_only (bool): typeset only the first line
|
codesearchnet
|
def __init__(self, sender, persistence_path=''):
if persistence_path and PersistQueue is None:
raise ValueError('persistence_path argument requires persist-queue dependency to be installed')
elif persistence_path:
self._queue = PersistQueue(persistence_path)
else:
self._queue = Queue()
self._persistence_path = persistence_path
self._max_queue_length = 500
self._sender = sender
if sender:
self._sender.queue = self
|
Initializes a new instance of the class.
Args:
sender (:class:`SenderBase`) the sender object that will be used in conjunction with this queue.
persistence_path (str) if set, persist the queue on disk into the provided directory.
|
juraj-google-style
|
def __init__(self, output_path, open_function=open):
self._output_path = output_path
self._open_function = open_function
self._old_enabled = None
|
Initialize.
Args:
output_path: The path for the metrics data. If empty, no metrics are
collected.
open_function: A custom file opening function.
|
github-repos
|
def get_credentials(self):
return ReadOnlyCredentials(self.access_token, self.client_id, self.client_secret, self.refresh_token)
|
Get read-only credentials.
Returns:
class: Read-only credentials.
|
codesearchnet
|
def set(self, option, value=None):
option = self._container.optionxform(option)
if option in self.options():
self.__getitem__(option).value = value
else:
self.__setitem__(option, value)
return self
|
Set an option for chaining.
Args:
option (str): option name
value (str): value, default None
|
juraj-google-style
|
def measures(*measurements, **kwargs):
def _maybe_make(meas):
'Turn strings into Measurement objects if necessary.'
if isinstance(meas, Measurement):
return meas
elif isinstance(meas, six.string_types):
return Measurement(meas, **kwargs)
raise InvalidMeasurementType('Expected Measurement or string', meas)
if (kwargs and (len(measurements) != 1)):
raise InvalidMeasurementType('If @measures kwargs are provided, a single measurement name must be provided as a positional arg first.')
if ('outcome' in kwargs):
raise ValueError('Cannot specify outcome in measurement declaration!')
measurements = [_maybe_make(meas) for meas in measurements]
def decorate(wrapped_phase):
'Phase decorator to be returned.'
phase = phase_descriptor.PhaseDescriptor.wrap_or_copy(wrapped_phase)
duplicate_names = (set((m.name for m in measurements)) & set((m.name for m in phase.measurements)))
if duplicate_names:
raise DuplicateNameError('Measurement names duplicated', duplicate_names)
phase.measurements.extend(measurements)
return phase
return decorate
|
Decorator-maker used to declare measurements for phases.
See the measurements module docstring for examples of usage.
Args:
measurements: Measurement objects to declare, or a string name from which
to create a Measurement.
kwargs: Keyword arguments to pass to Measurement constructor if we're
constructing one. Note that if kwargs are provided, the length
of measurements must be 1, and that value must be a string containing
the measurement name. For valid kwargs, see the definition of the
Measurement class.
Returns:
A decorator that declares the measurement(s) for the decorated phase.
|
codesearchnet
|
def _parse_request_arguments(self, request):
inference_addresses = request.args.get('inference_address').split(',')
model_names = request.args.get('model_name').split(',')
model_versions = request.args.get('model_version').split(',')
model_signatures = request.args.get('model_signature').split(',')
if (len(model_names) != len(inference_addresses)):
raise common_utils.InvalidUserInputError(('Every model should have a ' + 'name and address.'))
return (inference_addresses, model_names, model_versions, model_signatures)
|
Parses comma separated request arguments
Args:
request: A request that should contain 'inference_address', 'model_name',
'model_version', 'model_signature'.
Returns:
A tuple of lists for model parameters
|
codesearchnet
|
def get_terminal_size():
try:
from IPython import get_ipython
ipython = get_ipython()
from ipykernel import zmqshell
if isinstance(ipython, zmqshell.ZMQInteractiveShell):
return (79, 24)
except Exception:
pass
try:
import shutil
(w, h) = shutil.get_terminal_size()
if (w and h):
return ((w - 1), h)
except Exception:
pass
try:
w = int(os.environ.get('COLUMNS'))
h = int(os.environ.get('LINES'))
if (w and h):
return (w, h)
except Exception:
pass
try:
import blessings
terminal = blessings.Terminal()
w = terminal.width
h = terminal.height
if (w and h):
return (w, h)
except Exception:
pass
try:
(w, h) = _get_terminal_size_linux()
if (w and h):
return (w, h)
except Exception:
pass
try:
(w, h) = _get_terminal_size_windows()
if (w and h):
return (w, h)
except Exception:
pass
try:
(w, h) = _get_terminal_size_tput()
if (w and h):
return (w, h)
except Exception:
pass
return (79, 24)
|
Get the current size of your terminal
Multiple returns are not always a good idea, but in this case it greatly
simplifies the code so I believe it's justified. It's not the prettiest
function but that's never really possible with cross-platform code.
Returns:
width, height: Two integers containing width and height
|
codesearchnet
|
def find_mip(self, direction, mechanism, purview, allow_neg=False):
alpha_min = float('inf')
probability = self.probability(direction, mechanism, purview)
for partition in mip_partitions(mechanism, purview, self.node_labels):
partitioned_probability = self.partitioned_probability(direction, partition)
alpha = log2((probability / partitioned_probability))
if (utils.eq(alpha, 0) or ((alpha < 0) and (not allow_neg))):
return AcRepertoireIrreducibilityAnalysis(state=self.mechanism_state(direction), direction=direction, mechanism=mechanism, purview=purview, partition=partition, probability=probability, partitioned_probability=partitioned_probability, node_labels=self.node_labels, alpha=0.0)
if ((abs(alpha_min) - abs(alpha)) > constants.EPSILON):
alpha_min = alpha
acria = AcRepertoireIrreducibilityAnalysis(state=self.mechanism_state(direction), direction=direction, mechanism=mechanism, purview=purview, partition=partition, probability=probability, partitioned_probability=partitioned_probability, node_labels=self.node_labels, alpha=alpha_min)
return acria
|
Find the ratio minimum information partition for a mechanism
over a purview.
Args:
direction (str): |CAUSE| or |EFFECT|
mechanism (tuple[int]): A mechanism.
purview (tuple[int]): A purview.
Keyword Args:
allow_neg (boolean): If true, ``alpha`` is allowed to be negative.
Otherwise, negative values of ``alpha`` will be treated as if
they were 0.
Returns:
AcRepertoireIrreducibilityAnalysis: The irreducibility analysis for
the mechanism.
|
codesearchnet
|
def del_hparam(self, name):
if hasattr(self, name):
delattr(self, name)
del self._hparam_types[name]
|
Removes the hyperparameter with key 'name'.
Does nothing if it isn't present.
Args:
name: Name of the hyperparameter.
|
codesearchnet
|
def __squid_to_guid(self, squid):
if not squid:
return ''
squid_match = self.__squid_pattern.match(squid)
guid = ''
if squid_match is not None:
guid = '{' +\
squid_match.group(1)[::-1]+'-' +\
squid_match.group(2)[::-1]+'-' +\
squid_match.group(3)[::-1]+'-' +\
squid_match.group(4)[::-1]+squid_match.group(5)[::-1] + '-'
for index in range(6, 12):
guid += squid_match.group(index)[::-1]
guid += '}'
return guid
|
Squished GUID (SQUID) to GUID.
A SQUID is a Squished/Compressed version of a GUID to use up less space
in the registry.
Args:
squid (str): Squished GUID.
Returns:
str: the GUID if a valid SQUID provided.
|
juraj-google-style
|
def persist_experiment(experiment):
from benchbuild.utils.schema import Experiment, Session
session = Session()
cfg_exp = experiment.id
LOG.debug("Using experiment ID stored in config: %s", cfg_exp)
exps = session.query(Experiment).filter(Experiment.id == cfg_exp)
desc = str(CFG["experiment_description"])
name = experiment.name
if exps.count() == 0:
newe = Experiment()
newe.id = cfg_exp
newe.name = name
newe.description = desc
session.add(newe)
ret = newe
else:
exps.update({'name': name, 'description': desc})
ret = exps.first()
try:
session.commit()
except IntegrityError:
session.rollback()
persist_experiment(experiment)
return (ret, session)
|
Persist this experiment in the benchbuild database.
Args:
experiment: The experiment we want to persist.
|
juraj-google-style
|
def __init__(self):
super(JLinkSpeedInfo, self).__init__()
self.SizeOfStruct = ctypes.sizeof(self)
|
Initializes the ``JLinkSpeedInfo`` instance.
Sets the size of the structure.
Args:
self (JLinkSpeedInfo): the ``JLinkSpeedInfo`` instance
Returns:
``None``
|
juraj-google-style
|
def connect_sync(self, connection_id, connection_string):
calldone = threading.Event()
results = {}
def connect_done(callback_connid, callback_adapterid, callback_success, failure_reason):
results['success'] = callback_success
results['failure_reason'] = failure_reason
calldone.set()
self.connect_async(connection_id, connection_string, connect_done)
calldone.wait()
return results
|
Synchronously connect to a device
Args:
connection_id (int): A unique identifier that will refer to this connection
connection_string (string): A DeviceAdapter specific string that can be used to connect to
a device using this DeviceAdapter.
Returns:
dict: A dictionary with two elements
'success': a bool with the result of the connection attempt
'failure_reason': a string with the reason for the failure if we failed
|
codesearchnet
|
def _get_programs_dict():
global __programs_dict
if (__programs_dict is not None):
return __programs_dict
d = __programs_dict = OrderedDict()
for pkgname in COLLABORATORS_S:
try:
package = importlib.import_module(pkgname)
except ImportError:
continue
path_ = os.path.join(os.path.split(package.__file__)[0], 'scripts')
bulk = a99.get_exe_info(path_, flag_protected=True)
d[pkgname] = {'description': a99.get_obj_doc0(package), 'exeinfo': bulk}
return __programs_dict
|
Builds and returns programs dictionary
This will have to import the packages in COLLABORATORS_S in order to get their absolute path.
Returns:
dictionary: {"packagename": [ExeInfo0, ...], ...}
"packagename" examples: "f311.explorer", "numpy"
|
codesearchnet
|
def add_comment(self, line):
if (not isinstance(self.last_item, Comment)):
comment = Comment(self._structure)
self._structure.append(comment)
self.last_item.add_line(line)
return self
|
Add a Comment object to the section
Used during initial parsing mainly
Args:
line (str): one line in the comment
|
codesearchnet
|
def from_dim_sizes(dim_sizes):
with ops.name_scope(None, 'RaggedTensorDynamicShapeFromDimensionSizes', [dim_sizes]):
dim_sizes = tuple((ops.convert_to_tensor(size, preferred_dtype=dtypes.int64, name='dim_sizes') for size in dim_sizes))
inner_split = 0
for dim, dim_size in enumerate(dim_sizes):
if dim_size.shape.ndims == 1:
inner_split = dim + 1
elif dim_size.shape.ndims != 0:
raise ValueError('Each dim_size must be a scalar or a vector')
return RaggedTensorDynamicShape(dim_sizes[:inner_split], dim_sizes[inner_split:])
|
Constructs a ragged shape from a list of dimension sizes.
This list contains a single tensor for each dimension, where the tensor
is a scalar if the dimension is uniform, or a vector if the dimension is
ragged.
Args:
dim_sizes: List of int32 or int64 scalars or vectors.
Returns:
A RaggedTensorDynamicShape.
|
github-repos
|
def basis(sample_paths, time_index):
sample_paths = tf.convert_to_tensor(sample_paths, name='sample_paths')
if sample_paths.shape.rank == 3:
sample_paths = tf.expand_dims(sample_paths, axis=0)
shape = tf.shape(sample_paths)
num_samples = shape[1]
batch_size = shape[0]
dim = sample_paths.shape[-1]
slice_samples = tf.slice(sample_paths, [0, 0, time_index, 0], [batch_size, num_samples, 1, dim])
samples_centered = slice_samples - tf.math.reduce_mean(slice_samples, axis=1, keepdims=True)
grid = tf.range(degree + 1, dtype=samples_centered.dtype)
grid = tf.meshgrid(*dim * [grid])
grid = tf.reshape(tf.stack(grid, -1), [-1, dim])
basis_expansion = tf.reduce_prod(samples_centered ** grid, axis=-1)
return tf.transpose(basis_expansion, [0, 2, 1])
|
Computes polynomial basis expansion at the given sample points.
Args:
sample_paths: A `Tensor` of either `flaot32` or `float64` dtype and of
either shape `[num_samples, num_times, dim]` or
`[batch_size, num_samples, num_times, dim]`.
time_index: An integer scalar `Tensor` that corresponds to the time
coordinate at which the basis function is computed.
Returns:
A `Tensor`s of shape `[batch_size, (degree + 1)**dim, num_samples]`.
|
github-repos
|
def TotalFees(self):
amount = Fixed8.Zero()
for tx in self.Transactions:
amount += tx.SystemFee()
return amount
|
Get the total transaction fees in the block.
Returns:
Fixed8:
|
codesearchnet
|
def parse_table_data(lines):
data = '\n'.join([i.rstrip() for i in lines if ((not i.startswith(('^', '!', '
if data:
return read_csv(StringIO(data), index_col=None, sep='\t')
else:
return DataFrame()
|
Parse list of lines from SOFT file into DataFrame.
Args:
lines (:obj:`Iterable`): Iterator over the lines.
Returns:
:obj:`pandas.DataFrame`: Table data.
|
codesearchnet
|
def depth_soil_density(self, value=None):
if value is not None:
try:
value = float(value)
except ValueError:
raise ValueError(
'value {} need to be of type float '
'for field `depth_soil_density`'.format(value))
self._depth_soil_density = value
|
Corresponds to IDD Field `depth_soil_density`
Args:
value (float): value for IDD Field `depth_soil_density`
Unit: kg/m3
if `value` is None it will not be checked against the
specification and is assumed to be a missing value
Raises:
ValueError: if `value` is not a valid value
|
juraj-google-style
|
def _remove_files(files):
logger.debug("Request for file removal (_remove_files()).")
for fn in files:
if os.path.exists(fn):
logger.debug("Removing '%s'." % fn)
os.remove(fn)
|
Remove all given files.
Args:
files (list): List of filenames, which will be removed.
|
juraj-google-style
|
def set_seed(seed: int, deterministic: bool=False):
random.seed(seed)
np.random.seed(seed)
if is_torch_available():
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if deterministic:
torch.use_deterministic_algorithms(True)
if is_torch_mlu_available():
torch.mlu.manual_seed_all(seed)
if is_torch_musa_available():
torch.musa.manual_seed_all(seed)
if is_torch_npu_available():
torch.npu.manual_seed_all(seed)
if is_torch_hpu_available():
torch.hpu.manual_seed_all(seed)
if is_torch_xpu_available():
torch.xpu.manual_seed_all(seed)
if is_tf_available():
import tensorflow as tf
tf.random.set_seed(seed)
if deterministic:
tf.config.experimental.enable_op_determinism()
|
Helper function for reproducible behavior to set the seed in `random`, `numpy`, `torch` and/or `tf` (if installed).
Args:
seed (`int`):
The seed to set.
deterministic (`bool`, *optional*, defaults to `False`):
Whether to use deterministic algorithms where available. Can slow down training.
|
github-repos
|
def validate(self, graph):
if not nx.is_directed_acyclic_graph(graph):
raise DirectedAcyclicGraphInvalid(graph_name=self._name)
|
Validate the graph by checking whether it is a directed acyclic graph.
Args:
graph (DiGraph): Reference to a DiGraph object from NetworkX.
Raises:
DirectedAcyclicGraphInvalid: If the graph is not a valid dag.
|
juraj-google-style
|
def get_structure(atoms, cls=None):
symbols = atoms.get_chemical_symbols()
positions = atoms.get_positions()
lattice = atoms.get_cell()
cls = Structure if cls is None else cls
return cls(lattice, symbols, positions,
coords_are_cartesian=True)
|
Returns pymatgen structure from ASE Atoms.
Args:
atoms: ASE Atoms object
cls: The Structure class to instantiate (defaults to pymatgen structure)
Returns:
Equivalent pymatgen.core.structure.Structure
|
juraj-google-style
|
def Verify(self):
return getattr(self, self._KEY) is not None
|
We can properly index this instance into a Map.
Returns:
True if the value in the attribute named by self._KEY for this class
is not None. False otherwise.
|
github-repos
|
def set_epsilon(value):
global _EPSILON
_EPSILON = value
|
Sets the value of the fuzz factor used in numeric expressions.
Args:
value: float. New value of epsilon.
Example:
>>> tf.keras.backend.epsilon()
1e-07
>>> tf.keras.backend.set_epsilon(1e-5)
>>> tf.keras.backend.epsilon()
1e-05
>>> tf.keras.backend.set_epsilon(1e-7)
|
github-repos
|
def __init__(self, state_handler: sdk_worker.CachingStateHandler, transform_id: str, key_coder: coders.Coder, window_coder: coders.Coder) -> None:
self._state_handler = state_handler
self._transform_id = transform_id
self._key_coder = key_coder
self._window_coder = window_coder
self._timers_info: Dict[str, TimerInfo] = {}
self._all_states: Dict[tuple, FnApiUserRuntimeStateTypes] = {}
|
Initialize a ``FnApiUserStateContext``.
Args:
state_handler: A StateServicer object.
transform_id: The name of the PTransform that this context is associated.
key_coder: Coder for the key type.
window_coder: Coder for the window type.
|
github-repos
|
def __le__(self, other: 'TensorFluent') -> 'TensorFluent':
return self._binary_op(self, other, tf.less_equal, tf.float32)
|
Returns a TensorFluent for the less-than-or-equal relational operator.
Args:
self: The first operand.
other: The second operand.
|
juraj-google-style
|
def _handle_emailauth(maildomain='', message=''):
print('SteamGuard requires email authentication...')
emailauth = input(('Please enter the code sent to your mail address at "%s": ' % maildomain))
emailauth.upper()
return emailauth
|
Called when SteamGuard requires authentication via e-mail.
Asks the user to enter the code.
Args:
maildomain: Optional. The mail domain of the e-mail address the SteamGuard
code is send to.
message: Optional. A message from Steam service.
Returns:
A string containing the code.
|
codesearchnet
|
def load_transcripts(adapter, transcripts_lines=None, build='37', ensembl_genes=None):
ensembl_genes = ensembl_genes or adapter.ensembl_genes(build)
if transcripts_lines is None:
transcripts_lines = fetch_ensembl_transcripts(build=build)
transcripts_dict = parse_transcripts(transcripts_lines)
for ens_tx_id in list(transcripts_dict):
parsed_tx = transcripts_dict[ens_tx_id]
ens_gene_id = parsed_tx['ensembl_gene_id']
gene_obj = ensembl_genes.get(ens_gene_id)
if not gene_obj:
transcripts_dict.pop(ens_tx_id)
LOG.debug("Gene %s does not exist in build %s", ens_gene_id, build)
continue
parsed_tx['hgnc_id'] = gene_obj['hgnc_id']
parsed_tx['primary_transcripts'] = set(gene_obj.get('primary_transcripts', []))
ref_seq_transcripts = 0
nr_primary_transcripts = 0
nr_transcripts = len(transcripts_dict)
transcript_objs = []
with progressbar(transcripts_dict.values(), label="Building transcripts", length=nr_transcripts) as bar:
for tx_data in bar:
tx_data['is_primary'] = False
primary_transcripts = tx_data['primary_transcripts']
refseq_identifier = None
refseq_identifiers = []
for category in TRANSCRIPT_CATEGORIES:
identifiers = tx_data[category]
if not identifiers:
continue
for refseq_id in identifiers:
refseq_identifiers.append(refseq_id)
ref_seq_transcripts += 1
if refseq_id in primary_transcripts:
refseq_identifier = refseq_id
tx_data['is_primary'] = True
nr_primary_transcripts += 1
if not refseq_identifier:
refseq_identifier = refseq_id
if refseq_identifier:
tx_data['refseq_id'] = refseq_identifier
if refseq_identifiers:
tx_data['refseq_identifiers'] = refseq_identifiers
tx_obj = build_transcript(tx_data, build)
transcript_objs.append(tx_obj)
LOG.info("Loading transcripts...")
if len(transcript_objs) > 0:
adapter.load_transcript_bulk(transcript_objs)
LOG.info('Number of transcripts in build %s: %s', build, nr_transcripts)
LOG.info('Number of transcripts with refseq identifier: %s', ref_seq_transcripts)
LOG.info('Number of primary transcripts: %s', nr_primary_transcripts)
return transcript_objs
|
Load all the transcripts
Transcript information is from ensembl.
Args:
adapter(MongoAdapter)
transcripts_lines(iterable): iterable with ensembl transcript lines
build(str)
ensembl_genes(dict): Map from ensembl_id -> HgncGene
Returns:
transcript_objs(list): A list with all transcript objects
|
juraj-google-style
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.