text
stringlengths 31
243k
| type
stringclasses 1
value | start
int64 36
275k
| end
int64 286
280k
| depth
int64 0
1
| filepath
stringlengths 85
188
| parent_class
stringclasses 3
values | class_index
int64 0
10.8k
|
---|---|---|---|---|---|---|---|
class Emu3VQVAESpatialNorm(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
):
super().__init__()
self.norm_layer = nn.GroupNorm(
num_channels=out_channels,
num_groups=32,
eps=1e-6,
affine=True,
)
self.conv_y = nn.Conv2d(
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
)
self.conv_b = nn.Conv2d(
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
)
def forward(self, hidden_states: torch.Tensor, quant_states: torch.Tensor):
quant_states = F.interpolate(quant_states, size=hidden_states.shape[-2:], mode="nearest")
hidden_states = self.norm_layer(hidden_states)
hidden_states = hidden_states * self.conv_y(quant_states) + self.conv_b(quant_states)
return hidden_states
|
class_definition
| 17,481 | 18,491 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/emu3/modeling_emu3.py
| null | 3,500 |
class Emu3VQVAETemporalUpsample(nn.Module):
def __init__(
self,
in_channel: int,
out_channel: int,
):
super().__init__()
self.conv = Emu3VQVAEConv3d(
in_channel,
out_channel,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
)
def forward(self, hidden_states: torch.Tensor):
batch_size, channels, temporal, height, width = hidden_states.shape
hidden_states = hidden_states.permute(0, 1, 3, 4, 2).contiguous().view(batch_size, -1, temporal)
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
hidden_states = hidden_states.view(batch_size, channels, height, width, -1).permute(0, 1, 4, 2, 3).contiguous()
hidden_states = self.conv(hidden_states)
return hidden_states
|
class_definition
| 18,494 | 19,334 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/emu3/modeling_emu3.py
| null | 3,501 |
class Emu3VQVAETemporalDownsample(nn.Module):
def __init__(
self,
in_channel: int,
out_channel: int,
):
super().__init__()
self.conv = Emu3VQVAEConv3d(
in_channel,
out_channel,
kernel_size=(4, 3, 3),
stride=(2, 1, 1),
)
def forward(self, hidden_states: torch.Tensor):
hidden_states = self.conv(hidden_states)
return hidden_states
|
class_definition
| 19,337 | 19,791 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/emu3/modeling_emu3.py
| null | 3,502 |
class Emu3VQVAETemporalResnetBlock(nn.Module):
def __init__(
self,
in_channels,
out_channels=None,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = in_channels if out_channels is None else out_channels
self.norm1 = nn.BatchNorm3d(in_channels)
self.conv1 = Emu3VQVAEConv3d(
in_channels,
out_channels,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
)
self.norm2 = nn.BatchNorm3d(out_channels)
self.conv2 = Emu3VQVAEConv3d(
out_channels,
out_channels,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
)
if self.in_channels != self.out_channels:
self.nin_shortcut = nn.Conv3d(
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
)
def forward(self, hidden_states):
residual = hidden_states
hidden_states = self.norm1(hidden_states)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv1(hidden_states)
hidden_states = self.norm2(hidden_states)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.in_channels != self.out_channels:
residual = self.nin_shortcut(residual)
return residual + hidden_states
|
class_definition
| 19,794 | 21,278 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/emu3/modeling_emu3.py
| null | 3,503 |
class Emu3VQVAEResnetBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: Optional[int] = None,
quant_channels: Optional[int] = None,
):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.quant_channels = quant_channels
if quant_channels is None:
self.norm1 = nn.GroupNorm(num_channels=in_channels, num_groups=32, eps=1e-6, affine=True)
self.norm2 = nn.GroupNorm(num_channels=out_channels, num_groups=32, eps=1e-6, affine=True)
else:
self.norm1 = Emu3VQVAESpatialNorm(quant_channels, in_channels)
self.norm2 = Emu3VQVAESpatialNorm(quant_channels, out_channels)
self.conv1 = nn.Conv2d(
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
)
self.conv2 = nn.Conv2d(
out_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
)
if self.in_channels != self.out_channels:
self.nin_shortcut = nn.Conv2d(
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
)
def forward(self, hidden_states: torch.Tensor, quant_channels: Optional[torch.Tensor] = None):
norm_args = () if self.quant_channels is None else (quant_channels,)
residual = hidden_states
hidden_states = self.norm1(hidden_states, *norm_args)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv1(hidden_states)
hidden_states = self.norm2(hidden_states, *norm_args)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.in_channels != self.out_channels:
residual = self.nin_shortcut(residual)
return residual + hidden_states
|
class_definition
| 21,281 | 23,380 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/emu3/modeling_emu3.py
| null | 3,504 |
class Emu3VQVAEAttentionBlock(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
batch_size, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
k_v_seq_len = key_states.shape[-2]
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
raise ValueError(
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
raise ValueError(
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
|
class_definition
| 23,383 | 26,738 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/emu3/modeling_emu3.py
| null | 3,505 |
class Emu3VQVAEGroupNorm(nn.GroupNorm):
"""
Same as the torch GroupNorm with the only difference that this ones accepts
an optional kwarg `quant_states` which is not used. This class makes it easier to
use SpatialNorm or GroupNorm without conditionals
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
def forward(self, input, quant_states=None):
return F.group_norm(input, self.num_groups, self.weight, self.bias, self.eps)
|
class_definition
| 26,741 | 27,222 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/emu3/modeling_emu3.py
| null | 3,506 |
class Emu3VQVAEMiddleBlock(nn.Module):
def __init__(self, config, in_channels, quant_channels=None):
super().__init__()
self.block_1 = Emu3VQVAEResnetBlock(
in_channels=in_channels,
out_channels=in_channels,
quant_channels=quant_channels,
)
self.attn_1 = Emu3VQVAEAttentionBlock(config)
if quant_channels is None:
self.attn_norm = Emu3VQVAEGroupNorm(num_channels=in_channels, num_groups=32, eps=1e-6, affine=True)
else:
self.attn_norm = Emu3VQVAESpatialNorm(quant_channels, in_channels)
self.block_2 = Emu3VQVAEResnetBlock(
in_channels=in_channels,
out_channels=in_channels,
quant_channels=quant_channels,
)
def forward(self, hidden_states: torch.FloatTensor, quant_states: torch.FloatTensor = None):
hidden_states = self.block_1(hidden_states, quant_states)
residual = hidden_states
hidden_states = self.attn_norm(hidden_states, quant_states)
batch_size, channels, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2)
hidden_states = self.attn_1(hidden_states)[0]
hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
hidden_states = residual + hidden_states
hidden_states = self.block_2(hidden_states, quant_states)
return hidden_states
|
class_definition
| 27,225 | 28,727 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/emu3/modeling_emu3.py
| null | 3,507 |
class Emu3VQVAEDownBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.num_resolutions = len(config.channel_multiplier)
self.num_res_blocks = config.num_res_blocks
base_channels = config.base_channels
channel_multiplier = config.channel_multiplier
in_channel_multiplier = (1,) + tuple(channel_multiplier)
self.in_channel_multiplier = in_channel_multiplier
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
attn_norms = nn.ModuleList()
block_in = base_channels * in_channel_multiplier[i_level]
block_out = base_channels * channel_multiplier[i_level]
for i_block in range(self.num_res_blocks):
block.append(
Emu3VQVAEResnetBlock(
in_channels=block_in,
out_channels=block_out,
)
)
block_in = block_out
if config.attn_resolutions is not None and i_level in config.attn_resolutions:
attn.append(Emu3VQVAEAttentionBlock(config))
attn_norms.append(nn.GroupNorm(num_channels=block_in, num_groups=32, eps=1e-6, affine=True))
down = nn.Module()
down.block = block
down.attn = attn
down.attn_norms = attn_norms
if i_level != self.num_resolutions - 1:
down.downsample = Emu3VQVAEEncoderConvDownsample(block_in)
self.down.append(down)
def forward(self, hidden_states: torch.FloatTensor):
for i_level, blocks in enumerate(self.down):
for i_block in range(self.num_res_blocks):
hidden_states = blocks.block[i_block](hidden_states)
if len(blocks.attn) > 0:
residual = hidden_states
hidden_states = blocks.attn_norms[i_block](hidden_states)
batch_size, channels, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2)
hidden_states = blocks.attn[i_block](hidden_states)[0]
hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
hidden_states = residual + hidden_states
if i_level != self.num_resolutions - 1:
hidden_states = blocks.downsample(hidden_states)
return hidden_states
|
class_definition
| 28,730 | 31,356 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/emu3/modeling_emu3.py
| null | 3,508 |
class Emu3VQVAEUpBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.num_resolutions = len(config.channel_multiplier)
self.num_res_blocks = config.num_res_blocks
quant_channels = config.embed_dim
block_in = config.base_channels * config.channel_multiplier[-1]
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
attn_norms = nn.ModuleList()
block_out = config.base_channels * config.channel_multiplier[i_level]
for i_block in range(self.num_res_blocks + 1):
block.append(
Emu3VQVAEResnetBlock(
in_channels=block_in,
out_channels=block_out,
quant_channels=quant_channels,
)
)
block_in = block_out
if i_level in config.attn_resolutions:
attn.append(Emu3VQVAEAttentionBlock(config))
attn_norms.append(Emu3VQVAESpatialNorm(quant_channels, block_in))
up = nn.Module()
up.block = block
up.attn = attn
up.attn_norms = attn_norms
if i_level != 0:
up.upsample = Emu3VQVAEEncoderConvUpsample(block_in)
self.up.insert(0, up)
def forward(self, hidden_states: torch.FloatTensor, quant_states: torch.FloatTensor):
for i_level, blocks in enumerate(self.up[::-1]):
for i_block in range(self.num_res_blocks + 1):
hidden_states = blocks.block[i_block](hidden_states, quant_states)
if len(blocks.attn) > 0:
residual = hidden_states
hidden_states = blocks.attn_norms[i_block](hidden_states, quant_states)
batch_size, channels, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2)
hidden_states = blocks.attn[i_block](hidden_states)[0]
hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
hidden_states = residual + hidden_states
if i_level != len(self.up) - 1:
hidden_states = blocks.upsample(hidden_states)
return hidden_states
|
class_definition
| 31,359 | 33,839 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/emu3/modeling_emu3.py
| null | 3,509 |
class Emu3VQVAEEncoder(nn.Module):
def __init__(self, config):
super().__init__()
base_channels = config.base_channels
in_channels = config.in_channels
double_latent = config.double_latent
latent_channels = config.latent_channels
channel_multiplier = config.channel_multiplier
out_channels = 2 * latent_channels if double_latent else latent_channels
block_in = base_channels * channel_multiplier[-1]
self.conv_in = torch.nn.Conv2d(in_channels, base_channels, kernel_size=3, stride=1, padding=1)
self.down_block = Emu3VQVAEDownBlock(config)
self.middle_block = Emu3VQVAEMiddleBlock(config, block_in)
self.norm_out = torch.nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
self.conv_out = torch.nn.Conv2d(
block_in,
out_channels,
kernel_size=3,
stride=1,
padding=1,
)
temporal_down_blocks = int(math.log2(config.temporal_downsample_factor))
self.time_conv = nn.ModuleList()
self.time_res_stack = nn.ModuleList()
for i in range(temporal_down_blocks):
conv = Emu3VQVAETemporalDownsample(out_channels, out_channels)
self.time_conv.append(conv)
for _ in range(config.num_res_blocks):
time_res_conv = Emu3VQVAETemporalResnetBlock(
in_channels=out_channels,
out_channels=out_channels,
)
self.time_res_stack.append(time_res_conv)
def forward(self, pixel_values: torch.LongTensor):
temporal_dim = pixel_values.shape[1]
pixel_values = pixel_values.reshape(-1, *pixel_values.shape[2:])
# downsampling & middle
hidden_states = self.conv_in(pixel_values)
hidden_states = self.down_block(hidden_states)
hidden_states = self.middle_block(hidden_states)
# end
hidden_states = self.norm_out(hidden_states)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv_out(hidden_states)
hidden_states = hidden_states.reshape(-1, temporal_dim, *hidden_states.shape[1:])
hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
# temporal convs
for conv in self.time_conv:
hidden_states = conv(hidden_states)
hidden_states *= torch.sigmoid(hidden_states)
for layer in self.time_res_stack:
hidden_states = layer(hidden_states)
hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
return hidden_states
|
class_definition
| 33,842 | 36,449 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/emu3/modeling_emu3.py
| null | 3,510 |
class Emu3VQVAEDecoder(nn.Module):
def __init__(self, config: Emu3VQVAEConfig):
super().__init__()
quant_channels = config.embed_dim
block_in = config.base_channels * config.channel_multiplier[-1]
self.time_res_stack = nn.ModuleList()
for _ in range(config.num_res_blocks):
time_res_conv = Emu3VQVAETemporalResnetBlock(
in_channels=config.latent_channels, out_channels=config.latent_channels
)
self.time_res_stack.append(time_res_conv)
temp_upsample_block_num = int(math.log2(config.temporal_downsample_factor))
self.time_conv = nn.ModuleList()
for i in range(temp_upsample_block_num):
conv = Emu3VQVAETemporalUpsample(config.latent_channels, config.latent_channels)
self.time_conv.append(conv)
self.conv_in = nn.Conv2d(
config.latent_channels,
block_in,
kernel_size=3,
stride=1,
padding=1,
)
self.middle_block = Emu3VQVAEMiddleBlock(config, block_in, quant_channels=quant_channels)
self.up_block = Emu3VQVAEUpBlock(config)
block_in = config.base_channels * config.channel_multiplier[0]
self.norm_out = Emu3VQVAESpatialNorm(quant_channels, block_in)
self.conv_out = nn.Conv2d(
block_in,
config.out_channels,
kernel_size=3,
stride=1,
padding=1,
)
def forward(self, hidden_states: torch.Tensor, quant_states: torch.Tensor):
hidden_quant_states = torch.cat((hidden_states, quant_states), dim=0)
hidden_quant_states = hidden_quant_states.permute(0, 2, 1, 3, 4)
# temporal convs
for layer in self.time_res_stack:
hidden_quant_states = layer(hidden_quant_states)
for layer in self.time_conv:
hidden_quant_states = layer(hidden_quant_states)
hidden_quant_states *= torch.sigmoid(hidden_quant_states)
hidden_quant_states = hidden_quant_states.permute(0, 2, 1, 3, 4)
hidden_states, quant_states = torch.chunk(hidden_quant_states, 2, dim=0)
hidden_states = hidden_states.reshape(-1, *hidden_states.shape[2:])
quant_states = quant_states.reshape(-1, *quant_states.shape[2:])
hidden_states = self.conv_in(hidden_states)
# middle & upsampling
hidden_states = self.middle_block(hidden_states, quant_states)
hidden_states = self.up_block(hidden_states, quant_states)
hidden_states = self.norm_out(hidden_states, quant_states)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv_out(hidden_states)
return hidden_states
|
class_definition
| 36,452 | 39,191 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/emu3/modeling_emu3.py
| null | 3,511 |
class Emu3VQVAE(PreTrainedModel):
config_class = Emu3VQVAEConfig
base_model_prefix = "emuvideovq"
main_input_name = "pixel_values"
_no_split_modules = [
"Emu3VQVAETemporalResnetBlock",
"Emu3VQVAEAttentionBlock",
"Emu3VQVAEResnetBlock",
"Emu3VQVAEVectorQuantizer",
]
def _init_weights(self, module):
if isinstance(module, (nn.Conv2d, nn.Conv3d)):
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(module, nn.Linear):
nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
if module.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
nn.init.uniform_(module.bias, -bound, bound)
elif isinstance(module, (nn.BatchNorm2d, nn.BatchNorm3d, nn.GroupNorm)):
nn.init.constant_(module.weight, 1)
nn.init.constant_(module.bias, 0)
def __init__(self, config: Emu3VQVAEConfig):
super().__init__(config)
self.config = config
self.encoder = Emu3VQVAEEncoder(config)
self.decoder = Emu3VQVAEDecoder(config)
self.quantize = Emu3VQVAEVectorQuantizer(config)
self.vision_spatial_factor = 2 ** (len(config.channel_multiplier) - 1)
self.quant_conv = Emu3VQVAEConv3d(
config.latent_channels, config.embed_dim, kernel_size=(3, 1, 1), stride=(1, 1, 1)
)
self.post_quant_conv = Emu3VQVAEConv3d(
config.embed_dim, config.latent_channels, kernel_size=(3, 1, 1), stride=(1, 1, 1)
)
self.spatial_scale_factor = 2 ** (len(config.channel_multiplier) - 1)
self.eval() # Emu3's VQ model is frozen
self.post_init()
def encode(self, pixel_values: torch.Tensor, image_sizes: torch.Tensor):
is_image = pixel_values.ndim == 4
if is_image:
temporal = self.config.temporal_downsample_factor
batch_size, channels, height, width = pixel_values.shape
pixel_values = pixel_values.unsqueeze(1).repeat(1, temporal, 1, 1, 1)
else:
batch_size, temporal, channels, height, width = pixel_values.shape
hidden_states = self.encoder(pixel_values)
# b t c h w -> b c t h w
hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
hidden_states = self.quant_conv(hidden_states)
# b c t h w -> b t c h w
hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
codes = self.quantize(hidden_states)
image_tokens = codes.squeeze(1) if is_image else codes
image_tokens = [
single_image[: int(size[0] / self.vision_spatial_factor), : int(size[1] / self.vision_spatial_factor)]
for single_image, size in zip(image_tokens, image_sizes)
]
return image_tokens
def decode(self, hidden_states: torch.Tensor):
is_image = hidden_states.ndim == 3
if is_image:
hidden_states = hidden_states.unsqueeze(1)
batch_size, temporal, height, width = hidden_states.shape
quant = self.quantize.embedding(hidden_states.flatten())
channels = quant.shape[-1]
quant = quant.view(batch_size, temporal, height, width, channels).permute(0, 4, 1, 2, 3).contiguous()
post_quant = self.post_quant_conv(quant)
quant = quant.permute(0, 2, 1, 3, 4)
post_quant = post_quant.permute(0, 2, 1, 3, 4)
video = self.decoder(post_quant, quant)
video = video.reshape(
batch_size,
temporal * self.config.temporal_downsample_factor,
self.config.out_channels,
height * self.spatial_scale_factor,
width * self.spatial_scale_factor,
)
return video[:, 0] if is_image else video
|
class_definition
| 40,463 | 44,357 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/emu3/modeling_emu3.py
| null | 3,512 |
class Emu3ImageVocabularyMapping:
"""
A class for mapping discrete image tokens from VQGAN to BPE tokens.
"""
def __init__(self, vocab_map):
self.vocab_map = vocab_map
self.eol_token_id = vocab_map.get("<|extra_200|>")
self.image_token_id = vocab_map.get("<image>")
@cached_property
def image_tokens(self):
return sorted([val for name, val in self.vocab_map.items() if name.startswith("<|visual token")])
@cached_property
def image_tokens_str(self):
return sorted([name for name, val in self.vocab_map.items() if name.startswith("<|visual token")])
@cached_property
def img2bpe(self):
return {int(token[-8:-2]): self.vocab_map[token] for token in self.image_tokens_str}
@cached_property
def bpe2img(self):
return {v: k for k, v in self.img2bpe.items()}
@cached_property
def bpe2img_mapping_tensor(self):
mapping = torch.zeros(max(self.bpe2img.keys()) + 1, dtype=torch.int)
for k, v in self.bpe2img.items():
mapping[k] = v
return mapping
@cached_property
def img2bpe_mapping_tensor(self):
mapping = torch.zeros(max(self.img2bpe.keys()) + 1, dtype=torch.int)
for k, v in self.img2bpe.items():
mapping[k] = v
return mapping
def convert_img2bpe(self, img_batch: List[torch.Tensor]) -> torch.Tensor:
device = img_batch.device
eol_row = torch.ones((img_batch.shape[0], 1), dtype=torch.int) * self.eol_token_id
img_tokens = self.img2bpe_mapping_tensor[img_batch.to("cpu")]
img_tokens = torch.cat([img_tokens, eol_row], dim=-1)
return img_tokens.to(device)
def convert_bpe2img(self, img_batch: torch.Tensor) -> torch.Tensor:
device = img_batch.device
img_batch = img_batch[..., :-1] # remove last row of EOL tokens
img_tokens = self.bpe2img_mapping_tensor[img_batch.to("cpu")]
return img_tokens.to(device)
|
class_definition
| 44,360 | 46,339 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/emu3/modeling_emu3.py
| null | 3,513 |
class Emu3PreTrainedModel(PreTrainedModel):
config_class = Emu3Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = [
"Emu3DecoderLayer",
]
_skip_keys_device_placement = ["past_key_values", "causal_mask"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_quantized_cache = True
_supports_cache_class = True
_supports_static_cache = True
_supports_param_buffer_assignment = False
_supports_flex_attn = True
def _init_weights(self, module):
std = self.config.get_text_config().initializer_range
if isinstance(module, Emu3VQVAE):
module.apply(module._init_weights)
elif isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
|
class_definition
| 47,357 | 48,475 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/emu3/modeling_emu3.py
| null | 3,514 |
class Emu3RotaryEmbedding(nn.Module):
def __init__(self, config: Emu3Config, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
def _dynamic_frequency_update(self, position_ids, device):
"""
dynamic RoPE layers should recompute `inv_freq` in the following situations:
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
"""
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
self.max_seq_len_cached = seq_len
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
# This .to() is needed if the model has been moved to a device after being initialized (because
# the buffer is automatically moved, but not the original copy)
self.original_inv_freq = self.original_inv_freq.to(device)
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.original_max_seq_len
@torch.no_grad()
def forward(self, x, position_ids):
if "dynamic" in self.rope_type:
self._dynamic_frequency_update(position_ids, device=x.device)
# Core RoPE block
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
cos = cos * self.attention_scaling
sin = sin * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
class_definition
| 48,478 | 51,671 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/emu3/modeling_emu3.py
| null | 3,515 |
class Emu3TextModel(Emu3PreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Emu3TextDecoderLayer`]
Args:
config: Emu3TextConfig
"""
def __init__(self, config: Emu3Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[Emu3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Emu3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = Emu3RotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(EMU3_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
output = BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
return output if return_dict else output.to_tuple()
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
|
class_definition
| 56,476 | 67,704 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/emu3/modeling_emu3.py
| null | 3,516 |
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
|
class_definition
| 67,707 | 67,769 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/emu3/modeling_emu3.py
| null | 3,517 |
class Emu3ForCausalLM(Emu3PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
config_class = Emu3TextConfig
def __init__(self, config):
super().__init__(config)
self.model = Emu3TextModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(EMU3_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="Emu3TextConfig")
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
num_logits_to_keep: int = 0,
**kwargs: Unpack[KwargsForCausalLM],
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
num_logits_to_keep (`int`, *optional*):
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
Returns:
Example:
```python
>>> from transformers import Emu3Processor, Emu3ForConditionalGeneration
>>> import torch
>>> import requests
>>> from PIL import Image
>>> model = Emu3ForCausalLM.from_pretrained("BAAI/Emu3-Chat-hf", torch_dtype=torch.bfloat16)
>>> processor = Emu3Processor.from_pretrained("BAAI/Emu3-Chat-hf")
>>> inputs = processor(text=["Can you write me a poem about winter."], return_tensors="pt").to(model.device)
>>> generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False)
>>> processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 72,121 | 77,249 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/emu3/modeling_emu3.py
| null | 3,518 |
class Emu3ForConditionalGeneration(Emu3PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["text_model.lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.text_model = Emu3ForCausalLM._from_config(config.text_config)
self.vqmodel = Emu3VQVAE(config.vq_config)
self.vocabulary_mapping = Emu3ImageVocabularyMapping(config.vocabulary_map)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.text_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.text_model.set_input_embeddings(value)
def get_image_tokens(self, pixel_values: torch.FloatTensor, image_sizes: torch.LongTensor):
"""
Tokenizes images into discrete tokens with VQGAN module. Converts
obtained image tokens into BPE tokens and wraps with "boi" and "eoi"
special tokens.
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
The tensors corresponding to the input images.
image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`):
The sizes of the images in the batch, being (height, width) for each image.
"""
image_tokens_list = self.vqmodel.encode(pixel_values, image_sizes)
bpe_tokens_list = [self.vocabulary_mapping.convert_img2bpe(tokens).flatten() for tokens in image_tokens_list]
bpe_tokens = torch.cat(bpe_tokens_list)
return bpe_tokens
@torch.no_grad
def decode_image_tokens(self, image_tokens: torch.LongTensor, height: int, width: int):
"""
Decodes generated image tokens from language model to continuous pixel values
with VQGAN module via upsampling.
Args:
image_tokens (`torch.LongTensor` of shape `(batch_size, num_of_tokens)`):
The tensors corresponding to the input images.
height (`int`):
Height of the generated image before upsampling.
width (`int`):
Width of the generated image before upsampling.
"""
sequences = image_tokens[:, :-3].view(-1, height, width + 1)
image_tokens = self.vocabulary_mapping.convert_bpe2img(sequences)
image = self.vqmodel.decode(image_tokens)
return image
@add_start_docstrings_to_model_forward(EMU3_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: torch.FloatTensor = None,
image_sizes: torch.Tensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
num_logits_to_keep: int = 0,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
num_logits_to_keep (`int`, *optional*):
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
Returns:
Example:
```python
>>> from transformers import Emu3Processor, Emu3ForConditionalGeneration
>>> import torch
>>> import requests
>>> from PIL import Image
>>> model = Emu3ForConditionalGeneration.from_pretrained("BAAI/Emu3-Chat-hf", torch_dtype=torch.bfloat16)
>>> processor = Emu3Processor.from_pretrained("BAAI/Emu3-Chat-hf")
>>> conversation = [
... {
... "role": "system",
... "content": [
... {"type": "text", "text": "You are a helpful assistant."},
... ],
... },
... {
... "role": "user",
... "content": [
... {"type": "image"},
... {"type": "text", "text": "Please describe the image."},
... ],
... },
... ]
>>> prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
>>> image = Image.open(requests.get("https://www.ilankelman.org/stopsigns/australia.jpg", stream=True).raw)
>>> inputs = processor(images=[image], text=[prompt], return_tensors="pt").to(model.device, torch.bfloat16)
>>> generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False)
>>> processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if pixel_values is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
)
if pixel_values is not None:
image_tokens = self.get_image_tokens(pixel_values, image_sizes)
special_image_mask = input_ids == self.vocabulary_mapping.image_token_id
image_tokens = image_tokens.to(input_ids.device, input_ids.dtype)
input_ids = input_ids.masked_scatter(special_image_mask, image_tokens)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
num_logits_to_keep=num_logits_to_keep,
)
return outputs
|
class_definition
| 77,252 | 84,673 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/emu3/modeling_emu3.py
| null | 3,519 |
class DiffLlamaMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
|
class_definition
| 2,724 | 3,396 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modeling_diffllama.py
| null | 3,520 |
class DiffLlamaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: DiffLlamaConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
# under this are not used
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
self.lambda_init = lambda_init_fn(layer_idx)
self.lambda_q1 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
self.lambda_k1 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
self.lambda_q2 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
self.lambda_k2 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
self.groupnorm = nn.RMSNorm(2 * self.head_dim, eps=config.rms_norm_eps, elementwise_affine=False)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, target_len, _ = hidden_states.size()
q_len = target_len
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
value_states = torch.cat(torch.chunk(value_states, 2, dim=1), dim=-1)
value_states = value_states.repeat(1, 2, 1, 1)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_full = lambda_1 - lambda_2 + self.lambda_init
attn_output = torch.matmul(attn_weights, value_states)
attn_output1, attn_output2 = torch.chunk(attn_output, 2, dim=1)
attn_output = attn_output1 - lambda_full * attn_output2
attn_output = (1 - self.lambda_init) * self.groupnorm(attn_output)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
|
class_definition
| 5,816 | 11,350 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modeling_diffllama.py
| null | 3,521 |
class DiffLlamaFlashAttention2(DiffLlamaAttention):
"""
DiffLlama flash attention module. This module inherits from `DiffLlamaAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if isinstance(past_key_value, StaticCache):
raise ValueError(
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
)
output_attentions = False
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if position_embeddings is None:
logger.warning_once(
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
"removed and `position_embeddings` will be mandatory."
)
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attention_dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (DiffLlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
value_states1, value_states2 = torch.chunk(value_states, 2, dim=2)
value_states1 = value_states1.repeat(1, 1, 2, 1)
value_states2 = value_states2.repeat(1, 1, 2, 1)
attn_output1 = _flash_attention_forward(
query_states,
key_states,
value_states1,
attention_mask,
q_len,
position_ids=position_ids,
dropout=dropout_rate,
sliding_window=getattr(self, "sliding_window", None),
use_top_left_mask=self._flash_attn_uses_top_left_mask,
is_causal=self.is_causal,
)
attn_output2 = _flash_attention_forward(
query_states,
key_states,
value_states2,
attention_mask,
q_len,
position_ids=position_ids,
dropout=dropout_rate,
sliding_window=getattr(self, "sliding_window", None),
use_top_left_mask=self._flash_attn_uses_top_left_mask,
is_causal=self.is_causal,
)
attn_output = torch.cat([attn_output1, attn_output2], dim=-1)
attn_output1, attn_output2 = torch.chunk(attn_output, 2, dim=2)
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_full = lambda_1 - lambda_2 + self.lambda_init
attn_output = attn_output1 - lambda_full * attn_output2
attn_output = (1 - self.lambda_init) * self.groupnorm(attn_output)
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
|
class_definition
| 11,353 | 18,839 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modeling_diffllama.py
| null | 3,522 |
class DiffLlamaSdpaAttention(DiffLlamaAttention):
"""
DiffLlama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`DiffLlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from DiffLlamaAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"DiffLlamaModel is using DiffLlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
value_states = torch.cat(torch.chunk(value_states, 2, dim=1), dim=-1)
value_states = value_states.repeat(1, 2, 1, 1)
causal_mask = attention_mask
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and causal_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output1, attn_output2 = torch.chunk(attn_output, 2, dim=1)
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_full = lambda_1 - lambda_2 + self.lambda_init
attn_output = attn_output1 - lambda_full * attn_output2
attn_output = (1 - self.lambda_init) * self.groupnorm(attn_output)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, None
|
class_definition
| 18,842 | 24,078 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modeling_diffllama.py
| null | 3,523 |
class DiffLlamaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
DiffLlamaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
class_definition
| 24,081 | 24,809 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modeling_diffllama.py
| null | 3,524 |
class DiffLlamaDecoderLayer(nn.Module):
def __init__(self, config: DiffLlamaConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = DIFFLLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
self.mlp = DiffLlamaMLP(config)
self.input_layernorm = DiffLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = DiffLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
|
class_definition
| 24,968 | 27,100 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modeling_diffllama.py
| null | 3,525 |
class DiffLlamaPreTrainedModel(PreTrainedModel):
config_class = DiffLlamaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["DiffLlamaDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = False
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
|
class_definition
| 28,138 | 29,074 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modeling_diffllama.py
| null | 3,526 |
class DiffLlamaRotaryEmbedding(nn.Module):
def __init__(self, config: DiffLlamaConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
def _dynamic_frequency_update(self, position_ids, device):
"""
dynamic RoPE layers should recompute `inv_freq` in the following situations:
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
"""
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
self.max_seq_len_cached = seq_len
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
# This .to() is needed if the model has been moved to a device after being initialized (because
# the buffer is automatically moved, but not the original copy)
self.original_inv_freq = self.original_inv_freq.to(device)
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.original_max_seq_len
@torch.no_grad()
def forward(self, x, position_ids):
if "dynamic" in self.rope_type:
self._dynamic_frequency_update(position_ids, device=x.device)
# Core RoPE block
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
cos = cos * self.attention_scaling
sin = sin * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
class_definition
| 29,077 | 32,280 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modeling_diffllama.py
| null | 3,527 |
class DiffLlamaModel(DiffLlamaPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DiffLlamaDecoderLayer`]
Args:
config: DiffLlamaConfig
"""
def __init__(self, config: DiffLlamaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[DiffLlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = DiffLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = DiffLlamaRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(DIFFLLAMA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
output = BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
return output if return_dict else output.to_tuple()
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
|
class_definition
| 37,096 | 48,357 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modeling_diffllama.py
| null | 3,528 |
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
|
class_definition
| 48,360 | 48,422 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modeling_diffllama.py
| null | 3,529 |
class DiffLlamaForCausalLM(DiffLlamaPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
def __init__(self, config):
super().__init__(config)
self.model = DiffLlamaModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(DIFFLLAMA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
num_logits_to_keep: int = 0,
**kwargs: Unpack[KwargsForCausalLM],
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
num_logits_to_keep (`int`, *optional*):
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, DiffLlamaForCausalLM
>>> model = DiffLlamaForCausalLM.from_pretrained("google/diffllama-7b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/diffllama-7b")
>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 48,425 | 53,501 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modeling_diffllama.py
| null | 3,530 |
class DiffLlamaForSequenceClassification(DiffLlamaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = DiffLlamaModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(DIFFLLAMA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
|
class_definition
| 54,306 | 58,134 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modeling_diffllama.py
| null | 3,531 |
class DiffLlamaForQuestionAnswering(DiffLlamaPreTrainedModel):
base_model_prefix = "transformer"
def __init__(self, config):
super().__init__(config)
self.transformer = DiffLlamaModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.transformer.embed_tokens
def set_input_embeddings(self, value):
self.transformer.embed_tokens = value
@add_start_docstrings_to_model_forward(DIFFLLAMA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
loss = None
if start_positions is not None and end_positions is not None:
loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return QuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 58,438 | 61,846 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modeling_diffllama.py
| null | 3,532 |
class DiffLlamaForTokenClassification(DiffLlamaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = DiffLlamaModel(config)
if getattr(config, "classifier_dropout", None) is not None:
classifier_dropout = config.classifier_dropout
elif getattr(config, "hidden_dropout", None) is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.score = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(DIFFLLAMA_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.score(sequence_output)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.config)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 62,101 | 65,329 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modeling_diffllama.py
| null | 3,533 |
class DiffLlamaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`DiffLlamaModel`]. It is used to instantiate an DiffLlama
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults
will yield a similar configuration to that of the [kajuma/DiffLlama-0.3B-handcut](https://huggingface.co/kajuma/DiffLlama-0.3B-handcut).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the DiffLlama model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`DiffLlamaModel`]
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 8192):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 16):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'diffllama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'diffllama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'diffllama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'diffllama3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
lambda_std_dev (`float`, *optional*, defaults to 0.1):
The standard deviation for initialization of parameter lambda in attention layer.
head_dim (`int`, *optional*):
The attention head dimension. If None, it will default to hidden_size // num_heads
```python
>>> from transformers import DiffLlamaModel, DiffLlamaConfig
>>> # Initializing a DiffLlama diffllama-7b style configuration
>>> configuration = DiffLlamaConfig()
>>> # Initializing a model from the diffllama-7b style configuration
>>> model = DiffLlamaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "diffllama"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=32000,
hidden_size=2048,
intermediate_size=8192,
num_hidden_layers=16,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
lambda_std_dev=0.1,
head_dim=None,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.lambda_std_dev = lambda_std_dev
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, copy it it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
|
class_definition
| 914 | 10,649 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/configuration_diffllama.py
| null | 3,534 |
class DiffLlamaMLP(MistralMLP):
pass
|
class_definition
| 1,607 | 1,647 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modular_diffllama.py
| null | 3,535 |
class DiffLlamaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: DiffLlamaConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
# under this are not used
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
self.lambda_init = lambda_init_fn(layer_idx)
self.lambda_q1 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
self.lambda_k1 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
self.lambda_q2 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
self.lambda_k2 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
self.groupnorm = nn.RMSNorm(2 * self.head_dim, eps=config.rms_norm_eps, elementwise_affine=False)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, target_len, _ = hidden_states.size()
q_len = target_len
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
value_states = torch.cat(torch.chunk(value_states, 2, dim=1), dim=-1)
value_states = value_states.repeat(1, 2, 1, 1)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_full = lambda_1 - lambda_2 + self.lambda_init
attn_output = torch.matmul(attn_weights, value_states)
attn_output1, attn_output2 = torch.chunk(attn_output, 2, dim=1)
attn_output = attn_output1 - lambda_full * attn_output2
attn_output = (1 - self.lambda_init) * self.groupnorm(attn_output)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
|
class_definition
| 1,733 | 7,267 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modular_diffllama.py
| null | 3,536 |
class DiffLlamaFlashAttention2(DiffLlamaAttention):
"""
DiffLlama flash attention module. This module inherits from `DiffLlamaAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if isinstance(past_key_value, StaticCache):
raise ValueError(
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
)
output_attentions = False
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if position_embeddings is None:
logger.warning_once(
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
"removed and `position_embeddings` will be mandatory."
)
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attention_dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (DiffLlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
value_states1, value_states2 = torch.chunk(value_states, 2, dim=2)
value_states1 = value_states1.repeat(1, 1, 2, 1)
value_states2 = value_states2.repeat(1, 1, 2, 1)
attn_output1 = _flash_attention_forward(
query_states,
key_states,
value_states1,
attention_mask,
q_len,
position_ids=position_ids,
dropout=dropout_rate,
sliding_window=getattr(self, "sliding_window", None),
use_top_left_mask=self._flash_attn_uses_top_left_mask,
is_causal=self.is_causal,
)
attn_output2 = _flash_attention_forward(
query_states,
key_states,
value_states2,
attention_mask,
q_len,
position_ids=position_ids,
dropout=dropout_rate,
sliding_window=getattr(self, "sliding_window", None),
use_top_left_mask=self._flash_attn_uses_top_left_mask,
is_causal=self.is_causal,
)
attn_output = torch.cat([attn_output1, attn_output2], dim=-1)
attn_output1, attn_output2 = torch.chunk(attn_output, 2, dim=2)
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_full = lambda_1 - lambda_2 + self.lambda_init
attn_output = attn_output1 - lambda_full * attn_output2
attn_output = (1 - self.lambda_init) * self.groupnorm(attn_output)
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
|
class_definition
| 7,270 | 14,756 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modular_diffllama.py
| null | 3,537 |
class DiffLlamaSdpaAttention(DiffLlamaAttention):
"""
DiffLlama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`DiffLlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from DiffLlamaAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"DiffLlamaModel is using DiffLlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
value_states = torch.cat(torch.chunk(value_states, 2, dim=1), dim=-1)
value_states = value_states.repeat(1, 2, 1, 1)
causal_mask = attention_mask
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and causal_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output1, attn_output2 = torch.chunk(attn_output, 2, dim=1)
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_full = lambda_1 - lambda_2 + self.lambda_init
attn_output = attn_output1 - lambda_full * attn_output2
attn_output = (1 - self.lambda_init) * self.groupnorm(attn_output)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, None
|
class_definition
| 14,759 | 19,995 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modular_diffllama.py
| null | 3,538 |
class DiffLlamaDecoderLayer(LlamaDecoderLayer):
def __init__(self, config: DiffLlamaConfig, layer_idx: int):
super().__init__(config, layer_idx)
self.self_attn = DIFFLLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
class_definition
| 20,154 | 20,429 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modular_diffllama.py
| null | 3,539 |
class DiffLlamaPreTrainedModel(LlamaPreTrainedModel):
_supports_flex_attn = False
|
class_definition
| 20,432 | 20,517 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modular_diffllama.py
| null | 3,540 |
class DiffLlamaModel(LlamaModel):
pass
|
class_definition
| 20,520 | 20,562 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modular_diffllama.py
| null | 3,541 |
class DiffLlamaForCausalLM(GemmaForCausalLM):
pass
|
class_definition
| 20,565 | 20,619 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modular_diffllama.py
| null | 3,542 |
class DiffLlamaForSequenceClassification(LlamaForSequenceClassification):
pass
|
class_definition
| 20,622 | 20,704 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modular_diffllama.py
| null | 3,543 |
class DiffLlamaForQuestionAnswering(LlamaForQuestionAnswering):
pass
|
class_definition
| 20,707 | 20,779 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modular_diffllama.py
| null | 3,544 |
class DiffLlamaForTokenClassification(LlamaForTokenClassification):
pass
|
class_definition
| 20,782 | 20,858 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/diffllama/modular_diffllama.py
| null | 3,545 |
class SqueezeBertTokenizer(PreTrainedTokenizer):
r"""
Construct a SqueezeBERT tokenizer. Based on WordPiece.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
Whether or not to do basic tokenization before WordPiece.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original SqueezeBERT).
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`):
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
extra spaces.
"""
vocab_files_names = VOCAB_FILES_NAMES
def __init__(
self,
vocab_file,
do_lower_case=True,
do_basic_tokenize=True,
never_split=None,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
tokenize_chinese_chars=True,
strip_accents=None,
clean_up_tokenization_spaces=True,
**kwargs,
):
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
" model use `tokenizer = SqueezeBertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.do_basic_tokenize = do_basic_tokenize
if do_basic_tokenize:
self.basic_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case,
never_split=never_split,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
super().__init__(
do_lower_case=do_lower_case,
do_basic_tokenize=do_basic_tokenize,
never_split=never_split,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
@property
def do_lower_case(self):
return self.basic_tokenizer.do_lower_case
@property
def vocab_size(self):
return len(self.vocab)
def get_vocab(self):
return dict(self.vocab, **self.added_tokens_encoder)
def _tokenize(self, text, split_special_tokens=False):
split_tokens = []
if self.do_basic_tokenize:
for token in self.basic_tokenizer.tokenize(
text, never_split=self.all_special_tokens if not split_special_tokens else None
):
# If the token is part of the never_split set
if token in self.basic_tokenizer.never_split:
split_tokens.append(token)
else:
split_tokens += self.wordpiece_tokenizer.tokenize(token)
else:
split_tokens = self.wordpiece_tokenizer.tokenize(text)
return split_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = " ".join(tokens).replace(" ##", "").strip()
return out_string
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A SqueezeBERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A SqueezeBERT sequence
pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
index = 0
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
|
class_definition
| 1,797 | 12,496 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/tokenization_squeezebert.py
| null | 3,546 |
class BasicTokenizer:
"""
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
Args:
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
do_split_on_punc (`bool`, *optional*, defaults to `True`):
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
the full context of the words, such as contractions.
"""
def __init__(
self,
do_lower_case=True,
never_split=None,
tokenize_chinese_chars=True,
strip_accents=None,
do_split_on_punc=True,
):
if never_split is None:
never_split = []
self.do_lower_case = do_lower_case
self.never_split = set(never_split)
self.tokenize_chinese_chars = tokenize_chinese_chars
self.strip_accents = strip_accents
self.do_split_on_punc = do_split_on_punc
def tokenize(self, text, never_split=None):
"""
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
Args:
never_split (`List[str]`, *optional*)
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
"""
# union() returns a new set by concatenating the two sets.
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if self.tokenize_chinese_chars:
text = self._tokenize_chinese_chars(text)
# prevents treating the same character with different unicode codepoints as different characters
unicode_normalized_text = unicodedata.normalize("NFC", text)
orig_tokens = whitespace_tokenize(unicode_normalized_text)
split_tokens = []
for token in orig_tokens:
if token not in never_split:
if self.do_lower_case:
token = token.lower()
if self.strip_accents is not False:
token = self._run_strip_accents(token)
elif self.strip_accents:
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token, never_split))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text, never_split=None):
"""Splits punctuation on a piece of text."""
if not self.do_split_on_punc or (never_split is not None and text in never_split):
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xFFFD or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
|
class_definition
| 12,571 | 19,319 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/tokenization_squeezebert.py
| null | 3,547 |
class WordpieceTokenizer:
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
tokenization using the given vocabulary.
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through *BasicTokenizer*.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
|
class_definition
| 19,322 | 21,210 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/tokenization_squeezebert.py
| null | 3,548 |
class SqueezeBertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
|
class_definition
| 1,446 | 3,447 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/modeling_squeezebert.py
| null | 3,549 |
class MatMulWrapper(nn.Module):
"""
Wrapper for torch.matmul(). This makes flop-counting easier to implement. Note that if you directly call
torch.matmul() in your code, the flop counter will typically ignore the flops of the matmul.
"""
def __init__(self):
super().__init__()
def forward(self, mat1, mat2):
"""
:param inputs: two torch tensors :return: matmul of these tensors
Here are the typical dimensions found in BERT (the B is optional) mat1.shape: [B, <optional extra dims>, M, K]
mat2.shape: [B, <optional extra dims>, K, N] output shape: [B, <optional extra dims>, M, N]
"""
return torch.matmul(mat1, mat2)
|
class_definition
| 3,450 | 4,150 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/modeling_squeezebert.py
| null | 3,550 |
class SqueezeBertLayerNorm(nn.LayerNorm):
"""
This is a nn.LayerNorm subclass that accepts NCW data layout and performs normalization in the C dimension.
N = batch C = channels W = sequence length
"""
def __init__(self, hidden_size, eps=1e-12):
nn.LayerNorm.__init__(self, normalized_shape=hidden_size, eps=eps) # instantiates self.{weight, bias, eps}
def forward(self, x):
x = x.permute(0, 2, 1)
x = nn.LayerNorm.forward(self, x)
return x.permute(0, 2, 1)
|
class_definition
| 4,153 | 4,669 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/modeling_squeezebert.py
| null | 3,551 |
class ConvDropoutLayerNorm(nn.Module):
"""
ConvDropoutLayerNorm: Conv, Dropout, LayerNorm
"""
def __init__(self, cin, cout, groups, dropout_prob):
super().__init__()
self.conv1d = nn.Conv1d(in_channels=cin, out_channels=cout, kernel_size=1, groups=groups)
self.layernorm = SqueezeBertLayerNorm(cout)
self.dropout = nn.Dropout(dropout_prob)
def forward(self, hidden_states, input_tensor):
x = self.conv1d(hidden_states)
x = self.dropout(x)
x = x + input_tensor
x = self.layernorm(x)
return x
|
class_definition
| 4,672 | 5,257 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/modeling_squeezebert.py
| null | 3,552 |
class ConvActivation(nn.Module):
"""
ConvActivation: Conv, Activation
"""
def __init__(self, cin, cout, groups, act):
super().__init__()
self.conv1d = nn.Conv1d(in_channels=cin, out_channels=cout, kernel_size=1, groups=groups)
self.act = ACT2FN[act]
def forward(self, x):
output = self.conv1d(x)
return self.act(output)
|
class_definition
| 5,260 | 5,641 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/modeling_squeezebert.py
| null | 3,553 |
class SqueezeBertSelfAttention(nn.Module):
def __init__(self, config, cin, q_groups=1, k_groups=1, v_groups=1):
"""
config = used for some things; ignored for others (work in progress...) cin = input channels = output channels
groups = number of groups to use in conv1d layers
"""
super().__init__()
if cin % config.num_attention_heads != 0:
raise ValueError(
f"cin ({cin}) is not a multiple of the number of attention heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(cin / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Conv1d(in_channels=cin, out_channels=cin, kernel_size=1, groups=q_groups)
self.key = nn.Conv1d(in_channels=cin, out_channels=cin, kernel_size=1, groups=k_groups)
self.value = nn.Conv1d(in_channels=cin, out_channels=cin, kernel_size=1, groups=v_groups)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.softmax = nn.Softmax(dim=-1)
self.matmul_qk = MatMulWrapper()
self.matmul_qkv = MatMulWrapper()
def transpose_for_scores(self, x):
"""
- input: [N, C, W]
- output: [N, C1, W, C2] where C1 is the head index, and C2 is one head's contents
"""
new_x_shape = (x.size()[0], self.num_attention_heads, self.attention_head_size, x.size()[-1]) # [N, C1, C2, W]
x = x.view(*new_x_shape)
return x.permute(0, 1, 3, 2) # [N, C1, C2, W] --> [N, C1, W, C2]
def transpose_key_for_scores(self, x):
"""
- input: [N, C, W]
- output: [N, C1, C2, W] where C1 is the head index, and C2 is one head's contents
"""
new_x_shape = (x.size()[0], self.num_attention_heads, self.attention_head_size, x.size()[-1]) # [N, C1, C2, W]
x = x.view(*new_x_shape)
# no `permute` needed
return x
def transpose_output(self, x):
"""
- input: [N, C1, W, C2]
- output: [N, C, W]
"""
x = x.permute(0, 1, 3, 2).contiguous() # [N, C1, C2, W]
new_x_shape = (x.size()[0], self.all_head_size, x.size()[3]) # [N, C, W]
x = x.view(*new_x_shape)
return x
def forward(self, hidden_states, attention_mask, output_attentions):
"""
expects hidden_states in [N, C, W] data layout.
The attention_mask data layout is [N, W], and it does not need to be transposed.
"""
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_key_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_score = self.matmul_qk(query_layer, key_layer)
attention_score = attention_score / math.sqrt(self.attention_head_size)
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_score = attention_score + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = self.softmax(attention_score)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = self.matmul_qkv(attention_probs, value_layer)
context_layer = self.transpose_output(context_layer)
result = {"context_layer": context_layer}
if output_attentions:
result["attention_score"] = attention_score
return result
|
class_definition
| 5,644 | 9,635 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/modeling_squeezebert.py
| null | 3,554 |
class SqueezeBertModule(nn.Module):
def __init__(self, config):
"""
- hidden_size = input chans = output chans for Q, K, V (they are all the same ... for now) = output chans for
the module
- intermediate_size = output chans for intermediate layer
- groups = number of groups for all layers in the BertModule. (eventually we could change the interface to
allow different groups for different layers)
"""
super().__init__()
c0 = config.hidden_size
c1 = config.hidden_size
c2 = config.intermediate_size
c3 = config.hidden_size
self.attention = SqueezeBertSelfAttention(
config=config, cin=c0, q_groups=config.q_groups, k_groups=config.k_groups, v_groups=config.v_groups
)
self.post_attention = ConvDropoutLayerNorm(
cin=c0, cout=c1, groups=config.post_attention_groups, dropout_prob=config.hidden_dropout_prob
)
self.intermediate = ConvActivation(cin=c1, cout=c2, groups=config.intermediate_groups, act=config.hidden_act)
self.output = ConvDropoutLayerNorm(
cin=c2, cout=c3, groups=config.output_groups, dropout_prob=config.hidden_dropout_prob
)
def forward(self, hidden_states, attention_mask, output_attentions):
att = self.attention(hidden_states, attention_mask, output_attentions)
attention_output = att["context_layer"]
post_attention_output = self.post_attention(attention_output, hidden_states)
intermediate_output = self.intermediate(post_attention_output)
layer_output = self.output(intermediate_output, post_attention_output)
output_dict = {"feature_map": layer_output}
if output_attentions:
output_dict["attention_score"] = att["attention_score"]
return output_dict
|
class_definition
| 9,638 | 11,494 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/modeling_squeezebert.py
| null | 3,555 |
class SqueezeBertEncoder(nn.Module):
def __init__(self, config):
super().__init__()
assert config.embedding_size == config.hidden_size, (
"If you want embedding_size != intermediate hidden_size, "
"please insert a Conv1d layer to adjust the number of channels "
"before the first SqueezeBertModule."
)
self.layers = nn.ModuleList(SqueezeBertModule(config) for _ in range(config.num_hidden_layers))
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
if head_mask is None:
head_mask_is_all_none = True
elif head_mask.count(None) == len(head_mask):
head_mask_is_all_none = True
else:
head_mask_is_all_none = False
assert head_mask_is_all_none is True, "head_mask is not yet supported in the SqueezeBert implementation."
# [batch_size, sequence_length, hidden_size] --> [batch_size, hidden_size, sequence_length]
hidden_states = hidden_states.permute(0, 2, 1)
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for layer in self.layers:
if output_hidden_states:
hidden_states = hidden_states.permute(0, 2, 1)
all_hidden_states += (hidden_states,)
hidden_states = hidden_states.permute(0, 2, 1)
layer_output = layer.forward(hidden_states, attention_mask, output_attentions)
hidden_states = layer_output["feature_map"]
if output_attentions:
all_attentions += (layer_output["attention_score"],)
# [batch_size, hidden_size, sequence_length] --> [batch_size, sequence_length, hidden_size]
hidden_states = hidden_states.permute(0, 2, 1)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
|
class_definition
| 11,497 | 13,820 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/modeling_squeezebert.py
| null | 3,556 |
class SqueezeBertPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
|
class_definition
| 13,823 | 14,359 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/modeling_squeezebert.py
| null | 3,557 |
class SqueezeBertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
|
class_definition
| 14,362 | 15,039 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/modeling_squeezebert.py
| null | 3,558 |
class SqueezeBertLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = SqueezeBertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def _tie_weights(self) -> None:
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
|
class_definition
| 15,042 | 15,896 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/modeling_squeezebert.py
| null | 3,559 |
class SqueezeBertOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = SqueezeBertLMPredictionHead(config)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
|
class_definition
| 15,899 | 16,197 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/modeling_squeezebert.py
| null | 3,560 |
class SqueezeBertPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = SqueezeBertConfig
base_model_prefix = "transformer"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, SqueezeBertLayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
|
class_definition
| 16,200 | 17,303 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/modeling_squeezebert.py
| null | 3,561 |
class SqueezeBertModel(SqueezeBertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.embeddings = SqueezeBertEmbeddings(config)
self.encoder = SqueezeBertEncoder(config)
self.pooler = SqueezeBertPooler(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, new_embeddings):
self.embeddings.word_embeddings = new_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
)
encoder_outputs = self.encoder(
hidden_states=embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output)
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
|
class_definition
| 22,077 | 26,444 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/modeling_squeezebert.py
| null | 3,562 |
class SqueezeBertForMaskedLM(SqueezeBertPreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)
self.transformer = SqueezeBertModel(config)
self.cls = SqueezeBertOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
self.cls.predictions.bias = new_embeddings.bias
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 26,563 | 29,706 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/modeling_squeezebert.py
| null | 3,563 |
class SqueezeBertForSequenceClassification(SqueezeBertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.transformer = SqueezeBertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 29,942 | 33,824 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/modeling_squeezebert.py
| null | 3,564 |
class SqueezeBertForMultipleChoice(SqueezeBertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.transformer = SqueezeBertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(
SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where *num_choices* is the size of the second dimension of the input tensors. (see
*input_ids* above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 34,069 | 37,599 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/modeling_squeezebert.py
| null | 3,565 |
class SqueezeBertForTokenClassification(SqueezeBertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = SqueezeBertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 37,842 | 40,543 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/modeling_squeezebert.py
| null | 3,566 |
class SqueezeBertForQuestionAnswering(SqueezeBertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = SqueezeBertModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 40,847 | 45,052 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/modeling_squeezebert.py
| null | 3,567 |
class SqueezeBertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SqueezeBertModel`]. It is used to instantiate a
SqueezeBERT model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the SqueezeBERT
[squeezebert/squeezebert-uncased](https://huggingface.co/squeezebert/squeezebert-uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the SqueezeBERT model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`SqueezeBertModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
pad_token_id (`int`, *optional*, defaults to 0):
The ID of the token in the word embedding to use as padding.
embedding_size (`int`, *optional*, defaults to 768):
The dimension of the word embedding vectors.
q_groups (`int`, *optional*, defaults to 4):
The number of groups in Q layer.
k_groups (`int`, *optional*, defaults to 4):
The number of groups in K layer.
v_groups (`int`, *optional*, defaults to 4):
The number of groups in V layer.
post_attention_groups (`int`, *optional*, defaults to 1):
The number of groups in the first feed forward network layer.
intermediate_groups (`int`, *optional*, defaults to 4):
The number of groups in the second feed forward network layer.
output_groups (`int`, *optional*, defaults to 4):
The number of groups in the third feed forward network layer.
Examples:
```python
>>> from transformers import SqueezeBertConfig, SqueezeBertModel
>>> # Initializing a SqueezeBERT configuration
>>> configuration = SqueezeBertConfig()
>>> # Initializing a model (with random weights) from the configuration above
>>> model = SqueezeBertModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "squeezebert"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
embedding_size=768,
q_groups=4,
k_groups=4,
v_groups=4,
post_attention_groups=1,
intermediate_groups=4,
output_groups=4,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.embedding_size = embedding_size
self.q_groups = q_groups
self.k_groups = k_groups
self.v_groups = v_groups
self.post_attention_groups = post_attention_groups
self.intermediate_groups = intermediate_groups
self.output_groups = output_groups
|
class_definition
| 890 | 6,640 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/configuration_squeezebert.py
| null | 3,568 |
class SqueezeBertOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
]
)
|
class_definition
| 6,741 | 7,243 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/configuration_squeezebert.py
| null | 3,569 |
class SqueezeBertTokenizerFast(PreTrainedTokenizerFast):
r"""
Construct a "fast" SqueezeBERT tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
clean_text (`bool`, *optional*, defaults to `True`):
Whether or not to clean the text before tokenization by removing any control characters and replacing all
whitespaces by the classic one.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original SqueezeBERT).
wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
The prefix for subwords.
"""
vocab_files_names = VOCAB_FILES_NAMES
slow_tokenizer_class = SqueezeBertTokenizer
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
do_lower_case=True,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
tokenize_chinese_chars=True,
strip_accents=None,
**kwargs,
):
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
do_lower_case=do_lower_case,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
**kwargs,
)
normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get("lowercase", do_lower_case) != do_lower_case
or normalizer_state.get("strip_accents", strip_accents) != strip_accents
or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
):
normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
normalizer_state["lowercase"] = do_lower_case
normalizer_state["strip_accents"] = strip_accents
normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
self.do_lower_case = do_lower_case
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A SqueezeBERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
if token_ids_1 is not None:
output += token_ids_1 + [self.sep_token_id]
return output
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A SqueezeBERT sequence
pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
|
class_definition
| 1,167 | 7,818 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/squeezebert/tokenization_squeezebert_fast.py
| null | 3,570 |
class SwinEncoderOutput(ModelOutput):
"""
Swin encoder's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
class_definition
| 1,933 | 3,898 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_swin.py
| null | 3,571 |
class SwinModelOutput(ModelOutput):
"""
Swin model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
Average pooling of the last layer hidden-state.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: torch.FloatTensor = None
pooler_output: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
class_definition
| 3,912 | 6,141 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_swin.py
| null | 3,572 |
class SwinMaskedImageModelingOutput(ModelOutput):
"""
Swin masked image model outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `bool_masked_pos` is provided):
Masked image modeling (MLM) loss.
reconstruction (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Reconstructed pixel values.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
loss: Optional[torch.FloatTensor] = None
reconstruction: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@property
def logits(self):
warnings.warn(
"logits attribute is deprecated and will be removed in version 5 of Transformers."
" Please use the reconstruction attribute to retrieve the final output instead.",
FutureWarning,
)
return self.reconstruction
|
class_definition
| 6,155 | 8,566 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_swin.py
| null | 3,573 |
class SwinImageClassifierOutput(ModelOutput):
"""
Swin outputs for image classification.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
class_definition
| 8,580 | 10,716 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_swin.py
| null | 3,574 |
class SwinEmbeddings(nn.Module):
"""
Construct the patch and position embeddings. Optionally, also the mask token.
"""
def __init__(self, config, use_mask_token=False):
super().__init__()
self.patch_embeddings = SwinPatchEmbeddings(config)
num_patches = self.patch_embeddings.num_patches
self.patch_grid = self.patch_embeddings.grid_size
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.embed_dim)) if use_mask_token else None
if config.use_absolute_embeddings:
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.embed_dim))
else:
self.position_embeddings = None
self.norm = nn.LayerNorm(config.embed_dim)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.patch_size = config.patch_size
self.config = config
# Copied from transformers.models.vit.modeling_vit.ViTEmbeddings.interpolate_pos_encoding
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
images. This method is also adapted to support torch.jit tracing.
Adapted from:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
"""
num_patches = embeddings.shape[1] - 1
num_positions = self.position_embeddings.shape[1] - 1
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
return self.position_embeddings
class_pos_embed = self.position_embeddings[:, :1]
patch_pos_embed = self.position_embeddings[:, 1:]
dim = embeddings.shape[-1]
new_height = height // self.patch_size
new_width = width // self.patch_size
sqrt_num_positions = torch_int(num_positions**0.5)
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
size=(new_height, new_width),
mode="bicubic",
align_corners=False,
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
def forward(
self,
pixel_values: Optional[torch.FloatTensor],
bool_masked_pos: Optional[torch.BoolTensor] = None,
interpolate_pos_encoding: bool = False,
) -> Tuple[torch.Tensor]:
_, num_channels, height, width = pixel_values.shape
embeddings, output_dimensions = self.patch_embeddings(pixel_values)
embeddings = self.norm(embeddings)
batch_size, seq_len, _ = embeddings.size()
if bool_masked_pos is not None:
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
# replace the masked visual tokens by mask_tokens
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
if self.position_embeddings is not None:
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings)
return embeddings, output_dimensions
|
class_definition
| 11,587 | 15,496 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_swin.py
| null | 3,575 |
class SwinPatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
super().__init__()
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.embed_dim
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
def maybe_pad(self, pixel_values, height, width):
if width % self.patch_size[1] != 0:
pad_values = (0, self.patch_size[1] - width % self.patch_size[1])
pixel_values = nn.functional.pad(pixel_values, pad_values)
if height % self.patch_size[0] != 0:
pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0])
pixel_values = nn.functional.pad(pixel_values, pad_values)
return pixel_values
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]:
_, num_channels, height, width = pixel_values.shape
# pad the input to be divisible by self.patch_size, if needed
pixel_values = self.maybe_pad(pixel_values, height, width)
embeddings = self.projection(pixel_values)
_, _, height, width = embeddings.shape
output_dimensions = (height, width)
embeddings = embeddings.flatten(2).transpose(1, 2)
return embeddings, output_dimensions
|
class_definition
| 15,499 | 17,679 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_swin.py
| null | 3,576 |
class SwinPatchMerging(nn.Module):
"""
Patch Merging Layer.
Args:
input_resolution (`Tuple[int]`):
Resolution of input feature.
dim (`int`):
Number of input channels.
norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`):
Normalization layer class.
"""
def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None:
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def maybe_pad(self, input_feature, height, width):
should_pad = (height % 2 == 1) or (width % 2 == 1)
if should_pad:
pad_values = (0, 0, 0, width % 2, 0, height % 2)
input_feature = nn.functional.pad(input_feature, pad_values)
return input_feature
def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor:
height, width = input_dimensions
# `dim` is height * width
batch_size, dim, num_channels = input_feature.shape
input_feature = input_feature.view(batch_size, height, width, num_channels)
# pad input to be disible by width and height, if needed
input_feature = self.maybe_pad(input_feature, height, width)
# [batch_size, height/2, width/2, num_channels]
input_feature_0 = input_feature[:, 0::2, 0::2, :]
# [batch_size, height/2, width/2, num_channels]
input_feature_1 = input_feature[:, 1::2, 0::2, :]
# [batch_size, height/2, width/2, num_channels]
input_feature_2 = input_feature[:, 0::2, 1::2, :]
# [batch_size, height/2, width/2, num_channels]
input_feature_3 = input_feature[:, 1::2, 1::2, :]
# batch_size height/2 width/2 4*num_channels
input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1)
input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # batch_size height/2*width/2 4*C
input_feature = self.norm(input_feature)
input_feature = self.reduction(input_feature)
return input_feature
|
class_definition
| 17,682 | 19,960 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_swin.py
| null | 3,577 |
class SwinDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
|
class_definition
| 21,200 | 21,678 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_swin.py
| null | 3,578 |
class SwinSelfAttention(nn.Module):
def __init__(self, config, dim, num_heads, window_size):
super().__init__()
if dim % num_heads != 0:
raise ValueError(
f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})"
)
self.num_attention_heads = num_heads
self.attention_head_size = int(dim / num_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.window_size = (
window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size)
)
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads)
)
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij"))
coords_flatten = torch.flatten(coords, 1)
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative_coords[:, :, 0] += self.window_size[0] - 1
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1)
self.register_buffer("relative_position_index", relative_position_index)
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
batch_size, dim, num_channels = hidden_states.shape
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)]
relative_position_bias = relative_position_bias.view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
)
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
attention_scores = attention_scores + relative_position_bias.unsqueeze(0)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in SwinModel forward() function)
mask_shape = attention_mask.shape[0]
attention_scores = attention_scores.view(
batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim
)
attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0)
attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
|
class_definition
| 21,681 | 26,548 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_swin.py
| null | 3,579 |
class SwinSelfOutput(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(dim, dim)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
|
class_definition
| 26,551 | 26,988 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_swin.py
| null | 3,580 |
class SwinAttention(nn.Module):
def __init__(self, config, dim, num_heads, window_size):
super().__init__()
self.self = SwinSelfAttention(config, dim, num_heads, window_size)
self.output = SwinSelfOutput(config, dim)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
|
class_definition
| 26,991 | 28,669 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_swin.py
| null | 3,581 |
class SwinIntermediate(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(dim, int(config.mlp_ratio * dim))
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
|
class_definition
| 28,672 | 29,230 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_swin.py
| null | 3,582 |
class SwinOutput(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(int(config.mlp_ratio * dim), dim)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
|
class_definition
| 29,233 | 29,652 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_swin.py
| null | 3,583 |
class SwinLayer(nn.Module):
def __init__(self, config, dim, input_resolution, num_heads, drop_path_rate=0.0, shift_size=0):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.shift_size = shift_size
self.window_size = config.window_size
self.input_resolution = input_resolution
self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.attention = SwinAttention(config, dim, num_heads, window_size=self.window_size)
self.drop_path = SwinDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.intermediate = SwinIntermediate(config, dim)
self.output = SwinOutput(config, dim)
def set_shift_and_window_size(self, input_resolution):
if min(input_resolution) <= self.window_size:
# if window size is larger than input resolution, we don't partition windows
self.shift_size = torch_int(0)
self.window_size = (
torch.min(torch.tensor(input_resolution)) if torch.jit.is_tracing() else min(input_resolution)
)
def get_attn_mask(self, height, width, dtype, device):
if self.shift_size > 0:
# calculate attention mask for SW-MSA
img_mask = torch.zeros((1, height, width, 1), dtype=dtype, device=device)
height_slices = (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None),
)
width_slices = (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None),
)
count = 0
for height_slice in height_slices:
for width_slice in width_slices:
img_mask[:, height_slice, width_slice, :] = count
count += 1
mask_windows = window_partition(img_mask, self.window_size)
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
else:
attn_mask = None
return attn_mask
def maybe_pad(self, hidden_states, height, width):
pad_right = (self.window_size - width % self.window_size) % self.window_size
pad_bottom = (self.window_size - height % self.window_size) % self.window_size
pad_values = (0, 0, 0, pad_right, 0, pad_bottom)
hidden_states = nn.functional.pad(hidden_states, pad_values)
return hidden_states, pad_values
def forward(
self,
hidden_states: torch.Tensor,
input_dimensions: Tuple[int, int],
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
always_partition: Optional[bool] = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
if not always_partition:
self.set_shift_and_window_size(input_dimensions)
else:
pass
height, width = input_dimensions
batch_size, _, channels = hidden_states.size()
shortcut = hidden_states
hidden_states = self.layernorm_before(hidden_states)
hidden_states = hidden_states.view(batch_size, height, width, channels)
# pad hidden_states to multiples of window size
hidden_states, pad_values = self.maybe_pad(hidden_states, height, width)
_, height_pad, width_pad, _ = hidden_states.shape
# cyclic shift
if self.shift_size > 0:
shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
else:
shifted_hidden_states = hidden_states
# partition windows
hidden_states_windows = window_partition(shifted_hidden_states, self.window_size)
hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels)
attn_mask = self.get_attn_mask(
height_pad, width_pad, dtype=hidden_states.dtype, device=hidden_states_windows.device
)
attention_outputs = self.attention(
hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions
)
attention_output = attention_outputs[0]
attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels)
shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad)
# reverse cyclic shift
if self.shift_size > 0:
attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
attention_windows = shifted_windows
was_padded = pad_values[3] > 0 or pad_values[5] > 0
if was_padded:
attention_windows = attention_windows[:, :height, :width, :].contiguous()
attention_windows = attention_windows.view(batch_size, height * width, channels)
hidden_states = shortcut + self.drop_path(attention_windows)
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = hidden_states + self.output(layer_output)
layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,)
return layer_outputs
|
class_definition
| 29,655 | 35,323 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_swin.py
| null | 3,584 |
class SwinStage(nn.Module):
def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, downsample):
super().__init__()
self.config = config
self.dim = dim
self.blocks = nn.ModuleList(
[
SwinLayer(
config=config,
dim=dim,
input_resolution=input_resolution,
num_heads=num_heads,
drop_path_rate=drop_path[i],
shift_size=0 if (i % 2 == 0) else config.window_size // 2,
)
for i in range(depth)
]
)
# patch merging layer
if downsample is not None:
self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm)
else:
self.downsample = None
self.pointing = False
def forward(
self,
hidden_states: torch.Tensor,
input_dimensions: Tuple[int, int],
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
always_partition: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
height, width = input_dimensions
for i, layer_module in enumerate(self.blocks):
layer_head_mask = head_mask[i] if head_mask is not None else None
layer_outputs = layer_module(
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition
)
hidden_states = layer_outputs[0]
hidden_states_before_downsampling = hidden_states
if self.downsample is not None:
height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2
output_dimensions = (height, width, height_downsampled, width_downsampled)
hidden_states = self.downsample(hidden_states_before_downsampling, input_dimensions)
else:
output_dimensions = (height, width, height, width)
stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions)
if output_attentions:
stage_outputs += layer_outputs[1:]
return stage_outputs
|
class_definition
| 35,326 | 37,540 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_swin.py
| null | 3,585 |
class SwinEncoder(nn.Module):
def __init__(self, config, grid_size):
super().__init__()
self.num_layers = len(config.depths)
self.config = config
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
self.layers = nn.ModuleList(
[
SwinStage(
config=config,
dim=int(config.embed_dim * 2**i_layer),
input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)),
depth=config.depths[i_layer],
num_heads=config.num_heads[i_layer],
drop_path=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])],
downsample=SwinPatchMerging if (i_layer < self.num_layers - 1) else None,
)
for i_layer in range(self.num_layers)
]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
input_dimensions: Tuple[int, int],
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
output_hidden_states_before_downsampling: Optional[bool] = False,
always_partition: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, SwinEncoderOutput]:
all_hidden_states = () if output_hidden_states else None
all_reshaped_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if output_hidden_states:
batch_size, _, hidden_size = hidden_states.shape
# rearrange b (h w) c -> b c h w
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
for i, layer_module in enumerate(self.layers):
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
input_dimensions,
layer_head_mask,
output_attentions,
always_partition,
)
else:
layer_outputs = layer_module(
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition
)
hidden_states = layer_outputs[0]
hidden_states_before_downsampling = layer_outputs[1]
output_dimensions = layer_outputs[2]
input_dimensions = (output_dimensions[-2], output_dimensions[-1])
if output_hidden_states and output_hidden_states_before_downsampling:
batch_size, _, hidden_size = hidden_states_before_downsampling.shape
# rearrange b (h w) c -> b c h w
# here we use the original (not downsampled) height and width
reshaped_hidden_state = hidden_states_before_downsampling.view(
batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size
)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states_before_downsampling,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
elif output_hidden_states and not output_hidden_states_before_downsampling:
batch_size, _, hidden_size = hidden_states.shape
# rearrange b (h w) c -> b c h w
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
if output_attentions:
all_self_attentions += layer_outputs[3:]
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return SwinEncoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
reshaped_hidden_states=all_reshaped_hidden_states,
)
|
class_definition
| 37,543 | 42,280 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_swin.py
| null | 3,586 |
class SwinPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = SwinConfig
base_model_prefix = "swin"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
_no_split_modules = ["SwinStage"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
|
class_definition
| 42,283 | 43,234 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_swin.py
| null | 3,587 |
class SwinModel(SwinPreTrainedModel):
def __init__(self, config, add_pooling_layer=True, use_mask_token=False):
super().__init__(config)
self.config = config
self.num_layers = len(config.depths)
self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1))
self.embeddings = SwinEmbeddings(config, use_mask_token=use_mask_token)
self.encoder = SwinEncoder(config, self.embeddings.patch_grid)
self.layernorm = nn.LayerNorm(self.num_features, eps=config.layer_norm_eps)
self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(SWIN_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SwinModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SwinModelOutput]:
r"""
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, len(self.config.depths))
embedding_output, input_dimensions = self.embeddings(
pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding
)
encoder_outputs = self.encoder(
embedding_output,
input_dimensions,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = None
if self.pooler is not None:
pooled_output = self.pooler(sequence_output.transpose(1, 2))
pooled_output = torch.flatten(pooled_output, 1)
if not return_dict:
output = (sequence_output, pooled_output) + encoder_outputs[1:]
return output
return SwinModelOutput(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
reshaped_hidden_states=encoder_outputs.reshaped_hidden_states,
)
|
class_definition
| 45,577 | 49,742 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_swin.py
| null | 3,588 |
class SwinForMaskedImageModeling(SwinPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.swin = SwinModel(config, add_pooling_layer=False, use_mask_token=True)
num_features = int(config.embed_dim * 2 ** (config.num_layers - 1))
self.decoder = nn.Sequential(
nn.Conv2d(
in_channels=num_features, out_channels=config.encoder_stride**2 * config.num_channels, kernel_size=1
),
nn.PixelShuffle(config.encoder_stride),
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(SWIN_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=SwinMaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SwinMaskedImageModelingOutput]:
r"""
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, SwinForMaskedImageModeling
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/swin-base-simmim-window6-192")
>>> model = SwinForMaskedImageModeling.from_pretrained("microsoft/swin-base-simmim-window6-192")
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
>>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
>>> # create random boolean mask of shape (batch_size, num_patches)
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
>>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction
>>> list(reconstructed_pixel_values.shape)
[1, 3, 192, 192]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.swin(
pixel_values,
bool_masked_pos=bool_masked_pos,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
sequence_output = outputs[0]
# Reshape to (batch_size, num_channels, height, width)
sequence_output = sequence_output.transpose(1, 2)
batch_size, num_channels, sequence_length = sequence_output.shape
height = width = math.floor(sequence_length**0.5)
sequence_output = sequence_output.reshape(batch_size, num_channels, height, width)
# Reconstruct pixel values
reconstructed_pixel_values = self.decoder(sequence_output)
masked_im_loss = None
if bool_masked_pos is not None:
size = self.config.image_size // self.config.patch_size
bool_masked_pos = bool_masked_pos.reshape(-1, size, size)
mask = (
bool_masked_pos.repeat_interleave(self.config.patch_size, 1)
.repeat_interleave(self.config.patch_size, 2)
.unsqueeze(1)
.contiguous()
)
reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none")
masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels
if not return_dict:
output = (reconstructed_pixel_values,) + outputs[2:]
return ((masked_im_loss,) + output) if masked_im_loss is not None else output
return SwinMaskedImageModelingOutput(
loss=masked_im_loss,
reconstruction=reconstructed_pixel_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
reshaped_hidden_states=outputs.reshaped_hidden_states,
)
|
class_definition
| 50,151 | 54,849 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_swin.py
| null | 3,589 |
class SwinForImageClassification(SwinPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.swin = SwinModel(config)
# Classifier head
self.classifier = (
nn.Linear(self.swin.num_features, config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(SWIN_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=SwinImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SwinImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.swin(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
pooled_output = outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SwinImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
reshaped_hidden_states=outputs.reshaped_hidden_states,
)
|
class_definition
| 55,397 | 59,020 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_swin.py
| null | 3,590 |
class SwinBackbone(SwinPreTrainedModel, BackboneMixin):
def __init__(self, config: SwinConfig):
super().__init__(config)
super()._init_backbone(config)
self.num_features = [config.embed_dim] + [int(config.embed_dim * 2**i) for i in range(len(config.depths))]
self.embeddings = SwinEmbeddings(config)
self.encoder = SwinEncoder(config, self.embeddings.patch_grid)
# Add layer norms to hidden states of out_features
hidden_states_norms = {}
for stage, num_channels in zip(self._out_features, self.channels):
hidden_states_norms[stage] = nn.LayerNorm(num_channels)
self.hidden_states_norms = nn.ModuleDict(hidden_states_norms)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
def forward(
self,
pixel_values: torch.Tensor,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> BackboneOutput:
"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoBackbone
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("shi-labs/nat-mini-in1k-224")
>>> model = AutoBackbone.from_pretrained(
... "microsoft/swin-tiny-patch4-window7-224", out_features=["stage1", "stage2", "stage3", "stage4"]
... )
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> feature_maps = outputs.feature_maps
>>> list(feature_maps[-1].shape)
[1, 768, 7, 7]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
embedding_output, input_dimensions = self.embeddings(pixel_values)
outputs = self.encoder(
embedding_output,
input_dimensions,
head_mask=None,
output_attentions=output_attentions,
output_hidden_states=True,
output_hidden_states_before_downsampling=True,
always_partition=True,
return_dict=True,
)
hidden_states = outputs.reshaped_hidden_states
feature_maps = ()
for stage, hidden_state in zip(self.stage_names, hidden_states):
if stage in self.out_features:
batch_size, num_channels, height, width = hidden_state.shape
hidden_state = hidden_state.permute(0, 2, 3, 1).contiguous()
hidden_state = hidden_state.view(batch_size, height * width, num_channels)
hidden_state = self.hidden_states_norms[stage](hidden_state)
hidden_state = hidden_state.view(batch_size, height, width, num_channels)
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
feature_maps += (hidden_state,)
if not return_dict:
output = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
|
class_definition
| 59,163 | 63,041 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_swin.py
| null | 3,591 |
class SwinConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SwinModel`]. It is used to instantiate a Swin
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Swin
[microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 4):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
embed_dim (`int`, *optional*, defaults to 96):
Dimensionality of patch embedding.
depths (`list(int)`, *optional*, defaults to `[2, 2, 6, 2]`):
Depth of each layer in the Transformer encoder.
num_heads (`list(int)`, *optional*, defaults to `[3, 6, 12, 24]`):
Number of attention heads in each layer of the Transformer encoder.
window_size (`int`, *optional*, defaults to 7):
Size of windows.
mlp_ratio (`float`, *optional*, defaults to 4.0):
Ratio of MLP hidden dimensionality to embedding dimensionality.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether or not a learnable bias should be added to the queries, keys and values.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings and encoder.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
drop_path_rate (`float`, *optional*, defaults to 0.1):
Stochastic depth rate.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
`"selu"` and `"gelu_new"` are supported.
use_absolute_embeddings (`bool`, *optional*, defaults to `False`):
Whether or not to add absolute position embeddings to the patch embeddings.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
encoder_stride (`int`, *optional*, defaults to 32):
Factor to increase the spatial resolution by in the decoder head for masked image modeling.
out_features (`List[str]`, *optional*):
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
out_indices (`List[int]`, *optional*):
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
If unset and `out_features` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
Example:
```python
>>> from transformers import SwinConfig, SwinModel
>>> # Initializing a Swin microsoft/swin-tiny-patch4-window7-224 style configuration
>>> configuration = SwinConfig()
>>> # Initializing a model (with random weights) from the microsoft/swin-tiny-patch4-window7-224 style configuration
>>> model = SwinModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "swin"
attribute_map = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__(
self,
image_size=224,
patch_size=4,
num_channels=3,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4.0,
qkv_bias=True,
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
drop_path_rate=0.1,
hidden_act="gelu",
use_absolute_embeddings=False,
initializer_range=0.02,
layer_norm_eps=1e-5,
encoder_stride=32,
out_features=None,
out_indices=None,
**kwargs,
):
super().__init__(**kwargs)
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.embed_dim = embed_dim
self.depths = depths
self.num_layers = len(depths)
self.num_heads = num_heads
self.window_size = window_size
self.mlp_ratio = mlp_ratio
self.qkv_bias = qkv_bias
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.drop_path_rate = drop_path_rate
self.hidden_act = hidden_act
self.use_absolute_embeddings = use_absolute_embeddings
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
self.encoder_stride = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1))
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
|
class_definition
| 1,019 | 7,503 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/configuration_swin.py
| null | 3,592 |
class SwinOnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-4
|
class_definition
| 7,506 | 7,903 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/configuration_swin.py
| null | 3,593 |
class TFSwinEncoderOutput(ModelOutput):
"""
Swin encoder's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each stage) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each stage) of shape
`(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: tf.Tensor = None
hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor, ...] | None = None
reshaped_hidden_states: Tuple[tf.Tensor, ...] | None = None
|
class_definition
| 1,946 | 3,816 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_tf_swin.py
| null | 3,594 |
class TFSwinModelOutput(ModelOutput):
"""
Swin model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`tf.Tensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
Average pooling of the last layer hidden-state.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each stage) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each stage) of shape
`(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: tf.Tensor = None
pooler_output: tf.Tensor | None = None
hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor, ...] | None = None
reshaped_hidden_states: Tuple[tf.Tensor, ...] | None = None
|
class_definition
| 3,830 | 5,945 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_tf_swin.py
| null | 3,595 |
class TFSwinMaskedImageModelingOutput(ModelOutput):
"""
Swin masked image model outputs.
Args:
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `bool_masked_pos` is provided):
Masked image modeling (MLM) loss.
reconstruction (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
Reconstructed pixel values.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each stage) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each stage) of shape
`(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
loss: tf.Tensor | None = None
reconstruction: tf.Tensor = None
hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor, ...] | None = None
reshaped_hidden_states: Tuple[tf.Tensor, ...] | None = None
@property
def logits(self):
warnings.warn(
"logits attribute is deprecated and will be removed in version 5 of Transformers."
" Please use the reconstruction attribute to retrieve the final output instead.",
FutureWarning,
)
return self.reconstruction
|
class_definition
| 5,959 | 8,256 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_tf_swin.py
| null | 3,596 |
class TFSwinImageClassifierOutput(ModelOutput):
"""
Swin outputs for image classification.
Args:
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each stage) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each stage) of shape
`(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
loss: tf.Tensor | None = None
logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor, ...] | None = None
reshaped_hidden_states: Tuple[tf.Tensor, ...] | None = None
|
class_definition
| 8,270 | 10,292 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_tf_swin.py
| null | 3,597 |
class TFSwinEmbeddings(keras.layers.Layer):
"""
Construct the patch and position embeddings. Optionally, also the mask token.
"""
def __init__(self, config: SwinConfig, use_mask_token: bool = False, **kwargs) -> None:
super().__init__(**kwargs)
self.patch_embeddings = TFSwinPatchEmbeddings(config, name="patch_embeddings")
self.num_patches = self.patch_embeddings.num_patches
self.patch_grid = self.patch_embeddings.grid_size
self.embed_dim = config.embed_dim
self.use_mask_token = use_mask_token
self.use_absolute_embeddings = config.use_absolute_embeddings
self.norm = keras.layers.LayerNormalization(name="norm", epsilon=1e-5)
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob, name="dropout")
self.config = config
def build(self, input_shape: tf.TensorShape) -> None:
if self.use_mask_token:
self.mask_token = self.add_weight(shape=(1, 1, self.embed_dim), initializer="zeros", name="mask_token")
else:
self.mask_token = None
if self.use_absolute_embeddings:
self.position_embeddings = self.add_weight(
(1, self.num_patches + 1, self.embed_dim), initializer="zeros", name="positional_embeddings"
)
else:
self.position_embeddings = None
if self.built:
return
self.built = True
if getattr(self, "patch_embeddings", None) is not None:
with tf.name_scope(self.patch_embeddings.name):
self.patch_embeddings.build(None)
if getattr(self, "norm", None) is not None:
with tf.name_scope(self.norm.name):
self.norm.build([None, None, self.config.embed_dim])
if getattr(self, "dropout", None) is not None:
with tf.name_scope(self.dropout.name):
self.dropout.build(None)
def call(
self, pixel_values: tf.Tensor, bool_masked_pos: bool = None, training: bool = False
) -> Tuple[tf.Tensor, Tuple[int, int]]:
embeddings, output_dimensions = self.patch_embeddings(pixel_values, training=training)
embeddings = self.norm(embeddings, training=training)
batch_size, seq_len, _ = shape_list(embeddings)
if bool_masked_pos is not None:
mask_tokens = tf.repeat(self.mask_token, batch_size, 0)
mask_tokens = tf.repeat(mask_tokens, seq_len, 1)
# replace the masked visual tokens by mask_tokens
mask = tf.expand_dims(bool_masked_pos, -1)
mask = tf.cast(mask, mask_tokens.dtype)
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
if self.position_embeddings is not None:
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings, training=training)
return embeddings, output_dimensions
|
class_definition
| 12,147 | 15,071 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_tf_swin.py
| null | 3,598 |
class TFSwinPatchEmbeddings(keras.layers.Layer):
"""
Image to Patch Embedding.
"""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.embed_dim
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
self.projection = keras.layers.Conv2D(
filters=hidden_size,
kernel_size=self.patch_size,
strides=self.patch_size,
padding="valid",
name="projection",
)
def maybe_pad(self, pixel_values: tf.Tensor, height: int, width: int) -> tf.Tensor:
if width % self.patch_size[1] != 0:
pad_values = ((0, 0), (0, 0), (0, 0), (0, self.patch_size[1] - width % self.patch_size[1]))
pixel_values = tf.pad(pixel_values, pad_values)
if height % self.patch_size[0] != 0:
pad_values = ((0, 0), (0, 0), (0, self.patch_size[0] - height % self.patch_size[0]), (0, 0))
pixel_values = tf.pad(pixel_values, pad_values)
return pixel_values
def call(self, pixel_values: tf.Tensor, training: bool = False) -> Tuple[tf.Tensor, Tuple[int, int]]:
_, num_channels, height, width = shape_list(pixel_values)
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
# pad the input to be divisible by self.patch_size, if needed
pixel_values = self.maybe_pad(pixel_values, height, width)
# B,C,H,W -> B,H,W,C
pixel_values = tf.transpose(pixel_values, (0, 2, 3, 1))
embeddings = self.projection(pixel_values, training=training)
# B,H,W,C -> B,C,H,W
embeddings = tf.transpose(embeddings, (0, 3, 1, 2))
batch_size, channels, height, width = shape_list(embeddings)
output_dimensions = (height, width)
embeddings = tf.reshape(embeddings, (batch_size, channels, -1))
embeddings = tf.transpose(embeddings, (0, 2, 1))
return embeddings, output_dimensions
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "projection", None) is not None:
with tf.name_scope(self.projection.name):
self.projection.build([None, None, None, self.num_channels])
|
class_definition
| 15,074 | 18,104 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_tf_swin.py
| null | 3,599 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.