code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def allowed_methods(self): return [method for (method, allowed) in (('GET', hasattr(self, 'on_get')), ('POST', hasattr(self, 'on_post')), ('PUT', hasattr(self, 'on_put')), ('PATCH', hasattr(self, 'on_patch')), ('DELETE', hasattr(self, 'on_delete')), ('HEAD', hasattr(self, 'on_head')), ('OPTIONS', hasattr(self, 'on_options'))) if allowed]
Return list of allowed HTTP methods on this resource. This is only for purpose of making resource description. Returns: list: list of allowed HTTP method names (uppercase)
codesearchnet
def ParseDataStream(self, parser_mediator, file_entry, data_stream_name): file_object = file_entry.GetFileObject(data_stream_name=data_stream_name) if (not file_object): raise RuntimeError('Unable to retrieve file-like object from file entry.') try: parser_names = self._GetSignatureMatchParserNames(file_object) parse_with_non_sigscan_parsers = True if parser_names: parse_result = self._ParseFileEntryWithParsers(parser_mediator, parser_names, file_entry, file_object=file_object) if (parse_result in (self._PARSE_RESULT_FAILURE, self._PARSE_RESULT_SUCCESS)): parse_with_non_sigscan_parsers = False if parse_with_non_sigscan_parsers: self._ParseFileEntryWithParsers(parser_mediator, self._non_sigscan_parser_names, file_entry, file_object=file_object) finally: file_object.close()
Parses a data stream of a file entry with the enabled parsers. Args: parser_mediator (ParserMediator): parser mediator. file_entry (dfvfs.FileEntry): file entry. data_stream_name (str): data stream name. Raises: RuntimeError: if the file-like object or the parser object is missing.
codesearchnet
def plot_spectra_overlapped(ss, title=None, setup=_default_setup): plt.figure() draw_spectra_overlapped(ss, title, setup) plt.show()
Plots one or more spectra in the same plot. Args: ss: list of Spectrum objects title=None: window title setup: PlotSpectrumSetup object
juraj-google-style
def potcar_spec(filename): p_spec = {} with open(filename, 'r') as f: potcars = re.split('(End of Dataset\n)', f.read()) potcar_md5sums = [md5sum(''.join(pair)) for pair in zip(potcars[::2], potcars[1:(- 1):2])] for this_md5sum in potcar_md5sums: for ps in potcar_sets: for (p, p_md5sum) in potcar_md5sum_data[ps].items(): if (this_md5sum == p_md5sum): p_spec[p] = ps if (len(p_spec) != len(potcar_md5sums)): raise ValueError('One or more POTCARs did not have matching md5 hashes') return p_spec
Returns a dictionary specifying the pseudopotentials contained in a POTCAR file. Args: filename (Str): The name of the POTCAR file to process. Returns: (Dict): A dictionary of pseudopotential filename: dataset pairs, e.g. { 'Fe_pv': 'PBE_54', 'O', 'PBE_54' }
codesearchnet
def set_standby_timeout(timeout, power='ac', scheme=None): return _set_powercfg_value(scheme=scheme, sub_group='SUB_SLEEP', setting_guid='STANDBYIDLE', power=power, value=timeout)
Set the standby timeout in minutes for the given power scheme Args: timeout (int): The amount of time in minutes before the computer sleeps power (str): Set the value for AC or DC power. Default is ``ac``. Valid options are: - ``ac`` (AC Power) - ``dc`` (Battery) scheme (str): The scheme to use, leave as ``None`` to use the current. Default is ``None``. This can be the GUID or the Alias for the Scheme. Known Aliases are: - ``SCHEME_BALANCED`` - Balanced - ``SCHEME_MAX`` - Power saver - ``SCHEME_MIN`` - High performance Returns: bool: ``True`` if successful, otherwise ``False`` CLI Example: .. code-block:: bash # Sets the system standby timeout to 30 minutes on Battery salt '*' powercfg.set_standby_timeout 30 power=dc
codesearchnet
def config_insync(self): status = self.get('config/insync').get('configInSync', False) if (status is None): status = False return status
Returns whether the config is in sync, i.e. whether the running configuration is the same as that on disk. Returns: bool
codesearchnet
def get_time_evolution(self): term = self.simplify() coeff = term.coeff if coeff.imag: raise ValueError('Not a real coefficient.') ops = term.ops def append_to_circuit(circuit, t): if (not ops): return for op in ops: n = op.n if (op.op == 'X'): circuit.h[n] elif (op.op == 'Y'): circuit.rx((- half_pi))[n] for i in range(1, len(ops)): circuit.cx[(ops[(i - 1)].n, ops[i].n)] circuit.rz((((- 2) * coeff) * t))[ops[(- 1)].n] for i in range((len(ops) - 1), 0, (- 1)): circuit.cx[(ops[(i - 1)].n, ops[i].n)] for op in ops: n = op.n if (op.op == 'X'): circuit.h[n] elif (op.op == 'Y'): circuit.rx(half_pi)[n] return append_to_circuit
Get the function to append the time evolution of this term. Returns: function(circuit: Circuit, t: float): Add gates for time evolution to `circuit` with time `t`
codesearchnet
def _str_to_ord(content, weights): ordinal = 0 for i, c in enumerate(content): ordinal += weights[i] * _ALPHABET.index(c) + 1 return ordinal
Converts a string to its lexicographical order. Args: content: the string to convert. Of type str. weights: weights from _get_weights. Returns: an int or long that represents the order of this string. "" has order 0.
juraj-google-style
def _call(callable_obj, arg_names, namespace): arguments = {arg_name: getattr(namespace, arg_name) for arg_name in arg_names} return callable_obj(**arguments)
Actually calls the callable with the namespace parsed from the command line. Args: callable_obj: a callable object arg_names: name of the function arguments namespace: the namespace object parsed from the command line
codesearchnet
def upload_timeline(self, timeline_name, plaso_storage_path): resource_url = '{0:s}/upload/'.format(self.api_base_url) files = {'file': open(plaso_storage_path, 'rb')} data = {'name': timeline_name} response = self.session.post(resource_url, files=files, data=data) try: response_dict = response.json() except ValueError: raise RuntimeError('Could not decode JSON response from Timesketch (Status {0:d}):\n{1:s}'.format(response.status_code, response.content)) index_id = response_dict['objects'][0]['id'] return index_id
Create a timeline with the specified name from the given plaso file. Args: timeline_name (str): Name of timeline plaso_storage_path (str): Local path of plaso file to be uploaded Returns: int: ID of uploaded timeline Raises: RuntimeError: When the JSON response from Timesketch cannot be decoded.
codesearchnet
def _HasDuplicateRegistryKeyPaths(self, filename, artifact_definition, source): result = False intersection = self._artifact_registry_key_paths.intersection(set(source.keys)) if intersection: duplicate_key_paths = '\n'.join(intersection) logging.warning('Artifact definition: {0:s} in file: {1:s} has duplicate Registry key paths:\n{2:s}'.format(artifact_definition.name, filename, duplicate_key_paths)) result = True self._artifact_registry_key_paths.update(source.keys) return result
Checks if Registry key paths are not already defined by other artifacts. Note that at the moment this function will only find exact duplicate Registry key paths. Args: filename (str): name of the artifacts definition file. artifact_definition (ArtifactDefinition): artifact definition. source (SourceType): source definition. Returns: bool: True if the Registry key paths defined by the source type are used in other artifacts.
codesearchnet
def weighted_moments_v2(x, axes, frequency_weights, keepdims=False, name=None): return weighted_moments(x=x, axes=axes, frequency_weights=frequency_weights, name=name, keep_dims=keepdims)
Returns the frequency-weighted mean and variance of `x`. Args: x: A tensor. axes: 1-d tensor of int32 values; these are the axes along which to compute mean and variance. frequency_weights: A tensor of positive weights which can be broadcast with x. keepdims: Produce moments with the same dimensionality as the input. name: Name used to scope the operation. Returns: Two tensors: `weighted_mean` and `weighted_variance`.
github-repos
def _acquire(self, uuid_path): for index in range(self._min_third_octet, self._max_third_octet + 1): lease = self.create_lease_object_from_idx(index) if self._lease_valid(lease): continue self._take_lease(lease, uuid_path, safe=False) return lease.to_ip_network() raise LagoSubnetLeaseStoreFullException(self.get_allowed_range())
Lease a free network for the given uuid path Args: uuid_path (str): Path to the uuid file of a :class:`lago.Prefix` Returns: netaddr.IPNetwork: Which represents the selected subnet Raises: LagoSubnetLeaseException: If the store is full
juraj-google-style
def handle_discovery_request(self, path, request, start_response): if (path == self._GET_REST_API): return self._get_rest_doc(request, start_response) elif (path == self._GET_RPC_API): error_msg = 'RPC format documents are no longer supported with the Endpoints Framework for Python. Please use the REST format.' _logger.error('%s', error_msg) return util.send_wsgi_error_response(error_msg, start_response) elif (path == self._LIST_API): return self._list(request, start_response) return False
Returns the result of a discovery service request. This calls start_response and returns the response body. Args: path: A string containing the API path (the portion of the path after /_ah/api/). request: An ApiRequest, the transformed request sent to the Discovery API. start_response: A function with semantics defined in PEP-333. Returns: The response body. Or returns False if the request wasn't handled by DiscoveryService.
codesearchnet
def date_to_epoch(year, month, day): return int(date_to_delorean(year, month, day).epoch)
Converts a date to epoch in UTC Args: year: int between 1 and 9999. month: int between 1 and 12. day: int between 1 and 31. Returns: Int epoch in UTC from date.
codesearchnet
def _commit_change(alias_table, export_path=None, post_commit=True): with open((export_path or GLOBAL_ALIAS_PATH), 'w+') as alias_config_file: alias_table.write(alias_config_file) if post_commit: alias_config_file.seek(0) alias_config_hash = hashlib.sha1(alias_config_file.read().encode('utf-8')).hexdigest() AliasManager.write_alias_config_hash(alias_config_hash) collided_alias = AliasManager.build_collision_table(alias_table.sections()) AliasManager.write_collided_alias(collided_alias) build_tab_completion_table(alias_table)
Record changes to the alias table. Also write new alias config hash and collided alias, if any. Args: alias_table: The alias table to commit. export_path: The path to export the aliases to. Default: GLOBAL_ALIAS_PATH. post_commit: True if we want to perform some extra actions after writing alias to file.
codesearchnet
def uni_to_beta(text): u = _UNICODE_MAP transform = [] for ch in text: try: conv = u[ch] except KeyError: conv = ch transform.append(conv) converted = ''.join(transform) return converted
Convert unicode text to a betacode equivalent. This method can handle tónos or oxeîa characters in the input. Args: text: The text to convert to betacode. This text does not have to all be Greek polytonic text, and only Greek characters will be converted. Note that in this case, you cannot convert to beta and then back to unicode. Returns: The betacode equivalent of the inputted text where applicable.
codesearchnet
def _html_tree_view_render(self, *, view: 'HtmlTreeView', name: Optional[str]=None, parent: Any=None, root_path: Optional[KeyPath]=None, **kwargs) -> Html: return self._html_tree_view(view=view, name=name, parent=parent, root_path=root_path, **view.get_kwargs(kwargs, self._html_tree_view_config(), root_path or KeyPath())).add_style(*self._html_tree_view_css_styles())
The entrypoint of rendering the subtree represented by this extension. Args: view: The view to render the object. name: The name of the object. parent: The parent of the object. root_path: The key path of the object relative to the root. **kwargs: kwargs to pass to `view.render()` on this extension. Returns: The rendered HTML.
github-repos
def _open_rpc_interface(self, connection_id, callback): try: context = self.connections.get_context(connection_id) except ArgumentError: callback(connection_id, self.id, False, 'Could not find connection information') return self.connections.begin_operation(connection_id, 'open_interface', callback, self.get_config('default_timeout')) try: service = context['services'][TileBusService] header_characteristic = service[ReceiveHeaderChar] payload_characteristic = service[ReceivePayloadChar] except KeyError: self.connections.finish_operation(connection_id, False, "Can't find characteristics to open rpc interface") return self.bable.set_notification(enabled=True, connection_handle=context['connection_handle'], characteristic=header_characteristic, on_notification_set=[self._on_interface_opened, context, payload_characteristic], on_notification_received=self._on_notification_received, sync=False)
Enable RPC interface for this IOTile device Args: connection_id (int): The unique identifier for the connection callback (callback): Callback to be called when this command finishes callback(conn_id, adapter_id, success, failure_reason)
codesearchnet
def get_variation_for_rollout(self, rollout, user_id, attributes=None): if rollout and len(rollout.experiments) > 0: for idx in range(len(rollout.experiments) - 1): experiment = self.config.get_experiment_from_key(rollout.experiments[idx].get('key')) if not audience_helper.is_user_in_experiment(self.config, experiment, attributes, self.logger): self.logger.debug('User "%s" does not meet conditions for targeting rule %s.' % ( user_id, idx + 1 )) continue self.logger.debug('User "%s" meets conditions for targeting rule %s.' % (user_id, idx + 1)) bucketing_id = self._get_bucketing_id(user_id, attributes) variation = self.bucketer.bucket(experiment, user_id, bucketing_id) if variation: self.logger.debug('User "%s" is in variation %s of experiment %s.' % ( user_id, variation.key, experiment.key )) return Decision(experiment, variation, enums.DecisionSources.ROLLOUT) else: self.logger.debug('User "%s" is not in the traffic group for the targeting else. ' 'Checking "Everyone Else" rule now.' % user_id) break everyone_else_experiment = self.config.get_experiment_from_key(rollout.experiments[-1].get('key')) if audience_helper.is_user_in_experiment(self.config, self.config.get_experiment_from_key(rollout.experiments[-1].get('key')), attributes, self.logger): bucketing_id = self._get_bucketing_id(user_id, attributes) variation = self.bucketer.bucket(everyone_else_experiment, user_id, bucketing_id) if variation: self.logger.debug('User "%s" meets conditions for targeting rule "Everyone Else".' % user_id) return Decision(everyone_else_experiment, variation, enums.DecisionSources.ROLLOUT) return Decision(None, None, enums.DecisionSources.ROLLOUT)
Determine which experiment/variation the user is in for a given rollout. Returns the variation of the first experiment the user qualifies for. Args: rollout: Rollout for which we are getting the variation. user_id: ID for user. attributes: Dict representing user attributes. Returns: Decision namedtuple consisting of experiment and variation for the user.
juraj-google-style
def to_grayscale(img): gray = numpy.asarray(ImageOps.grayscale(img)).astype(numpy.float) imbands = img.getbands() alpha = None if ('A' in imbands): alpha = numpy.asarray(img.split()[(- 1)]).astype(numpy.float) return (gray, alpha)
Convert PIL image to numpy grayscale array and numpy alpha array. Args: img (PIL.Image): PIL Image object. Returns: (gray, alpha): both numpy arrays.
codesearchnet
def GetTaskPendingMerge(self, current_task): next_task = self._tasks_pending_merge.PeekTask() if not next_task: return None if current_task and next_task.merge_priority > current_task.merge_priority: return None with self._lock: next_task = self._tasks_pending_merge.PopTask() self._tasks_merging[next_task.identifier] = next_task return next_task
Retrieves the first task that is pending merge or has a higher priority. This function will check if there is a task with a higher merge priority than the current_task being merged. If so, that task with the higher priority is returned. Args: current_task (Task): current task being merged or None if no such task. Returns: Task: the next task to merge or None if there is no task pending merge or with a higher priority.
juraj-google-style
def get_box_threads(self, box_key): uri = '/'.join([ self.api_uri, self.boxes_suffix, box_key, self.threads_suffix ]) return self._req('get', uri)
Gets all threads in a specified box Args: box_key box to look in returns a list of thread dicts
juraj-google-style
def set_guest_access(self, room_id, guest_access): content = { "guest_access": guest_access } return self.send_state_event(room_id, "m.room.guest_access", content)
Set the guest access policy of the room. Args: room_id(str): The room to set the rules for. guest_access(str): Wether guests can join. One of: ["can_join", "forbidden"]
juraj-google-style
def compute_recall(self, result_neighbors, ground_truth_neighbors): self.assertLen(result_neighbors.shape, 2) self.assertLen(ground_truth_neighbors.shape, 2) self.assertEqual(result_neighbors.shape[0], ground_truth_neighbors.shape[0]) gt_sets = [set(np.asarray(x)) for x in ground_truth_neighbors] def hits_per_q(q, nn_per_q): return len(list((x for x in nn_per_q if x.item() in gt_sets[q]))) hits = sum((hits_per_q(q, nn_per_q) for q, nn_per_q in enumerate(result_neighbors))) return hits / ground_truth_neighbors.size
Computes the recall of an approximate nearest neighbor search. Args: result_neighbors: int32 numpy array of the shape [num_queries, neighbors_per_query] where the values are the indices of the dataset. ground_truth_neighbors: int32 numpy array of with shape [num_queries, ground_truth_neighbors_per_query] where the values are the indices of the dataset. Returns: The recall.
github-repos
def set_parent(self, parent): if not isinstance(parent, Node): raise TypeError("parent must be a Node") self.parent = parent
Set the parent of this ``Node`` object. Use this carefully, otherwise you may damage the structure of this ``Tree`` object. Args: ``Node``: The new parent of this ``Node``
juraj-google-style
def get_whois_tags(ip_address): whois = IPWhois(ip_address).lookup_whois() nets = whois.get('nets', None) if (not nets): return [] cities = [net['city'] for net in nets if net.get('city', None)] address_list = [] for net in nets: address = net.get('address', None) if (not address): continue if (('description' in net) and net['description']): address = address.replace(net['description'], '').strip() if ('\n' in address): address = ', '.join(address.splitlines()) address_list.append(address) return [SourceString(val, source='Whois') for val in set((cities + address_list))]
Get list of tags with `address` for given `ip_address`. Args: index_page (str): HTML content of the page you wisht to analyze. Returns: list: List of :class:`.SourceString` objects.
codesearchnet
def parse_header(line): if ((not line) or (line == '\r\n')): return None if (line[0] in ' \t'): return line[1:].rstrip() (name, value) = line.split(':', 1) return (name.strip(), value.strip())
Parse a header line. Args: line: A header line as a string. Returns: None if end of headers is found. A string giving the continuation line if a continuation is found. A tuple of name, value when a header line is found. Raises: ValueError: If the line cannot be parsed as a header.
codesearchnet
def _try_to_clean_garbage(self, writer_spec, exclude_list=()): tmpl = string.Template(self._TMPFILE_PREFIX) prefix = tmpl.substitute(id=self.status.mapreduce_id, shard=self.status.shard) bucket = self._get_tmp_gcs_bucket(writer_spec) account_id = self._get_tmp_account_id(writer_spec) for f in cloudstorage.listbucket(('/%s/%s' % (bucket, prefix)), _account_id=account_id): if (f.filename not in exclude_list): self._remove_tmpfile(f.filename, self.status.writer_spec)
Tries to remove any files created by this shard that aren't needed. Args: writer_spec: writer_spec for the MR. exclude_list: A list of filenames (strings) that should not be removed.
codesearchnet
def qubits_tab(backend): props = backend.properties().to_dict() header_html = "<div><font style='font-weight:bold'>{key}</font>: {value}</div>" header_html = header_html.format(key='last_update_date', value=props['last_update_date']) update_date_widget = widgets.HTML(value=header_html) qubit_html = '<table>' qubit_html += '<style>\ntable {\n border-collapse: collapse;\n width: auto;\n}\n\nth, td {\n text-align: left;\n padding: 8px;\n}\n\ntr:nth-child(even) {background-color: qubit_html += '<tr><th></th><th>Frequency</th><th>T1</th><th>T2</th>' qubit_html += '<th>U1 gate error</th><th>U2 gate error</th><th>U3 gate error</th>' qubit_html += '<th>Readout error</th></tr>' qubit_footer = '</table>' for qub in range(len(props['qubits'])): name = ('Q%s' % qub) qubit_data = props['qubits'][qub] gate_data = props['gates'][(3 * qub):((3 * qub) + 3)] t1_info = qubit_data[0] t2_info = qubit_data[1] freq_info = qubit_data[2] readout_info = qubit_data[3] freq = ((str(round(freq_info['value'], 5)) + ' ') + freq_info['unit']) T1 = ((str(round(t1_info['value'], 5)) + ' ') + t1_info['unit']) T2 = ((str(round(t2_info['value'], 5)) + ' ') + t2_info['unit']) U1 = str(round(gate_data[0]['parameters'][0]['value'], 5)) U2 = str(round(gate_data[1]['parameters'][0]['value'], 5)) U3 = str(round(gate_data[2]['parameters'][0]['value'], 5)) readout_error = round(readout_info['value'], 5) qubit_html += "<tr><td><font style='font-weight:bold'>%s</font></td><td>%s</td>" qubit_html += '<td>%s</td><td>%s</td><td>%s</td><td>%s</td><td>%s</td><td>%s</td></tr>' qubit_html = (qubit_html % (name, freq, T1, T2, U1, U2, U3, readout_error)) qubit_html += qubit_footer qubit_widget = widgets.HTML(value=qubit_html) out = widgets.VBox([update_date_widget, qubit_widget]) return out
The qubits properties widget Args: backend (IBMQbackend): The backend. Returns: VBox: A VBox widget.
codesearchnet
def calculate_signatures(self): if (not self.signing_algorithm): return [] algo_id = {'sha1': 1, 'sha384': 2}[self.signing_algorithm] hashers = [(algo_id, make_hasher(algo_id))] for block in get_signature_data(self.fileobj, self.filesize): [h.update(block) for (_, h) in hashers] signatures = [(algo_id, sign_hash(self.signing_key, h.finalize(), h.algorithm.name)) for (algo_id, h) in hashers] return signatures
Calculate the signatures for this MAR file. Returns: A list of signature tuples: [(algorithm_id, signature_data), ...]
codesearchnet
def get_revisions(page): start_string = ' <revision>\n' end_string = ' </revision>\n' ret = [] current_pos = 0 while True: start_pos = page.find(start_string, current_pos) if (start_pos == (- 1)): break end_pos = page.find(end_string, start_pos) assert (end_pos != (- 1)) ret.append(page[(start_pos + len(start_string)):end_pos]) current_pos = (end_pos + len(end_string)) return ret
Extract the revisions of a page. Args: page: a string Returns: a list of strings
codesearchnet
def main(args=None): if (args is None): args = sys.argv[1:] parser = create_parser() args = parser.parse_args(args) if (args.verbose >= 2): level = logging.DEBUG elif (args.verbose >= 1): level = logging.INFO else: level = logging.WARNING logging.basicConfig(level=level) try: args.command(args) except pylink.JLinkException as e: sys.stderr.write(('Error: %s%s' % (str(e), os.linesep))) return 1 return 0
Main command-line interface entrypoint. Runs the given subcommand or argument that were specified. If not given a ``args`` parameter, assumes the arguments are passed on the command-line. Args: args (list): list of command-line arguments Returns: Zero on success, non-zero otherwise.
codesearchnet
def key_changes(self, from_token, to_token): params = {"from": from_token, "to": to_token} return self._send("GET", "/keys/changes", query_params=params)
Gets a list of users who have updated their device identity keys. Args: from_token (str): The desired start point of the list. Should be the next_batch field from a response to an earlier call to /sync. to_token (str): The desired end point of the list. Should be the next_batch field from a recent call to /sync - typically the most recent such call.
juraj-google-style
def main(jlink_serial, device): buf = StringIO.StringIO() jlink = pylink.JLink(log=buf.write, detailed_log=buf.write) jlink.open(serial_no=jlink_serial) jlink.set_tif(pylink.enums.JLinkInterfaces.SWD) jlink.connect(device, verbose=True) big_endian = jlink.set_little_endian() if big_endian: jlink.set_big_endian() print('Target Endian Mode: %s Endian' % ('Big' if big_endian else 'Little'))
Main function. Args: jlink_serial (str): the J-Link serial number device (str): the target CPU Returns: ``None`` Raises: JLinkException: on error
juraj-google-style
class UnitNorm(Constraint): def __init__(self, axis=0): self.axis = axis def __call__(self, w): w = backend.convert_to_tensor(w) return w / (backend.epsilon() + ops.sqrt(ops.sum(ops.square(w), axis=self.axis, keepdims=True))) def get_config(self): return {'axis': self.axis}
Constrains the weights incident to each hidden unit to have unit norm. Args: axis: integer, axis along which to calculate weight norms. For instance, in a `Dense` layer the weight matrix has shape `(input_dim, output_dim)`, set `axis` to `0` to constrain each weight vector of length `(input_dim,)`. In a `Conv2D` layer with `data_format="channels_last"`, the weight tensor has shape `(rows, cols, input_depth, output_depth)`, set `axis` to `[0, 1, 2]` to constrain the weights of each filter tensor of size `(rows, cols, input_depth)`.
github-repos
def altitude(msg): tc = common.typecode(msg) if tc<9 or tc==19 or tc>22: raise RuntimeError("%s: Not a airborn position message" % msg) mb = common.hex2bin(msg)[32:] if tc < 19: q = mb[15] if q: n = common.bin2int(mb[8:15]+mb[16:20]) alt = n * 25 - 1000 else: alt = None else: alt = common.bin2int(mb[8:20]) * 3.28084 return alt
Decode aircraft altitude Args: msg (string): 28 bytes hexadecimal message string Returns: int: altitude in feet
juraj-google-style
def from_input(cls, input, workdir=None, manager=None): return cls(input, workdir=workdir, manager=manager)
Create an instance of `AbinitTask` from an ABINIT input. Args: ainput: `AbinitInput` object. workdir: Path to the working directory. manager: :class:`TaskManager` object.
codesearchnet
def split_vert_on_nonmanifold_face(script, vert_displacement_ratio=0.0): filter_xml = ''.join([' <filter name="Split Vertexes Incident on Non Manifold Faces">\n', ' <Param name="VertDispRatio" ', 'value="{}" '.format(vert_displacement_ratio), 'description="Vertex Displacement Ratio" ', 'type="RichFloat" ', '/>\n', ' </filter>\n']) util.write_filter(script, filter_xml) return None
Split non-manifold vertices until it becomes two-manifold. Args: script: the FilterScript object or script filename to write the filter to. vert_displacement_ratio (float): When a vertex is split it is moved along the average vector going from its position to the centroid of the FF connected faces sharing it. Layer stack: No impacts MeshLab versions: 2016.12 1.3.4BETA
codesearchnet
def nearest_neighbour_delta_E(self): delta_nn = ((self.final_site.nn_occupation() - self.initial_site.nn_occupation()) - 1) return (delta_nn * self.nearest_neighbour_energy)
Nearest-neighbour interaction contribution to the change in system energy if this jump were accepted. Args: None Returns: (Float): delta E (nearest-neighbour)
codesearchnet
def parse_results(self, data): results = [] if len(data["Records"]) < 1: return -1 codes = data["Records"][0]["Results"] for code in codes.split(","): results.append(str(code)) self.addr1 = data["Records"][0]["AddressLine1"] self.addr2 = data["Records"][0]["AddressLine2"] self.city = data["Records"][0]["City"] self.name = data["Records"][0]["NameFull"] self.phone = data["Records"][0]["PhoneNumber"] self.province = data["Records"][0]["State"] self.postal = data["Records"][0]["PostalCode"] self.recordID = data["Records"][0]["RecordID"] return results
parse_results Parses the MelissaData response. Args: data (dict): Contains MelissaData response Returns: results, either contains a dict with corrected address info or -1 for an invalid address.
juraj-google-style
def peek(init, exposes, debug=False): def _peek(store, container, _stack=None): args = [ store.peek(objname, container, _stack=_stack) \ for objname in exposes ] if debug: print(args) return init(*args) return _peek
Default deserializer factory. Arguments: init (callable): type constructor. exposes (iterable): attributes to be peeked and passed to `init`. Returns: callable: deserializer (`peek` routine).
juraj-google-style
def __init__(self, default_environment: Optional[environments.Environment]=None, bundle_repeat: int=0, use_state_iterables: bool=False, provision_info: Optional['ExtendedProvisionInfo']=None, progress_request_frequency: Optional[float]=None, is_drain: bool=False) -> None: super().__init__() self._default_environment = default_environment or environments.EmbeddedPythonEnvironment.default() self._bundle_repeat = bundle_repeat self._num_workers = 1 self._progress_frequency = progress_request_frequency self._profiler_factory: Optional[Callable[..., Profile]] = None self._use_state_iterables = use_state_iterables self._is_drain = is_drain self._provision_info = provision_info or ExtendedProvisionInfo(beam_provision_api_pb2.ProvisionInfo(retrieval_token='unused-retrieval-token'))
Creates a new Fn API Runner. Args: default_environment: the default environment to use for UserFns. bundle_repeat: replay every bundle this many extra times, for profiling and debugging use_state_iterables: Intentionally split gbk iterables over state API (for testing) provision_info: provisioning info to make available to workers, or None progress_request_frequency: The frequency (in seconds) that the runner waits before requesting progress from the SDK. is_drain: identify whether expand the sdf graph in the drain mode.
github-repos
def scripthash_to_address(scripthash): sb = (bytearray([ADDRESS_VERSION]) + scripthash) c256 = bin_dbl_sha256(sb)[0:4] outb = (sb + bytearray(c256)) return base58.b58encode(bytes(outb)).decode('utf-8')
Convert a script hash to a public address. Args: scripthash (bytes): Returns: str: base58 encoded string representing the wallet address.
codesearchnet
def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1): q_ids = tf.range(query_size, dtype=tf.int32) k_ids = tf.range(key_size, dtype=tf.int32) rel_pos_ids = q_ids[:, None] - tf.tile(tf.expand_dims(k_ids, axis=0), [shape_list(q_ids)[0], 1]) if bucket_size > 0 and max_position > 0: rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position) rel_pos_ids = rel_pos_ids[:query_size, :] rel_pos_ids = tf.expand_dims(rel_pos_ids, axis=0) return tf.cast(rel_pos_ids, tf.int64)
Build relative position according to the query and key We assume the absolute position of query \(P_q\) is range from (0, query_size) and the absolute position of key \(P_k\) is range from (0, key_size), The relative positions from query to key is \(R_{q \rightarrow k} = P_q - P_k\) Args: query_size (int): the length of query key_size (int): the length of key bucket_size (int): the size of position bucket max_position (int): the maximum allowed absolute position Return: `tf.Tensor`: A tensor with shape [1, query_size, key_size]
github-repos
def virt_env(self): if (self._virt_env is None): self._virt_env = self._create_virt_env() return self._virt_env
Getter for this instance's virt env, creates it if needed Returns: lago.virt.VirtEnv: virt env instance used by this prefix
codesearchnet
def observe(self, value): self._buffer.append(value) if (len(self._buffer) == _BUFFER_SIZE): self._flush()
Samples an observation's value. Args: value: A numeric value signifying the value to be sampled.
codesearchnet
def get_subnets(target='ec2', purpose='internal', env='', region=''): account_az_dict = defaultdict(defaultdict) subnet_id_dict = defaultdict(defaultdict) subnet_url = '{0}/subnets/aws'.format(API_URL) subnet_response = requests.get(subnet_url, verify=GATE_CA_BUNDLE, cert=GATE_CLIENT_CERT) if (not subnet_response.ok): raise SpinnakerTimeout(subnet_response.text) subnet_list = subnet_response.json() for subnet in subnet_list: LOG.debug('Subnet: %(account)s\t%(region)s\t%(target)s\t%(vpcId)s\t%(availabilityZone)s', subnet) if (subnet.get('target', '') == target): availability_zone = subnet['availabilityZone'] account = subnet['account'] subnet_region = subnet['region'] subnet_id = subnet['id'] try: if (availability_zone not in account_az_dict[account][subnet_region]): account_az_dict[account][subnet_region].append(availability_zone) except KeyError: account_az_dict[account][subnet_region] = [availability_zone] if (subnet['purpose'] == purpose): try: subnet_id_dict[account][subnet_region].append(subnet_id) except KeyError: subnet_id_dict[account][subnet_region] = [subnet_id] LOG.debug('%s regions: %s', account, list(account_az_dict[account].keys())) if all([env, region]): try: region_dict = {region: account_az_dict[env][region]} region_dict['subnet_ids'] = {region: subnet_id_dict[env][region]} LOG.debug('Region dict: %s', region_dict) return region_dict except KeyError: raise SpinnakerSubnetError(env=env, region=region) LOG.debug('AZ dict:\n%s', pformat(dict(account_az_dict))) return account_az_dict
Get all availability zones for a given target. Args: target (str): Type of subnets to look up (ec2 or elb). env (str): Environment to look up. region (str): AWS Region to find Subnets for. Returns: az_dict: dictionary of availbility zones, structured like { $region: [ $avaibilityzones ] } or { $account: $region: [ $availabilityzone] }
codesearchnet
def _preprocess(self, inputs: Sequence[torch.Tensor], freq: Sequence[int]) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: input_ts, input_padding, inp_freq = ([], [], []) for i, ts in enumerate(inputs): input_len = ts.shape[0] padding = torch.zeros(input_len + self.horizon_len, dtype=ts.dtype, device=ts.device) if input_len < self.context_len: num_front_pad = self.context_len - input_len ts = torch.cat([torch.zeros(num_front_pad, dtype=ts.dtype, device=ts.device), ts], dim=0) padding = torch.cat([torch.ones(num_front_pad, dtype=ts.dtype, device=padding.device), padding], dim=0) elif input_len > self.context_len: ts = ts[-self.context_len:] padding = padding[-(self.context_len + self.horizon_len):] input_ts.append(ts) input_padding.append(padding) inp_freq.append(freq[i]) return (torch.stack(input_ts, dim=0), torch.stack(input_padding, dim=0), torch.tensor(inp_freq, dtype=torch.int32).reshape(-1, 1))
Formats and pads raw inputs to feed into the model. This function both pads each time series to match the context length, and pads the inputs to meet the SPMD shape requirement. Args: inputs: A list of 1d Tensors. Each Tensor is the context time series of a single forecast task. freq: list of frequencies Returns: A tuple of: - the padded input time series to meet the model required context. - the padding indicator. - the number of padded examples for SPMD so that each core has the same number (a multiple of `batch_size`) of examples.
github-repos
def dbmax10years(self, value=None): if (value is not None): try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float for field `dbmax10years`'.format(value)) self._dbmax10years = value
Corresponds to IDD Field `dbmax10years` 10-year return period values for maximum extreme dry-bulb temperature Args: value (float): value for IDD Field `dbmax10years` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
codesearchnet
def _locate_point(nodes, point): candidates = [(0.0, 1.0, nodes)] for _ in six.moves.xrange((_MAX_LOCATE_SUBDIVISIONS + 1)): next_candidates = [] for (start, end, candidate) in candidates: if _helpers.contains_nd(candidate, point.ravel(order='F')): midpoint = (0.5 * (start + end)) (left, right) = subdivide_nodes(candidate) next_candidates.extend(((start, midpoint, left), (midpoint, end, right))) candidates = next_candidates if (not candidates): return None params = [(start, end) for (start, end, _) in candidates] if (np.std(params) > _LOCATE_STD_CAP): raise ValueError('Parameters not close enough to one another', params) s_approx = np.mean(params) s_approx = newton_refine(nodes, point, s_approx) if (s_approx < 0.0): return 0.0 elif (s_approx > 1.0): return 1.0 else: return s_approx
r"""Locate a point on a curve. Does so by recursively subdividing the curve and rejecting sub-curves with bounding boxes that don't contain the point. After the sub-curves are sufficiently small, uses Newton's method to zoom in on the parameter value. .. note:: This assumes, but does not check, that ``point`` is ``D x 1``, where ``D`` is the dimension that ``curve`` is in. .. note:: There is also a Fortran implementation of this function, which will be used if it can be built. Args: nodes (numpy.ndarray): The nodes defining a B |eacute| zier curve. point (numpy.ndarray): The point to locate. Returns: Optional[float]: The parameter value (:math:`s`) corresponding to ``point`` or :data:`None` if the point is not on the ``curve``. Raises: ValueError: If the standard deviation of the remaining start / end parameters among the subdivided intervals exceeds a given threshold (e.g. :math:`2^{-20}`).
codesearchnet
def flatten_rules(self, declarations): rules = [] for (protocole, paths) in declarations: if protocole: continue rules.extend([self.strip_quotes(v.strip()) for v in paths.split(',')]) return list(filter(self.filter_rules, rules))
Flatten returned import rules from regex. Because import rules can contains multiple items in the same rule (called multiline import rule), the regex ``REGEX_IMPORT_RULE`` return a list of unquoted items for each rule. Args: declarations (list): A SCSS source. Returns: list: Given SCSS source with all comments removed.
codesearchnet
def piece_to_id(input, model_file=None, model_proto=None, name=None): return _gen_sentencepiece_processor_op.sentencepiece_piece_to_id(input, model_file=model_file, model_proto=model_proto, name=name)
Converts piece into vocabulary id. Args: input: An arbitrary tensor of string. model_file: The sentencepiece model file path. model_proto: The sentencepiece model serialized proto. Either `model_file` or `model_proto` must be set. name: The name argument that is passed to the op function. Returns: A tensor of int32 with the same shape as input.
codesearchnet
def pages(self): if (self._owner_id is None): it = ProfileIterator.from_username(self._username, self.session) self._owner_id = it.owner_id return it return ProfileIterator(self._owner_id, self.session, self.rhx)
Obtain an iterator over Instagram post pages. Returns: PageIterator: an iterator over the instagram post pages. Raises: ValueError: when the requested user does not exist. RuntimeError: when the user is a private account and there is no logged user (or the logged user does not follow that account).
codesearchnet
def createThread(parent, worker, deleteWorkerLater=False): thread = QtCore.QThread(parent) thread.started.connect(worker.doWork) worker.finished.connect(thread.quit) if deleteWorkerLater: thread.finished.connect(worker.deleteLater) worker.moveToThread(thread) worker.setParent(parent) return thread
Create a new thread for given worker. Args: parent (QObject): parent of thread and worker. worker (ProgressWorker): worker to use in thread. deleteWorkerLater (bool, optional): delete the worker if thread finishes. Returns: QThread
codesearchnet
def _check_suffix(self, w_string, access_string, index): prefix_as = self._membership_query(access_string) full_as = self._membership_query(access_string + w_string[index:]) prefix_w = self._membership_query(w_string[:index]) full_w = self._membership_query(w_string) length = len(commonprefix([prefix_as, full_as])) as_suffix = full_as[length:] length = len(commonprefix([prefix_w, full_w])) w_suffix = full_w[length:] if as_suffix != w_suffix: logging.debug('Access string state incorrect') return True logging.debug('Access string state correct.') return False
Checks if access string suffix matches with the examined string suffix Args: w_string (str): The examined string to be consumed access_string (str): The access string for the state index (int): The index value for selecting the prefix of w Returns: bool: A boolean valuei indicating if matching was successful
juraj-google-style
def serialize_to_string(self, name, datas): value = datas.get('value', None) if (value is None): msg = "String reference '{}' lacks of required 'value' variable or is empty" raise SerializerError(msg.format(name)) return value
Serialize given datas to a string. Simply return the value from required variable``value``. Arguments: name (string): Name only used inside possible exception message. datas (dict): Datas to serialize. Returns: string: Value.
codesearchnet
def __le__(self, other): other = as_dimension(other) if self._value is None or other.value is None: return None else: return self._value <= other.value
Returns True if `self` is known to be less than or equal to `other`. Dimensions are compared as follows: ```python (tf.compat.v1.Dimension(m) <= tf.compat.v1.Dimension(n)) == (m <= n) (tf.compat.v1.Dimension(m) <= tf.compat.v1.Dimension(None)) == None (tf.compat.v1.Dimension(None) <= tf.compat.v1.Dimension(n)) == None (tf.compat.v1.Dimension(None) <= tf.compat.v1.Dimension(None)) == None ``` Args: other: Another Dimension. Returns: The value of `self.value <= other.value` if both are known, otherwise None.
github-repos
class GitProcessor(ProcessorMixin): attributes = ['image_processor', 'tokenizer'] image_processor_class = 'AutoImageProcessor' tokenizer_class = 'AutoTokenizer' def __init__(self, image_processor, tokenizer): super().__init__(image_processor, tokenizer) self.current_processor = self.image_processor def __call__(self, images: Optional[ImageInput]=None, text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]]=None, audio=None, videos=None, **kwargs: Unpack[GitProcessorKwargs]) -> BatchFeature: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.') images, text = _validate_images_text_input_order(images, text) output_kwargs = self._merge_kwargs(GitProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs) data = {} if text is not None: text_features = self.tokenizer(text, **output_kwargs['text_kwargs']) data.update(text_features) if images is not None: image_features = self.image_processor(images, **output_kwargs['images_kwargs']) data.update(image_features) return BatchFeature(data=data, tensor_type=output_kwargs['common_kwargs'].get('return_tensors')) def batch_decode(self, *args, **kwargs): return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): return ['input_ids', 'attention_mask', 'pixel_values']
Constructs a GIT processor which wraps a CLIP image processor and a BERT tokenizer into a single processor. [`GitProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BertTokenizerFast`]. See the [`~GitProcessor.__call__`] and [`~GitProcessor.decode`] for more information. Args: image_processor ([`AutoImageProcessor`]): The image processor is a required input. tokenizer ([`AutoTokenizer`]): The tokenizer is a required input.
github-repos
def get_logger(name): logger = logging.getLogger(name) logger.addHandler(logging.NullHandler()) return logger
Gets a logger Arguments: name - the name you wish to log as Returns: A logger!
juraj-google-style
def CacheObject(self, identifier, vfs_object): if identifier in self._values: raise KeyError('Object already cached for identifier: {0:s}'.format( identifier)) if len(self._values) == self._maximum_number_of_cached_values: raise errors.CacheFullError('Maximum number of cached values reached.') self._values[identifier] = ObjectsCacheValue(vfs_object)
Caches a VFS object. This method ignores the cache value reference count. Args: identifier (str): VFS object identifier. vfs_object (object): VFS object to cache. Raises: CacheFullError: if he maximum number of cached values is reached. KeyError: if the VFS object already is cached.
juraj-google-style
def get_or_create(session, model, **kwargs): instance = session.query(model).filter_by(**kwargs).first() if instance: return (instance, False) else: instance = model(**kwargs) if ('dataset' in kwargs): instance.update_sequence_id(session, kwargs['dataset']) session.add(instance) session.commit() return (instance, True)
Get or create sqlalchemy instance. Args: session (Sqlalchemy session): model (sqlalchemy model): kwargs (dict): kwargs to lookup or create instance. Returns: Tuple: first element is found or created instance, second is boolean - True if instance created, False if instance found.
codesearchnet
def nested_row_lengths(self, name=None): with ops.name_scope(name, 'RaggedNestedRowLengths', [self]): rt_nested_row_lengths = [] rt = self while isinstance(rt, RaggedTensor): rt_nested_row_lengths.append(rt.row_lengths()) rt = rt.values return tuple(rt_nested_row_lengths)
Returns a tuple containing the row_lengths for all ragged dimensions. `rt.nested_row_lengths()` is a tuple containing the `row_lengths` tensors for all ragged dimensions in `rt`, ordered from outermost to innermost. Args: name: A name prefix for the returned tensors (optional). Returns: A `tuple` of 1-D integer `Tensors`. The length of the tuple is equal to `self.ragged_rank`.
github-repos
def converted_self(self): raise NotImplementedError
A copy of this Convertible to be modified during conversion. Returns: Implementations should return the copied instance, which in turn should be contained in converted_enclosing_graph(). This instance is the one that will be modified during conversion. Its main use will be in the implementations of convert_variable_to_constant().
github-repos
def monitored_timer(cell): def actual_decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): with MonitoredTimer(cell): return func(*args, **kwargs) return wrapper return actual_decorator
A function decorator for adding MonitoredTimer support. Args: cell: the cell associated with the time metric that will be inremented. Returns: A decorator that measure the function runtime and increment the specified counter cell.
github-repos
def convert(credentials): credentials_class = type(credentials) try: return _CLASS_CONVERSION_MAP[credentials_class](credentials) except KeyError as caught_exc: new_exc = ValueError(_CONVERT_ERROR_TMPL.format(credentials_class)) six.raise_from(new_exc, caught_exc)
Convert oauth2client credentials to google-auth credentials. This class converts: - :class:`oauth2client.client.OAuth2Credentials` to :class:`google.oauth2.credentials.Credentials`. - :class:`oauth2client.client.GoogleCredentials` to :class:`google.oauth2.credentials.Credentials`. - :class:`oauth2client.service_account.ServiceAccountCredentials` to :class:`google.oauth2.service_account.Credentials`. - :class:`oauth2client.service_account._JWTAccessCredentials` to :class:`google.oauth2.service_account.Credentials`. - :class:`oauth2client.contrib.gce.AppAssertionCredentials` to :class:`google.auth.compute_engine.Credentials`. - :class:`oauth2client.contrib.appengine.AppAssertionCredentials` to :class:`google.auth.app_engine.Credentials`. Returns: google.auth.credentials.Credentials: The converted credentials. Raises: ValueError: If the credentials could not be converted.
codesearchnet
def clone(self, to_namespace, to_name): r = fapi.clone_workspace(self.namespace, self.name, to_namespace, to_name, self.api_url) fapi._check_response_code(r, 201) return Workspace(to_namespace, to_name, self.api_url)
Clone this workspace. Args: to_namespace (str): Target workspace namespace to_name (str): Target workspace name
codesearchnet
def issue(self, invoice_id, **kwargs): url = "{}/{}/issue".format(self.base_url, invoice_id) return self.post_url(url, {}, **kwargs)
Issues an invoice in draft state Args: invoice_id : Id for delete the invoice Returns: Its response is the invoice entity, similar to create/update API response. Its status now would be issued.
juraj-google-style
def _GetBetweenQEqualsAndAmpersand(self, url): _, _, url = url.partition('?') _, _, url = url.partition('q=') if not url: return '' url, _, _ = url.partition('&') return url
Retrieves the substring between the substrings 'q=' and '&'. Args: url (str): URL. Returns: str: search query, the value between 'q=' and '&' or None if no query was found.
juraj-google-style
def sparse_categorical_crossentropy(y_true, y_pred, from_logits=False, axis=-1): y_pred = tensor_conversion.convert_to_tensor_v2_with_dispatch(y_pred) y_true = math_ops.cast(y_true, y_pred.dtype) return backend.sparse_categorical_crossentropy(y_true, y_pred, from_logits=from_logits, axis=axis)
Computes the sparse categorical crossentropy loss. Standalone usage: >>> y_true = [1, 2] >>> y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]] >>> loss = tf.keras.losses.sparse_categorical_crossentropy(y_true, y_pred) >>> assert loss.shape == (2,) >>> loss.numpy() array([0.0513, 2.303], dtype=float32) Args: y_true: Ground truth values. y_pred: The predicted values. from_logits: Whether `y_pred` is expected to be a logits tensor. By default, we assume that `y_pred` encodes a probability distribution. axis: Defaults to -1. The dimension along which the entropy is computed. Returns: Sparse categorical crossentropy loss value.
github-repos
def as_dict_summary(self, print_subelectrodes=True): chg_comp = self.fully_charged_entry.composition dischg_comp = self.fully_discharged_entry.composition ion = self.working_ion d = {"average_voltage": self.get_average_voltage(), "max_voltage": self.max_voltage, "min_voltage": self.min_voltage, "max_delta_volume": self.max_delta_volume, "max_voltage_step": self.max_voltage_step, "capacity_grav": self.get_capacity_grav(), "capacity_vol": self.get_capacity_vol(), "energy_grav": self.get_specific_energy(), "energy_vol": self.get_energy_density(), "working_ion": self._working_ion.symbol, "nsteps": self.num_steps, "framework": self._vpairs[0].framework.to_data_dict, "formula_charge": chg_comp.reduced_formula, "id_charge": self.fully_charged_entry.entry_id, "formula_discharge": dischg_comp.reduced_formula, "id_discharge": self.fully_discharged_entry.entry_id, "fracA_charge": chg_comp.get_atomic_fraction(ion), "fracA_discharge": dischg_comp.get_atomic_fraction(ion), "max_instability": self.get_max_instability(), "min_instability": self.get_min_instability(), "material_ids" : [itr_ent.entry_id for itr_ent in self._entries], "stable_material_ids" : [itr_ent.entry_id for itr_ent in self.get_stable_entries()], "unstable_material_ids": [itr_ent.entry_id for itr_ent in self.get_unstable_entries()], } if all(['decomposition_energy' in itr_ent.data for itr_ent in self._entries]): d.update({"stability_charge": self.fully_charged_entry.data['decomposition_energy'], "stability_discharge": self.fully_discharged_entry.data['decomposition_energy'], "stability_data":{itr_ent.entry_id: itr_ent.data['decomposition_energy'] for itr_ent in self._entries}, }) if all(['muO2' in itr_ent.data for itr_ent in self._entries]): d.update({"muO2_data" : {itr_ent.entry_id: itr_ent.data['muO2'] for itr_ent in self._entries}}) if print_subelectrodes: f_dict = lambda c: c.as_dict_summary(print_subelectrodes=False) d["adj_pairs"] = list(map(f_dict, self.get_sub_electrodes(adjacent_only=True))) d["all_pairs"] = list(map(f_dict, self.get_sub_electrodes(adjacent_only=False))) return d
Generate a summary dict. Args: print_subelectrodes: Also print data on all the possible subelectrodes. Returns: A summary of this electrode"s properties in dict format.
juraj-google-style
def remove_results(vcs, signature): results_directory = _get_results_directory(vcs, signature) if (not os.path.exists(results_directory)): raise ResultsNotFoundError shutil.rmtree(results_directory)
Removed saved results for this signature Args: vcs (easyci.vcs.base.Vcs) signature (str) Raises: ResultsNotFoundError
codesearchnet
def get_creator_by_name(name): return {'docker(container)': Container.creator, 'shell': Bash.creator, 'docker(image)': Image.creator, 'python': Script.creator, 'packer': Packer.creator, 'ansible(simple)': Ansible.creator}[name]
Get creator function by name. Args: name (str): name of the creator function. Returns: function: creater function.
codesearchnet
def get_links(self, **kw): links = [a for a in dir(self) if (isinstance(getattr(self, a), Model) and (not a.startswith('_model')))] return [{'field': l, 'mdl': getattr(self, l).__class__} for l in links]
Prepare links of form by mimicing pyoko's get_links method's result Args: **kw: Returns: list of link dicts
codesearchnet
def is_os(name, version_id=None): result = False os_release_infos = _fetch_os_release_infos() if name == os_release_infos.get('name', None): if version_id is None: result = True elif version_id == os_release_infos.get('version_id', None): result = True return result
Return True if OS name in /etc/lsb-release of host given by fabric param `-H` is the same as given by argument, False else. If arg version_id is not None only return True if it is the same as in /etc/lsb-release, too. Args: name: 'Debian GNU/Linux', 'Ubuntu' version_id(None or str): None, '14.04', (Ubuntu) '16.04', (Ubuntu) '8', (Debian)
juraj-google-style
def __stripValue(self, value): if isinstance(value, str): if ( value[0] == '"' and value[-1] == '"' ) or ( value[0] == '[' and value[-1] == ']' ): return value[1:-1] return value
strip the special characters in the value Args: value: value string Returns: value string without special characters
juraj-google-style
def create_iam_resources(env='dev', app='', **_): session = boto3.session.Session(profile_name=env) client = session.client('iam') app_properties = get_properties(env='pipeline') generated = get_details(env=env, app=app) generated_iam = generated.iam() app_details = collections.namedtuple('AppDetails', generated_iam.keys()) details = app_details(**generated_iam) LOG.debug('Application details: %s', details) deployment_type = app_properties['type'] role_trust_template = get_template('infrastructure/iam/trust/{0}_role.json.j2'.format(deployment_type), formats=generated) resource_action(client, action='create_role', log_format='Created Role: %(RoleName)s', RoleName=details.role, AssumeRolePolicyDocument=role_trust_template) resource_action(client, action='create_instance_profile', log_format='Created Instance Profile: %(InstanceProfileName)s', InstanceProfileName=details.profile) attach_profile_to_role(client, role_name=details.role, profile_name=details.profile) iam_policy = construct_policy(app=app, group=details.group, env=env, pipeline_settings=app_properties) if iam_policy: resource_action(client, action='put_role_policy', log_format='Added IAM Policy: %(PolicyName)s', RoleName=details.role, PolicyName=details.policy, PolicyDocument=iam_policy) resource_action(client, action='create_user', log_format='Created User: %(UserName)s', UserName=details.user) resource_action(client, action='create_group', log_format='Created Group: %(GroupName)s', GroupName=details.group) resource_action(client, action='add_user_to_group', log_format='Added User to Group: %(UserName)s -> %(GroupName)s', GroupName=details.group, UserName=details.user) return True
Create the IAM Resources for the application. Args: env (str): Deployment environment/account, i.e. dev, stage, prod. app (str): Spinnaker Application name. Returns: True upon successful completion.
codesearchnet
def drop(self, items): self._manager.leaser.remove(items) self._manager.maybe_resume_consumer()
Remove the given messages from lease management. Args: items(Sequence[DropRequest]): The items to drop.
juraj-google-style
def get_default_description(arg: inspect.Parameter) -> str: if arg.annotation is inspect._empty: arg_type = '<fill_type>' elif hasattr(arg.annotation, '__name__'): arg_type = arg.annotation.__name__ else: arg_type = str(arg.annotation) if arg.default is inspect._empty: return f'`{arg_type}`' elif arg.default is None: return f'`{arg_type}`, {OPTIONAL_KEYWORD}' else: str_default = stringify_default(arg.default) return f'`{arg_type}`, {OPTIONAL_KEYWORD}, defaults to {str_default}'
Builds a default description for a parameter that was not documented. Args: arg (`inspect.Parameter`): The argument in the signature to generate a description for. Returns: `str`: The description.
github-repos
def _verify_ops(graph_def: graph_pb2.GraphDef, namespace_whitelist): if namespace_whitelist is None: return invalid_ops = [] invalid_namespaces = set() all_operations = [] all_operations.extend(meta_graph.ops_used_by_graph_def(graph_def)) for op in all_operations: if '>' in op: namespace = op.split('>')[0] if namespace not in namespace_whitelist: invalid_ops.append(op) invalid_namespaces.add(namespace) if invalid_ops: raise ValueError(f"Attempted to save ops from non-whitelisted namespaces to SavedModel: {invalid_ops}.\nPlease verify that these ops should be saved, since they must be available when loading the SavedModel. If loading from Python, you must import the library defining these ops. From C++, link the custom ops to the serving binary. Once you've confirmed this, add the following namespaces to the `namespace_whitelist` argument in tf.saved_model.SaveOptions: {invalid_namespaces}.")
Verifies that all namespaced ops in the graph are whitelisted. Args: graph_def: the GraphDef to validate. namespace_whitelist: a list of namespaces to allow. If `None`, all will be allowed. If an op does not have a namespace, it will be allowed. Raises: ValueError: If the graph contains ops that violate the whitelist.
github-repos
def get(self, uid: int) -> Optional[CachedMessage]: return self._cache.get(uid)
Return the given cached message. Args: uid: The message UID.
juraj-google-style
def parseConfig(cls, value): if 'enabled' in value: value['enabled'] = bool(value['enabled']) if 'exclude_paths' in value: value['exclude_paths'] = [n.strip() for n in ast.literal_eval(value['exclude_paths'])] return value
Parse the config values Args: value (dict): Dictionary which contains the checker config Returns: dict: The checker config with parsed values
juraj-google-style
def leave(self): try: self.client.api.leave_room(self.room_id) del self.client.rooms[self.room_id] return True except MatrixRequestError: return False
Leave the room. Returns: boolean: Leaving the room was successful.
codesearchnet
def _getFieldStats(self): fieldStats = dict() fieldNames = self._inputSource.getFieldNames() for field in fieldNames: curStats = dict() curStats['min'] = self._inputSource.getFieldMin(field) curStats['max'] = self._inputSource.getFieldMax(field) fieldStats[field] = curStats return fieldStats
Method which returns a dictionary of field statistics received from the input source. Returns: fieldStats: dict of dicts where the first level is the field name and the second level is the statistic. ie. fieldStats['pounds']['min']
codesearchnet
def get_np_doc_form(): return _np_doc_form
Gets the form of the original numpy docstrings. Returns: See `set_np_doc_form` for the list of valid values.
github-repos
def list_apps(site): ret = dict() ps_cmd = list() ps_cmd.append("Get-WebApplication -Site '{0}'".format(site)) ps_cmd.append(r"| Select-Object applicationPool, path, PhysicalPath, preloadEnabled,") ps_cmd.append(r"@{ Name='name'; Expression={ $_.path.Split('/', 2)[-1] } },") ps_cmd.append(r"@{ Name='protocols'; Expression={ @( $_.enabledProtocols.Split(',')") ps_cmd.append(r"| Foreach-Object { $_.Trim() } ) } }") cmd_ret = _srvmgr(cmd=ps_cmd, return_json=True) try: items = salt.utils.json.loads(cmd_ret['stdout'], strict=False) except ValueError: raise CommandExecutionError('Unable to parse return data as Json.') for item in items: protocols = list() if isinstance(item['protocols'], dict): if 'value' in item['protocols']: protocols += item['protocols']['value'] else: protocols.append(item['protocols']) ret[item['name']] = {'apppool': item['applicationPool'], 'path': item['path'], 'preload': item['preloadEnabled'], 'protocols': protocols, 'sourcepath': item['PhysicalPath']} if not ret: log.warning('No apps found in output: %s', cmd_ret) return ret
Get all configured IIS applications for the specified site. Args: site (str): The IIS site name. Returns: A dictionary of the application names and properties. CLI Example: .. code-block:: bash salt '*' win_iis.list_apps site
juraj-google-style
def get_total_mass(self): try: mass = self.loc[:, 'mass'].sum() except KeyError: mass_molecule = self.add_data('mass') mass = mass_molecule.loc[:, 'mass'].sum() return mass
Returns the total mass in g/mol. Args: None Returns: float:
juraj-google-style
def parse(self, utterance, context=None, N=1): start = time.time() context_trie = None if (context and isinstance(context, list)): context.sort(key=(lambda x: x.get('confidence'))) context_trie = Trie() for entity in context: (entity_value, entity_type) = entity.get('data')[0] context_trie.insert(entity_value.lower(), data=(entity_value, entity_type), weight=entity.get('confidence')) tagged = self._tagger.tag(utterance.lower(), context_trie=context_trie) self.emit('tagged_entities', {'utterance': utterance, 'tags': list(tagged), 'time': (time.time() - start)}) start = time.time() bke = BronKerboschExpander(self._tokenizer) def score_clique(clique): score = 0.0 for tagged_entity in clique: ec = tagged_entity.get('entities', [{'confidence': 0.0}])[0].get('confidence') score += ((ec * len(tagged_entity.get('entities', [{'match': ''}])[0].get('match'))) / (len(utterance) + 1)) return score parse_results = bke.expand(tagged, clique_scoring_func=score_clique) count = 0 for result in parse_results: count += 1 parse_confidence = 0.0 for tag in result: sample_entity = tag['entities'][0] entity_confidence = ((sample_entity.get('confidence', 0.0) * float(len(sample_entity.get('match')))) / len(utterance)) parse_confidence += entity_confidence (yield {'utterance': utterance, 'tags': result, 'time': (time.time() - start), 'confidence': parse_confidence}) if (count >= N): break
Used to find tags within utterance with a given confidence Args: utterance(str): conversational piece given by the user context(list): a list of entities N(int): number of results Returns: yield an object with the following fields utterance(str): the value passed in tags(list) : a list of tags found in utterance time(time) : duration since call of function confidence(float) : float indicating how confident of a match to the utterance. This might be used to determan the most likely intent.
codesearchnet
def set_query(self, value): if isinstance(value, basestring) or value is None: self._content['query'] = value elif hasattr(value, 'keys'): self._content['query'] = query.terms_from_dict(value) else: raise TypeError("Query must be a string or dict. Got: " + type(value) + " insted!")
Convert a dict form of query in a string of needed and store the query string. Args: value -- A query string or a dict with query xpaths as keys and text or nested query dicts as values.
juraj-google-style
def locked_get(self): filters = {self.key_name: self.key_value} query = self.session.query(self.model_class).filter_by(**filters) entity = query.first() if entity: credential = getattr(entity, self.property_name) if (credential and hasattr(credential, 'set_store')): credential.set_store(self) return credential else: return None
Retrieve stored credential. Returns: A :class:`oauth2client.Credentials` instance or `None`.
codesearchnet
def CheckFlowCanBeStartedOnClient(flow_name): flow_cls = flow.GRRFlow.GetPlugin(flow_name) if flow_cls.category: return True else: raise access_control.UnauthorizedAccess( "Flow %s can't be started on a client by non-suid users." % flow_name)
Checks if flow can be started on a particular client. Only flows with a category can bestarted. Having a category means that the flow will be accessible from the UI. Args: flow_name: Name of the flow to check access for. Returns: True if flow is externally accessible. Raises: access_control.UnauthorizedAccess: if flow is not externally accessible.
juraj-google-style
def RegisterPlugin(cls, plugin_class): name = getattr( plugin_class, 'ARTIFACT_DEFINITION_NAME', plugin_class.__name__) name = name.lower() if name in cls._plugins: raise KeyError( 'Artifact plugin class already set for name: {0:s}.'.format(name)) preprocess_plugin = plugin_class() cls._plugins[name] = preprocess_plugin if isinstance( preprocess_plugin, interface.FileSystemArtifactPreprocessorPlugin): cls._file_system_plugins[name] = preprocess_plugin elif isinstance( preprocess_plugin, interface.KnowledgeBasePreprocessorPlugin): cls._knowledge_base_plugins[name] = preprocess_plugin elif isinstance( preprocess_plugin, interface.WindowsRegistryKeyArtifactPreprocessorPlugin): cls._windows_registry_plugins[name] = preprocess_plugin
Registers an preprocess plugin class. Args: plugin_class (type): preprocess plugin class. Raises: KeyError: if plugin class is already set for the corresponding name. TypeError: if the source type of the plugin class is not supported.
juraj-google-style
def angle(self, deg=False): if (self.dtype.str[1] != 'c'): warnings.warn('angle() is intended for complex-valued timeseries', RuntimeWarning, 1) da = distob.vectorize(np.angle)(self, deg) return _dts_from_da(da, self.tspan, self.labels)
Return the angle of a complex Timeseries Args: deg (bool, optional): Return angle in degrees if True, radians if False (default). Returns: angle (Timeseries): The counterclockwise angle from the positive real axis on the complex plane, with dtype as numpy.float64.
codesearchnet
def print_periodic_table(filter_function: callable = None): for row in range(1, 10): rowstr = [] for group in range(1, 19): try: el = Element.from_row_and_group(row, group) except ValueError: el = None if el and ((not filter_function) or filter_function(el)): rowstr.append("{:3s}".format(el.symbol)) else: rowstr.append(" ") print(" ".join(rowstr))
A pretty ASCII printer for the periodic table, based on some filter_function. Args: filter_function: A filtering function taking an Element as input and returning a boolean. For example, setting filter_function = lambda el: el.X > 2 will print a periodic table containing only elements with electronegativity > 2.
juraj-google-style
def List(self, request, global_params=None): config = self.GetMethodConfig('List') return self._RunMethod(config, request, global_params=global_params)
Lists snapshots. Args: request: (DataflowProjectsLocationsJobsSnapshotsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListSnapshotsResponse) The response message.
github-repos
def __init__(self, data_parallelism, expert_parallelism, gates): self._gates = gates self._dp = data_parallelism self._ep = expert_parallelism assert len(gates) == self._dp.n self._dispatchers = self._dp(SparseDispatcher, self._ep.n, gates)
Create a DistributedSparseDispatcher. Args: data_parallelism: a Parallelism object. expert_parallelism: a Parallelism object. gates: a list of datashard_parallelism.n `Tensor`s of shapes `[batch_size[d], num_experts]`. Returns: a DistributedSparseDispatcher
juraj-google-style
def find_nearest(a, value, index=False): i = np.abs(a - value).argmin() if index: return i else: return a[i]
Find the array value, or index of the array value, closest to some given value. Args: a (ndarray) value (float) index (bool): whether to return the index instead of the array value. Returns: float. The array value (or index, as int) nearest the specified value.
juraj-google-style
def vocab_token_counts(text_filepattern, max_lines): ret = {} for (i, line) in enumerate(_read_filepattern(text_filepattern, max_lines=max_lines)): if (',' not in line): tf.logging.warning("Malformed vocab line continue (token, count) = line.rsplit(',', 1) ret[_native_to_unicode(token)] = int(count) return ret
Read a vocab file and return a dictionary of token counts. Reads a two-column CSV file of tokens and their frequency in a dataset. The tokens are presumed to be generated by encode() or the equivalent. Args: text_filepattern: A pattern matching one or more files. max_lines: An integer; maximum total lines to read. Returns: a dictionary mapping token to count.
codesearchnet
def _save_private_file(filename, json_contents): temp_filename = tempfile.mktemp() file_desc = os.open(temp_filename, (os.O_WRONLY | os.O_CREAT), 384) with os.fdopen(file_desc, 'w') as file_handle: json.dump(json_contents, file_handle, sort_keys=True, indent=2, separators=(',', ': ')) shutil.move(temp_filename, filename)
Saves a file with read-write permissions on for the owner. Args: filename: String. Absolute path to file. json_contents: JSON serializable object to be saved.
codesearchnet
def summarize_tensors(tensor_dict, tag=None): if tag is None: tag = "tensors/" for t_name in list(tensor_dict): t = tensor_dict[t_name] tf.summary.histogram(tag + t_name, t)
Summarize the tensors. Args: tensor_dict: a dictionary of tensors. tag: name scope of the summary; defaults to tensors/.
juraj-google-style