code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def _create_temp_cache(self, num_traced_tensors, num_signatures, graph): init_value = constant_op.constant(_COMPACT_TRACE_ENTRY_INIT_VALUE, dtype=dtypes.float32, shape=[num_signatures]) self._temp_cache_var[graph] = [init_value for _ in range(num_traced_tensors)]
Creates a temporary cache with the given dimensions. Fills the self._temp_cache_var with num_traced_tensors tf.constant() ops that have shape of [num_signatures]. Args: num_traced_tensors: Int, denoting total number of traced tensors. num_signatures: Int, denoting the number of statistics collected per tensors. graph: TensorFlow graph.
github-repos
def __iter__(self): raise NotImplementedError('Must be implemented in descendants')
Creates an iterator for the `tf.distribute.DistributedDataset`. The returned iterator implements the Python Iterator protocol. Example usage: >>> global_batch_size = 4 >>> strategy = tf.distribute.MirroredStrategy(["GPU:0", "GPU:1"]) >>> dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3, 4]).repeat().batch(global_batch_size) >>> distributed_iterator = iter(strategy.experimental_distribute_dataset(dataset)) >>> print(next(distributed_iterator)) PerReplica:{ 0: tf.Tensor([1 2], shape=(2,), dtype=int32), 1: tf.Tensor([3 4], shape=(2,), dtype=int32) } Returns: An `tf.distribute.DistributedIterator` instance for the given `tf.distribute.DistributedDataset` object to enumerate over the distributed data.
github-repos
def sample_poly(self, poly, scalar=None, bias_range=1, poly_range=None, ignored_terms=None, **parameters): if (ignored_terms is None): ignored_terms = set() else: ignored_terms = {frozenset(term) for term in ignored_terms} (original, poly) = (poly, poly.copy()) if (scalar is not None): poly.scale(scalar, ignored_terms=ignored_terms) else: poly.normalize(bias_range=bias_range, poly_range=poly_range, ignored_terms=ignored_terms) try: v = next((v for (v, bias) in original.items() if (bias and (v not in ignored_terms)))) except StopIteration: scalar = 1 else: scalar = (poly[v] / original[v]) sampleset = self.child.sample_poly(poly, **parameters) if ignored_terms: sampleset.record.energy = original.energies((sampleset.record.sample, sampleset.variables)) else: sampleset.record.energy /= scalar return sampleset
Scale and sample from the given binary polynomial. If scalar is not given, problem is scaled based on bias and polynomial ranges. See :meth:`.BinaryPolynomial.scale` and :meth:`.BinaryPolynomial.normalize` Args: poly (obj:`.BinaryPolynomial`): A binary polynomial. scalar (number, optional): Value by which to scale the energy range of the binary polynomial. bias_range (number/pair, optional, default=1): Value/range by which to normalize the all the biases, or if `poly_range` is provided, just the linear biases. poly_range (number/pair, optional): Value/range by which to normalize the higher order biases. ignored_terms (iterable, optional): Biases associated with these terms are not scaled. **parameters: Other parameters for the sampling method, specified by the child sampler.
codesearchnet
def register_model(cls, model): rest_name = model.rest_name resource_name = model.resource_name if rest_name not in cls._model_rest_name_registry: cls._model_rest_name_registry[rest_name] = [model] cls._model_resource_name_registry[resource_name] = [model] elif model not in cls._model_rest_name_registry[rest_name]: cls._model_rest_name_registry[rest_name].append(model) cls._model_resource_name_registry[resource_name].append(model)
Register a model class according to its remote name Args: model: the model to register
juraj-google-style
def add_permission_by_name(self, code, save=False): if (not save): return [('%s | %s' % (p.name, p.code)) for p in Permission.objects.filter(code__contains=code)] for p in Permission.objects.filter(code__contains=code): if (p not in self.Permissions): self.Permissions(permission=p) if p: self.save()
Adds a permission with given name. Args: code (str): Code name of the permission. save (bool): If False, does nothing.
codesearchnet
def generate_output_network(self, json_data=None, hr=True, show_name=False, colorize=True): if (json_data is None): json_data = {} output = generate_output(line='0', short=(HR_RDAP['network']['_short'] if hr else 'network'), name=(HR_RDAP['network']['_name'] if (hr and show_name) else None), is_parent=True, colorize=colorize) for (key, val) in json_data['network'].items(): if (key in ['links', 'status']): output += self.generate_output_list(source='network', key=key, val=val, line='1', hr=hr, show_name=show_name, colorize=colorize) elif (key in ['notices', 'remarks']): output += self.generate_output_notices(source='network', key=key, val=val, line='1', hr=hr, show_name=show_name, colorize=colorize) elif (key == 'events'): output += self.generate_output_events(source='network', key=key, val=val, line='1', hr=hr, show_name=show_name, colorize=colorize) elif (key not in ['raw']): output += generate_output(line='1', short=(HR_RDAP['network'][key]['_short'] if hr else key), name=(HR_RDAP['network'][key]['_name'] if (hr and show_name) else None), value=val, colorize=colorize) return output
The function for generating CLI output RDAP network results. Args: json_data (:obj:`dict`): The data to process. Defaults to None. hr (:obj:`bool`): Enable human readable key translations. Defaults to True. show_name (:obj:`bool`): Show human readable name (default is to only show short). Defaults to False. colorize (:obj:`bool`): Colorize the console output with ANSI colors. Defaults to True. Returns: str: The generated output.
codesearchnet
def write_jsonl_file(fname, data): if not isinstance(data, list): print('warning: malformed json data for file', fname) return with open(fname, 'w') as of: for row in data: if row.strip(): of.write('%s\n' % row.strip())
Writes a jsonl file. Args: data: list of json encoded data
juraj-google-style
def get_volume_details(self, volume_name: str) -> dict: if (volume_name not in self.volumes): raise RuntimeError('No such volume found: ', volume_name) volume = self._client.volumes.get(volume_name) return volume.attrs
Get details of the volume. Args: volume_name (str): Name of the volume Returns: dict, details of the volume
codesearchnet
def use_db(path, mode=WorkDB.Mode.create): database = WorkDB(path, mode) try: yield database finally: database.close()
Open a DB in file `path` in mode `mode` as a context manager. On exiting the context the DB will be automatically closed. Args: path: The path to the DB file. mode: The mode in which to open the DB. See the `Mode` enum for details. Raises: FileNotFoundError: If `mode` is `Mode.open` and `path` does not exist.
juraj-google-style
def converted_self(self): if self._converted_self is None: old_name = self.function.signature.name new_name = self._enclosing_graph.converted_function_names[old_name] self.converted_enclosing_graph.rename_function(old_name, new_name) self._converted_self = self.converted_enclosing_graph.functions[new_name] return self._converted_self
The Function copy to be converted. The copy will be renamed according to the graph's converted_function_name map, to ensure the name does not match anything currently in TensorFlow's function cache. Returns: The function instance to be converted.
github-repos
def usufyToXlsxExport(d, fPath): from pyexcel_xlsx import get_data try: oldData = {'OSRFramework': get_data(fPath)} except: oldData = {'OSRFramework': []} tabularData = _generateTabularData(d, oldData) from pyexcel_xlsx import save_data save_data(fPath, tabularData)
Workaround to export to a .xlsx file. Args: ----- d: Data to export. fPath: File path for the output file.
codesearchnet
def flatten(value: '_instance_base.SimpleValue', classes: 'list[class_mixin.Class]') -> bool: if isinstance(value, _abstract.AnnotationClass): value = value.base_cls if isinstance(value, _abstract.Class): classes.append(value) return False elif isinstance(value, _abstract.Tuple): ambiguous = False for var in value.pyval: if len(var.bindings) != 1 or flatten(var.bindings[0].data, classes): ambiguous = True return ambiguous elif isinstance(value, _abstract.Union): ambiguous = False for val in value.options: if flatten(val, classes): ambiguous = True return ambiguous else: return True
Flatten the contents of value into classes. If value is a Class, it is appended to classes. If value is a PythonConstant of type tuple, then each element of the tuple that has a single binding is also flattened. Any other type of value, or tuple elements that have multiple bindings are ignored. Args: value: An abstract value. classes: A list to be modified. Returns: True iff a value was ignored during flattening.
github-repos
def __init__(self, data, label=None): if hasattr(data, 'to_matrix'): data = data.to_matrix() elif hasattr(data, 'to_operator'): data = data.to_operator().data data = numpy.array(data, dtype=complex) if not is_unitary_matrix(data): raise ExtensionError("Input matrix is not unitary.") input_dim, output_dim = data.shape n_qubits = int(numpy.log2(input_dim)) if input_dim != output_dim or 2**n_qubits != input_dim: raise ExtensionError( "Input matrix is not an N-qubit operator.") super().__init__('unitary', n_qubits, [data], label=label)
Create a gate from a numeric unitary matrix. Args: data (matrix or Operator): unitary operator. label (str): unitary name for backend [Default: None]. Raises: ExtensionError: if input data is not an N-qubit unitary operator.
juraj-google-style
def monkey_patch(enabled=True): if enabled: Image.open = imdirect_open else: Image.open = pil_open
Monkey patching PIL.Image.open method Args: enabled (bool): If the monkey patch should be activated or deactivated.
juraj-google-style
def _fill_shape(x, n): if ((not isinstance(n, numbers.Integral)) or (n < 1)): raise TypeError('n must be a positive integer') if ((isinstance(x, numbers.Integral) or isinstance(x, tf.Dimension)) and (x > 0)): return ((x,) * n) try: if ((len(x) == n) and all(((v > 0) for v in x))): return tuple(x) except TypeError: pass raise TypeError('x is {}, must be either a positive integer or an iterable of positive integers of size {}'.format(x, n))
Converts a dimension to a tuple of dimensions of a given size. This is used to allow shorthand notation for various configuration parameters. A user can provide either, for example, `2` or `[2, 2]` as a kernel shape, and this function returns `(2, 2)` in both cases. Passing `[1, 2]` will return `(1, 2)`. Args: x: An integer, tf.Dimension, or an iterable of them. n: An integer, the size of the desired output list Returns: If `x` is an integer, a tuple of size `n` containing `n` copies of `x`. If `x` is an iterable of integers or tf.Dimension of size `n`, it returns `tuple(x)`. Raises: TypeError: If n is not a positive integer; or if x is neither integer nor an iterable of size n.
codesearchnet
def _create_produce_requests(self, collated): requests = {} for node_id, batches in six.iteritems(collated): requests[node_id] = self._produce_request( node_id, self.config['acks'], self.config['request_timeout_ms'], batches) return requests
Transfer the record batches into a list of produce requests on a per-node basis. Arguments: collated: {node_id: [RecordBatch]} Returns: dict: {node_id: ProduceRequest} (version depends on api_version)
juraj-google-style
def get_var(self, var, info_cb=DEFAULT_MESSAGE_CALLBACK): return self._simple_command('getvar', arg=var, info_cb=info_cb)
Returns the given variable's definition. Args: var: A variable the bootloader tracks, such as version. info_cb: See Download. Usually no messages. Returns: Value of var according to the current bootloader.
juraj-google-style
def get_default_connection_info(self, provider_name): provider = self._provider_client.get_by_name(provider_name) if provider: return provider['defaultConnectionInfo'] else: return {}
Gets default connection info for a specific provider. Args: provider_name: Name of the provider. Returns: dict: Default connection information.
juraj-google-style
def add_dataset(self, dataset, datasets_to_check=None): showcase_dataset = self._get_showcase_dataset_dict(dataset) if datasets_to_check is None: datasets_to_check = self.get_datasets() for dataset in datasets_to_check: if showcase_dataset['package_id'] == dataset['id']: return False self._write_to_hdx('associate', showcase_dataset, 'package_id') return True
Add a dataset Args: dataset (Union[Dataset,Dict,str]): Either a dataset id or dataset metadata either from a Dataset object or a dictionary datasets_to_check (List[Dataset]): List of datasets against which to check existence of dataset. Defaults to datasets in showcase. Returns: bool: True if the dataset was added, False if already present
juraj-google-style
def set_volume(percentage): if percentage > 100 or percentage < 0: raise ValueError('percentage must be an integer between 0 and 100') if system.get_name() == 'windows': pass elif system.get_name() == 'mac': volume_int = percentage / 10 sp.Popen(['osascript', '-e', 'set Volume %d' % volume_int]).wait() else: formatted = str(percentage) + '%' sp.Popen(['amixer', '--quiet', 'sset', 'Master', formatted]).wait()
Set the volume. Sets the volume to a given percentage (integer between 0 and 100). Args: percentage (int): The percentage (as a 0 to 100 integer) to set the volume to. Raises: ValueError: if the percentage is >100 or <0.
juraj-google-style
def _build_command(self, python_executable, lib_dir_fq, proxy_enabled): exe_command = [ os.path.expanduser(python_executable), '-m', 'pip', 'install', '-r', self.requirements_file, '--ignore-installed', '--quiet', '--target', lib_dir_fq, ] if self.args.no_cache_dir: exe_command.append('--no-cache-dir') if proxy_enabled: trusted_hosts = ['pypi.org', 'pypi.python.org', 'files.pythonhosted.org'] for host in trusted_hosts: exe_command.append('--trusted-host') exe_command.append(host) return exe_command
Build the pip command for installing dependencies. Args: python_executable (str): The fully qualified path of the Python executable. lib_dir_fq (str): The fully qualified path of the lib directory. Returns: list: The Python pip command with all required args.
juraj-google-style
def ParseRecord(self, parser_mediator, key, structure): if key not in self._SUPPORTED_KEYS: raise errors.ParseError( 'Unable to parse record, unknown structure: {0:s}'.format(key)) if key == 'chromeos_syslog_line': date_time = dfdatetime_time_elements.TimeElementsInMicroseconds() try: date_time.CopyFromStringISO8601(structure.chromeos_date) except ValueError: parser_mediator.ProduceExtractionWarning( 'invalid date time value: {0:s}'.format(structure.chromeos_date)) return else: month = timelib.MONTH_DICT.get(structure.month.lower(), 0) if month != 0: self._UpdateYear(parser_mediator, month) time_elements_tuple = ( self._year_use, month, structure.day, structure.hour, structure.minute, structure.second) try: date_time = dfdatetime_time_elements.TimeElements( time_elements_tuple=time_elements_tuple) date_time.is_local_time = True except ValueError: parser_mediator.ProduceExtractionWarning( 'invalid date time value: {0!s}'.format(time_elements_tuple)) return plugin = None if key == 'syslog_comment': event_data = SyslogCommentEventData() event_data.body = structure.body event_data.offset = 0 else: event_data = SyslogLineEventData() event_data.body = structure.body event_data.hostname = structure.hostname or None event_data.offset = 0 event_data.pid = structure.pid event_data.reporter = structure.reporter event_data.severity = structure.severity plugin = self._plugin_by_reporter.get(structure.reporter, None) if plugin: attributes = { 'hostname': structure.hostname, 'severity': structure.severity, 'reporter': structure.reporter, 'pid': structure.pid, 'body': structure.body} try: plugin.Process(parser_mediator, date_time, attributes) except errors.WrongPlugin: plugin = None if not plugin: event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_WRITTEN) parser_mediator.ProduceEventWithEventData(event, event_data)
Parses a matching entry. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. key (str): name of the parsed structure. structure (pyparsing.ParseResults): elements parsed from the file. Raises: ParseError: when the structure type is unknown.
juraj-google-style
def gather_initializers(root_trackable): trackable_objects = list_objects(root_trackable) return [c.initializer for c in trackable_objects if hasattr(c, 'initializer') and c.initializer is not None]
Traverse the object graph and find initialization ops. Looks for `Trackable` objects which are dependencies of `root_trackable` and which have an `initializer` property. Includes initializers for slot variables only if the variable they are slotting for and the optimizer are dependencies of `root_trackable` (i.e. if they would be saved with a checkpoint). Args: root_trackable: A `Trackable` object to gather initializers for. Returns: A list of initialization ops.
github-repos
def get_service_account_token(request, service_account='default'): token_json = get(request, 'instance/service-accounts/{0}/token'.format(service_account)) token_expiry = (_helpers.utcnow() + datetime.timedelta(seconds=token_json['expires_in'])) return (token_json['access_token'], token_expiry)
Get the OAuth 2.0 access token for a service account. Args: request (google.auth.transport.Request): A callable used to make HTTP requests. service_account (str): The string 'default' or a service account email address. The determines which service account for which to acquire an access token. Returns: Union[str, datetime]: The access token and its expiration. Raises: google.auth.exceptions.TransportError: if an error occurred while retrieving metadata.
codesearchnet
def GetAttribute(self, identifier): if (not self._is_parsed): self._Parse() self._is_parsed = True if (identifier not in self._attributes): return None return self._attributes[identifier]
Retrieves a specific attribute. Args: identifier (str): identifier of the attribute within the volume. Returns: VolumeAttribute: volume attribute or None if not available.
codesearchnet
def visit_ImportFrom(self, node): if not node.module: self.generic_visit(node) return from_import = node.module from_import_first_component = from_import.split('.')[0] import_renames = getattr(self._api_change_spec, 'import_renames', {}) import_rename_spec = import_renames.get(from_import_first_component, None) if not import_rename_spec: self.generic_visit(node) return updated_aliases = [] same_aliases = [] for import_alias in node.names: full_module_name = '%s.%s' % (from_import, import_alias.name) if excluded_from_module_rename(full_module_name, import_rename_spec): same_aliases.append(import_alias) else: updated_aliases.append(import_alias) if not updated_aliases: self.generic_visit(node) return assert self._stack[-1] is node parent = self._stack[-2] new_from_import = import_rename_spec.new_name + from_import[len(from_import_first_component):] updated_node = ast.ImportFrom(new_from_import, updated_aliases, node.level) ast.copy_location(updated_node, node) pasta.ast_utils.replace_child(parent, node, updated_node) additional_import_log = '' if same_aliases: same_node = ast.ImportFrom(from_import, same_aliases, node.level, col_offset=node.col_offset, lineno=node.lineno) ast.copy_location(same_node, node) parent.body.insert(parent.body.index(updated_node), same_node) pasta.base.formatting.set(same_node, 'prefix', pasta.base.formatting.get(updated_node, 'prefix')) additional_import_log = ' and %r' % pasta.dump(same_node) self.add_log(INFO, node.lineno, node.col_offset, 'Changed import from %r to %r%s.' % (pasta.dump(node), pasta.dump(updated_node), additional_import_log)) self.generic_visit(node)
Handle visiting an import-from node in the AST. Args: node: Current Node
github-repos
def simple_balance(self, as_of=None, raw=False, leg_query=None, **kwargs): legs = self.legs if as_of: legs = legs.filter(transaction__date__lte=as_of) if (leg_query or kwargs): leg_query = (leg_query or models.Q()) legs = legs.filter(leg_query, **kwargs) return ((legs.sum_to_balance() * (1 if raw else self.sign)) + self._zero_balance())
Get the balance for this account, ignoring all child accounts Args: as_of (Date): Only include transactions on or before this date raw (bool): If true the returned balance should not have its sign adjusted for display purposes. leg_query (models.Q): Django Q-expression, will be used to filter the transaction legs. allows for more complex filtering than that provided by **kwargs. kwargs (dict): Will be used to filter the transaction legs Returns: Balance
codesearchnet
def from_api_repr(cls, resource): from google.cloud.bigquery.dataset import DatasetReference project = resource["projectId"] dataset_id = resource["datasetId"] table_id = resource["tableId"] return cls(DatasetReference(project, dataset_id), table_id)
Factory: construct a table reference given its API representation Args: resource (Dict[str, object]): Table reference representation returned from the API Returns: google.cloud.bigquery.table.TableReference: Table reference parsed from ``resource``.
juraj-google-style
def __init__(self, func, lower_control_flow, aggressive_inlining, variable_names_allowlist=None, variable_names_denylist=None): self._func = func graph_def = _run_inline_graph_optimization(func, lower_control_flow, aggressive_inlining) super(_FunctionConverterData, self).__init__(graph_def, variable_names_allowlist=variable_names_allowlist, variable_names_denylist=variable_names_denylist) self._build_tensor_data()
Creates the conversion data for the given function. Args: func: ConcreteFunction. lower_control_flow: Boolean indicating whether or not to lower control flow ops such as If and While. aggressive_inlining: Boolean indicating whether or not to do aggressive function inlining (might be unsafe if function has stateful ops, not properly connected to control outputs). variable_names_allowlist: The set of variable names to convert (by default, all variables are converted). variable_names_denylist: The set of variable names to omit converting to constants.
github-repos
def delete_public_ip(access_token, subscription_id, resource_group, public_ip_name): endpoint = ''.join([get_rm_endpoint(), '/subscriptions/', subscription_id, '/resourceGroups/', resource_group, '/providers/Microsoft.Network/publicIPAddresses/', public_ip_name, '?api-version=', NETWORK_API]) return do_delete(endpoint, access_token)
Delete a public ip addresses associated with a resource group. Args: access_token (str): A valid Azure authentication token. subscription_id (str): Azure subscription id. resource_group (str): Azure resource group name. public_ip_name (str): Name of the public ip address resource. Returns: HTTP response.
codesearchnet
def get_available_storage_system(self, **kwargs): uri = self._helper.build_uri_with_query_string(kwargs, '/available-storage-system') return self._helper.do_get(uri)
Retrieves a specific storage system and its associated volumes available to the server profile based on the given server hardware type and enclosure group. Args: enclosureGroupUri (str): The URI of the enclosure group associated with the resource. serverHardwareTypeUri (str): The URI of the server hardware type associated with the resource. storageSystemId (str): The storage system ID associated with the resource. Returns: dict: Available storage system.
codesearchnet
def __init__(self, minimum=None, maximum=None): super(FloatTypeChecker, self).__init__(base_type=float) self.minimum = minimum self.maximum = maximum
Initialization method. Args: minimum (float): a minimum value (included). maximum (float): a maximum value (included).
juraj-google-style
def _update_job_info(cls, job_dir): meta_file = os.path.join(job_dir, JOB_META_FILE) meta = parse_json(meta_file) if meta: logging.debug(('Update job info for %s' % meta['job_id'])) JobRecord.objects.filter(job_id=meta['job_id']).update(end_time=timestamp2date(meta['end_time']))
Update information for given job. Meta file will be loaded if exists, and the job information in in db backend will be updated. Args: job_dir (str): Directory path of the job. Return: Updated dict of job meta info
codesearchnet
def load_profile_include(self, include_directory): include_directory = os.path.join(self.app_path, include_directory) if not os.path.isdir(include_directory): msg = 'Provided include directory does not exist ({}).'.format(include_directory) sys.exit(msg) for filename in sorted(os.listdir(include_directory)): if filename.endswith('.json'): fqfn = os.path.join(include_directory, filename) self.load_profiles_from_file(fqfn)
Load included configuration files. Args: include_directory (str): The path of the profile include directory.
juraj-google-style
def _GetAxisFromLabel(subscripts, label): splits = subscripts.split(ellipsis) index = splits[0].find(label) if index != -1: return index if len(splits) < 2: return None index = splits[1].find(label) if index != -1: return index - len(splits[1]) return None
Returns the axis (possibly negative) corresponding to a label. Returns the axis index of the axis label if it is before an ellipsis (or if the ellipsis is not present), and the negative index if it occurs after the ellipsis. E.g. index of `b` in `ab...cd`, is `1`, but that of `c` is `-2`. For multiple occurrences, returns the leftmost one. If not found, returns None. Args: subscripts: A string denoting the einsum subscript (e.g. `ab...cd`) label: The single character axis label.
github-repos
def setup(self, host, flow_id, reason, grr_server_url, grr_username, grr_password, approvers=None, verify=True): super(GRRFlowCollector, self).setup(reason, grr_server_url, grr_username, grr_password, approvers=approvers, verify=verify) self.flow_id = flow_id self.host = host
Initializes a GRR flow collector. Args: host: hostname of machine. flow_id: ID of GRR flow to retrieve. reason: justification for GRR access. grr_server_url: GRR server URL. grr_username: GRR username. grr_password: GRR password. approvers: list of GRR approval recipients. verify: boolean, whether to verify the GRR server's x509 certificate.
codesearchnet
def ContainsAll(self, *values): self._awql = self._CreateMultipleValuesCondition(values, 'CONTAINS_ALL') return self._query_builder
Sets the type of the WHERE clause as "contains all". Args: *values: The values to be used in the WHERE condition. Returns: The query builder that this WHERE builder links to.
codesearchnet
def Write(self, output_writer): if self._title and len(self._title) > self._MAXIMUM_WIDTH: raise RuntimeError('Title length out of bounds.') if self._number_of_columns not in (0, 2): raise RuntimeError('Unsupported number of columns: {0:d}.'.format( self._number_of_columns)) if self._column_width < 0 or self._column_width >= self._MAXIMUM_WIDTH: raise RuntimeError('Column width out of bounds.') output_writer.Write('\n') self._WriteHeader(output_writer) if self._columns: self._WriteRow(output_writer, self._columns) self._WriteSeparatorLine(output_writer) for values in self._rows: self._WriteRow(output_writer, values) self._WriteSeparatorLine(output_writer)
Writes the table to the output writer. Args: output_writer (OutputWriter): output writer. Raises: RuntimeError: if the title exceeds the maximum width or if the table has more than 2 columns or if the column width is out of bounds.
juraj-google-style
def convert_unicode(value): if isinstance(value, dict): return {convert_unicode(key): convert_unicode(value) for (key, value) in value.iteritems()} elif isinstance(value, list): return [convert_unicode(item) for item in value] elif isinstance(value, unicode): return value.encode('utf-8') else: return value
Resolves python 2 issue with json loading in unicode instead of string Args: value (str): Unicode value to be converted Returns: (str): converted string
codesearchnet
def get_average_along_axis(self, ind): m = self.data["total"] ng = self.dim if ind == 0: total = np.sum(np.sum(m, axis=1), 1) elif ind == 1: total = np.sum(np.sum(m, axis=0), 1) else: total = np.sum(np.sum(m, axis=0), 0) return total / ng[(ind + 1) % 3] / ng[(ind + 2) % 3]
Get the averaged total of the volumetric data a certain axis direction. For example, useful for visualizing Hartree Potentials from a LOCPOT file. Args: ind (int): Index of axis. Returns: Average total along axis
juraj-google-style
def __init__(self, builtins, full_names=True, allow_singletons=False): super().__init__(allow_singletons) self._builtins = builtins self._full_names = full_names
Create this visitor. Args: builtins: The builtins module. full_names: Whether to use fully qualified names for lookup. allow_singletons: Whether to allow singleton types like Ellipsis.
github-repos
def _aggregate_gradients(self, grads_and_vars): return self.gradient_aggregator(grads_and_vars)
Called in `apply_gradients` to aggregate gradients across devices. Note that user subclasses may override this, so the interface should not be changed. Args: grads_and_vars: List of (gradient, variable) pairs. Returns: A list of (aggregated_gradient, variable) pairs. By default, this calls `self.gradient_aggregator`.
github-repos
def format_plugins(plugins): formatted = [] for plugin_ in plugins: formatted_plugin = format_plugin(plugin_) formatted.append(formatted_plugin) return formatted
Serialise multiple plug-in Returns: List of JSON-compatible plug-ins
codesearchnet
def getFilepaths(self, filename): return (os.path.join(os.environ['HOME'], filename), os.path.join(self.mackup.mackup_folder, filename))
Get home and mackup filepaths for given file Args: filename (str) Returns: home_filepath, mackup_filepath (str, str)
codesearchnet
def check_syntax(self, app_path=None): app_path = (app_path or '.') for filename in sorted(os.listdir(app_path)): error = None status = True if filename.endswith('.py'): try: with open(filename, 'rb') as f: ast.parse(f.read(), filename=filename) except SyntaxError: status = False e = [] for line in traceback.format_exc().split('\n')[(- 5):(- 2)]: e.append(line.strip()) error = ' '.join(e) elif filename.endswith('.json'): try: with open(filename, 'r') as fh: json.load(fh) except ValueError as e: status = False error = e else: continue if error: self.validation_data['errors'].append('Syntax validation failed for {} ({}).'.format(filename, error)) self.validation_data['fileSyntax'].append({'filename': filename, 'status': status})
Run syntax on each ".py" and ".json" file. Args: app_path (str, optional): Defaults to None. The path of Python files.
codesearchnet
def _filter_and_bucket_subtokens(subtoken_counts, min_count): subtoken_buckets = [] for (subtoken, count) in six.iteritems(subtoken_counts): if (count < min_count): continue while (len(subtoken_buckets) <= len(subtoken)): subtoken_buckets.append(set()) subtoken_buckets[len(subtoken)].add(subtoken) return subtoken_buckets
Return a bucketed list of subtokens that are filtered by count. Args: subtoken_counts: defaultdict mapping subtokens to their counts min_count: int count used to filter subtokens Returns: List of subtoken sets, where subtokens in set i have the same length=i.
codesearchnet
def normalize_collaboration(collaboration): if not collaboration: return [] collaboration = collaboration.strip() if collaboration.startswith('(') and collaboration.endswith(')'): collaboration = collaboration[1:-1] collaborations = _RE_AND.split(collaboration) collaborations = (_RE_COLLABORATION_LEADING.sub('', collab) for collab in collaborations) collaborations = (_RE_COLLABORATION_TRAILING.sub('', collab) for collab in collaborations) return [collab.strip() for collab in collaborations]
Normalize collaboration string. Args: collaboration: a string containing collaboration(s) or None Returns: list: List of extracted and normalized collaborations Examples: >>> from inspire_schemas.utils import normalize_collaboration >>> normalize_collaboration('for the CMS and ATLAS Collaborations') ['CMS', 'ATLAS']
juraj-google-style
def CreateSourceType(cls, type_indicator, attributes): if (type_indicator not in cls._source_type_classes): raise errors.FormatError('Unsupported type indicator: {0:s}.'.format(type_indicator)) return cls._source_type_classes[type_indicator](**attributes)
Creates a source type. Args: type_indicator (str): source type indicator. attributes (dict[str, object]): source type attributes. Returns: SourceType: a source type. Raises: FormatError: if the type indicator is not set or unsupported, or if required attributes are missing.
codesearchnet
def get_dimension_index(self, dimension): if isinstance(dimension, int): if (dimension < (self.ndims + len(self.vdims)) or dimension < len(self.dimensions())): return dimension else: return IndexError('Dimension index out of bounds') dim = dimension_name(dimension) try: dimensions = self.kdims+self.vdims return [i for i, d in enumerate(dimensions) if d == dim][0] except IndexError: raise Exception("Dimension %s not found in %s." % (dim, self.__class__.__name__))
Get the index of the requested dimension. Args: dimension: Dimension to look up by name or by index Returns: Integer index of the requested dimension
juraj-google-style
def extract_lookups_from_string(value): lookups = set() for match in LOOKUP_REGEX.finditer(value): groupdict = match.groupdict() raw = match.groups()[0] lookup_type = groupdict["type"] lookup_input = groupdict["input"] lookups.add(Lookup(lookup_type, lookup_input, raw)) return lookups
Extract any lookups within a string. Args: value (str): string value we're extracting lookups from Returns: list: list of :class:`stacker.lookups.Lookup` if any
juraj-google-style
def verify_ed25519_signature(public_key, contents, signature, message): try: public_key.verify(signature, contents) except InvalidSignature as exc: raise ScriptWorkerEd25519Error((message % {'exc': str(exc)}))
Verify that ``signature`` comes from ``public_key`` and ``contents``. Args: public_key (Ed25519PublicKey): the key to verify the signature contents (bytes): the contents that was signed signature (bytes): the signature to verify message (str): the error message to raise. Raises: ScriptWorkerEd25519Error: on failure
codesearchnet
def ch_stop_time(self, *channels: List[Channel]) -> int: intervals = list(itertools.chain(*(self._table[chan] for chan in channels if (chan in self._table)))) if intervals: return max((interval.end for interval in intervals)) return 0
Return maximum time of timeslots over all channels. Args: *channels: Channels over which to obtain stop time.
codesearchnet
def create_test_record(self, mobly_test_class): details = self._get_details() extras = self._get_extras() tr_record = records.TestResultRecord(t_name=self._get_full_name(), t_class=mobly_test_class) if self._begin_time: tr_record.begin_time = self._begin_time if self._is_failed(): tr_record.test_fail(e=signals.TestFailure(details=details, extras=extras)) elif self._status_code in _InstrumentationStatusCodeCategories.SKIPPED: tr_record.test_skip(e=signals.TestSkip(details=details, extras=extras)) elif self._status_code in _InstrumentationStatusCodeCategories.PASS: tr_record.test_pass(e=signals.TestPass(details=details, extras=extras)) elif self._status_code in _InstrumentationStatusCodeCategories.TIMING: if self._error_message: tr_record.test_error(e=signals.TestError(details=details, extras=extras)) else: tr_record = None else: tr_record.test_error(e=signals.TestError(details=details, extras=extras)) if self._known_keys[_InstrumentationKnownStatusKeys.STACK]: tr_record.termination_signal.stacktrace = self._known_keys[_InstrumentationKnownStatusKeys.STACK] return tr_record
Creates a TestResultRecord for the instrumentation block. Args: mobly_test_class: string, the name of the Mobly test case executing the instrumentation run. Returns: A TestResultRecord with an appropriate signals exception representing the instrumentation test method's result status.
github-repos
def do_keygen(args): if args.key_name is not None: key_name = args.key_name else: key_name = 'validator' key_dir = get_key_dir() if not os.path.exists(key_dir): raise CliException("Key directory does not exist: {}".format(key_dir)) priv_filename = os.path.join(key_dir, key_name + '.priv') pub_filename = os.path.join(key_dir, key_name + '.pub') if not args.force: file_exists = False for filename in [priv_filename, pub_filename]: if os.path.exists(filename): file_exists = True print('file exists: {}'.format(filename), file=sys.stderr) if file_exists: raise CliException( 'files exist, rerun with --force to overwrite existing files') context = create_context('secp256k1') private_key = context.new_random_private_key() public_key = context.get_public_key(private_key) try: priv_exists = os.path.exists(priv_filename) with open(priv_filename, 'w') as priv_fd: if not args.quiet: if priv_exists: print('overwriting file: {}'.format(priv_filename)) else: print('writing file: {}'.format(priv_filename)) priv_fd.write(private_key.as_hex()) priv_fd.write('\n') keydir_info = os.stat(key_dir) keydir_gid = keydir_info.st_gid keydir_uid = keydir_info.st_uid os.chown(priv_filename, keydir_uid, keydir_gid) os.chmod(priv_filename, 0o640) pub_exists = os.path.exists(pub_filename) with open(pub_filename, 'w') as pub_fd: if not args.quiet: if pub_exists: print('overwriting file: {}'.format(pub_filename)) else: print('writing file: {}'.format(pub_filename)) pub_fd.write(public_key.as_hex()) pub_fd.write('\n') os.chown(pub_filename, keydir_uid, keydir_gid) os.chmod(pub_filename, 0o644) except IOError as ioe: raise CliException('IOError: {}'.format(str(ioe)))
Executes the key generation operation, given the parsed arguments. Args: args (:obj:`Namespace`): The parsed args.
juraj-google-style
def pop_chunk(self, chunk_max_size): if (self._total_length < chunk_max_size): res = self._tobytes() self.clear() return res first_iteration = True while True: try: data = self._deque.popleft() data_length = len(data) self._total_length -= data_length if first_iteration: if (data_length == chunk_max_size): return data elif (data_length > chunk_max_size): view = self._get_pointer_or_memoryview(data, data_length) self.appendleft(view[chunk_max_size:]) return view[:chunk_max_size] else: chunk_write_buffer = WriteBuffer() elif ((chunk_write_buffer._total_length + data_length) > chunk_max_size): view = self._get_pointer_or_memoryview(data, data_length) limit = ((chunk_max_size - chunk_write_buffer._total_length) - data_length) self.appendleft(view[limit:]) data = view[:limit] chunk_write_buffer.append(data) if (chunk_write_buffer._total_length >= chunk_max_size): break except IndexError: self._has_view = False break first_iteration = False return chunk_write_buffer._tobytes()
Pops a chunk of the given max size. Optimized to avoid too much string copies. Args: chunk_max_size (int): max size of the returned chunk. Returns: string (bytes) with a size <= chunk_max_size.
codesearchnet
def random(length: int=8, chars: str=(digits + ascii_lowercase)) -> Iterator[str]: while True: (yield ''.join([choice(chars) for _ in range(length)]))
A random string. Not unique, but has around 1 in a million chance of collision (with the default 8 character length). e.g. 'fubui5e6' Args: length: Length of the random string. chars: The characters to randomly choose from.
codesearchnet
def _get_row_partition_type_tensor_pairs_tail(partition): if partition._has_precomputed_value_rowids(): return ('VALUE_ROWIDS', partition.value_rowids()) else: return ('ROW_SPLITS', partition.row_splits())
Gets a row partition type tensor pair for the tail. If value_rowid is defined, then it is used. Otherwise, row_splits are used. Args: partition: a RowPartition. Returns: A list of (row_partition_type, row_partition_tensor) pairs.
github-repos
def _check_zero_size(self): block_zero = ((self.end[0] <= self.start[0]) or (self.end[1] <= self.start[1])) if block_zero: self.flag_change(self.flags, 'fatal', worksheet=self.worksheet, message=self.FLAGS['0-size']) return block_zero
Checks for zero height or zero width blocks and flags the occurrence. Returns: True if the block is size 0.
codesearchnet
def add_to_cache(cls, remote_info, container): if not isinstance(container, cls): raise TypeError('%r not an instance of %r, could not be added to cache.' % (container, cls)) if remote_info in cls.__remote_info_cache: raise KeyError('Cache has collision but should not.') cls.__remote_info_cache[remote_info] = container
Adds a ResourceContainer to a cache tying it to a protorpc method. Args: remote_info: Instance of protorpc.remote._RemoteMethodInfo corresponding to a method. container: An instance of ResourceContainer. Raises: TypeError: if the container is not an instance of cls. KeyError: if the remote method has been reference by a container before. This created remote method should never occur because a remote method is created once.
juraj-google-style
def __init__(self, permissive=True): self._journal_contents = '' self._init_journal(permissive=permissive)
Inititalize the journal maker object. Appends the first lines in the journal (JrnObj variable and timestamp) to the _journal_contents. Args: permissive (bool): if True most errors in journal will not cause Revit to stop journal execution. Some still do.
juraj-google-style
def transmute(df, *keep_columns, **kwargs): keep_cols = [] for col in flatten(keep_columns): try: keep_cols.append(col.name) except: if isinstance(col, str): keep_cols.append(col) elif isinstance(col, int): keep_cols.append(df.columns[col]) df = df.assign(**kwargs) columns = ([k for k in kwargs.keys()] + list(keep_cols)) return df[columns]
Creates columns and then returns those new columns and optionally specified original columns from the DataFrame. This works like `mutate`, but designed to discard the original columns used to create the new ones. Args: *keep_columns: Column labels to keep. Can be string, symbolic, or integer position. Kwargs: **kwargs: keys are the names of the new columns, values indicate what the new column values will be. Example: diamonds >> transmute(x_plus_y=X.x + X.y, y_div_z=(X.y / X.z)) >> head(3) y_div_z x_plus_y 0 1.637860 7.93 1 1.662338 7.73 2 1.761905 8.12
codesearchnet
def _build_rule_message(self, column: str, rule: str, error: str, value: Any, rule_params: dict={}) -> LogMessage: return self._base_log.copy() | LogMessage(log_type=LogType.RULE.value, column=column, rule=rule, error=error, value=value, rule_params=json.dumps(rule_params))
Adds rule error information to base log message. Args: * column: column where the rule is applied * rule: rule that is violated and raises this message * value: value that violates the rule * rule_params: optional, parameters set for the rule Returns: * log: LogMessage dictionary
github-repos
def _enter_scope_uncached(self): if self._auxiliary_name_scope: current_name_scope = None else: name_scope = ops.get_name_scope() if name_scope: name_scope += '/' current_name_scope = ops.name_scope(name_scope, skip_on_eager=False) else: current_name_scope = ops.name_scope(name_scope, skip_on_eager=False) if self._name_or_scope is not None: if not isinstance(self._name_or_scope, (VariableScope, str)): raise TypeError('VariableScope: name_or_scope must be a string or VariableScope.') if isinstance(self._name_or_scope, str): name_scope = self._name_or_scope else: name_scope = self._name_or_scope.name.split('/')[-1] if name_scope or current_name_scope: current_name_scope = current_name_scope or ops.name_scope(name_scope, skip_on_eager=False) try: current_name_scope_name = current_name_scope.__enter__() except: current_name_scope.__exit__(*sys.exc_info()) raise self._current_name_scope = current_name_scope if isinstance(self._name_or_scope, str): old_name_scope = current_name_scope_name else: old_name_scope = self._name_or_scope.original_name_scope pure_variable_scope = _pure_variable_scope(self._name_or_scope, reuse=self._reuse, initializer=self._initializer, regularizer=self._regularizer, caching_device=self._caching_device, partitioner=self._partitioner, custom_getter=self._custom_getter, old_name_scope=old_name_scope, dtype=self._dtype, use_resource=self._use_resource, constraint=self._constraint) try: entered_pure_variable_scope = pure_variable_scope.__enter__() except: pure_variable_scope.__exit__(*sys.exc_info()) raise self._cached_pure_variable_scope = pure_variable_scope return entered_pure_variable_scope else: self._current_name_scope = None pure_variable_scope = _pure_variable_scope(self._name_or_scope, reuse=self._reuse, initializer=self._initializer, regularizer=self._regularizer, caching_device=self._caching_device, partitioner=self._partitioner, custom_getter=self._custom_getter, dtype=self._dtype, use_resource=self._use_resource, constraint=self._constraint) try: entered_pure_variable_scope = pure_variable_scope.__enter__() except: pure_variable_scope.__exit__(*sys.exc_info()) raise self._cached_pure_variable_scope = pure_variable_scope return entered_pure_variable_scope else: if self._reuse: raise ValueError('reuse=True cannot be used without a name_or_scope') current_name_scope = current_name_scope or ops.name_scope(self._default_name, skip_on_eager=False) try: current_name_scope_name = current_name_scope.__enter__() except: current_name_scope.__exit__(*sys.exc_info()) raise self._current_name_scope = current_name_scope unique_default_name = _get_unique_variable_scope(self._default_name) pure_variable_scope = _pure_variable_scope(unique_default_name, initializer=self._initializer, regularizer=self._regularizer, caching_device=self._caching_device, partitioner=self._partitioner, custom_getter=self._custom_getter, old_name_scope=current_name_scope_name, dtype=self._dtype, use_resource=self._use_resource, constraint=self._constraint) try: entered_pure_variable_scope = pure_variable_scope.__enter__() except: pure_variable_scope.__exit__(*sys.exc_info()) raise self._cached_pure_variable_scope = pure_variable_scope return entered_pure_variable_scope
Enters the context manager when there is no cached scope yet. Returns: The entered variable scope. Raises: TypeError: A wrong type is passed as `scope` at __init__(). ValueError: `reuse` is incorrectly set at __init__().
github-repos
def evaluate(estimator, eval_args): values = {} checkpoint_path = estimator.latest_checkpoint() if (not checkpoint_path): return values tf.logging.info('Starting evaluation on checkpoint %s', checkpoint_path) for eval_name in eval_args: (input_fn, eval_steps) = eval_args[eval_name] metric_values = estimator.evaluate(input_fn, steps=eval_steps, name=eval_name, checkpoint_path=checkpoint_path) for (key, val) in metric_values.iteritems(): values[((eval_name + '/') + key)] = val tf.logging.info(values) return values
Runs evaluation on the latest model checkpoint & logs to tensorboard. Args: estimator: A tf.Estimator object. eval_args: Dictionary of {eval_name: (input_fn, eval_steps)} where eval_name is the name of the evaluation set, e.g. "train" or "val", input_fn is an input function returning a tuple (features, labels), and eval_steps is the number of steps for which to evaluate the model. If None, evaluates until input_fn raises an end-of-input exception. Returns: A dict of metric values from the evaluation. May be empty, e.g. if the training job has not yet saved a checkpoint or the checkpoint is deleted by the time the TPU worker initializes.
codesearchnet
def train_fn(data_dir=None, output_dir=None, model_class=gin.REQUIRED, dataset=gin.REQUIRED, input_names=None, target_names=None, train_steps=1000, eval_steps=1, eval_frequency=100): (train_data, eval_data, features_info, keys) = train_and_eval_dataset(dataset, data_dir) if (input_names is None): input_names = keys[0] if (target_names is None): target_names = keys[1] model = model_class(features_info=features_info, input_names=input_names, target_names=target_names) optimize_fn(model) train_batches = shuffle_and_batch_data(train_data, target_names, features_info, training=True) eval_batches = shuffle_and_batch_data(eval_data, target_names, features_info, training=False) model.fit(train_batches, epochs=1, steps_per_epoch=1) callbacks = [] callbacks.append(tf.keras.callbacks.History()) callbacks.append(tf.keras.callbacks.BaseLogger()) last_epoch = 0 if (output_dir is not None): callbacks.append(tf.keras.callbacks.TensorBoard(log_dir=output_dir)) output_format = os.path.join(output_dir, 'model-{epoch:05d}') callbacks.append(tf.keras.callbacks.ModelCheckpoint(filepath=output_format, save_weights_only=True)) checkpoints = tf.gfile.Glob(os.path.join(output_dir, 'model-*')) checkpoints = [os.path.basename(ckpt)[6:] for ckpt in checkpoints] epoch_numbers = [int(ckpt[:5]) for ckpt in checkpoints if (len(ckpt) > 4)] epoch_numbers.sort() if epoch_numbers: last_epoch = epoch_numbers[(- 1)] saved_path = os.path.join(output_dir, ('model-%05d' % last_epoch)) model.load_weights(saved_path) model.fit(train_batches, epochs=(train_steps
Train the given model on the given dataset. Args: data_dir: Directory where the data is located. output_dir: Directory where to put the logs and checkpoints. model_class: The model class to train. dataset: The name of the dataset to train on. input_names: List of strings with the names of the features on input. target_names: List of strings with the names of the target features. train_steps: for how many steps to train. eval_steps: for how many steps to do evaluation. eval_frequency: how often (every this many steps) to run evaluation.
codesearchnet
def internal_link_sets(self): if (not self.__internal_link_sets): self.__internal_link_sets = InternalLinkSets(self.__connection) return self.__internal_link_sets
Gets the InternalLinkSets API client. Returns: InternalLinkSets:
codesearchnet
def parse_section_links(self, section_title): soup = BeautifulSoup(self.html, "html.parser") headlines = soup.find_all("span", {"class": "mw-headline"}) tmp_soup = BeautifulSoup(section_title, "html.parser") tmp_sec_title = tmp_soup.get_text().lower() id_tag = None for headline in headlines: tmp_id = headline.text if tmp_id.lower() == tmp_sec_title: id_tag = headline.get("id") break if id_tag is not None: return self._parse_section_links(id_tag) return None
Parse all links within a section Args: section_title (str): Name of the section to pull Returns: list: List of (title, url) tuples Note: Returns **None** if section title is not found Note: Side effect is to also pull the html which can be slow Note: This is a parsing operation and not part of the standard API
juraj-google-style
def init_variable(v, init, name='init'): with ops.name_scope(None, v.op.name + '/', [v, init]): with ops.name_scope(name) as scope: with ops.colocate_with(v): if callable(init): assert v.get_shape().is_fully_defined(), 'Variable shape unknown.' value = init(v.get_shape().as_list(), v.dtype.base_dtype) value = ops.convert_to_tensor(value, name='value') return gen_state_ops.assign(v, value, name=scope) else: init = ops.convert_to_tensor(init, name='init') return gen_state_ops.assign(v, init, name=scope)
Initializes variable with "init". This op does the following: if init is a Tensor, v = init if callable(init): v = init(VariableShape(v), v.dtype) Args: v: Variable to initialize init: Tensor to assign to v, Or an object convertible to Tensor e.g. nparray, Or an Initializer that generates a tensor given the shape and type of v. An "Initializer" is a callable that returns a tensor that "v" should be set to. It will be called as init(shape, dtype). name: Optional name for the op. Returns: The operation that initializes v.
github-repos
def rouge_l_fscore(predictions, labels): outputs = tf.to_int32(tf.argmax(predictions, axis=-1)) rouge_l_f_score = tf.py_func(rouge_l_sentence_level, (outputs, labels), tf.float32) return rouge_l_f_score, tf.constant(1.0)
ROUGE scores computation between labels and predictions. This is an approximate ROUGE scoring method since we do not glue word pieces or decode the ids and tokenize the output. Args: predictions: tensor, model predictions labels: tensor, gold output. Returns: rouge_l_fscore: approx rouge-l f1 score.
juraj-google-style
def blend(self, other, percent=0.5): dest = 1.0 - percent rgb = tuple(((u * percent) + (v * dest) for u, v in zip(self.__rgb, other.__rgb))) a = (self.__a * percent) + (other.__a * dest) return Color(rgb, 'rgb', a, self.__wref)
blend this color with the other one. Args: :other: the grapefruit.Color to blend with this one. Returns: A grapefruit.Color instance which is the result of blending this color on the other one. >>> c1 = Color.from_rgb(1, 0.5, 0, 0.2) >>> c2 = Color.from_rgb(1, 1, 1, 0.6) >>> c3 = c1.blend(c2) >>> c3 Color(1.0, 0.75, 0.5, 0.4)
juraj-google-style
def _add_to_quick_menu(self, key, wf): if key in settings.QUICK_MENU: self.output['quick_menu'].append(wf)
Appends menu entries to dashboard quickmenu according to :attr:`zengine.settings.QUICK_MENU` Args: key: workflow name wf: workflow menu entry
juraj-google-style
def hr_dp004(self, value=None): if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `hr_dp004`'.format(value)) self._hr_dp004 = value
Corresponds to IDD Field `hr_dp004` humidity ratio corresponding to Dew-point temperature corresponding to 0.4% annual cumulative frequency of occurrence Args: value (float): value for IDD Field `hr_dp004` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
juraj-google-style
def variable_created_in_scope(self, v): return v._distribute_strategy == self._container_strategy_weakref()
Tests whether `v` was created while this strategy scope was active. Variables created inside the strategy scope are "owned" by it: >>> strategy = tf.distribute.MirroredStrategy() >>> with strategy.scope(): ... v = tf.Variable(1.) >>> strategy.extended.variable_created_in_scope(v) True Variables created outside the strategy are not owned by it: >>> strategy = tf.distribute.MirroredStrategy() >>> v = tf.Variable(1.) >>> strategy.extended.variable_created_in_scope(v) False Args: v: A `tf.Variable` instance. Returns: True if `v` was created inside the scope, False if not.
github-repos
def register_rml(self, filepath, **kwargs): name = os.path.split(filepath)[(- 1)] if ((name in self.rml_maps) and (self.rml_maps[name] != filepath)): raise Exception('RML name already registered. Filenames must be unique.', (self.rml_maps[name], filepath)) self.rml_maps[name] = filepath
Registers the filepath for an rml mapping Args: ----- filepath: the path the rml file
codesearchnet
def config_conf_section(): config_dict = OrderedDict((('create', ConfOpt(None, True, None, {'action': 'store_true'}, False, 'create most global config file')), ('create_local', ConfOpt(None, True, None, {'action': 'store_true'}, False, 'create most local config file')), ('update', ConfOpt(None, True, None, {'action': 'store_true'}, False, 'add missing entries to config file')), ('edit', ConfOpt(None, True, None, {'action': 'store_true'}, False, 'open config file in a text editor')), ('editor', ConfOpt('vim', False, None, {}, True, 'text editor')))) return config_dict
Define a configuration section handling config file. Returns: dict of ConfOpt: it defines the 'create', 'update', 'edit' and 'editor' configuration options.
codesearchnet
def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, layer_head_mask: torch.Tensor, output_attentions: bool=False) -> torch.Tensor: residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights, _ = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states if hidden_states.dtype == torch.float16: clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail.
github-repos
def build_transcript(transcript_info, build='37'): try: transcript_id = transcript_info['ensembl_transcript_id'] except KeyError: raise KeyError("Transcript has to have ensembl id") build = build is_primary = transcript_info.get('is_primary', False) refseq_id = transcript_info.get('refseq_id') refseq_identifiers = transcript_info.get('refseq_identifiers') try: chrom = transcript_info['chrom'] except KeyError: raise KeyError("Transcript has to have a chromosome") try: start = int(transcript_info['transcript_start']) except KeyError: raise KeyError("Transcript has to have start") except TypeError: raise TypeError("Transcript start has to be integer") try: end = int(transcript_info['transcript_end']) except KeyError: raise KeyError("Transcript has to have end") except TypeError: raise TypeError("Transcript end has to be integer") try: hgnc_id = int(transcript_info['hgnc_id']) except KeyError: raise KeyError("Transcript has to have a hgnc id") except TypeError: raise TypeError("hgnc id has to be integer") transcript_obj = HgncTranscript( transcript_id=transcript_id, hgnc_id=hgnc_id, chrom=chrom, start=start, end=end, is_primary=is_primary, refseq_id=refseq_id, refseq_identifiers=refseq_identifiers, build=build ) for key in list(transcript_obj): if transcript_obj[key] is None: transcript_obj.pop(key) return transcript_obj
Build a hgnc_transcript object Args: transcript_info(dict): Transcript information Returns: transcript_obj(HgncTranscript) { transcript_id: str, required hgnc_id: int, required build: str, required refseq_id: str, chrom: str, required start: int, required end: int, required is_primary: bool }
juraj-google-style
def Or(exprs): return simplify_exprs(exprs, _Or, TRUE, FALSE)
Create a disjunction or its simplified equivalent. This will ensure that, when an _Or is returned, none of its immediate subterms is TRUE, FALSE, or another disjunction. Args: exprs: An iterable. The subterms. Returns: A BooleanTerm.
github-repos
def build_exon(exon_info, build='37'): try: chrom = exon_info['chrom'] except KeyError: raise KeyError("Exons has to have a chromosome") try: start = int(exon_info['start']) except KeyError: raise KeyError("Exon has to have a start") except TypeError: raise TypeError("Exon start has to be integer") try: end = int(exon_info['end']) except KeyError: raise KeyError("Exon has to have a end") except TypeError: raise TypeError("Exon end has to be integer") try: rank = int(exon_info['rank']) except KeyError: raise KeyError("Exon has to have a rank") except TypeError: raise TypeError("Exon rank has to be integer") try: exon_id = exon_info['exon_id'] except KeyError: raise KeyError("Exons has to have a id") try: transcript = exon_info['transcript'] except KeyError: raise KeyError("Exons has to have a transcript") try: hgnc_id = int(exon_info['hgnc_id']) except KeyError: raise KeyError("Exons has to have a hgnc_id") except TypeError: raise TypeError("hgnc_id has to be integer") exon_obj = Exon( exon_id = exon_id, chrom = chrom, start = start, end = end, rank = rank, transcript = transcript, hgnc_id = hgnc_id, build = build, ) return exon_obj
Build a Exon object object Args: exon_info(dict): Exon information Returns: exon_obj(Exon) "exon_id": str, # str(chrom-start-end) "chrom": str, "start": int, "end": int, "transcript": str, # ENST ID "hgnc_id": int, # HGNC_id "rank": int, # Order of exon in transcript "build": str, # Genome build
juraj-google-style
def ignore_errors(self, log_warning=False, name=None) -> 'DatasetV2': from tensorflow.python.data.ops import ignore_errors_op return ignore_errors_op._ignore_errors(self, log_warning, name)
Drops elements that cause errors. >>> dataset = tf.data.Dataset.from_tensor_slices([1., 2., 0., 4.]) >>> dataset = dataset.map(lambda x: tf.debugging.check_numerics(1. / x, "")) >>> list(dataset.as_numpy_iterator()) Traceback (most recent call last): ... InvalidArgumentError: ... Tensor had Inf values >>> dataset = dataset.ignore_errors() >>> list(dataset.as_numpy_iterator()) [1.0, 0.5, 0.25] Args: log_warning: (Optional.) A bool indicating whether or not ignored errors should be logged to stderr. Defaults to `False`. name: (Optional.) A string indicating a name for the `tf.data` operation. Returns: A new `Dataset` with the transformation applied as described above.
github-repos
def unique(seen, *iterables): _add = seen.add return (i for i in chain(*iterables) if i not in seen and not _add(i))
Get the unique items in iterables while preserving order. Note that this mutates the seen set provided only when the returned generator is used. Args: seen (set): either an empty set, or the set of things already seen *iterables: one or more iterable lists to chain together Returns: generator:
juraj-google-style
def add_op_consumer(self, src_op_name, src_slot, dst_op_name, dst_slot): self._op_consumers[src_op_name].append((src_slot, dst_op_name, dst_slot))
Add a consuming op for this op. Args: src_op_name: Name of the op of which the output tensor is being consumed. src_slot: 0-based output slot of the op being consumed. dst_op_name: Name of the consuming op (e.g., "Conv2D_3/BiasAdd") dst_slot: 0-based input slot of the consuming op that receives the tensor from this op.
github-repos
async def join(self, *, remote_addrs: Iterable[str], listen_addr: str='0.0.0.0:2377', join_token: str, advertise_addr: str=None, data_path_addr: str=None) -> bool: data = {'RemoteAddrs': list(remote_addrs), 'JoinToken': join_token, 'ListenAddr': listen_addr, 'AdvertiseAddr': advertise_addr, 'DataPathAddr': data_path_addr} (await self.docker._query('swarm/join', method='POST', data=clean_map(data))) return True
Join a swarm. Args: listen_addr Used for inter-manager communication advertise_addr Externally reachable address advertised to other nodes. data_path_addr Address or interface to use for data path traffic. remote_addrs Addresses of manager nodes already participating in the swarm. join_token Secret token for joining this swarm.
codesearchnet
def _make_patterns(patterns): field_registry = display_fields.FieldRegistry() pattern_list = display_pattern.ScreenPatternList(field_registry=field_registry) for pattern in patterns: pattern_list.add(pattern.split('\n')) return pattern_list
Create a ScreenPatternList from a given pattern text. Args: pattern_txt (str list): the patterns Returns: mpdlcd.display_pattern.ScreenPatternList: a list of patterns from the given entries.
codesearchnet
def deserialize(json, cls=None): LOGGER.debug('deserialize(%s)', json) out = simplejson.loads(json) if (isinstance(out, dict) and (cls is not None)): return cls(**out) return out
Deserialize a JSON string into a Python object. Args: json (str): the JSON string. cls (:py:class:`object`): if the ``json`` is deserialized into a ``dict`` and this argument is set, the ``dict`` keys are passed as keyword arguments to the given ``cls`` initializer. Returns: Python object representation of the given JSON string.
codesearchnet
def remove_user_from_template(self, template_id, account_id=None, email_address=None): return self._add_remove_user_template(self.TEMPLATE_REMOVE_USER_URL, template_id, account_id, email_address)
Removes the specified Account's access to the specified Template Args: template_id (str): The id of the template to remove the account's access from. account_id (str): The id of the account to remove access from the template. The account id prevails if both account_id and email_address are provided. email_address (str): The email address of the account to remove access from. Returns: An Template object
juraj-google-style
def key_exists(hive, key, use_32bit_registry=False): r return __utils__['reg.key_exists'](hive=hive, key=key, use_32bit_registry=use_32bit_registry)
r''' Check that the key is found in the registry. This refers to keys and not value/data pairs. Args: hive (str): The hive to connect to key (str): The key to check use_32bit_registry (bool): Look in the 32bit portion of the registry Returns: bool: True if exists, otherwise False CLI Example: .. code-block:: bash salt '*' reg.key_exists HKLM SOFTWARE\Microsoft
juraj-google-style
def log_device_compatibility_check(policy_name): global _logged_compatibility_check if _logged_compatibility_check: return _logged_compatibility_check = True gpus = config.list_physical_devices('GPU') gpu_details_list = [config.get_device_details(g) for g in gpus] _log_device_compatibility_check(policy_name, gpu_details_list)
Logs a compatibility check if the devices support the policy. Currently only logs for the policy mixed_float16. A log is shown only the first time this function is called. Args: policy_name: The name of the dtype policy.
github-repos
class CLIPSegImageSegmentationOutput(ModelOutput): loss: Optional[torch.FloatTensor] = None logits: Optional[torch.FloatTensor] = None conditional_embeddings: Optional[torch.FloatTensor] = None pooled_output: Optional[torch.FloatTensor] = None vision_model_output: BaseModelOutputWithPooling = None decoder_output: CLIPSegDecoderOutput = None def to_tuple(self) -> Tuple[Any]: return tuple((self[k] if k not in ['vision_model_output', 'decoder_output'] else getattr(self, k).to_tuple() for k in self.keys()))
Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for image-text similarity. ... vision_model_output (`BaseModelOutputWithPooling`): The output of the [`CLIPSegVisionModel`].
github-repos
def send_notifications(self, notification_type, *args): if (notification_type in self.notifications): for (notification_id, callback) in self.notifications[notification_type]: try: callback(*args) except: self.logger.exception('Problem calling notify callback!')
Fires off the notification for the specific event. Uses var args to pass in a arbitrary list of parameter according to which notification type was fired. Args: notification_type: Type of notification to fire (String from .helpers.enums.NotificationTypes) args: variable list of arguments to the callback.
codesearchnet
def _TensorArrayWriteGrad(op: ops.Operation, flow): handle = op.inputs[0] index = op.inputs[1] dtype = op.get_attr('T') grad_source = _GetGradSource(flow) flow_out = array_ops.identity(op.outputs[0], 'flow_out') with ops.control_dependencies([flow_out]): flow = array_ops.identity(flow, 'write_barrier') g = tensor_array_ops.TensorArray(dtype=dtype, handle=handle, flow=flow, colocate_with_first_write_call=False).grad(source=grad_source, flow=flow) grad = g.read(index) return [None, None, grad, flow]
Gradient for TensorArrayWrite. Args: op: Forward TensorArrayWrite op. flow: Gradient `Tensor` flow to TensorArrayWrite. Returns: A grad `Tensor`, the gradient created in an upstream ReadGrad or PackGrad.
github-repos
def ints_to_string(ints): if not isinstance(ints, list): return six.u(str(ints)) return '|'.join(six.u(str(l)) for l in ints)
Convert a list of integers to a *|* separated string. Args: ints (list[int]|int): List of integer items to convert or single integer to convert. Returns: str: Formatted string
juraj-google-style
def hexstr(text): text = text.strip().lower() if text.startswith(('0x', '0X')): text = text[2:] if not text: raise s_exc.BadTypeValu(valu=text, name='hexstr', mesg='No string left after stripping') try: s_common.uhex(text) except (binascii.Error, ValueError) as e: raise s_exc.BadTypeValu(valu=text, name='hexstr', mesg=str(e)) return text
Ensure a string is valid hex. Args: text (str): String to normalize. Examples: Norm a few strings: hexstr('0xff00') hexstr('ff00') Notes: Will accept strings prefixed by '0x' or '0X' and remove them. Returns: str: Normalized hex string.
juraj-google-style
def predecesors_pattern(element, root): def is_root_container(el): return el.parent.parent.getTagName() == "" if not element.parent or not element.parent.parent or \ is_root_container(element): return [] trail = [ [ element.parent.parent.getTagName(), _params_or_none(element.parent.parent.params) ], [ element.parent.getTagName(), _params_or_none(element.parent.params) ], [element.getTagName(), _params_or_none(element.params)], ] match = root.match(*trail) if element in match: return [ PathCall("match", match.index(element), trail) ]
Look for `element` by its predecesors. Args: element (obj): HTMLElement instance of the object you are looking for. root (obj): Root of the `DOM`. Returns: list: ``[PathCall()]`` - list with one :class:`PathCall` object (to \ allow use with ``.extend(predecesors_pattern())``).
juraj-google-style
def AddFiles(self, hash_id_metadatas): for (hash_id, metadata) in iteritems(hash_id_metadatas): self.AddFile(hash_id, metadata)
Adds multiple files to the file store. Args: hash_id_metadatas: A dictionary mapping hash ids to file metadata (a tuple of hash client path and blob references).
codesearchnet
def Dump(self, output): data = { 'current_content_length': self._current_content_length, 'is_last': self._is_last, 'server': self._request_builder.GetServer(), 'upload_url': self._upload_url, 'version': self._request_builder.GetVersion() } try: yaml.dump(data, output) except yaml.YAMLError as e: raise googleads.errors.GoogleAdsError( 'Error dumping IncrementalUploadHelper to file: %s' % str(e))
Serialize the IncrementalUploadHelper and store in file-like object. Args: output: a file-like object where the status of the IncrementalUploadHelper will be written. Raises: GoogleAdsError: If a YAMLError occurs while writing to the file.
juraj-google-style
def add_subscription(self, channel, callback_function): if channel not in CHANNELS: CHANNELS.append(channel) SUBSCRIPTIONS[channel] = [callback_function] else: SUBSCRIPTIONS[channel].append(callback_function) if self._subscribed: _LOGGER.info("New channel added after main subscribe call.") self._pubnub.subscribe().channels(channel).execute()
Add a channel to subscribe to and a callback function to run when the channel receives an update. If channel already exists, create a new "subscription" and append another callback function. Args: channel (str): The channel to add a subscription too. callback_function (func): The function to run on an update to the passed in channel.
juraj-google-style
def swapaxes(x, axis1, axis2): if any_symbolic_tensors((x,)): return Swapaxes(axis1, axis2).symbolic_call(x) return backend.numpy.swapaxes(x, axis1=axis1, axis2=axis2)
Interchange two axes of a tensor. Args: x: Input tensor. axis1: First axis. axis2: Second axis. Returns: A tensor with the axes swapped.
github-repos
def floatx(): return _FLOATX
Return the default float type, as a string. E.g. `'bfloat16'`, `'float16'`, `'float32'`, `'float64'`. Returns: String, the current default float type. Example: >>> keras.config.floatx() 'float32'
github-repos
def sparse_grid(func, order, dim=None, skew=None): if (not isinstance(order, int)): orders = numpy.array(order).flatten() dim = orders.size m_order = int(numpy.min(orders)) skew = [(order - m_order) for order in orders] return sparse_grid(func, m_order, dim, skew) (abscissas, weights) = ([], []) bindex = chaospy.bertran.bindex(((order - dim) + 1), order, dim) if (skew is None): skew = numpy.zeros(dim, dtype=int) else: skew = numpy.array(skew, dtype=int) assert (len(skew) == dim) for idx in range((chaospy.bertran.terms(order, dim) - chaospy.bertran.terms((order - dim), dim))): idb = bindex[idx] (abscissa, weight) = func((skew + idb)) weight *= (((- 1) ** (order - sum(idb))) * comb((dim - 1), (order - sum(idb)))) abscissas.append(abscissa) weights.append(weight) abscissas = numpy.concatenate(abscissas, 1) weights = numpy.concatenate(weights, 0) abscissas = numpy.around(abscissas, 15) order = numpy.lexsort(tuple(abscissas)) abscissas = abscissas.T[order].T weights = weights[order] diff = numpy.diff(abscissas.T, axis=0) unique = numpy.ones(len(abscissas.T), bool) unique[1:] = (diff != 0).any(axis=1) length = len(weights) idx = 1 while (idx < length): while ((idx < length) and unique[idx]): idx += 1 idy = (idx + 1) while ((idy < length) and (not unique[idy])): idy += 1 if ((idy - idx) > 1): weights[(idx - 1)] = numpy.sum(weights[(idx - 1):idy]) idx = (idy + 1) abscissas = abscissas[(:, unique)] weights = weights[unique] return (abscissas, weights)
Smolyak sparse grid constructor. Args: func (:py:data:typing.Callable): Function that takes a single argument ``order`` of type ``numpy.ndarray`` and with ``order.shape = (dim,)`` order (int, numpy.ndarray): The order of the grid. If ``numpy.ndarray``, it overrides both ``dim`` and ``skew``. dim (int): Number of dimension. skew (list): Order skewness.
codesearchnet