text
stringlengths 31
243k
| type
stringclasses 1
value | start
int64 36
275k
| end
int64 286
280k
| depth
int64 0
1
| filepath
stringlengths 85
188
| parent_class
stringclasses 3
values | class_index
int64 0
10.8k
|
---|---|---|---|---|---|---|---|
class TFSwinPatchMerging(keras.layers.Layer):
"""
Patch Merging Layer.
Args:
input_resolution (`Tuple[int]`):
Resolution of input feature.
dim (`int`):
Number of input channels.
norm_layer (`keras.layer.Layer`, *optional*, defaults to `keras.layers.LayerNormalization`):
Normalization layer class.
"""
def __init__(
self, input_resolution: Tuple[int, int], dim: int, norm_layer: Optional[Callable] = None, **kwargs
) -> None:
super().__init__(**kwargs)
self.input_resolution = input_resolution
self.dim = dim
self.reduction = keras.layers.Dense(2 * dim, use_bias=False, name="reduction")
if norm_layer is None:
# Use same default epsilon as PyTorch
self.norm = keras.layers.LayerNormalization(epsilon=1e-5, name="norm")
else:
self.norm = norm_layer(name="norm")
def maybe_pad(self, input_feature: tf.Tensor, height: int, width: int) -> tf.Tensor:
should_pad = (height % 2 == 1) or (width % 2 == 1)
if should_pad:
pad_values = ((0, 0), (0, height % 2), (0, width % 2), (0, 0))
input_feature = tf.pad(input_feature, pad_values)
return input_feature
def call(self, input_feature: tf.Tensor, input_dimensions: Tuple[int, int], training: bool = False) -> tf.Tensor:
height, width = input_dimensions
# `dim` is height * width
batch_size, _, num_channels = shape_list(input_feature)
input_feature = tf.reshape(input_feature, (batch_size, height, width, num_channels))
# pad input to be disible by width and height, if needed
input_feature = self.maybe_pad(input_feature, height, width)
# [batch_size, height/2, width/2, num_channels]
input_feature_0 = input_feature[:, 0::2, 0::2, :]
# [batch_size, height/2, width/2, num_channels]
input_feature_1 = input_feature[:, 1::2, 0::2, :]
# [batch_size, height/2, width/2, num_channels]
input_feature_2 = input_feature[:, 0::2, 1::2, :]
# [batch_size, height/2, width/2, num_channels]
input_feature_3 = input_feature[:, 1::2, 1::2, :]
# batch_size height/2 width/2 4*num_channels
input_feature = tf.concat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1)
input_feature = tf.reshape(
input_feature, (batch_size, -1, 4 * num_channels)
) # batch_size height/2*width/2 4*C
input_feature = self.norm(input_feature, training=training)
input_feature = self.reduction(input_feature, training=training)
return input_feature
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "reduction", None) is not None:
with tf.name_scope(self.reduction.name):
self.reduction.build([None, None, 4 * self.dim])
if getattr(self, "norm", None) is not None:
with tf.name_scope(self.norm.name):
self.norm.build([None, None, 4 * self.dim])
|
class_definition
| 18,107 | 21,246 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_tf_swin.py
| null | 3,600 |
class TFSwinDropPath(keras.layers.Layer):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: float = None, scale_by_keep: bool = True, **kwargs) -> None:
super(TFSwinDropPath, self).__init__(**kwargs)
self.drop_prob = drop_prob
self.scale_by_keep = scale_by_keep
def call(self, input: tf.Tensor, training: bool = False) -> tf.Tensor:
return drop_path(input, self.drop_prob, training, self.scale_by_keep)
|
class_definition
| 21,249 | 21,772 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_tf_swin.py
| null | 3,601 |
class TFSwinSelfAttention(keras.layers.Layer):
def __init__(self, config: SwinConfig, dim: int, num_heads: int, **kwargs) -> None:
super().__init__(**kwargs)
if dim % num_heads != 0:
raise ValueError(
f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})"
)
self.num_attention_heads = num_heads
self.attention_head_size = int(dim / num_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
window_size = config.window_size
self.window_size = (
window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size)
)
self.query = keras.layers.Dense(
self.all_head_size,
kernel_initializer=get_initializer(config.initializer_range),
use_bias=config.qkv_bias,
name="query",
)
self.key = keras.layers.Dense(
self.all_head_size,
kernel_initializer=get_initializer(config.initializer_range),
use_bias=config.qkv_bias,
name="key",
)
self.value = keras.layers.Dense(
self.all_head_size,
kernel_initializer=get_initializer(config.initializer_range),
use_bias=config.qkv_bias,
name="value",
)
self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob)
def build(self, input_shape: tf.TensorShape) -> None:
self.relative_position_bias_table = self.add_weight(
shape=(((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1)), self.num_attention_heads),
initializer="zeros",
name="relative_position_bias_table",
)
self.relative_position_index = self.add_weight(
shape=(self.window_size[0] ** 2, self.window_size[1] ** 2),
trainable=False,
dtype=tf.int32,
name="relative_position_index",
)
# get pair-wise relative position index for each token inside the window
coords_h = tf.range(self.window_size[0])
coords_w = tf.range(self.window_size[1])
coords = tf.stack(tf.meshgrid(coords_h, coords_w, indexing="ij"))
coords_flatten = tf.reshape(coords, (shape_list(coords)[0], -1))
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
relative_coords = tf.transpose(relative_coords, (1, 2, 0))
stack_0, stack_1 = tf.unstack(relative_coords, axis=2)
stack_0 += self.window_size[0] - 1
stack_0 *= 2 * self.window_size[1] - 1
stack_1 += self.window_size[1] - 1
relative_coords = tf.stack([stack_0, stack_1], axis=2)
self.relative_position_index.assign(tf.cast(tf.reduce_sum(relative_coords, axis=-1), tf.int32))
if self.built:
return
self.built = True
if getattr(self, "query", None) is not None:
with tf.name_scope(self.query.name):
self.query.build([None, None, self.all_head_size])
if getattr(self, "key", None) is not None:
with tf.name_scope(self.key.name):
self.key.build([None, None, self.all_head_size])
if getattr(self, "value", None) is not None:
with tf.name_scope(self.value.name):
self.value.build([None, None, self.all_head_size])
def transpose_for_scores(self, x: tf.Tensor) -> tf.Tensor:
new_x_shape = shape_list(x)[:-1] + [self.num_attention_heads, self.attention_head_size]
x = tf.reshape(x, new_x_shape)
return tf.transpose(x, (0, 2, 1, 3))
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
output_attentions: bool = False,
training: bool = False,
) -> Tuple[tf.Tensor, ...]:
batch_size, dim, _ = shape_list(hidden_states)
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = tf.matmul(query_layer, tf.transpose(key_layer, (0, 1, 3, 2)))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
relative_position_bias = tf.gather(
self.relative_position_bias_table, tf.reshape(self.relative_position_index, (-1,))
)
relative_position_bias = tf.reshape(
relative_position_bias,
(self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1),
)
relative_position_bias = tf.transpose(relative_position_bias, (2, 0, 1))
attention_scores = attention_scores + tf.expand_dims(relative_position_bias, 0)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in SwinModel call() function)
mask_shape = shape_list(attention_mask)[0]
attention_scores = tf.reshape(
attention_scores, (batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim)
)
attention_mask = tf.expand_dims(attention_mask, 1)
attention_mask = tf.expand_dims(attention_mask, 0)
attention_scores = attention_scores + attention_mask
attention_scores = tf.reshape(attention_scores, (-1, self.num_attention_heads, dim, dim))
# Normalize the attention scores to probabilities.
attention_probs = tf.nn.softmax(attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs, training=training)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = tf.matmul(attention_probs, value_layer)
context_layer = tf.transpose(context_layer, (0, 2, 1, 3))
new_context_layer_shape = shape_list(context_layer)[:-2] + [
self.all_head_size,
]
context_layer = tf.reshape(context_layer, new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
|
class_definition
| 21,775 | 28,402 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_tf_swin.py
| null | 3,602 |
class TFSwinSelfOutput(keras.layers.Layer):
def __init__(self, config: SwinConfig, dim: int, **kwargs) -> None:
super().__init__(**kwargs)
self.dense = keras.layers.Dense(dim, name="dense")
self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob, name="dropout")
self.dim = dim
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.dim])
if getattr(self, "dropout", None) is not None:
with tf.name_scope(self.dropout.name):
self.dropout.build(None)
|
class_definition
| 28,405 | 29,407 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_tf_swin.py
| null | 3,603 |
class TFSwinAttention(keras.layers.Layer):
def __init__(self, config: SwinConfig, dim: int, num_heads: int, **kwargs) -> None:
super().__init__(**kwargs)
self.self = TFSwinSelfAttention(config, dim, num_heads, name="self")
self.self_output = TFSwinSelfOutput(config, dim, name="output")
self.pruned_heads = set()
def prune_heads(self, heads):
"""
Prunes heads of the model. See base class PreTrainedModel heads: dict of {layer_num: list of heads to prune in
this layer}
"""
raise NotImplementedError
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
output_attentions: bool = False,
training: bool = False,
) -> tf.Tensor:
self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions, training=training)
attention_output = self.self_output(self_outputs[0], hidden_states, training=training)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self", None) is not None:
with tf.name_scope(self.self.name):
self.self.build(None)
if getattr(self, "self_output", None) is not None:
with tf.name_scope(self.self_output.name):
self.self_output.build(None)
|
class_definition
| 29,410 | 30,968 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_tf_swin.py
| null | 3,604 |
class TFSwinIntermediate(keras.layers.Layer):
def __init__(self, config: SwinConfig, dim: int, **kwargs) -> None:
super().__init__(**kwargs)
self.dense = keras.layers.Dense(int(config.mlp_ratio * dim), name="dense")
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
self.dim = dim
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.dim])
|
class_definition
| 30,971 | 31,882 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_tf_swin.py
| null | 3,605 |
class TFSwinOutput(keras.layers.Layer):
def __init__(self, config: SwinConfig, dim: int, **kwargs) -> None:
super().__init__(**kwargs)
self.dense = keras.layers.Dense(dim, name="dense")
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob, "dropout")
self.config = config
self.dim = dim
def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, int(self.config.mlp_ratio * self.dim)])
|
class_definition
| 31,885 | 32,755 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_tf_swin.py
| null | 3,606 |
class TFSwinLayer(keras.layers.Layer):
def __init__(
self,
config,
dim,
input_resolution: Tuple[int, int],
num_heads: int,
drop_path_rate: float = 0.0,
shift_size: int = 0,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.chunk_size_feed_forward = config.chunk_size_feed_forward
min_res = tf.reduce_min(input_resolution)
self.window_size = min_res if min_res <= config.window_size else config.window_size
self.shift_size = 0 if min_res <= self.window_size else shift_size
self.input_resolution = input_resolution
self.layernorm_before = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_before")
self.attention = TFSwinAttention(config, dim, num_heads, name="attention")
self.drop_path = (
TFSwinDropPath(drop_path_rate, name="drop_path")
if drop_path_rate > 0.0
else keras.layers.Activation("linear", name="drop_path")
)
self.layernorm_after = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_after")
self.intermediate = TFSwinIntermediate(config, dim, name="intermediate")
self.swin_output = TFSwinOutput(config, dim, name="output")
self.dim = dim
def get_attn_mask(self, height: int, width: int, window_size: int, shift_size: int) -> tf.Tensor | None:
img_mask = tf.zeros((height, width))
height_slices = ((0, -window_size), (-window_size, -shift_size), (-shift_size, -1))
width_slices = ((0, -window_size), (-window_size, -shift_size), (-shift_size, -1))
# calculate attention mask for SW-MSA
if shift_size > 0:
count = 0
for height_slice in height_slices:
for width_slice in width_slices:
height_inds = tf.range(height_slice[0] % height, height_slice[1] % height + 1)
width_inds = tf.range(width_slice[0] % width, width_slice[1] % width + 1)
indices = tf.reshape(tf.stack(tf.meshgrid(height_inds, width_inds), axis=-1), (-1, 2))
if len(indices) >= 1:
updates = tf.ones((len(indices),), dtype=img_mask.dtype) * count
img_mask = tf.tensor_scatter_nd_update(img_mask, indices, updates)
count += 1
img_mask = tf.expand_dims(img_mask, -1)
img_mask = tf.expand_dims(img_mask, 0)
mask_windows = window_partition(img_mask, window_size)
mask_windows = tf.reshape(mask_windows, (-1, window_size * window_size))
attn_mask = tf.expand_dims(mask_windows, 1) - tf.expand_dims(mask_windows, 2)
attn_mask = tf.where(attn_mask != 0, float(-100.0), attn_mask)
attn_mask = tf.where(attn_mask == 0, float(0.0), attn_mask)
return attn_mask
def maybe_pad(
self, hidden_states: tf.Tensor, window_size: int, height: int, width: int
) -> Tuple[tf.Tensor, tf.Tensor]:
pad_right = (window_size - width % window_size) % window_size
pad_bottom = (window_size - height % window_size) % window_size
pad_values = [[0, 0], [0, pad_bottom], [0, pad_right], [0, 0]]
hidden_states = tf.pad(hidden_states, pad_values)
pad_values = tf.reshape(pad_values, (-1,))
return hidden_states, pad_values
def call(
self,
hidden_states: tf.Tensor,
input_dimensions: Tuple[int, int],
head_mask: tf.Tensor | None = None,
output_attentions: bool = False,
training: bool = False,
) -> tf.Tensor:
# if window size is larger than input resolution, we don't partition windows
min_res = tf.reduce_min(input_dimensions)
shift_size = 0 if min_res <= self.window_size else self.shift_size
window_size = min_res if min_res <= self.window_size else self.window_size
height, width = input_dimensions
batch_size, _, channels = shape_list(hidden_states)
shortcut = hidden_states
hidden_states = self.layernorm_before(hidden_states, training=training)
hidden_states = tf.reshape(hidden_states, (batch_size, height, width, channels))
# pad hidden_states to multiples of window size
hidden_states, pad_values = self.maybe_pad(hidden_states, window_size, height, width)
_, height_pad, width_pad, _ = shape_list(hidden_states)
# cyclic shift
if shift_size > 0:
shifted_hidden_states = tf.roll(hidden_states, shift=(-shift_size, -shift_size), axis=(1, 2))
else:
shifted_hidden_states = hidden_states
# partition windows
hidden_states_windows = window_partition(shifted_hidden_states, window_size)
hidden_states_windows = tf.reshape(hidden_states_windows, (-1, window_size * window_size, channels))
attn_mask = self.get_attn_mask(
height=height_pad, width=width_pad, window_size=window_size, shift_size=shift_size
)
attention_outputs = self.attention(
hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions, training=training
)
attention_output = attention_outputs[0]
attention_windows = tf.reshape(attention_output, (-1, window_size, window_size, channels))
shifted_windows = window_reverse(attention_windows, window_size, height_pad, width_pad)
# reverse cyclic shift
if shift_size > 0:
attention_windows = tf.roll(shifted_windows, shift=(shift_size, shift_size), axis=(1, 2))
else:
attention_windows = shifted_windows
was_padded = pad_values[3] > 0 or pad_values[5] > 0
if was_padded:
attention_windows = attention_windows[:, :height, :width, :]
attention_windows = tf.reshape(attention_windows, (batch_size, height * width, channels))
hidden_states = shortcut + self.drop_path(attention_windows, training=training)
layer_output = self.layernorm_after(hidden_states, training=training)
layer_output = self.intermediate(layer_output)
layer_output = hidden_states + self.swin_output(layer_output, training=training)
layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,)
return layer_outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layernorm_before", None) is not None:
with tf.name_scope(self.layernorm_before.name):
self.layernorm_before.build([None, None, self.dim])
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "drop_path", None) is not None:
with tf.name_scope(self.drop_path.name):
self.drop_path.build(None)
if getattr(self, "layernorm_after", None) is not None:
with tf.name_scope(self.layernorm_after.name):
self.layernorm_after.build([None, None, self.dim])
if getattr(self, "intermediate", None) is not None:
with tf.name_scope(self.intermediate.name):
self.intermediate.build(None)
if getattr(self, "swin_output", None) is not None:
with tf.name_scope(self.swin_output.name):
self.swin_output.build(None)
|
class_definition
| 32,758 | 40,264 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_tf_swin.py
| null | 3,607 |
class TFSwinStage(keras.layers.Layer):
def __init__(
self,
config: SwinConfig,
dim: int,
input_resolution: Tuple[int, int],
depth: int,
num_heads: int,
drop_path: List[float],
downsample: Optional[Callable],
**kwargs,
) -> None:
super().__init__(**kwargs)
self.config = config
self.dim = dim
self.blocks = [
TFSwinLayer(
config=config,
dim=dim,
input_resolution=input_resolution,
num_heads=num_heads,
shift_size=0 if (i % 2 == 0) else config.window_size // 2,
drop_path_rate=drop_path[i],
name=f"blocks.{i}",
)
for i in range(depth)
]
# patch merging layer
if downsample is not None:
self.downsample = downsample(
input_resolution,
dim=dim,
norm_layer=partial(keras.layers.LayerNormalization, epsilon=1e-5),
name="downsample",
)
else:
self.downsample = None
self.pointing = False
def call(
self,
hidden_states: tf.Tensor,
input_dimensions: Tuple[int, int],
head_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = False,
training: bool = False,
) -> Tuple[tf.Tensor, ...]:
height, width = input_dimensions
for i, layer_module in enumerate(self.blocks):
layer_head_mask = head_mask[i] if head_mask is not None else None
layer_outputs = layer_module(
hidden_states, input_dimensions, layer_head_mask, output_attentions, training=training
)
hidden_states = layer_outputs[0]
if self.downsample is not None:
height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2
output_dimensions = (height, width, height_downsampled, width_downsampled)
hidden_states = self.downsample(layer_outputs[0], input_dimensions, training=training)
else:
output_dimensions = (height, width, height, width)
stage_outputs = (hidden_states, output_dimensions)
if output_attentions:
stage_outputs += layer_outputs[1:]
return stage_outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "downsample", None) is not None:
with tf.name_scope(self.downsample.name):
self.downsample.build(None)
if getattr(self, "blocks", None) is not None:
for layer in self.blocks:
with tf.name_scope(layer.name):
layer.build(None)
|
class_definition
| 40,267 | 43,094 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_tf_swin.py
| null | 3,608 |
class TFSwinEncoder(keras.layers.Layer):
def __init__(self, config: SwinConfig, grid_size: Tuple[int, int], **kwargs):
super().__init__(**kwargs)
self.num_layers = len(config.depths)
self.config = config
dpr = list((tf.linspace(0, 1, sum(config.depths)) * config.drop_path_rate).numpy())
self.layers = [
TFSwinStage(
config=config,
dim=int(config.embed_dim * 2**i_layer),
input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)),
depth=config.depths[i_layer],
num_heads=config.num_heads[i_layer],
drop_path=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])],
downsample=TFSwinPatchMerging if (i_layer < self.num_layers - 1) else None,
name=f"layers.{i_layer}",
)
for i_layer in range(self.num_layers)
]
self.gradient_checkpointing = False
def call(
self,
hidden_states: tf.Tensor,
input_dimensions: Tuple[int, int],
head_mask: tf.Tensor | None = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
training: bool = False,
) -> Union[Tuple[tf.Tensor, ...], TFSwinEncoderOutput]:
all_input_dimensions = ()
all_hidden_states = () if output_hidden_states else None
all_reshaped_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if output_hidden_states:
batch_size, _, hidden_size = shape_list(hidden_states)
# rearrange b (h w) c -> b c h w
reshaped_hidden_state = tf.reshape(hidden_states, (batch_size, *input_dimensions, hidden_size))
reshaped_hidden_state = tf.transpose(reshaped_hidden_state, (0, 3, 1, 2))
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
for i, layer_module in enumerate(self.layers):
layer_head_mask = head_mask[i] if head_mask is not None else None
layer_outputs = layer_module(
hidden_states, input_dimensions, layer_head_mask, output_attentions, training=training
)
hidden_states = layer_outputs[0]
output_dimensions = layer_outputs[1]
input_dimensions = (output_dimensions[-2], output_dimensions[-1])
all_input_dimensions += (input_dimensions,)
if output_hidden_states:
batch_size, _, hidden_size = shape_list(hidden_states)
# rearrange b (h w) c -> b c h w
reshaped_hidden_state = tf.reshape(hidden_states, (batch_size, *input_dimensions, hidden_size))
reshaped_hidden_state = tf.transpose(reshaped_hidden_state, (0, 3, 1, 2))
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
if output_attentions:
all_self_attentions += layer_outputs[2:]
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return TFSwinEncoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
reshaped_hidden_states=all_reshaped_hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
|
class_definition
| 43,097 | 46,925 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_tf_swin.py
| null | 3,609 |
class TFSwinPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = SwinConfig
base_model_prefix = "swin"
main_input_name = "pixel_values"
|
class_definition
| 46,928 | 47,219 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_tf_swin.py
| null | 3,610 |
class AdaptiveAveragePooling1D(keras.layers.Layer):
"""
Args:
Average 1D Pooling with adaptive kernel size.
output_size: An integer or tuple/list of a single integer, specifying pooled_features.
The new size of output channels.
data_format: A string,
one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape `(batch, steps, channels)` while `channels_first` corresponds
to inputs with shape `(batch, channels, steps)`.
Input shape:
- If `data_format='channels_last'`: 3D tensor with shape `(batch, steps, channels)`.
- If `data_format='channels_first'`: 3D tensor with shape `(batch, channels, steps)`.
Output shape:
- If `data_format='channels_last'`: 3D tensor with shape `(batch_size, pooled_steps, channels)`.
- If `data_format='channels_first'`: 3D tensor with shape `(batch_size, channels, pooled_steps)`.
Adapted from [tensorflow-addon's adaptive pooling.py](
https://github.com/tensorflow/addons/blob/8cec33fcaaf1cf90aec7bdd55a0fcdbb251ce5c2/tensorflow_addons/layers/adaptive_pooling.py#L90-L120
)
"""
def __init__(
self,
output_size: Union[int, Iterable[int]],
reduce_function: Callable = tf.reduce_mean,
data_format: Optional[str] = None,
**kwargs,
) -> None:
self.data_format = normalize_data_format(data_format)
self.reduce_function = reduce_function
self.output_size = (output_size,) if isinstance(output_size, int) else tuple(output_size)
super().__init__(**kwargs)
def call(self, inputs: tf.Tensor, *args) -> None:
bins = self.output_size[0]
if self.data_format == "channels_last":
splits = tf.split(inputs, bins, axis=1)
splits = tf.stack(splits, axis=1)
out_vect = self.reduce_function(splits, axis=2)
else:
splits = tf.split(inputs, bins, axis=2)
splits = tf.stack(splits, axis=2)
out_vect = self.reduce_function(splits, axis=3)
return out_vect
def compute_output_shape(self, input_shape: Iterable[int]) -> tf.TensorShape:
input_shape = tf.TensorShape(input_shape).as_list()
if self.data_format == "channels_last":
shape = tf.TensorShape([input_shape[0], self.output_size[0], input_shape[2]])
else:
shape = tf.TensorShape([input_shape[0], input_shape[1], self.output_size[0]])
return shape
def get_config(self) -> Dict[str, Any]:
config = {
"output_size": self.output_size,
"data_format": self.data_format,
}
base_config = super().get_config()
return {**base_config, **config}
|
class_definition
| 49,540 | 52,347 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_tf_swin.py
| null | 3,611 |
class TFSwinMainLayer(keras.layers.Layer):
config_class = SwinConfig
def __init__(
self, config: SwinConfig, add_pooling_layer: bool = True, use_mask_token: bool = False, **kwargs
) -> None:
super().__init__(**kwargs)
self.config = config
self.num_layers = len(config.depths)
self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1))
self.embeddings = TFSwinEmbeddings(config, use_mask_token=use_mask_token, name="embeddings")
self.encoder = TFSwinEncoder(config, self.embeddings.patch_grid, name="encoder")
self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
self.pooler = AdaptiveAveragePooling1D(output_size=(1,)) if add_pooling_layer else None
def get_input_embeddings(self) -> TFSwinPatchEmbeddings:
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune: Dict[int, List]):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def get_head_mask(self, head_mask: Optional[Any]) -> List:
if head_mask is not None:
raise NotImplementedError
return [None] * len(self.config.depths)
@unpack_inputs
def call(
self,
pixel_values: tf.Tensor | None = None,
bool_masked_pos: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFSwinModelOutput, Tuple[tf.Tensor, ...]]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask)
embedding_output, input_dimensions = self.embeddings(
pixel_values, bool_masked_pos=bool_masked_pos, training=training
)
encoder_outputs = self.encoder(
embedding_output,
input_dimensions,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output, training=training)
pooled_output = None
if self.pooler is not None:
batch_size, _, num_features = shape_list(sequence_output)
pooled_output = self.pooler(sequence_output)
pooled_output = tf.reshape(pooled_output, (batch_size, num_features))
if not return_dict:
output = (sequence_output, pooled_output) + encoder_outputs[1:]
return output
return TFSwinModelOutput(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
reshaped_hidden_states=encoder_outputs.reshaped_hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "layernorm", None) is not None:
with tf.name_scope(self.layernorm.name):
self.layernorm.build([None, None, self.num_features])
|
class_definition
| 52,370 | 56,989 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_tf_swin.py
| null | 3,612 |
class TFSwinModel(TFSwinPreTrainedModel):
def __init__(
self, config: SwinConfig, add_pooling_layer: bool = True, use_mask_token: bool = False, **kwargs
) -> None:
super().__init__(config, **kwargs)
self.config = config
self.swin = TFSwinMainLayer(config, name="swin")
@add_start_docstrings_to_model_forward(SWIN_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFSwinModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
@unpack_inputs
def call(
self,
pixel_values: tf.Tensor | None = None,
bool_masked_pos: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFSwinModelOutput, Tuple[tf.Tensor, ...]]:
r"""
bool_masked_pos (`tf.Tensor` of shape `(batch_size, num_patches)`, *optional*):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
swin_outputs = self.swin(
pixel_values=pixel_values,
bool_masked_pos=bool_masked_pos,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return swin_outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "swin", None) is not None:
with tf.name_scope(self.swin.name):
self.swin.build(None)
|
class_definition
| 57,145 | 59,454 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_tf_swin.py
| null | 3,613 |
class TFSwinPixelShuffle(keras.layers.Layer):
"""TF layer implementation of torch.nn.PixelShuffle"""
def __init__(self, upscale_factor: int, **kwargs) -> None:
super().__init__(**kwargs)
if not isinstance(upscale_factor, int) or upscale_factor < 2:
raise ValueError(f"upscale_factor must be an integer value >= 2 got {upscale_factor}")
self.upscale_factor = upscale_factor
def call(self, x: tf.Tensor) -> tf.Tensor:
hidden_states = x
batch_size, _, _, num_input_channels = shape_list(hidden_states)
block_size_squared = self.upscale_factor**2
output_depth = int(num_input_channels / block_size_squared)
# When the number of output channels >= 2, PyTorch's PixelShuffle and
# TF's depth_to_space differ in their output as the order of channels selected for combining
# is a permutation of the other c.f.
# https://stackoverflow.com/questions/68272502/tf-depth-to-space-not-same-as-torchs-pixelshuffle-when-output-channels-1
permutation = tf.constant(
[[i + j * block_size_squared for i in range(block_size_squared) for j in range(output_depth)]]
)
hidden_states = tf.gather(params=hidden_states, indices=tf.tile(permutation, [batch_size, 1]), batch_dims=-1)
hidden_states = tf.nn.depth_to_space(hidden_states, block_size=self.upscale_factor, data_format="NHWC")
return hidden_states
|
class_definition
| 59,457 | 60,904 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_tf_swin.py
| null | 3,614 |
class TFSwinDecoder(keras.layers.Layer):
def __init__(self, config: SwinConfig, **kwargs):
super().__init__(**kwargs)
self.conv2d = keras.layers.Conv2D(
filters=config.encoder_stride**2 * config.num_channels, kernel_size=1, strides=1, name="0"
)
self.pixel_shuffle = TFSwinPixelShuffle(config.encoder_stride, name="1")
self.config = config
def call(self, x: tf.Tensor) -> tf.Tensor:
hidden_states = x
# B,C,H,W -> B,H,W,C
hidden_states = tf.transpose(hidden_states, (0, 2, 3, 1))
hidden_states = self.conv2d(hidden_states)
hidden_states = self.pixel_shuffle(hidden_states)
# B,H,W,C -> B,C,H,W
hidden_states = tf.transpose(hidden_states, (0, 3, 1, 2))
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "conv2d", None) is not None:
with tf.name_scope(self.conv2d.name):
self.conv2d.build([None, None, None, self.config.hidden_size])
if getattr(self, "pixel_shuffle", None) is not None:
with tf.name_scope(self.pixel_shuffle.name):
self.pixel_shuffle.build(None)
|
class_definition
| 60,907 | 62,160 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_tf_swin.py
| null | 3,615 |
class TFSwinForMaskedImageModeling(TFSwinPreTrainedModel):
def __init__(self, config: SwinConfig):
super().__init__(config)
self.swin = TFSwinMainLayer(config, add_pooling_layer=False, use_mask_token=True, name="swin")
self.decoder = TFSwinDecoder(config, name="decoder")
@add_start_docstrings_to_model_forward(SWIN_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFSwinMaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC)
@unpack_inputs
def call(
self,
pixel_values: tf.Tensor | None = None,
bool_masked_pos: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[Tuple, TFSwinMaskedImageModelingOutput]:
r"""
bool_masked_pos (`tf.Tensor` of shape `(batch_size, num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, TFSwinForMaskedImageModeling
>>> import tensorflow as tf
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
>>> model = TFSwinForMaskedImageModeling.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
>>> pixel_values = image_processor(images=image, return_tensors="tf").pixel_values
>>> # create random boolean mask of shape (batch_size, num_patches)
>>> bool_masked_pos = tf.random.uniform((1, num_patches)) >= 0.5
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
>>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction
>>> list(reconstructed_pixel_values.shape)
[1, 3, 224, 224]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.swin(
pixel_values,
bool_masked_pos=bool_masked_pos,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
# Reshape to (batch_size, num_channels, height, width)
sequence_output = tf.transpose(sequence_output, (0, 2, 1))
batch_size, num_channels, sequence_length = shape_list(sequence_output)
height = width = int(sequence_length**0.5)
sequence_output = tf.reshape(sequence_output, (batch_size, num_channels, height, width))
# Reconstruct pixel values
reconstructed_pixel_values = self.decoder(sequence_output)
masked_im_loss = None
if bool_masked_pos is not None:
size = self.config.image_size // self.config.patch_size
bool_masked_pos = tf.reshape(bool_masked_pos, (-1, size, size))
mask = tf.repeat(bool_masked_pos, self.config.patch_size, 1)
mask = tf.repeat(mask, self.config.patch_size, 2)
mask = tf.expand_dims(mask, 1)
mask = tf.cast(mask, tf.float32)
reconstruction_loss = keras.losses.mean_absolute_error(
# Swap axes as metric calculation reduces over the final dimension
tf.transpose(pixel_values, (1, 2, 3, 0)),
tf.transpose(reconstructed_pixel_values, (1, 2, 3, 0)),
)
reconstruction_loss = tf.expand_dims(reconstruction_loss, 0)
total_loss = tf.reduce_sum(reconstruction_loss * mask)
num_masked_pixels = (tf.reduce_sum(mask) + 1e-5) * self.config.num_channels
masked_im_loss = total_loss / num_masked_pixels
masked_im_loss = tf.reshape(masked_im_loss, (1,))
if not return_dict:
output = (reconstructed_pixel_values,) + outputs[2:]
return ((masked_im_loss,) + output) if masked_im_loss is not None else output
return TFSwinMaskedImageModelingOutput(
loss=masked_im_loss,
reconstruction=reconstructed_pixel_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
reshaped_hidden_states=outputs.reshaped_hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "swin", None) is not None:
with tf.name_scope(self.swin.name):
self.swin.build(None)
if getattr(self, "decoder", None) is not None:
with tf.name_scope(self.decoder.name):
self.decoder.build(None)
|
class_definition
| 62,347 | 67,481 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_tf_swin.py
| null | 3,616 |
class TFSwinForImageClassification(TFSwinPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: SwinConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.swin = TFSwinMainLayer(config, name="swin")
# Classifier head
self.classifier = (
keras.layers.Dense(config.num_labels, name="classifier")
if config.num_labels > 0
else keras.layers.Activation("linear", name="classifier")
)
@add_start_docstrings_to_model_forward(SWIN_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=TFSwinImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
@unpack_inputs
def call(
self,
pixel_values: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
labels: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor, ...], TFSwinImageClassifierOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.swin(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = outputs[1]
logits = self.classifier(pooled_output, training=training)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSwinImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
reshaped_hidden_states=outputs.reshaped_hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "swin", None) is not None:
with tf.name_scope(self.swin.name):
self.swin.build(None)
if getattr(self, "classifier", None) is not None:
if hasattr(self.classifier, "name"):
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.swin.num_features])
|
class_definition
| 67,712 | 70,789 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/swin/modeling_tf_swin.py
| null | 3,617 |
class MobileNetV1FeatureExtractor(MobileNetV1ImageProcessor):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
"The class MobileNetV1FeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use MobileNetV1ImageProcessor instead.",
FutureWarning,
)
super().__init__(*args, **kwargs)
|
class_definition
| 831 | 1,221 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilenet_v1/feature_extraction_mobilenet_v1.py
| null | 3,618 |
class MobileNetV1ImageProcessor(BaseImageProcessor):
r"""
Constructs a MobileNetV1 image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 256}`):
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the
`preprocess` method.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`.
Can be overridden by the `crop_size` parameter in the `preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize:
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 256}
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
# Copied from transformers.models.clip.image_processing_clip.CLIPImageProcessor.resize
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
resized to keep the input aspect ratio.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
default_to_square = True
if "shortest_edge" in size:
size = size["shortest_edge"]
default_to_square = False
elif "height" in size and "width" in size:
size = (size["height"], size["width"])
else:
raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.")
output_size = get_resize_output_image_size(
image,
size=size,
default_to_square=default_to_square,
input_data_format=input_data_format,
)
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio.
resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
`PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use if `do_normalize` is set to `True`.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False)
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size)
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_resize=do_resize,
size=size,
resample=resample,
)
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
all_images = []
for image in images:
if do_resize:
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
if do_center_crop:
image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(
image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
)
all_images.append(image)
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
for image in all_images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
|
class_definition
| 1,360 | 15,237 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilenet_v1/image_processing_mobilenet_v1.py
| null | 3,619 |
class MobileNetV1ConvLayer(nn.Module):
def __init__(
self,
config: MobileNetV1Config,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: Optional[int] = 1,
groups: Optional[int] = 1,
bias: bool = False,
use_normalization: Optional[bool] = True,
use_activation: Optional[bool or str] = True,
) -> None:
super().__init__()
self.config = config
if in_channels % groups != 0:
raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.")
if out_channels % groups != 0:
raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.")
padding = 0 if config.tf_padding else int((kernel_size - 1) / 2)
self.convolution = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
bias=bias,
padding_mode="zeros",
)
if use_normalization:
self.normalization = nn.BatchNorm2d(
num_features=out_channels,
eps=config.layer_norm_eps,
momentum=0.9997,
affine=True,
track_running_stats=True,
)
else:
self.normalization = None
if use_activation:
if isinstance(use_activation, str):
self.activation = ACT2FN[use_activation]
elif isinstance(config.hidden_act, str):
self.activation = ACT2FN[config.hidden_act]
else:
self.activation = config.hidden_act
else:
self.activation = None
def forward(self, features: torch.Tensor) -> torch.Tensor:
if self.config.tf_padding:
features = apply_tf_padding(features, self.convolution)
features = self.convolution(features)
if self.normalization is not None:
features = self.normalization(features)
if self.activation is not None:
features = self.activation(features)
return features
|
class_definition
| 6,894 | 9,133 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilenet_v1/modeling_mobilenet_v1.py
| null | 3,620 |
class MobileNetV1PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MobileNetV1Config
load_tf_weights = load_tf_weights_in_mobilenet_v1
base_model_prefix = "mobilenet_v1"
main_input_name = "pixel_values"
supports_gradient_checkpointing = False
_no_split_modules = []
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d]) -> None:
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.BatchNorm2d):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
|
class_definition
| 9,136 | 10,030 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilenet_v1/modeling_mobilenet_v1.py
| null | 3,621 |
class MobileNetV1Model(MobileNetV1PreTrainedModel):
def __init__(self, config: MobileNetV1Config, add_pooling_layer: bool = True):
super().__init__(config)
self.config = config
depth = 32
out_channels = max(int(depth * config.depth_multiplier), config.min_depth)
self.conv_stem = MobileNetV1ConvLayer(
config,
in_channels=config.num_channels,
out_channels=out_channels,
kernel_size=3,
stride=2,
)
strides = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1]
self.layer = nn.ModuleList()
for i in range(13):
in_channels = out_channels
if strides[i] == 2 or i == 0:
depth *= 2
out_channels = max(int(depth * config.depth_multiplier), config.min_depth)
self.layer.append(
MobileNetV1ConvLayer(
config,
in_channels=in_channels,
out_channels=in_channels,
kernel_size=3,
stride=strides[i],
groups=in_channels,
)
)
self.layer.append(
MobileNetV1ConvLayer(
config,
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
)
)
self.pooler = nn.AdaptiveAvgPool2d((1, 1)) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def _prune_heads(self, heads_to_prune):
raise NotImplementedError
@add_start_docstrings_to_model_forward(MOBILENET_V1_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.conv_stem(pixel_values)
all_hidden_states = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer):
hidden_states = layer_module(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
last_hidden_state = hidden_states
if self.pooler is not None:
pooled_output = torch.flatten(self.pooler(last_hidden_state), start_dim=1)
else:
pooled_output = None
if not return_dict:
return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None)
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=all_hidden_states,
)
|
class_definition
| 11,444 | 14,929 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilenet_v1/modeling_mobilenet_v1.py
| null | 3,622 |
class MobileNetV1ForImageClassification(MobileNetV1PreTrainedModel):
def __init__(self, config: MobileNetV1Config) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.mobilenet_v1 = MobileNetV1Model(config)
last_hidden_size = self.mobilenet_v1.layer[-1].convolution.out_channels
# Classifier head
self.dropout = nn.Dropout(config.classifier_dropout_prob, inplace=True)
self.classifier = nn.Linear(last_hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MOBILENET_V1_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mobilenet_v1(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(self.dropout(pooled_output))
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
)
|
class_definition
| 15,142 | 18,593 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilenet_v1/modeling_mobilenet_v1.py
| null | 3,623 |
class MobileNetV1Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MobileNetV1Model`]. It is used to instantiate a
MobileNetV1 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the MobileNetV1
[google/mobilenet_v1_1.0_224](https://huggingface.co/google/mobilenet_v1_1.0_224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
depth_multiplier (`float`, *optional*, defaults to 1.0):
Shrinks or expands the number of channels in each layer. Default is 1.0, which starts the network with 32
channels. This is sometimes also called "alpha" or "width multiplier".
min_depth (`int`, *optional*, defaults to 8):
All layers will have at least this many channels.
hidden_act (`str` or `function`, *optional*, defaults to `"relu6"`):
The non-linear activation function (function or string) in the Transformer encoder and convolution layers.
tf_padding (`bool`, *optional*, defaults to `True`):
Whether to use TensorFlow padding rules on the convolution layers.
classifier_dropout_prob (`float`, *optional*, defaults to 0.999):
The dropout ratio for attached classifiers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 0.001):
The epsilon used by the layer normalization layers.
Example:
```python
>>> from transformers import MobileNetV1Config, MobileNetV1Model
>>> # Initializing a "mobilenet_v1_1.0_224" style configuration
>>> configuration = MobileNetV1Config()
>>> # Initializing a model from the "mobilenet_v1_1.0_224" style configuration
>>> model = MobileNetV1Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mobilenet_v1"
def __init__(
self,
num_channels=3,
image_size=224,
depth_multiplier=1.0,
min_depth=8,
hidden_act="relu6",
tf_padding=True,
classifier_dropout_prob=0.999,
initializer_range=0.02,
layer_norm_eps=0.001,
**kwargs,
):
super().__init__(**kwargs)
if depth_multiplier <= 0:
raise ValueError("depth_multiplier must be greater than zero.")
self.num_channels = num_channels
self.image_size = image_size
self.depth_multiplier = depth_multiplier
self.min_depth = min_depth
self.hidden_act = hidden_act
self.tf_padding = tf_padding
self.classifier_dropout_prob = classifier_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
|
class_definition
| 914 | 4,263 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilenet_v1/configuration_mobilenet_v1.py
| null | 3,624 |
class MobileNetV1OnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict([("pixel_values", {0: "batch"})])
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})])
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})])
@property
def atol_for_validation(self) -> float:
return 1e-4
|
class_definition
| 4,266 | 4,870 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilenet_v1/configuration_mobilenet_v1.py
| null | 3,625 |
class TFConvNextDropPath(keras.layers.Layer):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
References:
(1) github.com:rwightman/pytorch-image-models
"""
def __init__(self, drop_path: float, **kwargs):
super().__init__(**kwargs)
self.drop_path = drop_path
def call(self, x: tf.Tensor, training=None):
if training:
keep_prob = 1 - self.drop_path
shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1)
random_tensor = keep_prob + tf.random.uniform(shape, 0, 1)
random_tensor = tf.floor(random_tensor)
return (x / keep_prob) * random_tensor
return x
|
class_definition
| 1,492 | 2,209 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnext/modeling_tf_convnext.py
| null | 3,626 |
class TFConvNextEmbeddings(keras.layers.Layer):
"""This class is comparable to (and inspired by) the SwinEmbeddings class
found in src/transformers/models/swin/modeling_swin.py.
"""
def __init__(self, config: ConvNextConfig, **kwargs):
super().__init__(**kwargs)
self.patch_embeddings = keras.layers.Conv2D(
filters=config.hidden_sizes[0],
kernel_size=config.patch_size,
strides=config.patch_size,
name="patch_embeddings",
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer=keras.initializers.Zeros(),
)
self.layernorm = keras.layers.LayerNormalization(epsilon=1e-6, name="layernorm")
self.num_channels = config.num_channels
self.config = config
def call(self, pixel_values):
if isinstance(pixel_values, dict):
pixel_values = pixel_values["pixel_values"]
tf.debugging.assert_equal(
shape_list(pixel_values)[1],
self.num_channels,
message="Make sure that the channel dimension of the pixel values match with the one set in the configuration.",
)
# When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels)
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
embeddings = self.patch_embeddings(pixel_values)
embeddings = self.layernorm(embeddings)
return embeddings
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "patch_embeddings", None) is not None:
with tf.name_scope(self.patch_embeddings.name):
self.patch_embeddings.build([None, None, None, self.config.num_channels])
if getattr(self, "layernorm", None) is not None:
with tf.name_scope(self.layernorm.name):
self.layernorm.build([None, None, None, self.config.hidden_sizes[0]])
|
class_definition
| 2,212 | 4,328 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnext/modeling_tf_convnext.py
| null | 3,627 |
class TFConvNextLayer(keras.layers.Layer):
"""This corresponds to the `Block` class in the original implementation.
There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C,
H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back
The authors used (2) as they find it slightly faster in PyTorch. Since we already permuted the inputs to follow
NHWC ordering, we can just apply the operations straight-away without the permutation.
Args:
config ([`ConvNextConfig`]): Model configuration class.
dim (`int`): Number of input channels.
drop_path (`float`): Stochastic depth rate. Default: 0.0.
"""
def __init__(self, config, dim, drop_path=0.0, **kwargs):
super().__init__(**kwargs)
self.dim = dim
self.config = config
self.dwconv = keras.layers.Conv2D(
filters=dim,
kernel_size=7,
padding="same",
groups=dim,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer="zeros",
name="dwconv",
) # depthwise conv
self.layernorm = keras.layers.LayerNormalization(
epsilon=1e-6,
name="layernorm",
)
self.pwconv1 = keras.layers.Dense(
units=4 * dim,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer="zeros",
name="pwconv1",
) # pointwise/1x1 convs, implemented with linear layers
self.act = get_tf_activation(config.hidden_act)
self.pwconv2 = keras.layers.Dense(
units=dim,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer="zeros",
name="pwconv2",
)
# Using `layers.Activation` instead of `tf.identity` to better control `training`
# behaviour.
self.drop_path = (
TFConvNextDropPath(drop_path, name="drop_path")
if drop_path > 0.0
else keras.layers.Activation("linear", name="drop_path")
)
def build(self, input_shape: tf.TensorShape = None):
# PT's `nn.Parameters` must be mapped to a TF layer weight to inherit the same name hierarchy (and vice-versa)
self.layer_scale_parameter = (
self.add_weight(
shape=(self.dim,),
initializer=keras.initializers.Constant(value=self.config.layer_scale_init_value),
trainable=True,
name="layer_scale_parameter",
)
if self.config.layer_scale_init_value > 0
else None
)
if self.built:
return
self.built = True
if getattr(self, "dwconv", None) is not None:
with tf.name_scope(self.dwconv.name):
self.dwconv.build([None, None, None, self.dim])
if getattr(self, "layernorm", None) is not None:
with tf.name_scope(self.layernorm.name):
self.layernorm.build([None, None, None, self.dim])
if getattr(self, "pwconv1", None) is not None:
with tf.name_scope(self.pwconv1.name):
self.pwconv1.build([None, None, self.dim])
if getattr(self, "pwconv2", None) is not None:
with tf.name_scope(self.pwconv2.name):
self.pwconv2.build([None, None, 4 * self.dim])
if getattr(self, "drop_path", None) is not None:
with tf.name_scope(self.drop_path.name):
self.drop_path.build(None)
def call(self, hidden_states, training=False):
input = hidden_states
x = self.dwconv(hidden_states)
x = self.layernorm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.layer_scale_parameter is not None:
x = self.layer_scale_parameter * x
x = input + self.drop_path(x, training=training)
return x
|
class_definition
| 4,331 | 8,391 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnext/modeling_tf_convnext.py
| null | 3,628 |
class TFConvNextStage(keras.layers.Layer):
"""ConvNext stage, consisting of an optional downsampling layer + multiple residual blocks.
Args:
config (`ConvNextV2Config`):
Model configuration class.
in_channels (`int`):
Number of input channels.
out_channels (`int`):
Number of output channels.
depth (`int`):
Number of residual blocks.
drop_path_rates(`List[float]`):
Stochastic depth rates for each layer.
"""
def __init__(
self,
config: ConvNextConfig,
in_channels: int,
out_channels: int,
kernel_size: int = 2,
stride: int = 2,
depth: int = 2,
drop_path_rates: Optional[List[float]] = None,
**kwargs,
):
super().__init__(**kwargs)
if in_channels != out_channels or stride > 1:
self.downsampling_layer = [
keras.layers.LayerNormalization(
epsilon=1e-6,
name="downsampling_layer.0",
),
# Inputs to this layer will follow NHWC format since we
# transposed the inputs from NCHW to NHWC in the `TFConvNextEmbeddings`
# layer. All the outputs throughout the model will be in NHWC
# from this point on until the output where we again change to
# NCHW.
keras.layers.Conv2D(
filters=out_channels,
kernel_size=kernel_size,
strides=stride,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer=keras.initializers.Zeros(),
name="downsampling_layer.1",
),
]
else:
self.downsampling_layer = [tf.identity]
drop_path_rates = drop_path_rates or [0.0] * depth
self.layers = [
TFConvNextLayer(
config,
dim=out_channels,
drop_path=drop_path_rates[j],
name=f"layers.{j}",
)
for j in range(depth)
]
self.in_channels = in_channels
self.out_channels = out_channels
self.stride = stride
def call(self, hidden_states):
for layer in self.downsampling_layer:
hidden_states = layer(hidden_states)
for layer in self.layers:
hidden_states = layer(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
if self.in_channels != self.out_channels or self.stride > 1:
with tf.name_scope(self.downsampling_layer[0].name):
self.downsampling_layer[0].build([None, None, None, self.in_channels])
with tf.name_scope(self.downsampling_layer[1].name):
self.downsampling_layer[1].build([None, None, None, self.in_channels])
|
class_definition
| 8,394 | 11,591 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnext/modeling_tf_convnext.py
| null | 3,629 |
class TFConvNextEncoder(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.stages = []
drop_path_rates = tf.linspace(0.0, config.drop_path_rate, sum(config.depths))
drop_path_rates = tf.split(drop_path_rates, config.depths)
drop_path_rates = [x.numpy().tolist() for x in drop_path_rates]
prev_chs = config.hidden_sizes[0]
for i in range(config.num_stages):
out_chs = config.hidden_sizes[i]
stage = TFConvNextStage(
config,
in_channels=prev_chs,
out_channels=out_chs,
stride=2 if i > 0 else 1,
depth=config.depths[i],
drop_path_rates=drop_path_rates[i],
name=f"stages.{i}",
)
self.stages.append(stage)
prev_chs = out_chs
def call(self, hidden_states, output_hidden_states=False, return_dict=True):
all_hidden_states = () if output_hidden_states else None
for i, layer_module in enumerate(self.stages):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
hidden_states = layer_module(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return TFBaseModelOutput(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
def build(self, input_shape=None):
for stage in self.stages:
with tf.name_scope(stage.name):
stage.build(None)
|
class_definition
| 11,594 | 13,328 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnext/modeling_tf_convnext.py
| null | 3,630 |
class TFConvNextMainLayer(keras.layers.Layer):
config_class = ConvNextConfig
def __init__(self, config: ConvNextConfig, add_pooling_layer: bool = True, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embeddings = TFConvNextEmbeddings(config, name="embeddings")
self.encoder = TFConvNextEncoder(config, name="encoder")
self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
# We are setting the `data_format` like so because from here on we will revert to the
# NCHW output format
self.pooler = keras.layers.GlobalAvgPool2D(data_format="channels_first") if add_pooling_layer else None
@unpack_inputs
def call(
self,
pixel_values: TFModelInputType | None = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.embeddings(pixel_values, training=training)
encoder_outputs = self.encoder(
embedding_output,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
last_hidden_state = encoder_outputs[0]
# Change to NCHW output format have uniformity in the modules
last_hidden_state = tf.transpose(last_hidden_state, perm=(0, 3, 1, 2))
pooled_output = self.layernorm(self.pooler(last_hidden_state))
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]])
if not return_dict:
hidden_states = hidden_states if output_hidden_states else ()
return (last_hidden_state, pooled_output) + hidden_states
return TFBaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "layernorm", None) is not None:
with tf.name_scope(self.layernorm.name):
self.layernorm.build([None, self.config.hidden_sizes[-1]])
|
class_definition
| 13,351 | 16,467 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnext/modeling_tf_convnext.py
| null | 3,631 |
class TFConvNextPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ConvNextConfig
base_model_prefix = "convnext"
main_input_name = "pixel_values"
|
class_definition
| 16,470 | 16,773 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnext/modeling_tf_convnext.py
| null | 3,632 |
class TFConvNextModel(TFConvNextPreTrainedModel):
def __init__(self, config, *inputs, add_pooling_layer=True, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.convnext = TFConvNextMainLayer(config, add_pooling_layer=add_pooling_layer, name="convnext")
@unpack_inputs
@add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
def call(
self,
pixel_values: TFModelInputType | None = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, TFConvNextModel
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224")
>>> model = TFConvNextModel.from_pretrained("facebook/convnext-tiny-224")
>>> inputs = image_processor(images=image, return_tensors="tf")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
```"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
outputs = self.convnext(
pixel_values=pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPooling(
last_hidden_state=outputs.last_hidden_state,
pooler_output=outputs.pooler_output,
hidden_states=outputs.hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "convnext", None) is not None:
with tf.name_scope(self.convnext.name):
self.convnext.build(None)
|
class_definition
| 20,352 | 22,905 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnext/modeling_tf_convnext.py
| null | 3,633 |
class TFConvNextForImageClassification(TFConvNextPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: ConvNextConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.convnext = TFConvNextMainLayer(config, name="convnext")
# Classifier head
self.classifier = keras.layers.Dense(
units=config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer="zeros",
name="classifier",
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
pixel_values: TFModelInputType | None = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, TFConvNextForImageClassification
>>> import tensorflow as tf
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224")
>>> model = TFConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224")
>>> inputs = image_processor(images=image, return_tensors="tf")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = tf.math.argmax(logits, axis=-1)[0]
>>> print("Predicted class:", model.config.id2label[int(predicted_class_idx)])
```"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
outputs = self.convnext(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(pooled_output)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "convnext", None) is not None:
with tf.name_scope(self.convnext.name):
self.convnext.build(None)
if getattr(self, "classifier", None) is not None:
if hasattr(self.classifier, "name"):
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_sizes[-1]])
|
class_definition
| 23,111 | 27,192 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnext/modeling_tf_convnext.py
| null | 3,634 |
class ConvNextImageProcessor(BaseImageProcessor):
r"""
Constructs a ConvNeXT image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be overriden
by `do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 384}`):
Resolution of the output image after `resize` is applied. If `size["shortest_edge"]` >= 384, the image is
resized to `(size["shortest_edge"], size["shortest_edge"])`. Otherwise, the smaller edge of the image will
be matched to `int(size["shortest_edge"]/crop_pct)`, after which the image is cropped to
`(size["shortest_edge"], size["shortest_edge"])`. Only has an effect if `do_resize` is set to `True`. Can
be overriden by `size` in the `preprocess` method.
crop_pct (`float` *optional*, defaults to 224 / 256):
Percentage of the image to crop. Only has an effect if `do_resize` is `True` and size < 384. Can be
overriden by `crop_pct` in the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overriden by `resample` in the `preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overriden by `do_rescale` in
the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overriden by `rescale_factor` in the `preprocess`
method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
crop_pct: float = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 384}
size = get_size_dict(size, default_to_square=False)
self.do_resize = do_resize
self.size = size
# Default value set here for backwards compatibility where the value in config is None
self.crop_pct = crop_pct if crop_pct is not None else 224 / 256
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
crop_pct: float,
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary of the form `{"shortest_edge": int}`, specifying the size of the output image. If
`size["shortest_edge"]` >= 384 image is resized to `(size["shortest_edge"], size["shortest_edge"])`.
Otherwise, the smaller edge of the image will be matched to `int(size["shortest_edge"] / crop_pct)`,
after which the image is cropped to `(size["shortest_edge"], size["shortest_edge"])`.
crop_pct (`float`):
Percentage of the image to crop. Only has an effect if size < 384.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input
image.
"""
size = get_size_dict(size, default_to_square=False)
if "shortest_edge" not in size:
raise ValueError(f"Size dictionary must contain 'shortest_edge' key. Got {size.keys()}")
shortest_edge = size["shortest_edge"]
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
resize_shortest_edge = int(shortest_edge / crop_pct)
resize_size = get_resize_output_image_size(
image, size=resize_shortest_edge, default_to_square=False, input_data_format=input_data_format
)
image = resize(
image=image,
size=resize_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
# then crop to (shortest_edge, shortest_edge)
return center_crop(
image=image,
size=(shortest_edge, shortest_edge),
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
image,
size=(shortest_edge, shortest_edge),
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
crop_pct: float = None,
resample: PILImageResampling = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the output image after `resize` has been applied. If `size["shortest_edge"]` >= 384, the image
is resized to `(size["shortest_edge"], size["shortest_edge"])`. Otherwise, the smaller edge of the
image will be matched to `int(size["shortest_edge"]/ crop_pct)`, after which the image is cropped to
`(size["shortest_edge"], size["shortest_edge"])`. Only has an effect if `do_resize` is set to `True`.
crop_pct (`float`, *optional*, defaults to `self.crop_pct`):
Percentage of the image to crop if size < 384.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of `PILImageResampling`, filters. Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
crop_pct = crop_pct if crop_pct is not None else self.crop_pct
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False)
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_resize=do_resize,
size=size,
resample=resample,
)
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [
self.resize(
image=image, size=size, crop_pct=crop_pct, resample=resample, input_data_format=input_data_format
)
for image in images
]
if do_rescale:
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
|
class_definition
| 1,438 | 15,826 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnext/image_processing_convnext.py
| null | 3,635 |
class ConvNextFeatureExtractor(ConvNextImageProcessor):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
"The class ConvNextFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use ConvNextImageProcessor instead.",
FutureWarning,
)
super().__init__(*args, **kwargs)
|
class_definition
| 821 | 1,199 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnext/feature_extraction_convnext.py
| null | 3,636 |
class ConvNextConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ConvNextModel`]. It is used to instantiate an
ConvNeXT model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the ConvNeXT
[facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
patch_size (`int`, *optional*, defaults to 4):
Patch size to use in the patch embedding layer.
num_stages (`int`, *optional*, defaults to 4):
The number of stages in the model.
hidden_sizes (`List[int]`, *optional*, defaults to [96, 192, 384, 768]):
Dimensionality (hidden size) at each stage.
depths (`List[int]`, *optional*, defaults to [3, 3, 9, 3]):
Depth (number of blocks) for each stage.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`,
`"selu"` and `"gelu_new"` are supported.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
layer_scale_init_value (`float`, *optional*, defaults to 1e-6):
The initial value for the layer scale.
drop_path_rate (`float`, *optional*, defaults to 0.0):
The drop rate for stochastic depth.
out_features (`List[str]`, *optional*):
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
out_indices (`List[int]`, *optional*):
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
If unset and `out_features` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
Example:
```python
>>> from transformers import ConvNextConfig, ConvNextModel
>>> # Initializing a ConvNext convnext-tiny-224 style configuration
>>> configuration = ConvNextConfig()
>>> # Initializing a model (with random weights) from the convnext-tiny-224 style configuration
>>> model = ConvNextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "convnext"
def __init__(
self,
num_channels=3,
patch_size=4,
num_stages=4,
hidden_sizes=None,
depths=None,
hidden_act="gelu",
initializer_range=0.02,
layer_norm_eps=1e-12,
layer_scale_init_value=1e-6,
drop_path_rate=0.0,
image_size=224,
out_features=None,
out_indices=None,
**kwargs,
):
super().__init__(**kwargs)
self.num_channels = num_channels
self.patch_size = patch_size
self.num_stages = num_stages
self.hidden_sizes = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes
self.depths = [3, 3, 9, 3] if depths is None else depths
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.layer_scale_init_value = layer_scale_init_value
self.drop_path_rate = drop_path_rate
self.image_size = image_size
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)]
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
|
class_definition
| 1,036 | 5,725 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnext/configuration_convnext.py
| null | 3,637 |
class ConvNextOnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-5
|
class_definition
| 5,728 | 6,129 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnext/configuration_convnext.py
| null | 3,638 |
class ConvNextDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
|
class_definition
| 2,974 | 3,456 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnext/modeling_convnext.py
| null | 3,639 |
class ConvNextLayerNorm(nn.Module):
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,
width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError(f"Unsupported data format: {self.data_format}")
self.normalized_shape = (normalized_shape,)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.data_format == "channels_last":
x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
input_dtype = x.dtype
x = x.float()
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = x.to(dtype=input_dtype)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
|
class_definition
| 3,459 | 4,935 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnext/modeling_convnext.py
| null | 3,640 |
class ConvNextEmbeddings(nn.Module):
"""This class is comparable to (and inspired by) the SwinEmbeddings class
found in src/transformers/models/swin/modeling_swin.py.
"""
def __init__(self, config):
super().__init__()
self.patch_embeddings = nn.Conv2d(
config.num_channels, config.hidden_sizes[0], kernel_size=config.patch_size, stride=config.patch_size
)
self.layernorm = ConvNextLayerNorm(config.hidden_sizes[0], eps=1e-6, data_format="channels_first")
self.num_channels = config.num_channels
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
num_channels = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
embeddings = self.patch_embeddings(pixel_values)
embeddings = self.layernorm(embeddings)
return embeddings
|
class_definition
| 4,938 | 5,960 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnext/modeling_convnext.py
| null | 3,641 |
class ConvNextLayer(nn.Module):
"""This corresponds to the `Block` class in the original implementation.
There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C,
H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back
The authors used (2) as they find it slightly faster in PyTorch.
Args:
config ([`ConvNextConfig`]): Model configuration class.
dim (`int`): Number of input channels.
drop_path (`float`): Stochastic depth rate. Default: 0.0.
"""
def __init__(self, config, dim, drop_path=0):
super().__init__()
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
self.layernorm = ConvNextLayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
self.act = ACT2FN[config.hidden_act]
self.pwconv2 = nn.Linear(4 * dim, dim)
self.layer_scale_parameter = (
nn.Parameter(config.layer_scale_init_value * torch.ones((dim)), requires_grad=True)
if config.layer_scale_init_value > 0
else None
)
self.drop_path = ConvNextDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
input = hidden_states
x = self.dwconv(hidden_states)
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
x = self.layernorm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.layer_scale_parameter is not None:
x = self.layer_scale_parameter * x
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
x = input + self.drop_path(x)
return x
|
class_definition
| 5,963 | 7,842 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnext/modeling_convnext.py
| null | 3,642 |
class ConvNextStage(nn.Module):
"""ConvNeXT stage, consisting of an optional downsampling layer + multiple residual blocks.
Args:
config ([`ConvNextConfig`]): Model configuration class.
in_channels (`int`): Number of input channels.
out_channels (`int`): Number of output channels.
depth (`int`): Number of residual blocks.
drop_path_rates(`List[float]`): Stochastic depth rates for each layer.
"""
def __init__(self, config, in_channels, out_channels, kernel_size=2, stride=2, depth=2, drop_path_rates=None):
super().__init__()
if in_channels != out_channels or stride > 1:
self.downsampling_layer = nn.Sequential(
ConvNextLayerNorm(in_channels, eps=1e-6, data_format="channels_first"),
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride),
)
else:
self.downsampling_layer = nn.Identity()
drop_path_rates = drop_path_rates or [0.0] * depth
self.layers = nn.Sequential(
*[ConvNextLayer(config, dim=out_channels, drop_path=drop_path_rates[j]) for j in range(depth)]
)
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
hidden_states = self.downsampling_layer(hidden_states)
hidden_states = self.layers(hidden_states)
return hidden_states
|
class_definition
| 7,845 | 9,239 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnext/modeling_convnext.py
| null | 3,643 |
class ConvNextEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.stages = nn.ModuleList()
drop_path_rates = [
x.tolist() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths)).split(config.depths)
]
prev_chs = config.hidden_sizes[0]
for i in range(config.num_stages):
out_chs = config.hidden_sizes[i]
stage = ConvNextStage(
config,
in_channels=prev_chs,
out_channels=out_chs,
stride=2 if i > 0 else 1,
depth=config.depths[i],
drop_path_rates=drop_path_rates[i],
)
self.stages.append(stage)
prev_chs = out_chs
def forward(
self,
hidden_states: torch.FloatTensor,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, BaseModelOutputWithNoAttention]:
all_hidden_states = () if output_hidden_states else None
for i, layer_module in enumerate(self.stages):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
hidden_states = layer_module(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
)
|
class_definition
| 9,242 | 10,890 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnext/modeling_convnext.py
| null | 3,644 |
class ConvNextPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ConvNextConfig
base_model_prefix = "convnext"
main_input_name = "pixel_values"
_no_split_modules = ["ConvNextLayer"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
|
class_definition
| 10,893 | 11,817 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnext/modeling_convnext.py
| null | 3,645 |
class ConvNextModel(ConvNextPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = ConvNextEmbeddings(config)
self.encoder = ConvNextEncoder(config)
# final layernorm layer
self.layernorm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: torch.FloatTensor = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.embeddings(pixel_values)
encoder_outputs = self.encoder(
embedding_output,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
# global average pooling, (N, C, H, W) -> (N, C)
pooled_output = self.layernorm(last_hidden_state.mean([-2, -1]))
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
)
|
class_definition
| 13,206 | 15,290 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnext/modeling_convnext.py
| null | 3,646 |
class ConvNextForImageClassification(ConvNextPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.convnext = ConvNextModel(config)
# Classifier head
self.classifier = (
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: torch.FloatTensor = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.convnext(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
)
|
class_definition
| 15,496 | 18,753 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnext/modeling_convnext.py
| null | 3,647 |
class ConvNextBackbone(ConvNextPreTrainedModel, BackboneMixin):
def __init__(self, config):
super().__init__(config)
super()._init_backbone(config)
self.embeddings = ConvNextEmbeddings(config)
self.encoder = ConvNextEncoder(config)
self.num_features = [config.hidden_sizes[0]] + config.hidden_sizes
# Add layer norms to hidden states of out_features
hidden_states_norms = {}
for stage, num_channels in zip(self._out_features, self.channels):
hidden_states_norms[stage] = ConvNextLayerNorm(num_channels, data_format="channels_first")
self.hidden_states_norms = nn.ModuleDict(hidden_states_norms)
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(CONVNEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.Tensor,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> BackboneOutput:
"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoBackbone
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224")
>>> model = AutoBackbone.from_pretrained("facebook/convnext-tiny-224")
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
embedding_output = self.embeddings(pixel_values)
outputs = self.encoder(
embedding_output,
output_hidden_states=True,
return_dict=return_dict,
)
hidden_states = outputs.hidden_states if return_dict else outputs[1]
feature_maps = ()
for stage, hidden_state in zip(self.stage_names, hidden_states):
if stage in self.out_features:
hidden_state = self.hidden_states_norms[stage](hidden_state)
feature_maps += (hidden_state,)
if not return_dict:
output = (feature_maps,)
if output_hidden_states:
output += (hidden_states,)
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=hidden_states if output_hidden_states else None,
attentions=None,
)
|
class_definition
| 18,904 | 21,822 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/convnext/modeling_convnext.py
| null | 3,648 |
class GPTNeoXTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" GPT-NeoX-20B tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```python
>>> from transformers import GPTNeoXTokenizerFast
>>> tokenizer = GPTNeoXTokenizerFast.from_pretrained("openai-community/gpt2")
>>> tokenizer("Hello world")["input_ids"]
[15496, 995]
>>> tokenizer(" Hello world")["input_ids"]
[18435, 995]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since
the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
</Tip>
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
unk_token (`str`, *optional*, defaults to `<|endoftext|>`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `<|endoftext|>`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `<|endoftext|>`):
The end of sequence token.
pad_token (`str`, *optional*):
Token for padding a sequence.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (GPTNeoX tokenizer detect beginning of words by the preceding space).
add_bos_token (`bool`, *optional*, defaults to `False`):
Whether or not to add a `bos_token` at the start of sequences.
add_eos_token (`bool`, *optional*, defaults to `False`):
Whether or not to add an `eos_token` at the end of sequences.
trim_offsets (`bool`, *optional*, defaults to `True`):
Whether or not the post-processing step should trim offsets to avoid including whitespaces.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file=None,
merges_file=None,
tokenizer_file=None,
unk_token="<|endoftext|>",
bos_token="<|endoftext|>",
eos_token="<|endoftext|>",
pad_token=None,
add_bos_token=False,
add_eos_token=False,
add_prefix_space=False,
**kwargs,
):
super().__init__(
vocab_file=vocab_file,
merges_file=merges_file,
tokenizer_file=tokenizer_file,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
add_prefix_space=add_prefix_space,
**kwargs,
)
self._add_bos_token = add_bos_token
self._add_eos_token = add_eos_token
self.update_post_processor()
@property
def add_eos_token(self):
return self._add_eos_token
@property
def add_bos_token(self):
return self._add_bos_token
@add_eos_token.setter
def add_eos_token(self, value):
self._add_eos_token = value
self.update_post_processor()
@add_bos_token.setter
def add_bos_token(self, value):
self._add_bos_token = value
self.update_post_processor()
# Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.update_post_processor
def update_post_processor(self):
"""
Updates the underlying post processor with the current `bos_token` and `eos_token`.
"""
bos = self.bos_token
bos_token_id = self.bos_token_id
if bos is None and self.add_bos_token:
raise ValueError("add_bos_token = True but bos_token = None")
eos = self.eos_token
eos_token_id = self.eos_token_id
if eos is None and self.add_eos_token:
raise ValueError("add_eos_token = True but eos_token = None")
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
special_tokens = []
if self.add_bos_token:
special_tokens.append((bos, bos_token_id))
if self.add_eos_token:
special_tokens.append((eos, eos_token_id))
self._tokenizer.post_processor = processors.TemplateProcessing(
single=single, pair=pair, special_tokens=special_tokens
)
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
bos_token_id = [1] if self.add_bos_token else []
eos_token_id = [1] if self.add_eos_token else []
if token_ids_1 is None:
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
return (
bos_token_id
+ ([0] * len(token_ids_0))
+ eos_token_id
+ bos_token_id
+ ([0] * len(token_ids_1))
+ eos_token_id
)
# Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = bos_token_id + token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + bos_token_id + token_ids_1 + eos_token_id
return output
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
|
class_definition
| 1,008 | 8,947 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gpt_neox/tokenization_gpt_neox_fast.py
| null | 3,649 |
class GPTNeoXConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GPTNeoXModel`]. It is used to instantiate an
GPTNeoX model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the GPTNeoX
[EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50432):
Vocabulary size of the GPTNeoX model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GPTNeoXModel`].
hidden_size (`int`, *optional*, defaults to 6144):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 44):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 64):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 24576):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
rotary_pct (`float`, *optional*, defaults to 0.25):
percentage of hidden dimensions to allocate to rotary embeddings
rotary_emb_base (`int`, *optional*, defaults to 10000)
base for computing rotary embeddings frequency
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio probability of the attention score.
hidden_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio of (1) the word embeddings, (2) the post-attention hidden states, and (3) the post-mlp
hidden states.
classifier_dropout (`float`, *optional*, defaults to 0.1):
Argument used when doing token classification, used in the model [`GPTNeoXForTokenClassification`].
The dropout ratio for the hidden layer.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 1e-5):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
use_parallel_residual (`bool`, *optional*, defaults to `True`):
Whether to use a "parallel" formulation in each Transformer layer, which can provide a slight training
speedup at large scales (e.g. 20B).
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, *optional*, defaults to `True`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
Example:
```python
>>> from transformers import GPTNeoXConfig, GPTNeoXModel
>>> # Initializing a GPTNeoX gpt-neox-20b style configuration
>>> configuration = GPTNeoXConfig()
>>> # Initializing a model (with random weights) from the gpt-neox-20b style configuration
>>> model = GPTNeoXModel(configuration) # doctest: +SKIP
>>> # Accessing the model configuration
>>> configuration = model.config # doctest: +SKIP
```"""
model_type = "gpt_neox"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=50432,
hidden_size=6144,
num_hidden_layers=44,
num_attention_heads=64,
intermediate_size=24576,
hidden_act="gelu",
rotary_pct=0.25,
rotary_emb_base=10000,
attention_dropout=0.0,
hidden_dropout=0.0,
classifier_dropout=0.1,
max_position_embeddings=2048,
initializer_range=0.02,
layer_norm_eps=1e-5,
use_cache=True,
bos_token_id=0,
eos_token_id=2,
tie_word_embeddings=False,
use_parallel_residual=True,
rope_scaling=None,
attention_bias=True,
**kwargs,
):
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.rotary_pct = rotary_pct
self.partial_rotary_factor = rotary_pct
self.rotary_emb_base = rotary_emb_base
self.rope_theta = rotary_emb_base
self.attention_dropout = attention_dropout
self.hidden_dropout = hidden_dropout
self.classifier_dropout = classifier_dropout
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache
self.tie_word_embeddings = tie_word_embeddings
self.use_parallel_residual = use_parallel_residual
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, move it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
"The hidden size is not divisble by the number of attention heads! Make sure to update them!"
)
|
class_definition
| 857 | 10,419 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gpt_neox/configuration_gpt_neox.py
| null | 3,650 |
class GPTNeoXPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GPTNeoXConfig
base_model_prefix = "gpt_neox"
supports_gradient_checkpointing = True
_no_split_modules = ["GPTNeoXLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_sdpa = True
_supports_flex_attn = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
|
class_definition
| 2,104 | 3,344 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gpt_neox/modeling_gpt_neox.py
| null | 3,651 |
class GPTNeoXAttention(nn.Module):
def __init__(self, config, layer_idx=None):
super().__init__()
self.config = config
self.num_attention_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
"The hidden size is not divisble by the number of attention heads! Make sure to update them"
)
self.head_size = self.hidden_size // self.num_attention_heads
self.rotary_ndims = int(self.head_size * config.rotary_pct)
self.rope_theta = config.rotary_emb_base
self._init_bias(config.max_position_embeddings)
self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False)
self.rotary_emb = GPTNeoXRotaryEmbedding(config=self.config)
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.norm_factor = self.head_size**-0.5
self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=config.attention_bias)
self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attention_bias)
self.attention_dropout = nn.Dropout(config.attention_dropout)
self.is_causal = True
self.layer_idx = layer_idx
def _init_bias(self, max_positions, device=None):
self.register_buffer(
"bias",
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
1, 1, max_positions, max_positions
),
persistent=False,
)
if device is not None:
self.bias = self.bias.to(device)
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: torch.FloatTensor,
position_ids: torch.LongTensor,
head_mask: Optional[torch.FloatTensor] = None,
layer_past: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
padding_mask: Optional[torch.Tensor] = None,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
):
bsz, seq_len, _ = hidden_states.shape
# Apply attention-specific projections and rope
query, key, value, present = self._attn_projections_and_rope(
hidden_states=hidden_states,
position_ids=position_ids,
layer_past=layer_past,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
# Checking for fallbacks in case an unsupported feature is requested
attention_type = self.config._attn_implementation
if (output_attentions or head_mask is not None) and self.config._attn_implementation in [
"sdpa",
"flash_attention_2",
]:
logger.warning_once(
f"Setting `attention_type` to `eager` because `{attention_type}` does not support"
f" `output_attentions=True` or `head_mask`."
)
attention_type = "eager"
elif (
self.training
and self.config.attention_dropout > 0
and self.config._attn_implementation == "flex_attention"
):
logger.warning_once(
f"Setting `attention_type` to `eager` because `dropout` is not supported in `{attention_type}`."
)
attention_type = "eager"
# Compute attention
attn_output, attn_weights = GPTNEOX_ATTENTION_FUNCTION[attention_type](
query,
key,
value,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
norm_factor=self.norm_factor,
attention_dropout=self.config.attention_dropout,
training=self.training,
# Flash Attention 2 specific PEFT check
target_dtype=self._fa_peft_dtype_check(value),
)
# Reshape outputs and final projection
attn_output = attn_output.contiguous()
attn_output = attn_output.view(bsz, seq_len, -1)
attn_output = self.dense(attn_output)
outputs = (attn_output, present)
if output_attentions:
outputs += (attn_weights,)
return outputs
@classmethod
def _split_heads(cls, tensor, num_attention_heads, attn_head_size):
"""
Splits hidden dim into attn_head_size and num_attention_heads
"""
# tensor: [bs, seq_len, hidden_size]
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
# -> [bs, seq_len, num_attention_heads, attn_head_size]
tensor = tensor.view(new_shape)
# -> [bs, num_attention_heads, seq_len, attn_head_size]
tensor = tensor.permute(0, 2, 1, 3)
return tensor
@classmethod
def _merge_heads(cls, tensor, num_attention_heads, attn_head_size):
"""
Merges attn_head_size dim and num_attn_heads dim into hidden dim
"""
# tensor [bs, num_attention_heads, seq_len, attn_head_size]
tensor = tensor.permute(0, 2, 1, 3).contiguous()
# -> [bs, seq_len, num_attention_heads, attn_head_size]
tensor = tensor.view(tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size)
# -> [bs, seq_len, hidden_size]
return tensor
def _attn_projections_and_rope(
self,
hidden_states: torch.FloatTensor,
position_ids: torch.LongTensor,
layer_past: Optional[Tuple[torch.Tensor]] = None,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
):
# Compute QKV
# Attention heads [batch, seq_len, hidden_size]
# --> [batch, seq_len, (np * 3 * head_size)]
qkv = self.query_key_value(hidden_states)
# [batch, seq_len, (num_heads * 3 * head_size)]
# --> [batch, seq_len, num_heads, 3 * head_size]
new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
qkv = qkv.view(*new_qkv_shape)
# [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3)
value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3)
# Compute rotary embeddings on rotary_ndims
query_rot = query[..., : self.rotary_ndims]
query_pass = query[..., self.rotary_ndims :]
key_rot = key[..., : self.rotary_ndims]
key_pass = key[..., self.rotary_ndims :]
cos, sin = position_embeddings
query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin)
query = torch.cat((query, query_pass), dim=-1)
key = torch.cat((key, key_pass), dim=-1)
# Cache QKV values
if layer_past is not None:
cache_kwargs = {
"sin": sin,
"cos": cos,
"partial_rotation_size": self.rotary_ndims,
"cache_position": cache_position,
}
key, value = layer_past.update(key, value, self.layer_idx, cache_kwargs)
return query, key, value, layer_past
def _fa_peft_dtype_check(self, value):
"""
PEFT can silently cast the dtype to float32 - this method returns the target dtype to which
FA should convert back to (if necessary). For now, we can not move this to the forward pass
itself due to the dependency on checking on some part of its own weights (last case).
"""
target_dtype = None
if self.config._attn_implementation == "flash_attention_2":
input_dtype = value.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.query_key_value.weight.dtype
return target_dtype
|
class_definition
| 8,612 | 17,498 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gpt_neox/modeling_gpt_neox.py
| null | 3,652 |
class GPTNeoXRotaryEmbedding(nn.Module):
def __init__(self, config: GPTNeoXConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
def _dynamic_frequency_update(self, position_ids, device):
"""
dynamic RoPE layers should recompute `inv_freq` in the following situations:
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
"""
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
self.max_seq_len_cached = seq_len
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
# This .to() is needed if the model has been moved to a device after being initialized (because
# the buffer is automatically moved, but not the original copy)
self.original_inv_freq = self.original_inv_freq.to(device)
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.original_max_seq_len
@torch.no_grad()
def forward(self, x, position_ids):
if "dynamic" in self.rope_type:
self._dynamic_frequency_update(position_ids, device=x.device)
# Core RoPE block
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
cos = cos * self.attention_scaling
sin = sin * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
class_definition
| 17,597 | 20,796 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gpt_neox/modeling_gpt_neox.py
| null | 3,653 |
class GPTNeoXMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size)
self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size)
self.act = ACT2FN[config.hidden_act]
def forward(self, hidden_states):
hidden_states = self.dense_h_to_4h(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dense_4h_to_h(hidden_states)
return hidden_states
|
class_definition
| 22,600 | 23,134 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gpt_neox/modeling_gpt_neox.py
| null | 3,654 |
class GPTNeoXLayer(nn.Module):
def __init__(self, config, layer_idx):
super().__init__()
self.use_parallel_residual = config.use_parallel_residual
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.post_attention_dropout = nn.Dropout(config.hidden_dropout)
self.post_mlp_dropout = nn.Dropout(config.hidden_dropout)
self.attention = GPTNeoXAttention(config, layer_idx)
self.mlp = GPTNeoXMLP(config)
def forward(
self,
hidden_states: Optional[torch.FloatTensor],
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
layer_past: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
):
attention_layer_outputs = self.attention(
self.input_layernorm(hidden_states),
attention_mask=attention_mask,
position_ids=position_ids,
layer_past=layer_past,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
attn_output = attention_layer_outputs[0] # output_attn: attn_output, present, (attn_weights)
attn_output = self.post_attention_dropout(attn_output)
outputs = attention_layer_outputs[1:]
if self.use_parallel_residual:
# pseudocode:
# x = x + attn(ln1(x)) + mlp(ln2(x))
mlp_output = self.mlp(self.post_attention_layernorm(hidden_states))
mlp_output = self.post_mlp_dropout(mlp_output)
hidden_states = mlp_output + attn_output + hidden_states
else:
# pseudocode:
# x = x + attn(ln1(x))
# x = x + mlp(ln2(x))
attn_output = attn_output + hidden_states
mlp_output = self.mlp(self.post_attention_layernorm(attn_output))
mlp_output = self.post_mlp_dropout(mlp_output)
hidden_states = mlp_output + attn_output
if use_cache:
outputs = (hidden_states,) + outputs # hidden_states, present, (attn_weights)
else:
outputs = (hidden_states,) + outputs[1:] # hidden_states, (attn_weights)
return outputs
|
class_definition
| 23,137 | 25,869 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gpt_neox/modeling_gpt_neox.py
| null | 3,655 |
class GPTNeoXModel(GPTNeoXPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
self.emb_dropout = nn.Dropout(config.hidden_dropout)
self.layers = nn.ModuleList([GPTNeoXLayer(config, i) for i in range(config.num_hidden_layers)])
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.rotary_emb = GPTNeoXRotaryEmbedding(config=config)
self._attn_implementation = config._attn_implementation
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_in
def set_input_embeddings(self, value):
self.embed_in = value
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
r"""
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_in(input_ids)
# kept for BC (non `Cache` `past_key_values` inputs)
return_legacy_cache = False
if use_cache and not isinstance(past_key_values, Cache):
return_legacy_cache = True
if past_key_values is None:
past_key_values = DynamicCache()
else:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
logger.warning_once(
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
)
seq_length = inputs_embeds.shape[1]
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + seq_length, device=inputs_embeds.device)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
converted_head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
# Flex Attention converts it to a separate mask
if head_mask is not None:
converted_head_mask = ~converted_head_mask.bool() * torch.finfo(inputs_embeds.dtype).min
converted_head_mask = converted_head_mask.to(dtype=self.dtype, device=self.device)
head_mask = converted_head_mask
hidden_states = self.emb_dropout(inputs_embeds)
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
next_decoder_cache = None
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, layer in enumerate(
self.layers,
):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
causal_mask,
position_ids,
head_mask[i],
use_cache,
None,
output_attentions,
cache_position,
position_embeddings,
)
else:
outputs = layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
head_mask=head_mask[i],
layer_past=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = outputs[0]
if use_cache is True:
next_decoder_cache = outputs[1]
if output_attentions:
all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
hidden_states = self.final_layer_norm(hidden_states)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_legacy_cache:
next_cache = next_cache.to_legacy_cache()
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
# Copied from transformers.models.llama.modeling_llama.LlamaModel._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
|
class_definition
| 30,613 | 44,220 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gpt_neox/modeling_gpt_neox.py
| null | 3,656 |
class GPTNeoXForCausalLM(GPTNeoXPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["embed_out.weight"]
def __init__(self, config):
super().__init__(config)
self.gpt_neox = GPTNeoXModel(config)
self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.embed_out
def set_output_embeddings(self, new_embeddings):
self.embed_out = new_embeddings
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, GPTNeoXForCausalLM, GPTNeoXConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
>>> config = GPTNeoXConfig.from_pretrained("EleutherAI/gpt-neox-20b")
>>> config.is_decoder = True
>>> model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", config=config)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.gpt_neox(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
lm_logits = self.embed_out(hidden_states)
lm_loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(lm_logits.device)
# we are doing next-token prediction; shift prediction scores and input ids by one
shift_logits = lm_logits[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithPast(
loss=lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ layer_past[2:],
)
return reordered_past
|
class_definition
| 44,358 | 49,091 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gpt_neox/modeling_gpt_neox.py
| null | 3,657 |
class GPTNeoXForSequenceClassification(GPTNeoXPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.gpt_neox = GPTNeoXModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.gpt_neox(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size, sequence_length = input_ids.shape[:2]
else:
batch_size, sequence_length = inputs_embeds.shape[:2]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 49,891 | 55,115 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gpt_neox/modeling_gpt_neox.py
| null | 3,658 |
class GPTNeoXForTokenClassification(GPTNeoXPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.gpt_neox = GPTNeoXModel(config)
self.dropout = nn.Dropout(config.classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint="LarsJonasson/pythia-410m-deduped-sft-swedish",
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_loss=0.25,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.Tensor]]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.gpt_neox(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.classifier(hidden_states)
loss = None
if labels is not None:
labels = labels.to(logits.device)
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 55,118 | 58,237 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gpt_neox/modeling_gpt_neox.py
| null | 3,659 |
class GPTNeoXForQuestionAnswering(GPTNeoXPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.gpt_neox = GPTNeoXModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.gpt_neox(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1).to(start_logits.device)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1).to(end_logits.device)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 58,547 | 62,802 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gpt_neox/modeling_gpt_neox.py
| null | 3,660 |
class PoolFormerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of [`PoolFormerModel`]. It is used to instantiate a
PoolFormer model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the PoolFormer
[sail/poolformer_s12](https://huggingface.co/sail/poolformer_s12) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_channels (`int`, *optional*, defaults to 3):
The number of channels in the input image.
patch_size (`int`, *optional*, defaults to 16):
The size of the input patch.
stride (`int`, *optional*, defaults to 16):
The stride of the input patch.
pool_size (`int`, *optional*, defaults to 3):
The size of the pooling window.
mlp_ratio (`float`, *optional*, defaults to 4.0):
The ratio of the number of channels in the output of the MLP to the number of channels in the input.
depths (`list`, *optional*, defaults to `[2, 2, 6, 2]`):
The depth of each encoder block.
hidden_sizes (`list`, *optional*, defaults to `[64, 128, 320, 512]`):
The hidden sizes of each encoder block.
patch_sizes (`list`, *optional*, defaults to `[7, 3, 3, 3]`):
The size of the input patch for each encoder block.
strides (`list`, *optional*, defaults to `[4, 2, 2, 2]`):
The stride of the input patch for each encoder block.
padding (`list`, *optional*, defaults to `[2, 1, 1, 1]`):
The padding of the input patch for each encoder block.
num_encoder_blocks (`int`, *optional*, defaults to 4):
The number of encoder blocks.
drop_path_rate (`float`, *optional*, defaults to 0.0):
The dropout rate for the dropout layers.
hidden_act (`str`, *optional*, defaults to `"gelu"`):
The activation function for the hidden layers.
use_layer_scale (`bool`, *optional*, defaults to `True`):
Whether to use layer scale.
layer_scale_init_value (`float`, *optional*, defaults to 1e-05):
The initial value for the layer scale.
initializer_range (`float`, *optional*, defaults to 0.02):
The initializer range for the weights.
Example:
```python
>>> from transformers import PoolFormerConfig, PoolFormerModel
>>> # Initializing a PoolFormer sail/poolformer_s12 style configuration
>>> configuration = PoolFormerConfig()
>>> # Initializing a model (with random weights) from the sail/poolformer_s12 style configuration
>>> model = PoolFormerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "poolformer"
def __init__(
self,
num_channels=3,
patch_size=16,
stride=16,
pool_size=3,
mlp_ratio=4.0,
depths=[2, 2, 6, 2],
hidden_sizes=[64, 128, 320, 512],
patch_sizes=[7, 3, 3, 3],
strides=[4, 2, 2, 2],
padding=[2, 1, 1, 1],
num_encoder_blocks=4,
drop_path_rate=0.0,
hidden_act="gelu",
use_layer_scale=True,
layer_scale_init_value=1e-5,
initializer_range=0.02,
**kwargs,
):
self.num_channels = num_channels
self.patch_size = patch_size
self.stride = stride
self.padding = padding
self.pool_size = pool_size
self.hidden_sizes = hidden_sizes
self.mlp_ratio = mlp_ratio
self.depths = depths
self.patch_sizes = patch_sizes
self.strides = strides
self.num_encoder_blocks = num_encoder_blocks
self.drop_path_rate = drop_path_rate
self.hidden_act = hidden_act
self.use_layer_scale = use_layer_scale
self.layer_scale_init_value = layer_scale_init_value
self.initializer_range = initializer_range
super().__init__(**kwargs)
|
class_definition
| 929 | 5,168 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/poolformer/configuration_poolformer.py
| null | 3,661 |
class PoolFormerOnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
]
)
@property
def atol_for_validation(self) -> float:
return 2e-3
|
class_definition
| 5,171 | 5,574 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/poolformer/configuration_poolformer.py
| null | 3,662 |
class PoolFormerDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
|
class_definition
| 2,802 | 3,286 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/poolformer/modeling_poolformer.py
| null | 3,663 |
class PoolFormerEmbeddings(nn.Module):
"""
Construct Patch Embeddings.
"""
def __init__(self, hidden_size, num_channels, patch_size, stride, padding, norm_layer=None):
super().__init__()
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
stride = stride if isinstance(stride, collections.abc.Iterable) else (stride, stride)
padding = padding if isinstance(padding, collections.abc.Iterable) else (padding, padding)
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=stride, padding=padding)
self.norm = norm_layer(hidden_size) if norm_layer else nn.Identity()
def forward(self, pixel_values):
embeddings = self.projection(pixel_values)
embeddings = self.norm(embeddings)
return embeddings
|
class_definition
| 3,289 | 4,162 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/poolformer/modeling_poolformer.py
| null | 3,664 |
class PoolFormerGroupNorm(nn.GroupNorm):
"""
Group Normalization with 1 group. Input: tensor in shape [B, C, H, W]
"""
def __init__(self, num_channels, **kwargs):
super().__init__(1, num_channels, **kwargs)
|
class_definition
| 4,165 | 4,396 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/poolformer/modeling_poolformer.py
| null | 3,665 |
class PoolFormerPooling(nn.Module):
def __init__(self, pool_size):
super().__init__()
self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False)
def forward(self, hidden_states):
return self.pool(hidden_states) - hidden_states
|
class_definition
| 4,399 | 4,694 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/poolformer/modeling_poolformer.py
| null | 3,666 |
class PoolFormerOutput(nn.Module):
def __init__(self, config, dropout_prob, hidden_size, intermediate_size):
super().__init__()
self.conv1 = nn.Conv2d(hidden_size, intermediate_size, 1)
self.conv2 = nn.Conv2d(intermediate_size, hidden_size, 1)
self.drop = PoolFormerDropPath(dropout_prob)
if isinstance(config.hidden_act, str):
self.act_fn = ACT2FN[config.hidden_act]
else:
self.act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.conv1(hidden_states)
hidden_states = self.act_fn(hidden_states)
hidden_states = self.drop(hidden_states)
hidden_states = self.conv2(hidden_states)
hidden_states = self.drop(hidden_states)
return hidden_states
|
class_definition
| 4,697 | 5,496 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/poolformer/modeling_poolformer.py
| null | 3,667 |
class PoolFormerLayer(nn.Module):
"""This corresponds to the 'PoolFormerBlock' class in the original implementation."""
def __init__(self, config, num_channels, pool_size, hidden_size, intermediate_size, drop_path):
super().__init__()
self.pooling = PoolFormerPooling(pool_size)
self.output = PoolFormerOutput(config, drop_path, hidden_size, intermediate_size)
self.before_norm = PoolFormerGroupNorm(num_channels)
self.after_norm = PoolFormerGroupNorm(num_channels)
# Useful for training neural nets
self.drop_path = PoolFormerDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.use_layer_scale = config.use_layer_scale
if config.use_layer_scale:
self.layer_scale_1 = nn.Parameter(
config.layer_scale_init_value * torch.ones((num_channels)), requires_grad=True
)
self.layer_scale_2 = nn.Parameter(
config.layer_scale_init_value * torch.ones((num_channels)), requires_grad=True
)
def forward(self, hidden_states):
if self.use_layer_scale:
pooling_output = self.pooling(self.before_norm(hidden_states))
scaled_op = self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * pooling_output
# First residual connection
hidden_states = hidden_states + self.drop_path(scaled_op)
outputs = ()
layer_output = self.output(self.after_norm(hidden_states))
scaled_op = self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * layer_output
# Second residual connection
output = hidden_states + self.drop_path(scaled_op)
outputs = (output,) + outputs
return outputs
else:
pooling_output = self.drop_path(self.pooling(self.before_norm(hidden_states)))
# First residual connection
hidden_states = pooling_output + hidden_states
outputs = ()
# Second residual connection inside the PoolFormerOutput block
layer_output = self.drop_path(self.output(self.after_norm(hidden_states)))
output = hidden_states + layer_output
outputs = (output,) + outputs
return outputs
|
class_definition
| 5,499 | 7,765 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/poolformer/modeling_poolformer.py
| null | 3,668 |
class PoolFormerEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
# patch embeddings
embeddings = []
for i in range(config.num_encoder_blocks):
embeddings.append(
PoolFormerEmbeddings(
patch_size=config.patch_sizes[i],
stride=config.strides[i],
padding=config.padding[i],
num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1],
hidden_size=config.hidden_sizes[i],
)
)
self.patch_embeddings = nn.ModuleList(embeddings)
# Transformer blocks
blocks = []
cur = 0
for i in range(config.num_encoder_blocks):
# each block consists of layers
layers = []
if i != 0:
cur += config.depths[i - 1]
for j in range(config.depths[i]):
layers.append(
PoolFormerLayer(
config,
num_channels=config.hidden_sizes[i],
pool_size=config.pool_size,
hidden_size=config.hidden_sizes[i],
intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio),
drop_path=dpr[cur + j],
)
)
blocks.append(nn.ModuleList(layers))
self.block = nn.ModuleList(blocks)
def forward(self, pixel_values, output_hidden_states=False, return_dict=True):
all_hidden_states = () if output_hidden_states else None
hidden_states = pixel_values
for idx, layers in enumerate(zip(self.patch_embeddings, self.block)):
embedding_layer, block_layer = layers
# Get patch embeddings from hidden_states
hidden_states = embedding_layer(hidden_states)
# Send the embeddings through the blocks
for _, blk in enumerate(block_layer):
layer_outputs = blk(hidden_states)
hidden_states = layer_outputs[0]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
|
class_definition
| 7,768 | 10,400 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/poolformer/modeling_poolformer.py
| null | 3,669 |
class PoolFormerPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = PoolFormerConfig
base_model_prefix = "poolformer"
main_input_name = "pixel_values"
_no_split_modules = ["PoolFormerLayer"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
|
class_definition
| 10,403 | 11,173 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/poolformer/modeling_poolformer.py
| null | 3,670 |
class PoolFormerModel(PoolFormerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.encoder = PoolFormerEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(POOLFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithNoAttention]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
encoder_outputs = self.encoder(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output, None) + encoder_outputs[1:]
return BaseModelOutputWithNoAttention(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
)
|
class_definition
| 12,268 | 13,999 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/poolformer/modeling_poolformer.py
| null | 3,671 |
class PoolFormerFinalPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
def forward(self, hidden_states):
output = self.dense(hidden_states)
return output
|
class_definition
| 14,002 | 14,275 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/poolformer/modeling_poolformer.py
| null | 3,672 |
class PoolFormerForImageClassification(PoolFormerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.poolformer = PoolFormerModel(config)
# Final norm
self.norm = PoolFormerGroupNorm(config.hidden_sizes[-1])
# Classifier head
self.classifier = (
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(POOLFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.poolformer(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(self.norm(sequence_output).mean([-2, -1]))
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
|
class_definition
| 14,426 | 17,779 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/poolformer/modeling_poolformer.py
| null | 3,673 |
class PoolFormerImageProcessor(BaseImageProcessor):
r"""
Constructs a PoolFormer image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
Size of the image after resizing. Can be overridden by `size` in the `preprocess` method. If crop_pct is
unset:
- size is `{"height": h, "width": w}`: the image is resized to `(h, w)`.
- size is `{"shortest_edge": s}`: the shortest edge of the image is resized to s whilst maintaining the
aspect ratio.
If crop_pct is set:
- size is `{"height": h, "width": w}`: the image is resized to `(int(floor(h/crop_pct)),
int(floor(w/crop_pct)))`
- size is `{"height": c, "width": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)`
whilst maintaining the aspect ratio.
- size is `{"shortest_edge": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)`
whilst maintaining the aspect ratio.
crop_pct (`float`, *optional*, defaults to 0.9):
Percentage of the image to crop from the center. Can be overridden by `crop_pct` in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
is padded with 0's and then center cropped. Can be overridden by `do_center_crop` in the `preprocess`
method.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the image after applying center crop. Only has an effect if `do_center_crop` is set to `True`. Can
be overridden by the `crop_size` parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the
`preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
crop_pct: int = 0.9,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
rescale_factor: Union[int, float] = 1 / 255,
do_rescale: bool = True,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 224}
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, param_name="crop_size")
self.do_resize = do_resize
self.size = size
self.crop_pct = crop_pct
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
crop_pct: Optional[float] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image.
If crop_pct is unset:
- size is `{"height": h, "width": w}`: the image is resized to `(h, w)`.
- size is `{"shortest_edge": s}`: the shortest edge of the image is resized to s whilst maintaining the
aspect ratio.
if crop_pct is set:
- size is `{"height": h, "width": w}`: the image is resized to `(int(floor(h/crop_pct)),
int(floor(w/crop_pct)))`
- size is `{"height": c, "width": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)`
whilst maintaining the aspect ratio.
- size is `{"shortest_edge": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)`
whilst maintaining the aspect ratio.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
crop_pct (`float`, *optional*):
Percentage of the image that will be cropped from the center. If set, the image is resized
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
size = get_size_dict(size, default_to_square=False)
if "shortest_edge" not in size and ("height" not in size or "width" not in size):
raise ValueError(f"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}")
if crop_pct is not None:
if "shortest_edge" in size:
scale_size = int(size["shortest_edge"] / crop_pct)
elif "height" in size and "width" in size:
if size["height"] == size["width"]:
scale_size = int(size["height"] / crop_pct)
else:
scale_size = (int(size["height"] / crop_pct), int(size["width"] / crop_pct))
else:
raise ValueError("Invalid size for resize: {}".format(size))
output_size = get_resize_output_image_size(
image, size=scale_size, default_to_square=False, input_data_format=input_data_format
)
else:
if "shortest_edge" in size:
output_size = get_resize_output_image_size(
image, size=size["shortest_edge"], default_to_square=False, input_data_format=input_data_format
)
elif "height" in size and "width" in size:
output_size = (size["height"], size["width"])
else:
raise ValueError("Invalid size for resize: {}".format(size))
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
crop_pct: int = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after applying resize.
crop_pct (`float`, *optional*, defaults to `self.crop_pct`):
Percentage of the image to crop. Only has an effect if `do_resize` is set to `True`.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the image after applying center crop.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
crop_pct = crop_pct if crop_pct is not None else self.crop_pct
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size")
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_resize=do_resize,
size=size,
resample=resample,
)
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [
self.resize(
image=image, size=size, crop_pct=crop_pct, resample=resample, input_data_format=input_data_format
)
for image in images
]
if do_center_crop:
images = [
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
]
if do_rescale:
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
|
class_definition
| 1,421 | 17,808 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/poolformer/image_processing_poolformer.py
| null | 3,674 |
class PoolFormerFeatureExtractor(PoolFormerImageProcessor):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
"The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use PoolFormerImageProcessor instead.",
FutureWarning,
)
super().__init__(*args, **kwargs)
|
class_definition
| 827 | 1,213 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/poolformer/feature_extraction_poolformer.py
| null | 3,675 |
class MimiConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`MimiModel`]. It is used to instantiate a
Mimi model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the
[kyutai/mimi](https://huggingface.co/kyutai/mimi) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
sampling_rate (`int`, *optional*, defaults to 24000):
The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz).
frame_rate (`float`, *optional*, defaults to 12.5):
Framerate of the model.
audio_channels (`int`, *optional*, defaults to 1):
Number of channels in the audio data. Either 1 for mono or 2 for stereo.
hidden_size (`int`, *optional*, defaults to 512):
Intermediate representation dimension.
num_filters (`int`, *optional*, defaults to 64):
Number of convolution kernels of first `MimiConv1d` down sampling layer.
num_residual_layers (`int`, *optional*, defaults to 1):
Number of residual layers.
upsampling_ratios (`Sequence[int]`, *optional*):
Kernel size and stride ratios. The encoder uses downsampling ratios instead of upsampling ratios, hence it
will use the ratios in the reverse order to the ones specified here that must match the decoder order.
If not specified, will defaults to `[8, 6, 5, 4]`
kernel_size (`int`, *optional*, defaults to 7):
Kernel size for the initial convolution.
last_kernel_size (`int`, *optional*, defaults to 3):
Kernel size for the last convolution layer.
residual_kernel_size (`int`, *optional*, defaults to 3):
Kernel size for the residual layers.
dilation_growth_rate (`int`, *optional*, defaults to 2):
How much to increase the dilation with each layer.
use_causal_conv (`bool`, *optional*, defaults to `True`):
Whether to use fully causal convolution.
pad_mode (`str`, *optional*, defaults to `"constant"`):
Padding mode for the convolutions.
compress (`int`, *optional*, defaults to 2):
Reduced dimensionality in residual branches.
trim_right_ratio (`float`, *optional*, defaults to 1.0):
Ratio for trimming at the right of the transposed convolution under the `use_causal_conv = True` setup. If
equal to 1.0, it means that all the trimming is done at the right.
codebook_size (`int`, *optional*, defaults to 2048):
Number of discret codes in each codebooks.
codebook_dim (`int`, *optional*, defaults to 256):
Dimension of the unquantized codebook vectors. If not defined, uses `hidden_size`.
num_quantizers (`int`, *optional*, defaults to 32):
Number of quantizer channels, or codebooks, in the quantizer.
use_conv_shortcut (`bool`, *optional*, defaults to `False`):
Whether to use a convolutional layer as the 'skip' connection in the `MimiResnetBlock` block. If False,
an identity function will be used, giving a generic residual connection.
vector_quantization_hidden_dimension (`int`, *optional*, defaults to 256):
Intermediate representation dimension in the residual vector quantization space.
num_semantic_quantizers (`int`, *optional*, defaults to 1):
Number of semantic quantizer channels, or codebooks, in the semantic quantizer. Must be lower than `num_quantizers`.
upsample_groups (`int`, *optional*, defaults to 512):
If `frame_rate!=encodec_frame_rate`, indicates the number of groups used in the upsampling operation to go from one rate to another.
num_hidden_layers (`int`, *optional*, defaults to 8):
Number of hidden layers in the Transformer models.
intermediate_size (`int`, *optional*, defaults to 2048):
Dimension of the MLP representations.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`):
The attention head dimension.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 8000):
The maximum sequence length that this model might ever be used with. Mimi's sliding window attention
allows sequence of up to 8000 tokens.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the LayerNorm normalization layers.
use_cache (`bool`, *optional*, defaults to `False`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
sliding_window (`int`, *optional*, defaults to 250):
Sliding window attention window size. If not specified, will default to `250`.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
layer_scale_initial_scale (`float`, *optional*, defaults to 0.01):
Initiale scale of the residual rescaling operation done in the Transformer models.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
Example:
```python
>>> from transformers import MimiModel, MimiConfig
>>> # Initializing a "kyutai/mimi" style configuration
>>> configuration = MimiConfig()
>>> # Initializing a model (with random weights) from the "kyutai/mimi" style configuration
>>> model = MimiModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mimi"
def __init__(
self,
sampling_rate=24_000,
frame_rate=12.5,
audio_channels=1,
hidden_size=512,
num_filters=64,
num_residual_layers=1,
upsampling_ratios=None,
kernel_size=7,
last_kernel_size=3,
residual_kernel_size=3,
dilation_growth_rate=2,
use_causal_conv=True,
pad_mode="constant",
compress=2,
trim_right_ratio=1.0,
codebook_size=2048,
codebook_dim=256,
num_quantizers=32,
use_conv_shortcut=False,
vector_quantization_hidden_dimension=256,
num_semantic_quantizers=1,
upsample_groups=512,
num_hidden_layers=8,
intermediate_size=2048,
num_attention_heads=8,
num_key_value_heads=8,
head_dim=None,
hidden_act="gelu",
max_position_embeddings=8000,
initializer_range=0.02,
norm_eps=1e-5,
use_cache=False,
rope_theta=10000.0,
sliding_window=250,
attention_dropout=0.0,
layer_scale_initial_scale=0.01,
attention_bias=False,
**kwargs,
):
self.sampling_rate = sampling_rate
self.frame_rate = frame_rate
self.audio_channels = audio_channels
self.hidden_size = hidden_size
self.num_filters = num_filters
self.num_residual_layers = num_residual_layers
self.upsampling_ratios = upsampling_ratios if upsampling_ratios else [8, 6, 5, 4]
self.kernel_size = kernel_size
self.last_kernel_size = last_kernel_size
self.residual_kernel_size = residual_kernel_size
self.dilation_growth_rate = dilation_growth_rate
self.use_causal_conv = use_causal_conv
self.pad_mode = pad_mode
self.compress = compress
self.trim_right_ratio = trim_right_ratio
self.codebook_size = codebook_size
self.codebook_dim = codebook_dim if codebook_dim is not None else hidden_size
self.num_quantizers = num_quantizers
self.use_conv_shortcut = use_conv_shortcut
self.vector_quantization_hidden_dimension = vector_quantization_hidden_dimension
self.upsample_groups = upsample_groups
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.norm_eps = norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.sliding_window = sliding_window
self.attention_dropout = attention_dropout
self.head_dim = head_dim or hidden_size // num_attention_heads
self.layer_scale_initial_scale = layer_scale_initial_scale
self.attention_bias = attention_bias
if num_semantic_quantizers >= self.num_quantizers:
raise ValueError(
f"The number of semantic quantizers should be lower than the total number of quantizers {self.num_quantizers}, but is currently {num_semantic_quantizers}."
)
self.num_semantic_quantizers = num_semantic_quantizers
super().__init__(**kwargs)
@property
def encodec_frame_rate(self) -> int:
hop_length = np.prod(self.upsampling_ratios)
return math.ceil(self.sampling_rate / hop_length)
@property
def num_codebooks(self) -> int:
# alias to num_quantizers
return self.num_quantizers
|
class_definition
| 855 | 11,893 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mimi/configuration_mimi.py
| null | 3,676 |
class MimiOutput(ModelOutput):
"""
Args:
audio_codes (`torch.LongTensor` of shape `(batch_size, num_quantizers, codes_length)`, *optional*):
Discret code embeddings computed using `model.encode`.
audio_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*)
Decoded audio values, obtained using the decoder part of Mimi.
encoder_past_key_values (`Cache`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding of the encoder transformer.
This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
The model will output the same cache format that is fed as input.
If `past_key_values` are used, the user can optionally input only the last `audio_values` or `audio_codes (those that don't
have their past key value states given to this model).
decoder_past_key_values (`Cache`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding of the decoder transformer.
This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
The model will output the same cache format that is fed as input.
If `past_key_values` are used, the user can optionally input only the last `audio_values` or `audio_codes (those that don't
have their past key value states given to this model).
"""
audio_codes: torch.LongTensor = None
audio_values: torch.FloatTensor = None
encoder_past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None
decoder_past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None
|
class_definition
| 1,643 | 3,631 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mimi/modeling_mimi.py
| null | 3,677 |
class MimiEncoderOutput(ModelOutput):
"""
Args:
audio_codes (`torch.LongTensor` of shape `(batch_size, num_quantizers, codes_length)`, *optional*):
Discret code embeddings computed using `model.encode`.
encoder_past_key_values (`Cache`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding of the encoder transformer.
This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
The model will output the same cache format that is fed as input.
If `past_key_values` are used, the user can optionally input only the last `audio_values` or `audio_codes (those that don't
have their past key value states given to this model).
"""
audio_codes: torch.LongTensor = None
encoder_past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None
|
class_definition
| 3,645 | 4,676 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mimi/modeling_mimi.py
| null | 3,678 |
class MimiDecoderOutput(ModelOutput):
"""
Args:
audio_values (`torch.FloatTensor` of shape `(batch_size, segment_length)`, *optional*):
Decoded audio values, obtained using the decoder part of Mimi.
decoder_past_key_values (`Cache`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding of the decoder transformer.
This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
The model will output the same cache format that is fed as input.
If `past_key_values` are used, the user can optionally input only the last `audio_values` or `audio_codes (those that don't
have their past key value states given to this model).
"""
audio_values: torch.FloatTensor = None
decoder_past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None
|
class_definition
| 4,690 | 5,719 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mimi/modeling_mimi.py
| null | 3,679 |
class MimiConv1d(nn.Module):
"""Conv1d with asymmetric or causal padding and normalization."""
def __init__(
self,
config,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
dilation: int = 1,
groups: int = 1,
pad_mode=None,
bias: bool = True,
):
super().__init__()
self.causal = config.use_causal_conv
self.pad_mode = config.pad_mode if pad_mode is None else pad_mode
# warn user on unusual setup between dilation and stride
if stride > 1 and dilation > 1:
logger.warning(
"MimiConv1d has been initialized with stride > 1 and dilation > 1"
f" (kernel_size={kernel_size} stride={stride}, dilation={dilation})."
)
self.conv = nn.Conv1d(
in_channels, out_channels, kernel_size, stride, dilation=dilation, groups=groups, bias=bias
)
kernel_size = self.conv.kernel_size[0]
stride = torch.tensor(self.conv.stride[0], dtype=torch.int64)
dilation = self.conv.dilation[0]
# Effective kernel size with dilations.
kernel_size = torch.tensor((kernel_size - 1) * dilation + 1, dtype=torch.int64)
self.register_buffer("stride", stride, persistent=False)
self.register_buffer("kernel_size", kernel_size, persistent=False)
self.register_buffer("padding_total", torch.tensor(kernel_size - stride, dtype=torch.int64), persistent=False)
# Asymmetric padding required for odd strides
self.padding_right = self.padding_total // 2
self.padding_left = self.padding_total - self.padding_right
def apply_weight_norm(self):
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
weight_norm(self.conv)
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.conv)
# Copied from transformers.models.encodec.modeling_encodec.EncodecConv1d._get_extra_padding_for_conv1d
def _get_extra_padding_for_conv1d(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor:
"""See `pad_for_conv1d`."""
length = hidden_states.shape[-1]
n_frames = (length - self.kernel_size + self.padding_total) / self.stride + 1
n_frames = torch.ceil(n_frames).to(torch.int64) - 1
ideal_length = n_frames * self.stride + self.kernel_size - self.padding_total
return ideal_length - length
@staticmethod
# Copied from transformers.models.encodec.modeling_encodec.EncodecConv1d._pad1d
def _pad1d(hidden_states: torch.Tensor, paddings: Tuple[int, int], mode: str = "zero", value: float = 0.0):
"""Tiny wrapper around torch.nn.functional.pad, just to allow for reflect padding on small input.
If this is the case, we insert extra 0 padding to the right before the reflection happens.
"""
length = hidden_states.shape[-1]
padding_left, padding_right = paddings
if not mode == "reflect":
return nn.functional.pad(hidden_states, paddings, mode, value)
max_pad = max(padding_left, padding_right)
extra_pad = 0
if length <= max_pad:
extra_pad = max_pad - length + 1
hidden_states = nn.functional.pad(hidden_states, (0, extra_pad))
padded = nn.functional.pad(hidden_states, paddings, mode, value)
end = padded.shape[-1] - extra_pad
return padded[..., :end]
def forward(self, hidden_states):
extra_padding = self._get_extra_padding_for_conv1d(hidden_states)
if self.causal:
# Left padding for causal
hidden_states = self._pad1d(hidden_states, (self.padding_total, extra_padding), mode=self.pad_mode)
else:
hidden_states = self._pad1d(
hidden_states, (self.padding_left, self.padding_right + extra_padding), mode=self.pad_mode
)
hidden_states = self.conv(hidden_states)
return hidden_states
|
class_definition
| 5,722 | 9,855 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mimi/modeling_mimi.py
| null | 3,680 |
class MimiConvTranspose1d(nn.Module):
"""ConvTranspose1d with asymmetric or causal padding and normalization."""
def __init__(
self,
config,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
groups: int = 1,
bias=True,
):
super().__init__()
self.causal = config.use_causal_conv
self.trim_right_ratio = config.trim_right_ratio
self.conv = nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride, groups=groups, bias=bias)
if not (self.causal or self.trim_right_ratio == 1.0):
raise ValueError("`trim_right_ratio` != 1.0 only makes sense for causal convolutions")
kernel_size = self.conv.kernel_size[0]
stride = self.conv.stride[0]
padding_total = kernel_size - stride
# We will only trim fixed padding. Extra padding from `pad_for_conv1d` would be
# removed at the very end, when keeping only the right length for the output,
# as removing it here would require also passing the length at the matching layer
# in the encoder.
if self.causal:
# Trim the padding on the right according to the specified ratio
# if trim_right_ratio = 1.0, trim everything from right
self.padding_right = math.ceil(padding_total * self.trim_right_ratio)
else:
# Asymmetric padding required for odd strides
self.padding_right = padding_total // 2
self.padding_left = padding_total - self.padding_right
def apply_weight_norm(self):
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
weight_norm(self.conv)
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.conv)
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
# unpad
end = hidden_states.shape[-1] - self.padding_right
hidden_states = hidden_states[..., self.padding_left : end]
return hidden_states
|
class_definition
| 9,858 | 12,019 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mimi/modeling_mimi.py
| null | 3,681 |
class MimiResnetBlock(nn.Module):
"""
Residual block from SEANet model as used by Mimi.
"""
def __init__(self, config: MimiConfig, dim: int, dilations: List[int]):
super().__init__()
kernel_sizes = (config.residual_kernel_size, 1)
if len(kernel_sizes) != len(dilations):
raise ValueError("Number of kernel sizes should match number of dilations")
hidden = dim // config.compress
block = []
for i, (kernel_size, dilation) in enumerate(zip(kernel_sizes, dilations)):
in_chs = dim if i == 0 else hidden
out_chs = dim if i == len(kernel_sizes) - 1 else hidden
block += [nn.ELU()]
block += [MimiConv1d(config, in_chs, out_chs, kernel_size, dilation=dilation)]
self.block = nn.ModuleList(block)
if config.use_conv_shortcut:
self.shortcut = MimiConv1d(config, dim, dim, kernel_size=1)
else:
self.shortcut = nn.Identity()
def forward(self, hidden_states):
residual = hidden_states
for layer in self.block:
hidden_states = layer(hidden_states)
return self.shortcut(residual) + hidden_states
|
class_definition
| 12,133 | 13,331 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mimi/modeling_mimi.py
| null | 3,682 |
class MimiEncoder(nn.Module):
"""SEANet encoder as used by Mimi."""
def __init__(self, config: MimiConfig):
super().__init__()
model = [MimiConv1d(config, config.audio_channels, config.num_filters, config.kernel_size)]
scaling = 1
# Downsample to raw audio scale
for ratio in reversed(config.upsampling_ratios):
current_scale = scaling * config.num_filters
# Add residual layers
for j in range(config.num_residual_layers):
model += [MimiResnetBlock(config, current_scale, [config.dilation_growth_rate**j, 1])]
# Add downsampling layers
model += [nn.ELU()]
model += [MimiConv1d(config, current_scale, current_scale * 2, kernel_size=ratio * 2, stride=ratio)]
scaling *= 2
model += [nn.ELU()]
model += [MimiConv1d(config, scaling * config.num_filters, config.hidden_size, config.last_kernel_size)]
self.layers = nn.ModuleList(model)
# Copied from transformers.models.encodec.modeling_encodec.EncodecEncoder.forward
def forward(self, hidden_states):
for layer in self.layers:
hidden_states = layer(hidden_states)
return hidden_states
|
class_definition
| 13,334 | 14,576 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mimi/modeling_mimi.py
| null | 3,683 |
class MimiLayerScale(nn.Module):
"""Layer scale from [Touvron et al 2021] (https://arxiv.org/pdf/2103.17239.pdf).
This rescales diagonally the residual outputs close to 0, with a learnt scale.
"""
def __init__(self, config):
super().__init__()
channels = config.hidden_size
initial_scale = config.layer_scale_initial_scale
self.scale = nn.Parameter(torch.full((channels,), initial_scale, requires_grad=True))
def forward(self, x: torch.Tensor):
return self.scale * x
|
class_definition
| 14,579 | 15,107 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mimi/modeling_mimi.py
| null | 3,684 |
class MimiRotaryEmbedding(nn.Module):
def __init__(self, config: MimiConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
def _dynamic_frequency_update(self, position_ids, device):
"""
dynamic RoPE layers should recompute `inv_freq` in the following situations:
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
"""
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
self.max_seq_len_cached = seq_len
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
# This .to() is needed if the model has been moved to a device after being initialized (because
# the buffer is automatically moved, but not the original copy)
self.original_inv_freq = self.original_inv_freq.to(device)
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.original_max_seq_len
@torch.no_grad()
def forward(self, x, position_ids):
if "dynamic" in self.rope_type:
self._dynamic_frequency_update(position_ids, device=x.device)
# Core RoPE block
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
cos = cos * self.attention_scaling
sin = sin * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
class_definition
| 15,211 | 18,404 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mimi/modeling_mimi.py
| null | 3,685 |
class MimiMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
# Copied from transformers.models.clip.modeling_clip.CLIPMLP.forward
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
|
class_definition
| 20,275 | 20,942 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mimi/modeling_mimi.py
| null | 3,686 |
class MimiAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: MimiConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = config.head_dim
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
self.scaling = 1 / math.sqrt(config.head_dim)
if self.hidden_size % self.num_heads != 0:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
self.rotary_emb = MimiRotaryEmbedding(config)
self.sliding_window = config.sliding_window # Ignore copy
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
|
class_definition
| 21,751 | 26,537 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mimi/modeling_mimi.py
| null | 3,687 |
class MimiFlashAttention2(MimiAttention):
"""
Mimi flash attention module. This module inherits from `MimiAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if isinstance(past_key_value, StaticCache):
raise ValueError(
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
)
output_attentions = False
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attention_dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (MimiRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = _flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
position_ids=position_ids,
dropout=dropout_rate,
sliding_window=getattr(self, "sliding_window", None),
is_causal=self.is_causal,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
)
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
|
class_definition
| 26,671 | 32,257 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mimi/modeling_mimi.py
| null | 3,688 |
class MimiSdpaAttention(MimiAttention):
"""
Mimi attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`MimiAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from MimiAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"MimiModel is using MimiSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and causal_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
|
class_definition
| 32,389 | 36,809 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mimi/modeling_mimi.py
| null | 3,689 |
class MimiTransformerLayer(nn.Module):
def __init__(self, config: MimiConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = MIMI_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
self.mlp = MimiMLP(config)
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
self.self_attn_layer_scale = MimiLayerScale(config)
self.mlp_layer_scale = MimiLayerScale(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*):
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
query_sequence_length, key_sequence_length)` if default attention is used.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = residual + self.self_attn_layer_scale(hidden_states)
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + self.mlp_layer_scale(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
|
class_definition
| 36,948 | 40,399 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mimi/modeling_mimi.py
| null | 3,690 |
class MimiTransformerModel(nn.Module):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MimiTransformerLayer`]
Args:
config: MimiConfig
"""
def __init__(self, config: MimiConfig):
super().__init__()
self.layers = nn.ModuleList(
[MimiTransformerLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self._attn_implementation = config._attn_implementation
self.gradient_checkpointing = False
self.config = config
def forward(
self,
hidden_states: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
"""
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Embedded representation that will be contextualized by the model
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance;
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if use_cache and not isinstance(past_key_values, Cache):
if past_key_values is None:
past_key_values = DynamicCache()
else:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
logger.warning_once(
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + hidden_states.shape[1], device=hidden_states.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = None
if attention_mask is not None:
causal_mask = self._update_causal_mask(
attention_mask, hidden_states, cache_position, past_key_values, output_attentions
)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
# Copied from transformers.models.phi3.modeling_phi3.Phi3Model._update_causal_mask with Phi3->Mimi
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and past_key_values is not None:
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
if is_padding_right:
raise ValueError(
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Mimi. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if (
self.config._attn_implementation == "sdpa"
and not (using_static_cache or using_sliding_window_cache)
and not output_attentions
):
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
sliding_window=self.config.sliding_window,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
# SlidingWindowCache or StaticCache
if using_sliding_window_cache or using_static_cache:
target_length = past_key_values.get_max_cache_shape()
# DynamicCache or no cache
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
config=self.config,
past_key_values=past_key_values,
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
# Copied from transformers.models.mistral.modeling_mistral.MistralModel._prepare_4d_causal_attention_mask_with_cache_position with Mistral->Mimi
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
config: MimiConfig,
past_key_values: Cache,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
config (`MimiConfig`):
The model's configuration class
past_key_values (`Cache`):
The cache class that is being used currently to generate
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
if config.sliding_window is not None:
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
# the check is needed to verify is current checkpoint was trained with sliding window or not
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
sliding_attend_mask = torch.arange(target_length, device=device) <= (
cache_position.reshape(-1, 1) - config.sliding_window
)
diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
causal_mask *= diagonal_attend_mask
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
if attention_mask.shape[-1] > target_length:
attention_mask = attention_mask[:, :target_length]
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
|
class_definition
| 40,402 | 57,139 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mimi/modeling_mimi.py
| null | 3,691 |
class MimiDecoder(nn.Module):
"""SEANet decoder as used by Mimi."""
def __init__(self, config: MimiConfig):
super().__init__()
scaling = int(2 ** len(config.upsampling_ratios))
model = [MimiConv1d(config, config.hidden_size, scaling * config.num_filters, config.kernel_size)]
# Upsample to raw audio scale
for ratio in config.upsampling_ratios:
current_scale = scaling * config.num_filters
# Add upsampling layers
model += [nn.ELU()]
model += [
MimiConvTranspose1d(config, current_scale, current_scale // 2, kernel_size=ratio * 2, stride=ratio)
]
# Add residual layers
for j in range(config.num_residual_layers):
model += [MimiResnetBlock(config, current_scale // 2, (config.dilation_growth_rate**j, 1))]
scaling //= 2
# Add final layers
model += [nn.ELU()]
model += [MimiConv1d(config, config.num_filters, config.audio_channels, config.last_kernel_size)]
self.layers = nn.ModuleList(model)
# Copied from transformers.models.encodec.modeling_encodec.EncodecDecoder.forward
def forward(self, hidden_states):
for layer in self.layers:
hidden_states = layer(hidden_states)
return hidden_states
|
class_definition
| 57,142 | 58,480 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mimi/modeling_mimi.py
| null | 3,692 |
class MimiEuclideanCodebook(nn.Module):
"""Codebook with Euclidean distance."""
def __init__(self, config: MimiConfig, epsilon: float = 1e-5):
super().__init__()
embed = torch.zeros(config.codebook_size, config.codebook_dim)
self.codebook_size = config.codebook_size
self.register_buffer("initialized", torch.Tensor([True]))
self.register_buffer("cluster_usage", torch.ones(config.codebook_size))
self.register_buffer("embed_sum", embed)
self._embed = None
self.epsilon = epsilon
@property
def embed(self) -> torch.Tensor:
if self._embed is None:
self._embed = self.embed_sum / self.cluster_usage.clamp(min=self.epsilon)[:, None]
return self._embed
def quantize(self, hidden_states):
# Projects each vector in `hidden_states` over the nearest centroid and return its index.
# `hidden_states` should be `[N, D]` with `N` the number of input vectors and `D` the dimension.
dists = torch.cdist(hidden_states[None], self.embed[None], p=2)[0]
embed_ind = dists.argmin(dim=-1)
return embed_ind
# Copied from transformers.models.encodec.modeling_encodec.EncodecEuclideanCodebook.encode
def encode(self, hidden_states):
shape = hidden_states.shape
# pre-process
hidden_states = hidden_states.reshape((-1, shape[-1]))
# quantize
embed_ind = self.quantize(hidden_states)
# post-process
embed_ind = embed_ind.view(*shape[:-1])
return embed_ind
# Copied from transformers.models.encodec.modeling_encodec.EncodecEuclideanCodebook.decode
def decode(self, embed_ind):
quantize = nn.functional.embedding(embed_ind, self.embed)
return quantize
|
class_definition
| 58,483 | 60,264 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mimi/modeling_mimi.py
| null | 3,693 |
class MimiVectorQuantization(nn.Module):
"""
Vector quantization implementation. Currently supports only euclidean distance.
"""
def __init__(self, config: MimiConfig):
super().__init__()
self.codebook = MimiEuclideanCodebook(config)
def encode(self, hidden_states):
hidden_states = hidden_states.permute(0, 2, 1)
embed_in = self.codebook.encode(hidden_states)
return embed_in
def decode(self, embed_ind):
quantize = self.codebook.decode(embed_ind)
quantize = quantize.permute(0, 2, 1)
return quantize
|
class_definition
| 60,371 | 60,963 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mimi/modeling_mimi.py
| null | 3,694 |
class MimiResidualVectorQuantizer(nn.Module):
"""Residual Vector Quantizer."""
def __init__(self, config: MimiConfig, num_quantizers: int = None):
super().__init__()
self.codebook_size = config.codebook_size
self.frame_rate = config.frame_rate
self.num_quantizers = num_quantizers if num_quantizers is not None else config.num_quantizers
self.layers = nn.ModuleList([MimiVectorQuantization(config) for _ in range(self.num_quantizers)])
self.input_proj = None
self.output_proj = None
if config.vector_quantization_hidden_dimension != config.hidden_size:
self.input_proj = torch.nn.Conv1d(
config.hidden_size, config.vector_quantization_hidden_dimension, 1, bias=False
)
self.output_proj = torch.nn.Conv1d(
config.vector_quantization_hidden_dimension, config.hidden_size, 1, bias=False
)
def encode(self, embeddings: torch.Tensor, num_quantizers: Optional[int] = None) -> torch.Tensor:
"""
Encode a given input tensor with the specified frame rate at the given number of quantizers / codebooks. The RVQ encode method sets
the appropriate number of quantizers to use and returns indices for each quantizer.
"""
if self.input_proj is not None:
embeddings = self.input_proj(embeddings)
num_quantizers = num_quantizers if num_quantizers is not None else self.num_quantizers
residual = embeddings
all_indices = []
for layer in self.layers[:num_quantizers]:
indices = layer.encode(residual)
quantized = layer.decode(indices)
residual = residual - quantized
all_indices.append(indices)
out_indices = torch.stack(all_indices)
return out_indices
def decode(self, codes: torch.Tensor) -> torch.Tensor:
"""Decode the given codes of shape [B, K, T] to the quantized representation."""
quantized_out = torch.tensor(0.0, device=codes.device)
codes = codes.transpose(0, 1)
for i, indices in enumerate(codes):
layer = self.layers[i]
quantized = layer.decode(indices)
quantized_out = quantized_out + quantized
if self.output_proj is not None:
quantized_out = self.output_proj(quantized_out)
return quantized_out
|
class_definition
| 60,966 | 63,369 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mimi/modeling_mimi.py
| null | 3,695 |
class MimiSplitResidualVectorQuantizer(nn.Module):
"""Split Residual Vector Quantizer."""
def __init__(self, config: MimiConfig):
super().__init__()
self.codebook_size = config.codebook_size
self.frame_rate = config.frame_rate
self.max_num_quantizers = config.num_quantizers
self.num_semantic_quantizers = config.num_semantic_quantizers
self.num_acoustic_quantizers = config.num_quantizers - config.num_semantic_quantizers
self.semantic_residual_vector_quantizer = MimiResidualVectorQuantizer(config, self.num_semantic_quantizers)
self.acoustic_residual_vector_quantizer = MimiResidualVectorQuantizer(config, self.num_acoustic_quantizers)
def encode(self, embeddings: torch.Tensor, num_quantizers: Optional[float] = None) -> torch.Tensor:
"""
Encode a given input tensor with the specified frame rate at the given number of quantizers / codebooks. The RVQ encode method sets
the appropriate number of quantizers to use and returns indices for each quantizer.
"""
num_quantizers = self.max_num_quantizers if num_quantizers is None else num_quantizers
if num_quantizers > self.max_num_quantizers:
raise ValueError(
f"The number of quantizers (i.e codebooks) asked should be lower than the total number of quantizers {self.max_num_quantizers}, but is currently {num_quantizers}."
)
if num_quantizers < self.num_semantic_quantizers:
raise ValueError(
f"The number of quantizers (i.e codebooks) asked should be higher than the number of semantic quantizers {self.num_semantic_quantizers}, but is currently {num_quantizers}."
)
# codes is [K, B, T], with T frames, K nb of codebooks.
codes = self.semantic_residual_vector_quantizer.encode(embeddings)
if num_quantizers > self.num_semantic_quantizers:
acoustic_codes = self.acoustic_residual_vector_quantizer.encode(
embeddings, num_quantizers=num_quantizers - self.num_semantic_quantizers
)
codes = torch.cat([codes, acoustic_codes], dim=0)
return codes
def decode(self, codes: torch.Tensor) -> torch.Tensor:
"""Decode the given codes to the quantized representation."""
# The first num_semantic_quantizers codebooks are decoded using the semantic RVQ
quantized_out = self.semantic_residual_vector_quantizer.decode(codes[:, : self.num_semantic_quantizers])
# The rest of the codebooks are decoded using the acoustic RVQ
if codes.shape[1] > self.num_semantic_quantizers:
quantized_out += self.acoustic_residual_vector_quantizer.decode(codes[:, self.num_semantic_quantizers :])
return quantized_out
|
class_definition
| 63,372 | 66,185 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mimi/modeling_mimi.py
| null | 3,696 |
class MimiPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MimiConfig
base_model_prefix = "mimi"
main_input_name = "input_values"
supports_gradient_checkpointing = True
_no_split_modules = ["MimiDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_static_cache = True
# Copied from transformers.models.encodec.modeling_encodec.EncodecPreTrainedModel._init_weights
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
nn.init.uniform_(module.bias, a=-k, b=k)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LSTM):
for name, param in module.named_parameters():
if "weight" in name:
nn.init.xavier_uniform_(param)
elif "bias" in name:
nn.init.constant_(param, 0.0)
|
class_definition
| 66,188 | 68,066 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mimi/modeling_mimi.py
| null | 3,697 |
class MimiModel(MimiPreTrainedModel):
def __init__(self, config: MimiConfig):
super().__init__(config)
self.config = config
self.encoder = MimiEncoder(config)
self.encoder_transformer = MimiTransformerModel(config)
self.downsample = None
self.upsample = None
if config.frame_rate != config.encodec_frame_rate:
self.downsample = MimiConv1d(
config,
config.hidden_size,
config.hidden_size,
kernel_size=2 * int(config.encodec_frame_rate / config.frame_rate),
stride=2,
bias=False,
pad_mode="replicate",
)
self.upsample = MimiConvTranspose1d(
config,
config.hidden_size,
config.hidden_size,
kernel_size=2 * int(config.encodec_frame_rate / config.frame_rate),
stride=2,
bias=False,
groups=config.upsample_groups,
)
self.decoder_transformer = MimiTransformerModel(config)
self.decoder = MimiDecoder(config)
self.quantizer = MimiSplitResidualVectorQuantizer(config)
self.bits_per_codebook = int(math.log2(self.config.codebook_size))
if 2**self.bits_per_codebook != self.config.codebook_size:
raise ValueError("The codebook_size must be a power of 2.")
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def _encode_frame(
self,
input_values: torch.Tensor,
num_quantizers: int,
padding_mask: int,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
return_dict: Optional[bool] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""
Encodes the given input using the underlying VQVAE. The padding mask is required to compute the correct scale.
"""
embeddings = self.encoder(input_values)
encoder_outputs = self.encoder_transformer(
embeddings.transpose(1, 2), past_key_values=past_key_values, return_dict=return_dict
)
if return_dict:
past_key_values = encoder_outputs.get("past_key_values")
elif len(encoder_outputs) > 1:
past_key_values = encoder_outputs[1]
embeddings = encoder_outputs[0].transpose(1, 2)
embeddings = self.downsample(embeddings)
codes = self.quantizer.encode(embeddings, num_quantizers)
codes = codes.transpose(0, 1)
return codes, past_key_values
def encode(
self,
input_values: torch.Tensor,
padding_mask: torch.Tensor = None,
num_quantizers: Optional[float] = None,
encoder_past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor, Optional[torch.Tensor]], MimiEncoderOutput]:
"""
Encodes the input audio waveform into discrete codes.
Args:
input_values (`torch.Tensor` of shape `(batch_size, channels, sequence_length)`):
Float values of the input audio waveform.
padding_mask (`torch.Tensor` of shape `(batch_size, channels, sequence_length)`):
Indicates which inputs are to be ignored due to padding, where elements are either 1 for *not masked* or 0
for *masked*.
num_quantizers (`int`, *optional*):
Number of quantizers (i.e codebooks) to use. By default, all quantizers are used.
encoder_past_key_values (`Cache`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding of the encoder transformer.
This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
The model will output the same cache format that is fed as input.
If `past_key_values` are used, the user can optionally input only the last `audio_values` or `audio_codes (those that don't
have their past key value states given to this model).
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
`codebook` of shape `[batch_size, num_codebooks, frames]`, the discrete encoded codes for the input audio waveform.
"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
num_quantizers = self.config.num_quantizers if num_quantizers is None else num_quantizers
if num_quantizers > self.config.num_quantizers:
raise ValueError(
f"The number of quantizers (i.e codebooks) asked should be lower than the total number of quantizers {self.config.num_quantizers}, but is currently {num_quantizers}."
)
_, channels, input_length = input_values.shape
if channels < 1 or channels > 2:
raise ValueError(f"Number of audio channels must be 1 or 2, but got {channels}")
if padding_mask is None:
padding_mask = torch.ones_like(input_values).bool()
encoded_frames, encoder_past_key_values = self._encode_frame(
input_values,
num_quantizers,
padding_mask.bool(),
past_key_values=encoder_past_key_values,
return_dict=return_dict,
)
if not return_dict:
return (
encoded_frames,
encoder_past_key_values,
)
return MimiEncoderOutput(encoded_frames, encoder_past_key_values)
def _decode_frame(
self,
codes: torch.Tensor,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
return_dict: Optional[bool] = None,
) -> torch.Tensor:
embeddings = self.quantizer.decode(codes)
embeddings = self.upsample(embeddings)
decoder_outputs = self.decoder_transformer(
embeddings.transpose(1, 2), past_key_values=past_key_values, return_dict=return_dict
)
if return_dict:
past_key_values = decoder_outputs.get("past_key_values")
elif len(decoder_outputs) > 1:
past_key_values = decoder_outputs[1]
embeddings = decoder_outputs[0].transpose(1, 2)
outputs = self.decoder(embeddings)
return outputs, past_key_values
def decode(
self,
audio_codes: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
decoder_past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor, torch.Tensor], MimiDecoderOutput]:
"""
Decodes the given frames into an output audio waveform.
Note that the output might be a bit bigger than the input. In that case, any extra steps at the end can be
trimmed.
Args:
audio_codes (`torch.LongTensor` of shape `(batch_size, num_quantizers, codes_length)`, *optional*):
Discret code embeddings computed using `model.encode`.
padding_mask (`torch.Tensor` of shape `(batch_size, channels, sequence_length)`):
Indicates which inputs are to be ignored due to padding, where elements are either 1 for *not masked* or 0
for *masked*.
decoder_past_key_values (`Cache`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up sequential decoding of the decoder transformer.
This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
The model will output the same cache format that is fed as input.
If `past_key_values` are used, the user can optionally input only the last `audio_values` or `audio_codes (those that don't
have their past key value states given to this model).
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
audio_values, decoder_past_key_values = self._decode_frame(
audio_codes, past_key_values=decoder_past_key_values, return_dict=return_dict
)
# truncate based on padding mask
if padding_mask is not None and padding_mask.shape[-1] < audio_values.shape[-1]:
audio_values = audio_values[..., : padding_mask.shape[-1]]
if not return_dict:
return (
audio_values,
decoder_past_key_values,
)
return MimiDecoderOutput(audio_values, decoder_past_key_values)
@add_start_docstrings_to_model_forward(MIMI_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=MimiOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_values: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
num_quantizers: Optional[int] = None,
audio_codes: Optional[torch.Tensor] = None,
encoder_past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
decoder_past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor, torch.Tensor], MimiOutput]:
r"""
Returns:
Examples:
```python
>>> from datasets import load_dataset
>>> from transformers import AutoFeatureExtractor, MimiModel
>>> dataset = load_dataset("hf-internal-testing/ashraq-esc50-1-dog-example")
>>> audio_sample = dataset["train"]["audio"][0]["array"]
>>> model_id = "kyutai/mimi"
>>> model = MimiModel.from_pretrained(model_id)
>>> feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
>>> inputs = feature_extractor(raw_audio=audio_sample, return_tensors="pt")
>>> outputs = model(**inputs)
>>> audio_codes = outputs.audio_codes
>>> audio_values = outputs.audio_values
```"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
if padding_mask is None:
padding_mask = torch.ones_like(input_values).bool()
if audio_codes is None:
encoder_outputs = self.encode(
input_values, padding_mask, num_quantizers, encoder_past_key_values, return_dict=return_dict
)
audio_codes = encoder_outputs[0]
if return_dict:
encoder_past_key_values = encoder_outputs.get("past_key_values")
elif len(encoder_outputs) > 1:
encoder_past_key_values = encoder_outputs[1]
decoder_outputs = self.decode(audio_codes, padding_mask, decoder_past_key_values, return_dict=return_dict)
audio_values = decoder_outputs[0]
if return_dict:
decoder_past_key_values = decoder_outputs.get("past_key_values")
elif len(decoder_outputs) > 1:
decoder_past_key_values = decoder_outputs[1]
if not return_dict:
return (audio_codes, audio_values, encoder_past_key_values, decoder_past_key_values)
return MimiOutput(
audio_codes=audio_codes,
audio_values=audio_values,
encoder_past_key_values=encoder_past_key_values,
decoder_past_key_values=decoder_past_key_values,
)
|
class_definition
| 71,249 | 83,223 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mimi/modeling_mimi.py
| null | 3,698 |
class WavLMConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`WavLMModel`]. It is used to instantiate an WavLM
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the WavLM
[microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32):
Vocabulary size of the WavLM model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`WavLMModel`]. Vocabulary size of the model. Defines the different tokens
that can be represented by the *inputs_ids* passed to the forward method of [`WavLMModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
activation_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for activations inside the fully connected layer.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
final_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the final projection layer of [`WavLMForCTC`].
layerdrop (`float`, *optional*, defaults to 0.1):
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
details.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
feat_extract_norm (`str`, *optional*, defaults to `"group"`):
The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group
normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D
convolutional layers.
feat_proj_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for output of the feature encoder.
feat_extract_activation (`str, `optional`, defaults to `"gelu"`):
The non-linear activation function (function or string) in the 1D convolutional layers of the feature
extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
length of *conv_kernel* defines the number of convolutional layers and has to match the length of
*conv_dim*.
conv_bias (`bool`, *optional*, defaults to `False`):
Whether the 1D convolutional layers have a bias.
num_conv_pos_embeddings (`int`, *optional*, defaults to 128):
Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
embeddings layer.
num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16):
Number of groups of 1D convolutional positional embeddings layer.
do_stable_layer_norm (`bool`, *optional*, defaults to `False`):
Whether to apply *stable* layer norm architecture of the Transformer encoder. `do_stable_layer_norm is
True` corresponds to applying layer norm before the attention layer, whereas `do_stable_layer_norm is
False` corresponds to applying layer norm after the attention layer.
apply_spec_augment (`bool`, *optional*, defaults to `True`):
Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
[SpecAugment: A Simple Data Augmentation Method for Automatic Speech
Recognition](https://arxiv.org/abs/1904.08779).
mask_time_prob (`float`, *optional*, defaults to 0.05):
Propability of each feature vector along the time axis to be chosen as the start of the vector span to be
masked. Approximately `mask_time_prob * sequence_length // mask_time_length` feature vectors will be masked
along the time axis. This is only relevant if `apply_spec_augment is True`.
mask_time_length (`int`, *optional*, defaults to 10):
Length of vector span along the time axis.
mask_time_min_masks (`int`, *optional*, defaults to 2),:
The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
mask_time_min_masks''
mask_feature_prob (`float`, *optional*, defaults to 0.0):
Propability of each feature vector along the feature axis to be chosen as the start of the vector span to
be masked. Approximately `mask_time_prob * hidden_size // mask_time_length` feature vectors will be masked
along the time axis. This is only relevant if `apply_spec_augment is True`.
mask_feature_length (`int`, *optional*, defaults to 10):
Length of vector span along the feature axis.
num_codevectors_per_group (`int`, *optional*, defaults to 320):
Number of entries in each quantization codebook (group).
num_codevector_groups (`int`, *optional*, defaults to 2):
Number of codevector groups for product codevector quantization.
contrastive_logits_temperature (`float`, *optional*, defaults to 0.1):
The temperature *kappa* in the contrastive loss.
num_negatives (`int`, *optional*, defaults to 100):
Number of negative samples for the contrastive loss.
codevector_dim (`int`, *optional*, defaults to 256):
Dimensionality of the quantized feature vectors.
proj_codevector_dim (`int`, *optional*, defaults to 256):
Dimensionality of the final projection of both the quantized and the transformer features.
diversity_loss_weight (`int`, *optional*, defaults to 0.1):
The weight of the codebook diversity loss component.
ctc_loss_reduction (`str`, *optional*, defaults to `"mean"`):
Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
instance of [`WavLMForCTC`].
ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
of [`WavLMForCTC`].
use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
instance of [`WavLMForSequenceClassification`].
classifier_proj_size (`int`, *optional*, defaults to 256):
Dimensionality of the projection before token mean-pooling for classification.
tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`):
A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN*
module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers.
tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the
*XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*.
tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`):
A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the
*XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*.
xvector_output_dim (`int`, *optional*, defaults to 512):
Dimensionality of the *XVector* embedding vectors.
add_adapter (`bool`, *optional*, defaults to `False`):
Whether a convolutional network should be stacked on top of the Wav2Vec2 Encoder. Can be very useful for
warm-starting Wav2Vec2 for SpeechEncoderDecoder models.
adapter_kernel_size (`int`, *optional*, defaults to 3):
Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
adapter_stride (`int`, *optional*, defaults to 2):
Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
num_adapter_layers (`int`, *optional*, defaults to 3):
Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is
True`.
output_hidden_size (`int`, *optional*):
Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant
if `add_adapter is True`.
Example:
```python
```
Example:
```python
>>> from transformers import WavLMConfig, WavLMModel
>>> # Initializing a WavLM facebook/wavlm-base-960h style configuration
>>> configuration = WavLMConfig()
>>> # Initializing a model (with random weights) from the facebook/wavlm-base-960h style configuration
>>> model = WavLMModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "wavlm"
def __init__(
self,
vocab_size=32,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout=0.1,
activation_dropout=0.1,
attention_dropout=0.1,
feat_proj_dropout=0.0,
final_dropout=0.1,
layerdrop=0.1,
initializer_range=0.02,
layer_norm_eps=1e-5,
feat_extract_norm="group",
feat_extract_activation="gelu",
conv_dim=(512, 512, 512, 512, 512, 512, 512),
conv_stride=(5, 2, 2, 2, 2, 2, 2),
conv_kernel=(10, 3, 3, 3, 3, 2, 2),
conv_bias=False,
num_conv_pos_embeddings=128,
num_conv_pos_embedding_groups=16,
num_buckets=320,
max_bucket_distance=800,
do_stable_layer_norm=False,
apply_spec_augment=True,
mask_time_prob=0.05,
mask_time_length=10,
mask_time_min_masks=2,
mask_feature_prob=0.0,
mask_feature_length=10,
num_codevectors_per_group=320,
num_codevector_groups=2,
contrastive_logits_temperature=0.1,
num_negatives=100,
codevector_dim=256,
proj_codevector_dim=256,
diversity_loss_weight=0.1,
ctc_loss_reduction="mean",
ctc_zero_infinity=False,
use_weighted_layer_sum=False,
classifier_proj_size=256,
tdnn_dim=(512, 512, 512, 512, 1500),
tdnn_kernel=(5, 3, 3, 1, 1),
tdnn_dilation=(1, 2, 3, 1, 1),
xvector_output_dim=512,
num_ctc_classes=80,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
add_adapter=False,
adapter_kernel_size=3,
adapter_stride=2,
num_adapter_layers=3,
output_hidden_size=None,
**kwargs,
):
super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id)
self.hidden_size = hidden_size
self.feat_extract_norm = feat_extract_norm
self.feat_extract_activation = feat_extract_activation
self.conv_dim = list(conv_dim)
self.conv_stride = list(conv_stride)
self.conv_kernel = list(conv_kernel)
self.conv_bias = conv_bias
self.num_buckets = num_buckets
self.max_bucket_distance = max_bucket_distance
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
self.num_feat_extract_layers = len(self.conv_dim)
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.num_attention_heads = num_attention_heads
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.feat_proj_dropout = feat_proj_dropout
self.final_dropout = final_dropout
self.layerdrop = layerdrop
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
self.num_ctc_classes = num_ctc_classes
self.vocab_size = vocab_size
self.do_stable_layer_norm = do_stable_layer_norm
self.use_weighted_layer_sum = use_weighted_layer_sum
self.classifier_proj_size = classifier_proj_size
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"
f" `len(config.conv_kernel) = {len(self.conv_kernel)}`."
)
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
self.apply_spec_augment = apply_spec_augment
self.mask_time_prob = mask_time_prob
self.mask_time_length = mask_time_length
self.mask_time_min_masks = mask_time_min_masks
self.mask_feature_prob = mask_feature_prob
self.mask_feature_length = mask_feature_length
# parameters for pretraining with codevector quantized representations
self.num_codevectors_per_group = num_codevectors_per_group
self.num_codevector_groups = num_codevector_groups
self.contrastive_logits_temperature = contrastive_logits_temperature
self.num_negatives = num_negatives
self.codevector_dim = codevector_dim
self.proj_codevector_dim = proj_codevector_dim
self.diversity_loss_weight = diversity_loss_weight
# ctc loss
self.ctc_loss_reduction = ctc_loss_reduction
self.ctc_zero_infinity = ctc_zero_infinity
# adapter
self.add_adapter = add_adapter
self.adapter_kernel_size = adapter_kernel_size
self.adapter_stride = adapter_stride
self.num_adapter_layers = num_adapter_layers
self.output_hidden_size = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
self.classifier_proj_size = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
self.tdnn_dim = list(tdnn_dim)
self.tdnn_kernel = list(tdnn_kernel)
self.tdnn_dilation = list(tdnn_dilation)
self.xvector_output_dim = xvector_output_dim
@property
def inputs_to_logits_ratio(self):
return functools.reduce(operator.mul, self.conv_stride, 1)
|
class_definition
| 861 | 18,535 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/wavlm/configuration_wavlm.py
| null | 3,699 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.