code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def _get_event_id(object_type: str) -> str: key = _keys.event_counter(object_type) DB.watch(key, pipeline=True) count = DB.get_value(key) DB.increment(key) DB.execute() if (count is None): count = 0 return '{}_event_{:08d}'.format(object_type, int(count))
Return an event key for the event on the object type. This must be a unique event id for the object. Args: object_type (str): Type of object Returns: str, event id
codesearchnet
def _compile_output_step(outputs): if not outputs: raise GraphQLCompilationError(u'No fields were selected for output! Please mark at least ' u'one field with the @output directive.') output_fields = {} for output_name, output_context in six.iteritems(outputs): location = output_context['location'] optional = output_context['optional'] graphql_type = output_context['type'] expression = None existence_check = None if isinstance(location, FoldScopeLocation): if optional: raise AssertionError(u'Unreachable state reached, optional in fold: ' u'{}'.format(output_context)) if location.field == COUNT_META_FIELD_NAME: expression = expressions.FoldCountContextField(location) else: expression = expressions.FoldedContextField(location, graphql_type) else: expression = expressions.OutputContextField(location, graphql_type) if optional: existence_check = expressions.ContextFieldExistence(location.at_vertex()) if existence_check: expression = expressions.TernaryConditional( existence_check, expression, expressions.NullLiteral) output_fields[output_name] = expression return blocks.ConstructResult(output_fields)
Construct the final ConstructResult basic block that defines the output format of the query. Args: outputs: dict, output name (string) -> output data dict, specifying the location from where to get the data, and whether the data is optional (and therefore may be missing); missing optional data is replaced with 'null' Returns: a ConstructResult basic block that constructs appropriate outputs for the query
juraj-google-style
def fasta_files_equal(seq_file1, seq_file2): seq1 = SeqIO.read(open(seq_file1), 'fasta') seq2 = SeqIO.read(open(seq_file2), 'fasta') if str(seq1.seq) == str(seq2.seq): return True else: return False
Check equality of a FASTA file to another FASTA file Args: seq_file1: Path to a FASTA file seq_file2: Path to another FASTA file Returns: bool: If the sequences are the same
juraj-google-style
def add_arguments(self, parser, bootstrap=False): [item.add_argument(parser, bootstrap) for item in self._get_items(bootstrap=False)]
Adds all items to the parser passed in. Args: parser (argparse.ArgumentParser): The parser to add all items to. bootstrap (bool): Flag to indicate whether you only want to mark bootstrapped items as required on the command-line.
juraj-google-style
def all_indices_partitioned(self): return self._all_indices_partitioned
all_indices_partitioned property. Returns: True if we are inside a control flow construct and not all pfor iterations may be active.
github-repos
def add_nested_compat_imports(module_builder, compat_api_versions, output_package): imported_modules = module_builder.get_destination_modules() for v in compat_api_versions: for sv in compat_api_versions: subcompat_module = _SUBCOMPAT_MODULE_TEMPLATE % (v, sv) compat_module = _COMPAT_MODULE_TEMPLATE % sv module_builder.copy_imports(compat_module, subcompat_module) module_builder.copy_imports('%s.compat' % compat_module, '%s.compat' % subcompat_module) compat_prefixes = tuple((_COMPAT_MODULE_TEMPLATE % v + '.' for v in compat_api_versions)) for imported_module in imported_modules: if not imported_module.startswith(compat_prefixes): continue module_split = imported_module.split('.') if len(module_split) > 3 and module_split[2] == 'compat': src_module = '.'.join(module_split[:3]) src_name = module_split[3] assert src_name != 'v1' and src_name != 'v2', imported_module else: src_module = '.'.join(module_split[:2]) src_name = module_split[2] if src_name == 'compat': continue for compat_api_version in compat_api_versions: module_builder.add_import(symbol=None, source_module_name='%s.%s' % (output_package, src_module), source_name=src_name, dest_module_name='compat.v%d.%s' % (compat_api_version, src_module), dest_name=src_name)
Adds compat.vN.compat.vK modules to module builder. To avoid circular imports, we want to add __init__.py files under compat.vN.compat.vK and under compat.vN.compat.vK.compat. For all other imports, we point to corresponding modules under compat.vK. Args: module_builder: `_ModuleInitCodeBuilder` instance. compat_api_versions: Supported compatibility versions. output_package: Base output python package where generated API will be added.
github-repos
def get_actions(self, issues): actions = [] try: for issue in issues: action_item = self.determine_action(issue) if action_item['action'] != AuditActions.IGNORE: action_item['owners'] = self.get_contacts(issue) actions.append(action_item) finally: db.session.rollback() return actions
Returns a list of actions to executed Args: issues (`list` of :obj:`RequiredTagsIssue`): List of issues Returns: `list` of `dict`
juraj-google-style
def verify_response(response, status_code, content_type=None): status = int(response.status.split(' ', 1)[0]) if (status != status_code): return False if (content_type is None): return True for (header, value) in response.headers: if (header.lower() == 'content-type'): return (value == content_type) return False
Verifies that a response has the expected status and content type. Args: response: The ResponseTuple to be checked. status_code: An int, the HTTP status code to be compared with response status. content_type: A string with the acceptable Content-Type header value. None allows any content type. Returns: True if both status_code and content_type match, else False.
codesearchnet
def to_timestamp(self, data): result = pd.Series(index=data.index) _slice = ~data[self.col_name].isnull() result[_slice] = data[_slice][self.col_name].astype('int64') return result
Transform a datetime series into linux epoch. Args: data(pandas.DataFrame): DataFrame containins a column named as `self.col_name`. Returns: pandas.Series
juraj-google-style
def _cleanup_keys_with_confirmation(self, keys_to_delete): print('Round name: ', self.round_name) print('Number of entities to be deleted: ', len(keys_to_delete)) if not keys_to_delete: return if self.verbose: print('Entities to delete:') idx = 0 prev_key_prefix = None dots_printed_after_same_prefix = False for k in keys_to_delete: if idx >= 20: print(' ...') print(' ...') break key_prefix = (k.flat_path[0:1] if k.flat_path[0] in [u'SubmissionType', u'WorkType'] else k.flat_path[0]) if prev_key_prefix == key_prefix: if not dots_printed_after_same_prefix: print(' ...') dots_printed_after_same_prefix = True else: print(' ', k) dots_printed_after_same_prefix = False idx += 1 prev_key_prefix = key_prefix print() inp = input_str('Are you sure? (type "yes" without quotes to confirm): ') if inp != 'yes': return with self.datastore_client.no_transact_batch() as batch: for k in keys_to_delete: batch.delete(k) print('Data deleted')
Asks confirmation and then deletes entries with keys. Args: keys_to_delete: list of datastore keys for which entries should be deleted
juraj-google-style
def compute_actor_handle_id_non_forked(actor_handle_id, current_task_id): assert isinstance(actor_handle_id, ActorHandleID) assert isinstance(current_task_id, TaskID) handle_id_hash = hashlib.sha1() handle_id_hash.update(actor_handle_id.binary()) handle_id_hash.update(current_task_id.binary()) handle_id = handle_id_hash.digest() return ActorHandleID(handle_id)
Deterministically compute an actor handle ID in the non-forked case. This code path is used whenever an actor handle is pickled and unpickled (for example, if a remote function closes over an actor handle). Then, whenever the actor handle is used, a new actor handle ID will be generated on the fly as a deterministic function of the actor ID, the previous actor handle ID and the current task ID. TODO(rkn): It may be possible to cause problems by closing over multiple actor handles in a remote function, which then get unpickled and give rise to the same actor handle IDs. Args: actor_handle_id: The original actor handle ID. current_task_id: The ID of the task that is unpickling the handle. Returns: An ID for the new actor handle.
codesearchnet
def check_hardware(self, expected): if (len(expected) < 10): expected += ('\x00' * (10 - len(expected))) (err,) = self.rpc(0, 3, expected, result_format='L') if (err == 0): return True return False
Make sure the hardware version is what we expect. This convenience function is meant for ensuring that we are talking to a tile that has the correct hardware version. Args: expected (str): The expected hardware string that is compared against what is reported by the hardware_version RPC. Returns: bool: true if the hardware is the expected version, false otherwise
codesearchnet
def _ParseCachedEntry8(self, value_data, cached_entry_offset): try: cached_entry = self._ReadStructureFromByteStream( value_data[cached_entry_offset:], cached_entry_offset, self._cached_entry_data_type_map) except (ValueError, errors.ParseError) as exception: raise errors.ParseError( 'Unable to parse cached entry value with error: {0!s}'.format( exception)) if cached_entry.signature not in ( self._CACHED_ENTRY_SIGNATURE_8_0, self._CACHED_ENTRY_SIGNATURE_8_1): raise errors.ParseError('Unsupported cache entry signature') cached_entry_data = value_data[cached_entry_offset:] if cached_entry.signature == self._CACHED_ENTRY_SIGNATURE_8_0: data_type_map_name = 'appcompatcache_cached_entry_body_8_0' elif cached_entry.signature == self._CACHED_ENTRY_SIGNATURE_8_1: data_type_map_name = 'appcompatcache_cached_entry_body_8_1' data_type_map = self._GetDataTypeMap(data_type_map_name) context = dtfabric_data_maps.DataTypeMapContext() try: cached_entry_body = self._ReadStructureFromByteStream( cached_entry_data[12:], cached_entry_offset + 12, data_type_map, context=context) except (ValueError, errors.ParseError) as exception: raise errors.ParseError( 'Unable to parse cached entry body with error: {0!s}'.format( exception)) data_offset = context.byte_size data_size = cached_entry_body.data_size cached_entry_object = AppCompatCacheCachedEntry() cached_entry_object.cached_entry_size = ( 12 + cached_entry.cached_entry_data_size) cached_entry_object.insertion_flags = cached_entry_body.insertion_flags cached_entry_object.last_modification_time = ( cached_entry_body.last_modification_time) cached_entry_object.path = cached_entry_body.path cached_entry_object.shim_flags = cached_entry_body.shim_flags if data_size > 0: cached_entry_object.data = cached_entry_data[ data_offset:data_offset + data_size] return cached_entry_object
Parses a Windows 8.0 or 8.1 cached entry. Args: value_data (bytes): value data. cached_entry_offset (int): offset of the first cached entry data relative to the start of the value data. Returns: AppCompatCacheCachedEntry: cached entry. Raises: ParseError: if the value data could not be parsed.
juraj-google-style
def remove_handler(self, name): index = None for i, h in enumerate(self.capture_handlers): if h['name'] == name: index = i if index is not None: self.capture_handlers[index]['logger'].close() del self.capture_handlers[index]
Remove a handler given a name Note, if multiple handlers have the same name the last matching instance in the handler list will be removed. Args: name: The name of the handler to remove
juraj-google-style
def _refresh(self, http): self.devshell_response = _SendRecv() self.access_token = self.devshell_response.access_token expires_in = self.devshell_response.expires_in if expires_in is not None: delta = datetime.timedelta(seconds=expires_in) self.token_expiry = client._UTCNOW() + delta else: self.token_expiry = None
Refreshes the access token. Args: http: unused HTTP object
juraj-google-style
def process(self): print('Artifacts to be collected: {0!s}'.format(self.artifacts)) hunt_args = flows_pb2.ArtifactCollectorFlowArgs(artifact_list=self.artifacts, use_tsk=self.use_tsk, ignore_interpolation_errors=True, apply_parsers=False) return self._create_hunt('ArtifactCollectorFlow', hunt_args)
Construct and start new Artifact Collection hunt. Returns: The newly created GRR hunt object. Raises: RuntimeError: if no items specified for collection.
codesearchnet
def __init__(self, context): self._event_multiplexer = context.multiplexer self._logdir = context.logdir self._debugger_data_server = None self._grpc_port = None
Constructs a debugger plugin for TensorBoard. This plugin adds handlers for retrieving debugger-related data. The plugin also starts a debugger data server once the log directory is passed to the plugin via the call to get_plugin_apps. Args: context: A base_plugin.TBContext instance.
juraj-google-style
def _add_query_parameter(url, name, value): if value is None: return url else: return update_query_params(url, {name: value})
Adds a query parameter to a url. Replaces the current value if it already exists in the URL. Args: url: string, url to add the query parameter to. name: string, query parameter name. value: string, query parameter value. Returns: Updated query parameter. Does not update the url if value is None.
juraj-google-style
def copy_binary(directory, origin_tag, new_tag, version, package): print('Rename and copy binaries with %s to %s.' % (origin_tag, new_tag)) origin_binary = BINARY_STRING_TEMPLATE % (package, version, origin_tag) new_binary = BINARY_STRING_TEMPLATE % (package, version, new_tag) zip_ref = zipfile.ZipFile(os.path.join(directory, origin_binary), 'r') try: tmpdir = tempfile.mkdtemp() os.chdir(tmpdir) zip_ref.extractall() zip_ref.close() old_py_ver = re.search('(cp\\d\\d-cp\\d\\d)', origin_tag).group(1) new_py_ver = re.search('(cp\\d\\d-cp\\d\\d)', new_tag).group(1) wheel_file = os.path.join(tmpdir, '%s-%s.dist-info' % (package, version), 'WHEEL') with open(wheel_file, 'r') as f: content = f.read() with open(wheel_file, 'w') as f: f.write(content.replace(old_py_ver, new_py_ver)) zout = zipfile.ZipFile(directory + new_binary, 'w', zipfile.ZIP_DEFLATED) zip_these_files = ['%s-%s.dist-info' % (package, version), '%s-%s.data' % (package, version), 'tensorflow', 'tensorflow_core'] for dirname in zip_these_files: for root, _, files in os.walk(dirname): for filename in files: zout.write(os.path.join(root, filename)) zout.close() finally: shutil.rmtree(tmpdir)
Rename and copy binaries for different python versions. Args: directory: string of directory origin_tag: str of the old python version tag new_tag: str of the new tag version: the version of the package package: str, name of the package
github-repos
def fast_tpu_gather(params, indices, name=None): with tf.name_scope(name): dtype = params.dtype def _gather(params, indices): 'Fast gather using one_hot and batch matmul.' if (dtype != tf.float32): params = tf.to_float(params) shape = common_layers.shape_list(params) indices_shape = common_layers.shape_list(indices) ndims = params.shape.ndims if (ndims == 2): params = tf.expand_dims(params, axis=(- 1)) if (ndims > 3): params = tf.reshape(params, [shape[0], shape[1], (- 1)]) gather_result = tf.matmul(tf.one_hot(indices, shape[1], dtype=params.dtype), params) if (ndims == 2): gather_result = tf.squeeze(gather_result, axis=(- 1)) if (ndims > 3): shape[1] = indices_shape[1] gather_result = tf.reshape(gather_result, shape) if (dtype != tf.float32): gather_result = tf.cast(gather_result, dtype) return gather_result if dtype.is_integer: gather_result = tf.batch_gather(params, indices) else: gather_result = _gather(params, indices) return gather_result
Fast gather implementation for models running on TPU. This function use one_hot and batch matmul to do gather, which is faster than gather_nd on TPU. For params that have dtype of int32 (sequences to gather from), batch_gather is used to keep accuracy. Args: params: A tensor from which to gather values. [batch_size, original_size, ...] indices: A tensor used as the index to gather values. [batch_size, selected_size]. name: A string, name of the operation (optional). Returns: gather_result: A tensor that has the same rank as params. [batch_size, selected_size, ...]
codesearchnet
def available_readers(as_dict=False): readers = [] for reader_configs in configs_for_reader(): try: reader_info = read_reader_config(reader_configs) except (KeyError, IOError, yaml.YAMLError): LOG.warning("Could not import reader config from: %s", reader_configs) LOG.debug("Error loading YAML", exc_info=True) continue readers.append(reader_info if as_dict else reader_info['name']) return readers
Available readers based on current configuration. Args: as_dict (bool): Optionally return reader information as a dictionary. Default: False Returns: List of available reader names. If `as_dict` is `True` then a list of dictionaries including additionally reader information is returned.
juraj-google-style
def get_subnets( target='ec2', purpose='internal', env='', region='', ): account_az_dict = defaultdict(defaultdict) subnet_id_dict = defaultdict(defaultdict) subnet_url = '{0}/subnets/aws'.format(API_URL) subnet_response = requests.get(subnet_url, verify=GATE_CA_BUNDLE, cert=GATE_CLIENT_CERT) if not subnet_response.ok: raise SpinnakerTimeout(subnet_response.text) subnet_list = subnet_response.json() for subnet in subnet_list: LOG.debug('Subnet: %(account)s\t%(region)s\t%(target)s\t%(vpcId)s\t' '%(availabilityZone)s', subnet) if subnet.get('target', '') == target: availability_zone = subnet['availabilityZone'] account = subnet['account'] subnet_region = subnet['region'] subnet_id = subnet['id'] try: if availability_zone not in account_az_dict[account][subnet_region]: account_az_dict[account][subnet_region].append(availability_zone) except KeyError: account_az_dict[account][subnet_region] = [availability_zone] if subnet['purpose'] == purpose: try: subnet_id_dict[account][subnet_region].append(subnet_id) except KeyError: subnet_id_dict[account][subnet_region] = [subnet_id] LOG.debug('%s regions: %s', account, list(account_az_dict[account].keys())) if all([env, region]): try: region_dict = {region: account_az_dict[env][region]} region_dict['subnet_ids'] = {region: subnet_id_dict[env][region]} LOG.debug('Region dict: %s', region_dict) return region_dict except KeyError: raise SpinnakerSubnetError(env=env, region=region) LOG.debug('AZ dict:\n%s', pformat(dict(account_az_dict))) return account_az_dict
Get all availability zones for a given target. Args: target (str): Type of subnets to look up (ec2 or elb). env (str): Environment to look up. region (str): AWS Region to find Subnets for. Returns: az_dict: dictionary of availbility zones, structured like { $region: [ $avaibilityzones ] } or { $account: $region: [ $availabilityzone] }
juraj-google-style
def fmtVersion(*vsnparts): if (len(vsnparts) < 1): raise s_exc.BadTypeValu(valu=repr(vsnparts), name='fmtVersion', mesg='Not enough version parts to form a version string with.') ret = '.'.join([str(part).lower() for part in vsnparts]) return ret
Join a string of parts together with a . separator. Args: *vsnparts: Returns:
codesearchnet
def find_proxy_plugin(component, plugin_name): reg = ComponentRegistry() plugins = reg.load_extensions('iotile.proxy_plugin', comp_filter=component, class_filter=TileBusProxyPlugin, product_name='proxy_plugin') for _name, plugin in plugins: if plugin.__name__ == plugin_name: return plugin raise DataError("Could not find proxy plugin module in registered components or installed distributions", component=component, name=plugin_name)
Attempt to find a proxy plugin provided by a specific component Args: component (string): The name of the component that provides the plugin plugin_name (string): The name of the plugin to load Returns: TileBuxProxyPlugin: The plugin, if found, otherwise raises DataError
juraj-google-style
def pre_save(self, instance, add: bool): if not isinstance(instance, AtomicSlugRetryMixin): raise ImproperlyConfigured(( 'Model \'%s\' does not inherit from AtomicSlugRetryMixin. ' 'Without this, the LocalizedUniqueSlugField will not work.' ) % type(instance).__name__) slugs = LocalizedValue() for lang_code, value in self._get_populate_values(instance): if not value: continue slug = slugify(value, allow_unicode=True) if instance.pk is not None: current_slug = getattr(instance, self.name).get(lang_code) if current_slug is not None: stripped_slug = current_slug[0:current_slug.rfind('-')] if slug == stripped_slug: slugs.set(lang_code, current_slug) continue if self.include_time: slug += '-%d' % datetime.now().microsecond retries = getattr(instance, 'retries', 0) if retries > 0: if not self.include_time: slug += '-' slug += '%d' % retries slugs.set(lang_code, slug) setattr(instance, self.name, slugs) return slugs
Ran just before the model is saved, allows us to built the slug. Arguments: instance: The model that is being saved. add: Indicates whether this is a new entry to the database or an update. Returns: The localized slug that was generated.
juraj-google-style
def __init__(self, layers, scope='layered-network', summary_labels=()): self.layers_spec = layers super(LayeredNetwork, self).__init__(scope=scope, summary_labels=summary_labels) self.parse_layer_spec(layer_spec=self.layers_spec, layer_counter=Counter())
Single-stack layered network. Args: layers: List of layer specification dicts.
juraj-google-style
def save(self, filething=None, padding=None): try: self.tags._inject(filething.fileobj, padding) except (IOError, error) as e: reraise(self._Error, e, sys.exc_info()[2]) except EOFError: raise self._Error("no appropriate stream found")
save(filething=None, padding=None) Save a tag to a file. If no filename is given, the one most recently loaded is used. Args: filething (filething) padding (:obj:`mutagen.PaddingFunction`) Raises: mutagen.MutagenError
juraj-google-style
def __init__(self, preread=None, precompile=None, file_path=None): self.index = None self.compiled = None if file_path: self._index_file = file_path self._index_handle = open(self._index_file, "r") self._ParseIndex(preread, precompile)
Create new IndexTable object. Args: preread: func, Pre-processing, applied to each field as it is read. precompile: func, Pre-compilation, applied to each field before compiling. file_path: String, Location of file to use as input.
juraj-google-style
def build_variant(variant, case_obj, case_id=None, gq_treshold=None): variant_obj = None sv = False if variant.var_type == 'sv': sv = True variant_id = get_variant_id(variant) ref = variant.REF alt = variant.ALT[0] coordinates = get_coords(variant) chrom = coordinates['chrom'] pos = coordinates['pos'] found_homozygote = 0 found_hemizygote = 0 if sv: found_variant = True else: found_variant = False for ind_obj in case_obj['individuals']: ind_id = ind_obj['ind_id'] ind_pos = ind_obj['ind_index'] gq = int(variant.gt_quals[ind_pos]) if (gq_treshold and gq < gq_treshold): continue genotype = GENOTYPE_MAP[variant.gt_types[ind_pos]] if genotype in ['het', 'hom_alt']: LOG.debug("Found variant") found_variant = True if chrom in ['X','Y'] and ind_obj['sex'] == 1: if not check_par(chrom, pos): LOG.debug("Found hemizygous variant") found_hemizygote = 1 if genotype == 'hom_alt': LOG.debug("Found homozygote alternative variant") found_homozygote = 1 if found_variant: variant_obj = Variant( variant_id=variant_id, chrom=chrom, pos=pos, end=coordinates['end'], ref=ref, alt=alt, end_chrom=coordinates['end_chrom'], sv_type = coordinates['sv_type'], sv_len = coordinates['sv_length'], case_id = case_id, homozygote = found_homozygote, hemizygote = found_hemizygote, is_sv = sv, id_column = variant.ID, ) return variant_obj
Return a Variant object Take a cyvcf2 formated variant line and return a models.Variant. If criterias are not fullfilled, eg. variant have no gt call or quality is below gq treshold then return None. Args: variant(cyvcf2.Variant) case_obj(Case): We need the case object to check individuals sex case_id(str): The case id gq_treshold(int): Genotype Quality treshold Return: formated_variant(models.Variant): A variant dictionary
juraj-google-style
def _on_skip(self, record): logging.info('Reason to skip: %s', record.details) logging.info(RESULT_LINE_TEMPLATE, record.test_name, record.result) self.on_skip(record)
Proxy function to guarantee the base implementation of on_skip is called. Args: record: records.TestResultRecord, a copy of the test record for this test, containing all information of the test execution including exception objects.
github-repos
def from_preset(preset): if (preset == 'vesta_2019'): cut_offs = loadfn(os.path.join(_directory, 'vesta_cutoffs.yaml')) return CutOffDictNN(cut_off_dict=cut_offs) else: raise ValueError('Unrecognised preset: {}'.format(preset))
Initialise a CutOffDictNN according to a preset set of cut-offs. Args: preset (str): A preset name. The list of supported presets are: - "vesta_2019": The distance cut-offs used by the VESTA visualisation program. Returns: A CutOffDictNN using the preset cut-off dictionary.
codesearchnet
def expand_value_set_url(self, url: str) -> Optional[value_set_pb2.ValueSet]: for resolver in self._resolvers: expanded_value_set = resolver.expand_value_set_url(url) if expanded_value_set is not None: return expanded_value_set return None
Retrieves the expanded value set definition for the given URL. Attempts to expand the value set using definitions available to the instance's package manager. If the expansion can not be performed with available resources, makes network calls to a terminology service to perform the expansion. Args: url: The URL of the value set to expand. Returns: A value set protocol buffer expanded to include the codes it represents.
github-repos
def run(self, sensor_graph, model): did_downgrade = False for node, inputs, _outputs in sensor_graph.iterate_bfs(): can_downgrade = False if node.func_name != u'copy_all_a': continue input_a, trigger_a = node.inputs[0] if input_a.selector.match_type in (DataStream.InputType, DataStream.UnbufferedType): can_downgrade = True elif isinstance(trigger_a, InputTrigger) and trigger_a.comp_string == u'==' and trigger_a.use_count and trigger_a.reference == 1: can_downgrade = True elif isinstance(trigger_a, TrueTrigger) and not input_a.selector.buffered: can_downgrade = True for in_node in inputs: if input_a.matches(in_node.stream) and in_node.func_name == u'copy_all_a' and in_node.input_a.match_type not in (DataStream.InputType, DataStream.UnbufferedType): can_downgrade = False break if can_downgrade: did_downgrade = True node.set_func(u'copy_latest_a', sensor_graph.find_processing_function(u'copy_latest_a')) return did_downgrade
Run this optimization pass on the sensor graph If necessary, information on the device model being targeted can be found in the associated model argument. Args: sensor_graph (SensorGraph): The sensor graph to optimize model (DeviceModel): The device model we're using
juraj-google-style
def pseudos_with_symbols(self, symbols): pseudos = self.select_symbols(symbols, ret_list=True) found_symbols = [p.symbol for p in pseudos] duplicated_elements = [s for (s, o) in collections.Counter(found_symbols).items() if (o > 1)] if duplicated_elements: raise ValueError(('Found multiple occurrences of symbol(s) %s' % ', '.join(duplicated_elements))) missing_symbols = [s for s in symbols if (s not in found_symbols)] if missing_symbols: raise ValueError(('Missing data for symbol(s) %s' % ', '.join(missing_symbols))) return pseudos
Return the pseudos with the given chemical symbols. Raises: ValueError if one of the symbols is not found or multiple occurences are present.
codesearchnet
def select(self, selector): if self.closed(): raise ValueError('Attempt to call select() on a closed Queryable.') try: selector = make_selector(selector) except ValueError: raise TypeError('select() parameter selector={selector} cannot beconverted into a callable selector'.format(selector=repr(selector))) if (selector is identity): return self return self._create(imap(selector, self))
Transforms each element of a sequence into a new form. Each element of the source is transformed through a selector function to produce a corresponding element in teh result sequence. If the selector is identity the method will return self. Note: This method uses deferred execution. Args: selector: A unary function mapping a value in the source sequence to the corresponding value in the generated generated sequence. The single positional argument to the selector function is the element value. The return value of the selector function should be the corresponding element of the result sequence. Returns: A Queryable over generated sequence whose elements are the result of invoking the selector function on each element of the source sequence. Raises: ValueError: If this Queryable has been closed. TypeError: If selector is not callable.
codesearchnet
def _load_config_file(path): with io.open(utils.abs_path(path), 'r', encoding='utf-8') as f: conf = yaml.load(f) return conf
Loads a test config file. The test config file has to be in YAML format. Args: path: A string that is the full path to the config file, including the file name. Returns: A dict that represents info in the config file.
juraj-google-style
def CopyFromDateTimeString(self, time_string): super(APFSTime, self)._CopyFromDateTimeString(time_string) if (self._timestamp is None or self._timestamp < self._INT64_MIN or self._timestamp > self._INT64_MAX): raise ValueError('Date time value not supported.')
Copies a APFS timestamp from a date and time string. Args: time_string (str): date and time value formatted as: YYYY-MM-DD hh:mm:ss.######[+-]##:## Where # are numeric digits ranging from 0 to 9 and the seconds fraction can be either 3 or 6 digits. The time of day, seconds fraction and time zone offset are optional. The default time zone is UTC. Raises: ValueError: if the date and time value is not supported.
juraj-google-style
def _find_dtype_iterable(iterable: Iterable[Any], dtype: Optional[dtypes.DType]) -> Optional[dtypes.DType]: if dtype is not None: return dtype for x in iterable: dtype = _find_dtype(x, dtype) return dtype
Find the preferred dtype of a list of objects. This will go over the iterable, and use the first object with a preferred dtype. The dtype passed has highest priority if it is not None. Args: iterable: an iterable with things that might have a dtype. dtype: an overriding dtype, or None. Returns: an optional dtype.
github-repos
def get_pdbs_for_gene(bigg_model, bigg_gene, cache_dir=tempfile.gettempdir(), force_rerun=False): my_structures = [] gene = ssbio.utils.request_json(link='http: outfile='{}_{}.json'.format(bigg_model, bigg_gene), outdir=cache_dir, force_rerun_flag=force_rerun) uniprots = [] if 'database_links' in gene: if 'UniProt' in gene['database_links']: uniprots = [x['id'] for x in gene['database_links']['UniProt']] elif 'NCBI GI' in gene['database_links']: uniprots = [] gis = [x['id'] for x in gene['database_links']['NCBI GI']] gi_uniprots = bs_unip.mapping(fr='P_GI', to='ACC', query=gis).values() uniprots.extend(gi_uniprots) uniprots = ssbio.utils.flatlist_dropdup(uniprots) uniprots = [x for x in uniprots if ssbio.databases.uniprot.is_valid_uniprot_id(x)] if uniprots: for u in uniprots: get_best_structure = ssbio.databases.pdb.best_structures(uniprot_id=u, outdir=cache_dir) if get_best_structure: for best_structure in get_best_structure: my_structures.append((best_structure['pdb_id'], best_structure['chain_id'])) return my_structures
Attempt to get a rank-ordered list of available PDB structures for a BiGG Model and its gene. Args: bigg_model: BiGG Model ID bigg_gene: BiGG Gene ID Returns: list: rank-ordered list of tuples of (pdb_id, chain_id)
juraj-google-style
def __init__(self, bucket, key, info=None, context=None): if context is None: context = google.datalab.Context.default() self._context = context self._api = _api.Api(context) self._bucket = bucket self._key = key self._info = info
Initializes an instance of an Object. Args: bucket: the name of the bucket containing the object. key: the key of the object. info: the information about the object if available. context: an optional Context object providing project_id and credentials. If a specific project id or credentials are unspecified, the default ones configured at the global level are used.
juraj-google-style
def _GetTitleFromChromeWebStore(self, extension_identifier): if (extension_identifier in self._extensions): return self._extensions.get(extension_identifier) page_content = self._GetChromeWebStorePage(extension_identifier) if (not page_content): logger.warning('[{0:s}] no data returned for extension identifier: {1:s}'.format(self.NAME, extension_identifier)) return None (first_line, _, _) = page_content.partition('\n') match = self._TITLE_RE.search(first_line) name = None if match: title = match.group(1) if title.startswith('Chrome Web Store - '): name = title[19:] elif title.endswith('- Chrome Web Store'): name = title[:(- 19)] if (not name): self._extensions[extension_identifier] = 'UNKNOWN' return None self._extensions[extension_identifier] = name return name
Retrieves the name of the extension from the Chrome store website. Args: extension_identifier (str): Chrome extension identifier. Returns: str: name of the extension or None.
codesearchnet
def __init__(self, max_batch_tokens: int): self.max_batch_tokens = max_batch_tokens self._setup_metrics()
Initialize metrics for continuous batch processor. Args: max_batch_tokens: Maximum number of tokens in a batch
github-repos
def update(self, car_id=None, wake_if_asleep=False, force=False): cur_time = time.time() with self.__lock: last_update = self._last_attempted_update_time if (force or ((cur_time - last_update) > self.update_interval)): cars = self.get_vehicles() for car in cars: self.car_online[car['id']] = (car['state'] == 'online') self._last_attempted_update_time = cur_time update_succeeded = False for (id_, value) in self.car_online.items(): if ((car_id is not None) and (car_id != id_)): continue if (value and ((id_ in self.__update) and self.__update[id_]) and (force or (id_ not in self._last_update_time) or ((cur_time - self._last_update_time[id_]) > self.update_interval))): try: data = self.get(id_, 'data', wake_if_asleep) except TeslaException: data = None if (data and data['response']): response = data['response'] self.__climate[car_id] = response['climate_state'] self.__charging[car_id] = response['charge_state'] self.__state[car_id] = response['vehicle_state'] self.__driving[car_id] = response['drive_state'] self.__gui[car_id] = response['gui_settings'] self.car_online[car_id] = (response['state'] == 'online') self._last_update_time[car_id] = time.time() update_succeeded = True return update_succeeded
Update all vehicle attributes in the cache. This command will connect to the Tesla API and first update the list of online vehicles assuming no attempt for at least the [update_interval]. It will then update all the cached values for cars that are awake assuming no update has occurred for at least the [update_interval]. Args: inst (Controller): The instance of a controller car_id (string): The vehicle to update. If None, all cars are updated. wake_if_asleep (bool): Keyword arg to force a vehicle awake. This is processed by the wake_up decorator. force (bool): Keyword arg to force a vehicle update regardless of the update_interval Returns: True if any update succeeded for any vehicle else false Throws: RetryLimitError
codesearchnet
def wiki_request(self, params): params["format"] = "json" if "action" not in params: params["action"] = "query" limit = self._rate_limit last_call = self._rate_limit_last_call if limit and last_call and last_call + self._min_wait > datetime.now(): wait_time = (last_call + self._min_wait) - datetime.now() time.sleep(int(wait_time.total_seconds())) req = self._get_response(params) if self._rate_limit: self._rate_limit_last_call = datetime.now() return req
Make a request to the MediaWiki API using the given search parameters Args: params (dict): Request parameters Returns: A parsed dict of the JSON response Note: Useful when wanting to query the MediaWiki site for some \ value that is not part of the wrapper API
juraj-google-style
def _get_password(params): user_name = params['user'] service_name = params['host'] + ':' + params['driver'] return keyring.get_password(service_name=service_name, username=user_name)
Get the password for a database connection from :mod:`keyring` Args: params (dict): database configuration, as defined in :mod:`ozelot.config` Returns: str: password
juraj-google-style
class TFMinLengthLogitsProcessor(TFLogitsProcessor): def __init__(self, min_length: int, eos_token_id: int): if not isinstance(min_length, int) or min_length < 0: raise ValueError(f'`min_length` has to be a positive integer, but is {min_length}') if not isinstance(eos_token_id, int) or eos_token_id < 0: raise ValueError(f'`eos_token_id` has to be a positive integer, but is {eos_token_id}') self.min_length = min_length self.eos_token_id = eos_token_id def _apply_eos_token_mask(self, scores: tf.Tensor) -> tf.Tensor: eos_token_id_mask = tf.range(scores.shape[-1]) == self.eos_token_id scores = tf.where(eos_token_id_mask, float('-inf'), scores) return scores def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor: scores = tf.cond(tf.less(cur_len, self.min_length), lambda: self._apply_eos_token_mask(scores), lambda: tf.identity(scores)) return scores
[`TFLogitsProcessor`] enforcing a min-length by setting EOS probability to 0. Args: min_length (`int`): The minimum length below which the score of `eos_token_id` is set to `-float("Inf")`. eos_token_id (`int`): The id of the *end-of-sequence* token.
github-repos
def _extract_namespace_ast_node(self, desc): if len(desc) == 0 or not isinstance(desc[0], AstNamespace): if self._debug: self._logger.info('Description: %r', desc) raise InvalidSpec('First declaration in a stone must be ' 'a namespace. Possibly caused by preceding ' 'errors.', desc[0].lineno, desc[0].path) for item in desc[1:]: if isinstance(item, AstNamespace): raise InvalidSpec('Only one namespace declaration per file.', item[0].lineno, item[0].path) return desc.pop(0)
Checks that the namespace is declared first in the spec, and that only one namespace is declared. Args: desc (List[stone.stone.parser.ASTNode]): All AST nodes in a spec file in the order they were defined. Return: stone.frontend.ast.AstNamespace: The namespace AST node.
juraj-google-style
def get_functionalHome(self, functionalHomeType: type) -> FunctionalHome: for x in self.functionalHomes: if isinstance(x, functionalHomeType): return x return None
gets the specified functionalHome Args: functionalHome(type): the type of the functionalHome which should be returned Returns: the FunctionalHome or None if it couldn't be found
juraj-google-style
def cvt2frames(self, frame_dir, file_start=0, filename_tmpl='{:06d}.jpg', start=0, max_num=0, show_progress=True): mkdir_or_exist(frame_dir) if (max_num == 0): task_num = (self.frame_cnt - start) else: task_num = min((self.frame_cnt - start), max_num) if (task_num <= 0): raise ValueError('start must be less than total frame number') if (start > 0): self._set_real_position(start) def write_frame(file_idx): img = self.read() filename = osp.join(frame_dir, filename_tmpl.format(file_idx)) cv2.imwrite(filename, img) if show_progress: track_progress(write_frame, range(file_start, (file_start + task_num))) else: for i in range(task_num): img = self.read() if (img is None): break filename = osp.join(frame_dir, filename_tmpl.format((i + file_start))) cv2.imwrite(filename, img)
Convert a video to frame images Args: frame_dir (str): Output directory to store all the frame images. file_start (int): Filenames will start from the specified number. filename_tmpl (str): Filename template with the index as the placeholder. start (int): The starting frame index. max_num (int): Maximum number of frames to be written. show_progress (bool): Whether to show a progress bar.
codesearchnet
def get_type(mime=None, ext=None): for kind in types: if kind.extension is ext or kind.mime is mime: return kind return None
Returns the file type instance searching by MIME type or file extension. Args: ext: file extension string. E.g: jpg, png, mp4, mp3 mime: MIME string. E.g: image/jpeg, video/mpeg Returns: The matched file type instance. Otherwise None.
juraj-google-style
def add_record(self, record): record.update_record() if record.result == TestResultEnums.TEST_RESULT_SKIP: self.skipped.append(record) return self.executed.append(record) if record.result == TestResultEnums.TEST_RESULT_FAIL: self.failed.append(record) elif record.result == TestResultEnums.TEST_RESULT_PASS: self.passed.append(record) else: self.error.append(record)
Adds a test record to test result. A record is considered executed once it's added to the test result. Adding the record finalizes the content of a record, so no change should be made to the record afterwards. Args: record: A test record object to add.
juraj-google-style
def create_downloader_of_type(type_name): downloaders = available_downloaders() if type_name not in downloaders.keys(): raise UnknownDownloaderException('Unknown downloader: %s' % (type_name,)) return downloaders[type_name]()
Create an instance of the downloader with the given name. Args: type_name: The name of a downloader. Returns: An instance of the downloader with the given type.
juraj-google-style
def run_commands(self, program_language, program_main): if program_language == 'python': python_exe = sys.executable ptvsd_host = 'localhost' if self.args.docker: python_exe = 'python' ptvsd_host = '0.0.0.0' if self.args.vscd: self.update_environment() command = [ python_exe, '-m', 'ptvsd', '--host', ptvsd_host, '--port', self.args.vscd_port, '--wait', '{}.py'.format(program_main), ] else: command = [python_exe, '.', program_main] cli_command = [str(s) for s in command + self.profile.get('profile_args').standard] print_command = ' '.join( str(s) for s in command + self.profile.get('profile_args').masked ) if self.args.unmask: print_command = ' '.join( str(s) for s in command + self.profile.get('profile_args').quoted ) elif program_language == 'java': if self.args.docker: command = ['java', '-cp', self.tcex_json.get('class_path', './target/*')] else: command = [ self.tcex_json.get('java_path', program_language), '-cp', self.tcex_json.get('class_path', './target/*'), ] cli_command = command + self.profile.get('profile_args').standard + [program_main] print_command = ' '.join( command + self.profile.get('profile_args').masked + [program_main] ) if self.args.unmask: print_command = ' '.join( command + self.profile.get('profile_args').quoted + [program_main] ) return {'cli_command': cli_command, 'print_command': print_command}
Return the run Print Command. Args: program_language (str): The language of the current App/Project. program_main (str): The executable name. Returns: dict: A dictionary containing the run command and a printable version of the command.
juraj-google-style
def convert(model_flags: _model_flags_pb2.ModelFlags, conversion_flags: _conversion_flags_pb2.ConverterFlags, input_data_str: Optional[str]=None, debug_info_str: Optional[str]=None): try: return wrap_converter.wrapped_convert(model_flags.SerializeToString(), conversion_flags.SerializeToString(), input_data_str, debug_info_str) except Exception as e: converter_error = ConverterError(str(e)) for error_data in _metrics_wrapper.retrieve_collected_errors(): converter_error.append_error(error_data) if error_data.error_code == converter_error_data_pb2.ConverterErrorData.ERROR_STATEFUL_PARTITIONED_CALL_IN_FINAL_IR and (not conversion_flags.guarantee_all_funcs_one_use): conversion_flags.guarantee_all_funcs_one_use = True return convert(model_flags, conversion_flags, input_data_str, debug_info_str) raise converter_error
Converts `input_data_str` to a TFLite model. Args: model_flags: Proto describing model properties, see `model_flags.proto`. conversion_flags: Proto describing conversion properties, see `compiler/mlir/lite/converter_flags.proto`. input_data_str: Input data in serialized form (e.g. a graphdef is common, or it can be hlo text or proto) debug_info_str: Serialized `GraphDebugInfo` proto describing logging information. Returns: Converted model in serialized form (e.g. a TFLITE model is common). Raises: ConverterError: When conversion fails in TFLiteConverter, usually due to ops not being supported.
github-repos
def get_gcc_version(): key = 'gcc_ver' out, err = run_shell_cmd(cmds_all[PLATFORM.lower()][key]) if err and FLAGS.debug: print('Error in detecting GCC version:\n %s' % str(err)) return out.strip(b'\n')
Retrieves version of GCC detected. Returns: String that is the version of GCC. e.g. '7.3.0'
github-repos
def _CalculateHashesFileEntry(self, file_system, file_entry, parent_full_path, output_writer): full_path = file_system.JoinPath([parent_full_path, file_entry.name]) for data_stream in file_entry.data_streams: hash_value = self._CalculateHashDataStream(file_entry, data_stream.name) display_path = self._GetDisplayPath(file_entry.path_spec, full_path, data_stream.name) output_writer.WriteFileHash(display_path, (hash_value or 'N/A')) for sub_file_entry in file_entry.sub_file_entries: self._CalculateHashesFileEntry(file_system, sub_file_entry, full_path, output_writer)
Recursive calculates hashes starting with the file entry. Args: file_system (dfvfs.FileSystem): file system. file_entry (dfvfs.FileEntry): file entry. parent_full_path (str): full path of the parent file entry. output_writer (StdoutWriter): output writer.
codesearchnet
def Add(self, entry): if not isinstance(entry, PasswdMapEntry): raise TypeError return super(PasswdMap, self).Add(entry)
Add a new object, verify it is a PasswdMapEntry instance. Args: entry: A PasswdMapEntry instance. Returns: True if added successfully, False otherwise. Raises: TypeError: The argument is of the wrong type.
github-repos
def collective_leader(cluster_spec, task_type, task_id): cluster_spec = normalize_cluster_spec(cluster_spec) if not cluster_spec.as_dict(): return '' _validate_cluster_spec(cluster_spec, task_type, task_id) if task_type == 'evaluator': return '' if 'chief' in cluster_spec.jobs: return '/job:chief/replica:0/task:0' assert 'worker' in cluster_spec.jobs return '/job:worker/replica:0/task:0'
Return the job name for the leader of for collective ops. Args: cluster_spec: a dict, `ClusterDef` or `ClusterSpec` object specifying the cluster configurations. task_type: the task type in the cluster. task_id: the task id in the cluster. Returns: a string indicating the leader job name or empty string if no need to set leader job.
github-repos
def split_by_criteria(dictionary, keys=None, prefix=None): keys = (keys or []) keys = set(keys) included_items = {k: dictionary[k] for k in dictionary.keys() if ((k in keys) or (prefix and k.startswith(prefix)))} excluded_items = {k: dictionary[k] for k in dictionary.keys() if (k not in included_items)} return SplitResultSpec(included=included_items, excluded=excluded_items)
Split a dictionary in two by the provided keys. Args: dictionary (dict[str, object]): A Python dictionary keys (sequence [str]): A sequence of keys which will be added the split criteria prefix (str): A prefix which will be added the split criteria Returns: `SplitResultSpec` : A collections.namedtuple with the following attributes: * Args: included (dict[str, object]: A dictionary with the keys included in the criteria. excluded (dict[str, object]: A dictionary with the keys not included in the criteria.
codesearchnet
def RegisterDecompressor(cls, decompressor): compression_method = decompressor.COMPRESSION_METHOD.lower() if compression_method in cls._decompressors: raise KeyError( 'Decompressor for compression method: {0:s} already set.'.format( decompressor.COMPRESSION_METHOD)) cls._decompressors[compression_method] = decompressor
Registers a decompressor for a specific compression method. Args: decompressor (type): decompressor class. Raises: KeyError: if the corresponding decompressor is already set.
juraj-google-style
def __init__(self, channel): self.GetChanges = channel.unary_stream( '/pb.Data/GetChanges', request_serializer=lookout_dot_sdk_dot_service__data__pb2.ChangesRequest.SerializeToString, response_deserializer=lookout_dot_sdk_dot_service__data__pb2.Change.FromString, ) self.GetFiles = channel.unary_stream( '/pb.Data/GetFiles', request_serializer=lookout_dot_sdk_dot_service__data__pb2.FilesRequest.SerializeToString, response_deserializer=lookout_dot_sdk_dot_service__data__pb2.File.FromString, )
Constructor. Args: channel: A grpc.Channel.
juraj-google-style
def _invalid_string_quote(self, quote, row, correct_quote=None, col=None): if not correct_quote: correct_quote = SMART_QUOTE_OPTS.get(self.config.string_quote) self.add_message( 'invalid-string-quote', line=row, args=(quote, correct_quote), **self.get_offset(col) )
Add a message for an invalid string literal quote. Args: quote: The quote characters that were found. row: The row number the quote character was found on. correct_quote: The quote characters that is required. If None (default), will use the one from the config. col: The column the quote characters were found on.
juraj-google-style
def square(times: np.ndarray, amp: complex, period: float, phase: float = 0) -> np.ndarray: x = times/period+phase/np.pi return amp*(2*(2*np.floor(x) - np.floor(2*x)) + 1).astype(np.complex_)
Continuous square wave. Args: times: Times to output wave for. amp: Pulse amplitude. Wave range is [-amp, amp]. period: Pulse period, units of dt. phase: Pulse phase.
juraj-google-style
def all_label_values(self, label_list_ids=None): values = set() for label_list in self.label_lists.values(): if ((label_list_ids is None) or (label_list.idx in label_list_ids)): values = values.union(label_list.label_values()) return values
Return a set of all label-values occurring in this utterance. Args: label_list_ids (list): If not None, only label-values from label-lists with an id contained in this list are considered. Returns: :class:`set`: A set of distinct label-values.
codesearchnet
def unset(entity, *types): if (not types): types = (TypedField,) fields = list(entity._fields.keys()) remove = (x for x in fields if isinstance(x, types)) for field in remove: del entity._fields[field]
Unset the TypedFields on the input `entity`. Args: entity: A mixbox.Entity object. *types: A variable-length list of TypedField subclasses. If not provided, defaults to TypedField.
codesearchnet
def feedback(self, dna: DNA, reward: Union[float, Tuple[float]]) -> None: if self.needs_feedback: if self.multi_objective and isinstance(reward, float): reward = (reward,) elif not self.multi_objective and isinstance(reward, tuple): if len(reward) != 1: raise ValueError(f'{self!r} is single objective, but the reward {reward!r} contains multiple objectives.') reward = reward[0] self._feedback(dna, reward) self._num_feedbacks += 1
Feedback a completed trial to the algorithm. Args: dna: a DNA object. reward: reward for the DNA. It is a float if `self.multi_objective` returns False, otherwise it's a tuple of floats.
github-repos
def __init__(self, plugin_name=None, text=None): super(AnalysisReport, self).__init__() self.filter_string = None self.plugin_name = plugin_name self.report_array = None self.report_dict = None self.text = text self.time_compiled = None
Initializes the analysis report. Args: plugin_name (Optional[str]): name of the analysis plugin that generated the report. text (Optional[str]): report text.
juraj-google-style
def _add_strings_to_commastring(self, field, strings): allstringsadded = True for string in strings: if (not self._add_string_to_commastring(field, string)): allstringsadded = False return allstringsadded
Add a list of strings to a comma separated list of strings Args: field (str): Field containing comma separated list strings (List[str]): list of strings to add Returns: bool: True if all strings added or False if any already present.
codesearchnet
def load(file_path, parse_line_fn): vocabulary = [] embeddings = [] embeddings_dim = None for line in tf.gfile.GFile(file_path): (token, embedding) = parse_line_fn(line) if (not embeddings_dim): embeddings_dim = len(embedding) elif (embeddings_dim != len(embedding)): raise ValueError('Inconsistent embedding dimension detected, %d != %d for token %s', embeddings_dim, len(embedding), token) vocabulary.append(token) embeddings.append(embedding) return (vocabulary, np.array(embeddings))
Loads a text embedding into memory as a numpy matrix. Args: file_path: Path to the text embedding file. parse_line_fn: callback function to parse each file line. Returns: A tuple of (list of vocabulary tokens, numpy matrix of embedding vectors). Raises: ValueError: if the data in the sstable is inconsistent.
codesearchnet
def _fn(self, arg0, arg1): return arg0 + arg1
fn doc. Args: arg0: Arg 0. arg1: Arg 1. Returns: Sum of args.
github-repos
def ed25519_private_key_from_string(string): try: return Ed25519PrivateKey.from_private_bytes(base64.b64decode(string)) except (UnsupportedAlgorithm, Base64Error) as exc: raise ScriptWorkerEd25519Error("Can't create Ed25519PrivateKey: {}!".format(str(exc)))
Create an ed25519 private key from ``string``, which is a seed. Args: string (str): the string to use as a seed. Returns: Ed25519PrivateKey: the private key
codesearchnet
def CopyToDateTimeString(self): if ((self._timestamp is None) or (self._timestamp < self._INT64_MIN) or (self._timestamp > self._INT64_MAX)): return None return super(APFSTime, self)._CopyToDateTimeString()
Copies the APFS timestamp to a date and time string. Returns: str: date and time value formatted as: "YYYY-MM-DD hh:mm:ss.#########" or None if the timestamp is missing or invalid.
codesearchnet
async def _sync_all_conversations(client): conv_states = [] sync_timestamp = None request = hangouts_pb2.SyncRecentConversationsRequest( request_header=client.get_request_header(), max_conversations=CONVERSATIONS_PER_REQUEST, max_events_per_conversation=1, sync_filter=[ hangouts_pb2.SYNC_FILTER_INBOX, hangouts_pb2.SYNC_FILTER_ARCHIVED, ] ) for _ in range(MAX_CONVERSATION_PAGES): logger.info( 'Requesting conversations page %s', request.last_event_timestamp ) response = await client.sync_recent_conversations(request) conv_states = list(response.conversation_state) + conv_states sync_timestamp = parsers.from_timestamp( response.response_header.current_server_time ) if response.continuation_end_timestamp == 0: logger.info('Reached final conversations page') break else: request.last_event_timestamp = response.continuation_end_timestamp else: logger.warning('Exceeded maximum number of conversation pages') logger.info('Synced %s total conversations', len(conv_states)) return conv_states, sync_timestamp
Sync all conversations by making paginated requests. Conversations are ordered by ascending sort timestamp. Args: client (Client): Connected client. Raises: NetworkError: If the requests fail. Returns: tuple of list of ``ConversationState`` messages and sync timestamp
juraj-google-style
def __init__(self, config_reader=None): if config_reader: self._config = config_reader else: self._config = WTF_CONFIG_READER
Constructor Args: config_reader (ConfigReader) - override default config reader.
juraj-google-style
def from_string(cls, prjs): def parse(v): try: return int(v) except ValueError: pass try: return float(v) except ValueError: return v parts = [o.lstrip('+') for o in prjs.strip().split()] items = map((lambda kv: (((len(kv) == 2) and (kv[0], parse(kv[1]))) or (kv[0], True))), (p.split('=') for p in parts)) return cls({k: v for (k, v) in items if (('+' + k) in PROJ4_PARAMS.keys())})
Turn a PROJ.4 string into a mapping of parameters. Bare parameters like "+no_defs" are given a value of ``True``. All keys are checked against the ``all_proj_keys`` list. Args: prjs (str): A PROJ4 string.
codesearchnet
def create_asset_accesspolicy(access_token, name, duration, permission="1"): path = '/AccessPolicies' endpoint = ''.join([ams_rest_endpoint, path]) body = '{ \ "Name": "' + str(name) + '", \ "DurationInMinutes": "' + duration + '", \ "Permissions": "' + permission + '" \ }' return do_ams_post(endpoint, path, body, access_token)
Create Media Service Asset Access Policy. Args: access_token (str): A valid Azure authentication token. name (str): A Media Service Asset Access Policy Name. duration (str): A Media Service duration. permission (str): A Media Service permission. Returns: HTTP response. JSON body.
juraj-google-style
def check_dummies(overwrite: bool=False): dummy_files = create_dummy_files() short_names = {'torch': 'pt'} path = os.path.join(PATH_TO_TRANSFORMERS, 'utils') dummy_file_paths = {backend: os.path.join(path, f'dummy_{short_names.get(backend, backend)}_objects.py') for backend in dummy_files.keys()} actual_dummies = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(file_path): with open(file_path, 'r', encoding='utf-8', newline='\n') as f: actual_dummies[backend] = f.read() else: actual_dummies[backend] = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print(f'Updating transformers.utils.dummy_{short_names.get(backend, backend)}_objects.py as the main __init__ has new objects.') with open(dummy_file_paths[backend], 'w', encoding='utf-8', newline='\n') as f: f.write(dummy_files[backend]) else: found = False for _actual, _dummy in zip(actual_dummies['torch'].split('class'), dummy_files['torch'].split('class')): if _actual != _dummy: actual_broken = _actual dummy_broken = _dummy found = True break if not found: print('A transient error was found with the dummies, please investigate.') continue raise ValueError(f'The main __init__ has objects that are not present in transformers.utils.dummy_{short_names.get(backend, backend)}_objects.py.\n It is likely the following objects are responsible, see these excerpts: \n---------------------------------- Actual -------------------------------------\n \n {actual_broken} \n---------------------------------- Dummy -------------------------------------\n \n {dummy_broken} \nRun `make fix-copies` to fix this.')
Check if the dummy files are up to date and maybe `overwrite` with the right content. Args: overwrite (`bool`, *optional*, default to `False`): Whether or not to overwrite the content of the dummy files. Will raise an error if they are not up to date when `overwrite=False`.
github-repos
def GetValueByPath(self, path_segments): key = self.root_key for path_segment in path_segments: if isinstance(key, dict): try: key = key[path_segment] except KeyError: return None elif isinstance(key, list): try: list_index = int(path_segment, 10) except ValueError: return None key = key[list_index] else: return None if not key: return None return key
Retrieves a plist value by path. Args: path_segments (list[str]): path segment strings relative to the root of the plist. Returns: object: The value of the key specified by the path or None.
juraj-google-style
def flash_write(self, addr, data, nbits=None, flags=0): self._dll.JLINKARM_BeginDownload(flags) self.memory_write(addr, data, nbits=nbits) bytes_flashed = self._dll.JLINKARM_EndDownload() if bytes_flashed < 0: raise errors.JLinkFlashException(bytes_flashed) return bytes_flashed
Writes data to the flash region of a device. The given number of bits, if provided, must be either ``8``, ``16``, or ``32``. Args: self (JLink): the ``JLink`` instance addr (int): starting flash address to write to data (list): list of data units to write nbits (int): number of bits to use for each unit Returns: Number of bytes written to flash.
juraj-google-style
def layer_postprocess(layer_input, layer_output, hparams): return layer_prepostprocess(layer_input, layer_output, sequence=hparams.layer_postprocess_sequence, dropout_rate=hparams.layer_prepostprocess_dropout, norm_type=hparams.norm_type, depth=None, epsilon=hparams.norm_epsilon, dropout_broadcast_dims=comma_separated_string_to_integer_list(getattr(hparams, 'layer_prepostprocess_dropout_broadcast_dims', '')), default_name='layer_postprocess')
Apply layer postprocessing. See layer_prepostprocess() for details. A hyperparameters object is passed for convenience. The hyperparameters that may be used are: layer_postprocess_sequence layer_prepostprocess_dropout norm_type hidden_size norm_epsilon Args: layer_input: a Tensor layer_output: a Tensor hparams: a hyperparameters object. Returns: a Tensor
codesearchnet
def software_breakpoint(self): software_types = [ enums.JLinkBreakpoint.SW_RAM, enums.JLinkBreakpoint.SW_FLASH, enums.JLinkBreakpoint.SW ] return any(self.Type & stype for stype in software_types)
Returns whether this is a software breakpoint. Args: self (JLinkBreakpointInfo): the ``JLinkBreakpointInfo`` instance Returns: ``True`` if the breakpoint is a software breakpoint, otherwise ``False``.
juraj-google-style
def inception_v3_arg_scope(weight_decay=4e-05, stddev=0.1, batch_norm_var_collection='moving_vars'): batch_norm_params = {'decay': 0.9997, 'epsilon': 0.001, 'updates_collections': tf.GraphKeys.UPDATE_OPS, 'variables_collections': {'beta': None, 'gamma': None, 'moving_mean': [batch_norm_var_collection], 'moving_variance': [batch_norm_var_collection]}} with slim.arg_scope([slim.conv2d, slim.fully_connected], weights_regularizer=slim.l2_regularizer(weight_decay)): with slim.arg_scope([slim.conv2d], weights_initializer=tf.truncated_normal_initializer(stddev=stddev), activation_fn=tf.nn.relu, normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params) as sc: return sc
Defines the default InceptionV3 arg scope. Args: weight_decay: The weight decay to use for regularizing the model. stddev: The standard deviation of the trunctated normal weight initializer. batch_norm_var_collection: The name of the collection for the batch norm variables. Returns: An `arg_scope` to use for the inception v3 model.
codesearchnet
def defer(coro, delay=1): assert_corofunction(coro=coro) @asyncio.coroutine def wrapper(*args, **kw): (yield from asyncio.sleep(delay)) return (yield from coro(*args, **kw)) return wrapper
Returns a coroutine function wrapper that will defer the given coroutine execution for a certain amount of seconds in a non-blocking way. This function can be used as decorator. Arguments: coro (coroutinefunction): coroutine function to defer. delay (int/float): number of seconds to defer execution. Raises: TypeError: if coro argument is not a coroutine function. Returns: filtered values (list): ordered list of resultant values. Usage:: # Usage as function await paco.defer(coro, delay=1) await paco.defer(coro, delay=0.5) # Usage as decorator @paco.defer(delay=1) async def mul_2(num): return num * 2 await mul_2(2) # => 4
codesearchnet
def ReadPreprocessingInformation(self, knowledge_base): if not self._storage_file: raise IOError('Unable to read from closed storage writer.') self._storage_file.ReadPreprocessingInformation(knowledge_base)
Reads preprocessing information. The preprocessing information contains the system configuration which contains information about various system specific configuration data, for example the user accounts. Args: knowledge_base (KnowledgeBase): is used to store the preprocessing information. Raises: IOError: when the storage writer is closed. OSError: when the storage writer is closed.
juraj-google-style
def _convert_dynamic_dimension_to_zero(shape): if shape.rank is None: return shape return tensor_shape.TensorShape([0 if d is None else d for d in shape.as_list()])
Converts dynamic dimensions in `shape` to zero. The fake params created to match the intermediates captured in other branches could have dynamic dimensions. But the XLA shape is not able to handle dynamic dimensions in TF TensorShape. Setting the dynamic dimensions to size zero will help avoid failing safety checks in bridge. When XLA DynamicConditional op reconciles branch differences, XLA will replace the dimension size 0 with a bounded dimension determined from the shape of real argument in the other branch. Note: Rank unknown shapes are returned as they are. Args: shape: The TensorShape of fake param. Returns: The new TensorShape with dynamic dimensions set to zero.
github-repos
def strip_iterable(self) -> 'IOTypeHints': if self.output_types is None or not self.has_simple_output_type(): return self output_type = self.output_types[0][0] if output_type is None or isinstance(output_type, type(None)): return self if isinstance(output_type, typehints.UnionConstraint): types = list(output_type.union_types) if len(types) == 2: try: types.remove(type(None)) output_type = types[0] except ValueError: pass if isinstance(output_type, typehints.TypeVariable): return self._replace(output_types=((typehints.Any,), {}), origin=self._make_origin([self], tb=False, msg=['strip_iterable()'])) yielded_type = typehints.get_yielded_type(output_type) return self._replace(output_types=((yielded_type,), {}), origin=self._make_origin([self], tb=False, msg=['strip_iterable()']))
Removes outer Iterable (or equivalent) from output type. Only affects instances with simple output types, otherwise is a no-op. Does not modify self. Designed to be used with type hints from callables of ParDo, FlatMap, DoFn. Output type may be Optional[T], in which case the result of stripping T is used as the output type. Output type may be None/NoneType, in which case nothing is done. Example: Generator[Tuple(int, int)] becomes Tuple(int, int) Returns: A copy of this instance with a possibly different output type. Raises: ValueError if output type is simple and not iterable.
github-repos
def add_timeout_callback(self, callback, timeout_milliseconds): from ..server.callbacks import TimeoutCallback cb = TimeoutCallback(self, None, timeout_milliseconds) return self._add_session_callback(cb, callback, one_shot=True, originator=self.add_timeout_callback)
Add callback to be invoked once, after a specified timeout passes. Args: callback (callable) : A callback function to execute after timeout timeout_milliseconds (int) : Number of milliseconds before callback execution. Returns: TimeoutCallback : can be used with ``remove_timeout_callback`` .. note:: Timeout callbacks only work within the context of a Bokeh server session. This function will no effect when Bokeh outputs to standalone HTML or Jupyter notebook cells.
codesearchnet
def compose_object(self, file_list, destination_file, content_type): xml_setting_list = ['<ComposeRequest>'] for meta_data in file_list: xml_setting_list.append('<Component>') for key, val in meta_data.iteritems(): xml_setting_list.append('<%s>%s</%s>' % (key, val, key)) xml_setting_list.append('</Component>') xml_setting_list.append('</ComposeRequest>') xml = ''.join(xml_setting_list) if content_type is not None: headers = {'Content-Type': content_type} else: headers = None status, resp_headers, content = self.put_object( api_utils._quote_filename(destination_file) + '?compose', payload=xml, headers=headers) errors.check_status(status, [200], destination_file, resp_headers, body=content)
COMPOSE multiple objects together. Using the given list of files, calls the put object with the compose flag. This call merges all the files into the destination file. Args: file_list: list of dicts with the file name. destination_file: Path to the destination file. content_type: Content type for the destination file.
juraj-google-style
def __convertRlocToRouterId(self, xRloc16): routerList = [] routerList = self.__sendCommand(WPANCTL_CMD + 'getprop -v Thread:RouterTable') print routerList print xRloc16 for line in routerList: if re.match('\[|\]', line): continue if re.match(WPAN_CARRIER_PROMPT, line, re.M|re.I): break router = [] router = self.__stripValue(line).split(',') for item in router: if 'RouterId' in item: routerid = item.split(':')[1] elif 'RLOC16' in line: rloc16 = line.split(':')[1] else: pass if isinstance(xRloc16, str): rloc16 = '0x' + rloc16 if rloc16 == xRloc16: return routerid elif isinstance(xRloc16, int): if int(rloc16, 16) == xRloc16: return routerid else: pass return None
mapping Rloc16 to router id Args: xRloc16: hex rloc16 short address Returns: actual router id allocated by leader
juraj-google-style
def gradient_tensor(self, x_tensor): x_tensor_name = self._get_tensor_name(x_tensor) if x_tensor_name not in self._gradient_tensors: raise LookupError('This GradientsDebugger has not received any gradient tensor for x-tensor %s' % x_tensor_name) return self._gradient_tensors[x_tensor_name]
Get the gradient tensor of an x-tensor. Args: x_tensor: (`tf.Tensor`, `tf.Variable` or `str`) The x-tensor object or its name. x-tensor refers to the independent `tf.Tensor`, i.e., the tensor on the denominator of the differentiation. Returns: If found, the gradient tensor. Raises: TypeError: If `x_tensor` is not a `tf.Tensor`, `tf.Variable` or `str`. LookupError: If the `x_tensor` has not been registered with a gradient tensor.
github-repos
def load(self, filename, bs=512): self.__filename = filename self.__volumes = [] self.__partition_scheme = rawdisk.scheme.common.detect_scheme(filename) plugin_objects = [plugin.plugin_object for plugin in self.__fs_plugins] fs_detector = FilesystemDetector(fs_plugins=plugin_objects) if self.__partition_scheme == PartitionScheme.SCHEME_MBR: self.__load_mbr_volumes(filename, fs_detector, bs) elif self.__partition_scheme == PartitionScheme.SCHEME_GPT: self.__load_gpt_volumes(filename, fs_detector, bs) else: self.logger.warning('Partitioning scheme could not be determined.') volume = fs_detector.detect_standalone(filename, offset=0) if volume is not None: volume.load(filename, offset=0) self.__volumes.append(volume) else: self.logger.warning( 'Were not able to detect standalone volume type')
Starts filesystem analysis. Detects supported filesystems and \ loads :attr:`partitions` array. Args: filename - Path to file or device for reading. Raises: IOError - File/device does not exist or is not readable.
juraj-google-style
def compose_auth_header( auth: Union[MutableMapping, str, bytes], registry_addr: str = None ) -> str: if isinstance(auth, Mapping): if "identitytoken" in auth: pass elif "auth" in auth: return compose_auth_header(auth["auth"], registry_addr) else: if registry_addr: auth["serveraddress"] = registry_addr auth_json = json.dumps(auth).encode("utf-8") elif isinstance(auth, (str, bytes)): if isinstance(auth, bytes): auth = auth.decode("utf-8") s = base64.b64decode(auth) username, passwd = s.split(b":", 1) config = { "username": username.decode("utf-8"), "password": passwd.decode("utf-8"), "email": None, "serveraddress": registry_addr, } auth_json = json.dumps(config).encode("utf-8") else: raise TypeError("auth must be base64 encoded string/bytes or a dictionary") auth = base64.b64encode(auth_json).decode("ascii") return auth
Validate and compose base64-encoded authentication header with an optional support for parsing legacy-style "user:password" strings. Args: auth: Authentication information registry_addr: An address of the registry server Returns: A base64-encoded X-Registry-Auth header value
juraj-google-style
def set_state_vector(self, state: Union[(int, np.ndarray)]): self._stepper.reset_state(state)
Updates the state of the simulator to the given new state. Args: state: If this is an int, then this is the state to reset the stepper to, expressed as an integer of the computational basis. Integer to bitwise indices is little endian. Otherwise if this is a np.ndarray this must be the correct size and have dtype of np.complex64. Raises: ValueError if the state is incorrectly sized or not of the correct dtype.
codesearchnet
def write(self, file_prefix: str) -> str:
Serializes proto to disk. Args: file_prefix: string prefix of the filepath. Returns: The actual path the proto is written to.
github-repos
def load_yaml(path): with open(path, 'rt') as f: yamldict = yaml.load(f.read(), Loader=yamlloader.ordereddict.CSafeLoader) if not yamldict: raise (LoadError('YAML file: %s is empty!' % path)) return yamldict
Load YAML file into an ordered dictionary Args: path (str): Path to YAML file Returns: OrderedDict: Ordered dictionary containing loaded YAML file
juraj-google-style
def process(filename, args, detector_classes, printer_classes): ast = '--ast-compact-json' if args.legacy_ast: ast = '--ast-json' args.filter_paths = parse_filter_paths(args) slither = Slither(filename, ast_format=ast, **vars(args)) return _process(slither, detector_classes, printer_classes)
The core high-level code for running Slither static analysis. Returns: list(result), int: Result list and number of contracts analyzed
codesearchnet
def parse_args(test: typing.Optional[typing.List[str]]=None) -> argparse.Namespace: parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('weight_file', help='A file path for the learned weights.') parser.add_argument('-o', '--outfile', help='A file path to export a model file. (default: model.json)', default='model.json', type=str) parser.add_argument('--scale', help='A scale factor for the output scores', default=1000, type=int) if test is None: return parser.parse_args() else: return parser.parse_args(test)
Parses commandline arguments. Args: test (typing.Optional[typing.List[str]], optional): Commandline args for testing. Defaults to None. Returns: Parsed arguments (argparse.Namespace).
github-repos
def _add_state_variable(self, name, shape, dtype, initializer=None, partitioner=None, use_resource=None, **kwargs): weight = self.add_weight(name=name, shape=shape, dtype=dtype, initializer=initializer, regularizer=None, trainable=False, constraint=None, partitioner=partitioner, use_resource=use_resource, **kwargs) self.state_variables[name] = weight return weight
Add a variable that can hold state which is updated during adapt(). Args: name: Variable name. shape: Variable shape. Defaults to scalar if unspecified. dtype: The type of the variable. Defaults to `self.dtype` or `float32`. initializer: initializer instance (callable). partitioner: Partitioner to be passed to the `Trackable` API. use_resource: Whether to use `ResourceVariable` **kwargs: Additional keyword arguments. Accepted values are `getter` and `collections`. Returns: The created variable.
github-repos
def select_segments(self, jsonpath: str) -> List[Segment]: path = self.etk.parse_json_path(jsonpath) matches = path.find(self.cdr_document) segments = list() for a_match in matches: this_segment = Segment(str(a_match.full_path), a_match.value, self) segments.append(this_segment) return segments
Dereferences the json_path inside the document and returns the selected elements. This method should compile and cache the compiled json_path in case the same path is reused by multiple extractors. Args: jsonpath (str): a valid JSON path. Returns: A list of Segments object that contains the elements selected by the json path.
codesearchnet
def Sample(self, operation, description, data_size, compressed_data_size): sample_time = time.time() sample = '{0:f}\t{1:s}\t{2:s}\t{3:d}\t{4:d}\n'.format( sample_time, operation, description, data_size, compressed_data_size) self._WritesString(sample)
Takes a sample of data read or written for profiling. Args: operation (str): operation, either 'read' or 'write'. description (str): description of the data read. data_size (int): size of the data read in bytes. compressed_data_size (int): size of the compressed data read in bytes.
juraj-google-style