code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def create_downloader_of_type(type_name):
downloaders = available_downloaders()
if (type_name not in downloaders.keys()):
raise UnknownDownloaderException(('Unknown downloader: %s' % (type_name,)))
return downloaders[type_name]()
|
Create an instance of the downloader with the given name.
Args:
type_name: The name of a downloader.
Returns:
An instance of the downloader with the given type.
|
codesearchnet
|
def fetch_tuples(self, max_tuples=20, timeout=None):
tuples = list()
if (timeout is None):
while (len(tuples) < max_tuples):
fetcher = self._data_fetcher
if (not fetcher):
break
tuples.append(fetcher.items.get())
return tuples
timeout = float(timeout)
end = (time.time() + timeout)
while (len(tuples) < max_tuples):
qto = (end - time.time())
if (qto <= 0):
break
try:
fetcher = self._data_fetcher
if (not fetcher):
break
tuples.append(fetcher.items.get(timeout=qto))
except queue.Empty:
break
return tuples
|
Fetch a number of tuples from this view.
Fetching of data must have been started with
:py:meth:`start_data_fetch` before calling this method.
If ``timeout`` is ``None`` then the returned list will
contain ``max_tuples`` tuples. Otherwise if the timeout is reached
the list may contain less than ``max_tuples`` tuples.
Args:
max_tuples(int): Maximum number of tuples to fetch.
timeout(float): Maximum time to wait for ``max_tuples`` tuples.
Returns:
list: List of fetched tuples.
.. versionadded:: 1.12
|
codesearchnet
|
def CheckForBadCharacters(filename, lines, error):
for (linenum, line) in enumerate(lines):
if (unicode_escape_decode('�') in line):
error(filename, linenum, 'readability/utf8', 5, 'Line contains invalid UTF-8 (or Unicode replacement character).')
if ('\x00' in line):
error(filename, linenum, 'readability/nul', 5, 'Line contains NUL byte.')
|
Logs an error for each line containing bad characters.
Two kinds of bad characters:
1. Unicode replacement characters: These indicate that either the file
contained invalid UTF-8 (likely) or Unicode replacement characters (which
it shouldn't). Note that it's possible for this to throw off line
numbering if the invalid UTF-8 occurred adjacent to a newline.
2. NUL bytes. These are problematic for some tools.
Args:
filename: The name of the current file.
lines: An array of strings, each representing a line of the file.
error: The function to call with any errors found.
|
codesearchnet
|
def prose_wc(args):
if (args.file is None):
return 1
if args.split_hyphens:
INTERSTITIAL_PUNCTUATION.append(re.compile('-'))
content = args.file.read().decode('utf-8')
filename = args.file.name
body = strip_frontmatter(content)
parsed = markdown_to_text(body)
result = wc(filename, body, parsed=parsed, is_jekyll=(body != content))
if (args.update and (filename != '_stdin_') and (result['counts']['type'] == 'jekyll')):
update_file(filename, result, content, args.indent)
else:
_mockable_print({'yaml': yaml.safe_dump(result, default_flow_style=False, indent=args.indent), 'json': json.dumps(result, indent=args.indent), 'default': default_dump(result)}[args.format])
return 0
|
Processes data provided to print a count object, or update a file.
Args:
args: an ArgumentParser object returned by setup()
|
codesearchnet
|
def _check_middleware_dependencies(concerned_object, required_middleware):
declared_middleware = getattr(settings, 'MIDDLEWARE', None)
if (declared_middleware is None):
declared_middleware = settings.MIDDLEWARE_CLASSES
matching_middleware = [mw for mw in declared_middleware if (mw in required_middleware)]
if (required_middleware != matching_middleware):
raise AssertionError('{} requires middleware order {} but matching middleware was {}'.format(concerned_object, required_middleware, matching_middleware))
|
Check required middleware dependencies exist and in the correct order.
Args:
concerned_object (object): The object for which the required
middleware is being checked. This is used for error messages only.
required_middleware (list of String): An ordered list representing the
required middleware to be checked.
Usage:
Add in __init__ method to a Middleware class to have its dependencies
checked on startup.
def __init__(self):
super(SomeMiddleware, self).__init__()
_check_middleware_dependencies(self, required_middleware=[
'edx_django_utils.cache.middleware.RequestCacheMiddleware',
])
Raises:
AssertionError if the provided dependencies don't appear in
MIDDLEWARE_CLASSES in the correct order.
|
codesearchnet
|
def cardinal(self, to):
return sum(1 for _ in filter(
lambda d: not d.external and d.target in to, self.dependencies))
|
Return the number of dependencies of this module to the given node.
Args:
to (Package/Module): the target node.
Returns:
int: number of dependencies.
|
juraj-google-style
|
def vert_tab_pos(self, positions):
if positions == 'clear':
self.send(chr(27)+'B'+chr(0))
return
if positions.min < 1 or positions.max >255:
raise RuntimeError('Invalid position parameter in function horzTabPos')
sendstr = chr(27) + 'D'
if len(positions)<=16:
for position in positions:
sendstr += chr(position)
self.send(sendstr + chr(0))
else:
raise RuntimeError('Too many positions in function vertTabPos')
|
Sets tab positions, up to a maximum of 32 positions. Also can clear tab positions.
Args:
positions -- Either a list of tab positions (between 1 and 255), or 'clear'.
Returns:
None
Raises:
RuntimeError: Invalid position parameter.
RuntimeError: Too many positions.
|
juraj-google-style
|
def update_or_create_all(cls, list_of_kwargs, keys=[]):
objs = []
for kwargs in list_of_kwargs:
filter_kwargs = subdict(kwargs, keys)
if (filter_kwargs == {}):
obj = None
else:
obj = cls.first(**filter_kwargs)
if (obj is not None):
for (key, value) in kwargs.iteritems():
if ((key not in keys) and (key not in cls._no_overwrite_)):
setattr(obj, key, value)
else:
obj = cls.new(**kwargs)
objs.append(obj)
try:
return cls.add_all(objs)
except:
cls.session.rollback()
raise
|
Batch method for updating a list of instances and
creating them if required
Args:
list_of_kwargs(list of dicts): A list of dicts where
each dict denotes the keyword args that you would pass
to the create method separately
keys (list, optional): A list of keys to use for the
initial finding step. Matching is done only on these
attributes.
Examples:
>>> Customer.update_or_create_all([
... {'name': 'Vicky', 'email': 'vicky@x.com', 'age': 34},
... {'name': 'Ron', 'age': 40, 'email': 'ron@x.com',
... 'gender': 'Male'}], keys=['name', 'email'])
|
codesearchnet
|
def _find_variables(graph_def: graph_pb2.GraphDef) -> Mapping[str, node_def_pb2.NodeDef]:
variable_nodes = {}
for var_node in filter(_is_variable, graph_def.node):
shared_name = str(var_node.attr['shared_name'].s, encoding='utf-8')
variable_nodes[shared_name] = var_node
for func in graph_def.library.function:
for var_node in filter(_is_variable, func.node_def):
variable_nodes[shared_name] = var_node
return variable_nodes
|
Finds all variables within `graph_def`.
This function makes sense for TF 1 graphs only, as it depends on
`shared_name`.
Args:
graph_def: `GraphDef` to find variables from.
Returns:
A mapping of `shared_name` -> `NodeDef` corresponding to a variable op.
|
github-repos
|
def _head(self, client_kwargs):
with _handle_azure_exception():
if 'file_name' in client_kwargs:
result = self.client.get_file_properties(**client_kwargs)
elif 'directory_name' in client_kwargs:
result = self.client.get_directory_properties(**client_kwargs)
else:
result = self.client.get_share_properties(**client_kwargs)
return self._model_to_dict(result)
|
Returns object or bucket HTTP header.
Args:
client_kwargs (dict): Client arguments.
Returns:
dict: HTTP header.
|
juraj-google-style
|
def write(self, output_stream, kmip_version=enums.KMIPVersion.KMIP_1_0):
local_stream = BytearrayStream()
if self._device_serial_number is not None:
self._device_serial_number.write(
local_stream,
kmip_version=kmip_version
)
if self._password is not None:
self._password.write(
local_stream,
kmip_version=kmip_version
)
if self._device_identifier is not None:
self._device_identifier.write(
local_stream,
kmip_version=kmip_version
)
if self._network_identifier is not None:
self._network_identifier.write(
local_stream,
kmip_version=kmip_version)
if self._machine_identifier is not None:
self._machine_identifier.write(
local_stream,
kmip_version=kmip_version
)
if self._media_identifier is not None:
self._media_identifier.write(
local_stream,
kmip_version=kmip_version
)
self.length = local_stream.length()
super(DeviceCredential, self).write(
output_stream,
kmip_version=kmip_version
)
output_stream.write(local_stream.buffer)
|
Write the data encoding the DeviceCredential struct to a stream.
Args:
output_stream (stream): A data stream in which to encode object
data, supporting a write method; usually a BytearrayStream
object.
kmip_version (KMIPVersion): An enumeration defining the KMIP
version with which the object will be encoded. Optional,
defaults to KMIP 1.0.
|
juraj-google-style
|
def _construct(configdict, prefix, ua):
if (not ua):
raise UserAgentError("User_agent parameter missing. It can be your project's name for example.")
preprefix = configdict.get('preprefix')
if preprefix:
user_agent = ('%s:' % preprefix)
else:
user_agent = ''
if prefix:
user_agent = ('%s%s-' % (user_agent, prefix))
user_agent = ('%s%s' % (user_agent, ua))
return user_agent
|
Construct user agent
Args:
configdict (str): Additional configuration for user agent
prefix (str): Text to put at start of user agent
ua (str): Custom user agent text
Returns:
str: Full user agent string
|
codesearchnet
|
def round(cls, x: 'TensorFluent') -> 'TensorFluent':
return cls._unary_op(x, tf.round, tf.float32)
|
Returns a TensorFluent for the round function.
Args:
x: The input fluent.
Returns:
A TensorFluent wrapping the round function.
|
juraj-google-style
|
def __init__(self,
api,
path,
buffer_size=DEFAULT_BUFFER_SIZE,
max_request_size=MAX_REQUEST_SIZE,
offset=0):
self._api = api
self._path = path
self.name = api_utils._unquote_filename(path)
self.closed = False
assert buffer_size <= max_request_size
self._buffer_size = buffer_size
self._max_request_size = max_request_size
self._offset = offset
self._buffer = _Buffer()
self._etag = None
get_future = self._get_segment(offset, self._buffer_size, check_response=False)
status, headers, content = self._api.head_object(path)
errors.check_status(status, [200], path, resp_headers=headers, body=content)
self._file_size = long(common.get_stored_content_length(headers))
self._check_etag(headers.get('etag'))
self._buffer_future = None
if self._file_size != 0:
content, check_response_closure = get_future.get_result()
check_response_closure()
self._buffer.reset(content)
self._request_next_buffer()
|
Constructor.
Args:
api: A StorageApi instance.
path: Quoted/escaped path to the object, e.g. /mybucket/myfile
buffer_size: buffer size. The ReadBuffer keeps
one buffer. But there may be a pending future that contains
a second buffer. This size must be less than max_request_size.
max_request_size: Max bytes to request in one urlfetch.
offset: Number of bytes to skip at the start of the file. If None, 0 is
used.
|
juraj-google-style
|
def dict_setdiff(dict_, negative_keys):
keys = [key for key in six.iterkeys(dict_) if (key not in set(negative_keys))]
subdict_ = dict_subset(dict_, keys)
return subdict_
|
r"""
returns a copy of dict_ without keys in the negative_keys list
Args:
dict_ (dict):
negative_keys (list):
|
codesearchnet
|
def _assert_same_base_type(items, expected_type=None):
r
original_expected_type = expected_type
mismatch = False
for item in items:
if item is not None:
item_type = base_dtype(item.dtype)
if not expected_type:
expected_type = item_type
elif expected_type != item_type:
mismatch = True
break
if mismatch:
expected_type = original_expected_type
original_item_str = None
get_name = lambda x: x.name if hasattr(x, 'name') else str(x)
for item in items:
if item is not None:
item_type = base_dtype(item.dtype)
if not expected_type:
expected_type = item_type
original_item_str = get_name(item)
elif expected_type != item_type:
raise ValueError(
'{}, type={}, must be of the same type ({}){}.'.format(
get_name(item),
item_type,
expected_type,
((' as {}'.format(original_item_str))
if original_item_str else '')))
return expected_type
else:
return expected_type
|
r"""Asserts all items are of the same base type.
Args:
items: List of graph items (e.g., `Variable`, `Tensor`, `SparseTensor`,
`Operation`, or `IndexedSlices`). Can include `None` elements, which
will be ignored.
expected_type: Expected type. If not specified, assert all items are
of the same base type.
Returns:
Validated type, or none if neither expected_type nor items provided.
Raises:
ValueError: If any types do not match.
|
juraj-google-style
|
def _perform_action(self, params, return_dict=True):
action = self.get_data(
"droplets/%s/actions/" % self.id,
type=POST,
params=params
)
if return_dict:
return action
else:
action = action[u'action']
return_action = Action(token=self.token)
for attr in action.keys():
setattr(return_action, attr, action[attr])
return return_action
|
Perform a droplet action.
Args:
params (dict): parameters of the action
Optional Args:
return_dict (bool): Return a dict when True (default),
otherwise return an Action.
Returns dict or Action
|
juraj-google-style
|
def remove_pos_arg_placeholders(alias_command):
split_command = shlex.split(alias_command)
boundary_index = len(split_command)
for i, subcommand in enumerate(split_command):
if not re.match('^[a-z]', subcommand.lower()) or i > COLLISION_CHECK_LEVEL_DEPTH:
boundary_index = i
break
return ' '.join(split_command[:boundary_index]).lower()
|
Remove positional argument placeholders from alias_command.
Args:
alias_command: The alias command to remove from.
Returns:
The alias command string without positional argument placeholder.
|
juraj-google-style
|
def ChiSquared(target_frequency):
def inner(text):
text = ''.join(text)
return (- chi_squared(frequency_analyze(text), target_frequency))
return inner
|
Score a text by comparing its frequency distribution against another.
Note:
It is easy to be penalised without knowing it when using this scorer.
English frequency ngrams are capital letters, meaning when using it
any text you score against must be all capitals for it to give correct results.
I am aware of the issue and will work on a fix.
Todo:
Maybe include paramter for ngram size. Havent had a use case for this yet.
Once there is evidence it is needed, I will add it.
Example:
>>> fitness = ChiSquared(english.unigrams)
>>> fitness("ABC")
-32.2
Args:
target_frequency (dict): symbol to frequency mapping of the distribution to compare with
|
codesearchnet
|
def __init__(self, analyzer_class):
super(HashTaggingAnalysisPlugin, self).__init__()
self._analysis_queue_timeout = self.DEFAULT_QUEUE_TIMEOUT
self._analyzer_started = False
self._comment = 'Tag applied by {0:s} analysis plugin'.format(self.NAME)
self._event_identifiers_by_pathspec = collections.defaultdict(list)
self._hash_pathspecs = collections.defaultdict(list)
self._requester_class = None
self._time_of_last_status_log = time.time()
self.hash_analysis_queue = Queue.Queue()
self.hash_queue = Queue.Queue()
self._analyzer = analyzer_class(self.hash_queue, self.hash_analysis_queue)
|
Initializes a hash tagging analysis plugin.
Args:
analyzer_class (type): a subclass of HashAnalyzer that will be
instantiated by the plugin.
|
juraj-google-style
|
def match(self, path):
this = self.segments
that = path.split('/')
current_var = None
bindings = {}
segment_count = self.segment_count
j = 0
for i in range(0, len(this)):
if j >= len(that):
break
if this[i].kind == _TERMINAL:
if this[i].literal == '*':
bindings[current_var] = that[j]
j += 1
elif this[i].literal == '**':
until = j + len(that) - segment_count + 1
segment_count += len(that) - segment_count
bindings[current_var] = '/'.join(that[j:until])
j = until
elif this[i].literal != that[j]:
raise ValidationException(
'mismatched literal: \'%s\' != \'%s\'' % (
this[i].literal, that[j]))
else:
j += 1
elif this[i].kind == _BINDING:
current_var = this[i].literal
if j != len(that) or j != segment_count:
raise ValidationException(
'match error: could not render from the path template: {}'
.format(path))
return bindings
|
Matches a fully qualified path template string.
Args:
path (str): A fully qualified path template string.
Returns:
dict: Var names to matched binding values.
Raises:
ValidationException: If path can't be matched to the template.
|
juraj-google-style
|
def from_cif_file(cif_file, source='', comment=''):
r = CifParser(cif_file)
structure = r.get_structures()[0]
return Header(structure, source, comment)
|
Static method to create Header object from cif_file
Args:
cif_file: cif_file path and name
source: User supplied identifier, i.e. for Materials Project this
would be the material ID number
comment: User comment that goes in header
Returns:
Header Object
|
juraj-google-style
|
def argmin(x, axis=None, keepdims=False):
if any_symbolic_tensors((x,)):
return Argmin(axis=axis, keepdims=keepdims).symbolic_call(x)
return backend.numpy.argmin(x, axis=axis, keepdims=keepdims)
|
Returns the indices of the minimum values along an axis.
Args:
x: Input tensor.
axis: By default, the index is into the flattened tensor, otherwise
along the specified axis.
keepdims: If this is set to `True`, the axes which are reduced are left
in the result as dimensions with size one. Defaults to `False`.
Returns:
Tensor of indices. It has the same shape as `x`, with the dimension
along `axis` removed.
Example:
>>> x = keras.ops.arange(6).reshape(2, 3) + 10
>>> x
array([[10, 11, 12],
[13, 14, 15]], dtype=int32)
>>> keras.ops.argmin(x)
array(0, dtype=int32)
>>> keras.ops.argmin(x, axis=0)
array([0, 0, 0], dtype=int32)
>>> keras.ops.argmin(x, axis=1)
array([0, 0], dtype=int32)
|
github-repos
|
def user_agent_detail(self, **kwargs):
path = ('%s/%s/user_agent_detail' % (self.manager.path, self.get_id()))
return self.manager.gitlab.http_get(path, **kwargs)
|
Get the user agent detail.
Args:
**kwargs: Extra options to send to the server (e.g. sudo)
Raises:
GitlabAuthenticationError: If authentication is not correct
GitlabGetError: If the server cannot perform the request
|
codesearchnet
|
def inverse_removing(self, words_to_remove):
mask = np.ones(self.as_np.shape[0], dtype='bool')
mask[self.__get_idxs(words_to_remove)] = False
if not self.bow:
return ''.join([self.as_list[i] if mask[i]
else 'UNKWORDZ' for i in range(mask.shape[0])])
return ''.join([self.as_list[v] for v in mask.nonzero()[0]])
|
Returns a string after removing the appropriate words.
If self.bow is false, replaces word with UNKWORDZ instead of removing
it.
Args:
words_to_remove: list of ids (ints) to remove
Returns:
original raw string with appropriate words removed.
|
juraj-google-style
|
def mod_replace(match, sphinx_modules):
sphinx_modules.append(match.group("module"))
return "`{}`_".format(match.group("value"))
|
Convert Sphinx ``:mod:`` to plain reST link.
Args:
match (_sre.SRE_Match): A match (from ``re``) to be used
in substitution.
sphinx_modules (list): List to be track the modules that have been
encountered.
Returns:
str: The ``match`` converted to a link.
|
juraj-google-style
|
def clean_title(title):
date_pattern = re.compile('\\W*\\d{1,2}[/\\-.]\\d{1,2}[/\\-.](?=\\d*)(?:.{4}|.{2})\\W*')
title = date_pattern.sub(' ', title)
title = re.sub('\\s{2,}', ' ', title)
title = title.strip()
return title
|
Clean title -> remove dates, remove duplicated spaces and strip title.
Args:
title (str): Title.
Returns:
str: Clean title without dates, duplicated, trailing and leading spaces.
|
codesearchnet
|
def __call__(self, input_tensor: core.Tensor) -> Mapping[str, core.Tensor]:
out = math_ops.matmul(input_tensor, self.filters)
return {'output': out}
|
Performs a matrix multiplication.
Args:
input_tensor: Input tensor to matmul with the filter.
Returns:
A map of: output key -> output result.
|
github-repos
|
def header(self, key, value):
if type(key) is tuple:
key, value = str(key[0]), key[1]
headers = {key: value}
self._headers.extend(headers)
|
Defines a new response header.
Alias to ``Response.header()``.
Arguments:
header (str): header name.
value (str): header value.
Returns:
self: ``pook.Response`` current instance.
|
juraj-google-style
|
def localopt(self, forcefield='mmff94', steps=500):
pbmol = pb.Molecule(self._obmol)
pbmol.localopt(forcefield=forcefield, steps=steps)
self._obmol = pbmol.OBMol
|
A wrapper to pybel's localopt method to optimize a Molecule.
Args:
forcefield: Default is mmff94. Options are 'gaff', 'ghemical',
'mmff94', 'mmff94s', and 'uff'.
steps: Default is 500.
|
juraj-google-style
|
def _detect(self):
results = []
self.results = []
self.visited_all_paths = {}
for contract in self.slither.contracts:
for function in contract.functions:
if (function.is_implemented and (function.contract == contract)):
if function.contains_assembly:
continue
uninitialized_local_variables = [v for v in function.local_variables if ((not v.is_storage) and v.uninitialized)]
function.entry_point.context[self.key] = uninitialized_local_variables
self._detect_uninitialized(function, function.entry_point, [])
all_results = list(set(self.results))
for (function, uninitialized_local_variable) in all_results:
var_name = uninitialized_local_variable.name
info = '{} in {}.{} ({}) is a local variable never initialiazed\n'
info = info.format(var_name, function.contract.name, function.name, uninitialized_local_variable.source_mapping_str)
json = self.generate_json_result(info)
self.add_variable_to_json(uninitialized_local_variable, json)
self.add_function_to_json(function, json)
results.append(json)
return results
|
Detect uninitialized local variables
Recursively visit the calls
Returns:
dict: [contract name] = set(local variable uninitialized)
|
codesearchnet
|
def test_correctness_2_factor_hull_white_consistency(self, valuation_method, error_tol):
dtype = tf.float64
expiries = np.array([1.0])
fixed_leg_payment_times = np.array([1.25, 1.5, 1.75, 2.0])
fixed_leg_daycount_fractions = 0.25 * np.ones_like(fixed_leg_payment_times)
fixed_leg_coupon = 0.011 * np.ones_like(fixed_leg_payment_times)
zero_rate_fn = lambda x: 0.01 * tf.ones_like(x, dtype=dtype)
mu = 0.03
vol1 = 0.02
vol2 = 0.01
eff_vol = np.sqrt(vol1 ** 2 + vol2 ** 2)
hjm_price = tff.models.hjm.swaption_price(expiries=expiries, fixed_leg_payment_times=fixed_leg_payment_times, fixed_leg_daycount_fractions=fixed_leg_daycount_fractions, fixed_leg_coupon=fixed_leg_coupon, reference_rate_fn=zero_rate_fn, notional=100.0, num_hjm_factors=2, mean_reversion=[mu, mu], volatility=[vol1, vol2], num_samples=25000, valuation_method=valuation_method, time_step_finite_difference=0.05, num_grid_points_finite_difference=251, time_step=0.1, random_type=tff.math.random.RandomType.STATELESS_ANTITHETIC, seed=[1, 2], dtype=dtype)
hjm_price = self.evaluate(hjm_price)
hw_price = tff.models.hull_white.swaption_price(expiries=expiries, floating_leg_start_times=[0], floating_leg_end_times=[0], floating_leg_daycount_fractions=[0], fixed_leg_payment_times=fixed_leg_payment_times, fixed_leg_daycount_fractions=fixed_leg_daycount_fractions, fixed_leg_coupon=fixed_leg_coupon, reference_rate_fn=zero_rate_fn, notional=100.0, mean_reversion=[mu], volatility=[eff_vol], use_analytic_pricing=True, dtype=dtype)
hw_price = self.evaluate(hw_price)
self.assertNear(hjm_price, hw_price, error_tol)
|
Test that under certain conditions HJM matches analytic HW results.
Args:
valuation_method: The valuation method used.
error_tol: Test error tolerance.
For the two factor model, when both mean reversions are equivalent, then
the HJM model matches that of a HW one-factor model with the same mean
reversion, and effective volatility:
eff_vol = sqrt(vol1^2 + vol2^2 + 2 rho(vol1 * vol2)
where rho is the cross correlation between the two factors. In this
specific test, we assume rho = 0.0.
|
github-repos
|
def get_program_by_title(self, program_title):
all_programs = self._load_data(self.PROGRAMS_ENDPOINT, default=[])
matching_programs = [program for program in all_programs if program.get('title') == program_title]
if len(matching_programs) > 1:
raise MultipleProgramMatchError(len(matching_programs))
elif len(matching_programs) == 1:
return matching_programs[0]
else:
return None
|
Return single program by name, or None if not found.
Arguments:
program_title(string): Program title as seen by students and in Course Catalog Admin
Returns:
dict: Program data provided by Course Catalog API
|
juraj-google-style
|
def log(self, level, msg, *args, **kwargs):
if level >= logging.FATAL:
extra = kwargs.setdefault('extra', {})
extra[_ABSL_LOG_FATAL] = True
super(ABSLLogger, self).log(level, msg, *args, **kwargs)
|
Logs a message at a cetain level substituting in the supplied arguments.
This method behaves differently in python and c++ modes.
Args:
level: int, the standard logging level at which to log the message.
msg: str, the text of the message to log.
*args: The arguments to substitute in the message.
**kwargs: The keyword arguments to substitute in the message.
|
juraj-google-style
|
def inverse(self, name: str='inverse') -> 'LinearOperator':
if self.is_square is False:
raise ValueError('Cannot take the Inverse: This operator represents a non square matrix.')
if self.is_non_singular is False:
raise ValueError('Cannot take the Inverse: This operator represents a singular matrix.')
with self._name_scope(name):
return self._linop_inverse()
|
Returns the Inverse of this `LinearOperator`.
Given `A` representing this `LinearOperator`, return a `LinearOperator`
representing `A^-1`.
Args:
name: A name scope to use for ops added by this method.
Returns:
`LinearOperator` representing inverse of this matrix.
Raises:
ValueError: When the `LinearOperator` is not hinted to be `non_singular`.
|
github-repos
|
def experimental_from_jax(cls, serving_funcs, inputs):
TFLiteConverterBase._set_original_model_type(conversion_metadata_fb.ModelType.JAX)
return TFLiteJaxConverterV2(serving_funcs, inputs)
|
Creates a TFLiteConverter object from a Jax model with its inputs.
Args:
serving_funcs: An array of Jax functions with all the weights applied
already.
inputs: An array of Jax input placeholders tuples list, e.g.,
jnp.zeros(INPUT_SHAPE). Each tuple list should correspond with the
serving function.
Returns:
TFLiteConverter object.
|
github-repos
|
def concat_video(video_list, out_file, vcodec=None, acodec=None, log_level='info', print_cmd=False, **kwargs):
(_, tmp_filename) = tempfile.mkstemp(suffix='.txt', text=True)
with open(tmp_filename, 'w') as f:
for filename in video_list:
f.write('file {}\n'.format(osp.abspath(filename)))
options = {'log_level': log_level}
if (vcodec is None):
options['vcodec'] = 'copy'
if (acodec is None):
options['acodec'] = 'copy'
convert_video(tmp_filename, out_file, print_cmd, pre_options='-f concat -safe 0', **options)
os.remove(tmp_filename)
|
Concatenate multiple videos into a single one.
Args:
video_list (list): A list of video filenames
out_file (str): Output video filename
vcodec (None or str): Output video codec, None for unchanged
acodec (None or str): Output audio codec, None for unchanged
log_level (str): Logging level of ffmpeg.
print_cmd (bool): Whether to print the final ffmpeg command.
|
codesearchnet
|
def _CheckPythonModuleVersion(
self, module_name, module_object, version_property, minimum_version,
maximum_version):
module_version = None
if not version_property.endswith('()'):
module_version = getattr(module_object, version_property, None)
else:
version_method = getattr(
module_object, version_property[:-2], None)
if version_method:
module_version = version_method()
if not module_version:
status_message = (
'unable to determine version information for: {0:s}').format(
module_name)
return False, status_message
module_version = '{0!s}'.format(module_version)
module_version = self._VERSION_NUMBERS_REGEX.findall(module_version)[0]
if module_version[-1] == '.':
module_version = module_version[:-1]
try:
module_version_map = list(
map(int, self._VERSION_SPLIT_REGEX.split(module_version)))
except ValueError:
status_message = 'unable to parse module version: {0:s} {1:s}'.format(
module_name, module_version)
return False, status_message
if minimum_version:
try:
minimum_version_map = list(
map(int, self._VERSION_SPLIT_REGEX.split(minimum_version)))
except ValueError:
status_message = 'unable to parse minimum version: {0:s} {1:s}'.format(
module_name, minimum_version)
return False, status_message
if module_version_map < minimum_version_map:
status_message = (
'{0:s} version: {1!s} is too old, {2!s} or later required').format(
module_name, module_version, minimum_version)
return False, status_message
if maximum_version:
try:
maximum_version_map = list(
map(int, self._VERSION_SPLIT_REGEX.split(maximum_version)))
except ValueError:
status_message = 'unable to parse maximum version: {0:s} {1:s}'.format(
module_name, maximum_version)
return False, status_message
if module_version_map > maximum_version_map:
status_message = (
'{0:s} version: {1!s} is too recent, {2!s} or earlier '
'required').format(module_name, module_version, maximum_version)
return False, status_message
status_message = '{0:s} version: {1!s}'.format(module_name, module_version)
return True, status_message
|
Checks the version of a Python module.
Args:
module_object (module): Python module.
module_name (str): name of the Python module.
version_property (str): version attribute or function.
minimum_version (str): minimum version.
maximum_version (str): maximum version.
Returns:
tuple: consists:
bool: True if the Python module is available and conforms to
the minimum required version, False otherwise.
str: status message.
|
juraj-google-style
|
def get_ast_dict(belstr, component_type: str=''):
errors = []
parsed = {}
bels = list(belstr)
(char_locs, errors) = parse_chars(bels, errors)
(parsed, errors) = parse_functions(belstr, char_locs, parsed, errors)
(parsed, errors) = parse_args(bels, char_locs, parsed, errors)
(parsed, errors) = arg_types(parsed, errors)
(parsed, errors) = parse_relations(belstr, char_locs, parsed, errors)
(parsed, errors) = parse_nested(bels, char_locs, parsed, errors)
errors = parsed_top_level_errors(parsed, errors)
(ast, errors) = parsed_to_ast(parsed, errors, component_type=component_type)
return (ast, errors)
|
Convert BEL string to AST dictionary
Args:
belstr: BEL string
component_type: Empty string or 'subject' or 'object' to indicate that we
are parsing the subject or object field input
|
codesearchnet
|
def query_orders(self, accounts, status='filled'):
try:
data = self.call("orders", {'client': accounts, 'status': status})
if data is not None:
orders = data.get('dataTable', False)
order_headers = orders['columns']
if ('成交状态' in order_headers
or '状态说明' in order_headers) and ('备注' in order_headers):
order_headers[order_headers.index('备注')] = '废弃'
order_headers = [cn_en_compare[item] for item in order_headers]
order_all = pd.DataFrame(
orders['rows'],
columns=order_headers
).assign(account_cookie=accounts)
order_all.towards = order_all.towards.apply(
lambda x: trade_towards_cn_en[x]
)
if 'order_time' in order_headers:
order_all['status'] = order_all.status.apply(
lambda x: order_status_cn_en[x]
)
if 'order_date' not in order_headers:
order_all.order_time = order_all.order_time.apply(
lambda x: QA_util_get_order_datetime(
dt='{} {}'.format(datetime.date.today(),
x)
)
)
else:
order_all = order_all.assign(
order_time=order_all.order_date
.apply(QA_util_date_int2str) + ' ' +
order_all.order_time
)
if 'trade_time' in order_headers:
order_all.trade_time = order_all.trade_time.apply(
lambda x: '{} {}'.format(datetime.date.today(),
x)
)
if status is 'filled':
return order_all.loc[:,
self.dealstatus_headers].set_index(
['account_cookie',
'realorder_id']
).sort_index()
else:
return order_all.loc[:,
self.orderstatus_headers].set_index(
['account_cookie',
'realorder_id']
).sort_index()
else:
print('response is None')
return False
except Exception as e:
print(e)
return False
|
查询订单
Arguments:
accounts {[type]} -- [description]
Keyword Arguments:
status {str} -- 'open' 待成交 'filled' 成交 (default: {'filled'})
Returns:
[type] -- [description]
|
juraj-google-style
|
def _copy_source(s, graph, op_map, handle_captures, inverse_captures, base_graph):
if handle_captures and s in inverse_captures:
copied_placeholder = graph.capture(inverse_captures[s], name=s.op.name)
elif s.op.type == 'PlaceholderWithDefault' and _constant_inputs(s):
default_value = s.op.inputs[0]
unavailable_inputs, unavailable_control_inputs = _copy_non_source(op=default_value.op, graph=graph, op_map=op_map, base_graph=base_graph)
if unavailable_inputs or unavailable_control_inputs:
raise AssertionError('Could not copy source node {} because it has inputs.'.format(default_value))
with ops.device(s.op.device):
copied_placeholder = array_ops.placeholder_with_default(input=op_map[default_value], shape=s.shape, name=s.op.name)
else:
with ops.device(s.op.device):
copied_placeholder = array_ops.placeholder(dtype=s.dtype, shape=s.shape, name=s.op.name)
base_handle = resource_variable_ops.get_resource_handle_data(s)
if base_handle.shape_and_type:
resource_variable_ops._set_handle_shapes_and_types(copied_placeholder, base_handle, graph_mode=True)
op_map[s] = copied_placeholder
op_map[s.op] = copied_placeholder.op
|
Create a source in a graph based on a Tensor from a different graph.
This function creates a placeholder analog of `s` in a graph with the
following behavior:
1) If s is a captured Tensor or Variable and handle_captures is set to True,
simply capture it in the new graph as well.
2) If s is a PlaceholderWithDefault whose default is a constant, preserve
said default in the new graph.
3) When applicable, copy resource variable metadata from `s` to the newly
created placeholder.
Args:
s: The source of interest.
graph: The destination graph.
op_map: A dict mapping ops and tensors in the old graph to the new one.
handle_captures: A boolean indicating whether to re-capture s in the new
graph or simply create a vanilla placeholder.
inverse_captures: A dict mapping s back to the Tensor or Variable that it
captures.
base_graph: The graph being copied from.
|
github-repos
|
def setExtension(self, ext):
if ext[0] != ".":
ext = "." + ext
self._ext = utils.asString(ext)
|
Set a new file extension for the sequence.
Note:
A leading period will be added if none is provided.
Args:
ext (str): the new file extension
|
juraj-google-style
|
def center_label(self, input_length, order):
location_in_the_box = '*'.center(input_length * 2 - 1).index('*') + 1
top_limit = order * 2 + 2
bot_limit = top_limit + 2
if top_limit <= location_in_the_box < bot_limit:
if location_in_the_box == top_limit:
self.top_connect = self.label
elif location_in_the_box == top_limit + 1:
self.mid_content = self.label
else:
self.bot_connect = self.label
|
In multi-bit elements, the label is centered vertically.
Args:
input_length (int): Rhe amount of wires affected.
order (int): Which middle element is this one?
|
juraj-google-style
|
def patch_addPadding(self, patches):
paddingLength = self.Patch_Margin
nullPadding = ''
for x in range(1, (paddingLength + 1)):
nullPadding += chr(x)
for patch in patches:
patch.start1 += paddingLength
patch.start2 += paddingLength
patch = patches[0]
diffs = patch.diffs
if ((not diffs) or (diffs[0][0] != self.DIFF_EQUAL)):
diffs.insert(0, (self.DIFF_EQUAL, nullPadding))
patch.start1 -= paddingLength
patch.start2 -= paddingLength
patch.length1 += paddingLength
patch.length2 += paddingLength
elif (paddingLength > len(diffs[0][1])):
extraLength = (paddingLength - len(diffs[0][1]))
newText = (nullPadding[len(diffs[0][1]):] + diffs[0][1])
diffs[0] = (diffs[0][0], newText)
patch.start1 -= extraLength
patch.start2 -= extraLength
patch.length1 += extraLength
patch.length2 += extraLength
patch = patches[(- 1)]
diffs = patch.diffs
if ((not diffs) or (diffs[(- 1)][0] != self.DIFF_EQUAL)):
diffs.append((self.DIFF_EQUAL, nullPadding))
patch.length1 += paddingLength
patch.length2 += paddingLength
elif (paddingLength > len(diffs[(- 1)][1])):
extraLength = (paddingLength - len(diffs[(- 1)][1]))
newText = (diffs[(- 1)][1] + nullPadding[:extraLength])
diffs[(- 1)] = (diffs[(- 1)][0], newText)
patch.length1 += extraLength
patch.length2 += extraLength
return nullPadding
|
Add some padding on text start and end so that edges can match
something. Intended to be called only from within patch_apply.
Args:
patches: Array of Patch objects.
Returns:
The padding string added to each side.
|
codesearchnet
|
def download_report_hook(count, block_size, total_size):
percent = int(count * block_size * 100 / total_size)
print("\r%d%%" % percent + " completed", end="\r")
|
Report hook for download progress.
Args:
count: current block number
block_size: block size
total_size: total size
|
juraj-google-style
|
def get_counters(counter_list):
if (not isinstance(counter_list, list)):
raise CommandExecutionError('counter_list must be a list of tuples')
try:
query = win32pdh.OpenQuery()
counters = build_counter_list(counter_list)
for counter in counters:
counter.add_to_query(query)
win32pdh.CollectQueryData(query)
time.sleep(1)
win32pdh.CollectQueryData(query)
ret = {}
for counter in counters:
try:
ret.update({counter.path: counter.value()})
except pywintypes.error as exc:
if (exc.strerror == 'No data to return.'):
continue
else:
raise
finally:
win32pdh.CloseQuery(query)
return ret
|
Get the values for the passes list of counters
Args:
counter_list (list):
A list of counters to lookup
Returns:
dict: A dictionary of counters and their values
|
codesearchnet
|
def get_apps_to_backup(self):
app_db = appsdb.ApplicationsDatabase()
apps_to_backup = (self._config.apps_to_sync or app_db.get_app_names())
for app_name in self._config.apps_to_ignore:
apps_to_backup.discard(app_name)
return apps_to_backup
|
Get the list of applications that should be backed up by Mackup.
It's the list of allowed apps minus the list of ignored apps.
Returns:
(set) List of application names to back up
|
codesearchnet
|
def split_into_batches(input_list, batch_size, batch_storage_dir, checkpoint=False):
if (checkpoint and (not os.path.exists(batch_storage_dir))):
os.mkdir(batch_storage_dir)
batches = [{'index': batch_index, 'data': input_list[start_index:(start_index + batch_size)], 'input_filename': os.path.join(batch_storage_dir, 'batch-{:05d}-input.pickle'.format(batch_index)), 'result_filename': os.path.join(batch_storage_dir, 'batch-{:05d}-output.pickle'.format(batch_index))} for (batch_index, start_index) in enumerate(range(0, len(input_list), batch_size))]
if checkpoint:
for batch in batches:
save(batch['data'], batch['input_filename'])
return batches
|
Break the input data into smaller batches, optionally saving each one to disk.
Args:
input_list: An input object that has a list-like interface (indexing and slicing).
batch_size: The maximum number of input items in each batch.
batch_storage_dir: The directory to save the checkpoints to.
checkpoint: Whether to save each batch to a file.
Returns:
A list of batch objects with the following structure:
{'index', 'data', 'input_filename', 'result_filename'}
|
codesearchnet
|
def structure_from_ncdata(ncdata, site_properties=None, cls=Structure):
ncdata, closeit = as_ncreader(ncdata)
lattice = ArrayWithUnit(ncdata.read_value("primitive_vectors"), "bohr").to("ang")
red_coords = ncdata.read_value("reduced_atom_positions")
natom = len(red_coords)
znucl_type = ncdata.read_value("atomic_numbers")
type_atom = ncdata.read_value("atom_species")
species = natom * [None]
for atom in range(natom):
type_idx = type_atom[atom] - 1
species[atom] = int(znucl_type[type_idx])
d = {}
if site_properties is not None:
for prop in site_properties:
d[property] = ncdata.read_value(prop)
structure = cls(lattice, species, red_coords, site_properties=d)
try:
from abipy.core.structure import Structure as AbipyStructure
structure.__class__ = AbipyStructure
except ImportError:
pass
if closeit:
ncdata.close()
return structure
|
Reads and returns a pymatgen structure from a NetCDF file
containing crystallographic data in the ETSF-IO format.
Args:
ncdata: filename or NetcdfReader instance.
site_properties: Dictionary with site properties.
cls: The Structure class to instanciate.
|
juraj-google-style
|
def __init__(self, default: typing.Optional[str]=MISSING_VALUE, regex: typing.Optional[str]=None, is_noneable: bool=False, frozen: bool=False):
self._regex = re.compile(regex) if regex else None
super().__init__(str, default, is_noneable=is_noneable, frozen=frozen)
|
Constructor.
Args:
default: Default value for this value spec.
regex: Optional regular expression for acceptable value.
is_noneable: If True, None is acceptable.
frozen: If True, values other than the default value is not accceptable.
|
github-repos
|
def _read(cls, filepath_or_buffer, **kwargs):
try:
args, _, _, defaults, _, _, _ = inspect.getfullargspec(cls.read_csv)
defaults = dict(zip(args[2:], defaults))
filtered_kwargs = {
kw: kwargs[kw]
for kw in kwargs
if kw in defaults
and not isinstance(kwargs[kw], type(defaults[kw]))
or kwargs[kw] != defaults[kw]
}
except AttributeError:
filtered_kwargs = kwargs
if isinstance(filepath_or_buffer, str):
if not file_exists(filepath_or_buffer):
ErrorMessage.default_to_pandas("File path could not be resolved")
return cls._read_csv_from_pandas(filepath_or_buffer, filtered_kwargs)
elif not isinstance(filepath_or_buffer, py.path.local):
read_from_pandas = True
try:
import pathlib
if isinstance(filepath_or_buffer, pathlib.Path):
read_from_pandas = False
except ImportError:
pass
if read_from_pandas:
ErrorMessage.default_to_pandas("Reading from buffer.")
return cls._read_csv_from_pandas(filepath_or_buffer, kwargs)
if (
_infer_compression(filepath_or_buffer, kwargs.get("compression"))
is not None
):
ErrorMessage.default_to_pandas("Compression detected.")
return cls._read_csv_from_pandas(filepath_or_buffer, filtered_kwargs)
chunksize = kwargs.get("chunksize")
if chunksize is not None:
ErrorMessage.default_to_pandas("Reading chunks from a file.")
return cls._read_csv_from_pandas(filepath_or_buffer, filtered_kwargs)
skiprows = kwargs.get("skiprows")
if skiprows is not None and not isinstance(skiprows, int):
ErrorMessage.default_to_pandas("skiprows parameter not optimized yet.")
return cls._read_csv_from_pandas(filepath_or_buffer, kwargs)
if kwargs.get("nrows") is not None:
ErrorMessage.default_to_pandas("`read_csv` with `nrows`")
return cls._read_csv_from_pandas(filepath_or_buffer, filtered_kwargs)
else:
return cls._read_csv_from_file_pandas_on_ray(
filepath_or_buffer, filtered_kwargs
)
|
Read csv file from local disk.
Args:
filepath_or_buffer:
The filepath of the csv file.
We only support local files for now.
kwargs: Keyword arguments in pandas.read_csv
|
juraj-google-style
|
def compression_type(self):
best_compression = None
for e in self.mardata.index.entries:
self.fileobj.seek(e.offset)
magic = self.fileobj.read(10)
compression = guess_compression(magic)
if (compression == 'xz'):
best_compression = 'xz'
break
elif ((compression == 'bz2') and (best_compression is None)):
best_compression = 'bz2'
return best_compression
|
Return the latest compresion type used in this MAR.
Returns:
One of None, 'bz2', or 'xz'
|
codesearchnet
|
def unpack(value):
if not is_packed(value):
return value
variant = value._tf_extension_type_packed_variant
spec = value._tf_extension_type_cached_type_spec
spec = spec._tf_extension_type_with_packed(False)
return composite_tensor_ops.composite_tensor_from_variant(variant, spec)
|
Returns a copy of `value` with individual fields stored in __dict__.
Args:
value: An `ExtensionType` object.
Returns:
An `ExtensionType` object.
|
github-repos
|
def load_data_split(proc_data_dir):
ds_train = Dataset.load(path.join(proc_data_dir, 'train.bin'))
ds_val = Dataset.load(path.join(proc_data_dir, 'val.bin'))
ds_test = Dataset.load(path.join(proc_data_dir, 'test.bin'))
return ds_train, ds_val, ds_test
|
Loads a split dataset
Args:
proc_data_dir: Directory with the split and processed data
Returns:
(Training Data, Validation Data, Test Data)
|
juraj-google-style
|
def dagify_min_edge(g):
while not nx.is_directed_acyclic_graph(g):
cycle = next(nx.simple_cycles(g))
scores = []
edges = []
for i, j in zip(cycle[:1], cycle[:1]):
edges.append((i, j))
scores.append(g[i][j]['weight'])
i, j = edges[scores.index(min(scores))]
gc = deepcopy(g)
gc.remove_edge(i, j)
gc.add_edge(j, i)
if len(list(nx.simple_cycles(gc))) < len(list(nx.simple_cycles(g))):
g.add_edge(j, i, weight=min(scores))
g.remove_edge(i, j)
return g
|
Input a graph and output a DAG.
The heuristic is to reverse the edge with the lowest score of the cycle
if possible, else remove it.
Args:
g (networkx.DiGraph): Graph to modify to output a DAG
Returns:
networkx.DiGraph: DAG made out of the input graph.
|
juraj-google-style
|
def _CreateFlagItem(flag, docstring_info, spec, required=False, flag_string=None, short_arg=False):
max_str_length = LINE_LENGTH - SECTION_INDENTATION - SUBSECTION_INDENTATION
description = _GetArgDescription(flag, docstring_info)
if not flag_string:
flag_name_upper = formatting.Underline(flag.upper())
flag_string = f'--{flag}={flag_name_upper}'
if required:
flag_string += ' (required)'
if short_arg:
short_flag = flag[0]
flag_string = f'-{short_flag}, {flag_string}'
arg_type = _GetArgType(flag, spec)
arg_default = _GetArgDefault(flag, spec)
if arg_default == 'None':
arg_type = f'Optional[{arg_type}]'
arg_type = f'Type: {arg_type}' if arg_type else ''
available_space = max_str_length - len(arg_type)
arg_type = formatting.EllipsisTruncate(arg_type, available_space, max_str_length)
arg_default = f'Default: {arg_default}' if arg_default else ''
available_space = max_str_length - len(arg_default)
arg_default = formatting.EllipsisTruncate(arg_default, available_space, max_str_length)
description = '\n'.join((part for part in (arg_type, arg_default, description) if part))
return _CreateItem(flag_string, description, indent=SUBSECTION_INDENTATION)
|
Returns a string describing a flag using docstring and FullArgSpec info.
Args:
flag: The name of the flag.
docstring_info: A docstrings.DocstringInfo namedtuple with information about
the containing function's docstring.
spec: An instance of fire.inspectutils.FullArgSpec, containing type and
default information about the arguments to a callable.
required: Whether the flag is required.
flag_string: If provided, use this string for the flag, rather than
constructing one from the flag name.
short_arg: Whether the flag has a short variation or not.
Returns:
A string to be used in constructing the help screen for the function.
|
github-repos
|
def read(self, vals):
i = 0
if len(vals[i]) == 0:
self.comments_2 = None
else:
self.comments_2 = vals[i]
i += 1
|
Read values.
Args:
vals (list): list of strings representing values
|
juraj-google-style
|
def __init__(self, order_dict, default_order=None):
self.order_dict = order_dict.copy()
self.default_order = default_order
|
Create a reorderer.
Args:
order_dict (dict of (str, `PackageOrder`): Orderers to apply to
each package family.
default_order (`PackageOrder`): Orderer to apply to any packages
not specified in `order_dict`.
|
juraj-google-style
|
def find_exception_by_code(code):
errorName = None
for error in WebDriverError:
if error.value.code == code:
errorName = error
break
return errorName
|
Find name of exception by WebDriver defined error code.
Args:
code(str): Error code defined in protocol.
Returns:
The error name defined in protocol.
|
juraj-google-style
|
def get_property_dict(entity_proto):
return dict((p.key, p.value) for p in entity_proto.property)
|
Convert datastore.Entity to a dict of property name -> datastore.Value.
Args:
entity_proto: datastore.Entity proto message.
Usage:
>>> get_property_dict(entity_proto)
{'foo': {string_value='a'}, 'bar': {integer_value=2}}
Returns:
dict of entity properties.
|
juraj-google-style
|
def merge_annotations(code, annotations, param_annotations):
if param_annotations:
visitor = FunctionDefVisitor(param_annotations)
pyc.visit(code, visitor)
visitor = CollectAnnotationTargetsVisitor()
code = pyc.visit(code, visitor)
for line, op in visitor.store_ops.items():
if line in annotations:
annot = annotations[line]
if annot.name in (None, op.argval):
op.annotation = annot.annotation
for start, (end, op) in sorted(visitor.make_function_ops.items(), reverse=True):
for i in range(start, end):
if i in annotations:
op.annotation = (annotations[i].annotation, i)
break
return code
|
Merges type comments into their associated opcodes.
Modifies code in place.
Args:
code: An OrderedCode object.
annotations: A map of lines to annotations.
param_annotations: A list of _ParamAnnotations from the director
Returns:
The code with annotations added to the relevant opcodes.
|
github-repos
|
def convert(model_path: str, out_file: str):
print('Converting', model_path, 'to', out_file, '...')
import tensorflow as tf
from precise.model import load_precise_model
from keras import backend as K
out_dir, filename = split(out_file)
out_dir = out_dir or '.'
os.makedirs(out_dir, exist_ok=True)
K.set_learning_phase(0)
model = load_precise_model(model_path)
out_name = 'net_output'
tf.identity(model.output, name=out_name)
print('Output node name:', out_name)
print('Output folder:', out_dir)
sess = K.get_session()
tf.train.write_graph(sess.graph.as_graph_def(), out_dir, filename + 'txt', as_text=True)
print('Saved readable graph to:', filename + 'txt')
from tensorflow.python.framework import graph_util
from tensorflow.python.framework import graph_io
cgraph = graph_util.convert_variables_to_constants(sess, sess.graph.as_graph_def(), [out_name])
graph_io.write_graph(cgraph, out_dir, filename, as_text=False)
if isfile(model_path + '.params'):
copyfile(model_path + '.params', out_file + '.params')
print('Saved graph to:', filename)
del sess
|
Converts an HD5F file from Keras to a .pb for use with TensorFlow
Args:
model_path: location of Keras model
out_file: location to write protobuf
|
juraj-google-style
|
def blit_2x(self, console: tcod.console.Console, dest_x: int, dest_y: int, img_x: int=0, img_y: int=0, img_width: int=(- 1), img_height: int=(- 1)) -> None:
lib.TCOD_image_blit_2x(self.image_c, _console(console), dest_x, dest_y, img_x, img_y, img_width, img_height)
|
Blit onto a Console with double resolution.
Args:
console (Console): Blit destination Console.
dest_x (int): Console tile X position starting from the left at 0.
dest_y (int): Console tile Y position starting from the top at 0.
img_x (int): Left corner pixel of the Image to blit
img_y (int): Top corner pixel of the Image to blit
img_width (int): Width of the Image to blit.
Use -1 for the full Image width.
img_height (int): Height of the Image to blit.
Use -1 for the full Image height.
|
codesearchnet
|
def create_log(log_file, uid):
if not os.path.exists(log_file):
dir_name = os.path.dirname(log_file)
if not os.path.exists(dir_name):
os.makedirs(dir_name, 0755)
os.chown(dir_name, uid, -1)
with open(log_file, "w") as f:
f.write("")
os.chown(log_file, uid, -1)
os.chmod(log_file, 0640)
|
Create log file and set necessary permissions.
Args:
log_file (str): Path to the log file.
uid (int): User ID - will be used for chown.
|
juraj-google-style
|
def update(self, data):
updated = False
if 'missing_tags' in data:
updated |= self.set_property('missing_tags', data['missing_tags'])
if 'notes' in data:
updated |= self.set_property('notes', data['notes'])
if 'state' in data:
updated |= self.set_property('state', data['state'])
if 'last_alert' in data:
updated |= self.set_property('last_alert', data['last_alert'])
if updated:
now = datetime.now()
self.set_property('last_change', now)
return updated
|
Updates the object information based on live data, if there were any changes made. Any changes will be
automatically applied to the object, but will not be automatically persisted. You must manually call
`db.session.add(instance)` on the object.
Args:
data (:obj:): AWS API Resource object fetched from AWS API
Returns:
`bool`
|
juraj-google-style
|
def get_lattice_type(number):
f = (lambda i, j: (i <= number <= j))
cs = {'triclinic': (1, 2), 'monoclinic': (3, 15), 'orthorhombic': (16, 74), 'tetragonal': (75, 142), 'trigonal': (143, 167), 'hexagonal': (168, 194), 'cubic': (195, 230)}
crystal_system = None
for (k, v) in cs.items():
if f(*v):
crystal_system = k
break
if (number in [146, 148, 155, 160, 161, 166, 167]):
return 'rhombohedral'
elif (crystal_system == 'trigonal'):
return 'hexagonal'
else:
return crystal_system
|
Return the lattice crystal system.
Hexagonal cells are differentiated into rhombohedral and hexagonal
lattices.
Args:
number (int): The international space group number.
Returns:
str: The lattice crystal system.
|
codesearchnet
|
def update_z(self, z, indices=None):
z = _make_np_bool(z)
if (indices is None):
if (len(self._z) != len(z)):
raise QiskitError('During updating whole z, you can not change the number of qubits.')
self._z = z
else:
if ((not isinstance(indices, list)) and (not isinstance(indices, np.ndarray))):
indices = [indices]
for (p, idx) in enumerate(indices):
self._z[idx] = z[p]
return self
|
Update partial or entire z.
Args:
z (numpy.ndarray or list): to-be-updated z
indices (numpy.ndarray or list or optional): to-be-updated qubit indices
Returns:
Pauli: self
Raises:
QiskitError: when updating whole z, the number of qubits must be the same.
|
codesearchnet
|
def run_iperf_client(self, server_host, extra_args=''):
out = self.adb.shell(('iperf3 -c %s %s' % (server_host, extra_args)))
clean_out = new_str(out, 'utf-8').strip().split('\n')
if ('error' in clean_out[0].lower()):
return (False, clean_out)
return (True, clean_out)
|
Start iperf client on the device.
Return status as true if iperf client start successfully.
And data flow information as results.
Args:
server_host: Address of the iperf server.
extra_args: A string representing extra arguments for iperf client,
e.g. '-i 1 -t 30'.
Returns:
status: true if iperf client start successfully.
results: results have data flow information
|
codesearchnet
|
def downloadMARCXML(doc_id, library, base='nkc'):
downer = Downloader()
data = downer.download((ALEPH_URL + Template(DOC_URL_TEMPLATE).substitute(DOC_ID=doc_id, LIBRARY=library)))
dom = dhtmlparser.parseString(data)
error = dom.find('login')
if error:
error_msg = error[0].find('error')
if error_msg:
raise LibraryNotFoundException((((((("Can't download document doc_id: '" + str(doc_id)) + "' ") + "(probably bad library: '") + library) + "')!\nMessage: ") + '\n'.join(map((lambda x: x.getContent()), error_msg))))
error = dom.find('ill-get-doc')
if error:
error_msg = error[0].find('error')
if error_msg:
raise DocumentNotFoundException('\n'.join(map((lambda x: x.getContent()), error_msg)))
return data
|
Download MARC XML document with given `doc_id` from given `library`.
Args:
doc_id (DocumentID): You will get this from :func:`getDocumentIDs`.
library (str): "``NKC01``" in our case, but don't worry,
:func:`getDocumentIDs` adds library specification into
:class:`DocumentID` named tuple.
Returns:
str: MARC XML unicode string.
Raises:
LibraryNotFoundException
DocumentNotFoundException
|
codesearchnet
|
def _load_from_file(path):
config = []
try:
with open(path, 'r') as config_file:
config = yaml.load(config_file)['normalizations']
except EnvironmentError as e:
raise ConfigError((('Problem while loading file: %s' % e.args[1]) if (len(e.args) > 1) else e))
except (TypeError, KeyError) as e:
raise ConfigError(('Config file has an unexpected structure: %s' % e))
except yaml.YAMLError:
raise ConfigError('Invalid YAML file syntax')
return config
|
Load a config file from the given path.
Load all normalizations from the config file received as
argument. It expects to find a YAML file with a list of
normalizations and arguments under the key 'normalizations'.
Args:
path: Path to YAML file.
|
codesearchnet
|
def _ReadRecordHeader(self, file_object, record_header_offset):
data_type_map = self._GetDataTypeMap('keychain_record_header')
record_header, _ = self._ReadStructureFromFileObject(
file_object, record_header_offset, data_type_map)
return record_header
|
Reads the record header.
Args:
file_object (file): file-like object.
record_header_offset (int): offset of the record header relative to
the start of the file.
Returns:
keychain_record_header: record header.
Raises:
ParseError: if the record header cannot be read.
|
juraj-google-style
|
def restore(self, request):
self._connection.connection.rpush(self._request_key, pickle.dumps(request))
|
Push the request back onto the queue.
Args:
request (Request): Reference to a request object that should be pushed back
onto the request queue.
|
juraj-google-style
|
def add_context(self, name, context, prefix_char=None):
if name in self.contexts:
raise SuiteError("Context already in suite: %r" % name)
if not context.success:
raise SuiteError("Context is not resolved: %r" % name)
self.contexts[name] = dict(name=name,
context=context.copy(),
tool_aliases={},
hidden_tools=set(),
priority=self._next_priority,
prefix_char=prefix_char)
self._flush_tools()
|
Add a context to the suite.
Args:
name (str): Name to store the context under.
context (ResolvedContext): Context to add.
|
juraj-google-style
|
def get(self, column, default_value=None):
if isinstance(column, (list, tuple)):
ret = []
for col in column:
ret.append(self.get(col, default_value))
return ret
try:
return self._values[column]
except (IndexError, TypeError):
pass
try:
return self[column]
except IndexError:
return default_value
|
Get an item from the Row by column name.
Args:
column: Tuple of column names, or a (str) column name, or positional
column number, 0-indexed.
default_value: The value to use if the key is not found.
Returns:
A list or string with column value(s) or default_value if not found.
|
juraj-google-style
|
def from_esri_code(code):
code = str(code)
proj4 = utils.crscode_to_string('esri', code, 'proj4')
crs = from_proj4(proj4)
return crs
|
Load crs object from esri code, via spatialreference.org.
Parses based on the proj4 representation.
Arguments:
- *code*: The ESRI code as an integer.
Returns:
- A CS instance of the indicated type.
|
codesearchnet
|
def is_comparable_type(var, type_):
other_types = COMPARABLE_TYPES.get(type_, type_)
return isinstance(var, other_types)
|
Check to see if `var` is an instance of known compatible types for `type_`
Args:
var (?):
type_ (?):
Returns:
bool:
CommandLine:
python -m utool.util_type is_comparable_type --show
Example:
>>> # DISABLE_DOCTEST
>>> from utool.util_type import * # NOQA
>>> import utool as ut
>>> flags = []
>>> flags += [is_comparable_type(0, float)]
>>> flags += [is_comparable_type(0, np.float32)]
>>> flags += [is_comparable_type(0, np.int32)]
>>> flags += [is_comparable_type(0, int)]
>>> flags += [is_comparable_type(0.0, int)]
>>> result = ut.repr2(flags)
>>> print(result)
[True, True, True, True, False]
|
codesearchnet
|
def draw_vr_anaglyph(cube_fbo, vr_scene, active_scene, eye_poses=(.035, -.035)):
color_masks = [(True, False, False, True), (False, True, True, True)]
cam = vr_scene.camera
orig_cam_position = cam.position.xyz
for color_mask, eye_pos in zip(color_masks, eye_poses):
gl.glColorMask(*color_mask)
cam.position.xyz = cam.model_matrix.dot([eye_pos, 0., 0., 1.])[:3]
cam.uniforms['playerPos'] = cam.position.xyz
with cube_fbo as fbo:
vr_scene.draw360_to_texture(fbo.texture)
cam.position.xyz = orig_cam_position
active_scene.draw()
|
Experimental anaglyph drawing function for VR system with red/blue glasses, used in Sirota lab.
Draws a virtual scene in red and blue, from subject's (heda trackers) perspective in active scene.
Note: assumes shader uses playerPos like ratcave's default shader
Args:
cube_fbo: texture frameBuffer object.
vr_scene: virtual scene object
active_scene: active scene object
eye_poses: the eye positions
Returns:
|
juraj-google-style
|
def _CreateCampaignGroup(client):
campaign_group_service = client.GetService('CampaignGroupService',
version='v201809')
operations = [{
'operator': 'ADD',
'operand': {
'name': 'Mars campaign group
}
}]
campaign_group = campaign_group_service.mutate(operations)['value'][0]
campaign_group_id = campaign_group['id']
print 'Campaign group with ID "%d" and name "%s" was created.' % (
campaign_group_id, campaign_group['name'])
return campaign_group_id
|
Create a campaign group.
Args:
client: an AdWordsClient instance.
Returns:
The integer ID of the created campaign group.
|
juraj-google-style
|
def run_validate_program_main(self, program_main):
program_language = self.profile.get('install_json').get('programLanguage', 'python').lower()
if program_language == 'python' and not os.path.isfile('{}.py'.format(program_main)):
print(
'{}{}Could not find program main file ({}).'.format(
c.Style.BRIGHT, c.Fore.RED, program_main
)
)
sys.exit(1)
|
Validate the program main file exists.
Args:
program_main (str): The executable name.
|
juraj-google-style
|
def _decode_crop_and_flip(image_buffer, num_channels):
min_object_covered=0.1
aspect_ratio_range=[0.75, 1.33]
area_range=[0.05, 1.0]
max_attempts=100
mlperf_log.resnet_print(key=mlperf_log.INPUT_DISTORTED_CROP_MIN_OBJ_COV,
value=min_object_covered)
mlperf_log.resnet_print(key=mlperf_log.INPUT_DISTORTED_CROP_RATIO_RANGE,
value=aspect_ratio_range)
mlperf_log.resnet_print(key=mlperf_log.INPUT_DISTORTED_CROP_AREA_RANGE,
value=area_range)
mlperf_log.resnet_print(key=mlperf_log.INPUT_DISTORTED_CROP_MAX_ATTEMPTS,
value=max_attempts)
mlperf_log.resnet_print(key=mlperf_log.INPUT_CROP_USES_BBOXES, value=False)
bbox = tf.constant([0.0, 0.0, 1.0, 1.0],
dtype=tf.float32, shape=[1, 1, 4])
sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box(
tf.image.extract_jpeg_shape(image_buffer),
bounding_boxes=bbox,
min_object_covered=min_object_covered,
aspect_ratio_range=aspect_ratio_range,
area_range=area_range,
max_attempts=max_attempts,
use_image_if_no_bounding_boxes=True)
bbox_begin, bbox_size, _ = sample_distorted_bounding_box
offset_y, offset_x, _ = tf.unstack(bbox_begin)
target_height, target_width, _ = tf.unstack(bbox_size)
crop_window = tf.stack([offset_y, offset_x, target_height, target_width])
cropped = tf.image.decode_and_crop_jpeg(
image_buffer, crop_window, channels=num_channels)
mlperf_log.resnet_print(key=mlperf_log.INPUT_RANDOM_FLIP)
cropped = tf.image.random_flip_left_right(cropped)
return cropped
|
Crops the given image to a random part of the image, and randomly flips.
We use the fused decode_and_crop op, which performs better than the two ops
used separately in series, but note that this requires that the image be
passed in as an un-decoded string Tensor.
Args:
image_buffer: scalar string Tensor representing the raw JPEG image buffer.
num_channels: Integer depth of the image buffer for decoding.
Returns:
3-D tensor with cropped image.
|
juraj-google-style
|
def get_dict_definition(self, dict, get_list=False):
list_def_candidate = []
for definition_name in self.specification['definitions'].keys():
if self.validate_definition(definition_name, dict):
if not get_list:
return definition_name
list_def_candidate.append(definition_name)
if get_list:
return list_def_candidate
return None
|
Get the definition name of the given dict.
Args:
dict: dict to test.
get_list: if set to true, return a list of definition that match the body.
if False, only return the first.
Returns:
The definition name or None if the dict does not match any definition.
If get_list is True, return a list of definition_name.
|
juraj-google-style
|
def form_to_params(fn=None, return_json=True):
def forms_to_params_decorator(fn):
@handle_type_error
@wraps(fn)
def forms_to_params_wrapper(*args, **kwargs):
kwargs.update(dict(request.forms))
if (not return_json):
return fn(*args, **kwargs)
return encode_json_body(fn(*args, **kwargs))
return forms_to_params_wrapper
if fn:
return forms_to_params_decorator(fn)
return forms_to_params_decorator
|
Convert bottle forms request to parameters for the wrapped function.
Args:
return_json (bool, default True): Should the decorator automatically
convert returned value to JSON?
|
codesearchnet
|
def in_place_subclassed_model_state_restoration(model):
assert not model._is_graph_network
if hasattr(model, '_original_attributes_cache') and model._original_attributes_cache is not None:
setattr_tracking = model._setattr_tracking
model._setattr_tracking = False
model._self_tracked_trackables = []
for name, value in model._original_attributes_cache.items():
setattr(model, name, value)
if isinstance(value, Layer):
model._self_tracked_trackables.append(value)
model._original_attributes_cache = None
model._setattr_tracking = setattr_tracking
else:
_reset_build_compile_trackers(model)
|
Restores the original state of a model after it was "reset".
This undoes this action of `_in_place_subclassed_model_reset`, which is called
in `clone_and_build_model` if `in_place_reset` is set to True.
Args:
model: Instance of a Keras model created via subclassing, on which
`_in_place_subclassed_model_reset` was previously called.
|
github-repos
|
def get_vm(access_token, subscription_id, resource_group, vm_name):
endpoint = ''.join([get_rm_endpoint(),
'/subscriptions/', subscription_id,
'/resourceGroups/', resource_group,
'/providers/Microsoft.Compute/virtualMachines/', vm_name,
'?api-version=', COMP_API])
return do_get(endpoint, access_token)
|
Get virtual machine details.
Args:
access_token (str): A valid Azure authentication token.
subscription_id (str): Azure subscription id.
resource_group (str): Azure resource group name.
vm_name (str): Name of the virtual machine.
Returns:
HTTP response. JSON body of VM properties.
|
juraj-google-style
|
def export_with_dynamic_cache(model: PreTrainedModel, example_input_ids: Optional[torch.Tensor]=None, example_attention_mask: Optional[torch.Tensor]=None):
if not is_torch_greater_or_equal_than_2_3:
raise ImportError('torch >= 2.3 is required.')
ALL_MASK_ATTENTION_FUNCTIONS.register('sdpa_without_vmap', sdpa_mask_without_vmap)
ALL_ATTENTION_FUNCTIONS.register('sdpa_without_vmap', ALL_ATTENTION_FUNCTIONS['sdpa'])
model.config._attn_implementation = 'sdpa_without_vmap'
with torch.no_grad():
exported_program = torch.export.export(model, (), {'input_ids': example_input_ids, 'attention_mask': example_attention_mask, 'past_key_values': DynamicCache(), 'use_cache': True}, strict=False)
return exported_program
|
Export a model with DynamicCache using `torch.export`, ensuring the exported model is compatible with `ExecuTorch`.
Args:
model (`PreTrainedModel`): The pretrained model to be exported.
example_input_ids (`Optional[torch.Tensor]`): Example input token id used by `torch.export`.
example_attention_mask (`Optional[torch.Tensor]`): Example attention mask used by `torch.export`.
Returns:
Exported program (`torch.export.ExportedProgram`): The exported program generated via `torch.export`.
|
github-repos
|
def list_children(self, obj, save_type=base.SaveType.CHECKPOINT, **kwargs):
children = []
for name, ref in super(ObjectGraphView, self).children(obj, save_type, **kwargs).items():
children.append(base.TrackableReference(name, ref))
if obj is self.root and self._attached_dependencies:
children.extend(self._attached_dependencies)
return children
|
Returns list of all child trackables attached to obj.
Args:
obj: A `Trackable` object.
save_type: A string, can be 'savedmodel' or 'checkpoint'.
**kwargs: kwargs to use when retrieving the object's children.
Returns:
List of all children attached to the object.
|
github-repos
|
def _ParseLogFileOptions(self, options):
self._log_file = self.ParseStringOption(options, 'log_file')
if (not self._log_file):
local_date_time = datetime.datetime.now()
self._log_file = '{0:s}-{1:04d}{2:02d}{3:02d}T{4:02d}{5:02d}{6:02d}.log.gz'.format(self.NAME, local_date_time.year, local_date_time.month, local_date_time.day, local_date_time.hour, local_date_time.minute, local_date_time.second)
|
Parses the log file options.
Args:
options (argparse.Namespace): command line arguments.
|
codesearchnet
|
def insert_or_update(table, columns, values):
rows = len(values)
cells = len(columns) * len(values)
return _Mutator(mutation=Mutation(insert_or_update=batch._make_write_pb(table, columns, values)), operation=WriteMutation._OPERATION_INSERT_OR_UPDATE, rows=rows, cells=cells, kwargs={'table': table, 'columns': columns, 'values': values})
|
Insert/update one or more table rows.
Args:
table: Name of the table to be modified.
columns: Name of the table columns to be modified.
values: Values to be modified.
|
github-repos
|
def binary_op(self, op, other, **kwargs):
func = getattr(pandas.DataFrame, op)
return self._inter_df_op_handler(func, other, **kwargs)
|
Perform an operation between two objects.
Note: The list of operations is as follows:
- add
- eq
- floordiv
- ge
- gt
- le
- lt
- mod
- mul
- ne
- pow
- rfloordiv
- rmod
- rpow
- rsub
- rtruediv
- sub
- truediv
- __and__
- __or__
- __xor__
Args:
op: The operation. See list of operations above
other: The object to operate against.
Returns:
A new QueryCompiler object.
|
codesearchnet
|
def _check_element_shape(self, shape):
if not shape.is_compatible_with(self.element_shape):
raise ValueError('Inconsistent shapes: saw %s but expected %s ' % (shape, self.element_shape))
if self._infer_shape:
self._element_shape[0] = self.element_shape.merge_with(shape)
|
Changes the element shape of the array given a shape to merge with.
Args:
shape: A `TensorShape` object to merge with.
Raises:
ValueError: if the provided shape is incompatible with the current
element shape of the `TensorArray`.
|
github-repos
|
def resize_images(x, height_factor, width_factor, data_format, interpolation='nearest'):
if data_format == 'channels_first':
rows, cols = (2, 3)
elif data_format == 'channels_last':
rows, cols = (1, 2)
else:
raise ValueError('Invalid `data_format` argument: %s' % (data_format,))
new_shape = x.shape[rows:cols + 1]
if new_shape.is_fully_defined():
new_shape = constant_op.constant(new_shape.as_list(), dtype='int32')
else:
new_shape = array_ops.shape_v2(x)[rows:cols + 1]
new_shape *= constant_op.constant(np.array([height_factor, width_factor], dtype='int32'))
if data_format == 'channels_first':
x = permute_dimensions(x, [0, 2, 3, 1])
if interpolation == 'nearest':
x = image_ops.resize_images_v2(x, new_shape, method=image_ops.ResizeMethod.NEAREST_NEIGHBOR)
elif interpolation == 'bilinear':
x = image_ops.resize_images_v2(x, new_shape, method=image_ops.ResizeMethod.BILINEAR)
else:
raise ValueError('interpolation should be one of "nearest" or "bilinear".')
if data_format == 'channels_first':
x = permute_dimensions(x, [0, 3, 1, 2])
return x
|
Resizes the images contained in a 4D tensor.
Args:
x: Tensor or variable to resize.
height_factor: Positive integer.
width_factor: Positive integer.
data_format: One of `"channels_first"`, `"channels_last"`.
interpolation: A string, one of `nearest` or `bilinear`.
Returns:
A tensor.
Raises:
ValueError: in case of incorrect value for
`data_format` or `interpolation`.
|
github-repos
|
def symbol(name: str=None, symbol_type: Type[Symbol]=Symbol) -> 'SymbolWildcard':
if (isinstance(name, type) and issubclass(name, Symbol) and (symbol_type is Symbol)):
return SymbolWildcard(name)
return SymbolWildcard(symbol_type, variable_name=name)
|
Create a `SymbolWildcard` that matches a single `Symbol` argument.
Args:
name:
Optional variable name for the wildcard.
symbol_type:
An optional subclass of `Symbol` to further limit which kind of symbols are
matched by the wildcard.
Returns:
A `SymbolWildcard` that matches the *symbol_type*.
|
codesearchnet
|
def get_group_id(self, uuid=None):
group_data = self.get_group(uuid)
try:
return group_data['response']['docs'][0]['id']
except (KeyError, IndexError):
failure_message = 'Error in get_group response data - got {0}'.format(group_data)
log.exception(failure_message)
raise PyLmodUnexpectedData(failure_message)
|
Get group id based on uuid.
Args:
uuid (str): optional uuid. defaults to self.cuuid
Raises:
PyLmodUnexpectedData: No group data was returned.
requests.RequestException: Exception connection error
Returns:
int: numeric group id
|
codesearchnet
|
def replaceFA(self, faDataType: int, xml: str):
self.client.replaceFA(faDataType, xml)
|
Replaces Financial Advisor's settings.
Args:
faDataType: See :meth:`.requestFA`.
xml: The XML-formatted configuration string.
|
codesearchnet
|
def download(self, temp_ver, store_metadata=True):
dest = self._prefixed(temp_ver.name)
temp_dest = '%s.tmp' % dest
with utils.LockFile(dest + '.lock'):
if os.path.exists(dest):
return
temp_ver.download(temp_dest)
if store_metadata:
with open('%s.metadata' % dest, 'w') as f:
utils.json_dump(temp_ver.get_metadata(), f)
sha1 = utils.get_hash(temp_dest)
if temp_ver.get_hash() != sha1:
raise RuntimeError(
'Image %s does not match the expected hash %s' % (
temp_ver.name,
sha1,
)
)
with open('%s.hash' % dest, 'w') as f:
f.write(sha1)
with log_utils.LogTask('Convert image', logger=LOGGER):
result = utils.run_command(
[
'qemu-img',
'convert',
'-O',
'raw',
temp_dest,
dest,
],
)
os.unlink(temp_dest)
if result:
raise RuntimeError(result.err)
|
Retrieve the given template version
Args:
temp_ver (TemplateVersion): template version to retrieve
store_metadata (bool): If set to ``False``, will not refresh the
local metadata with the retrieved one
Returns:
None
|
juraj-google-style
|
def describe_message(message_definition):
message_descriptor = MessageDescriptor()
message_descriptor.name = message_definition.definition_name().split('.')[(- 1)]
fields = sorted(message_definition.all_fields(), key=(lambda v: v.number))
if fields:
message_descriptor.fields = [describe_field(field) for field in fields]
try:
nested_messages = message_definition.__messages__
except AttributeError:
pass
else:
message_descriptors = []
for name in nested_messages:
value = getattr(message_definition, name)
message_descriptors.append(describe_message(value))
message_descriptor.message_types = message_descriptors
try:
nested_enums = message_definition.__enums__
except AttributeError:
pass
else:
enum_descriptors = []
for name in nested_enums:
value = getattr(message_definition, name)
enum_descriptors.append(describe_enum(value))
message_descriptor.enum_types = enum_descriptors
return message_descriptor
|
Build descriptor for Message class.
Args:
message_definition: Message class to provide descriptor for.
Returns:
Initialized MessageDescriptor instance describing the Message class.
|
codesearchnet
|
def prune_graph(graph_str, package_name):
g = read_dot(graph_str)
nodes = set()
for node, attrs in g.node_attr.iteritems():
attr = [x for x in attrs if x[0] == "label"]
if attr:
label = attr[0][1]
try:
req_str = _request_from_label(label)
request = PackageRequest(req_str)
except PackageRequestError:
continue
if request.name == package_name:
nodes.add(node)
if not nodes:
raise ValueError("The package %r does not appear in the graph."
% package_name)
g_rev = g.reverse()
accessible_nodes = set()
access = accessibility(g_rev)
for node in nodes:
nodes_ = access.get(node, [])
accessible_nodes |= set(nodes_)
inaccessible_nodes = set(g.nodes()) - accessible_nodes
for node in inaccessible_nodes:
g.del_node(node)
return write_dot(g)
|
Prune a package graph so it only contains nodes accessible from the
given package.
Args:
graph_str (str): Dot-language graph string.
package_name (str): Name of package of interest.
Returns:
Pruned graph, as a string.
|
juraj-google-style
|
def __init__(self, resolver_context, file_object=None):
if file_object:
raise ValueError('File object value set.')
super(EWFFile, self).__init__(resolver_context)
self._file_objects = []
|
Initializes a file-like object.
Args:
resolver_context (Context): resolver context.
file_object (Optional[FileIO]): file-like object.
Raises:
ValueError: when file_object is set.
|
juraj-google-style
|
def add_answer_for_student(student_item, vote, rationale):
answers = get_answers_for_student(student_item)
answers.add_answer(vote, rationale)
sub_api.create_submission(student_item, {
ANSWER_LIST_KEY: answers.get_answers_as_list()
})
|
Add an answer for a student to the backend
Args:
student_item (dict): The location of the problem this submission is
associated with, as defined by a course, student, and item.
vote (int): the option that student voted for
rationale (str): the reason why the student vote for the option
|
juraj-google-style
|
def parse(self, sentence: str) -> typing.List[str]:
if sentence == '':
return []
chunks = [sentence[0]]
base_score = -sum((sum(g.values()) for g in self.model.values())) * 0.5
for i in range(1, len(sentence)):
score = base_score
if i > 2:
score += self.model.get('UW1', {}).get(sentence[i - 3], 0)
if i > 1:
score += self.model.get('UW2', {}).get(sentence[i - 2], 0)
score += self.model.get('UW3', {}).get(sentence[i - 1], 0)
score += self.model.get('UW4', {}).get(sentence[i], 0)
if i + 1 < len(sentence):
score += self.model.get('UW5', {}).get(sentence[i + 1], 0)
if i + 2 < len(sentence):
score += self.model.get('UW6', {}).get(sentence[i + 2], 0)
if i > 1:
score += self.model.get('BW1', {}).get(sentence[i - 2:i], 0)
score += self.model.get('BW2', {}).get(sentence[i - 1:i + 1], 0)
if i + 1 < len(sentence):
score += self.model.get('BW3', {}).get(sentence[i:i + 2], 0)
if i > 2:
score += self.model.get('TW1', {}).get(sentence[i - 3:i], 0)
if i > 1:
score += self.model.get('TW2', {}).get(sentence[i - 2:i + 1], 0)
if i + 1 < len(sentence):
score += self.model.get('TW3', {}).get(sentence[i - 1:i + 2], 0)
if i + 2 < len(sentence):
score += self.model.get('TW4', {}).get(sentence[i:i + 3], 0)
if score > 0:
chunks.append(sentence[i])
else:
chunks[-1] += sentence[i]
return chunks
|
Parses the input sentence and returns a list of semantic chunks.
Args:
sentence (str): An input sentence.
Returns:
A list of semantic chunks (List[str]).
|
github-repos
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.