text
stringlengths 31
243k
| type
stringclasses 1
value | start
int64 36
275k
| end
int64 286
280k
| depth
int64 0
1
| filepath
stringlengths 85
188
| parent_class
stringclasses 3
values | class_index
int64 0
10.8k
|
---|---|---|---|---|---|---|---|
class Speech2TextProcessor(ProcessorMixin):
r"""
Constructs a Speech2Text processor which wraps a Speech2Text feature extractor and a Speech2Text tokenizer into a
single processor.
[`Speech2TextProcessor`] offers all the functionalities of [`Speech2TextFeatureExtractor`] and
[`Speech2TextTokenizer`]. See the [`~Speech2TextProcessor.__call__`] and [`~Speech2TextProcessor.decode`] for more
information.
Args:
feature_extractor (`Speech2TextFeatureExtractor`):
An instance of [`Speech2TextFeatureExtractor`]. The feature extractor is a required input.
tokenizer (`Speech2TextTokenizer`):
An instance of [`Speech2TextTokenizer`]. The tokenizer is a required input.
"""
feature_extractor_class = "Speech2TextFeatureExtractor"
tokenizer_class = "Speech2TextTokenizer"
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
self.current_processor = self.feature_extractor
self._in_target_context_manager = False
def __call__(self, *args, **kwargs):
"""
When used in normal mode, this method forwards all its arguments to Speech2TextFeatureExtractor's
[`~Speech2TextFeatureExtractor.__call__`] and returns its output. If used in the context
[`~Speech2TextProcessor.as_target_processor`] this method forwards all its arguments to Speech2TextTokenizer's
[`~Speech2TextTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more
information.
"""
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*args, **kwargs)
if "raw_speech" in kwargs:
warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.")
audio = kwargs.pop("raw_speech")
else:
audio = kwargs.pop("audio", None)
sampling_rate = kwargs.pop("sampling_rate", None)
text = kwargs.pop("text", None)
if len(args) > 0:
audio = args[0]
args = args[1:]
if audio is None and text is None:
raise ValueError("You need to specify either an `audio` or `text` input to process.")
if audio is not None:
inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
if text is not None:
encodings = self.tokenizer(text, **kwargs)
if text is None:
return inputs
elif audio is None:
return encodings
else:
inputs["labels"] = encodings["input_ids"]
return inputs
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Speech2TextTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Speech2TextTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer
to the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@contextmanager
def as_target_processor(self):
"""
Temporarily sets the tokenizer for processing the input. Useful for encoding the labels when fine-tuning
Speech2Text.
"""
warnings.warn(
"`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
"labels by using the argument `text` of the regular `__call__` method (either in the same call as "
"your audio inputs, or in a separate call."
)
self._in_target_context_manager = True
self.current_processor = self.tokenizer
yield
self.current_processor = self.feature_extractor
self._in_target_context_manager = False
|
class_definition
| 757 | 4,818 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/processing_speech_to_text.py
| null | 3,300 |
class GemmaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GemmaModel`]. It is used to instantiate an Gemma
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Gemma-7B.
e.g. [google/gemma-7b](https://huggingface.co/google/gemma-7b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 256000):
Vocabulary size of the Gemma model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GemmaModel`]
hidden_size (`int`, *optional*, defaults to 3072):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 24576):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 28):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 16):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
head_dim (`int`, *optional*, defaults to 256):
The attention head dimension.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The legacy activation function. It is overwritten by the `hidden_activation`.
hidden_activation (`str` or `function`, *optional*):
The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"`
if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function.
max_position_embeddings (`int`, *optional*, defaults to 8192):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
eos_token_id (`int`, *optional*, defaults to 1):
End of stream token id.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
```python
>>> from transformers import GemmaModel, GemmaConfig
>>> # Initializing a Gemma gemma-7b style configuration
>>> configuration = GemmaConfig()
>>> # Initializing a model from the gemma-7b style configuration
>>> model = GemmaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gemma"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=256000,
hidden_size=3072,
intermediate_size=24576,
num_hidden_layers=28,
num_attention_heads=16,
num_key_value_heads=16,
head_dim=256,
hidden_act="gelu_pytorch_tanh",
hidden_activation=None,
max_position_embeddings=8192,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
eos_token_id=1,
bos_token_id=2,
tie_word_embeddings=True,
rope_theta=10000.0,
attention_bias=False,
attention_dropout=0.0,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.head_dim = head_dim
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.hidden_activation = hidden_activation
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
|
class_definition
| 1,504 | 7,757 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modular_gemma.py
| null | 3,301 |
class GemmaTokenizer(LlamaTokenizer, PreTrainedTokenizer):
"""
Construct a Gemma tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
no padding token in the original model.
Args:
vocab_file (`str`):
Path to the vocabulary file.
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<bos>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<eos>"`):
The end of sequence token.
pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<pad>"`):
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
attention mechanisms or loss computation.
sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
add_bos_token (`bool`, *optional*, defaults to `True`):
Whether or not to add an `bos_token` at the start of sequences.
add_eos_token (`bool`, *optional*, defaults to `False`):
Whether or not to add an `eos_token` at the end of sequences.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
extra spaces.
use_default_system_prompt (`bool`, *optional*, defaults to `False`):
Whether or not the default system prompt for Gemma should be used.
spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to add spaces between special tokens.
"""
def __init__(
self,
vocab_file,
unk_token="<unk>",
bos_token="<bos>",
eos_token="<eos>",
pad_token="<pad>",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
add_bos_token=True,
add_eos_token=False,
clean_up_tokenization_spaces=False,
use_default_system_prompt=False,
spaces_between_special_tokens=False,
**kwargs,
):
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
self.vocab_file = vocab_file
self.add_bos_token = add_bos_token
self.add_eos_token = add_eos_token
self.use_default_system_prompt = use_default_system_prompt
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)
PreTrainedTokenizer.__init__(
self,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
sp_model_kwargs=sp_model_kwargs,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
use_default_system_prompt=use_default_system_prompt,
spaces_between_special_tokens=spaces_between_special_tokens,
**kwargs,
)
def get_spm_processor(self):
raise AttributeError("Not needed for Gemma")
def unk_token_length(self):
raise AttributeError("Not needed for Gemma")
def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
"""
Args:
text: TextInput
Simply calls PreTrainedTokenizer's method
"""
return PreTrainedTokenizer.tokenize(self, text, **kwargs)
def _tokenize(self, text, **kwargs):
"""
Args:
text: TextInput
Returns a tokenized string. The Gemma tokenizer never adds a prefix space.
"""
return self.sp_model.encode(text, out_type=str)
def _decode(
self,
token_ids: List[int],
skip_special_tokens: bool = False,
spaces_between_special_tokens: bool = False,
**kwargs,
) -> str:
sub_texts = []
current_sub_text = []
for ids in token_ids:
if skip_special_tokens and ids in self.all_special_ids:
continue
if ids in self._added_tokens_decoder:
if current_sub_text:
sub_texts.append(self.sp_model.decode(current_sub_text))
sub_texts.append(self._added_tokens_decoder[ids].content)
current_sub_text = []
else:
current_sub_text.append(ids)
if current_sub_text:
sub_texts.append(self.sp_model.decode(current_sub_text))
if spaces_between_special_tokens:
sub_texts = " ".join(sub_texts)
else:
sub_texts = "".join(sub_texts)
return sub_texts.replace(SPIECE_UNDERLINE, " ")
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
out_string = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self._added_tokens_encoder:
out_string += self.sp_model.decode(current_sub_tokens) + token
current_sub_tokens = []
else:
current_sub_tokens.append(token)
out_string += self.sp_model.decode(current_sub_tokens)
return out_string
|
class_definition
| 7,760 | 14,786 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modular_gemma.py
| null | 3,302 |
class GemmaRMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.zeros(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float())
# Llama does x.to(float16) * w whilst Gemma is (x * w).to(float16)
# See https://github.com/huggingface/transformers/pull/29402
output = output * (1.0 + self.weight.float())
return output.type_as(x)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.eps}"
|
class_definition
| 14,789 | 15,460 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modular_gemma.py
| null | 3,303 |
class GemmaMLP(LlamaMLP):
def __init__(self, config):
super().__init__()
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
class_definition
| 15,463 | 15,812 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modular_gemma.py
| null | 3,304 |
class GemmaModel(LlamaModel):
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
# embed positions
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# normalized
# Gemma downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
# See https://github.com/huggingface/transformers/pull/29402
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
hidden_states = hidden_states * normalizer
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
output = BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
return output if return_dict else output.to_tuple()
|
class_definition
| 15,815 | 20,493 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modular_gemma.py
| null | 3,305 |
class GemmaForCausalLM(LlamaForCausalLM):
def forward(**super_kwargs):
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
num_logits_to_keep (`int`, *optional*):
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, GemmaForCausalLM
>>> model = GemmaForCausalLM.from_pretrained("google/gemma-7b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"
```"""
return super().forward(**super_kwargs)
|
class_definition
| 20,496 | 22,145 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modular_gemma.py
| null | 3,306 |
class GemmaForSequenceClassification(LlamaForSequenceClassification):
pass
|
class_definition
| 22,148 | 22,226 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modular_gemma.py
| null | 3,307 |
class GemmaForTokenClassification(LlamaForTokenClassification):
pass
|
class_definition
| 22,229 | 22,301 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modular_gemma.py
| null | 3,308 |
class GemmaTokenizer(PreTrainedTokenizer):
"""
Construct a Gemma tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
no padding token in the original model.
Args:
vocab_file (`str`):
Path to the vocabulary file.
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<bos>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<eos>"`):
The end of sequence token.
pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<pad>"`):
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
attention mechanisms or loss computation.
sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
add_bos_token (`bool`, *optional*, defaults to `True`):
Whether or not to add an `bos_token` at the start of sequences.
add_eos_token (`bool`, *optional*, defaults to `False`):
Whether or not to add an `eos_token` at the end of sequences.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
extra spaces.
use_default_system_prompt (`bool`, *optional*, defaults to `False`):
Whether or not the default system prompt for Gemma should be used.
spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to add spaces between special tokens.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
unk_token="<unk>",
bos_token="<bos>",
eos_token="<eos>",
pad_token="<pad>",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
add_bos_token=True,
add_eos_token=False,
clean_up_tokenization_spaces=False,
use_default_system_prompt=False,
spaces_between_special_tokens=False,
**kwargs,
):
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
self.vocab_file = vocab_file
self.add_bos_token = add_bos_token
self.add_eos_token = add_eos_token
self.use_default_system_prompt = use_default_system_prompt
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
sp_model_kwargs=sp_model_kwargs,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
use_default_system_prompt=use_default_system_prompt,
spaces_between_special_tokens=spaces_between_special_tokens,
**kwargs,
)
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
return state
def __setstate__(self, d):
self.__dict__.update(d)
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
@property
def vocab_size(self):
"""Returns vocab size"""
return self.sp_model.get_piece_size()
def get_vocab(self):
"""Returns vocab as a dict"""
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
"""
Args:
text: TextInput
Simply calls PreTrainedTokenizer's method
"""
return super().tokenize(text, **kwargs)
def _tokenize(self, text, **kwargs):
"""
Args:
text: TextInput
Returns a tokenized string. The Gemma tokenizer never adds a prefix space.
"""
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.piece_to_id(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
token = self.sp_model.IdToPiece(index)
return token
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
out_string = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self._added_tokens_encoder:
out_string += self.sp_model.decode(current_sub_tokens) + token
current_sub_tokens = []
else:
current_sub_tokens.append(token)
out_string += self.sp_model.decode(current_sub_tokens)
return out_string
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
"""
Save the vocabulary and special tokens file to a directory.
Args:
save_directory (`str`):
The directory in which to save the vocabulary.
Returns:
`Tuple(str)`: Paths to the files saved.
"""
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = bos_token_id + token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + bos_token_id + token_ids_1 + eos_token_id
return output
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
bos_token_id = [1] if self.add_bos_token else []
eos_token_id = [1] if self.add_eos_token else []
if token_ids_1 is None:
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
return (
bos_token_id
+ ([0] * len(token_ids_0))
+ eos_token_id
+ bos_token_id
+ ([0] * len(token_ids_1))
+ eos_token_id
)
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
if token_ids_1 is None, only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
if token_ids_1 is not None:
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
return output
def _decode(
self,
token_ids: List[int],
skip_special_tokens: bool = False,
spaces_between_special_tokens: bool = False,
**kwargs,
) -> str:
sub_texts = []
current_sub_text = []
for ids in token_ids:
if skip_special_tokens and ids in self.all_special_ids:
continue
if ids in self._added_tokens_decoder:
if current_sub_text:
sub_texts.append(self.sp_model.decode(current_sub_text))
sub_texts.append(self._added_tokens_decoder[ids].content)
current_sub_text = []
else:
current_sub_text.append(ids)
if current_sub_text:
sub_texts.append(self.sp_model.decode(current_sub_text))
if spaces_between_special_tokens:
sub_texts = " ".join(sub_texts)
else:
sub_texts = "".join(sub_texts)
return sub_texts.replace(SPIECE_UNDERLINE, " ")
|
class_definition
| 1,875 | 14,134 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/tokenization_gemma.py
| null | 3,309 |
class GemmaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GemmaModel`]. It is used to instantiate an Gemma
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Gemma-7B.
e.g. [google/gemma-7b](https://huggingface.co/google/gemma-7b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 256000):
Vocabulary size of the Gemma model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GemmaModel`]
hidden_size (`int`, *optional*, defaults to 3072):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 24576):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 28):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 16):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
head_dim (`int`, *optional*, defaults to 256):
The attention head dimension.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The legacy activation function. It is overwritten by the `hidden_activation`.
hidden_activation (`str` or `function`, *optional*):
The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"`
if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function.
max_position_embeddings (`int`, *optional*, defaults to 8192):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
eos_token_id (`int`, *optional*, defaults to 1):
End of stream token id.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
```python
>>> from transformers import GemmaModel, GemmaConfig
>>> # Initializing a Gemma gemma-7b style configuration
>>> configuration = GemmaConfig()
>>> # Initializing a model from the gemma-7b style configuration
>>> model = GemmaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gemma"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=256000,
hidden_size=3072,
intermediate_size=24576,
num_hidden_layers=28,
num_attention_heads=16,
num_key_value_heads=16,
head_dim=256,
hidden_act="gelu_pytorch_tanh",
hidden_activation=None,
max_position_embeddings=8192,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
eos_token_id=1,
bos_token_id=2,
tie_word_embeddings=True,
rope_theta=10000.0,
attention_bias=False,
attention_dropout=0.0,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.head_dim = head_dim
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.hidden_activation = hidden_activation
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
|
class_definition
| 1,505 | 7,758 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/configuration_gemma.py
| null | 3,310 |
class GemmaTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a Gemma tokenizer fast. Based on byte-level Byte-Pair-Encoding.
This uses notably ByteFallback and no prefix space. Normalization is applied to replace `" "` with `"▁"`
```python
>>> from transformers import GemmaTokenizerFast
>>> tokenizer = GemmaTokenizerFast.from_pretrained("hf-internal-testing/dummy-gemma")
>>> tokenizer.encode("Hello this is a test")
[2, 4521, 736, 603, 476, 2121]
```
If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or
call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the
values of the first token and final token of an encoded sequence will not be correct). For more details, checkout
[post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`, *optional*):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that
contains the vocabulary necessary to instantiate a tokenizer.
tokenizer_file (`str`, *optional*):
[tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
contains everything needed to load the tokenizer.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
extra spaces.
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<bos>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<eos>"`):
The end of sequence token.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The padding token
add_bos_token (`bool`, *optional*, defaults to `True`):
Whether or not to add an `bos_token` at the start of sequences.
add_eos_token (`bool`, *optional*, defaults to `False`):
Whether or not to add an `eos_token` at the end of sequences.
"""
vocab_files_names = VOCAB_FILES_NAMES
slow_tokenizer_class = GemmaTokenizer
padding_side = "left"
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
clean_up_tokenization_spaces=False,
unk_token="<unk>",
bos_token="<bos>",
eos_token="<eos>",
pad_token="<pad>",
add_bos_token=True,
add_eos_token=False,
**kwargs,
):
super().__init__(
vocab_file=vocab_file,
tokenizer_file=tokenizer_file,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
**kwargs,
)
self._add_bos_token = add_bos_token
self._add_eos_token = add_eos_token
self.update_post_processor()
self.vocab_file = vocab_file
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
# Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.update_post_processor
def update_post_processor(self):
"""
Updates the underlying post processor with the current `bos_token` and `eos_token`.
"""
bos = self.bos_token
bos_token_id = self.bos_token_id
if bos is None and self.add_bos_token:
raise ValueError("add_bos_token = True but bos_token = None")
eos = self.eos_token
eos_token_id = self.eos_token_id
if eos is None and self.add_eos_token:
raise ValueError("add_eos_token = True but eos_token = None")
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
special_tokens = []
if self.add_bos_token:
special_tokens.append((bos, bos_token_id))
if self.add_eos_token:
special_tokens.append((eos, eos_token_id))
self._tokenizer.post_processor = processors.TemplateProcessing(
single=single, pair=pair, special_tokens=special_tokens
)
@property
def add_eos_token(self):
return self._add_eos_token
@property
def add_bos_token(self):
return self._add_bos_token
@add_eos_token.setter
def add_eos_token(self, value):
self._add_eos_token = value
self.update_post_processor()
@add_bos_token.setter
def add_bos_token(self, value):
self._add_bos_token = value
self.update_post_processor()
# Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer."
)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
# Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = bos_token_id + token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + bos_token_id + token_ids_1 + eos_token_id
return output
|
class_definition
| 1,168 | 8,278 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/tokenization_gemma_fast.py
| null | 3,311 |
class FlaxGemmaRMSNorm(nn.Module):
config: GemmaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.epsilon = self.config.rms_norm_eps
self.weight = self.param("weight", lambda _, shape: jnp.ones(shape), self.config.hidden_size)
def __call__(self, hidden_states):
variance = jnp.asarray(hidden_states, dtype=jnp.float32)
variance = jnp.power(variance, 2)
variance = variance.mean(-1, keepdims=True)
# use `jax.numpy.sqrt` as `jax.lax.rsqrt` does not match `torch.rsqrt`
hidden_states = hidden_states / jnp.sqrt(variance + self.epsilon)
return (1 + self.weight) * jnp.asarray(hidden_states, dtype=self.dtype)
|
class_definition
| 7,245 | 7,943 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modeling_flax_gemma.py
| null | 3,312 |
class FlaxGemmaRotaryEmbedding(nn.Module):
config: GemmaConfig
dtype: jnp.dtype = jnp.float32
# Ignore copy
def setup(self):
head_dim = self.config.head_dim
self.sincos = create_sinusoidal_positions(self.config.max_position_embeddings, head_dim)
def __call__(self, key, query, position_ids):
sincos = self.sincos[position_ids]
sin_pos, cos_pos = jnp.split(sincos, 2, axis=-1)
key = apply_rotary_pos_emb(key, sin_pos, cos_pos)
query = apply_rotary_pos_emb(query, sin_pos, cos_pos)
key = jnp.asarray(key, dtype=self.dtype)
query = jnp.asarray(query, dtype=self.dtype)
return key, query
|
class_definition
| 8,049 | 8,729 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modeling_flax_gemma.py
| null | 3,313 |
class FlaxGemmaAttention(nn.Module):
config: GemmaConfig
dtype: jnp.dtype = jnp.float32
causal: bool = True
is_cross_attention: bool = False
def setup(self):
config = self.config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = config.head_dim
self.attention_softmax_in_fp32 = self.dtype is not jnp.float32
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
kernel = jax.nn.initializers.normal(self.config.initializer_range)
self.q_proj = nn.Dense(
self.num_heads * self.head_dim, use_bias=config.attention_bias, dtype=self.dtype, kernel_init=kernel
)
self.k_proj = nn.Dense(
self.num_key_value_heads * self.head_dim,
use_bias=config.attention_bias,
dtype=self.dtype,
kernel_init=kernel,
)
self.v_proj = nn.Dense(
self.num_key_value_heads * self.head_dim,
use_bias=config.attention_bias,
dtype=self.dtype,
kernel_init=kernel,
)
self.o_proj = nn.Dense(self.embed_dim, use_bias=config.attention_bias, dtype=self.dtype, kernel_init=kernel)
self.causal_mask = make_causal_mask(jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool")
self.rotary_emb = FlaxGemmaRotaryEmbedding(config, dtype=self.dtype)
def _split_heads(self, hidden_states, num_heads):
return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads * self.head_dim,))
@nn.compact
# Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoSelfAttention._concatenate_to_cache
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slighly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states,
attention_mask,
position_ids,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
):
query = self.q_proj(hidden_states)
key = self.k_proj(hidden_states)
value = self.v_proj(hidden_states)
query = self._split_heads(query, self.num_heads)
key = self._split_heads(key, self.num_key_value_heads)
value = self._split_heads(value, self.num_key_value_heads)
key, query = self.rotary_emb(key, query, position_ids)
query_length, key_length = query.shape[1], key.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
batch_size = hidden_states.shape[0]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
dropout_rng = None
if not deterministic and self.config.attention_dropout > 0.0:
dropout_rng = self.make_rng("dropout")
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.has_variable("cache", "cached_key") or init_cache:
key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)
# transform boolean mask into float mask
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
key = jnp.repeat(key, repeats=self.num_key_value_groups, axis=2)
value = jnp.repeat(value, repeats=self.num_key_value_groups, axis=2)
# usual dot product attention
attention_dtype = jnp.float32 if self.attention_softmax_in_fp32 else self.dtype
attn_weights = dot_product_attention_weights(
query,
key,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.config.attention_dropout,
deterministic=deterministic,
dtype=attention_dtype,
)
if self.attention_softmax_in_fp32:
attn_weights = attn_weights.astype(self.dtype)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
attn_output = self._merge_heads(attn_output)
attn_output = self.o_proj(attn_output)
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
|
class_definition
| 8,732 | 15,846 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modeling_flax_gemma.py
| null | 3,314 |
class FlaxGemmaMLP(nn.Module):
config: GemmaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
embed_dim = self.config.hidden_size
inner_dim = self.config.intermediate_size if self.config.intermediate_size is not None else 4 * embed_dim
kernel_init = jax.nn.initializers.normal(self.config.initializer_range)
if self.config.hidden_activation is None:
logger.warning_once(
"Gemma's activation function should be approximate GeLU and not exact GeLU. "
"Changing the activation function to `gelu_pytorch_tanh`."
f"if you want to use the legacy `{self.config.hidden_act}`, "
f"edit the `model.config` to set `hidden_activation={self.config.hidden_act}` "
" instead of `hidden_act`. See https://github.com/huggingface/transformers/pull/29402 for more details."
)
hidden_activation = "gelu_pytorch_tanh"
else:
hidden_activation = self.config.hidden_activation
self.act = ACT2FN[hidden_activation]
self.gate_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init)
self.down_proj = nn.Dense(embed_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init)
self.up_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init)
def __call__(self, hidden_states):
up_proj_states = self.up_proj(hidden_states)
gate_states = self.act(self.gate_proj(hidden_states))
hidden_states = self.down_proj(up_proj_states * gate_states)
return hidden_states
|
class_definition
| 15,849 | 17,499 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modeling_flax_gemma.py
| null | 3,315 |
class FlaxGemmaDecoderLayer(nn.Module):
config: GemmaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.input_layernorm = FlaxGemmaRMSNorm(self.config, dtype=self.dtype)
self.self_attn = FlaxGemmaAttention(self.config, dtype=self.dtype)
self.post_attention_layernorm = FlaxGemmaRMSNorm(self.config, dtype=self.dtype)
self.mlp = FlaxGemmaMLP(self.config, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask=None,
position_ids=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
outputs = self.self_attn(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
)
# residual connection
attn_output = outputs[0]
hidden_states = residual + attn_output
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
# residual connection
hidden_states = residual + hidden_states
return (hidden_states,) + outputs[1:]
|
class_definition
| 17,602 | 19,015 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modeling_flax_gemma.py
| null | 3,316 |
class FlaxGemmaPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GemmaConfig
base_model_prefix = "model"
module_class: nn.Module = None
def __init__(
self,
config: GemmaConfig,
input_shape: Tuple = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def init_cache(self, batch_size, max_length):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
"""
# init input variables to retrieve cache
input_ids = jnp.ones((batch_size, max_length))
attention_mask = jnp.ones_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
init_variables = self.module.init(
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
)
return unfreeze(init_variables["cache"])
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
def __call__(
self,
input_ids,
attention_mask=None,
position_ids=None,
params: dict = None,
past_key_values: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
batch_size, sequence_length = input_ids.shape
if position_ids is None:
if past_key_values is not None:
raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
if attention_mask is None:
attention_mask = jnp.ones((batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGemmaAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
jnp.array(position_ids, dtype="i4"),
not train,
False,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
mutable=mutable,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past_key_values = outputs
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past_key_values = outputs
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
return outputs
|
class_definition
| 19,163 | 24,476 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modeling_flax_gemma.py
| null | 3,317 |
class FlaxGemmaLayerCollection(nn.Module):
config: GemmaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.blocks = [
FlaxGemmaDecoderLayer(self.config, dtype=self.dtype, name=str(i))
for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
attention_mask=None,
position_ids=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = False,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for block in self.blocks:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = block(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
# this contains possible `None` values - `FlaxGemmaModule` will filter them out
outputs = (hidden_states, all_hidden_states, all_attentions)
return outputs
|
class_definition
| 24,582 | 26,057 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modeling_flax_gemma.py
| null | 3,318 |
class FlaxGemmaModule(nn.Module):
config: GemmaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.hidden_size = self.config.hidden_size
embedding_init = jax.nn.initializers.normal(stddev=self.config.initializer_range)
self.embed_tokens = nn.Embed(
self.config.vocab_size,
self.hidden_size,
embedding_init=embedding_init,
dtype=self.dtype,
)
self.layers = FlaxGemmaLayerCollection(self.config, dtype=self.dtype)
self.norm = FlaxGemmaRMSNorm(self.config, dtype=self.dtype)
# Ignore copy
def __call__(
self,
input_ids,
attention_mask=None,
position_ids=None,
deterministic=True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
input_embeds = self.embed_tokens(input_ids.astype("i4"))
input_embeds = input_embeds * (self.config.hidden_size**0.5)
outputs = self.layers(
input_embeds,
position_ids=position_ids,
attention_mask=attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.norm(hidden_states)
if output_hidden_states:
all_hidden_states = outputs[1] + (hidden_states,)
outputs = (hidden_states, all_hidden_states) + outputs[2:]
else:
outputs = (hidden_states,) + outputs[1:]
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=outputs[1],
attentions=outputs[-1],
)
|
class_definition
| 26,154 | 28,134 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modeling_flax_gemma.py
| null | 3,319 |
class FlaxGemmaModel(FlaxGemmaPreTrainedModel):
module_class = FlaxGemmaModule
|
class_definition
| 28,385 | 28,467 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modeling_flax_gemma.py
| null | 3,320 |
class FlaxGemmaForCausalLMModule(nn.Module):
config: GemmaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.model = FlaxGemmaModule(self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.config.vocab_size,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
# Ignore copy
def __call__(
self,
input_ids,
attention_mask=None,
position_ids=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
outputs = self.model(
input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_kernel = self.model.variables["params"]["embed_tokens"]["embedding"].T
lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states)
else:
lm_logits = self.lm_head(hidden_states)
if not return_dict:
return (lm_logits,) + outputs[1:]
return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
|
class_definition
| 28,746 | 30,379 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modeling_flax_gemma.py
| null | 3,321 |
class FlaxGemmaForCausalLM(FlaxGemmaPreTrainedModel):
module_class = FlaxGemmaForCausalLMModule
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since Gemma uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
position_ids = attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"attention_mask": extended_attention_mask,
"position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
return model_kwargs
|
class_definition
| 30,631 | 32,156 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modeling_flax_gemma.py
| null | 3,322 |
class GemmaRMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.zeros(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float())
# Llama does x.to(float16) * w whilst Gemma is (x * w).to(float16)
# See https://github.com/huggingface/transformers/pull/29402
output = output * (1.0 + self.weight.float())
return output.type_as(x)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.eps}"
|
class_definition
| 2,479 | 3,150 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modeling_gemma.py
| null | 3,323 |
class GemmaMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
|
class_definition
| 3,153 | 3,821 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modeling_gemma.py
| null | 3,324 |
class GemmaRotaryEmbedding(nn.Module):
def __init__(self, config: GemmaConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
def _dynamic_frequency_update(self, position_ids, device):
"""
dynamic RoPE layers should recompute `inv_freq` in the following situations:
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
"""
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
self.max_seq_len_cached = seq_len
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
# This .to() is needed if the model has been moved to a device after being initialized (because
# the buffer is automatically moved, but not the original copy)
self.original_inv_freq = self.original_inv_freq.to(device)
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.original_max_seq_len
@torch.no_grad()
def forward(self, x, position_ids):
if "dynamic" in self.rope_type:
self._dynamic_frequency_update(position_ids, device=x.device)
# Core RoPE block
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
cos = cos * self.attention_scaling
sin = sin * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
class_definition
| 3,824 | 7,019 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modeling_gemma.py
| null | 3,325 |
class GemmaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: GemmaConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
|
class_definition
| 10,298 | 13,865 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modeling_gemma.py
| null | 3,326 |
class GemmaDecoderLayer(nn.Module):
def __init__(self, config: GemmaConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = GemmaAttention(config=config, layer_idx=layer_idx)
self.mlp = GemmaMLP(config)
self.input_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
|
class_definition
| 13,868 | 15,938 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modeling_gemma.py
| null | 3,327 |
class GemmaPreTrainedModel(PreTrainedModel):
config_class = GemmaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["GemmaDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
|
class_definition
| 16,960 | 17,883 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modeling_gemma.py
| null | 3,328 |
class GemmaModel(GemmaPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GemmaDecoderLayer`]
Args:
config: GemmaConfig
"""
def __init__(self, config: GemmaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[GemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = GemmaRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
# embed positions
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# normalized
# Gemma downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
# See https://github.com/huggingface/transformers/pull/29402
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
hidden_states = hidden_states * normalizer
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
output = BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
return output if return_dict else output.to_tuple()
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
|
class_definition
| 22,687 | 34,193 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modeling_gemma.py
| null | 3,329 |
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
|
class_definition
| 34,196 | 34,258 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modeling_gemma.py
| null | 3,330 |
class GemmaForCausalLM(GemmaPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
def __init__(self, config):
super().__init__(config)
self.model = GemmaModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
num_logits_to_keep: int = 0,
**kwargs: Unpack[KwargsForCausalLM],
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
num_logits_to_keep (`int`, *optional*):
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, GemmaForCausalLM
>>> model = GemmaForCausalLM.from_pretrained("google/gemma-7b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 34,261 | 39,305 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modeling_gemma.py
| null | 3,331 |
class GemmaForSequenceClassification(GemmaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = GemmaModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
|
class_definition
| 40,098 | 43,910 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modeling_gemma.py
| null | 3,332 |
class GemmaForTokenClassification(GemmaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = GemmaModel(config)
if getattr(config, "classifier_dropout", None) is not None:
classifier_dropout = config.classifier_dropout
elif getattr(config, "hidden_dropout", None) is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.score = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.score(sequence_output)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.config)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 44,157 | 47,369 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma/modeling_gemma.py
| null | 3,333 |
class TimeSeriesTransformerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`TimeSeriesTransformerModel`]. It is used to
instantiate a Time Series Transformer model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Time Series
Transformer
[huggingface/time-series-transformer-tourism-monthly](https://huggingface.co/huggingface/time-series-transformer-tourism-monthly)
architecture.
Configuration objects inherit from [`PretrainedConfig`] can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
prediction_length (`int`):
The prediction length for the decoder. In other words, the prediction horizon of the model. This value is
typically dictated by the dataset and we recommend to set it appropriately.
context_length (`int`, *optional*, defaults to `prediction_length`):
The context length for the encoder. If `None`, the context length will be the same as the
`prediction_length`.
distribution_output (`string`, *optional*, defaults to `"student_t"`):
The distribution emission head for the model. Could be either "student_t", "normal" or "negative_binomial".
loss (`string`, *optional*, defaults to `"nll"`):
The loss function for the model corresponding to the `distribution_output` head. For parametric
distributions it is the negative log likelihood (nll) - which currently is the only supported one.
input_size (`int`, *optional*, defaults to 1):
The size of the target variable which by default is 1 for univariate targets. Would be > 1 in case of
multivariate targets.
scaling (`string` or `bool`, *optional* defaults to `"mean"`):
Whether to scale the input targets via "mean" scaler, "std" scaler or no scaler if `None`. If `True`, the
scaler is set to "mean".
lags_sequence (`list[int]`, *optional*, defaults to `[1, 2, 3, 4, 5, 6, 7]`):
The lags of the input time series as covariates often dictated by the frequency of the data. Default is
`[1, 2, 3, 4, 5, 6, 7]` but we recommend to change it based on the dataset appropriately.
num_time_features (`int`, *optional*, defaults to 0):
The number of time features in the input time series.
num_dynamic_real_features (`int`, *optional*, defaults to 0):
The number of dynamic real valued features.
num_static_categorical_features (`int`, *optional*, defaults to 0):
The number of static categorical features.
num_static_real_features (`int`, *optional*, defaults to 0):
The number of static real valued features.
cardinality (`list[int]`, *optional*):
The cardinality (number of different values) for each of the static categorical features. Should be a list
of integers, having the same length as `num_static_categorical_features`. Cannot be `None` if
`num_static_categorical_features` is > 0.
embedding_dimension (`list[int]`, *optional*):
The dimension of the embedding for each of the static categorical features. Should be a list of integers,
having the same length as `num_static_categorical_features`. Cannot be `None` if
`num_static_categorical_features` is > 0.
d_model (`int`, *optional*, defaults to 64):
Dimensionality of the transformer layers.
encoder_layers (`int`, *optional*, defaults to 2):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 2):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 2):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 2):
Number of attention heads for each attention layer in the Transformer decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 32):
Dimension of the "intermediate" (often named feed-forward) layer in encoder.
decoder_ffn_dim (`int`, *optional*, defaults to 32):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and decoder. If string, `"gelu"` and
`"relu"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the encoder, and decoder.
encoder_layerdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for the attention and fully connected layers for each encoder layer.
decoder_layerdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for the attention and fully connected layers for each decoder layer.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability used between the two layers of the feed-forward networks.
num_parallel_samples (`int`, *optional*, defaults to 100):
The number of samples to generate in parallel for each time step of inference.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated normal weight initialization distribution.
use_cache (`bool`, *optional*, defaults to `True`):
Whether to use the past key/values attentions (if applicable to the model) to speed up decoding.
Example:
```python
>>> from transformers import TimeSeriesTransformerConfig, TimeSeriesTransformerModel
>>> # Initializing a Time Series Transformer configuration with 12 time steps for prediction
>>> configuration = TimeSeriesTransformerConfig(prediction_length=12)
>>> # Randomly initializing a model (with random weights) from the configuration
>>> model = TimeSeriesTransformerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "time_series_transformer"
attribute_map = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__(
self,
prediction_length: Optional[int] = None,
context_length: Optional[int] = None,
distribution_output: str = "student_t",
loss: str = "nll",
input_size: int = 1,
lags_sequence: List[int] = [1, 2, 3, 4, 5, 6, 7],
scaling: Optional[Union[str, bool]] = "mean",
num_dynamic_real_features: int = 0,
num_static_categorical_features: int = 0,
num_static_real_features: int = 0,
num_time_features: int = 0,
cardinality: Optional[List[int]] = None,
embedding_dimension: Optional[List[int]] = None,
encoder_ffn_dim: int = 32,
decoder_ffn_dim: int = 32,
encoder_attention_heads: int = 2,
decoder_attention_heads: int = 2,
encoder_layers: int = 2,
decoder_layers: int = 2,
is_encoder_decoder: bool = True,
activation_function: str = "gelu",
d_model: int = 64,
dropout: float = 0.1,
encoder_layerdrop: float = 0.1,
decoder_layerdrop: float = 0.1,
attention_dropout: float = 0.1,
activation_dropout: float = 0.1,
num_parallel_samples: int = 100,
init_std: float = 0.02,
use_cache=True,
**kwargs,
):
# time series specific configuration
self.prediction_length = prediction_length
self.context_length = context_length or prediction_length
self.distribution_output = distribution_output
self.loss = loss
self.input_size = input_size
self.num_time_features = num_time_features
self.lags_sequence = lags_sequence
self.scaling = scaling
self.num_dynamic_real_features = num_dynamic_real_features
self.num_static_real_features = num_static_real_features
self.num_static_categorical_features = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(cardinality) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`"
)
self.cardinality = cardinality
else:
self.cardinality = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(embedding_dimension) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`"
)
self.embedding_dimension = embedding_dimension
else:
self.embedding_dimension = [min(50, (cat + 1) // 2) for cat in self.cardinality]
self.num_parallel_samples = num_parallel_samples
# Transformer architecture configuration
self.feature_size = input_size * len(lags_sequence) + self._number_of_features
self.d_model = d_model
self.encoder_attention_heads = encoder_attention_heads
self.decoder_attention_heads = decoder_attention_heads
self.encoder_ffn_dim = encoder_ffn_dim
self.decoder_ffn_dim = decoder_ffn_dim
self.encoder_layers = encoder_layers
self.decoder_layers = decoder_layers
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.activation_function = activation_function
self.init_std = init_std
self.use_cache = use_cache
super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
@property
def _number_of_features(self) -> int:
return (
sum(self.embedding_dimension)
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
|
class_definition
| 842 | 11,656 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/time_series_transformer/configuration_time_series_transformer.py
| null | 3,334 |
class TimeSeriesFeatureEmbedder(nn.Module):
"""
Embed a sequence of categorical features.
Args:
cardinalities (`list[int]`):
List of cardinalities of the categorical features.
embedding_dims (`list[int]`):
List of embedding dimensions of the categorical features.
"""
def __init__(self, cardinalities: List[int], embedding_dims: List[int]) -> None:
super().__init__()
self.num_features = len(cardinalities)
self.embedders = nn.ModuleList([nn.Embedding(c, d) for c, d in zip(cardinalities, embedding_dims)])
def forward(self, features: torch.Tensor) -> torch.Tensor:
if self.num_features > 1:
# we slice the last dimension, giving an array of length
# self.num_features with shape (N,T) or (N)
cat_feature_slices = torch.chunk(features, self.num_features, dim=-1)
else:
cat_feature_slices = [features]
return torch.cat(
[
embed(cat_feature_slice.squeeze(-1))
for embed, cat_feature_slice in zip(self.embedders, cat_feature_slices)
],
dim=-1,
)
|
class_definition
| 1,616 | 2,799 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/time_series_transformer/modeling_time_series_transformer.py
| null | 3,335 |
class TimeSeriesStdScaler(nn.Module):
"""
Standardize features by calculating the mean and scaling along the first dimension, and then normalizes it by
subtracting from the mean and dividing by the standard deviation.
"""
def __init__(self, config: TimeSeriesTransformerConfig):
super().__init__()
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-5
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Calculating the scale on the observed indicator.
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
denominator = observed_indicator.sum(self.dim, keepdim=self.keepdim)
denominator = denominator.clamp_min(1.0)
loc = (data * observed_indicator).sum(self.dim, keepdim=self.keepdim) / denominator
variance = (((data - loc) * observed_indicator) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator
scale = torch.sqrt(variance + self.minimum_scale)
return (data - loc) / scale, loc, scale
|
class_definition
| 2,802 | 4,555 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/time_series_transformer/modeling_time_series_transformer.py
| null | 3,336 |
class TimeSeriesMeanScaler(nn.Module):
"""
Computes a scaling factor as the weighted average absolute value along the first dimension, and scales the data
accordingly.
"""
def __init__(self, config: TimeSeriesTransformerConfig):
super().__init__()
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-10
self.default_scale = config.default_scale if hasattr(config, "default_scale") else None
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Calculating the scale on the observed indicator.
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
ts_sum = (data * observed_indicator).abs().sum(self.dim, keepdim=True)
num_observed = observed_indicator.sum(self.dim, keepdim=True)
scale = ts_sum / torch.clamp(num_observed, min=1)
# If `default_scale` is provided, we use it, otherwise we use the scale
# of the batch.
if self.default_scale is None:
batch_sum = ts_sum.sum(dim=0)
batch_observations = torch.clamp(num_observed.sum(0), min=1)
default_scale = torch.squeeze(batch_sum / batch_observations)
else:
default_scale = self.default_scale * torch.ones_like(scale)
# apply default scale where there are no observations
scale = torch.where(num_observed > 0, scale, default_scale)
# ensure the scale is at least `self.minimum_scale`
scale = torch.clamp(scale, min=self.minimum_scale)
scaled_data = data / scale
if not self.keepdim:
scale = scale.squeeze(dim=self.dim)
return scaled_data, torch.zeros_like(scale), scale
|
class_definition
| 4,558 | 6,972 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/time_series_transformer/modeling_time_series_transformer.py
| null | 3,337 |
class TimeSeriesNOPScaler(nn.Module):
"""
Assigns a scaling factor equal to 1 along the first dimension, and therefore applies no scaling to the input data.
"""
def __init__(self, config: TimeSeriesTransformerConfig):
super().__init__()
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor = None
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
scale = torch.ones_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
loc = torch.zeros_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
return data, loc, scale
|
class_definition
| 6,975 | 8,189 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/time_series_transformer/modeling_time_series_transformer.py
| null | 3,338 |
class TimeSeriesSinusoidalPositionalEmbedding(nn.Embedding):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None) -> None:
super().__init__(num_positions, embedding_dim)
self.weight = self._init_weight(self.weight)
@staticmethod
def _init_weight(out: nn.Parameter) -> nn.Parameter:
"""
Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in
the 2nd half of the vector. [dim // 2:]
"""
n_pos, dim = out.shape
position_enc = np.array(
[[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]
)
out.requires_grad = False # set early to avoid an error in pytorch-1.8+
sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1
out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
out.detach_()
return out
@torch.no_grad()
def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0) -> torch.Tensor:
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
bsz, seq_len = input_ids_shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
)
return super().forward(positions)
|
class_definition
| 9,664 | 11,235 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/time_series_transformer/modeling_time_series_transformer.py
| null | 3,339 |
class TimeSeriesValueEmbedding(nn.Module):
def __init__(self, feature_size, d_model):
super().__init__()
self.value_projection = nn.Linear(in_features=feature_size, out_features=d_model, bias=False)
def forward(self, x):
return self.value_projection(x)
|
class_definition
| 11,238 | 11,523 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/time_series_transformer/modeling_time_series_transformer.py
| null | 3,340 |
class TimeSeriesTransformerAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[TimeSeriesTransformerConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
|
class_definition
| 11,626 | 19,050 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/time_series_transformer/modeling_time_series_transformer.py
| null | 3,341 |
class TimeSeriesTransformerEncoderLayer(nn.Module):
def __init__(self, config: TimeSeriesTransformerConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = TIME_SERIES_TRANSFORMER_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
config=config,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: torch.FloatTensor,
layer_head_mask: torch.FloatTensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
|
class_definition
| 19,187 | 22,438 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/time_series_transformer/modeling_time_series_transformer.py
| null | 3,342 |
class TimeSeriesTransformerDecoderLayer(nn.Module):
def __init__(self, config: TimeSeriesTransformerConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = TIME_SERIES_TRANSFORMER_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
is_causal=True,
config=config,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = TIME_SERIES_TRANSFORMER_ATTENTION_CLASSES[config._attn_implementation](
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
config=config,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size `(decoder_attention_heads,)`.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
|
class_definition
| 22,740 | 28,751 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/time_series_transformer/modeling_time_series_transformer.py
| null | 3,343 |
class TimeSeriesTransformerPreTrainedModel(PreTrainedModel):
config_class = TimeSeriesTransformerConfig
base_model_prefix = "model"
main_input_name = "past_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, TimeSeriesSinusoidalPositionalEmbedding):
pass
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
|
class_definition
| 28,754 | 29,532 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/time_series_transformer/modeling_time_series_transformer.py
| null | 3,344 |
class TimeSeriesTransformerEncoder(TimeSeriesTransformerPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`TimeSeriesTransformerEncoderLayer`].
Args:
config: TimeSeriesTransformerConfig
"""
def __init__(self, config: TimeSeriesTransformerConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
if config.prediction_length is None:
raise ValueError("The `prediction_length` config needs to be specified.")
self.value_embedding = TimeSeriesValueEmbedding(feature_size=config.feature_size, d_model=config.d_model)
self.embed_positions = TimeSeriesSinusoidalPositionalEmbedding(
config.context_length + config.prediction_length, config.d_model
)
self.layers = nn.ModuleList([TimeSeriesTransformerEncoderLayer(config) for _ in range(config.encoder_layers)])
self.layernorm_embedding = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = self.value_embedding(inputs_embeds)
embed_pos = self.embed_positions(inputs_embeds.size())
hidden_states = self.layernorm_embedding(hidden_states + embed_pos)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
|
class_definition
| 41,586 | 48,093 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/time_series_transformer/modeling_time_series_transformer.py
| null | 3,345 |
class TimeSeriesTransformerDecoder(TimeSeriesTransformerPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a
[`TimeSeriesTransformerDecoderLayer`]
Args:
config: TimeSeriesTransformerConfig
"""
def __init__(self, config: TimeSeriesTransformerConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
if config.prediction_length is None:
raise ValueError("The `prediction_length` config needs to be specified.")
self.value_embedding = TimeSeriesValueEmbedding(feature_size=config.feature_size, d_model=config.d_model)
self.embed_positions = TimeSeriesSinusoidalPositionalEmbedding(
config.context_length + config.prediction_length, config.d_model
)
self.layers = nn.ModuleList([TimeSeriesTransformerDecoderLayer(config) for _ in range(config.decoder_layers)])
self.layernorm_embedding = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
Args:
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
input_shape = inputs_embeds.size()[:-1]
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
hidden_states = self.value_embedding(inputs_embeds)
embed_pos = self.embed_positions(inputs_embeds.size(), past_key_values_length=self.config.context_length)
hidden_states = self.layernorm_embedding(hidden_states + embed_pos)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
|
class_definition
| 48,096 | 59,419 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/time_series_transformer/modeling_time_series_transformer.py
| null | 3,346 |
class TimeSeriesTransformerModel(TimeSeriesTransformerPreTrainedModel):
def __init__(self, config: TimeSeriesTransformerConfig):
super().__init__(config)
if config.scaling == "mean" or config.scaling is True:
self.scaler = TimeSeriesMeanScaler(config)
elif config.scaling == "std":
self.scaler = TimeSeriesStdScaler(config)
else:
self.scaler = TimeSeriesNOPScaler(config)
if config.num_static_categorical_features > 0:
self.embedder = TimeSeriesFeatureEmbedder(
cardinalities=config.cardinality,
embedding_dims=config.embedding_dimension,
)
# transformer encoder-decoder and mask initializer
self.encoder = TimeSeriesTransformerEncoder(config)
self.decoder = TimeSeriesTransformerDecoder(config)
# Initialize weights and apply final processing
self.post_init()
@property
def _past_length(self) -> int:
return self.config.context_length + max(self.config.lags_sequence)
def get_lagged_subsequences(
self, sequence: torch.Tensor, subsequences_length: int, shift: int = 0
) -> torch.Tensor:
"""
Returns lagged subsequences of a given sequence. Returns a tensor of shape (N, S, C, I),
where S = subsequences_length and I = len(indices), containing lagged subsequences. Specifically, lagged[i,
j, :, k] = sequence[i, -indices[k]-S+j, :].
Args:
sequence: Tensor
The sequence from which lagged subsequences should be extracted. Shape: (N, T, C).
subsequences_length : int
Length of the subsequences to be extracted.
shift: int
Shift the lags by this amount back.
"""
sequence_length = sequence.shape[1]
indices = [lag - shift for lag in self.config.lags_sequence]
if max(indices) + subsequences_length > sequence_length:
raise ValueError(
f"lags cannot go further than history length, found lag {max(indices)} "
f"while history length is only {sequence_length}"
)
lagged_values = []
for lag_index in indices:
begin_index = -lag_index - subsequences_length
end_index = -lag_index if lag_index > 0 else None
lagged_values.append(sequence[:, begin_index:end_index, ...])
return torch.stack(lagged_values, dim=-1)
def create_network_inputs(
self,
past_values: torch.Tensor,
past_time_features: torch.Tensor,
static_categorical_features: Optional[torch.Tensor] = None,
static_real_features: Optional[torch.Tensor] = None,
past_observed_mask: Optional[torch.Tensor] = None,
future_values: Optional[torch.Tensor] = None,
future_time_features: Optional[torch.Tensor] = None,
):
# time feature
time_feat = (
torch.cat(
(
past_time_features[:, self._past_length - self.config.context_length :, ...],
future_time_features,
),
dim=1,
)
if future_values is not None
else past_time_features[:, self._past_length - self.config.context_length :, ...]
)
# target
if past_observed_mask is None:
past_observed_mask = torch.ones_like(past_values)
context = past_values[:, -self.config.context_length :]
observed_context = past_observed_mask[:, -self.config.context_length :]
_, loc, scale = self.scaler(context, observed_context)
inputs = (
(torch.cat((past_values, future_values), dim=1) - loc) / scale
if future_values is not None
else (past_values - loc) / scale
)
# static features
log_abs_loc = loc.abs().log1p() if self.config.input_size == 1 else loc.squeeze(1).abs().log1p()
log_scale = scale.log() if self.config.input_size == 1 else scale.squeeze(1).log()
static_feat = torch.cat((log_abs_loc, log_scale), dim=1)
if static_real_features is not None:
static_feat = torch.cat((static_real_features, static_feat), dim=1)
if static_categorical_features is not None:
embedded_cat = self.embedder(static_categorical_features)
static_feat = torch.cat((embedded_cat, static_feat), dim=1)
expanded_static_feat = static_feat.unsqueeze(1).expand(-1, time_feat.shape[1], -1)
# all features
features = torch.cat((expanded_static_feat, time_feat), dim=-1)
# lagged features
subsequences_length = (
self.config.context_length + self.config.prediction_length
if future_values is not None
else self.config.context_length
)
lagged_sequence = self.get_lagged_subsequences(sequence=inputs, subsequences_length=subsequences_length)
lags_shape = lagged_sequence.shape
reshaped_lagged_sequence = lagged_sequence.reshape(lags_shape[0], lags_shape[1], -1)
if reshaped_lagged_sequence.shape[1] != time_feat.shape[1]:
raise ValueError(
f"input length {reshaped_lagged_sequence.shape[1]} and time feature lengths {time_feat.shape[1]} does not match"
)
# transformer inputs
transformer_inputs = torch.cat((reshaped_lagged_sequence, features), dim=-1)
return transformer_inputs, loc, scale, static_feat
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(TIME_SERIES_TRANSFORMER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqTSModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
past_values: torch.Tensor,
past_time_features: torch.Tensor,
past_observed_mask: torch.Tensor,
static_categorical_features: Optional[torch.Tensor] = None,
static_real_features: Optional[torch.Tensor] = None,
future_values: Optional[torch.Tensor] = None,
future_time_features: Optional[torch.Tensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
use_cache: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Seq2SeqTSModelOutput, Tuple]:
r"""
Returns:
Examples:
```python
>>> from huggingface_hub import hf_hub_download
>>> import torch
>>> from transformers import TimeSeriesTransformerModel
>>> file = hf_hub_download(
... repo_id="hf-internal-testing/tourism-monthly-batch", filename="train-batch.pt", repo_type="dataset"
... )
>>> batch = torch.load(file)
>>> model = TimeSeriesTransformerModel.from_pretrained("huggingface/time-series-transformer-tourism-monthly")
>>> # during training, one provides both past and future values
>>> # as well as possible additional features
>>> outputs = model(
... past_values=batch["past_values"],
... past_time_features=batch["past_time_features"],
... past_observed_mask=batch["past_observed_mask"],
... static_categorical_features=batch["static_categorical_features"],
... static_real_features=batch["static_real_features"],
... future_values=batch["future_values"],
... future_time_features=batch["future_time_features"],
... )
>>> last_hidden_state = outputs.last_hidden_state
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_inputs, loc, scale, static_feat = self.create_network_inputs(
past_values=past_values,
past_time_features=past_time_features,
past_observed_mask=past_observed_mask,
static_categorical_features=static_categorical_features,
static_real_features=static_real_features,
future_values=future_values,
future_time_features=future_time_features,
)
if encoder_outputs is None:
enc_input = transformer_inputs[:, : self.config.context_length, ...]
encoder_outputs = self.encoder(
inputs_embeds=enc_input,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
dec_input = transformer_inputs[:, self.config.context_length :, ...]
decoder_outputs = self.decoder(
inputs_embeds=dec_input,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs + (loc, scale, static_feat)
return Seq2SeqTSModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
loc=loc,
scale=scale,
static_features=static_feat,
)
|
class_definition
| 59,601 | 70,803 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/time_series_transformer/modeling_time_series_transformer.py
| null | 3,347 |
class TimeSeriesTransformerForPrediction(TimeSeriesTransformerPreTrainedModel):
def __init__(self, config: TimeSeriesTransformerConfig):
super().__init__(config)
self.model = TimeSeriesTransformerModel(config)
if config.distribution_output == "student_t":
self.distribution_output = StudentTOutput(dim=config.input_size)
elif config.distribution_output == "normal":
self.distribution_output = NormalOutput(dim=config.input_size)
elif config.distribution_output == "negative_binomial":
self.distribution_output = NegativeBinomialOutput(dim=config.input_size)
else:
raise ValueError(f"Unknown distribution output {config.distribution_output}")
self.parameter_projection = self.distribution_output.get_parameter_projection(self.model.config.d_model)
self.target_shape = self.distribution_output.event_shape
if config.loss == "nll":
self.loss = nll
else:
raise ValueError(f"Unknown loss function {config.loss}")
# Initialize weights of distribution_output and apply final processing
self.post_init()
def output_params(self, dec_output):
return self.parameter_projection(dec_output)
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
@torch.jit.ignore
def output_distribution(self, params, loc=None, scale=None, trailing_n=None) -> torch.distributions.Distribution:
sliced_params = params
if trailing_n is not None:
sliced_params = [p[:, -trailing_n:] for p in params]
return self.distribution_output.distribution(sliced_params, loc=loc, scale=scale)
@add_start_docstrings_to_model_forward(TIME_SERIES_TRANSFORMER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqTSModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
past_values: torch.Tensor,
past_time_features: torch.Tensor,
past_observed_mask: torch.Tensor,
static_categorical_features: Optional[torch.Tensor] = None,
static_real_features: Optional[torch.Tensor] = None,
future_values: Optional[torch.Tensor] = None,
future_time_features: Optional[torch.Tensor] = None,
future_observed_mask: Optional[torch.Tensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
use_cache: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Seq2SeqTSModelOutput, Tuple]:
r"""
Returns:
Examples:
```python
>>> from huggingface_hub import hf_hub_download
>>> import torch
>>> from transformers import TimeSeriesTransformerForPrediction
>>> file = hf_hub_download(
... repo_id="hf-internal-testing/tourism-monthly-batch", filename="train-batch.pt", repo_type="dataset"
... )
>>> batch = torch.load(file)
>>> model = TimeSeriesTransformerForPrediction.from_pretrained(
... "huggingface/time-series-transformer-tourism-monthly"
... )
>>> # during training, one provides both past and future values
>>> # as well as possible additional features
>>> outputs = model(
... past_values=batch["past_values"],
... past_time_features=batch["past_time_features"],
... past_observed_mask=batch["past_observed_mask"],
... static_categorical_features=batch["static_categorical_features"],
... static_real_features=batch["static_real_features"],
... future_values=batch["future_values"],
... future_time_features=batch["future_time_features"],
... )
>>> loss = outputs.loss
>>> loss.backward()
>>> # during inference, one only provides past values
>>> # as well as possible additional features
>>> # the model autoregressively generates future values
>>> outputs = model.generate(
... past_values=batch["past_values"],
... past_time_features=batch["past_time_features"],
... past_observed_mask=batch["past_observed_mask"],
... static_categorical_features=batch["static_categorical_features"],
... static_real_features=batch["static_real_features"],
... future_time_features=batch["future_time_features"],
... )
>>> mean_prediction = outputs.sequences.mean(dim=1)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if future_values is not None:
use_cache = False
outputs = self.model(
past_values=past_values,
past_time_features=past_time_features,
past_observed_mask=past_observed_mask,
static_categorical_features=static_categorical_features,
static_real_features=static_real_features,
future_values=future_values,
future_time_features=future_time_features,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
use_cache=use_cache,
return_dict=return_dict,
)
prediction_loss = None
params = None
if future_values is not None:
params = self.output_params(outputs[0]) # outputs.last_hidden_state
# loc is 3rd last and scale is 2nd last output
distribution = self.output_distribution(params, loc=outputs[-3], scale=outputs[-2])
loss = self.loss(distribution, future_values)
if future_observed_mask is None:
future_observed_mask = torch.ones_like(future_values)
if len(self.target_shape) == 0:
loss_weights = future_observed_mask
else:
loss_weights, _ = future_observed_mask.min(dim=-1, keepdim=False)
prediction_loss = weighted_average(loss, weights=loss_weights)
if not return_dict:
outputs = ((params,) + outputs[1:]) if params is not None else outputs[1:]
return ((prediction_loss,) + outputs) if prediction_loss is not None else outputs
return Seq2SeqTSPredictionOutput(
loss=prediction_loss,
params=params,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
loc=outputs.loc,
scale=outputs.scale,
static_features=outputs.static_features,
)
@torch.no_grad()
def generate(
self,
past_values: torch.Tensor,
past_time_features: torch.Tensor,
future_time_features: torch.Tensor,
past_observed_mask: Optional[torch.Tensor] = None,
static_categorical_features: Optional[torch.Tensor] = None,
static_real_features: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> SampleTSPredictionOutput:
r"""
Greedily generate sequences of sample predictions from a model with a probability distribution head.
Parameters:
past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`):
Past values of the time series, that serve as context in order to predict the future. The sequence size
of this tensor must be larger than the `context_length` of the model, since the model will use the
larger size to construct lag features, i.e. additional values from the past which are added in order to
serve as "extra context".
The `sequence_length` here is equal to `config.context_length` + `max(config.lags_sequence)`, which if
no `lags_sequence` is configured, is equal to `config.context_length` + 7 (as by default, the largest
look-back index in `config.lags_sequence` is 7). The property `_past_length` returns the actual length
of the past.
The `past_values` is what the Transformer encoder gets as input (with optional additional features,
such as `static_categorical_features`, `static_real_features`, `past_time_features` and lags).
Optionally, missing values need to be replaced with zeros and indicated via the `past_observed_mask`.
For multivariate time series, the `input_size` > 1 dimension is required and corresponds to the number
of variates in the time series per time step.
past_time_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_features)`):
Required time features, which the model internally will add to `past_values`. These could be things
like "month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features).
These could also be so-called "age" features, which basically help the model know "at which point in
life" a time-series is. Age features have small values for distant past time steps and increase
monotonically the more we approach the current time step. Holiday features are also a good example of
time features.
These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT,
where the position encodings are learned from scratch internally as parameters of the model, the Time
Series Transformer requires to provide additional time features. The Time Series Transformer only
learns additional embeddings for `static_categorical_features`.
Additional dynamic real covariates can be concatenated to this tensor, with the caveat that these
features must but known at prediction time.
The `num_features` here is equal to `config.`num_time_features` + `config.num_dynamic_real_features`.
future_time_features (`torch.FloatTensor` of shape `(batch_size, prediction_length, num_features)`):
Required time features for the prediction window, which the model internally will add to sampled
predictions. These could be things like "month of year", "day of the month", etc. encoded as vectors
(for instance as Fourier features). These could also be so-called "age" features, which basically help
the model know "at which point in life" a time-series is. Age features have small values for distant
past time steps and increase monotonically the more we approach the current time step. Holiday features
are also a good example of time features.
These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT,
where the position encodings are learned from scratch internally as parameters of the model, the Time
Series Transformer requires to provide additional time features. The Time Series Transformer only
learns additional embeddings for `static_categorical_features`.
Additional dynamic real covariates can be concatenated to this tensor, with the caveat that these
features must but known at prediction time.
The `num_features` here is equal to `config.`num_time_features` + `config.num_dynamic_real_features`.
past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`, *optional*):
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
static_categorical_features (`torch.LongTensor` of shape `(batch_size, number of static categorical features)`, *optional*):
Optional static categorical features for which the model will learn an embedding, which it will add to
the values of the time series.
Static categorical features are features which have the same value for all time steps (static over
time).
A typical example of a static categorical feature is a time series ID.
static_real_features (`torch.FloatTensor` of shape `(batch_size, number of static real features)`, *optional*):
Optional static real features which the model will add to the values of the time series.
Static real features are features which have the same value for all time steps (static over time).
A typical example of a static real feature is promotion information.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers.
Return:
[`SampleTSPredictionOutput`] where the outputs `sequences` tensor will have shape `(batch_size, number of
samples, prediction_length)` or `(batch_size, number of samples, prediction_length, input_size)` for
multivariate predictions.
"""
outputs = self(
static_categorical_features=static_categorical_features,
static_real_features=static_real_features,
past_time_features=past_time_features,
past_values=past_values,
past_observed_mask=past_observed_mask,
future_time_features=future_time_features,
future_values=None,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
use_cache=True,
)
decoder = self.model.get_decoder()
enc_last_hidden = outputs.encoder_last_hidden_state
loc = outputs.loc
scale = outputs.scale
static_feat = outputs.static_features
num_parallel_samples = self.config.num_parallel_samples
repeated_loc = loc.repeat_interleave(repeats=num_parallel_samples, dim=0)
repeated_scale = scale.repeat_interleave(repeats=num_parallel_samples, dim=0)
repeated_past_values = (
past_values.repeat_interleave(repeats=num_parallel_samples, dim=0) - repeated_loc
) / repeated_scale
expanded_static_feat = static_feat.unsqueeze(1).expand(-1, future_time_features.shape[1], -1)
features = torch.cat((expanded_static_feat, future_time_features), dim=-1)
repeated_features = features.repeat_interleave(repeats=num_parallel_samples, dim=0)
repeated_enc_last_hidden = enc_last_hidden.repeat_interleave(repeats=num_parallel_samples, dim=0)
future_samples = []
# greedy decoding
for k in range(self.config.prediction_length):
lagged_sequence = self.model.get_lagged_subsequences(
sequence=repeated_past_values,
subsequences_length=1 + k,
shift=1,
)
lags_shape = lagged_sequence.shape
reshaped_lagged_sequence = lagged_sequence.reshape(lags_shape[0], lags_shape[1], -1)
decoder_input = torch.cat((reshaped_lagged_sequence, repeated_features[:, : k + 1]), dim=-1)
dec_output = decoder(inputs_embeds=decoder_input, encoder_hidden_states=repeated_enc_last_hidden)
dec_last_hidden = dec_output.last_hidden_state
params = self.parameter_projection(dec_last_hidden[:, -1:])
distr = self.output_distribution(params, loc=repeated_loc, scale=repeated_scale)
next_sample = distr.sample()
repeated_past_values = torch.cat(
(repeated_past_values, (next_sample - repeated_loc) / repeated_scale), dim=1
)
future_samples.append(next_sample)
concat_future_samples = torch.cat(future_samples, dim=1)
return SampleTSPredictionOutput(
sequences=concat_future_samples.reshape(
(-1, num_parallel_samples, self.config.prediction_length) + self.target_shape,
)
)
|
class_definition
| 70,978 | 88,552 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/time_series_transformer/modeling_time_series_transformer.py
| null | 3,348 |
class MllamaConverter(TikTokenConverter):
def __init__(
self,
vocab_file,
special_tokens: List[str],
pattern: str,
model_max_length: int,
chat_template: Optional[str] = None,
**kwargs,
):
super().__init__(vocab_file, pattern=pattern)
self.additional_special_tokens = special_tokens
tokenizer = self.converted()
if chat_template is not None:
kwargs["chat_template"] = chat_template
self.tokenizer = PreTrainedTokenizerFast(
tokenizer_object=tokenizer,
model_input_names=["input_ids", "attention_mask"],
model_max_length=model_max_length,
**kwargs,
)
|
class_definition
| 24,227 | 24,947 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/convert_mllama_weights_to_hf.py
| null | 3,349 |
class MllamaImageProcessor(BaseImageProcessor):
"""
Constructs a Mllama image processor.
Args:
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB. This is useful if the input image is of a different format e.g. RGBA.
Only has an effect if the input image is in the PIL format.
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image tile. Should be a dictionary containing 'height' and 'width' keys, both with integer values.
The height and width values should be equal.
resample (`int`, *optional*, defaults to `Resampling.BILINEAR`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to 0.0):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
`True`.
do_pad (`bool`, *optional*, defaults to `True`):
Whether or not to pad the images to the largest height and width in the batch.
max_image_tiles (`int`, *optional*, defaults to 4):
The maximum number of tiles to split the image into.
"""
model_input_names = ["pixel_values", "num_tiles", "aspect_ratio_ids", "aspect_ratio_mask"]
def __init__(
self,
do_convert_rgb: bool = True,
do_resize: bool = True,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True,
rescale_factor: float = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_pad: bool = True,
max_image_tiles: int = 4,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.do_convert_rgb = do_convert_rgb
self.do_resize = do_resize
self.size = size if size is not None else {"height": 224, "width": 224}
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
self.do_pad = do_pad
self.max_image_tiles = max_image_tiles
_validate_mllama_preprocess_arguments(self.do_resize, self.size, self.do_pad, self.max_image_tiles)
def preprocess(
self,
images: ImageInput,
do_convert_rgb: Optional[bool] = None,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
resample: Optional[PILImageResampling] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_pad: Optional[bool] = None,
max_image_tiles: Optional[int] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
):
"""
Preprocess a batch of images.
Args:
images (`ImageInput`):
A list of images to preprocess.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image tile. Should be a dictionary containing 'height' and 'width' keys, both with integer values.
The height and width values should be equal.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
`True`.
do_pad (`bool`, *optional*, defaults to `self.do_pad`):
Whether or not to pad the images to the largest height and width in the batch.
max_image_tiles (`int`, *optional*, defaults to `self.max_image_tiles`):
The maximum number of tiles to split the image into.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
Returns:
`BatchFeature` of the following structure:
- **pixel_values** (`TensorType`): The preprocessed pixel values.
- **aspect_ratio_ids** (`TensorType`): The aspect ratio ids of the images.
- **num_tiles** (`List[List[int]]`): The number of tiles for each image in the batch.
"""
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_pad = do_pad if do_pad is not None else self.do_pad
max_image_tiles = max_image_tiles if max_image_tiles is not None else self.max_image_tiles
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_resize=do_resize,
size=size,
resample=resample,
)
# extra validation
_validate_mllama_preprocess_arguments(do_resize, size, do_pad, max_image_tiles)
images_list = make_list_of_images(images)
if self.do_convert_rgb:
images_list = [[convert_to_rgb(image) for image in images] for images in images_list]
images_list = [[to_numpy_array(image) for image in images] for images in images_list]
batch_images = []
batch_aspect_ratios = []
# iterate over batch samples
for images in images_list:
sample_images = []
sample_aspect_ratios = []
# iterate over images in a batch sample
for image in images:
# convert images to channels first format for faster processing
# LAST is slower for `pad` and not supported by `split_to_tiles`
data_format = ChannelDimension.FIRST
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
# do_resize=False is not supported, validated
image, aspect_ratio = self.resize(
image=image,
size=size,
resample=resample,
max_image_tiles=max_image_tiles,
input_data_format=data_format,
data_format=data_format,
)
# do_pad=False is not supported, validated
image = self.pad(
image=image,
size=size,
aspect_ratio=aspect_ratio,
input_data_format=data_format,
data_format=data_format,
)
if do_rescale:
image = self.rescale(
image=image,
scale=rescale_factor,
input_data_format=input_data_format,
data_format=data_format,
)
if do_normalize:
image = self.normalize(
image=image,
mean=image_mean,
std=image_std,
input_data_format=input_data_format,
data_format=data_format,
)
num_tiles_height, num_tiles_width = aspect_ratio
image = split_to_tiles(image, num_tiles_height, num_tiles_width)
sample_images.append(image)
sample_aspect_ratios.append((num_tiles_height, num_tiles_width))
batch_images.append(sample_images)
batch_aspect_ratios.append(sample_aspect_ratios)
images, num_tiles = pack_images(batch_images, max_image_tiles)
aspect_ratio_ids = convert_aspect_ratios_to_ids(batch_aspect_ratios, max_image_tiles=max_image_tiles)
aspect_ratio_mask = build_aspect_ratio_mask(batch_aspect_ratios, max_image_tiles=max_image_tiles)
# images (np.ndarray) with shape (batch_size, max_num_images, max_image_tiles, channels, tile_height, tile_width)
# aspect_ratio_ids (np.ndarray) with shape (batch_size, max_num_images) - aspect ratio ids for each image, padded to max_num_images with 0
# num_tiles (List[List[int]]) with (batch_size, num_images_in_batch) - real number of tiles for each image, not padded
# aspect_ratio_mask (np.ndarray) with shape (batch_size, max_num_images, max_image_tiles) - number of tiles for each image, padded to max_num_images with 0
encoded_inputs = BatchFeature(
data={
"pixel_values": images,
"aspect_ratio_ids": aspect_ratio_ids,
"aspect_ratio_mask": aspect_ratio_mask,
},
tensor_type=return_tensors,
)
encoded_inputs["num_tiles"] = num_tiles
return encoded_inputs
def pad(
self,
image: np.ndarray,
size: Dict[str, int],
aspect_ratio: Tuple[int, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Pad an image to the `size` x `aspect_ratio`. For example, if size is {height: 224, width: 224} and aspect ratio is
(1, 2), the image will be padded to 224x448.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
aspect_ratio (`Tuple[int, int]`):
The aspect ratio of the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
Returns:
`np.ndarray`: The padded image.
"""
_validate_size(size)
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
num_tiles_height, num_tiles_width = aspect_ratio
padded_height = num_tiles_height * size["height"]
padded_width = num_tiles_width * size["width"]
pad_size = ((0, padded_height - image_height), (0, padded_width - image_width))
image = pad(
image,
pad_size,
mode=PaddingMode.CONSTANT,
constant_values=0,
data_format=data_format,
input_data_format=input_data_format,
)
return image
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
max_image_tiles: int,
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Union[np.ndarray, Tuple[int, int]]:
"""
Resizes an image to fit within a tiled canvas while maintaining its aspect ratio.
The optimal canvas size is calculated based on the maximum number of tiles and the tile size.
The function first determines the best tile arrangement for the image, then resizes the image
to fit within this canvas. The resized image and the number of tiles along the height and width
dimensions are returned.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
max_image_tiles (`int`):
The maximum number of tiles to split the image into.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
Returns:
`Union[np.ndarray, Tuple[int, int]]`: The resized image and a tuple containing the number of tiles
along the height and width dimensions.
"""
_validate_size(size)
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
tile_size = size["height"]
canvas_height, canvas_width = get_optimal_tiled_canvas(
image_height=image_height,
image_width=image_width,
max_image_tiles=max_image_tiles,
tile_size=tile_size,
)
num_tiles_height = canvas_height // tile_size
num_tiles_width = canvas_width // tile_size
new_height, new_width = get_image_size_fit_to_canvas(
image_height=image_height,
image_width=image_width,
canvas_height=canvas_height,
canvas_width=canvas_width,
tile_size=tile_size,
)
image = resize(
image,
(new_height, new_width),
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
)
return image, (num_tiles_height, num_tiles_width)
|
class_definition
| 21,800 | 39,175 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/image_processing_mllama.py
| null | 3,350 |
class MllamaImagesKwargs(ImagesKwargs, total=False):
max_image_tiles: Optional[int]
|
class_definition
| 1,095 | 1,182 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/processing_mllama.py
| null | 3,351 |
class MllamaProcessorKwargs(ProcessingKwargs, total=False):
images_kwargs: MllamaImagesKwargs
_defaults = {
"image_kwargs": {
"max_image_tiles": 4,
},
}
|
class_definition
| 1,185 | 1,378 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/processing_mllama.py
| null | 3,352 |
class MllamaProcessor(ProcessorMixin):
r"""
Constructs a Mllama processor which wraps [`MllamaImageProcessor`] and
[`PretrainedTokenizerFast`] into a single processor that inherits both the image processor and
tokenizer functionalities. See the [`~MllamaProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more
information.
The preferred way of passing kwargs is as a dictionary per modality, see usage example below.
```python
from transformers import MllamaProcessor
from PIL import Image
processor = MllamaProcessor.from_pretrained("meta-llama/Llama-3.2-11B-Vision")
processor(
images=your_pil_image,
text=["<|image|>If I had to write a haiku for this one"],
images_kwargs = {"size": {"height": 448, "width": 448}},
text_kwargs = {"padding": "right"},
common_kwargs = {"return_tensors": "pt"},
)
```
Args:
image_processor ([`MllamaImageProcessor`]):
The image processor is a required input.
tokenizer ([`PreTrainedTokenizer`, `PreTrainedTokenizerFast`]):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "MllamaImageProcessor"
tokenizer_class = "PreTrainedTokenizerFast"
def __init__(self, image_processor, tokenizer):
if not hasattr(tokenizer, "image_token"):
self.image_token = "<|image|>"
self.image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
else:
self.image_token = tokenizer.image_token
self.image_token_id = tokenizer.image_token_id
self.python_token = "<|python_tag|>"
self.python_token_id = tokenizer.convert_tokens_to_ids(self.python_token)
self.bos_token = tokenizer.bos_token
self.chat_template = tokenizer.chat_template
super().__init__(image_processor, tokenizer)
def __call__(
self,
images: Optional[ImageInput] = None,
text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
audio=None,
videos=None,
**kwargs: Unpack[MllamaProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare text(s) and image(s) to be fed as input to the model. This method forwards the `text`
arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` arguments to
MllamaImageProcessor's [`~MllamaImageProcessor.__call__`] if `images` is not `None`. Please refer
to the docstring of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
TODO: add aspect_ratio_ids and aspect_ratio_mask and cross_attention_mask
"""
if text is None and images is None:
raise ValueError("You must specify either text or images.")
output_kwargs = self._merge_kwargs(
MllamaProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
text_kwargs = output_kwargs["text_kwargs"]
images_kwargs = output_kwargs["images_kwargs"]
common_kwargs = output_kwargs["common_kwargs"]
data = {}
if text is not None:
if isinstance(text, str):
text = [text]
elif not (isinstance(text, (list, tuple)) and all(isinstance(t, str) for t in text)):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
n_images_in_text = [t.count(self.image_token) for t in text]
text = [build_string_from_input(text_item, self.bos_token, self.image_token) for text_item in text]
_ = text_kwargs.pop("padding_side", None) # hack until padding-side is an accepted kwarg by tokenizers
encoding = self.tokenizer(text, **text_kwargs)
data.update(encoding)
n_images_in_images = [0]
if images is not None:
images = make_list_of_images(images)
n_images_in_images = [len(sample) for sample in images]
if text is not None:
if any(batch_img == 0 for batch_img in n_images_in_text) and not all(
batch_img == 0 for batch_img in n_images_in_text
):
raise ValueError(
"If a batch of text is provided, there should be either no images or at least one image per sample"
)
if sum(n_images_in_images) != sum(n_images_in_text):
if images is None:
raise ValueError("No image were provided, but there are image tokens in the prompt")
else:
raise ValueError(
f"The number of image token ({sum(n_images_in_text)}) should be the same as in the number of provided images ({sum(n_images_in_images)})"
)
if images is not None:
image_features = self.image_processor(images, **images_kwargs)
num_tiles = image_features.pop("num_tiles")
data.update(image_features)
# Create cross attention mask
if images is not None and text is not None:
cross_attention_token_mask = [
get_cross_attention_token_mask(token_ids, self.image_token_id) for token_ids in encoding["input_ids"]
]
cross_attention_mask = convert_sparse_cross_attention_mask_to_dense(
cross_attention_token_mask,
num_tiles=num_tiles,
max_num_tiles=self.image_processor.max_image_tiles,
length=max(len(input_ids) for input_ids in encoding["input_ids"]),
)
data["cross_attention_mask"] = cross_attention_mask
return_tensors = common_kwargs.pop("return_tensors", None)
batch_feature = BatchFeature(data=data, tensor_type=return_tensors)
return batch_feature
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def post_process_image_text_to_text(self, generated_outputs):
"""
Post-process the output of the model to decode the text.
Args:
generated_outputs (`torch.Tensor` or `np.ndarray`):
The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
or `(sequence_length,)`.
Returns:
`List[str]`: The decoded text.
"""
return self.tokenizer.batch_decode(
generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(tokenizer_input_names + image_processor_input_names + ["cross_attention_mask"])
|
class_definition
| 6,914 | 16,276 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/processing_mllama.py
| null | 3,353 |
class MllamaVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MllamaVisionModel`]. It is used to instantiate an
Mllama vision model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Mllama-11B.
e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 1280):
Dimensionality of the encoder layers and the pooler layer.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_global_layers (`int`, *optional*, defaults to 8):
Number of global layers in the Transformer encoder.
Vision model has a second transformer encoder, called global.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of channels in the input image.
intermediate_size (`int`, *optional*, defaults to 5120):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
vision_output_dim (`int`, *optional*, defaults to 7680):
Dimensionality of the vision model output. Includes output of transformer
encoder with intermediate layers and global transformer encoder.
image_size (`int`, *optional*, defaults to 448):
The size (resolution) of each image *tile*.
patch_size (`int`, *optional*, defaults to 14):
The size (resolution) of each patch.
norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
max_num_tiles (`int`, *optional*, defaults to 4):
Maximum number of tiles for image splitting.
intermediate_layers_indices (`List[int]`, *optional*, defaults to [3, 7, 15, 23, 30]):
Indices of intermediate layers of transformer encoder from which to extract and output features.
These output features are concatenated with final hidden state of transformer encoder.
supported_aspect_ratios (`List[List[int]]`, *optional*):
List of supported aspect ratios for image splitting. If not specified, the default supported aspect ratios
are [[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [3, 1], [4, 1]] for `max_num_tiles=4`.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
Example:
```python
>>> from transformers import MllamaVisionConfig, MllamaVisionModel
>>> # Initializing a Llama config
>>> config = MllamaVisionConfig()
>>> # Initializing a vision model from the mllama-11b style configuration
>>> model = MllamaVisionModel(config)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mllama_vision_model"
base_config_key = "vision_config"
def __init__(
self,
hidden_size: int = 1280,
hidden_act: str = "gelu",
num_hidden_layers: int = 32,
num_global_layers: int = 8,
num_attention_heads: int = 16,
num_channels: int = 3,
intermediate_size: int = 5120,
vision_output_dim: int = 7680,
image_size: int = 448,
patch_size: int = 14,
norm_eps: float = 1e-5,
max_num_tiles: int = 4,
intermediate_layers_indices: Optional[List[int]] = None,
supported_aspect_ratios: Optional[List[List[int]]] = None,
initializer_range: float = 0.02,
**kwargs,
):
if supported_aspect_ratios is None:
if max_num_tiles != 4:
raise ValueError("max_num_tiles must be 4 for default supported aspect ratios")
supported_aspect_ratios = [[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [3, 1], [4, 1]]
if intermediate_layers_indices is None:
intermediate_layers_indices = [3, 7, 15, 23, 30]
self.hidden_size = hidden_size
self.hidden_act = hidden_act
self.num_hidden_layers = num_hidden_layers
self.num_channels = num_channels
self.intermediate_size = intermediate_size
self.image_size = image_size
self.vision_output_dim = vision_output_dim
self.patch_size = patch_size
self.intermediate_layers_indices = intermediate_layers_indices
self.num_global_layers = num_global_layers
self.max_num_tiles = max_num_tiles
self.norm_eps = norm_eps
self.attention_heads = num_attention_heads
self.supported_aspect_ratios = supported_aspect_ratios
self.initializer_range = initializer_range
super().__init__(**kwargs)
@property
def max_aspect_ratio_id(self) -> int:
return len(self.supported_aspect_ratios)
|
class_definition
| 876 | 6,517 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/configuration_mllama.py
| null | 3,354 |
class MllamaTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MllamaTextModel`]. It is used to instantiate an
Mllama text model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Mllama-11B.
e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 128256):
Vocabulary size of the Mllama text model. Defines the maximum number of different tokens that can be represented
by the `inputs_ids` passed when calling [`MllamaTextModel`].
hidden_size (`int`, *optional*, defaults to 4096):
Dimensionality of the embeddings and hidden states.
hidden_act (`str` or `Callable`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the encoder and pooler.
num_hidden_layers (`int`, *optional*, defaults to 40):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If not
specified, will default to `num_attention_heads`.
intermediate_size (`int`, *optional*, defaults to 14336):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
rope_theta (`float`, *optional*, defaults to `500000.0`):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
max_position_embeddings (`int`, *optional*, defaults to 131072):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
cross_attention_layers (`List[int]`, *optional*):
Indices of the cross attention layers. If not specified, will default to [3, 8, 13, 18, 23, 28, 33, 38].
dropout (`float`, *optional*, defaults to 0):
The dropout probability for self- and cross-attention layers.
bos_token_id (`int`, *optional*, defaults to 128000):
The id of the beginning of sentence token.
eos_token_id (`int`, *optional*, defaults to 128001):
The id of the end of sentence token.
pad_token_id (`int`, *optional*, defaults to 128004):
The id of the padding token.
Example:
```python
>>> from transformers import MllamaTextModel, MllamaTextConfig
>>> # Initializing a Mllama text config
>>> config = MllamaTextConfig()
>>> # Initializing a model from the Mllama text configuration
>>> model = MllamaTextModel(config)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mllama_text_model"
base_config_key = "text_config"
def __init__(
self,
vocab_size: int = 128256,
hidden_size: int = 4096,
hidden_act: str = "silu",
num_hidden_layers: int = 40,
num_attention_heads: int = 32,
num_key_value_heads: int = 8,
intermediate_size: int = 14_336,
rope_theta: float = 500_000,
rope_scaling: Optional[Dict] = None,
rms_norm_eps: float = 1e-5,
max_position_embeddings: int = 131_072,
initializer_range: float = 0.02,
use_cache: bool = True,
tie_word_embeddings: bool = False,
cross_attention_layers: Optional[List[int]] = None,
dropout: float = 0,
bos_token_id: int = 128000,
eos_token_id: int = 128001,
pad_token_id: Optional[int] = 128004,
**kwargs,
):
if cross_attention_layers is None:
cross_attention_layers = [3, 8, 13, 18, 23, 28, 33, 38]
self.vocab_size = vocab_size
self.num_hidden_layers = num_hidden_layers
self.cross_attention_layers = cross_attention_layers
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.initializer_range = initializer_range
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rms_norm_eps = rms_norm_eps
self.intermediate_size = intermediate_size
self.dropout = dropout
self.hidden_act = hidden_act
self.rope_scaling = rope_scaling
self.max_position_embeddings = max_position_embeddings
rope_config_validation(self)
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
|
class_definition
| 6,520 | 15,208 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/configuration_mllama.py
| null | 3,355 |
class MllamaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MllamaForConditionalGeneration`]. It is used to instantiate an
Mllama model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Mllama-9B.
e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MllamaVisionConfig`):
The config object or dictionary of the vision backbone.
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MllamaTextConfig`):
The config object or dictionary of the text backbone.
image_token_index (`int`, *optional*, defaults to 128256):
The image token index to encode the image prompt.
Example:
```python
>>> from transformers import MllamaForConditionalGeneration, MllamaConfig, MllamaVisionConfig, MllamaTextConfig
>>> # Initializing a CLIP-vision config
>>> vision_config = MllamaVisionConfig()
>>> # Initializing a Llama config
>>> text_config = MllamaTextConfig()
>>> # Initializing a mllama-11b style configuration
>>> configuration = MllamaConfig(vision_config, text_config)
>>> # Initializing a model from the mllama-11b style configuration
>>> model = MllamaForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mllama"
sub_configs = {"text_config": MllamaTextConfig, "vision_config": MllamaVisionConfig}
def __init__(
self,
vision_config=None,
text_config=None,
image_token_index=128256,
**kwargs,
):
if vision_config is None:
self.vision_config = MllamaVisionConfig()
logger.info("vision_config is None, using default mllama vision config")
elif isinstance(vision_config, dict):
self.vision_config = MllamaVisionConfig(**vision_config)
elif isinstance(vision_config, MllamaVisionConfig):
self.vision_config = vision_config
self.image_token_index = image_token_index
if text_config is None:
self.text_config = MllamaTextConfig()
logger.info("text_config is None, using default mllama text config")
elif isinstance(text_config, dict):
self.text_config = MllamaTextConfig(**text_config)
elif isinstance(text_config, MllamaTextConfig):
self.text_config = text_config
super().__init__(**kwargs)
|
class_definition
| 15,211 | 18,116 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/configuration_mllama.py
| null | 3,356 |
class MllamaPrecomputedAspectRatioEmbedding(nn.Module):
def __init__(self, config: MllamaVisionConfig, is_gated: bool = True):
super().__init__()
self.max_num_tiles = config.max_num_tiles
self.hidden_size = config.hidden_size
self.max_aspect_ratio_id = config.max_aspect_ratio_id
self.is_gated = is_gated
self.embedding = nn.Embedding(self.max_aspect_ratio_id + 1, self.max_num_tiles * self.hidden_size)
if is_gated:
self.gate = nn.Parameter(torch.zeros(1))
def forward(self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor) -> torch.Tensor:
embeddings = self.embedding(aspect_ratio_ids)
embeddings = embeddings.reshape(-1, self.max_num_tiles, 1, self.hidden_size)
if self.is_gated:
embeddings = embeddings * self.gate.tanh()
hidden_state = hidden_state + embeddings
return hidden_state
|
class_definition
| 3,758 | 4,687 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/modeling_mllama.py
| null | 3,357 |
class MllamaPrecomputedPositionEmbedding(nn.Module):
def __init__(self, config: MllamaVisionConfig):
super().__init__()
self.max_num_tiles = config.max_num_tiles
self.max_aspect_ratio_id = config.max_aspect_ratio_id
self.num_patches = (config.image_size // config.patch_size) ** 2 + 1
self.hidden_size = config.hidden_size
self.scale = config.hidden_size**-0.5
self.gate = nn.Parameter(torch.zeros(1))
# position embedding
position_embedding = torch.randn(self.num_patches, self.hidden_size)
self.embedding = nn.Parameter(self.scale * position_embedding)
# tile position embedding
self.tile_embedding = nn.Embedding(
self.max_aspect_ratio_id + 1, self.max_num_tiles * self.num_patches * self.hidden_size
)
def forward(self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor) -> torch.Tensor:
# position embeddings
gated_position_embedding = (1 - self.gate.tanh()) * self.embedding
hidden_state = hidden_state + gated_position_embedding.view(1, 1, self.num_patches, self.hidden_size)
# precomputed tile position embeddings
tile_position_embedding = self.tile_embedding(aspect_ratio_ids)
batch_size = hidden_state.shape[0]
tile_position_embedding = tile_position_embedding.reshape(
batch_size, self.max_num_tiles, self.num_patches, self.hidden_size
)
gated_tile_position_embedding = self.gate.tanh() * tile_position_embedding
hidden_state = hidden_state + gated_tile_position_embedding
return hidden_state
|
class_definition
| 4,690 | 6,332 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/modeling_mllama.py
| null | 3,358 |
class MllamaVisionMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
|
class_definition
| 6,420 | 6,998 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/modeling_mllama.py
| null | 3,359 |
class MllamaVisionAttention(nn.Module):
def __init__(self, config: MllamaVisionConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.num_heads = config.attention_heads
self.head_dim = config.hidden_size // config.attention_heads
self.q_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.embed_dim, bias=False)
def forward(
self,
hidden_state: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = None,
) -> torch.Tensor:
query = self.q_proj(hidden_state)
key = self.k_proj(hidden_state)
value = self.v_proj(hidden_state)
batch_size, q_seq_len, _ = query.shape
_, kv_seq_len, _ = key.shape
query = query.view(batch_size, q_seq_len, self.num_heads, self.head_dim).transpose(1, 2)
key = key.view(batch_size, kv_seq_len, self.num_heads, self.head_dim).transpose(1, 2)
value = value.view(batch_size, kv_seq_len, self.num_heads, self.head_dim).transpose(1, 2)
attn_weights = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_output = torch.matmul(attn_weights, value)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(batch_size, q_seq_len, -1)
output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return output, attn_weights
|
class_definition
| 7,001 | 9,106 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/modeling_mllama.py
| null | 3,360 |
class MllamaVisionSdpaAttention(MllamaVisionAttention):
# Adapted from MllamaVisionAttention
def forward(
self,
hidden_state: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = None,
) -> torch.Tensor:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
if output_attentions:
logger.warning_once(
"MllamaModel is using MllamaVisionSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_state=hidden_state,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
query = self.q_proj(hidden_state)
key = self.k_proj(hidden_state)
value = self.v_proj(hidden_state)
batch_size, q_seq_len, _ = query.shape
_, kv_seq_len, _ = key.shape
query = query.view(batch_size, q_seq_len, self.num_heads, self.head_dim)
key = key.view(batch_size, kv_seq_len, self.num_heads, self.head_dim)
value = value.view(batch_size, kv_seq_len, self.num_heads, self.head_dim)
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
attn_output = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(batch_size, q_seq_len, -1)
output = self.o_proj(attn_output)
return output, None
|
class_definition
| 9,109 | 11,083 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/modeling_mllama.py
| null | 3,361 |
class MllamaVisionEncoderLayer(nn.Module):
def __init__(self, config: MllamaVisionConfig, is_gated: bool = False):
super().__init__()
self.hidden_size = config.hidden_size
self.num_attention_heads = config.attention_heads
self.is_gated = is_gated
self.intermediate_size = config.intermediate_size
self.self_attn = MLLAMA_VISION_ATTENTION_CLASSES[config._attn_implementation](config)
self.mlp = MllamaVisionMLP(config)
self.input_layernorm = nn.LayerNorm(self.hidden_size, eps=config.norm_eps)
self.post_attention_layernorm = nn.LayerNorm(self.hidden_size, eps=config.norm_eps)
if is_gated:
self.gate_attn = nn.Parameter(torch.ones(1) * math.pi / 4)
self.gate_ffn = nn.Parameter(torch.ones(1) * math.pi / 4)
def forward(
self,
hidden_state: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = None,
):
# Self Attention
residual = hidden_state
hidden_state = self.input_layernorm(hidden_state)
hidden_state, attn_weights = self.self_attn(hidden_state, attention_mask=attention_mask)
if self.is_gated:
hidden_state = self.gate_attn.tanh() * hidden_state
hidden_state = residual + hidden_state
# Feed forward
residual = hidden_state
hidden_state = self.post_attention_layernorm(hidden_state)
hidden_state = self.mlp(hidden_state)
if self.is_gated:
hidden_state = self.gate_ffn.tanh() * hidden_state
hidden_state = residual + hidden_state
outputs = (hidden_state,)
if output_attentions:
outputs += (attn_weights,)
return outputs
|
class_definition
| 11,190 | 12,961 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/modeling_mllama.py
| null | 3,362 |
class MllamaVisionEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`MllamaEncoderLayer`].
Args:
config: MllamaConfig
"""
def __init__(self, config: MllamaVisionConfig, num_layers=32, is_gated=False):
super().__init__()
self.config = config
self.layers = nn.ModuleList([MllamaVisionEncoderLayer(config, is_gated) for _ in range(num_layers)])
self.gradient_checkpointing = False
self.config = config
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for encoder_layer in self.layers:
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_state=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = layer_outputs[0]
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
|
class_definition
| 12,964 | 16,907 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/modeling_mllama.py
| null | 3,363 |
class MllamaTextRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
MllamaTextRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
class_definition
| 17,001 | 17,731 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/modeling_mllama.py
| null | 3,364 |
class MllamaTextCrossAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
config: Optional[MllamaTextConfig] = None,
layer_idx: Optional[int] = None,
):
super().__init__()
self.config = config
self.num_heads = self.config.num_attention_heads
self.num_key_value_heads = self.config.num_key_value_heads
self.dropout = config.dropout
self.hidden_size = config.hidden_size
self.head_dim = config.hidden_size // self.num_heads
self.layer_idx = layer_idx
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self.q_norm = MllamaTextRMSNorm(self.head_dim, eps=config.rms_norm_eps)
self.k_norm = MllamaTextRMSNorm(self.head_dim, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
cross_attention_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
use_cache: bool = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
query_states = self.q_norm(query_states)
if cross_attention_states is not None:
key_states = self.k_proj(cross_attention_states)
value_states = self.v_proj(cross_attention_states)
key_states = key_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
key_states = self.k_norm(key_states)
if past_key_value is not None:
# if we have a new image + new tokens, we only computed key_states on that new image
# we still update the cross key states, past_image, new_image. And use it!
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
elif cache_position[0] != 0:
key_states, value_states = (
past_key_value.key_cache[self.layer_idx],
past_key_value.value_cache[self.layer_idx],
)
else:
raise ValueError(
"Cross attention layer can't find neither `cross_attn_states` nor cached values for key/values!"
)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
|
class_definition
| 17,734 | 21,995 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/modeling_mllama.py
| null | 3,365 |
class MllamaTextCrossSdpaAttention(MllamaTextCrossAttention):
"""
Mllama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`MllamaTextCrossAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from MllamaTextCrossAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
cross_attention_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
use_cache: bool = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"MllamaModel is using MllamaTextCrossSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
cross_attention_states=cross_attention_states,
attention_mask=attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
query_states = self.q_norm(query_states)
if cross_attention_states is not None:
key_states = self.k_proj(cross_attention_states)
value_states = self.v_proj(cross_attention_states)
key_states = key_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if past_key_value is not None:
# if we have a new image + new tokens, we only computed key_states on that new image
# we still update the cross key states, past_image, new_image. And use it!
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
elif cache_position[0] != 0:
key_states, value_states = (
past_key_value.key_cache[self.layer_idx],
past_key_value.value_cache[self.layer_idx],
)
else:
raise ValueError(
"Cross attention layer can't find neither `cross_attn_states` nor cached values for key/values!"
)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
key_states = self.k_norm(key_states)
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and attention_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if attention_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
|
class_definition
| 21,998 | 26,857 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/modeling_mllama.py
| null | 3,366 |
class MllamaTextSelfAttention(nn.Module):
def __init__(self, config: MllamaTextConfig, layer_idx: int):
super().__init__()
self.config = config
self.num_heads = config.num_attention_heads
self.dropout = config.dropout
self.hidden_size = config.hidden_size
self.num_key_value_heads = config.num_key_value_heads
self.head_dim = config.hidden_size // self.num_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.rope_theta = config.rope_theta
self.layer_idx = layer_idx
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
position_embeddings: torch.Tensor,
output_attentions: bool = False,
use_cache: bool = False,
past_key_value=None,
cache_position=None,
**kwargs,
):
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
|
class_definition
| 29,402 | 32,732 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/modeling_mllama.py
| null | 3,367 |
class MllamaTextSelfSdpaAttention(MllamaTextSelfAttention):
# Adapted from MllamaTextSelfAttention
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
position_embeddings: torch.Tensor,
output_attentions: bool = False,
use_cache: bool = False,
past_key_value=None,
cache_position=None,
**kwargs,
):
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"MllamaModel is using MllamaTextSelfSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_embeddings=position_embeddings,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and causal_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
|
class_definition
| 32,735 | 36,778 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/modeling_mllama.py
| null | 3,368 |
class MllamaTextMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
# Ignore copy
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
|
class_definition
| 37,090 | 37,785 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/modeling_mllama.py
| null | 3,369 |
class MllamaSelfAttentionDecoderLayer(nn.Module):
def __init__(self, config: MllamaTextConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = MLLAMA_TEXT_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
self.mlp = MllamaTextMLP(config)
self.input_layernorm = MllamaTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = MllamaTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.layer_idx = layer_idx
def forward(
self,
hidden_states: torch.Tensor,
cross_attention_states: Optional[torch.Tensor] = None,
cross_attention_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*):
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
query_sequence_length, key_sequence_length)` if default attention is used.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
with `head_dim` being the embedding dimension of each attention head.
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
|
class_definition
| 37,863 | 41,876 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/modeling_mllama.py
| null | 3,370 |
class MllamaCrossAttentionDecoderLayer(torch.nn.Module):
"""Cross-attention transformer block with tanh-gated attention and feedforward."""
def __init__(self, config: MllamaTextConfig, layer_idx: int) -> None:
super().__init__()
self.layer_idx = layer_idx
self.cross_attn = MLLAMA_TEXT_CROSS_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
self.input_layernorm = MllamaTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.cross_attn_attn_gate = torch.nn.Parameter(torch.zeros(1))
self.mlp = MllamaTextMLP(config)
self.post_attention_layernorm = MllamaTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.cross_attn_mlp_gate = torch.nn.Parameter(torch.zeros(1))
def forward(
self,
hidden_states: torch.Tensor,
cross_attention_states: torch.Tensor,
cross_attention_mask: torch.Tensor,
attention_mask: torch.Tensor,
full_text_row_masked_out_mask: Tuple[torch.Tensor, torch.Tensor],
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states, attn_weights, past_key_value = self.cross_attn(
hidden_states=hidden_states,
attention_mask=cross_attention_mask,
cross_attention_states=cross_attention_states,
past_key_value=past_key_value,
output_attentions=output_attentions,
cache_position=cache_position,
)
hidden_states = residual + self.cross_attn_attn_gate.tanh() * hidden_states
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
if full_text_row_masked_out_mask is not None:
hidden_states = full_text_row_masked_out_mask[:, 0] * hidden_states # type: ignore
hidden_states = residual + self.cross_attn_mlp_gate.tanh() * hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
if use_cache:
outputs += (past_key_value,)
return outputs
|
class_definition
| 41,879 | 44,400 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/modeling_mllama.py
| null | 3,371 |
class MllamaRotaryEmbedding(nn.Module):
def __init__(self, config: MllamaTextConfig, device=None):
super().__init__()
self.rope_type = config.rope_scaling["rope_type"]
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
def _dynamic_frequency_update(self, position_ids, device):
"""
dynamic RoPE layers should recompute `inv_freq` in the following situations:
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
"""
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
inv_freq, self.attention_scaling = self.rope_init_fn(
self.config, device, seq_len=seq_len, **self.rope_kwargs
)
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
self.max_seq_len_cached = seq_len
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.original_max_seq_len
@torch.no_grad()
def forward(self, x, position_ids):
if "dynamic" in self.rope_type:
self._dynamic_frequency_update(position_ids, device=x.device)
# Core RoPE block
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
cos = cos * self.attention_scaling
sin = sin * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
class_definition
| 44,403 | 47,176 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/modeling_mllama.py
| null | 3,372 |
class MllamaPreTrainedModel(PreTrainedModel):
config_class = MllamaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = [
"MllamaVisionEncoderLayer",
"MllamaCrossAttentionDecoderLayer",
"MllamaSelfAttentionDecoderLayer",
]
_supports_cache_class = True
_supports_static_cache = False # static cache cannot have different shapes for each layer
_supports_sdpa = True
_supports_quantized_cache = True
def _init_weights(self, module):
std = self.config.get_text_config().initializer_range
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.Parameter):
module.data.normal_(mean=0.0, std=std)
elif isinstance(module, MllamaVisionModel):
nn.init.normal_(module.class_embedding.data, std=std)
elif isinstance(module, MllamaPrecomputedPositionEmbedding):
nn.init.normal_(module.embedding.data, std=std)
elif isinstance(module, MllamaVisionEncoderLayer) and module.is_gated:
nn.init.normal_(module.gate_attn.data, std=std)
nn.init.normal_(module.gate_ffn.data, std=std)
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
# Copied from transformers.models.llama.modeling_llama.LlamaModel._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
|
class_definition
| 47,179 | 54,697 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/modeling_mllama.py
| null | 3,373 |
class MllamaVisionModel(MllamaPreTrainedModel):
config_class = MllamaVisionConfig
base_model_prefix = "vision_model"
def __init__(self, config: MllamaVisionConfig):
super().__init__(config)
self.image_size = config.image_size
self.patch_size = config.patch_size
self.max_num_tiles = config.max_num_tiles
self.hidden_size = config.hidden_size
self.num_channels = config.num_channels
self.intermediate_layers_indices = config.intermediate_layers_indices
self.num_patches = (self.image_size // self.patch_size) ** 2 + 1
self.scale = config.hidden_size**-0.5
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.hidden_size,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
bias=False,
)
self.class_embedding = nn.Parameter(self.scale * torch.randn(self.hidden_size))
self.gated_positional_embedding = MllamaPrecomputedPositionEmbedding(config)
self.pre_tile_positional_embedding = MllamaPrecomputedAspectRatioEmbedding(config, is_gated=True)
self.post_tile_positional_embedding = MllamaPrecomputedAspectRatioEmbedding(config, is_gated=True)
# layer norms
self.layernorm_pre = nn.LayerNorm(self.hidden_size)
self.layernorm_post = nn.LayerNorm(self.hidden_size)
# encoders
self.transformer = MllamaVisionEncoder(config, config.num_hidden_layers, is_gated=False)
self.global_transformer = MllamaVisionEncoder(config, config.num_global_layers, is_gated=True)
self.post_init()
def get_input_embeddings(self):
"""
This function is used to fetch the first embedding layer to activate grads on inputs.
"""
return self.patch_embedding
def apply_class_embedding(self, hidden_state: torch.Tensor) -> torch.Tensor:
batch_size, _, hidden_size = hidden_state.shape
class_embedding = self.class_embedding.expand(batch_size, 1, hidden_size)
hidden_state = torch.cat([class_embedding, hidden_state], dim=1)
return hidden_state
@add_start_docstrings_to_model_forward(MLLAMA_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutput, config_class="MllamaVisionConfig")
def forward(
self,
pixel_values: torch.Tensor,
aspect_ratio_ids: torch.Tensor,
aspect_ratio_mask: torch.Tensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[BaseModelOutput, Tuple[torch.Tensor, ...]]:
r"""
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, MllamaVisionModel
>>> checkpoint = "meta-llama/Llama-3.2-11B-Vision"
>>> model = MllamaVisionModel.from_pretrained(checkpoint)
>>> processor = AutoProcessor.from_pretrained(checkpoint)
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> output = model(**inputs)
>>> print(output.last_hidden_state.shape)
torch.Size([1, 1, 4, 1025, 7680])
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, num_concurrent_media, num_tiles, num_channels, height, width = pixel_values.shape
pixel_values = pixel_values.reshape(batch_size * num_concurrent_media * num_tiles, num_channels, height, width)
aspect_ratio_ids = aspect_ratio_ids.reshape(batch_size * num_concurrent_media, -1)
# Patch embedding
patch_embeds = self.patch_embedding(pixel_values.to(self.dtype).to(self.device))
hidden_state = patch_embeds.flatten(2).transpose(1, 2)
# Tile embeddings
_, num_patches, dim = hidden_state.shape
hidden_state = hidden_state.reshape(batch_size * num_concurrent_media, num_tiles, -1, dim)
hidden_state = self.pre_tile_positional_embedding(hidden_state, aspect_ratio_ids)
# Add cls token
hidden_state = hidden_state.reshape(batch_size * num_concurrent_media * num_tiles, num_patches, dim)
hidden_state = self.apply_class_embedding(hidden_state)
num_patches += 1
# Position embeddings
hidden_state = hidden_state.reshape(batch_size * num_concurrent_media, num_tiles, num_patches, dim)
hidden_state = self.gated_positional_embedding(hidden_state, aspect_ratio_ids)
hidden_state = self.layernorm_pre(hidden_state)
# Compute the number of tokens to pad
num_padding_patches = (8 - (hidden_state.shape[-2] % 8)) % 8
# Compute padding tuple for pad function
padding = (0, 0, 0, num_padding_patches) # (pad_left, pad_right, pad_left for dim -2, pad_right for dim -2)
# Pad the tensor
hidden_state = F.pad(hidden_state, padding, mode="constant", value=0)
slice_index = -num_padding_patches if num_padding_patches > 0 else None
# Prepare attention mask
attention_mask = aspect_ratio_mask.reshape(batch_size * num_concurrent_media, -1)
attention_mask = _prepare_aspect_ratio_attention_mask(
aspect_ratio_mask=attention_mask,
num_patches=self.num_patches,
target_length=hidden_state.shape[2],
dtype=self.dtype,
)
# Apply encoder
hidden_state = hidden_state.view(batch_size * num_concurrent_media, -1, dim)
output = self.transformer(
hidden_state,
attention_mask=attention_mask,
output_hidden_states=True,
output_attentions=output_attentions,
)
hidden_state = output[0]
hidden_state = self.layernorm_post(hidden_state)
# Apply global encoder
hidden_state = hidden_state.reshape(
batch_size * num_concurrent_media, num_tiles, num_patches + num_padding_patches, dim
)
hidden_state = self.post_tile_positional_embedding(hidden_state, aspect_ratio_ids)
hidden_state = hidden_state.reshape(
batch_size * num_concurrent_media, num_tiles * (num_patches + num_padding_patches), dim
)
global_output = self.global_transformer(
hidden_state,
attention_mask=attention_mask,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
)
hidden_state = global_output[0]
# Remove padding form hidden state
hidden_state = hidden_state.reshape(
batch_size * num_concurrent_media, num_tiles, num_patches + num_padding_patches, dim
)
hidden_state = hidden_state[:, :, :slice_index]
hidden_state = hidden_state.reshape(batch_size, num_concurrent_media, num_tiles, num_patches, dim)
# Collect intermediate layer outputs from encoder output
all_intermediate_hidden_states = [output[1][i] for i in self.intermediate_layers_indices]
intermediate_hidden_states = torch.stack(all_intermediate_hidden_states, dim=-1)
# Remove padding from intermediate hidden states
intermediate_hidden_states = intermediate_hidden_states.reshape(
batch_size * num_concurrent_media, num_tiles, num_patches + num_padding_patches, -1
)
intermediate_hidden_states = intermediate_hidden_states[:, :, :slice_index]
intermediate_hidden_states = intermediate_hidden_states.reshape(
batch_size, num_concurrent_media, num_tiles, num_patches, -1
)
# Concatenate final hidden state and intermediate hidden states
hidden_state = torch.cat([hidden_state, intermediate_hidden_states], dim=-1)
if output_hidden_states:
hidden_states = tuple(all_intermediate_hidden_states) + tuple(global_output[1])
else:
hidden_states = None
if output_attentions:
# global transformer in contrast to `self.transformer` doesn't always return hidden states so we might go index out-of-range
global_attn = tuple(global_output[2]) if output_hidden_states else tuple(global_output[1])
attentions = tuple(output[2]) + global_attn
else:
attentions = None
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states, attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_state,
hidden_states=hidden_states,
attentions=attentions,
)
|
class_definition
| 70,201 | 79,315 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/modeling_mllama.py
| null | 3,374 |
class MllamaTextModel(MllamaPreTrainedModel):
config_class = MllamaTextConfig
base_model_prefix = "language_model.model"
def __init__(self, config: MllamaTextConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size + 8, config.hidden_size, self.padding_idx)
self.cross_attention_layers = config.cross_attention_layers
layers = []
for layer_idx in range(config.num_hidden_layers):
if layer_idx in self.cross_attention_layers:
layers.append(MllamaCrossAttentionDecoderLayer(config, layer_idx))
else:
layers.append(MllamaSelfAttentionDecoderLayer(config, layer_idx))
self.layers = nn.ModuleList(layers)
self.norm = MllamaTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = MllamaRotaryEmbedding(config=config)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(MLLAMA_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPast, config_class="MllamaTextConfig")
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
cross_attention_states: Optional[torch.FloatTensor] = None,
cross_attention_mask: Optional[torch.Tensor] = None,
full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
"""
Returns:
Example:
```python
>>> from transformers import AutoProcessor, MllamaTextModel
>>> checkpoint = "meta-llama/Llama-3.2-11B-Vision"
>>> model = MllamaTextModel.from_pretrained(checkpoint)
>>> processor = AutoProcessor.from_pretrained(checkpoint)
>>> text = "<|image|>If I had to write a haiku for this one"
>>> inputs = processor(text=text, return_tensors="pt")
>>> output = model(**inputs)
>>> print(output.last_hidden_state.shape)
torch.Size([1, 13, 4096])
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = inputs_embeds
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
# For text-only path we should skip cross attention layers.
# Let's check if the layer is cross attention layer and if we have cross attention states
# or cached cross attention states.
is_cross_attention_layer = idx in self.cross_attention_layers
is_cross_attention_cache_empty = past_key_values is None or (
past_key_values is not None and past_key_values.get_seq_length(idx) == 0
)
if is_cross_attention_layer and cross_attention_states is None and is_cross_attention_cache_empty:
continue
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
cross_attention_states,
cross_attention_mask,
causal_mask,
full_text_row_masked_out_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
cross_attention_states=cross_attention_states,
cross_attention_mask=cross_attention_mask,
attention_mask=causal_mask,
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
|
class_definition
| 79,472 | 87,185 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/modeling_mllama.py
| null | 3,375 |
class MllamaForCausalLM(MllamaPreTrainedModel, GenerationMixin):
config_class = MllamaTextConfig
_supports_static_cache = True # only the LLM without cross attn can do compile
base_model_prefix = "language_model"
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config.get_text_config())
self.text_config = config.get_text_config()
self.vocab_size = self.text_config.vocab_size
self.model = MllamaTextModel._from_config(self.text_config)
self.lm_head = nn.Linear(self.text_config.hidden_size, self.vocab_size, bias=False)
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(MLLAMA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="MllamaTextConfig")
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
cross_attention_states: Optional[torch.LongTensor] = None,
cross_attention_mask: Optional[torch.LongTensor] = None,
full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
num_logits_to_keep: int = 0,
**loss_kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
num_logits_to_keep (`int`, *optional*):
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, MllamaForCausalLM
>>> model = MllamaForCausalLM.from_pretrained("Llama-3.2-11B-Vision")
>>> tokenizer = AutoTokenizer.from_pretrained("Llama-3.2-11B-Vision")
>>> prompt = "If I had to write a haiku, it would be:"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=40, do_sample=True, temperature=0.6)
>>> result = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
>>> print(result)
If I had to write a haiku, it would be: "Snowflakes gently fall" - simple, yet peaceful.
I love the idea of snowflakes gently falling, each one
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
cross_attention_states=cross_attention_states,
attention_mask=attention_mask,
position_ids=position_ids,
cross_attention_mask=cross_attention_mask,
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]).float()
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 87,312 | 92,995 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/modeling_mllama.py
| null | 3,376 |
class MllamaForConditionalGeneration(MllamaPreTrainedModel, GenerationMixin):
_supports_quantized_cache = False # quant cache not supported in encoder-decoder setting
def __init__(self, config: MllamaConfig):
super().__init__(config)
self.vocab_size = config.text_config.vocab_size
self.hidden_size = config.text_config.hidden_size
self.max_num_tiles = config.vision_config.max_num_tiles
self.vision_output_dim = config.vision_config.vision_output_dim
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
self.vision_model = MllamaVisionModel._from_config(config.vision_config)
self.language_model = MllamaForCausalLM._from_config(config.text_config)
if self.language_model._tied_weights_keys is not None:
self._tied_weights_keys = [f"language_model.{k}" for k in self.language_model._tied_weights_keys]
self.multi_modal_projector = nn.Linear(
config.vision_config.vision_output_dim,
config.text_config.hidden_size,
bias=True,
)
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
def get_decoder(self):
return self.language_model.get_decoder()
@add_start_docstrings_to_model_forward(MLLAMA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="MllamaConfig")
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
aspect_ratio_mask: Optional[torch.Tensor] = None,
aspect_ratio_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
cross_attention_mask: Optional[torch.Tensor] = None,
cross_attention_states: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
num_logits_to_keep: int = 0,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
num_logits_to_keep (`int`, *optional*):
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, MllamaForConditionalGeneration
>>> checkpoint = "meta-llama/Llama-3.2-11B-Vision"
>>> model = MllamaForConditionalGeneration.from_pretrained(checkpoint)
>>> processor = AutoProcessor.from_pretrained(checkpoint)
>>> prompt = "<|image|>If I had to write a haiku for this one"
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
>>> # Generate
>>> output = model.generate(**inputs, max_new_tokens=15)
>>> prompt_len = inputs.input_ids.shape[-1]
>>> generated_ids = output[:, prompt_len:]
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
>>> print(generated_text)
[', it would be:.\\nA stop sign in Chinatown.\\n']
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if pixel_values is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
)
if pixel_values is not None and cross_attention_states is not None:
raise ValueError("`pixel_values` and `cross_attention_states` cannot be provided simultaneously")
if pixel_values is not None:
if aspect_ratio_ids is None:
raise ValueError("`aspect_ratio_ids` must be provided if `pixel_values` is provided")
# get vision tokens from vision model
vision_outputs = self.vision_model(
pixel_values=pixel_values,
aspect_ratio_ids=aspect_ratio_ids,
aspect_ratio_mask=aspect_ratio_mask,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=return_dict,
)
cross_attention_states = vision_outputs[0]
cross_attention_states = self.multi_modal_projector(cross_attention_states).reshape(
-1, cross_attention_states.shape[-2], self.hidden_size
)
if cross_attention_mask is not None:
cross_attention_mask, full_text_row_masked_out_mask = _prepare_cross_attention_mask(
cross_attention_mask,
num_vision_tokens=self.vision_model.num_patches,
dtype=self.dtype,
)
else:
full_text_row_masked_out_mask = None
if cross_attention_mask is not None and cache_position is not None:
cross_attention_mask = cross_attention_mask[:, :, cache_position]
full_text_row_masked_out_mask = full_text_row_masked_out_mask[:, :, cache_position]
outputs = self.language_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
cross_attention_states=cross_attention_states,
cross_attention_mask=cross_attention_mask,
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
past_key_values=past_key_values,
use_cache=use_cache,
inputs_embeds=inputs_embeds,
labels=labels,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=return_dict,
cache_position=cache_position,
num_logits_to_keep=num_logits_to_keep,
)
return outputs
def prepare_inputs_for_generation(
self,
input_ids=None,
inputs_embeds=None,
attention_mask=None,
position_ids=None,
pixel_values=None,
aspect_ratio_ids=None,
aspect_ratio_mask=None,
cross_attention_mask=None,
past_key_values=None,
use_cache=False,
cache_position=None,
num_logits_to_keep=None,
**kwargs,
):
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
if past_key_values is not None:
if inputs_embeds is not None: # Exception 1
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
# TODO: we have no attention_mask so this won't work, check if we really won't need attention mask and find another way
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and cache_position[0] == 0:
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
else:
# The clone here is for the same reason as for `position_ids`.
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
if num_logits_to_keep is not None:
model_inputs["num_logits_to_keep"] = num_logits_to_keep
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
"cross_attention_mask": cross_attention_mask,
}
)
# If we're in pre-fill or cacheless decoding step, then we need pixel_values and aspect ratios
# to compute image hidden states, otherwise they are cached within each cross attn layer
if cache_position[0] == 0:
model_inputs["pixel_values"] = pixel_values
model_inputs["aspect_ratio_ids"] = aspect_ratio_ids
model_inputs["aspect_ratio_mask"] = aspect_ratio_mask
return model_inputs
def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder, **kwargs):
cross_attention_mask_prev = model_kwargs.get("cross_attention_mask", None)
model_kwargs = super()._update_model_kwargs_for_generation(
outputs=outputs,
model_kwargs=model_kwargs,
is_encoder_decoder=is_encoder_decoder,
**kwargs,
)
# add cross-attn mask for new token
if cross_attention_mask_prev is not None:
model_kwargs["cross_attention_mask"] = torch.cat(
[cross_attention_mask_prev, cross_attention_mask_prev[:, -1:, ...]], dim=1
)
return model_kwargs
|
class_definition
| 93,136 | 105,369 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mllama/modeling_mllama.py
| null | 3,377 |
class OmDetTurboTextKwargs(TextKwargs, total=False):
task: Optional[Union[str, List[str], TextInput, PreTokenizedInput]]
|
class_definition
| 1,264 | 1,388 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/omdet_turbo/processing_omdet_turbo.py
| null | 3,378 |
class OmDetTurboProcessorKwargs(ProcessingKwargs, total=False):
text_kwargs: OmDetTurboTextKwargs
_defaults = {
"text_kwargs": {
"add_special_tokens": True,
"padding": "max_length",
"truncation": True,
"max_length": 77,
"stride": 0,
"return_overflowing_tokens": False,
"return_special_tokens_mask": False,
"return_offsets_mapping": False,
"return_token_type_ids": False,
"return_length": False,
"verbose": True,
"task": None,
},
"images_kwargs": {},
}
|
class_definition
| 1,518 | 2,149 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/omdet_turbo/processing_omdet_turbo.py
| null | 3,379 |
class DictWithDeprecationWarning(dict):
message = (
"The `classes` key is deprecated for `OmDetTurboProcessor.post_process_grounded_object_detection` "
"output dict and will be removed in a 4.51.0 version. Please use `text_labels` instead."
)
def __getitem__(self, key):
if key == "classes":
warnings.warn(self.message, FutureWarning)
return super().__getitem__("text_labels")
return super().__getitem__(key)
def get(self, key, *args, **kwargs):
if key == "classes":
warnings.warn(self.message, FutureWarning)
return super().get("text_labels", *args, **kwargs)
return super().get(key, *args, **kwargs)
|
class_definition
| 2,152 | 2,867 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/omdet_turbo/processing_omdet_turbo.py
| null | 3,380 |
class OmDetTurboProcessor(ProcessorMixin):
r"""
Constructs a OmDet-Turbo processor which wraps a Deformable DETR image processor and an AutoTokenizer into a
single processor.
[`OmDetTurboProcessor`] offers all the functionalities of [`DetrImageProcessor`] and
[`AutoTokenizer`]. See the docstring of [`~OmDetTurboProcessor.__call__`] and [`~OmDetTurboProcessor.decode`]
for more information.
Args:
image_processor (`DetrImageProcessor`):
An instance of [`DetrImageProcessor`]. The image processor is a required input.
tokenizer (`AutoTokenizer`):
An instance of ['PreTrainedTokenizer`]. The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "DetrImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor, tokenizer):
super().__init__(image_processor, tokenizer)
def __call__(
self,
images: ImageInput = None,
text: Union[List[str], List[List[str]]] = None,
audio=None,
videos=None,
**kwargs: Unpack[OmDetTurboProcessorKwargs],
) -> BatchFeature:
"""
This method uses [*DetrImageProcessor.__call__] method to prepare image(s) for the model, and
[CLIPTokenizerFast.__call__] to prepare text for the model.
Please refer to the docstring of the above two methods for more information.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255.
text (`Union[str, List[str], List[List[str]]]`):
The classes used to limit the scope of the open vocabulary detection. Expects a list of strings or a list
of list of strings. Batched classes can be of different lengths.
Examples: ["cat", "dog", "bird"], [["cat", "dog", "bird"], ["hat", "person"], ["car"]]
Kwargs:
task (`Union[str, List[str], TextInput, PreTokenizedInput]`):
The grounded text used to guide open vocabulary detection. Expects a single string or a list of strings.
Examples: "Detect a cat, a dog, and a bird.",[ "Detect everything.", "Detect trees and flowers."]
When not provided, the default task is "Detect [class1], [class2], [class3]" etc.
...
"""
if images is None or text is None:
raise ValueError("You have to specify both `images` and `text`")
output_kwargs = self._merge_kwargs(
OmDetTurboProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if isinstance(text, str):
text = text.strip(" ").split(",")
if not (len(text) and isinstance(text[0], (list, tuple))):
text = [text]
task = output_kwargs["text_kwargs"].pop("task", None)
if task is None:
task = ["Detect {}.".format(", ".join(text_single)) for text_single in text]
elif not isinstance(task, (list, tuple)):
task = [task]
encoding_image_processor = self.image_processor(images, **output_kwargs["images_kwargs"])
tasks_encoding = self.tokenizer(text=task, **output_kwargs["text_kwargs"])
classes = text
classes_structure = torch.tensor([len(class_single) for class_single in classes], dtype=torch.long)
classes_flattened = [class_single for class_batch in classes for class_single in class_batch]
classes_encoding = self.tokenizer(text=classes_flattened, **output_kwargs["text_kwargs"])
encoding = BatchFeature()
encoding.update({f"tasks_{key}": value for key, value in tasks_encoding.items()})
encoding.update({f"classes_{key}": value for key, value in classes_encoding.items()})
encoding.update({"classes_structure": classes_structure})
encoding.update(encoding_image_processor)
return encoding
# Copied from transformers.models.blip.processing_blip.BlipProcessor.batch_decode with BertTokenizerFast->PreTrainedTokenizer
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.blip.processing_blip.BlipProcessor.decode with BertTokenizerFast->PreTrainedTokenizer
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def _get_default_image_size(self) -> Tuple[int, int]:
height = (
self.image_processor.size["height"]
if "height" in self.image_processor.size
else self.image_processor.size["shortest_edge"]
)
width = (
self.image_processor.size["width"]
if "width" in self.image_processor.size
else self.image_processor.size["longest_edge"]
)
return height, width
@deprecate_kwarg("score_threshold", new_name="threshold", version="4.51.0")
@deprecate_kwarg("classes", new_name="text_labels", version="4.51.0")
def post_process_grounded_object_detection(
self,
outputs: "OmDetTurboObjectDetectionOutput",
text_labels: Optional[Union[List[str], List[List[str]]]] = None,
threshold: float = 0.3,
nms_threshold: float = 0.5,
target_sizes: Optional[Union[TensorType, List[Tuple]]] = None,
max_num_det: Optional[int] = None,
):
"""
Converts the raw output of [`OmDetTurboForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
bottom_right_x, bottom_right_y) format and get the associated text class.
Args:
outputs ([`OmDetTurboObjectDetectionOutput`]):
Raw outputs of the model.
text_labels (Union[List[str], List[List[str]]], *optional*):
The input classes names. If not provided, `text_labels` will be set to `None` in `outputs`.
threshold (float, defaults to 0.3):
Only return detections with a confidence score exceeding this threshold.
nms_threshold (float, defaults to 0.5):
The threshold to use for box non-maximum suppression. Value in [0, 1].
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
`(height, width)` of each image in the batch. If unset, predictions will not be resized.
max_num_det (`int`, *optional*):
The maximum number of detections to return.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, classes and boxes for an image
in the batch as predicted by the model.
"""
batch_size = len(outputs.decoder_coord_logits)
# Inputs consistency check for target sizes
if target_sizes is None:
height, width = self._get_default_image_size()
target_sizes = [(height, width)] * batch_size
if any(len(image_size) != 2 for image_size in target_sizes):
raise ValueError(
"Each element of target_sizes must contain the size (height, width) of each image of the batch"
)
if len(target_sizes) != batch_size:
raise ValueError("Make sure that you pass in as many target sizes as output sequences")
# Inputs consistency check for text labels
if text_labels is not None and isinstance(text_labels[0], str):
text_labels = [text_labels]
if text_labels is not None and len(text_labels) != batch_size:
raise ValueError("Make sure that you pass in as many classes group as output sequences")
# Convert target_sizes to list for easier handling
if isinstance(target_sizes, torch.Tensor):
target_sizes = target_sizes.tolist()
batch_boxes = outputs.decoder_coord_logits
batch_logits = outputs.decoder_class_logits
batch_num_classes = outputs.classes_structure
batch_scores, batch_labels = compute_score(batch_logits)
results = []
for boxes, scores, image_size, image_num_classes in zip(
batch_boxes, batch_scores, target_sizes, batch_num_classes
):
boxes, scores, labels = _post_process_boxes_for_image(
boxes=boxes,
scores=scores,
labels=batch_labels,
image_num_classes=image_num_classes,
image_size=image_size,
threshold=threshold,
nms_threshold=nms_threshold,
max_num_det=max_num_det,
)
result = DictWithDeprecationWarning(
{"boxes": boxes, "scores": scores, "labels": labels, "text_labels": None}
)
results.append(result)
# Add text labels
if text_labels is not None:
for result, image_text_labels in zip(results, text_labels):
result["text_labels"] = [image_text_labels[idx] for idx in result["labels"]]
return results
|
class_definition
| 7,727 | 17,374 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/omdet_turbo/processing_omdet_turbo.py
| null | 3,381 |
class OmDetTurboEncoderOutput(ModelOutput):
"""
Base class for outputs of the OmDetTurboHybridEncoder.
Args:
last_hidden_state (`torch.FloatTensor`):
Last hidden states of the encoder.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
extracted_states (`Tuple[torch.FloatTensor]`):
The extracted states from the Feature Pyramid Network (FPN) and Path Aggregation Network (PAN) of the encoder.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
extracted_states: Tuple[torch.FloatTensor] = None
|
class_definition
| 1,705 | 3,257 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/omdet_turbo/modeling_omdet_turbo.py
| null | 3,382 |
class OmDetTurboDecoderOutput(ModelOutput):
"""
Base class for outputs of the OmDetTurboDecoder.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder.
decoder_coords (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
The predicted coordinates of the objects.
decoder_classes (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes)`):
The predicted classes of the objects.
encoder_coord_logits (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
The predicted coordinates of the objects from the encoder.
encoder_class_logits (`Tuple[torch.FloatTensor]`) of shape `(batch_size, num_queries, num_classes)`:
The predicted class of the objects from the encoder.
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
The initial reference points.
intermediate_reference_points (`Tuple[Tuple[torch.FloatTensor]]`):
The intermediate reference points.
hidden_states (`Optional[Tuple[torch.FloatTensor]]`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`Optional[Tuple[Tuple[torch.FloatTensor]]]`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of tuples of `torch.FloatTensor` (one for attention for each layer) of shape `(batch_size, num_heads,
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
weighted average in the self-attention, cross-attention and multi-scale deformable attention heads.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_coords: torch.FloatTensor = None
decoder_classes: torch.FloatTensor = None
encoder_coord_logits: torch.FloatTensor = None
encoder_class_logits: Tuple[torch.FloatTensor] = None
init_reference_points: torch.FloatTensor = None
intermediate_reference_points: Tuple[Tuple[torch.FloatTensor]] = None
|
class_definition
| 3,271 | 5,936 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/omdet_turbo/modeling_omdet_turbo.py
| null | 3,383 |
class OmDetTurboObjectDetectionOutput(ModelOutput):
"""
Output type of [`OmDetTurboObjectDetectionOutput`].
Args:
loss (`torch.FloatTensor`):
The loss value.
decoder_coord_logits (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
The predicted coordinates logits of the objects.
decoder_class_logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes)`):
The predicted class of the objects.
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
The initial reference points.
intermediate_reference_points (`Tuple[Tuple[torch.FloatTensor]]`):
The intermediate reference points.
encoder_coord_logits (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
The predicted coordinates of the objects from the encoder.
encoder_class_logits (`Tuple[torch.FloatTensor]`):
The predicted class of the objects from the encoder.
encoder_extracted_states (`torch.FloatTensor`):
The extracted states from the Feature Pyramid Network (FPN) and Path Aggregation Network (PAN) of the encoder.
decoder_hidden_states (`Tuple[torch.FloatTensor]`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
decoder_attentions (`Tuple[Tuple[torch.FloatTensor]]`, *optional*):
Tuple of tuples of `torch.FloatTensor` (one for attention for each layer) of shape `(batch_size, num_heads,
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
weighted average in the self-attention, cross-attention and multi-scale deformable attention heads.
encoder_hidden_states (`Tuple[torch.FloatTensor]`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
encoder_attentions (`Tuple[Tuple[torch.FloatTensor]]`, *optional*):
Tuple of tuples of `torch.FloatTensor` (one for attention for each layer) of shape `(batch_size, num_heads,
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
weighted average in the self-attention, cross-attention and multi-scale deformable attention heads.
classes_structure (`torch.LongTensor`, *optional*):
The number of queried classes for each image.
"""
loss: torch.FloatTensor = None
decoder_coord_logits: torch.FloatTensor = None
decoder_class_logits: torch.FloatTensor = None
init_reference_points: torch.FloatTensor = None
intermediate_reference_points: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
encoder_coord_logits: torch.FloatTensor = None
encoder_class_logits: Tuple[torch.FloatTensor] = None
encoder_extracted_states: torch.FloatTensor = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
classes_structure: Optional[torch.LongTensor] = None
|
class_definition
| 5,950 | 9,633 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/omdet_turbo/modeling_omdet_turbo.py
| null | 3,384 |
class OmDetTurboLRUCache:
def __init__(self, capacity: int):
self.cache = OrderedDict()
self.capacity = capacity
self.current_load = 0
def has(self, key) -> bool:
return key in self.cache
def get(self, key):
"""
Get the value of the key if the key exists in the cache, otherwise return None.
Move the key to the end of the cache to show that it was recently used.
"""
if key not in self.cache:
return None
self.cache.move_to_end(key)
return self.cache[key]
def put(self, key, value) -> None:
"""
Add the key-value pair to the cache.
Move the key to the end of the cache to show that it was recently used.
If the cache is full, remove the first key (least recently used).
"""
if key not in self.cache:
self.current_load += 1
if self.current_load > self.capacity:
self.cache.popitem(last=False)
self.current_load -= 1
self.cache[key] = value
self.cache.move_to_end(key)
|
class_definition
| 12,780 | 13,887 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/omdet_turbo/modeling_omdet_turbo.py
| null | 3,385 |
class OmDetTurboLanguageBackbone(nn.Module):
def __init__(self, config: OmDetTurboConfig):
super().__init__()
self.model = AutoModel.from_config(config.text_config)
self.text_projection = nn.Parameter(torch.zeros(config.text_projection_in_dim, config.text_projection_out_dim))
def forward(self, hidden_states, mask=None, encode_type="task"):
text_outputs = self.model(hidden_states)
pooled_output = text_outputs[0]
if encode_type == "task":
if mask is None:
raise ValueError("mask is required for task encoding")
max_len = (mask != 0).sum(1).max().item()
truncated_mask = mask[:, :max_len]
truncated_output = pooled_output[:, :max_len, :]
return truncated_output.transpose(0, 1), truncated_mask
elif encode_type == "class":
max_pooled_output = pooled_output[torch.arange(pooled_output.shape[0]), hidden_states.argmax(dim=-1)]
projected_output = max_pooled_output @ self.text_projection
return projected_output
else:
raise ValueError(f"encode_type {encode_type} is not supported")
|
class_definition
| 13,890 | 15,066 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/omdet_turbo/modeling_omdet_turbo.py
| null | 3,386 |
class OmDetTurboVisionBackbone(nn.Module):
def __init__(self, config: OmDetTurboConfig):
super().__init__()
self.apply_layernorm_after_vision_backbone = config.apply_layernorm_after_vision_backbone
self.vision_backbone = load_backbone(config)
self.layer_norms = nn.ModuleList(
[nn.LayerNorm(in_channel_dim, eps=config.layer_norm_eps) for in_channel_dim in config.encoder_in_channels]
)
def forward(self, pixel_values):
outputs = self.vision_backbone(pixel_values).feature_maps
if self.apply_layernorm_after_vision_backbone:
outputs = [
layer_norm(output).permute(0, 3, 1, 2).contiguous()
for layer_norm, output in zip(self.layer_norms, outputs)
]
return outputs
|
class_definition
| 15,069 | 15,872 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/omdet_turbo/modeling_omdet_turbo.py
| null | 3,387 |
class MultiScaleDeformableAttentionFunction(Function):
@staticmethod
def forward(
context,
value,
value_spatial_shapes,
value_level_start_index,
sampling_locations,
attention_weights,
im2col_step,
):
context.im2col_step = im2col_step
output = MultiScaleDeformableAttention.ms_deform_attn_forward(
value,
value_spatial_shapes,
value_level_start_index,
sampling_locations,
attention_weights,
context.im2col_step,
)
context.save_for_backward(
value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights
)
return output
@staticmethod
@once_differentiable
def backward(context, grad_output):
(
value,
value_spatial_shapes,
value_level_start_index,
sampling_locations,
attention_weights,
) = context.saved_tensors
grad_value, grad_sampling_loc, grad_attn_weight = MultiScaleDeformableAttention.ms_deform_attn_backward(
value,
value_spatial_shapes,
value_level_start_index,
sampling_locations,
attention_weights,
grad_output,
context.im2col_step,
)
return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None
|
class_definition
| 15,988 | 17,432 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/omdet_turbo/modeling_omdet_turbo.py
| null | 3,388 |
class OmDetTurboMultiscaleDeformableAttention(nn.Module):
"""
Multiscale deformable attention as proposed in Deformable DETR.
"""
def __init__(self, config: OmDetTurboConfig, num_heads: int, n_points: int):
super().__init__()
kernel_loaded = MultiScaleDeformableAttention is not None
if is_torch_cuda_available() and is_ninja_available() and not kernel_loaded:
try:
load_cuda_kernels()
except Exception as e:
logger.warning(f"Could not load the custom kernel for multi-scale deformable attention: {e}")
if config.d_model % num_heads != 0:
raise ValueError(
f"embed_dim (d_model) must be divisible by num_heads, but got {config.d_model} and {num_heads}"
)
dim_per_head = config.d_model // num_heads
# check if dim_per_head is power of 2
if not ((dim_per_head & (dim_per_head - 1) == 0) and dim_per_head != 0):
warnings.warn(
"You'd better set embed_dim (d_model) in OmDetTurboMultiscaleDeformableAttention to make the"
" dimension of each attention head a power of 2 which is more efficient in the authors' CUDA"
" implementation."
)
self.im2col_step = 64
self.d_model = config.d_model
self.n_levels = config.num_feature_levels
self.n_heads = num_heads
self.n_points = n_points
self.sampling_offsets = nn.Linear(config.d_model, num_heads * self.n_levels * n_points * 2)
self.attention_weights = nn.Linear(config.d_model, num_heads * self.n_levels * n_points)
self.value_proj = nn.Linear(config.d_model, config.d_model)
self.output_proj = nn.Linear(config.d_model, config.d_model)
self.disable_custom_kernels = config.disable_custom_kernels
def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]):
return tensor if position_embeddings is None else tensor + position_embeddings
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states=None,
encoder_attention_mask=None,
position_embeddings: Optional[torch.Tensor] = None,
reference_points=None,
spatial_shapes=None,
spatial_shapes_list=None,
level_start_index=None,
output_attentions: bool = False,
):
# add position embeddings to the hidden states before projecting to queries and keys
if position_embeddings is not None:
hidden_states = self.with_pos_embed(hidden_states, position_embeddings)
batch_size, num_queries, _ = hidden_states.shape
batch_size, sequence_length, _ = encoder_hidden_states.shape
# Ignore copy
total_elements = sum([shape[0] * shape[1] for shape in spatial_shapes_list])
if total_elements != sequence_length:
raise ValueError(
"Make sure to align the spatial shapes with the sequence length of the encoder hidden states"
)
value = self.value_proj(encoder_hidden_states)
if attention_mask is not None:
# we invert the attention_mask
value = value.masked_fill(~attention_mask[..., None], float(0))
value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads)
sampling_offsets = self.sampling_offsets(hidden_states).view(
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points, 2
)
attention_weights = self.attention_weights(hidden_states).view(
batch_size, num_queries, self.n_heads, self.n_levels * self.n_points
)
attention_weights = F.softmax(attention_weights, -1).view(
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points
)
# batch_size, num_queries, n_heads, n_levels, n_points, 2
num_coordinates = reference_points.shape[-1]
if num_coordinates == 2:
offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
sampling_locations = (
reference_points[:, :, None, :, None, :]
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
)
elif num_coordinates == 4:
sampling_locations = (
reference_points[:, :, None, :, None, :2]
+ sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
)
else:
raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}")
if self.disable_custom_kernels:
# PyTorch implementation
output = multi_scale_deformable_attention(
value, spatial_shapes_list, sampling_locations, attention_weights
)
else:
try:
# custom kernel
output = MultiScaleDeformableAttentionFunction.apply(
value,
spatial_shapes,
level_start_index,
sampling_locations,
attention_weights,
self.im2col_step,
)
except Exception:
# PyTorch implementation
output = multi_scale_deformable_attention(
value, spatial_shapes_list, sampling_locations, attention_weights
)
output = self.output_proj(output)
return output, attention_weights
|
class_definition
| 17,616 | 23,273 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/omdet_turbo/modeling_omdet_turbo.py
| null | 3,389 |
class OmDetTurboConvNormLayer(nn.Module):
def __init__(self, config, in_channels, out_channels, kernel_size, stride, padding=None, activation=None):
super().__init__()
self.conv = nn.Conv2d(
in_channels,
out_channels,
kernel_size,
stride,
padding=(kernel_size - 1) // 2 if padding is None else padding,
bias=False,
)
self.norm = nn.BatchNorm2d(out_channels, config.batch_norm_eps)
self.activation = nn.Identity() if activation is None else ACT2CLS[activation]()
def forward(self, hidden_state):
hidden_state = self.conv(hidden_state)
hidden_state = self.norm(hidden_state)
hidden_state = self.activation(hidden_state)
return hidden_state
|
class_definition
| 23,379 | 24,169 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/omdet_turbo/modeling_omdet_turbo.py
| null | 3,390 |
class OmDetTurboRepVggBlock(nn.Module):
"""
RepVGG architecture block introduced by the work "RepVGG: Making VGG-style ConvNets Great Again".
"""
def __init__(self, config: OmDetTurboConfig):
super().__init__()
activation = config.csp_activation
hidden_channels = int(config.encoder_hidden_dim * config.hidden_expansion)
self.conv1 = OmDetTurboConvNormLayer(config, hidden_channels, hidden_channels, 3, 1, padding=1)
self.conv2 = OmDetTurboConvNormLayer(config, hidden_channels, hidden_channels, 1, 1, padding=0)
self.activation = nn.Identity() if activation is None else ACT2CLS[activation]()
def forward(self, x):
y = self.conv1(x) + self.conv2(x)
return self.activation(y)
|
class_definition
| 24,310 | 25,072 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/omdet_turbo/modeling_omdet_turbo.py
| null | 3,391 |
class OmDetTurboCSPRepLayer(nn.Module):
"""
Cross Stage Partial (CSP) network layer with RepVGG blocks.
"""
def __init__(self, config: OmDetTurboConfig):
super().__init__()
in_channels = config.encoder_hidden_dim * 2
out_channels = config.encoder_hidden_dim
num_blocks = 3
activation = config.csp_activation
hidden_channels = int(out_channels * config.hidden_expansion)
self.conv1 = OmDetTurboConvNormLayer(config, in_channels, hidden_channels, 1, 1, activation=activation)
self.conv2 = OmDetTurboConvNormLayer(config, in_channels, hidden_channels, 1, 1, activation=activation)
self.bottlenecks = nn.Sequential(*[OmDetTurboRepVggBlock(config) for _ in range(num_blocks)])
if hidden_channels != out_channels:
self.conv3 = OmDetTurboConvNormLayer(config, hidden_channels, out_channels, 1, 1, activation=activation)
else:
self.conv3 = nn.Identity()
def forward(self, hidden_state):
device = hidden_state.device
hidden_state_1 = self.conv1(hidden_state)
hidden_state_1 = self.bottlenecks(hidden_state_1).to(device)
hidden_state_2 = self.conv2(hidden_state).to(device)
return self.conv3(hidden_state_1 + hidden_state_2)
|
class_definition
| 25,213 | 26,503 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/omdet_turbo/modeling_omdet_turbo.py
| null | 3,392 |
class OmDetTurboMultiheadAttention(nn.Module):
"""Equivalent implementation of nn.MultiheadAttention with `batch_first=True`."""
def __init__(self, config, hidden_size, num_attention_heads, dropout):
super().__init__()
if hidden_size % num_attention_heads != 0:
raise ValueError(
f"The hidden size ({hidden_size}) is not a multiple of the number of attention "
f"heads ({num_attention_heads})"
)
self.num_attention_heads = num_attention_heads
self.attention_head_size = int(hidden_size / num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(hidden_size, self.all_head_size)
self.key = nn.Linear(hidden_size, self.all_head_size)
self.value = nn.Linear(hidden_size, self.all_head_size)
self.out_proj = nn.Linear(hidden_size, hidden_size)
self.dropout = nn.Dropout(dropout)
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
queries: torch.Tensor,
keys: torch.Tensor,
values: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
query_layer = self.transpose_for_scores(self.query(queries))
key_layer = self.transpose_for_scores(self.key(keys))
value_layer = self.transpose_for_scores(self.value(values))
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
context_layer = self.out_proj(context_layer)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
|
class_definition
| 26,506 | 29,352 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/omdet_turbo/modeling_omdet_turbo.py
| null | 3,393 |
class OmDetTurboEncoderLayer(nn.Module):
def __init__(self, config: OmDetTurboConfig):
super().__init__()
self.self_attn = OmDetTurboMultiheadAttention(
config,
hidden_size=config.encoder_hidden_dim,
num_attention_heads=config.num_attention_heads,
dropout=config.encoder_dropout,
)
self.self_attn_layer_norm = nn.LayerNorm(config.encoder_hidden_dim, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.encoder_dropout)
self.activation_fn = ACT2FN[config.encoder_feedforward_activation]
self.encoder_feedforward_dropout = nn.Dropout(config.encoder_feedforward_dropout)
self.fc1 = nn.Linear(config.encoder_hidden_dim, config.encoder_dim_feedforward)
self.fc2 = nn.Linear(config.encoder_dim_feedforward, config.encoder_hidden_dim)
self.final_layer_norm = nn.LayerNorm(config.encoder_hidden_dim, eps=config.layer_norm_eps)
@staticmethod
def with_pos_embed(tensor, pos_embed):
return tensor if pos_embed is None else tensor + pos_embed
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
position_embeddings: torch.Tensor = None,
output_attentions: bool = False,
):
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values.
position_embeddings (`torch.FloatTensor`, *optional*):
Object queries (also called content embeddings), to be added to the hidden states.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
query = key = self.with_pos_embed(hidden_states, position_embeddings)
hidden_states = self.self_attn(
queries=query,
keys=key,
values=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states, attentions = hidden_states if output_attentions else (hidden_states[0], None)
hidden_states = self.dropout(hidden_states)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.encoder_feedforward_dropout(hidden_states)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if self.training:
if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
if output_attentions:
return hidden_states, attentions
return (hidden_states,)
|
class_definition
| 29,355 | 32,778 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/omdet_turbo/modeling_omdet_turbo.py
| null | 3,394 |
class OmDetTurboEncoder(nn.Module):
def __init__(self, config: OmDetTurboConfig):
super().__init__()
self.layers = nn.ModuleList([OmDetTurboEncoderLayer(config) for _ in range(config.encoder_layers)])
def forward(
self, src, src_mask=None, pos_embed=None, output_attentions: bool = False
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
hidden_states = src
attention = () if output_attentions else None
for layer in self.layers:
hidden_states = layer(
hidden_states,
attention_mask=src_mask,
position_embeddings=pos_embed,
output_attentions=output_attentions,
)
if output_attentions:
attention = attention + (hidden_states[1],)
hidden_states = hidden_states[0]
return hidden_states, attention
|
class_definition
| 32,781 | 33,677 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/omdet_turbo/modeling_omdet_turbo.py
| null | 3,395 |
class OmDetTurboHybridEncoder(nn.Module):
"""
Encoder consisting of channel projection layers, a set of `OmDetTurboEncoder`, a top-down Feature Pyramid Network
(FPN) and a bottom-up Path Aggregation Network (PAN). More details on the paper: https://arxiv.org/abs/2304.08069
Args:
config: OmDetTurboConfig
"""
def __init__(self, config: OmDetTurboConfig):
super().__init__()
self.config = config
self.in_channels = config.encoder_in_channels
self.encoder_hidden_dim = config.encoder_hidden_dim
self.encoder_projection_indices = config.encoder_projection_indices
self.positional_encoding_temperature = config.positional_encoding_temperature
self.eval_size = config.eval_size
self.out_channels = [self.encoder_hidden_dim for _ in self.in_channels]
self.channel_projection_layers = nn.ModuleList()
for in_channel in self.in_channels:
self.channel_projection_layers.append(
nn.Sequential(
nn.Conv2d(in_channel, self.encoder_hidden_dim, kernel_size=(1, 1), bias=False),
nn.BatchNorm2d(self.encoder_hidden_dim),
)
)
# encoder transformer
self.encoder = nn.ModuleList([OmDetTurboEncoder(config) for _ in range(len(self.encoder_projection_indices))])
# top-down fpn
self.lateral_convs = nn.ModuleList()
self.fpn_blocks = nn.ModuleList()
for _ in range(len(self.in_channels) - 1, 0, -1):
self.lateral_convs.append(
OmDetTurboConvNormLayer(
config,
in_channels=self.encoder_hidden_dim,
out_channels=self.encoder_hidden_dim,
kernel_size=1,
stride=1,
activation=config.conv_norm_activation,
)
)
self.fpn_blocks.append(OmDetTurboCSPRepLayer(config))
# bottom-up pan
self.downsample_convs = nn.ModuleList()
self.pan_blocks = nn.ModuleList()
for _ in range(len(self.in_channels) - 1):
self.downsample_convs.append(
OmDetTurboConvNormLayer(
config,
in_channels=self.encoder_hidden_dim,
out_channels=self.encoder_hidden_dim,
kernel_size=3,
stride=2,
activation=config.conv_norm_activation,
)
)
self.pan_blocks.append(OmDetTurboCSPRepLayer(config))
@staticmethod
def build_2d_sincos_position_embedding(
width, height, embed_dim=256, temperature=10000.0, device="cpu", dtype=torch.float32
):
grid_w = torch.arange(int(width), dtype=dtype, device=device)
grid_h = torch.arange(int(height), dtype=dtype, device=device)
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing="ij")
if embed_dim % 4 != 0:
raise ValueError("Embed dimension must be divisible by 4 for 2D sin-cos position embedding")
pos_dim = embed_dim // 4
omega = torch.arange(pos_dim, dtype=dtype, device=device) / pos_dim
omega = 1.0 / (temperature**omega)
out_w = grid_w.flatten()[..., None] @ omega[None]
out_h = grid_h.flatten()[..., None] @ omega[None]
return torch.concat([out_w.sin(), out_w.cos(), out_h.sin(), out_h.cos()], dim=1)[None, :, :]
def forward(
self,
inputs_embeddings=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
inputs_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Flattened feature map (output of the backbone + projection layers) that is passed to the encoder.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = inputs_embeddings
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# get projection features
projected_features = [self.channel_projection_layers[i](feature) for i, feature in enumerate(hidden_states)]
# encoder
for encoder_layer_index, feature_to_project_index in enumerate(self.encoder_projection_indices):
if output_hidden_states:
encoder_states = encoder_states + (projected_features[feature_to_project_index],)
height, width = projected_features[feature_to_project_index].shape[2:]
# flatten [batch, channel, height, width] to [batch, height*width, channel]
src_flatten = projected_features[feature_to_project_index].flatten(2).permute(0, 2, 1)
if self.training or self.eval_size is None:
pos_embed = self.build_2d_sincos_position_embedding(
width,
height,
self.encoder_hidden_dim,
self.positional_encoding_temperature,
device=src_flatten.device,
dtype=src_flatten.dtype,
).to(src_flatten.device, src_flatten.dtype)
else:
pos_embed = None
layer_outputs = self.encoder[encoder_layer_index](
src_flatten,
pos_embed=pos_embed,
output_attentions=output_attentions,
)
projected_features[feature_to_project_index] = (
layer_outputs[0].permute(0, 2, 1).reshape(-1, self.encoder_hidden_dim, height, width).contiguous()
)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (projected_features[feature_to_project_index],)
# Feature Pyramid Network (FPN)
fpn_feature_maps = [projected_features[-1]]
for idx in range(len(self.in_channels) - 1, 0, -1):
feat_high = fpn_feature_maps[0]
feat_low = projected_features[idx - 1]
feat_high = self.lateral_convs[len(self.in_channels) - 1 - idx](feat_high)
fpn_feature_maps[0] = feat_high
upsample_feat = F.interpolate(feat_high, scale_factor=2.0, mode="nearest")
fps_map = self.fpn_blocks[len(self.in_channels) - 1 - idx](torch.concat([upsample_feat, feat_low], dim=1))
fpn_feature_maps.insert(0, fps_map)
# Path Aggregation Network (PAN)
fpn_states = [fpn_feature_maps[0]]
for idx in range(len(self.in_channels) - 1):
feat_low = fpn_states[-1]
feat_high = fpn_feature_maps[idx + 1]
downsample_feat = self.downsample_convs[idx](feat_low)
hidden_states = self.pan_blocks[idx](
torch.concat([downsample_feat, feat_high.to(downsample_feat.device)], dim=1)
)
fpn_states.append(hidden_states)
if not return_dict:
return (fpn_states[-1], encoder_states, all_attentions, fpn_states)
return OmDetTurboEncoderOutput(
last_hidden_state=fpn_states[-1],
hidden_states=encoder_states,
attentions=all_attentions,
extracted_states=fpn_states,
)
|
class_definition
| 33,680 | 41,907 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/omdet_turbo/modeling_omdet_turbo.py
| null | 3,396 |
class OmDetTurboMLPWithDropout(nn.Module):
def __init__(self, config):
super().__init__()
self.linear1 = nn.Linear(config.class_embed_dim, config.task_encoder_hidden_dim)
self.activation = ACT2FN[config.decoder_activation]
self.dropout = nn.Dropout(config.decoder_dropout)
self.linear2 = nn.Linear(config.task_encoder_hidden_dim, config.class_embed_dim)
def forward(self, x):
return self.linear2(self.dropout(self.activation(self.linear1(x))))
|
class_definition
| 41,910 | 42,410 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/omdet_turbo/modeling_omdet_turbo.py
| null | 3,397 |
class OmDetTurboMLP(nn.Module):
"""Very simple multi-layer perceptron (also called FFN)"""
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super().__init__()
self.num_layers = num_layers
hidden_layers_dims = [hidden_dim] * (num_layers - 1)
layers_dims = [input_dim] + hidden_layers_dims + [output_dim]
self.layers = nn.ModuleList(
[nn.Linear(in_dim, out_dim) for in_dim, out_dim in zip(layers_dims[:-1], layers_dims[1:])]
)
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
|
class_definition
| 42,413 | 43,090 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/omdet_turbo/modeling_omdet_turbo.py
| null | 3,398 |
class OmDetTurboResidualLayer(nn.Module):
"""
A residual connection followed by a layer norm.
"""
def __init__(self, config):
super().__init__()
self.norm1 = nn.LayerNorm(config.class_embed_dim, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.decoder_dropout)
def forward(self, x, y):
return self.norm1(x + self.dropout(y))
|
class_definition
| 43,093 | 43,482 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/omdet_turbo/modeling_omdet_turbo.py
| null | 3,399 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.