code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def _write_module_descriptor_file(handle, module_dir):
readme = _module_descriptor_file(module_dir)
readme_content = (
"Module: %s\nDownload Time: %s\nDownloader Hostname: %s (PID:%d)" %
(handle, str(datetime.datetime.today()), socket.gethostname(),
os.getpid()))
tf_utils.atomic_write_string_to_file(readme, readme_content, overwrite=True)
|
Writes a descriptor file about the directory containing a module.
Args:
handle: Module name/handle.
module_dir: Directory where a module was downloaded.
|
juraj-google-style
|
def update(self, **kwargs):
return self.client.api.update_container(self.id, **kwargs)
|
Update resource configuration of the containers.
Args:
blkio_weight (int): Block IO (relative weight), between 10 and 1000
cpu_period (int): Limit CPU CFS (Completely Fair Scheduler) period
cpu_quota (int): Limit CPU CFS (Completely Fair Scheduler) quota
cpu_shares (int): CPU shares (relative weight)
cpuset_cpus (str): CPUs in which to allow execution
cpuset_mems (str): MEMs in which to allow execution
mem_limit (int or str): Memory limit
mem_reservation (int or str): Memory soft limit
memswap_limit (int or str): Total memory (memory + swap), -1 to
disable swap
kernel_memory (int or str): Kernel memory limit
restart_policy (dict): Restart policy dictionary
Returns:
(dict): Dictionary containing a ``Warnings`` key.
Raises:
:py:class:`docker.errors.APIError`
If the server returns an error.
|
codesearchnet
|
def register_intent_parser(self, intent_parser):
if (hasattr(intent_parser, 'validate') and callable(intent_parser.validate)):
self.intent_parsers.append(intent_parser)
else:
raise ValueError(('%s is not an intent parser' % str(intent_parser)))
|
"Enforce" the intent parser interface at registration time.
Args:
intent_parser(intent): Intent to be registered.
Raises:
ValueError: on invalid intent
|
codesearchnet
|
def __init__(self, connection_param, queue, output_exchange, output_key):
super(PikaDaemon, self).__init__(queue)
self.connection_param = connection_param
self.queue = queue
self.output_exchange = output_exchange
self.content_type = "application/json"
self.output_key = output_key
|
Pika and Daemon wrapper for handling AMQP connections.
Args:
connection_param (pika.ConnectionParameters): object setting the
connection
queue (str): name of queue where the daemon should listen
output_exchange (str): name of exchange where the daemon should put
responses
output_key (str): routing key for output exchange
|
juraj-google-style
|
def all_elements_equal(value):
if is_scalar(value):
return True
return np.array(value == value.flatten()[0]).all()
|
Checks if all elements in the given value are equal to each other.
If the input is a single value the result is trivial. If not, we compare all the values to see
if they are exactly the same.
Args:
value (ndarray or number): a numpy array or a single number.
Returns:
bool: true if all elements are equal to each other, false otherwise
|
juraj-google-style
|
def filter_by_hoys(self, hoys):
_moys = tuple(int(hour * 60) for hour in hoys)
return self.filter_by_moys(_moys)
|
Filter the Data Collection based on an analysis period.
Args:
hoys: A List of hours of the year 0..8759
Return:
A new Data Collection with filtered data
|
juraj-google-style
|
def qubits_tab(backend):
props = backend.properties().to_dict()
header_html = "<div><font style='font-weight:bold'>{key}</font>: {value}</div>"
header_html = header_html.format(key='last_update_date',
value=props['last_update_date'])
update_date_widget = widgets.HTML(value=header_html)
qubit_html = "<table>"
qubit_html +=
qubit_html += "<tr><th></th><th>Frequency</th><th>T1</th><th>T2</th>"
qubit_html += "<th>U1 gate error</th><th>U2 gate error</th><th>U3 gate error</th>"
qubit_html += "<th>Readout error</th></tr>"
qubit_footer = "</table>"
for qub in range(len(props['qubits'])):
name = 'Q%s' % qub
qubit_data = props['qubits'][qub]
gate_data = props['gates'][3*qub:3*qub+3]
t1_info = qubit_data[0]
t2_info = qubit_data[1]
freq_info = qubit_data[2]
readout_info = qubit_data[3]
freq = str(round(freq_info['value'], 5))+' '+freq_info['unit']
T1 = str(round(t1_info['value'],
5))+' ' + t1_info['unit']
T2 = str(round(t2_info['value'],
5))+' ' + t2_info['unit']
U1 = str(round(gate_data[0]['parameters'][0]['value'], 5))
U2 = str(round(gate_data[1]['parameters'][0]['value'], 5))
U3 = str(round(gate_data[2]['parameters'][0]['value'], 5))
readout_error = round(readout_info['value'], 5)
qubit_html += "<tr><td><font style='font-weight:bold'>%s</font></td><td>%s</td>"
qubit_html += "<td>%s</td><td>%s</td><td>%s</td><td>%s</td><td>%s</td><td>%s</td></tr>"
qubit_html = qubit_html % (name, freq, T1, T2, U1, U2, U3, readout_error)
qubit_html += qubit_footer
qubit_widget = widgets.HTML(value=qubit_html)
out = widgets.VBox([update_date_widget,
qubit_widget])
return out
|
The qubits properties widget
Args:
backend (IBMQbackend): The backend.
Returns:
VBox: A VBox widget.
|
juraj-google-style
|
def segment_max(data, segment_ids, num_segments=None, sorted=False):
_segment_reduce_validation(data, segment_ids)
if any_symbolic_tensors((data,)):
return SegmentMax(num_segments, sorted).symbolic_call(data, segment_ids)
return backend.math.segment_max(data, segment_ids, num_segments=num_segments, sorted=sorted)
|
Computes the max of segments in a tensor.
Args:
data: Input tensor.
segment_ids: A N-D tensor containing segment indices for each
element in `data`. data.shape[:len(segment_ids.shape)] should match.
num_segments: An integer representing the total number of
segments. If not specified, it is inferred from the maximum
value in `segment_ids`.
sorted: A boolean indicating whether `segment_ids` is sorted.
Defaults to `False`.
Returns:
A tensor containing the max of segments, where each element
represents the max of the corresponding segment in `data`.
Example:
>>> data = keras.ops.convert_to_tensor([1, 2, 10, 20, 100, 200])
>>> segment_ids = keras.ops.convert_to_tensor([0, 0, 1, 1, 2, 2])
>>> num_segments = 3
>>> keras.ops.segment_max(data, segment_ids, num_segments)
array([2, 20, 200], dtype=int32)
|
github-repos
|
def __init__(self,
url=None,
extract_method=None,
path=None):
self.url = url
self.path = path
self._extract_method = extract_method
|
Resource constructor.
Args:
url: `str`, the URL at which to download the resource.
extract_method: `ExtractMethod` to be used to extract resource. If
not set, will be guessed from downloaded file name `original_fname`.
path: `str`, path of resource on local disk. Can be None if resource has
not be downloaded yet. In such case, `url` must be set.
|
juraj-google-style
|
def nb_ll(data, P, R):
(genes, cells) = data.shape
clusters = P.shape[1]
lls = np.zeros((cells, clusters))
for c in range(clusters):
P_c = P[(:, c)].reshape((genes, 1))
R_c = R[(:, c)].reshape((genes, 1))
ll = (gammaln((R_c + data)) - gammaln(R_c))
ll += ((data * np.log(P_c)) + xlog1py(R_c, (- P_c)))
lls[(:, c)] = ll.sum(0)
return lls
|
Returns the negative binomial log-likelihood of the data.
Args:
data (array): genes x cells
P (array): NB success probability param - genes x clusters
R (array): NB stopping param - genes x clusters
Returns:
cells x clusters array of log-likelihoods
|
codesearchnet
|
def _create_outbound_stream(self, config=None):
if (config is None):
raise ValueError('No stream config to create stream from.')
name = self._get_stream_name(config)
stream_handlers = self._get_stream_handlers(config, name)
stream_input = config.get('input', None)
stream_output = config.get('output', None)
if (type(stream_output) is int):
return PortOutputStream(name, stream_input, stream_output, stream_handlers, zmq_args={'zmq_context': self.broker.context, 'zmq_proxy_xsub_url': self.broker.XSUB_URL, 'zmq_proxy_xpub_url': self.broker.XPUB_URL})
else:
if (stream_output is not None):
log.warn('Output of stream {} is not an integer port. Stream outputs can only be ports.'.format(name))
return ZMQStream(name, stream_input, stream_handlers, zmq_args={'zmq_context': self.broker.context, 'zmq_proxy_xsub_url': self.broker.XSUB_URL, 'zmq_proxy_xpub_url': self.broker.XPUB_URL})
|
Creates an outbound stream from its config.
Params:
config: stream configuration as read by ait.config
Returns:
stream: a Stream
Raises:
ValueError: if any of the required config values are missing
|
codesearchnet
|
def translate_item_ids(self, item_ids, language, is_nested=None):
if (is_nested is None):
def is_nested_fun(x):
return True
elif isinstance(is_nested, bool):
def is_nested_fun(x):
return is_nested
else:
is_nested_fun = is_nested
all_item_type_ids = ItemType.objects.get_all_item_type_ids()
groupped = proso.list.group_by(item_ids, by=(lambda item_id: all_item_type_ids[item_id]))
result = {}
for (item_type_id, items) in groupped.items():
with timeit('translating item type {}'.format(item_type_id)):
item_type = ItemType.objects.get_all_types()[item_type_id]
model = ItemType.objects.get_model(item_type_id)
kwargs = {'{}__in'.format(item_type['foreign_key']): items}
if ('language' in item_type):
kwargs[item_type['language']] = language
if (any([(not is_nested_fun(item_id)) for item_id in items]) and hasattr(model.objects, 'prepare_related')):
objs = model.objects.prepare_related()
elif hasattr(model.objects, 'prepare'):
objs = model.objects.prepare()
else:
objs = model.objects
for obj in objs.filter(**kwargs):
item_id = getattr(obj, item_type['foreign_key'])
result[item_id] = obj.to_json(nested=is_nested_fun(item_id))
return result
|
Translate a list of item ids to JSON objects which reference them.
Args:
item_ids (list[int]): item ids
language (str): language used for further filtering (some objects
for different languages share the same item)
is_nested (function): mapping from item ids to booleans, where the
boolean value indicates whether the item is nested
Returns:
dict: item id -> JSON object
|
codesearchnet
|
def get_pkg_module_names(package_path):
module_names = set()
for fobj, modname, _ in pkgutil.iter_modules(path=[package_path]):
filename = os.path.join(fobj.path, '%s.py' % modname)
if os.path.exists(filename):
module_names.add(os.path.abspath(filename))
return module_names
|
Returns module filenames from package.
Args:
package_path: Path to Python package.
Returns:
A set of module filenames.
|
juraj-google-style
|
def get_attributes(path):
if (not os.path.exists(path)):
raise CommandExecutionError('Path not found: {0}'.format(path))
attributes = {}
intAttributes = win32file.GetFileAttributes(path)
attributes['archive'] = ((intAttributes & 32) == 32)
attributes['reparsePoint'] = ((intAttributes & 1024) == 1024)
attributes['compressed'] = ((intAttributes & 2048) == 2048)
attributes['directory'] = ((intAttributes & 16) == 16)
attributes['encrypted'] = ((intAttributes & 16384) == 16384)
attributes['hidden'] = ((intAttributes & 2) == 2)
attributes['normal'] = ((intAttributes & 128) == 128)
attributes['notIndexed'] = ((intAttributes & 8192) == 8192)
attributes['offline'] = ((intAttributes & 4096) == 4096)
attributes['readonly'] = ((intAttributes & 1) == 1)
attributes['system'] = ((intAttributes & 4) == 4)
attributes['temporary'] = ((intAttributes & 256) == 256)
attributes['mountedVolume'] = False
if ((attributes['reparsePoint'] is True) and (attributes['directory'] is True)):
fileIterator = win32file.FindFilesIterator(path)
findDataTuple = next(fileIterator)
if (findDataTuple[6] == 2684354563):
attributes['mountedVolume'] = True
attributes['symbolicLink'] = False
if (attributes['reparsePoint'] is True):
fileIterator = win32file.FindFilesIterator(path)
findDataTuple = next(fileIterator)
if (findDataTuple[6] == 2684354572):
attributes['symbolicLink'] = True
return attributes
|
Return a dictionary object with the Windows
file attributes for a file.
Args:
path (str): The path to the file or directory
Returns:
dict: A dictionary of file attributes
CLI Example:
.. code-block:: bash
salt '*' file.get_attributes c:\\temp\\a.txt
|
codesearchnet
|
def Matches(self, file_entry, search_depth):
if self._location_segments is None:
location_match = None
else:
location_match = self._CheckLocation(file_entry, search_depth)
if not location_match:
return False, location_match
if search_depth != self._number_of_location_segments:
return False, location_match
match = self._CheckFileEntryType(file_entry)
if match is not None and not match:
return False, location_match
match = self._CheckIsAllocated(file_entry)
if match is not None and not match:
return False, location_match
return True, location_match
|
Determines if the file entry matches the find specification.
Args:
file_entry (FileEntry): file entry.
search_depth (int): number of location path segments to compare.
Returns:
tuple: contains:
bool: True if the file entry matches the find specification, False
otherwise.
bool: True if the location matches, False if not or None if no location
specified.
|
juraj-google-style
|
def __init__(self, profile_datum):
self.total_op_time = profile_datum.op_time
self.total_exec_time = profile_datum.exec_time
device_and_node = '%s:%s' % (profile_datum.device_name, profile_datum.node_exec_stats.node_name)
self._node_to_exec_count = {device_and_node: 1}
|
Constructor.
Args:
profile_datum: (`ProfileDatum`) an instance of `ProfileDatum` to
initialize this object with.
|
github-repos
|
def load_gene(ensembl, gene_id, de_novos=[]):
transcripts = minimise_transcripts(ensembl, gene_id, de_novos)
genes = []
for transcript_id in transcripts:
gene = construct_gene_object(ensembl, transcript_id)
genes.append(gene)
if len(genes) == 0:
raise IndexError("{0}: no suitable transcripts".format(gene_id))
return genes
|
sort out all the necessary sequences and positions for a gene
Args:
ensembl: EnsemblRequest object to request data from ensembl
gene_id: HGNC symbol for gene
de_novos: list of de novo positions, so we can check they all fit in
the gene transcript
Returns:
list of Transcript objects for gene, including genomic ranges and sequences
|
juraj-google-style
|
def mkdir(path, mode=511, dir_fd=None):
system = get_instance(path)
relative = system.relpath(path)
parent_dir = dirname(relative.rstrip('/'))
if parent_dir:
parent = ((path.rsplit(relative, 1)[0] + parent_dir) + '/')
if (not system.isdir(parent)):
raise ObjectNotFoundError(("No such file or directory: '%s'" % parent))
if system.isdir(system.ensure_dir_path(path)):
raise ObjectExistsError(("File exists: '%s'" % path))
system.make_dir(relative, relative=True)
|
Create a directory named path with numeric mode mode.
Equivalent to "os.mkdir".
Args:
path (path-like object): Path or URL.
mode (int): The mode parameter is passed to os.mkdir();
see the os.mkdir() description for how it is interpreted.
Not supported on cloud storage objects.
dir_fd: directory descriptors;
see the os.remove() description for how it is interpreted.
Not supported on cloud storage objects.
Raises:
FileExistsError : Directory already exists.
FileNotFoundError: Parent directory not exists.
|
codesearchnet
|
def remove_backup(name):
if (name not in list_backups()):
log.debug('Backup already removed: %s', name)
return True
ps_cmd = ['Remove-WebConfigurationBackup', '-Name', "'{0}'".format(name)]
cmd_ret = _srvmgr(ps_cmd)
if (cmd_ret['retcode'] != 0):
msg = 'Unable to remove web configuration: {0}\nError: {1}'.format(name, cmd_ret['stderr'])
raise CommandExecutionError(msg)
return (name not in list_backups())
|
Remove an IIS Configuration backup from the System.
.. versionadded:: 2017.7.0
Args:
name (str): The name of the backup to remove
Returns:
bool: True if successful, otherwise False
CLI Example:
.. code-block:: bash
salt '*' win_iis.remove_backup backup_20170209
|
codesearchnet
|
def get_password(request, mapping) -> None:
LOGGER.debug('Received request "%s"', request)
if 'host' not in request:
LOGGER.error('host= entry missing in request. '
'Cannot query without a host')
return
host = request['host']
if 'path' in request:
host = '/'.join([host, request['path']])
def skip(line, skip):
return line[skip:]
LOGGER.debug('Iterating mapping to match against host "%s"', host)
for section in mapping.sections():
if fnmatch.fnmatch(host, section):
LOGGER.debug('Section "%s" matches requested host "%s"',
section, host)
pass_target = mapping.get(section, 'target').replace(
"${host}", request['host'])
password_extractor = SpecificLineExtractor(
0, 0, option_suffix='_password')
password_extractor.configure(mapping[section])
username_extractor = _username_extractors[mapping[section].get(
'username_extractor', fallback=_line_extractor_name)]
username_extractor.configure(mapping[section])
LOGGER.debug('Requesting entry "%s" from pass', pass_target)
output = subprocess.check_output(
['pass', 'show', pass_target]).decode('utf-8')
lines = output.splitlines()
password = password_extractor.get_value(pass_target, lines)
username = username_extractor.get_value(pass_target, lines)
if password:
print('password={password}'.format(
password=password))
if 'username' not in request and username:
print('username={username}'.format(
username=username))
return
LOGGER.warning('No mapping matched')
sys.exit(1)
|
Resolve the given credential request in the provided mapping definition.
The result is printed automatically.
Args:
request:
The credential request specified as a dict of key-value pairs.
mapping:
The mapping configuration as a ConfigParser instance.
|
juraj-google-style
|
def _build_system_message(self, error: str) -> LogMessage:
return self._base_log.copy() | LogMessage(log_type=LogType.SYSTEM.value, error=error)
|
Adds system error information to base log message.
Args:
* error: error that occurred
Returns:
* Log: dictionary containing log data
|
github-repos
|
def find_runner(program):
if (os.path.isfile(program) and (not os.access(program, os.X_OK))):
try:
opened = open(program)
except PermissionError:
return None
first_line = opened.readline().strip()
if first_line.startswith('
return shlex.split(first_line[2:])
if program.endswith('.py'):
return [sys.executable]
return None
|
Return a command that will run program.
Args:
program: The string name of the program to try to run.
Returns:
commandline list of strings to run the program (eg. with subprocess.call()) or None
|
codesearchnet
|
def purity(labels, true_labels):
purity = 0.0
for i in set(labels):
indices = (labels == i)
true_clusters = true_labels[indices]
if (len(true_clusters) == 0):
continue
counts = Counter(true_clusters)
(lab, count) = counts.most_common()[0]
purity += count
return (float(purity) / len(labels))
|
Calculates the purity score for the given labels.
Args:
labels (array): 1D array of integers
true_labels (array): 1D array of integers - true labels
Returns:
purity score - a float bewteen 0 and 1. Closer to 1 is better.
|
codesearchnet
|
def cut_sphere(
self,
radius=15.,
origin=None,
outside_sliced=True,
preserve_bonds=False):
if origin is None:
origin = np.zeros(3)
elif pd.api.types.is_list_like(origin):
origin = np.array(origin, dtype='f8')
else:
origin = self.loc[origin, ['x', 'y', 'z']]
molecule = self.get_distance_to(origin)
if outside_sliced:
molecule = molecule[molecule['distance'] < radius]
else:
molecule = molecule[molecule['distance'] > radius]
if preserve_bonds:
molecule = self._preserve_bonds(molecule)
return molecule
|
Cut a sphere specified by origin and radius.
Args:
radius (float):
origin (list): Please note that you can also pass an
integer. In this case it is interpreted as the
index of the atom which is taken as origin.
outside_sliced (bool): Atoms outside/inside the sphere
are cut out.
preserve_bonds (bool): Do not cut covalent bonds.
Returns:
Cartesian:
|
juraj-google-style
|
def to(self, jid: str):
if ((jid is not None) and (not isinstance(jid, str))):
raise TypeError("'to' MUST be a string")
self._to = (aioxmpp.JID.fromstr(jid) if (jid is not None) else None)
|
Set jid of the receiver.
Args:
jid (str): the jid of the receiver.
|
codesearchnet
|
def _setup_logger(self, logging_level: int, log_to_console: bool):
self.logger = logging.getLogger('discord')
self.logger.handlers = []
self.logger.setLevel(logging_level)
formatter = logging.Formatter(style='{', fmt='{asctime} [{levelname}] {message}', datefmt='%Y-%m-%d %H:%M:%S')
file_handler = logging.FileHandler('pycord.log')
file_handler.setFormatter(formatter)
file_handler.setLevel(logging_level)
self.logger.addHandler(file_handler)
if log_to_console:
stream_handler = logging.StreamHandler(sys.stdout)
stream_handler.setFormatter(formatter)
stream_handler.setLevel(logging_level)
self.logger.addHandler(stream_handler)
|
Sets up the internal logger
Args:
logging_level: what logging level to use
log_to_console: whether or not to log to the console
|
juraj-google-style
|
def _frame_advance(self, action):
self.controllers[0][:] = action
_LIB.Step(self._env)
|
Advance a frame in the emulator with an action.
Args:
action (byte): the action to press on the joy-pad
Returns:
None
|
codesearchnet
|
def _scale_tensor(tensor, range_min, range_max, scale_min, scale_max):
if range_min == range_max:
return tensor
float_tensor = tf.to_float(tensor)
scaled_tensor = tf.divide((tf.subtract(float_tensor, range_min) *
tf.constant(float(scale_max - scale_min))),
tf.constant(float(range_max - range_min)))
shifted_tensor = scaled_tensor + tf.constant(float(scale_min))
return shifted_tensor
|
Scale a tensor to scale_min to scale_max.
Args:
tensor: input tensor. Should be a numerical tensor.
range_min: min expected value for this feature/tensor.
range_max: max expected Value.
scale_min: new expected min value.
scale_max: new expected max value.
Returns:
scaled tensor.
|
juraj-google-style
|
def __init__(self, names=None):
if not names:
raise errors.FormatError('Missing names value.')
super(ArtifactGroupSourceType, self).__init__()
self.names = names
|
Initializes a source type.
Args:
names (Optional[str]): artifact definition names.
Raises:
FormatError: when artifact names is not set.
|
juraj-google-style
|
def __call__(self, match_quality_matrix):
assert match_quality_matrix.dim() == 2
if match_quality_matrix.numel() == 0:
default_matches = match_quality_matrix.new_full((match_quality_matrix.size(1),), 0, dtype=torch.int64)
default_match_labels = match_quality_matrix.new_full((match_quality_matrix.size(1),), self.labels[0], dtype=torch.int8)
return (default_matches, default_match_labels)
assert torch.all(match_quality_matrix >= 0)
matched_vals, matches = match_quality_matrix.max(dim=0)
match_labels = matches.new_full(matches.size(), 1, dtype=torch.int8)
for l, low, high in zip(self.labels, self.thresholds[:-1], self.thresholds[1:]):
low_high = (matched_vals >= low) & (matched_vals < high)
match_labels[low_high] = l
if self.allow_low_quality_matches:
self.set_low_quality_matches_(match_labels, match_quality_matrix)
return (matches, match_labels)
|
Args:
match_quality_matrix (Tensor[float]): an MxN tensor, containing the
pairwise quality between M ground-truth elements and N predicted elements. All elements must be >= 0
(due to the us of `torch.nonzero` for selecting indices in `set_low_quality_matches_`).
Returns:
matches (Tensor[int64]): a vector of length N, where matches[i] is a matched
ground-truth index in [0, M)
match_labels (Tensor[int8]): a vector of length N, where pred_labels[i] indicates
whether a prediction is a true or false positive or ignored
|
github-repos
|
def case_mme_delete(self, case_obj, user_obj):
institute_obj = self.institute(case_obj['owner'])
for individual in case_obj['individuals']:
if individual['phenotype'] == 2:
self.create_event(institute=institute_obj, case=case_obj, user=user_obj,
link='', category='case', verb='mme_remove', subject=individual['display_name'],
level='specific')
case_obj['mme_submission'] = None
updated_case = self.update_case(case_obj)
return updated_case
|
Delete a MatchMaker submission from a case record
and creates the related event.
Args:
case_obj(dict): a scout case object
user_obj(dict): a scout user object
Returns:
updated_case(dict): the updated scout case
|
juraj-google-style
|
def _GetMaps(name, commands, default_options):
global_options = copy.copy(default_options)
options_map = collections.defaultdict(lambda: copy.copy(default_options))
subcommands_map = collections.defaultdict(set)
for command in commands:
if len(command) == 1:
if _IsOption(command[0]):
global_options.add(command[0])
else:
subcommands_map[name].add(command[0])
elif command:
subcommand = command[-2]
arg = _FormatForCommand(command[-1])
if _IsOption(arg):
args_map = options_map
else:
args_map = subcommands_map
args_map[subcommand].add(arg)
args_map[subcommand.replace('_', '-')].add(arg)
return (global_options, options_map, subcommands_map)
|
Returns sets of subcommands and options for each command.
Args:
name: The first token in the commands, also the name of the command.
commands: A list of all possible commands that tab completion can complete
to. Each command is a list or tuple of the string tokens that make up
that command.
default_options: A dict of options that can be used with any command. Use
this if there are flags that can always be appended to a command.
Returns:
global_options: A set of all options of the first token of the command.
subcommands_map: A dict storing set of subcommands for each
command/subcommand.
options_map: A dict storing set of options for each subcommand.
|
github-repos
|
def get_content_type(content_type):
m = email.message.Message()
m['Content-Type'] = content_type
return m.get_content_type()
|
Extract the MIME type value from a content type string.
Removes any subtype and parameter values that may be present in the string.
Args:
content_type: str
String with content type and optional subtype and parameter fields.
Returns:
str: String with only content type
Example:
::
Input: multipart/form-data; boundary=aBoundaryString
Returns: multipart/form-data
|
codesearchnet
|
def from_data(cls, data):
obj = cls()
with contextlib.closing(BytesIO(data)) as file_handle:
obj.load_file(file_handle)
return obj
|
Load an FCS file from a bytes-like object.
Args:
data: buffer containing contents of an FCS file.
Returns:
FCSParser instance with data loaded
|
juraj-google-style
|
def update_one_time_key_counts(self, counts):
self.one_time_keys_manager.server_counts = counts
if self.one_time_keys_manager.should_upload():
logger.info('Uploading new one-time keys.')
self.upload_one_time_keys()
|
Update data on one-time keys count and upload new ones if necessary.
Args:
counts (dict): Counts of keys currently on the HS for each key type.
|
codesearchnet
|
def __init__(self, batch_size: int, ngram_len: int, context_history_size: int, device: torch.device):
self.context = torch.zeros((batch_size, ngram_len - 1), dtype=torch.int64, device=device)
self.context_history = torch.zeros((batch_size, context_history_size), dtype=torch.int64, device=device)
self.num_calls = 0
|
Initializes the state.
Args:
batch_size (`int`): Batch size.
ngram_len (`int`): Ngram length.
context_history_size (`int`): Size of the tensor to keep track of seen contexts.
device (`int`): Device to use.
|
github-repos
|
def plot_correlation(self, freq=None, title=None,
figsize=(12, 6), **kwargs):
if title is None:
title = self._get_default_plot_title(
freq, 'Return Correlation Matrix')
rets = self._get_series(freq).to_returns().dropna()
return rets.plot_corr_heatmap(title=title, figsize=figsize, **kwargs)
|
Utility function to plot correlations.
Args:
* freq (str): Pandas data frequency alias string
* title (str): Plot title
* figsize (tuple (x,y)): figure size
* kwargs: passed to Pandas' plot_corr_heatmap function
|
juraj-google-style
|
def _greedy_infer(self, features, decode_length, use_tpu=False):
if use_tpu:
return self._slow_greedy_infer_tpu(features, decode_length)
return self._slow_greedy_infer(features, decode_length)
|
A greedy inference method.
Models should ideally implement a more efficient version of this function.
Args:
features: an map of string to `Tensor`
decode_length: an integer. How many additional timesteps to decode.
use_tpu: A bool, whether to build the inference graph for TPU.
Returns:
A dict of decoding results {
"outputs": integer `Tensor` of decoded ids of shape
[batch_size, <= decode_length] if beam_size == 1 or
[batch_size, top_beams, <= decode_length]
"scores": None
"logits": `Tensor` of shape [batch_size, time, 1, 1, vocab_size].
"losses": a dictionary: {loss-name (string): floating point `Scalar`}
}
|
codesearchnet
|
def test_moment_matching(samples, number_moments, dist, stride=0):
sample_moments = []
expected_moments = []
variance_sample_moments = []
for i in range(1, number_moments + 1):
if len(samples.shape) == 2:
strided_range = samples.flat[::(i - 1) * stride + 1]
else:
strided_range = samples[::(i - 1) * stride + 1, ...]
sample_moments.append(np.mean(strided_range ** i, axis=0))
expected_moments.append(dist.moment(i))
variance_sample_moments.append((dist.moment(2 * i) - dist.moment(i) ** 2) / len(strided_range))
z_test_scores = []
for i in range(1, number_moments + 1):
total_variance = variance_sample_moments[i - 1] + i * np.finfo(samples.dtype).eps
tiny = np.finfo(samples.dtype).tiny
assert np.all(total_variance > 0)
total_variance = np.where(total_variance < tiny, tiny, total_variance)
z_test_scores.append(abs((sample_moments[i - 1] - expected_moments[i - 1]) / np.sqrt(total_variance)))
return z_test_scores
|
Return z-test scores for sample moments to match analytic moments.
Given `samples`, check that the first sample `number_moments` match
the given `dist` moments by doing a z-test.
Args:
samples: Samples from target distribution.
number_moments: Python `int` describing how many sample moments to check.
dist: SciPy distribution object that provides analytic moments.
stride: Distance between samples to check for statistical properties.
A stride of 0 means to use all samples, while other strides test for
spatial correlation.
Returns:
Array of z_test scores.
|
github-repos
|
def ListAttrs(cls):
precondition.AssertType(cls, type)
if PY2:
return [item.decode('ascii') for item in dir(cls)]
else:
return dir(cls)
|
A compatibility wrapper for listing class attributes.
This method solves similar Python 2 compatibility issues for `dir` function as
`GetName` does for `__name__` invocations. See documentation for `GetName` for
more details.
Once support for Python 2 is dropped all invocations of this function should
be replaced with ordinary `dir` calls.
Args:
cls: A class object to list the attributes for.
Returns:
A list of attribute names as unicode strings.
|
codesearchnet
|
def parse_statement(self, statement, orig_contents):
children = []
is_block = False
name = statement.getName()
if (name == 'block'):
children_statements = statement[1]
for child in children_statements:
parsed = self.parse_statement(child, orig_contents=orig_contents)
children.append(parsed)
locn = statement[0]['location']
statement = statement[0][1]
name = statement.getName()
is_block = True
else:
stmt_language = get_statement()
locn = statement['location']
statement = statement['match']
statement_string = str(u''.join(statement.asList()))
try:
statement = stmt_language.parseString(statement_string)[0]
except (pyparsing.ParseException, pyparsing.ParseSyntaxException) as exc:
raise SensorGraphSyntaxError('Error parsing statement in sensor graph file', message=exc.msg, line=pyparsing.line(locn, orig_contents).strip(), line_number=pyparsing.lineno(locn, orig_contents), column=pyparsing.col(locn, orig_contents))
except SensorGraphSemanticError as exc:
raise SensorGraphSemanticError(exc.msg, line=pyparsing.line(locn, orig_contents).strip(), line_number=pyparsing.lineno(locn, orig_contents), **exc.params)
name = statement.getName()
if (name not in statement_map):
raise ArgumentError('Unknown statement in sensor graph file', parsed_statement=statement, name=name)
line = pyparsing.line(locn, orig_contents).strip()
line_number = pyparsing.lineno(locn, orig_contents)
column = pyparsing.col(locn, orig_contents)
location_info = LocationInfo(line, line_number, column)
if is_block:
return statement_map[name](statement, children=children, location=location_info)
return statement_map[name](statement, location_info)
|
Parse a statement, possibly called recursively.
Args:
statement (int, ParseResult): The pyparsing parse result that
contains one statement prepended with the match location
orig_contents (str): The original contents of the file that we're
parsing in case we need to convert an index into a line, column
pair.
Returns:
SensorGraphStatement: The parsed statement.
|
codesearchnet
|
def bit_flip(p: Optional[float]=None) -> Union[(common_gates.XPowGate, BitFlipChannel)]:
if (p is None):
return pauli_gates.X
return _bit_flip(p)
|
r"""
Construct a BitFlipChannel that flips a qubit state
with probability of a flip given by p. If p is None, return
a guaranteed flip in the form of an X operation.
This channel evolves a density matrix via
$$
\rho \rightarrow M_0 \rho M_0^\dagger + M_1 \rho M_1^\dagger
$$
With
$$
\begin{aligned}
M_0 =& \sqrt{p} \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\\
M_1 =& \sqrt{1-p} \begin{bmatrix}
0 & 1 \\
1 & -0
\end{bmatrix}
\end{aligned}
$$
Args:
p: the probability of a bit flip.
Raises:
ValueError: if p is not a valid probability.
|
codesearchnet
|
def _parse_graph(self):
if self.exists:
self.rdf.graph = self.repo.api.parse_rdf_payload(self.rdf.data, self.headers)
else:
self.rdf.graph = rdflib.Graph()
self.rdf.namespace_manager = rdflib.namespace.NamespaceManager(self.rdf.graph)
for (ns_prefix, ns_uri) in self.rdf.prefixes.__dict__.items():
self.rdf.namespace_manager.bind(ns_prefix, ns_uri, override=False)
for (ns_prefix, ns_uri) in self.rdf.graph.namespaces():
setattr(self.rdf.prefixes, ns_prefix, rdflib.Namespace(ns_uri))
setattr(self.rdf.uris, rdflib.Namespace(ns_uri), ns_prefix)
self.rdf._orig_graph = copy.deepcopy(self.rdf.graph)
self.parse_object_like_triples()
|
use Content-Type from headers to determine parsing method
Args:
None
Return:
None: sets self.rdf by parsing data from GET request, or setting blank graph of resource does not yet exist
|
codesearchnet
|
def parse_panel_app_gene(app_gene, hgnc_map):
gene_info = {}
confidence_level = app_gene['LevelOfConfidence']
if not confidence_level == 'HighEvidence':
return gene_info
hgnc_symbol = app_gene['GeneSymbol']
hgnc_ids = get_correct_ids(hgnc_symbol, hgnc_map)
if not hgnc_ids:
LOG.warning("Gene %s does not exist in database. Skipping gene...", hgnc_symbol)
return gene_info
if len(hgnc_ids) > 1:
LOG.warning("Gene %s has unclear identifier. Choose random id", hgnc_symbol)
gene_info['hgnc_symbol'] = hgnc_symbol
for hgnc_id in hgnc_ids:
gene_info['hgnc_id'] = hgnc_id
gene_info['reduced_penetrance'] = INCOMPLETE_PENETRANCE_MAP.get(app_gene['Penetrance'])
inheritance_models = []
for model in MODELS_MAP.get(app_gene['ModeOfInheritance'],[]):
inheritance_models.append(model)
gene_info['inheritance_models'] = inheritance_models
return gene_info
|
Parse a panel app formated gene
Args:
app_gene(dict): Dict with panel app info
hgnc_map(dict): Map from hgnc_symbol to hgnc_id
Returns:
gene_info(dict): Scout infromation
|
juraj-google-style
|
def index_normalize(index_val):
index_val = index_val.lower().strip()
index_val = re.sub('^\\W*', '', index_val)
index_val = re.sub('\\W*$', '', index_val)
index_val = re.sub('\\W+', '_', index_val)
index_val = re.sub('_+', '_', index_val)
return index_val
|
Normalize dictionary calculated key
When parsing, keys within a dictionary may come from the input text. To ensure there is no
space or other special caracters, one should use this function. This is useful because
DictExt dictionaries can be access with a dotted notation that only supports ``A-Za-z0-9_`` chars.
Args:
index_val (str): The candidate string to a dictionary key.
Returns:
str: A normalized string with only ``A-Za-z0-9_`` chars
Examples:
>>> index_normalize('this my key')
'this_my_key'
>>> index_normalize('this -my- %key%')
'this_my_key'
|
codesearchnet
|
def decode_csv(csv_string, column_names):
import csv
r = next(csv.reader([csv_string]))
if (len(r) != len(column_names)):
raise ValueError(('csv line %s does not have %d columns' % (csv_string, len(column_names))))
return {k: v for (k, v) in zip(column_names, r)}
|
Parse a csv line into a dict.
Args:
csv_string: a csv string. May contain missing values "a,,c"
column_names: list of column names
Returns:
Dict of {column_name, value_from_csv}. If there are missing values,
value_from_csv will be ''.
|
codesearchnet
|
def assignee(self, main_type, sub_type, unique_id, assignee_id, action='ADD', params=None):
params = params or {}
url = '/v2/{}/{}/{}/assignees/{}'.format(main_type, sub_type, unique_id, assignee_id)
if action == 'GET':
return self.tcex.session.get(url, params=params)
if action == 'DELETE':
return self.tcex.session.delete(url)
if action == 'ADD':
return self.tcex.session.post(url)
return None
|
Args:
main_type:
sub_type:
unique_id:
assignee_id:
action:
params:
Return:
|
juraj-google-style
|
def read_from_text(path: str):
return beam_io.ReadFromText(path) | beam.Map(lambda s: beam.Row(line=s))
|
Reads lines from a text files.
The resulting PCollection consists of rows with a single string field named
"line."
Args:
path (str): The file path to read from. The path can contain glob
characters such as ``*`` and ``?``.
|
github-repos
|
def _get_query_params(self):
result = {}
if (self.next_page_token is not None):
result[self._PAGE_TOKEN] = self.next_page_token
if (self.max_results is not None):
result[self._MAX_RESULTS] = (self.max_results - self.num_results)
result.update(self.extra_params)
return result
|
Getter for query parameters for the next request.
Returns:
dict: A dictionary of query parameters.
|
codesearchnet
|
def _PathStripPrefix(self, path):
if path.startswith('\\\\.\\') or path.startswith('\\\\?\\'):
if len(path) < 7 or path[5] != ':' or path[6] != self._PATH_SEPARATOR:
return None
path = path[7:]
elif path.startswith('\\\\'):
return None
elif len(path) >= 3 and path[1] == ':':
if path[2] != self._PATH_SEPARATOR:
return None
path = path[3:]
elif path.startswith('\\'):
path = path[1:]
else:
return None
return path
|
Strips the prefix from a path.
Args:
path (str): Windows path to strip the prefix from.
Returns:
str: path without the prefix or None if the path is not supported.
|
juraj-google-style
|
def from_directory(input_dir, optional_files=None):
sub_d = {}
for (fname, ftype) in [('INCAR', Incar), ('KPOINTS', Kpoints), ('POSCAR', Poscar), ('POTCAR', Potcar)]:
fullzpath = zpath(os.path.join(input_dir, fname))
sub_d[fname.lower()] = ftype.from_file(fullzpath)
sub_d['optional_files'] = {}
if (optional_files is not None):
for (fname, ftype) in optional_files.items():
sub_d['optional_files'][fname] = ftype.from_file(os.path.join(input_dir, fname))
return VaspInput(**sub_d)
|
Read in a set of VASP input from a directory. Note that only the
standard INCAR, POSCAR, POTCAR and KPOINTS files are read unless
optional_filenames is specified.
Args:
input_dir (str): Directory to read VASP input from.
optional_files (dict): Optional files to read in as well as a
dict of {filename: Object type}. Object type must have a
static method from_file.
|
codesearchnet
|
def convert(self):
if not self._has_valid_tensors():
if not self._input_arrays_with_shape or not (self._output_arrays or self._control_output_arrays):
raise ValueError('If input_tensors and output_tensors are None, both input_arrays_with_shape and output_arrays|control_output_arrays must be defined.')
return super(TFLiteFrozenGraphConverter, self).convert()
|
Converts a TensorFlow GraphDef based on instance variables.
Returns:
The converted data in serialized format, either a TFLite Flatbuffer or
a Graphviz graph depending on value in `output_format`.
Raises:
ValueError:
Input shape is not specified.
None value for dimension in input_tensor.
|
github-repos
|
def add_tensor_summary(x, types, name=None, collections=None, main_tower_only=True):
types = set(types)
if (name is None):
name = x.op.name
ctx = get_current_tower_context()
if (main_tower_only and (ctx is not None) and (not ctx.is_main_training_tower)):
return
SUMMARY_TYPES_DIC = {'scalar': (lambda : tf.summary.scalar((name + '-summary'), x, collections=collections)), 'histogram': (lambda : tf.summary.histogram((name + '-histogram'), x, collections=collections)), 'sparsity': (lambda : tf.summary.scalar((name + '-sparsity'), tf.nn.zero_fraction(x), collections=collections)), 'mean': (lambda : tf.summary.scalar((name + '-mean'), tf.reduce_mean(x), collections=collections)), 'rms': (lambda : tf.summary.scalar((name + '-rms'), rms(x), collections=collections))}
for typ in types:
SUMMARY_TYPES_DIC[typ]()
|
Summarize a tensor by different methods.
Args:
x (tf.Tensor): a tensor to summarize
types (list[str]): summary types, can be scalar/histogram/sparsity/mean/rms
name (str): summary name. Defaults to be the op name.
collections (list[str]): collections of the summary ops.
main_tower_only (bool): Only run under main training tower. If
set to True, calling this function under other TowerContext
has no effect.
Example:
.. code-block:: python
with tf.name_scope('mysummaries'): # to not mess up tensorboard
add_tensor_summary(
tensor, ['histogram', 'rms', 'sparsity'], name='mytensor')
|
codesearchnet
|
def GetEventTaggingRules(self):
tagging_rules = {}
label_name = None
with io.open(self._path, 'r', encoding='utf-8') as tagging_file:
for line in tagging_file.readlines():
line = line.rstrip()
stripped_line = line.lstrip()
if ((not stripped_line) or (stripped_line[0] == '
continue
if (not line[0].isspace()):
label_name = line
tagging_rules[label_name] = []
continue
if (not label_name):
continue
filter_object = event_filter.EventObjectFilter()
try:
filter_object.CompileFilter(stripped_line)
except errors.ParseError as exception:
raise errors.TaggingFileError('Unable to compile filter for label: {0:s} with error: {1!s}'.format(label_name, exception))
if (filter_object not in tagging_rules[label_name]):
tagging_rules[label_name].append(filter_object)
return tagging_rules
|
Retrieves the event tagging rules from the tagging file.
Returns:
dict[str, FilterObject]: tagging rules, that consists of one or more
filter objects per label.
Raises:
TaggingFileError: if a filter expression cannot be compiled.
|
codesearchnet
|
def parse_query_param(url, param):
try:
return parse.parse_qs(parse.urlparse(url).query)[param][0]
except:
return None
|
Parses the query string of a URL and returns the value of a parameter.
Args:
url: A URL.
param: A string representing the name of the parameter.
Returns:
The value of the parameter.
|
juraj-google-style
|
def augpath(path, augsuf='', augext='', augpref='', augdir=None, newext=None, newfname=None, ensure=False, prefix=None, suffix=None):
if (prefix is not None):
augpref = prefix
if (suffix is not None):
augsuf = suffix
(dpath, fname) = split(path)
(fname_noext, ext) = splitext(fname)
if (newfname is not None):
fname_noext = newfname
if (newext is None):
newext = ext
new_fname = ''.join((augpref, fname_noext, augsuf, newext, augext))
if (augdir is not None):
new_dpath = join(dpath, augdir)
if ensure:
ensuredir(new_dpath)
else:
new_dpath = dpath
newpath = join(new_dpath, new_fname)
return newpath
|
augments end of path before the extension.
augpath
Args:
path (str):
augsuf (str): augment filename before extension
Returns:
str: newpath
Example:
>>> # DISABLE_DOCTEST
>>> from utool.util_path import * # NOQA
>>> path = 'somefile.txt'
>>> augsuf = '_aug'
>>> newpath = augpath(path, augsuf)
>>> result = str(newpath)
>>> print(result)
somefile_aug.txt
Example:
>>> # DISABLE_DOCTEST
>>> from utool.util_path import * # NOQA
>>> path = 'somefile.txt'
>>> augsuf = '_aug2'
>>> newext = '.bak'
>>> augdir = 'backup'
>>> newpath = augpath(path, augsuf, newext=newext, augdir=augdir)
>>> result = str(newpath)
>>> print(result)
backup/somefile_aug2.bak
|
codesearchnet
|
def add_option(self, section, name, value):
if self._is_live():
raise RuntimeError('Submitted units cannot update their options')
option = {
'section': section,
'name': name,
'value': value
}
self._data['options'].append(option)
return True
|
Add an option to a section of the unit file
Args:
section (str): The name of the section, If it doesn't exist it will be created
name (str): The name of the option to add
value (str): The value of the option
Returns:
True: The item was added
|
juraj-google-style
|
def get_metadata(self, entity_type, entity_id):
if (not is_valid_uuid(entity_id)):
raise StorageArgumentException('Invalid UUID for entity_id: {0}'.format(entity_id))
return self._authenticated_request.to_endpoint('{}/{}/metadata/'.format(entity_type, entity_id)).return_body().get()
|
Get metadata of an entity.
Args:
entity_type (str): Type of the entity. Admitted values: ['project',
'folder', 'file'].
entity_id (str): The UUID of the entity to be modified.
Returns:
A dictionary of the metadata::
{
u'bar': u'200',
u'foo': u'100'
}
Raises:
StorageArgumentException: Invalid arguments
StorageForbiddenException: Server response code 403
StorageNotFoundException: Server response code 404
StorageException: other 400-600 error codes
|
codesearchnet
|
def infer_annotation(type_comments):
assert type_comments
args = {}
returns = set()
for comment in type_comments:
(arg_types, return_type) = parse_type_comment(comment)
for (i, arg_type) in enumerate(arg_types):
args.setdefault(i, set()).add(arg_type)
returns.add(return_type)
combined_args = []
for i in sorted(args):
arg_infos = list(args[i])
kind = argument_kind(arg_infos)
if (kind is None):
raise InferError(('Ambiguous argument kinds:\n' + '\n'.join(type_comments)))
types = [arg.type for arg in arg_infos]
combined = combine_types(types)
if (str(combined) == 'None'):
combined = UnionType([ClassType('None'), AnyType()])
if ((kind != ARG_POS) and ((len(str(combined)) > 120) or isinstance(combined, UnionType))):
combined = AnyType()
combined_args.append(Argument(combined, kind))
combined_return = combine_types(returns)
return (combined_args, combined_return)
|
Given some type comments, return a single inferred signature.
Args:
type_comments: Strings of form '(arg1, ... argN) -> ret'
Returns: Tuple of (argument types and kinds, return type).
|
codesearchnet
|
def sagemaker_auth(overrides={}, path="."):
api_key = overrides.get(env.API_KEY, Api().api_key)
if api_key is None:
raise ValueError(
"Can't find W&B ApiKey, set the WANDB_API_KEY env variable or run `wandb login`")
overrides[env.API_KEY] = api_key
with open(os.path.join(path, "secrets.env"), "w") as file:
for k, v in six.iteritems(overrides):
file.write("{}={}\n".format(k, v))
|
Write a secrets.env file with the W&B ApiKey and any additional secrets passed.
Args:
overrides (dict, optional): Additional environment variables to write to secrets.env
path (str, optional): The path to write the secrets file.
|
juraj-google-style
|
def set_expiration(self, key, ignore_missing=False, additional_seconds=None, seconds=None):
if ((key not in self.time_dict) and ignore_missing):
return
elif ((key not in self.time_dict) and (not ignore_missing)):
raise Exception('Key missing from `TimedDict` and `ignore_missing` is False.')
if (additional_seconds is not None):
self.time_dict[key] += additional_seconds
elif (seconds is not None):
self.time_dict[key] = (time.time() + seconds)
|
Alters the expiration time for a key. If the key is not
present, then raise an Exception unless `ignore_missing`
is set to `True`.
Args:
key: The key whose expiration we are changing.
ignore_missing (bool): If set, then return silently
if the key does not exist. Default is `False`.
additional_seonds (int): Add this many seconds to the
current expiration time.
seconds (int): Expire the key this many seconds from now.
|
codesearchnet
|
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
mask = tf.cast(input_ids != padding_idx, tf.int64)
incremental_indices = (tf.cumsum(mask, axis=1) + past_key_values_length) * mask
return incremental_indices + padding_idx
|
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: tf.Tensor x:
Returns: tf.Tensor
|
github-repos
|
def _get_head_block(self, request):
if request.head_id:
if self._id_regex.fullmatch(request.head_id) is None:
LOGGER.debug('Invalid head id requested: %s', request.head_id)
raise _ResponseFailed(self._status.NO_ROOT)
try:
return self._block_store[request.head_id]
except KeyError as e:
LOGGER.debug('Unable to find block "%s" in store', e)
raise _ResponseFailed(self._status.NO_ROOT)
else:
return self._get_chain_head()
|
Fetches the request specified head block, or the chain head.
Note:
This method will fail if `_block_store` has not been set
Args:
request (object): The parsed protobuf request object
Returns:
Block: the block object at the head of the requested chain
Raises:
ResponseFailed: Failed to retrieve a head block
|
juraj-google-style
|
def atomic_observe(self, states, actions, internals, reward, terminal):
self.current_terminal = terminal
self.current_reward = reward
if self.unique_state:
states = dict(state=states)
if self.unique_action:
actions = dict(action=actions)
self.episode = self.model.atomic_observe(states=states, actions=actions, internals=internals, terminal=self.current_terminal, reward=self.current_reward)
|
Utility method for unbuffered observing where each tuple is inserted into TensorFlow via
a single session call, thus avoiding race conditions in multi-threaded mode.
Observe full experience tuplefrom the environment to learn from. Optionally pre-processes rewards
Child classes should call super to get the processed reward
EX: terminal, reward = super()...
Args:
states (any): One state (usually a value tuple) or dict of states if multiple states are expected.
actions (any): One action (usually a value tuple) or dict of states if multiple actions are expected.
internals (any): Internal list.
terminal (bool): boolean indicating if the episode terminated after the observation.
reward (float): scalar reward that resulted from executing the action.
|
codesearchnet
|
def _process_debug_graph_node(self, node):
if is_debug_node(node.name):
return
if node.name in self._node_inputs:
raise ValueError("Duplicate node name on device %s: '%s'" % (self._device_name, node.name))
self._node_attributes[node.name] = node.attr
self._node_inputs[node.name] = []
self._node_ctrl_inputs[node.name] = []
self._node_recipients[node.name] = []
self._node_ctrl_recipients[node.name] = []
if node.name not in self._node_devices:
self._node_devices[node.name] = set()
self._node_devices[node.name].add(node.device if node.device else self._device_name)
self._node_op_types[node.name] = node.op
self._ref_args[node.name] = self._get_ref_args(node)
for inp in node.input:
if is_copy_node(inp) and (node.op == '_Send' or node.op == '_Retval'):
self._copy_send_nodes.append(node.name)
if inp.startswith('^'):
cinp = inp[1:]
self._node_ctrl_inputs[node.name].append(cinp)
else:
self._node_inputs[node.name].append(inp)
|
Process a node from the debug GraphDef.
Args:
node: (NodeDef) A partition-graph node to be processed.
Raises:
ValueError: If duplicate node names are encountered.
|
github-repos
|
def get(self, id):
request_url = self._client.base_api_url + self.detail_url.format(id=id)
response = self._client.session.get(request_url)
self.validate_request_success(
response_text=response.text,
request_url=request_url,
status_code=response.status_code,
expected_status_code=HTTP_200_OK,
)
return self.response_data_to_model_instance(response.json())
|
Get the model instance with a given id.
Args:
id (int or str): The primary identifier (e.g., pk or UUID)
for the task instance to get.
Returns:
:class:`saltant.models.resource.Model`:
A :class:`saltant.models.resource.Model` subclass
instance representing the resource requested.
|
juraj-google-style
|
def merge_transformers_sharded_states(path, num_checkpoints):
state_dict = {}
for i in range(1, num_checkpoints + 1):
checkpoint_path = os.path.join(path, f'pytorch_model-{i:05d}-of-{num_checkpoints:05d}.bin')
check_torch_load_is_safe()
current_chunk = torch.load(checkpoint_path, map_location='cpu', weights_only=True)
state_dict.update(current_chunk)
return state_dict
|
Merge sharded checkpoints from transformers into a single checkpoint.
Args:
path (str): the path to the sharded checkpoints
num_checkpoints (int): the number of checkpoints to merge
|
github-repos
|
def get(self, key, default=None):
index = self._xxx_field_to_index.get(key)
if (index is None):
return default
return self._xxx_values[index]
|
Return a value for key, with a default value if it does not exist.
Args:
key (str): The key of the column to access
default (object):
The default value to use if the key does not exist. (Defaults
to :data:`None`.)
Returns:
object:
The value associated with the provided key, or a default value.
Examples:
When the key exists, the value associated with it is returned.
>>> Row(('a', 'b'), {'x': 0, 'y': 1}).get('x')
'a'
The default value is :data:`None` when the key does not exist.
>>> Row(('a', 'b'), {'x': 0, 'y': 1}).get('z')
None
The default value can be overrided with the ``default`` parameter.
>>> Row(('a', 'b'), {'x': 0, 'y': 1}).get('z', '')
''
>>> Row(('a', 'b'), {'x': 0, 'y': 1}).get('z', default = '')
''
|
codesearchnet
|
def list_files_in_directory(full_directory_path):
files = list()
for file_name in __os.listdir(full_directory_path):
if __os.path.isfile(__os.path.join(full_directory_path, file_name)):
files.append(file_name)
return files
|
List the files in a specified directory
Args:
full_directory_path: The full directory path to check, derive from the os module
Returns: returns a list of files
|
juraj-google-style
|
def cast_losses_to_common_dtype(losses):
highest_float = None
for loss in losses:
if loss.dtype.is_floating:
if highest_float is None or loss.dtype.size > highest_float.size:
highest_float = loss.dtype
elif {loss.dtype, highest_float} == {'bfloat16', 'float16'}:
highest_float = 'float32'
if loss.dtype.is_complex:
return losses
if highest_float:
losses = [math_ops.cast(loss, highest_float) for loss in losses]
return losses
|
Cast a list of losses to a common dtype.
If any loss is floating-point, they will all be casted to the most-precise
floating-point loss. Otherwise the losses are not casted. We also skip casting
losses if there are any complex losses.
Args:
losses: A list of losses.
Returns:
`losses`, but they have been casted to a common dtype.
|
github-repos
|
def add_device(self, path):
hdevice = self._libinput.libinput_path_add_device(self._li, path.encode())
if hdevice:
return Device(hdevice, self._libinput)
return None
|
Add a device to a libinput context.
If successful, the device will be added to the internal list and
re-opened on :meth:`~libinput.LibInput.resume`. The device can be
removed with :meth:`remove_device`.
If the device was successfully initialized, it is returned.
Args:
path (str): Path to an input device.
Returns:
~libinput.define.Device: A device object or :obj:`None`.
|
codesearchnet
|
def IsTemplateParameterList(clean_lines, linenum, column):
(_, startline, startpos) = ReverseCloseExpression(
clean_lines, linenum, column)
if (startpos > -1 and
Search(r'\btemplate\s*$', clean_lines.elided[startline][0:startpos])):
return True
return False
|
Check if the token ending on (linenum, column) is the end of template<>.
Args:
clean_lines: A CleansedLines instance containing the file.
linenum: the number of the line to check.
column: end column of the token to check.
Returns:
True if this token is end of a template parameter list, False otherwise.
|
juraj-google-style
|
def get_inverse_sqrt_schedule(optimizer: Optimizer, num_warmup_steps: int, timescale: Optional[int]=None, last_epoch: int=-1):
if timescale is None:
timescale = num_warmup_steps or 10000
lr_lambda = partial(_get_inverse_sqrt_schedule_lr_lambda, num_warmup_steps=num_warmup_steps, timescale=timescale)
return LambdaLR(optimizer, lr_lambda, last_epoch=last_epoch)
|
Create a schedule with an inverse square-root learning rate, from the initial lr set in the optimizer, after a
warmup period which increases lr linearly from 0 to the initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
timescale (`int`, *optional*, defaults to `num_warmup_steps`):
Time scale.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
|
github-repos
|
def _ParseExample(self, example_features, example_feature_lists, entries, index):
features_seen = set()
for (feature_list, is_feature) in zip([example_features, example_feature_lists], [True, False]):
sequence_length = None
for feature_name in feature_list:
if (feature_name not in entries):
entries[feature_name] = {'vals': [], 'counts': [], 'feat_lens': [], 'missing': index}
feature_entry = entries[feature_name]
feature = feature_list[feature_name]
value_type = None
value_list = []
if is_feature:
if feature.HasField('float_list'):
value_list = feature.float_list.value
value_type = self.fs_proto.FLOAT
elif feature.HasField('bytes_list'):
value_list = feature.bytes_list.value
value_type = self.fs_proto.STRING
elif feature.HasField('int64_list'):
value_list = feature.int64_list.value
value_type = self.fs_proto.INT
else:
sequence_length = len(feature.feature)
if ((sequence_length != 0) and feature.feature[0].HasField('float_list')):
for feat in feature.feature:
for value in feat.float_list.value:
value_list.append(value)
value_type = self.fs_proto.FLOAT
elif ((sequence_length != 0) and feature.feature[0].HasField('bytes_list')):
for feat in feature.feature:
for value in feat.bytes_list.value:
value_list.append(value)
value_type = self.fs_proto.STRING
elif ((sequence_length != 0) and feature.feature[0].HasField('int64_list')):
for feat in feature.feature:
for value in feat.int64_list.value:
value_list.append(value)
value_type = self.fs_proto.INT
if (value_type is not None):
if ('type' not in feature_entry):
feature_entry['type'] = value_type
elif (feature_entry['type'] != value_type):
raise TypeError(('type mismatch for feature ' + feature_name))
feature_entry['counts'].append(len(value_list))
feature_entry['vals'].extend(value_list)
if (sequence_length is not None):
feature_entry['feat_lens'].append(sequence_length)
if value_list:
features_seen.add(feature_name)
for f in entries:
fv = entries[f]
if (f not in features_seen):
fv['missing'] += 1
|
Parses data from an example, populating a dictionary of feature values.
Args:
example_features: A map of strings to tf.Features from the example.
example_feature_lists: A map of strings to tf.FeatureLists from the
example.
entries: A dictionary of all features parsed thus far and arrays of their
values. This is mutated by the function.
index: The index of the example to parse from a list of examples.
Raises:
TypeError: Raises an exception when a feature has inconsistent types
across
examples.
|
codesearchnet
|
def invoice(request, invoice_id, access_code=None):
current_invoice = InvoiceController.for_id_or_404(invoice_id)
if (not current_invoice.can_view(user=request.user, access_code=access_code)):
raise Http404()
data = {'invoice': current_invoice.invoice}
return render(request, 'registrasion/invoice.html', data)
|
Displays an invoice.
This view is not authenticated, but it will only allow access to either:
the user the invoice belongs to; staff; or a request made with the correct
access code.
Arguments:
invoice_id (castable to int): The invoice_id for the invoice you want
to view.
access_code (Optional[str]): The access code for the user who owns
this invoice.
Returns:
render:
Renders ``registrasion/invoice.html``, with the following
data::
{
"invoice": models.commerce.Invoice(),
}
Raises:
Http404: if the current user cannot view this invoice and the correct
access_code is not provided.
|
codesearchnet
|
def _InitSSLContext(self, cafile=None, disable_ssl_certificate_validation=False):
try:
if disable_ssl_certificate_validation:
ssl._create_default_https_context = ssl._create_unverified_context
ssl_context = ssl.create_default_context()
else:
ssl_context = ssl.create_default_context(cafile=cafile)
except AttributeError:
return None
return ssl_context
|
Creates a ssl.SSLContext with the given settings.
Args:
cafile: A str identifying the resolved path to the cafile. If not set,
this will use the system default cafile.
disable_ssl_certificate_validation: A boolean indicating whether
certificate verification is disabled. For security purposes, it is
highly recommended that certificate verification remain enabled.
Returns:
An ssl.SSLContext instance, or None if the version of Python being used
doesn't support it.
|
codesearchnet
|
def _benchmarkFeed(self, name, target, size, iters):
feed_val = np.random.rand(size).astype(np.float32)
times = []
with ops.Graph().as_default():
p = array_ops.placeholder(dtypes.float32, shape=[size])
no_op = array_ops.identity(p).op
with session.Session(target) as sess:
sess.run(no_op, feed_dict={p: feed_val})
for _ in range(iters):
start_time = time.time()
sess.run(no_op, feed_dict={p: feed_val})
end_time = time.time()
times.append(end_time - start_time)
print('%s %d %f' % (name, size, np.median(times)))
self.report_benchmark(iters=1, wall_time=np.median(times), name=name)
|
Runs a microbenchmark to measure the cost of feeding a tensor.
Reports the median cost of feeding a tensor of `size` * `sizeof(float)`
bytes.
Args:
name: A human-readable name for logging the output.
target: The session target to use for the benchmark.
size: The number of floating-point numbers to be feed.
iters: The number of iterations to perform.
|
github-repos
|
def sigmoid_cross_entropy_one_hot(logits, labels, weights_fn=None):
with tf.variable_scope("sigmoid_cross_entropy_one_hot",
values=[logits, labels]):
del weights_fn
cross_entropy = tf.losses.sigmoid_cross_entropy(
multi_class_labels=labels, logits=logits)
return cross_entropy, tf.constant(1.0)
|
Calculate sigmoid cross entropy for one-hot lanels and logits.
Args:
logits: Tensor of size [batch-size, o=1, p=1, num-classes]
labels: Tensor of size [batch-size, o=1, p=1, num-classes]
weights_fn: Function that takes in labels and weighs examples (unused)
Returns:
cross_entropy (scalar), weights
|
juraj-google-style
|
def activate_nsxcontroller(self, **kwargs):
name = kwargs.pop('name')
name_args = dict(name=name)
method_name = 'nsx_controller_activate'
method_class = self._brocade_tunnels
nsxcontroller_attr = getattr(method_class, method_name)
config = nsxcontroller_attr(**name_args)
output = self._callback(config)
return output
|
Activate NSX Controller
Args:
name (str): nsxcontroller name
callback (function): A function executed upon completion of the
method.
Returns:
Return value of `callback`.
Raises:
None
|
juraj-google-style
|
def set(self, key, data):
self.raise_error_if_not_open()
if key in self._file:
del self._file[key]
self._file.create_dataset(key, data=data)
|
Set the given data to the container with the given key.
Any existing data for the given key is discarded/overwritten.
Args:
key (str): A key to store the data for.
data (numpy.ndarray): Array-like data.
Note:
The container has to be opened in advance.
|
juraj-google-style
|
def find(entity, **kwargs):
try:
typedfields = entity.typed_fields()
except AttributeError:
typedfields = iterfields(entity.__class__)
matching = [x for x in typedfields if _matches(x, kwargs)]
return matching
|
Return all TypedFields found on the input `Entity` that were initialized
with the input **kwargs.
Example:
>>> find(myentity, multiple=True, type_=Foo)
Note:
TypedFields.__init__() can accept a string or a class as a type_
argument, but this method expects a class.
Args:
**kwargs: TypedField __init__ **kwargs to search on.
Returns:
A list of TypedFields with matching **kwarg values.
|
juraj-google-style
|
def preprocess_data(dataset_path: str, training_set_path: str, labels_path: str, test_set_path: str):
df = pandas.read_csv(dataset_path)
df['Grade'].replace(['low', 'medium', 'high'], [0, 1, 2], inplace=True)
x = df.drop(columns=['Grade'])
y = df['Grade']
x_train, x_test, y_train, _ = train_test_split(x, y, test_size=0.6, random_state=99)
x_train.to_csv(training_set_path, index=False)
y_train.to_csv(labels_path, index=False)
x_test.to_csv(test_set_path, index=False)
|
Helper function to split the dataset into a training set
and its labels and a test set. The training set and
its labels are used to train a lightweight model.
The test set is used to create a test streaming pipeline.
Args:
dataset_path: path to csv file containing the Kaggle
milk quality dataset
training_set_path: path to output the training samples
labels_path: path to output the labels for the training set
test_set_path: path to output the test samples
|
github-repos
|
def crc(msg, encode=False):
generator = np.array([1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0,0,1])
ng = len(generator)
msgnpbin = bin2np(hex2bin(msg))
if encode:
msgnpbin[-24:] = [0] * 24
for i in range(len(msgnpbin)-24):
if msgnpbin[i] == 0:
continue
msgnpbin[i:i+ng] = np.bitwise_xor(msgnpbin[i:i+ng], generator)
reminder = np2bin(msgnpbin[-24:])
return reminder
|
Mode-S Cyclic Redundancy Check
Detect if bit error occurs in the Mode-S message
Args:
msg (string): 28 bytes hexadecimal message string
encode (bool): True to encode the date only and return the checksum
Returns:
string: message checksum, or partity bits (encoder)
|
juraj-google-style
|
def __init__(self, element_shape=None, dtype=dtypes.float32, dynamic_size=False, infer_shape=True):
self._element_shape = tensor_shape.as_shape(element_shape)
self._dtype = dtypes.as_dtype(dtype)
self._dynamic_size = dynamic_size
self._infer_shape = infer_shape
|
Constructs a type specification for a `tf.TensorArray`.
Args:
element_shape: The shape of each element in the `TensorArray`.
dtype: Data type of the `TensorArray`.
dynamic_size: Whether the `TensorArray` can grow past its initial size.
infer_shape: Whether shape inference is enabled.
|
github-repos
|
def analyze_async(output_dir, dataset, cloud=False, project_id=None):
import google.datalab.utils as du
with warnings.catch_warnings():
warnings.simplefilter('ignore')
fn = (lambda : _analyze(output_dir, dataset, cloud, project_id))
return du.LambdaJob(fn, job_id=None)
|
Analyze data locally or in the cloud with BigQuery.
Produce analysis used by training. This can take a while, even for small
datasets. For small datasets, it may be faster to use local_analysis.
Args:
output_dir: The output directory to use.
dataset: only CsvDataSet is supported currently.
cloud: If False, runs analysis locally with Pandas. If Ture, runs analysis
in the cloud with BigQuery.
project_id: Uses BigQuery with this project id. Default is datalab's
default project id.
Returns:
A google.datalab.utils.Job object that can be used to query state from or wait.
|
codesearchnet
|
def send_data(data):
datalength = len(data)
csm1 = checksum1(data, datalength)
csm2 = checksum2(csm1)
data.insert(0, 0xFF)
data.insert(1, 0xFF)
data.insert(5, csm1)
data.insert(6, csm2)
stringtosend = ""
for i in range(len(data)):
byteformat = '%02X' % data[i]
stringtosend = stringtosend + "\\x" + byteformat
try:
SERPORT.write(stringtosend.decode('string-escape'))
except:
raise HerkulexError("could not communicate with motors")
|
Send data to herkulex
Paketize & write the packet to serial port
Args:
data (list): the data to be sent
Raises:
SerialException: Error occured while opening serial port
|
juraj-google-style
|
def Patch(self, request, global_params=None):
config = self.GetMethodConfig('Patch')
return self._RunMethod(config, request, global_params=global_params)
|
Updates information in an existing table. The update method replaces the entire table resource, whereas the patch method only replaces fields that are provided in the submitted table resource. This method supports patch semantics.
Args:
request: (BigqueryTablesPatchRequest) input message
global_params: (StandardQueryParameters, default: None) global arguments
Returns:
(Table) The response message.
|
github-repos
|
def _post_check(date_info: dict) -> bool:
if date_info['pattern']:
return True
if date_info['value'] == 'may' or re.match(illegal, date_info['value'])\
or (re.match(possible_illegal, date_info['value']) and len([g for g in date_info['groups'] if g]) != 2) \
or (re.match(possible_illegal_3, date_info['value']) and len([g for g in date_info['groups'] if g]) != 3) \
or (re.match('^\b?[0-9]{4}\b?$', date_info['value']) and len([g for g in date_info['groups'] if g]) > 1):
return False
return True
|
Post check the extracted date string to filter out some false positives
Args:
date_info: dict - includes the extracted string, matching groups, patterns etc.
Returns: bool - if the date extracted is valid
|
juraj-google-style
|
def deserialize(config, custom_objects=None):
populate_deserializable_objects()
return generic_utils.deserialize_keras_object(config, module_objects=LOCAL.ALL_OBJECTS, custom_objects=custom_objects, printable_module_name='layer')
|
Instantiates a layer from a config dictionary.
Args:
config: dict of the form {'class_name': str, 'config': dict}
custom_objects: dict mapping class names (or function names)
of custom (non-Keras) objects to class/functions
Returns:
Layer instance (may be Model, Sequential, Network, Layer...)
|
github-repos
|
def load_dictionary(self, filename, encoding='utf-8'):
with load_file(filename, encoding) as data:
self._dictionary.update(json.loads(data.lower(), encoding=encoding))
self._update_dictionary()
|
Load in a pre-built word frequency list
Args:
filename (str): The filepath to the json (optionally gzipped) \
file to be loaded
encoding (str): The encoding of the dictionary
|
codesearchnet
|
def _init_boto3_clients(self, profile, region):
try:
session = None
if (profile and region):
session = boto3.session.Session(profile_name=profile, region_name=region)
elif profile:
session = boto3.session.Session(profile_name=profile)
elif region:
session = boto3.session.Session(region_name=region)
else:
session = boto3.session.Session()
self._cloud_formation = session.client('cloudformation')
return True
except Exception as wtf:
logging.error(wtf, exc_info=True)
return False
|
The utililty requires boto3 clients to CloudFormation.
Args:
None
Returns:
Good or Bad; True or False
|
codesearchnet
|
def _parse_response(self, respond):
mobj = self._max_qubit_error_re.match(respond.text)
if mobj:
raise RegisterSizeError(
'device register size must be <= {}'.format(mobj.group(1)))
return True
|
parse text of response for HTTP errors
This parses the text of the response to decide whether to
retry request or raise exception. At the moment this only
detects an exception condition.
Args:
respond (Response): requests.Response object
Returns:
bool: False if the request should be retried, True
if not.
Raises:
RegisterSizeError
|
juraj-google-style
|
def execute_interactive_code(elem, doc):
code_lines = [l[4:] for l in elem.text.split('\n')]
code_blocks = [[code_lines[0]]]
for line in code_lines[1:]:
if line.startswith(' ') or line == '':
code_blocks[-1].append(line)
else:
code_blocks.append([line])
final_code = []
try:
child = replwrap.REPLWrapper("python", ">>> ", None)
except NameError:
pf.debug('Can not run interactive session. No output produced ' +
'(Code was:\n{!s}\n)'
.format(elem))
pf.debug('Please pip install pexpect.')
return ''
for code_block in code_blocks:
result = child.run_command('\n'.join(code_block) + '\n').rstrip('\r\n')
final_code += [('>>> ' if i == 0 else '... ') + l for i, l in
enumerate(code_block)]
if result:
final_code += [r for r in result.split('\n')
if r.strip() not in code_block]
return '\n'.join(final_code)
|
Executes code blocks for a python shell.
Parses the code in `elem.text` into blocks and
executes them.
Args:
elem The AST element.
doc The document.
Return:
The code with inline results.
|
juraj-google-style
|
def append(self, node, dirty=True):
self._children[node.id] = node
node.parent = self
if dirty:
self.touch()
return node
|
Add a new child node.
Args:
node (gkeepapi.Node): Node to add.
dirty (bool): Whether this node should be marked dirty.
|
codesearchnet
|
def pool(builder, size, timeout=None):
lock = threading.Lock()
local_pool = queue.Queue()
current_size = 0
@contextlib.contextmanager
def pooled():
nonlocal current_size
instance = None
if (current_size < size):
with lock:
if (current_size < size):
current_size += 1
instance = builder()
if (instance is None):
instance = local_pool.get(timeout=timeout)
(yield instance)
local_pool.put(instance)
return pooled
|
Create a pool that imposes a limit on the number of stored
instances.
Args:
builder: a function to build an instance.
size: the size of the pool.
timeout(Optional[float]): the seconds to wait before raising
a ``queue.Empty`` exception if no instances are available
within that time.
Raises:
If ``timeout`` is defined but the request is taking longer
than the specified time, the context manager will raise
a ``queue.Empty`` exception.
Returns:
A context manager that can be used with the ``with``
statement.
|
codesearchnet
|
def setup(self, input_nodes=None, drop_na=False, **kwargs):
self.output_nodes = []
input_nodes = (input_nodes or self.input_nodes or [])
if (self.level != 'run'):
kwargs = kwargs.copy()
kwargs.pop('scan_length', None)
collections = self.layout.get_collections(self.level, drop_na=drop_na, **kwargs)
objects = (collections + input_nodes)
(objects, kwargs) = self._filter_objects(objects, kwargs)
groups = self._group_objects(objects)
model = (self.model or {})
X = model.get('x', [])
for grp in groups:
input_nodes = [o for o in grp if isinstance(o, AnalysisNode)]
colls = list((set(grp) - set(input_nodes)))
if input_nodes:
node_coll = self._concatenate_input_nodes(input_nodes)
colls.append(node_coll)
coll = (merge_collections(colls) if (len(colls) > 1) else colls[0])
coll = apply_transformations(coll, self.transformations)
if X:
transform.Select(coll, X)
node = AnalysisNode(self.level, coll, self.contrasts, input_nodes, self.auto_contrasts)
self.output_nodes.append(node)
|
Set up the Step and construct the design matrix.
Args:
input_nodes (list): Optional list of Node objects produced by
the preceding Step in the analysis. If None, uses any inputs
passed in at Step initialization.
drop_na (bool): Boolean indicating whether or not to automatically
drop events that have a n/a amplitude when reading in data
from event files.
kwargs: Optional keyword arguments to pass onto load_variables.
|
codesearchnet
|
def __find_variant(self, value):
if isinstance(value, bool):
return messages.Variant.BOOL
elif isinstance(value, six.integer_types):
return messages.Variant.INT64
elif isinstance(value, float):
return messages.Variant.DOUBLE
elif isinstance(value, six.string_types):
return messages.Variant.STRING
elif isinstance(value, (list, tuple)):
variant_priority = [None,
messages.Variant.INT64,
messages.Variant.DOUBLE,
messages.Variant.STRING]
chosen_priority = 0
for v in value:
variant = self.__find_variant(v)
try:
priority = variant_priority.index(variant)
except IndexError:
priority = -1
if priority > chosen_priority:
chosen_priority = priority
return variant_priority[chosen_priority]
return None
|
Find the messages.Variant type that describes this value.
Args:
value: The value whose variant type is being determined.
Returns:
The messages.Variant value that best describes value's type,
or None if it's a type we don't know how to handle.
|
juraj-google-style
|
def Read(self, file_object):
try:
self.root_key = biplist.readPlist(file_object)
except (biplist.NotBinaryPlistException, biplist.InvalidPlistException) as exception:
raise IOError(exception)
|
Reads a plist from a file-like object.
Args:
file_object (dfvfs.FileIO): a file-like object containing plist data.
Raises:
IOError: if the plist file-like object cannot be read.
OSError: if the plist file-like object cannot be read.
|
codesearchnet
|
def find_input(self, stream):
for i, input_x in enumerate(self.inputs):
if input_x[0].matches(stream):
return i
|
Find the input that responds to this stream.
Args:
stream (DataStream): The stream to find
Returns:
(index, None): The index if found or None
|
juraj-google-style
|
def get_physical_server_hardware(self):
uri = '{}/physicalServerHardware'.format(self.data['uri'])
return self._helper.do_get(uri)
|
Information describing an 'SDX' partition including a list of physical server blades represented by a server
hardware. Used with SDX enclosures only.
Returns:
Resource
|
codesearchnet
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.