text
stringlengths
31
243k
type
stringclasses
1 value
start
int64
36
275k
end
int64
286
280k
depth
int64
0
1
filepath
stringlengths
85
188
parent_class
stringclasses
3 values
class_index
int64
0
10.8k
class TFAlbertForTokenClassification(TFAlbertPreTrainedModel, TFTokenClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"predictions"] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config: AlbertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.albert = TFAlbertMainLayer(config, add_pooling_layer=False, name="albert") classifier_dropout_prob = ( config.classifier_dropout_prob if config.classifier_dropout_prob is not None else config.hidden_dropout_prob ) self.dropout = keras.layers.Dropout(rate=classifier_dropout_prob) self.classifier = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.albert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(inputs=sequence_output, training=training) logits = self.classifier(inputs=sequence_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "albert", None) is not None: with tf.name_scope(self.albert.name): self.albert.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size])
class_definition
55,281
59,019
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_tf_albert.py
null
3,200
class TFAlbertForQuestionAnswering(TFAlbertPreTrainedModel, TFQuestionAnsweringLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"predictions"] def __init__(self, config: AlbertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.albert = TFAlbertMainLayer(config, add_pooling_layer=False, name="albert") self.qa_outputs = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="vumichien/albert-base-v2-squad2", output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, qa_target_start_index=12, qa_target_end_index=13, expected_output="'a nice puppet'", expected_loss=7.36, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs = self.albert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(inputs=sequence_output) start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1) start_logits = tf.squeeze(input=start_logits, axis=-1) end_logits = tf.squeeze(input=end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "albert", None) is not None: with tf.name_scope(self.albert.name): self.albert.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.hidden_size])
class_definition
59,309
63,902
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_tf_albert.py
null
3,201
class TFAlbertForMultipleChoice(TFAlbertPreTrainedModel, TFMultipleChoiceLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler", r"predictions"] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config: AlbertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.albert = TFAlbertMainLayer(config, name="albert") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.classifier = keras.layers.Dense( units=1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = ( tf.reshape(tensor=attention_mask, shape=(-1, seq_length)) if attention_mask is not None else None ) flat_token_type_ids = ( tf.reshape(tensor=token_type_ids, shape=(-1, seq_length)) if token_type_ids is not None else None ) flat_position_ids = ( tf.reshape(tensor=position_ids, shape=(-1, seq_length)) if position_ids is not None else None ) flat_inputs_embeds = ( tf.reshape(tensor=inputs_embeds, shape=(-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) outputs = self.albert( input_ids=flat_input_ids, attention_mask=flat_attention_mask, token_type_ids=flat_token_type_ids, position_ids=flat_position_ids, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(inputs=pooled_output, training=training) logits = self.classifier(inputs=pooled_output) reshaped_logits = tf.reshape(tensor=logits, shape=(-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "albert", None) is not None: with tf.name_scope(self.albert.name): self.albert.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size])
class_definition
64,137
68,846
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_tf_albert.py
null
3,202
class VideoMAEFeatureExtractor(VideoMAEImageProcessor): def __init__(self, *args, **kwargs) -> None: warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead.", FutureWarning, ) super().__init__(*args, **kwargs)
class_definition
821
1,199
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/videomae/feature_extraction_videomae.py
null
3,203
class VideoMAEImageProcessor(BaseImageProcessor): r""" Constructs a VideoMAE image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): Size of the output image after resizing. The shortest edge of the image will be resized to `size["shortest_edge"]` while maintaining the aspect ratio of the original image. Can be overriden by `size` in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `True`): Whether to center crop the image to the specified `crop_size`. Can be overridden by the `do_center_crop` parameter in the `preprocess` method. crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`): Size of the image after applying the center crop. Can be overridden by the `crop_size` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Defines the scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_center_crop: bool = True, crop_size: Dict[str, int] = None, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"shortest_edge": 224} size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size, param_name="crop_size") self.do_resize = do_resize self.size = size self.do_center_crop = do_center_crop self.crop_size = crop_size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. If `size` is of the form `{"height": h, "width": w}`, the output image will have the size `(h, w)`. If `size` is of the form `{"shortest_edge": s}`, the output image will have its shortest edge of length `s` while keeping the aspect ratio of the original image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ size = get_size_dict(size, default_to_square=False) if "shortest_edge" in size: output_size = get_resize_output_image_size( image, size["shortest_edge"], default_to_square=False, input_data_format=input_data_format ) elif "height" in size and "width" in size: output_size = (size["height"], size["width"]) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}") return resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def _preprocess_image( self, image: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """Preprocesses a single image.""" validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_center_crop=do_center_crop, crop_size=crop_size, do_resize=do_resize, size=size, resample=resample, ) # All transformations expect numpy arrays. image = to_numpy_array(image) if do_rescale and is_scaled_image(image): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: input_data_format = infer_channel_dimension_format(image) if do_resize: image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) if do_center_crop: image = self.center_crop(image, size=crop_size, input_data_format=input_data_format) if do_rescale: image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) if do_normalize: image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) return image @filter_out_non_signature_kwargs() def preprocess( self, videos: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after applying resize. resample (`PILImageResampling`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_centre_crop`): Whether to centre crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the image after applying the centre crop. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the inferred channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size") if not valid_images(videos): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) videos = make_batched(videos) videos = [ [ self._preprocess_image( image=img, do_resize=do_resize, size=size, resample=resample, do_center_crop=do_center_crop, crop_size=crop_size, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, data_format=data_format, input_data_format=input_data_format, ) for img in video ] for video in videos ] data = {"pixel_values": videos} return BatchFeature(data=data, tensor_type=return_tensors)
class_definition
1,836
16,507
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/videomae/image_processing_videomae.py
null
3,204
class VideoMAEDecoderOutput(ModelOutput): """ Class for VideoMAEDecoder's outputs, with potential hidden states and attentions. Args: logits (`torch.FloatTensor` of shape `(batch_size, patch_size ** 2 * num_channels)`): Pixel reconstruction logits. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
1,671
2,983
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/videomae/modeling_videomae.py
null
3,205
class VideoMAEForPreTrainingOutput(ModelOutput): """ Class for VideoMAEForPreTraining's outputs, with potential hidden states and attentions. Args: loss (`torch.FloatTensor` of shape `(1,)`): Pixel reconstruction loss. logits (`torch.FloatTensor` of shape `(batch_size, patch_size ** 2 * num_channels)`): Pixel reconstruction logits. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
2,997
4,459
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/videomae/modeling_videomae.py
null
3,206
class VideoMAEEmbeddings(nn.Module): """ Construct the patch and position embeddings. """ def __init__(self, config): super().__init__() self.patch_embeddings = VideoMAEPatchEmbeddings(config) self.num_patches = self.patch_embeddings.num_patches # fixed sin-cos embedding self.position_embeddings = get_sinusoid_encoding_table(self.num_patches, config.hidden_size) self.config = config def forward(self, pixel_values, bool_masked_pos): # create patch embeddings embeddings = self.patch_embeddings(pixel_values) # add position embeddings embeddings = embeddings + self.position_embeddings.type_as(embeddings).to(embeddings.device).clone().detach() # only keep visible patches # ~bool_masked_pos means visible if bool_masked_pos is not None: batch_size, _, num_channels = embeddings.shape embeddings = embeddings[~bool_masked_pos] embeddings = embeddings.reshape(batch_size, -1, num_channels) return embeddings
class_definition
5,180
6,262
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/videomae/modeling_videomae.py
null
3,207
class VideoMAEPatchEmbeddings(nn.Module): """ Video to Patch Embedding. This module turns a batch of videos of shape (batch_size, num_frames, num_channels, height, width) into a tensor of shape (batch_size, seq_len, hidden_size) to be consumed by a Transformer encoder. The seq_len (the number of patches) equals (number of frames // tubelet_size) * (height // patch_size) * (width // patch_size). """ def __init__(self, config): super().__init__() image_size = config.image_size patch_size = config.patch_size num_channels = config.num_channels hidden_size = config.hidden_size num_frames = config.num_frames tubelet_size = config.tubelet_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) self.image_size = image_size self.patch_size = patch_size self.tubelet_size = int(tubelet_size) num_patches = ( (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) * (num_frames // self.tubelet_size) ) self.num_channels = num_channels self.num_patches = num_patches self.projection = nn.Conv3d( in_channels=num_channels, out_channels=hidden_size, kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]), stride=(self.tubelet_size, patch_size[0], patch_size[1]), ) def forward(self, pixel_values): batch_size, num_frames, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) # permute to (batch_size, num_channels, num_frames, height, width) pixel_values = pixel_values.permute(0, 2, 1, 3, 4) embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) return embeddings
class_definition
6,265
8,647
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/videomae/modeling_videomae.py
null
3,208
class VideoMAESelfAttention(nn.Module): def __init__(self, config: VideoMAEConfig) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=False) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=False) if config.qkv_bias: self.q_bias = nn.Parameter(torch.zeros(self.all_head_size)) self.v_bias = nn.Parameter(torch.zeros(self.all_head_size)) else: self.q_bias = None self.v_bias = None self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: k_bias = torch.zeros_like(self.v_bias, requires_grad=False) if self.q_bias is not None else None keys = nn.functional.linear(input=hidden_states, weight=self.key.weight, bias=k_bias) values = nn.functional.linear(input=hidden_states, weight=self.value.weight, bias=self.v_bias) queries = nn.functional.linear(input=hidden_states, weight=self.query.weight, bias=self.q_bias) key_layer = self.transpose_for_scores(keys) value_layer = self.transpose_for_scores(values) query_layer = self.transpose_for_scores(queries) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs
class_definition
8,650
12,023
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/videomae/modeling_videomae.py
null
3,209
class VideoMAESdpaSelfAttention(VideoMAESelfAttention): def __init__(self, config: VideoMAEConfig) -> None: super().__init__(config) self.attention_probs_dropout_prob = config.attention_probs_dropout_prob def forward( self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: k_bias = torch.zeros_like(self.v_bias, requires_grad=False) if self.q_bias is not None else None keys = nn.functional.linear(input=hidden_states, weight=self.key.weight, bias=k_bias) values = nn.functional.linear(input=hidden_states, weight=self.value.weight, bias=self.v_bias) queries = nn.functional.linear(input=hidden_states, weight=self.query.weight, bias=self.q_bias) key_layer = self.transpose_for_scores(keys) value_layer = self.transpose_for_scores(values) query_layer = self.transpose_for_scores(queries) context_layer = torch.nn.functional.scaled_dot_product_attention( query_layer, key_layer, value_layer, head_mask, self.attention_probs_dropout_prob if self.training else 0.0, is_causal=False, scale=None, ) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) return context_layer, None
class_definition
12,026
13,582
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/videomae/modeling_videomae.py
null
3,210
class VideoMAESelfOutput(nn.Module): """ The residual connection is defined in VideoMAELayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: VideoMAEConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states
class_definition
13,669
14,327
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/videomae/modeling_videomae.py
null
3,211
class VideoMAEAttention(nn.Module): def __init__(self, config: VideoMAEConfig) -> None: super().__init__() self.attention = VideoMAESelfAttention(config) self.output = VideoMAESelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_outputs = self.attention(hidden_states, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs
class_definition
14,413
16,110
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/videomae/modeling_videomae.py
null
3,212
class VideoMAESdpaAttention(VideoMAEAttention): def __init__(self, config: VideoMAEConfig) -> None: super().__init__(config) self.attention = VideoMAESdpaSelfAttention(config)
class_definition
16,200
16,395
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/videomae/modeling_videomae.py
null
3,213
class VideoMAEIntermediate(nn.Module): def __init__(self, config: VideoMAEConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states
class_definition
16,479
17,073
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/videomae/modeling_videomae.py
null
3,214
class VideoMAEOutput(nn.Module): def __init__(self, config: VideoMAEConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states
class_definition
17,151
17,688
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/videomae/modeling_videomae.py
null
3,215
class VideoMAELayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: VideoMAEConfig) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = VIDEOMAE_ATTENTION_CLASSES[config._attn_implementation](config) self.intermediate = VideoMAEIntermediate(config) self.output = VideoMAEOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in VideoMAE, layernorm is applied before self-attention head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + hidden_states # in VideoMAE, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs
class_definition
17,875
19,624
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/videomae/modeling_videomae.py
null
3,216
class VideoMAEEncoder(nn.Module): def __init__(self, config: VideoMAEConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([VideoMAELayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, )
class_definition
19,708
21,644
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/videomae/modeling_videomae.py
null
3,217
class VideoMAEPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = VideoMAEConfig base_model_prefix = "videomae" main_input_name = "pixel_values" supports_gradient_checkpointing = True _supports_sdpa = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv3d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0)
class_definition
21,647
22,598
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/videomae/modeling_videomae.py
null
3,218
class VideoMAEModel(VideoMAEPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embeddings = VideoMAEEmbeddings(config) self.encoder = VideoMAEEncoder(config) if config.use_mean_pooling: self.layernorm = None else: self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(VIDEOMAE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, bool_masked_pos: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Each video in the batch must have the same number of masked patches. If `None`, then all patches are considered. Sequence length is `(num_frames // tubelet_size) * (image_size // patch_size) ** 2`. Returns: Examples: ```python >>> import av >>> import numpy as np >>> from transformers import AutoImageProcessor, VideoMAEModel >>> from huggingface_hub import hf_hub_download >>> np.random.seed(0) >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`List[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ... ''' ... Sample a given number of frame indices from the video. ... Args: ... clip_len (`int`): Total number of frames to sample. ... frame_sample_rate (`int`): Sample every n-th frame. ... seg_len (`int`): Maximum allowed index of sample's last frame. ... Returns: ... indices (`List[int]`): List of sampled frame indices ... ''' ... converted_len = int(clip_len * frame_sample_rate) ... end_idx = np.random.randint(converted_len, seg_len) ... start_idx = end_idx - converted_len ... indices = np.linspace(start_idx, end_idx, num=clip_len) ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) ... return indices >>> # video clip consists of 300 frames (10 seconds at 30 FPS) >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> # sample 16 frames >>> indices = sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=container.streams.video[0].frames) >>> video = read_video_pyav(container, indices) >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base") >>> model = VideoMAEModel.from_pretrained("MCG-NJU/videomae-base") >>> # prepare video for the model >>> inputs = image_processor(list(video), return_tensors="pt") >>> # forward pass >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 1568, 768] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings(pixel_values, bool_masked_pos) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if self.layernorm is not None: sequence_output = self.layernorm(sequence_output) if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
class_definition
24,538
31,033
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/videomae/modeling_videomae.py
null
3,219
class VideoMAEDecoder(nn.Module): def __init__(self, config, num_patches): super().__init__() decoder_num_labels = config.num_channels * config.tubelet_size * config.patch_size**2 decoder_config = deepcopy(config) decoder_config.hidden_size = config.decoder_hidden_size decoder_config.num_hidden_layers = config.decoder_num_hidden_layers decoder_config.num_attention_heads = config.decoder_num_attention_heads decoder_config.intermediate_size = config.decoder_intermediate_size self.decoder_layers = nn.ModuleList( [VideoMAELayer(decoder_config) for _ in range(config.decoder_num_hidden_layers)] ) self.norm = nn.LayerNorm(config.decoder_hidden_size) self.head = ( nn.Linear(config.decoder_hidden_size, decoder_num_labels) if decoder_num_labels > 0 else nn.Identity() ) self.gradient_checkpointing = False self.config = config def forward( self, hidden_states, return_token_num, output_attentions=False, output_hidden_states=False, return_dict=True, ): # apply Transformer layers (blocks) all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.decoder_layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, None, output_attentions, ) else: layer_outputs = layer_module(hidden_states, head_mask=None, output_attentions=output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if return_token_num > 0: hidden_states = hidden_states[:, -return_token_num:] # predictor projection hidden_states = self.norm(hidden_states) logits = self.head(hidden_states) if not return_dict: return tuple(v for v in [logits, all_hidden_states, all_self_attentions] if v is not None) return VideoMAEDecoderOutput(logits=logits, hidden_states=all_hidden_states, attentions=all_self_attentions)
class_definition
31,036
33,692
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/videomae/modeling_videomae.py
null
3,220
class VideoMAEForPreTraining(VideoMAEPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.videomae = VideoMAEModel(config) self.encoder_to_decoder = nn.Linear(config.hidden_size, config.decoder_hidden_size, bias=False) self.mask_token = nn.Parameter(torch.zeros(1, 1, config.decoder_hidden_size)) self.position_embeddings = get_sinusoid_encoding_table( self.videomae.embeddings.num_patches, config.decoder_hidden_size ) self.decoder = VideoMAEDecoder(config, num_patches=self.videomae.embeddings.num_patches) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VIDEOMAE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=VideoMAEForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, bool_masked_pos: torch.BoolTensor, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, VideoMAEForPreTrainingOutput]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Each video in the batch must have the same number of masked patches. Sequence length is `(num_frames // tubelet_size) * (image_size // patch_size) ** 2`. Returns: Examples: ```python >>> from transformers import AutoImageProcessor, VideoMAEForPreTraining >>> import numpy as np >>> import torch >>> num_frames = 16 >>> video = list(np.random.randint(0, 256, (num_frames, 3, 224, 224))) >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base") >>> model = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base") >>> pixel_values = image_processor(video, return_tensors="pt").pixel_values >>> num_patches_per_frame = (model.config.image_size // model.config.patch_size) ** 2 >>> seq_length = (num_frames // model.config.tubelet_size) * num_patches_per_frame >>> bool_masked_pos = torch.randint(0, 2, (1, seq_length)).bool() >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) >>> loss = outputs.loss ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.videomae( pixel_values, bool_masked_pos=bool_masked_pos, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.encoder_to_decoder( sequence_output ) # [batch_size, num_visible_patches, decoder_hidden_size] batch_size, seq_len, num_channels = sequence_output.shape # we don't unshuffle the correct visible token order, but shuffle the position embeddings accordingly. if bool_masked_pos is None: raise ValueError("One must provided a boolean mask ") expanded_position_embeddings = self.position_embeddings.expand(batch_size, -1, -1).type_as(pixel_values) expanded_position_embeddings = expanded_position_embeddings.to(pixel_values.device).clone().detach() pos_emb_visible = expanded_position_embeddings[~bool_masked_pos].reshape(batch_size, -1, num_channels) pos_emb_mask = expanded_position_embeddings[bool_masked_pos].reshape(batch_size, -1, num_channels) # [batch_size, num_patches, decoder_hidden_size] x_full = torch.cat([sequence_output + pos_emb_visible, self.mask_token + pos_emb_mask], dim=1) # [batch_size, num_masked_patches, num_channels * patch_size * patch_size] decoder_outputs = self.decoder(x_full, pos_emb_mask.shape[1]) logits = decoder_outputs.logits loss = None with torch.no_grad(): # calculate the labels to be predicted if self.config.num_channels != 3: # Can't unnormalize with default means/stds frames = pixel_values else: # first, unnormalize the frames device = pixel_values.device dtype = pixel_values.dtype mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device=device, dtype=dtype)[None, None, :, None, None] std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device=device, dtype=dtype)[None, None, :, None, None] frames = pixel_values * std + mean # in [0, 1] batch_size, time, num_channels, height, width = frames.shape tubelet_size, patch_size = self.config.tubelet_size, self.config.patch_size if self.config.norm_pix_loss: # step 1: split up dimensions (time by tubelet_size, height by patch_size, width by patch_size) frames = frames.view( batch_size, time // tubelet_size, tubelet_size, num_channels, height // patch_size, patch_size, width // patch_size, patch_size, ) # step 2: move dimensions to concatenate: frames = frames.permute(0, 1, 4, 6, 2, 5, 7, 3).contiguous() # step 3: concatenate: frames = frames.view( batch_size, time // tubelet_size * height // patch_size * width // patch_size, tubelet_size * patch_size * patch_size, num_channels, ) # step 4: normalize. The authors find that the mean is about 0.48 and standard deviation is about 0.08. frames_norm = (frames - frames.mean(dim=-2, keepdim=True)) / ( frames.var(dim=-2, unbiased=True, keepdim=True).sqrt() + 1e-6 ) # step 5: reshape to (batch_size, T//ts * H//ps * W//ps, ts * ps * ps * C) videos_patch = frames_norm.view( batch_size, time // tubelet_size * height // patch_size * width // patch_size, tubelet_size * patch_size * patch_size * num_channels, ) else: if self.config.num_channels != 3: raise ValueError( "Can't unnormalize non-RGB images. Consider setting config.norm_pix_loss to False." ) # step 1: split up dimensions (time by tubelet_size, height by patch_size, width by patch_size) frames = frames.view( batch_size, time // tubelet_size, tubelet_size, num_channels, height // patch_size, patch_size, width // patch_size, patch_size, ) # step 2: move dimensions to concatenate: (batch_size, T//ts, H//ps, W//ps, ts, ps, ps, C) frames = frames.permute(0, 1, 4, 6, 2, 5, 7, 3).contiguous() # step 3: concatenate videos_patch = frames.view( batch_size, time // tubelet_size * height // patch_size * width // patch_size, tubelet_size * patch_size * patch_size * num_channels, ) batch_size, _, num_channels = videos_patch.shape labels = videos_patch[bool_masked_pos].reshape(batch_size, -1, num_channels) loss_fct = MSELoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return VideoMAEForPreTrainingOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
33,846
42,255
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/videomae/modeling_videomae.py
null
3,221
class VideoMAEForVideoClassification(VideoMAEPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.videomae = VideoMAEModel(config) # Classifier head self.fc_norm = nn.LayerNorm(config.hidden_size) if config.use_mean_pooling else None self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VIDEOMAE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> import av >>> import torch >>> import numpy as np >>> from transformers import AutoImageProcessor, VideoMAEForVideoClassification >>> from huggingface_hub import hf_hub_download >>> np.random.seed(0) >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`List[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ... ''' ... Sample a given number of frame indices from the video. ... Args: ... clip_len (`int`): Total number of frames to sample. ... frame_sample_rate (`int`): Sample every n-th frame. ... seg_len (`int`): Maximum allowed index of sample's last frame. ... Returns: ... indices (`List[int]`): List of sampled frame indices ... ''' ... converted_len = int(clip_len * frame_sample_rate) ... end_idx = np.random.randint(converted_len, seg_len) ... start_idx = end_idx - converted_len ... indices = np.linspace(start_idx, end_idx, num=clip_len) ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) ... return indices >>> # video clip consists of 300 frames (10 seconds at 30 FPS) >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> # sample 16 frames >>> indices = sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=container.streams.video[0].frames) >>> video = read_video_pyav(container, indices) >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics") >>> model = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics") >>> inputs = image_processor(list(video), return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) ... logits = outputs.logits >>> # model predicts one of the 400 Kinetics-400 classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) eating spaghetti ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.videomae( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] if self.fc_norm is not None: sequence_output = self.fc_norm(sequence_output.mean(1)) else: sequence_output = sequence_output[:, 0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
42,488
49,291
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/videomae/modeling_videomae.py
null
3,222
class VideoMAEConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`VideoMAEModel`]. It is used to instantiate a VideoMAE model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the VideoMAE [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. num_frames (`int`, *optional*, defaults to 16): The number of frames in each video. tubelet_size (`int`, *optional*, defaults to 2): The number of tubelets. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. use_mean_pooling (`bool`, *optional*, defaults to `True`): Whether to mean pool the final hidden states instead of using the final hidden state of the [CLS] token. decoder_num_attention_heads (`int`, *optional*, defaults to 6): Number of attention heads for each attention layer in the decoder. decoder_hidden_size (`int`, *optional*, defaults to 384): Dimensionality of the decoder. decoder_num_hidden_layers (`int`, *optional*, defaults to 4): Number of hidden layers in the decoder. decoder_intermediate_size (`int`, *optional*, defaults to 1536): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the decoder. norm_pix_loss (`bool`, *optional*, defaults to `True`): Whether to normalize the target patch pixels. Example: ```python >>> from transformers import VideoMAEConfig, VideoMAEModel >>> # Initializing a VideoMAE videomae-base style configuration >>> configuration = VideoMAEConfig() >>> # Randomly initializing a model from the configuration >>> model = VideoMAEModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "videomae" def __init__( self, image_size=224, patch_size=16, num_channels=3, num_frames=16, tubelet_size=2, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-12, qkv_bias=True, use_mean_pooling=True, decoder_num_attention_heads=6, decoder_hidden_size=384, decoder_num_hidden_layers=4, decoder_intermediate_size=1536, norm_pix_loss=True, **kwargs, ): super().__init__(**kwargs) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_frames = num_frames self.tubelet_size = tubelet_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.qkv_bias = qkv_bias self.use_mean_pooling = use_mean_pooling self.decoder_num_attention_heads = decoder_num_attention_heads self.decoder_hidden_size = decoder_hidden_size self.decoder_num_hidden_layers = decoder_num_hidden_layers self.decoder_intermediate_size = decoder_intermediate_size self.norm_pix_loss = norm_pix_loss
class_definition
785
6,568
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/videomae/configuration_videomae.py
null
3,223
class Starcoder2Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Starcoder2Model`]. It is used to instantiate a Starcoder2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [bigcode/starcoder2-7b](https://huggingface.co/bigcode/starcoder2-7b) model. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 49152): Vocabulary size of the Starcoder2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Starcoder2Model`] hidden_size (`int`, *optional*, defaults to 3072): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 12288): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 30): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 24): Number of attention heads for each attention layer in the Transformer encoder. num_key_value_heads (`int`, *optional*, defaults to 2): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 4096): The maximum sequence length that this model might ever be used with. Starcoder2's sliding window attention allows sequence of up to 4096*32 tokens. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. norm_epsilon (`float`, *optional*, defaults to 1e-05): Epsilon value for the layer norm use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. bos_token_id (`int`, *optional*, defaults to 50256): The id of the "beginning-of-sequence" token. eos_token_id (`int`, *optional*, defaults to 50256): The id of the "end-of-sequence" token. rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly. Expected contents: `rope_type` (`str`): The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation. `factor` (`float`, *optional*): Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length. `original_max_position_embeddings` (`int`, *optional*): Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during pretraining. `attention_factor` (`float`, *optional*): Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention computation. If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value. `beta_fast` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear ramp function. If unspecified, it defaults to 32. `beta_slow` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear ramp function. If unspecified, it defaults to 1. `short_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to short contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `long_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to long contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `low_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE `high_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE sliding_window (`int`, *optional*): Sliding window attention window size. If not specified, will default to `None` (no sliding window). attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. residual_dropout (`float`, *optional*, defaults to 0.0): Residual connection dropout value. embedding_dropout (`float`, *optional*, defaults to 0.0): Embedding dropout. use_bias (`bool`, *optional*, defaults to `True`): Whether to use bias term on linear layers of the model. ```python >>> from transformers import Starcoder2Model, Starcoder2Config >>> # Initializing a Starcoder2 7B style configuration >>> configuration = Starcoder2Config() >>> # Initializing a model from the Starcoder2 7B style configuration >>> model = Starcoder2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "starcoder2" keys_to_ignore_at_inference = ["past_key_values"] # Default tensor parallel plan for base model `Starcoder2` base_model_tp_plan = { "layers.*.self_attn.q_proj": "colwise", "layers.*.self_attn.k_proj": "colwise", "layers.*.self_attn.v_proj": "colwise", "layers.*.self_attn.o_proj": "rowwise", "layers.*.mlp.c_fc": "colwise", "layers.*.mlp.c_proj": "colwise", } def __init__( self, vocab_size=49152, hidden_size=3072, intermediate_size=12288, num_hidden_layers=30, num_attention_heads=24, num_key_value_heads=2, hidden_act="gelu_pytorch_tanh", max_position_embeddings=4096, initializer_range=0.018042, norm_epsilon=1e-5, use_cache=True, bos_token_id=50256, eos_token_id=50256, rope_theta=10000.0, rope_scaling=None, sliding_window=None, attention_dropout=0.0, residual_dropout=0.0, embedding_dropout=0.0, use_bias=True, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.sliding_window = sliding_window self.use_bias = use_bias self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.norm_epsilon = norm_epsilon self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.attention_dropout = attention_dropout self.residual_dropout = residual_dropout self.embedding_dropout = embedding_dropout # Validate the correctness of rotary position embeddings parameters # BC: if there is a 'type' field, move it to 'rope_type'. if self.rope_scaling is not None and "type" in self.rope_scaling: self.rope_scaling["rope_type"] = self.rope_scaling["type"] rope_config_validation(self) super().__init__( bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs, )
class_definition
857
10,633
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/starcoder2/configuration_starcoder2.py
null
3,224
class Starcoder2MLP(nn.Module): def __init__(self, config: Starcoder2Config): super().__init__() embed_dim = config.hidden_size self.c_fc = nn.Linear(embed_dim, config.intermediate_size, bias=config.use_bias) self.c_proj = nn.Linear(config.intermediate_size, embed_dim, bias=config.use_bias) self.act = ACT2FN[config.hidden_act] self.residual_dropout = config.residual_dropout def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor: hidden_states = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.residual_dropout, training=self.training) return hidden_states
class_definition
2,827
3,638
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/starcoder2/modeling_starcoder2.py
null
3,225
class Starcoder2Attention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: Starcoder2Config, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.scaling = self.head_dim**-0.5 self.attention_dropout = config.attention_dropout self.is_causal = True self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.use_bias) self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias) self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias) self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.use_bias) self.residual_dropout = config.residual_dropout def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, sliding_window=getattr(self.config, "sliding_window", None), # diff with Llama **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) attn_output = nn.functional.dropout( attn_output, p=self.residual_dropout, training=self.training ) # diff with Llama return attn_output, attn_weights
class_definition
6,917
10,694
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/starcoder2/modeling_starcoder2.py
null
3,226
class Starcoder2DecoderLayer(nn.Module): def __init__(self, config: Starcoder2Config, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = Starcoder2Attention(config=config, layer_idx=layer_idx) self.mlp = Starcoder2MLP(config) self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon) self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs
class_definition
10,697
12,785
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/starcoder2/modeling_starcoder2.py
null
3,227
class Starcoder2RotaryEmbedding(nn.Module): def __init__(self, config: Starcoder2Config, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq def _dynamic_frequency_update(self, position_ids, device): """ dynamic RoPE layers should recompute `inv_freq` in the following situations: 1 - growing beyond the cached sequence length (allow scaling) 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) """ seq_len = torch.max(position_ids) + 1 if seq_len > self.max_seq_len_cached: # growth inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation self.max_seq_len_cached = seq_len if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset # This .to() is needed if the model has been moved to a device after being initialized (because # the buffer is automatically moved, but not the original copy) self.original_inv_freq = self.original_inv_freq.to(device) self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) self.max_seq_len_cached = self.original_max_seq_len @torch.no_grad() def forward(self, x, position_ids): if "dynamic" in self.rope_type: self._dynamic_frequency_update(position_ids, device=x.device) # Core RoPE block inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 (see https://github.com/huggingface/transformers/pull/29285) device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() sin = emb.sin() # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention cos = cos * self.attention_scaling sin = sin * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class_definition
12,788
15,993
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/starcoder2/modeling_starcoder2.py
null
3,228
class Starcoder2PreTrainedModel(PreTrainedModel): config_class = Starcoder2Config base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["Starcoder2DecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn_2 = True _supports_sdpa = True _supports_flex_attn = True _supports_cache_class = True _supports_quantized_cache = True _supports_static_cache = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_()
class_definition
17,035
17,973
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/starcoder2/modeling_starcoder2.py
null
3,229
class Starcoder2Model(Starcoder2PreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Starcoder2DecoderLayer`] Args: config: Starcoder2Config """ def __init__(self, config: Starcoder2Config): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [Starcoder2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon) self.rotary_emb = Starcoder2RotaryEmbedding(config=config) self.gradient_checkpointing = False self.embedding_dropout = config.embedding_dropout # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(STARCODER2_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) hidden_states = inputs_embeds hidden_states = nn.functional.dropout( hidden_states, p=self.embedding_dropout, training=self.training ) # main diff with Llama # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_layer in self.layers[: self.config.num_hidden_layers]: if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) output = BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) return output if return_dict else output.to_tuple() def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and past_key_values is not None: is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0] if is_padding_right: raise ValueError( "You are attempting to perform batched generation with padding_side='right'" " this may lead to unexpected behaviour for Flash Attention version of Starcoder2. Make sure to " " call `tokenizer.padding_side = 'left'` before tokenizing the input. " ) if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if ( self.config._attn_implementation == "sdpa" and not (using_static_cache or using_sliding_window_cache) and not output_attentions ): if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, sliding_window=self.config.sliding_window, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] # SlidingWindowCache or StaticCache if using_sliding_window_cache or using_static_cache: target_length = past_key_values.get_max_cache_shape() # DynamicCache or no cache else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], config=self.config, past_key_values=past_key_values, ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type == "cuda" and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, config: Starcoder2Config, past_key_values: Cache, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to plcae the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. config (`Starcoder2Config`): The model's configuration class past_key_values (`Cache`): The cache class that is being used currently to generate """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) if config.sliding_window is not None: # if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also # the check is needed to verify is current checkpoint was trained with sliding window or not if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length: sliding_attend_mask = torch.arange(target_length, device=device) <= ( cache_position.reshape(-1, 1) - config.sliding_window ) diagonal_attend_mask.bitwise_or_(sliding_attend_mask) causal_mask *= diagonal_attend_mask causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit if attention_mask.shape[-1] > target_length: attention_mask = attention_mask[:, :target_length] mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask
class_definition
22,792
35,713
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/starcoder2/modeling_starcoder2.py
null
3,230
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
class_definition
35,716
35,778
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/starcoder2/modeling_starcoder2.py
null
3,231
class Starcoder2ForCausalLM(Starcoder2PreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] _tp_plan = {"lm_head": "colwise_rep"} def __init__(self, config): super().__init__(config) self.model = Starcoder2Model(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(STARCODER2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, num_logits_to_keep: int = 0, **kwargs: Unpack[KwargsForCausalLM], ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. num_logits_to_keep (`int`, *optional*): Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. Returns: Example: ```python >>> from transformers import AutoTokenizer, Starcoder2ForCausalLM >>> model = Starcoder2ForCausalLM.from_pretrained("meta-starcoder2/Starcoder2-2-7b-hf") >>> tokenizer = AutoTokenizer.from_pretrained("meta-starcoder2/Starcoder2-2-7b-hf") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, **kwargs, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]) loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
35,781
40,958
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/starcoder2/modeling_starcoder2.py
null
3,232
class Starcoder2ForSequenceClassification(Starcoder2PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = Starcoder2Model(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(STARCODER2_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
class_definition
41,766
45,598
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/starcoder2/modeling_starcoder2.py
null
3,233
class Starcoder2ForTokenClassification(Starcoder2PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = Starcoder2Model(config) if getattr(config, "classifier_dropout", None) is not None: classifier_dropout = config.classifier_dropout elif getattr(config, "hidden_dropout", None) is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.score = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(STARCODER2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.score(sequence_output) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.config) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
45,855
49,087
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/starcoder2/modeling_starcoder2.py
null
3,234
class Starcoder2MLP(nn.Module): def __init__(self, config: Starcoder2Config): super().__init__() embed_dim = config.hidden_size self.c_fc = nn.Linear(embed_dim, config.intermediate_size, bias=config.use_bias) self.c_proj = nn.Linear(config.intermediate_size, embed_dim, bias=config.use_bias) self.act = ACT2FN[config.hidden_act] self.residual_dropout = config.residual_dropout def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor: hidden_states = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.residual_dropout, training=self.training) return hidden_states
class_definition
1,900
2,711
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/starcoder2/modular_starcoder2.py
null
3,235
class Starcoder2Attention(MistralAttention): def __init__(self, config: Starcoder2Config, layer_idx: Optional[int] = None): super().__init__() self.residual_dropout = config.residual_dropout self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.use_bias) self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias) self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias) self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.use_bias) def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, sliding_window=getattr(self.config, "sliding_window", None), # diff with Llama **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) attn_output = nn.functional.dropout( attn_output, p=self.residual_dropout, training=self.training ) # diff with Llama return attn_output, attn_weights
class_definition
2,714
6,035
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/starcoder2/modular_starcoder2.py
null
3,236
class Starcoder2DecoderLayer(MistralDecoderLayer): def __init__(self, config: Starcoder2Config, layer_idx: int): super().__init__(self) self.self_attn = Starcoder2Attention(config=config, layer_idx=layer_idx) self.mlp = Starcoder2MLP(config) self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon) self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
class_definition
6,038
6,494
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/starcoder2/modular_starcoder2.py
null
3,237
class Starcoder2Model(MistralModel): def __init__(self, config: Starcoder2Config): super().__init__(config) self.layers = nn.ModuleList( [Starcoder2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon) self.embedding_dropout = config.embedding_dropout @add_start_docstrings_to_model_forward(STARCODER2_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) hidden_states = inputs_embeds hidden_states = nn.functional.dropout( hidden_states, p=self.embedding_dropout, training=self.training ) # main diff with Llama # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_layer in self.layers[: self.config.num_hidden_layers]: if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) output = BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) return output if return_dict else output.to_tuple()
class_definition
6,569
11,067
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/starcoder2/modular_starcoder2.py
null
3,238
class Starcoder2ForCausalLM(MistralForCausalLM): pass
class_definition
11,070
11,127
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/starcoder2/modular_starcoder2.py
null
3,239
class Starcoder2ForSequenceClassification(MistralForSequenceClassification): pass
class_definition
11,130
11,215
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/starcoder2/modular_starcoder2.py
null
3,240
class Starcoder2ForTokenClassification(MistralForTokenClassification): pass
class_definition
11,218
11,297
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/starcoder2/modular_starcoder2.py
null
3,241
class VitsConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`VitsModel`]. It is used to instantiate a VITS model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the VITS [facebook/mms-tts-eng](https://huggingface.co/facebook/mms-tts-eng) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 38): Vocabulary size of the VITS model. Defines the number of different tokens that can be represented by the `inputs_ids` passed to the forward method of [`VitsModel`]. hidden_size (`int`, *optional*, defaults to 192): Dimensionality of the text encoder layers. num_hidden_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 2): Number of attention heads for each attention layer in the Transformer encoder. window_size (`int`, *optional*, defaults to 4): Window size for the relative positional embeddings in the attention layers of the Transformer encoder. use_bias (`bool`, *optional*, defaults to `True`): Whether to use bias in the key, query, value projection layers in the Transformer encoder. ffn_dim (`int`, *optional*, defaults to 768): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. layerdrop (`float`, *optional*, defaults to 0.1): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. ffn_kernel_size (`int`, *optional*, defaults to 3): Kernel size of the 1D convolution layers used by the feed-forward network in the Transformer encoder. flow_size (`int`, *optional*, defaults to 192): Dimensionality of the flow layers. spectrogram_bins (`int`, *optional*, defaults to 513): Number of frequency bins in the target spectrogram. hidden_act (`str` or `function`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings and encoder. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for activations inside the fully connected layer. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. use_stochastic_duration_prediction (`bool`, *optional*, defaults to `True`): Whether to use the stochastic duration prediction module or the regular duration predictor. num_speakers (`int`, *optional*, defaults to 1): Number of speakers if this is a multi-speaker model. speaker_embedding_size (`int`, *optional*, defaults to 0): Number of channels used by the speaker embeddings. Is zero for single-speaker models. upsample_initial_channel (`int`, *optional*, defaults to 512): The number of input channels into the HiFi-GAN upsampling network. upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[8, 8, 2, 2]`): A tuple of integers defining the stride of each 1D convolutional layer in the HiFi-GAN upsampling network. The length of `upsample_rates` defines the number of convolutional layers and has to match the length of `upsample_kernel_sizes`. upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[16, 16, 4, 4]`): A tuple of integers defining the kernel size of each 1D convolutional layer in the HiFi-GAN upsampling network. The length of `upsample_kernel_sizes` defines the number of convolutional layers and has to match the length of `upsample_rates`. resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`): A tuple of integers defining the kernel sizes of the 1D convolutional layers in the HiFi-GAN multi-receptive field fusion (MRF) module. resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`): A nested tuple of integers defining the dilation rates of the dilated 1D convolutional layers in the HiFi-GAN multi-receptive field fusion (MRF) module. leaky_relu_slope (`float`, *optional*, defaults to 0.1): The angle of the negative slope used by the leaky ReLU activation. depth_separable_channels (`int`, *optional*, defaults to 2): Number of channels to use in each depth-separable block. depth_separable_num_layers (`int`, *optional*, defaults to 3): Number of convolutional layers to use in each depth-separable block. duration_predictor_flow_bins (`int`, *optional*, defaults to 10): Number of channels to map using the unonstrained rational spline in the duration predictor model. duration_predictor_tail_bound (`float`, *optional*, defaults to 5.0): Value of the tail bin boundary when computing the unconstrained rational spline in the duration predictor model. duration_predictor_kernel_size (`int`, *optional*, defaults to 3): Kernel size of the 1D convolution layers used in the duration predictor model. duration_predictor_dropout (`float`, *optional*, defaults to 0.5): The dropout ratio for the duration predictor model. duration_predictor_num_flows (`int`, *optional*, defaults to 4): Number of flow stages used by the duration predictor model. duration_predictor_filter_channels (`int`, *optional*, defaults to 256): Number of channels for the convolution layers used in the duration predictor model. prior_encoder_num_flows (`int`, *optional*, defaults to 4): Number of flow stages used by the prior encoder flow model. prior_encoder_num_wavenet_layers (`int`, *optional*, defaults to 4): Number of WaveNet layers used by the prior encoder flow model. posterior_encoder_num_wavenet_layers (`int`, *optional*, defaults to 16): Number of WaveNet layers used by the posterior encoder model. wavenet_kernel_size (`int`, *optional*, defaults to 5): Kernel size of the 1D convolution layers used in the WaveNet model. wavenet_dilation_rate (`int`, *optional*, defaults to 1): Dilation rates of the dilated 1D convolutional layers used in the WaveNet model. wavenet_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the WaveNet layers. speaking_rate (`float`, *optional*, defaults to 1.0): Speaking rate. Larger values give faster synthesised speech. noise_scale (`float`, *optional*, defaults to 0.667): How random the speech prediction is. Larger values create more variation in the predicted speech. noise_scale_duration (`float`, *optional*, defaults to 0.8): How random the duration prediction is. Larger values create more variation in the predicted durations. sampling_rate (`int`, *optional*, defaults to 16000): The sampling rate at which the output audio waveform is digitalized expressed in hertz (Hz). Example: ```python >>> from transformers import VitsModel, VitsConfig >>> # Initializing a "facebook/mms-tts-eng" style configuration >>> configuration = VitsConfig() >>> # Initializing a model (with random weights) from the "facebook/mms-tts-eng" style configuration >>> model = VitsModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "vits" def __init__( self, vocab_size=38, hidden_size=192, num_hidden_layers=6, num_attention_heads=2, window_size=4, use_bias=True, ffn_dim=768, layerdrop=0.1, ffn_kernel_size=3, flow_size=192, spectrogram_bins=513, hidden_act="relu", hidden_dropout=0.1, attention_dropout=0.1, activation_dropout=0.1, initializer_range=0.02, layer_norm_eps=1e-5, use_stochastic_duration_prediction=True, num_speakers=1, speaker_embedding_size=0, upsample_initial_channel=512, upsample_rates=[8, 8, 2, 2], upsample_kernel_sizes=[16, 16, 4, 4], resblock_kernel_sizes=[3, 7, 11], resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], leaky_relu_slope=0.1, depth_separable_channels=2, depth_separable_num_layers=3, duration_predictor_flow_bins=10, duration_predictor_tail_bound=5.0, duration_predictor_kernel_size=3, duration_predictor_dropout=0.5, duration_predictor_num_flows=4, duration_predictor_filter_channels=256, prior_encoder_num_flows=4, prior_encoder_num_wavenet_layers=4, posterior_encoder_num_wavenet_layers=16, wavenet_kernel_size=5, wavenet_dilation_rate=1, wavenet_dropout=0.0, speaking_rate=1.0, noise_scale=0.667, noise_scale_duration=0.8, sampling_rate=16_000, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.window_size = window_size self.use_bias = use_bias self.ffn_dim = ffn_dim self.layerdrop = layerdrop self.ffn_kernel_size = ffn_kernel_size self.flow_size = flow_size self.spectrogram_bins = spectrogram_bins self.hidden_act = hidden_act self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.use_stochastic_duration_prediction = use_stochastic_duration_prediction self.num_speakers = num_speakers self.speaker_embedding_size = speaker_embedding_size self.upsample_initial_channel = upsample_initial_channel self.upsample_rates = upsample_rates self.upsample_kernel_sizes = upsample_kernel_sizes self.resblock_kernel_sizes = resblock_kernel_sizes self.resblock_dilation_sizes = resblock_dilation_sizes self.leaky_relu_slope = leaky_relu_slope self.depth_separable_channels = depth_separable_channels self.depth_separable_num_layers = depth_separable_num_layers self.duration_predictor_flow_bins = duration_predictor_flow_bins self.duration_predictor_tail_bound = duration_predictor_tail_bound self.duration_predictor_kernel_size = duration_predictor_kernel_size self.duration_predictor_dropout = duration_predictor_dropout self.duration_predictor_num_flows = duration_predictor_num_flows self.duration_predictor_filter_channels = duration_predictor_filter_channels self.prior_encoder_num_flows = prior_encoder_num_flows self.prior_encoder_num_wavenet_layers = prior_encoder_num_wavenet_layers self.posterior_encoder_num_wavenet_layers = posterior_encoder_num_wavenet_layers self.wavenet_kernel_size = wavenet_kernel_size self.wavenet_dilation_rate = wavenet_dilation_rate self.wavenet_dropout = wavenet_dropout self.speaking_rate = speaking_rate self.noise_scale = noise_scale self.noise_scale_duration = noise_scale_duration self.sampling_rate = sampling_rate if len(upsample_kernel_sizes) != len(upsample_rates): raise ValueError( f"The length of `upsample_kernel_sizes` ({len(upsample_kernel_sizes)}) must match the length of " f"`upsample_rates` ({len(upsample_rates)})" ) super().__init__(**kwargs)
class_definition
814
13,856
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vits/configuration_vits.py
null
3,242
class VitsTokenizer(PreTrainedTokenizer): """ Construct a VITS tokenizer. Also supports MMS-TTS. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. language (`str`, *optional*): Language identifier. add_blank (`bool`, *optional*, defaults to `True`): Whether to insert token id 0 in between the other tokens. normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the input text by removing all casing and punctuation. phonemize (`bool`, *optional*, defaults to `True`): Whether to convert the input text into phonemes. is_uroman (`bool`, *optional*, defaults to `False`): Whether the `uroman` Romanizer needs to be applied to the input text prior to tokenizing. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, pad_token="<pad>", unk_token="<unk>", language=None, add_blank=True, normalize=True, phonemize=True, is_uroman=False, **kwargs, ) -> None: with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.language = language self.add_blank = add_blank self.normalize = normalize self.phonemize = phonemize self.is_uroman = is_uroman super().__init__( pad_token=pad_token, unk_token=unk_token, language=language, add_blank=add_blank, normalize=normalize, phonemize=phonemize, is_uroman=is_uroman, **kwargs, ) @property def vocab_size(self): return len(self.encoder) def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def normalize_text(self, input_string): """Lowercase the input string, respecting any special token ids that may be part or entirely upper-cased.""" all_vocabulary = list(self.encoder.keys()) + list(self.added_tokens_encoder.keys()) filtered_text = "" i = 0 while i < len(input_string): found_match = False for word in all_vocabulary: if input_string[i : i + len(word)] == word: filtered_text += word i += len(word) found_match = True break if not found_match: filtered_text += input_string[i].lower() i += 1 return filtered_text def _preprocess_char(self, text): """Special treatment of characters in certain languages""" if self.language == "ron": text = text.replace("ț", "ţ") return text def prepare_for_tokenization( self, text: str, is_split_into_words: bool = False, normalize: Optional[bool] = None, **kwargs ) -> Tuple[str, Dict[str, Any]]: """ Performs any necessary transformations before tokenization. This method should pop the arguments from kwargs and return the remaining `kwargs` as well. We test the `kwargs` at the end of the encoding process to be sure all the arguments have been used. Args: text (`str`): The text to prepare. is_split_into_words (`bool`, *optional*, defaults to `False`): Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace) which it will tokenize. normalize (`bool`, *optional*, defaults to `None`): Whether or not to apply punctuation and casing normalization to the text inputs. Typically, VITS is trained on lower-cased and un-punctuated text. Hence, normalization is used to ensure that the input text consists only of lower-case characters. kwargs (`Dict[str, Any]`, *optional*): Keyword arguments to use for the tokenization. Returns: `Tuple[str, Dict[str, Any]]`: The prepared text and the unused kwargs. """ normalize = normalize if normalize is not None else self.normalize if normalize: # normalise for casing text = self.normalize_text(text) filtered_text = self._preprocess_char(text) if has_non_roman_characters(filtered_text) and self.is_uroman: if not is_uroman_available(): logger.warning( "Text to the tokenizer contains non-Roman characters. To apply the `uroman` pre-processing " "step automatically, ensure the `uroman` Romanizer is installed with: `pip install uroman` " "Note `uroman` requires python version >= 3.10" "Otherwise, apply the Romanizer manually as per the instructions: https://github.com/isi-nlp/uroman" ) else: uroman = ur.Uroman() filtered_text = uroman.romanize_string(filtered_text) if self.phonemize: if not is_phonemizer_available(): raise ImportError("Please install the `phonemizer` Python package to use this tokenizer.") filtered_text = phonemizer.phonemize( filtered_text, language="en-us", backend="espeak", strip=True, preserve_punctuation=True, with_stress=True, ) filtered_text = re.sub(r"\s+", " ", filtered_text) elif normalize: # strip any chars outside of the vocab (punctuation) filtered_text = "".join(list(filter(lambda char: char in self.encoder, filtered_text))).strip() return filtered_text, kwargs def _tokenize(self, text: str) -> List[str]: """Tokenize a string by inserting the `<pad>` token at the boundary between adjacent characters.""" tokens = list(text) if self.add_blank: interspersed = [self._convert_id_to_token(0)] * (len(tokens) * 2 + 1) interspersed[1::2] = tokens tokens = interspersed return tokens def convert_tokens_to_string(self, tokens: List[str]) -> str: if self.add_blank and len(tokens) > 1: tokens = tokens[1::2] return "".join(tokens) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Union[Tuple[str], None]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") return (vocab_file,)
class_definition
1,450
9,357
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vits/tokenization_vits.py
null
3,243
class VitsModelOutput(ModelOutput): """ Describes the outputs for the VITS model, with potential hidden states and attentions. Args: waveform (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): The final audio waveform predicted by the model. sequence_lengths (`torch.FloatTensor` of shape `(batch_size,)`): The length in samples of each element in the `waveform` batch. spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`): The log-mel spectrogram predicted at the output of the flow model. This spectrogram is passed to the Hi-Fi GAN decoder model to obtain the final audio waveform. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attention weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ waveform: torch.FloatTensor = None sequence_lengths: torch.FloatTensor = None spectrogram: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
1,472
3,386
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vits/modeling_vits.py
null
3,244
class VitsTextEncoderOutput(ModelOutput): """ Describes the outputs for the VITS text encoder model, with potential hidden states and attentions. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. prior_means (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): The predicted mean values of the prior distribution for the latent text variables. prior_log_variances (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): The predicted log-variance values of the prior distribution for the latent text variables. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attention weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor = None prior_means: torch.FloatTensor = None prior_log_variances: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
3,400
5,345
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vits/modeling_vits.py
null
3,245
class VitsWaveNet(torch.nn.Module): def __init__(self, config: VitsConfig, num_layers: int): super().__init__() self.hidden_size = config.hidden_size self.num_layers = num_layers self.in_layers = torch.nn.ModuleList() self.res_skip_layers = torch.nn.ModuleList() self.dropout = nn.Dropout(config.wavenet_dropout) if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm else: weight_norm = nn.utils.weight_norm if config.speaker_embedding_size != 0: cond_layer = torch.nn.Conv1d(config.speaker_embedding_size, 2 * config.hidden_size * num_layers, 1) self.cond_layer = weight_norm(cond_layer, name="weight") for i in range(num_layers): dilation = config.wavenet_dilation_rate**i padding = (config.wavenet_kernel_size * dilation - dilation) // 2 in_layer = torch.nn.Conv1d( in_channels=config.hidden_size, out_channels=2 * config.hidden_size, kernel_size=config.wavenet_kernel_size, dilation=dilation, padding=padding, ) in_layer = weight_norm(in_layer, name="weight") self.in_layers.append(in_layer) # last one is not necessary if i < num_layers - 1: res_skip_channels = 2 * config.hidden_size else: res_skip_channels = config.hidden_size res_skip_layer = torch.nn.Conv1d(config.hidden_size, res_skip_channels, 1) res_skip_layer = weight_norm(res_skip_layer, name="weight") self.res_skip_layers.append(res_skip_layer) def forward(self, inputs, padding_mask, global_conditioning=None): outputs = torch.zeros_like(inputs) num_channels_tensor = torch.IntTensor([self.hidden_size]) if global_conditioning is not None: global_conditioning = self.cond_layer(global_conditioning) for i in range(self.num_layers): hidden_states = self.in_layers[i](inputs) if global_conditioning is not None: cond_offset = i * 2 * self.hidden_size global_states = global_conditioning[:, cond_offset : cond_offset + 2 * self.hidden_size, :] else: global_states = torch.zeros_like(hidden_states) acts = fused_add_tanh_sigmoid_multiply(hidden_states, global_states, num_channels_tensor[0]) acts = self.dropout(acts) res_skip_acts = self.res_skip_layers[i](acts) if i < self.num_layers - 1: res_acts = res_skip_acts[:, : self.hidden_size, :] inputs = (inputs + res_acts) * padding_mask outputs = outputs + res_skip_acts[:, self.hidden_size :, :] else: outputs = outputs + res_skip_acts return outputs * padding_mask def remove_weight_norm(self): if self.speaker_embedding_size != 0: torch.nn.utils.remove_weight_norm(self.cond_layer) for layer in self.in_layers: torch.nn.utils.remove_weight_norm(layer) for layer in self.res_skip_layers: torch.nn.utils.remove_weight_norm(layer)
class_definition
16,292
19,620
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vits/modeling_vits.py
null
3,246
class VitsPosteriorEncoder(nn.Module): def __init__(self, config: VitsConfig): super().__init__() self.out_channels = config.flow_size self.conv_pre = nn.Conv1d(config.spectrogram_bins, config.hidden_size, 1) self.wavenet = VitsWaveNet(config, num_layers=config.posterior_encoder_num_wavenet_layers) self.conv_proj = nn.Conv1d(config.hidden_size, self.out_channels * 2, 1) def forward(self, inputs, padding_mask, global_conditioning=None): inputs = self.conv_pre(inputs) * padding_mask inputs = self.wavenet(inputs, padding_mask, global_conditioning) stats = self.conv_proj(inputs) * padding_mask mean, log_stddev = torch.split(stats, self.out_channels, dim=1) sampled = (mean + torch.randn_like(mean) * torch.exp(log_stddev)) * padding_mask return sampled, mean, log_stddev
class_definition
19,623
20,495
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vits/modeling_vits.py
null
3,247
class HifiGanResidualBlock(nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1): super().__init__() self.leaky_relu_slope = leaky_relu_slope self.convs1 = nn.ModuleList( [ nn.Conv1d( channels, channels, kernel_size, stride=1, dilation=dilation[i], padding=self.get_padding(kernel_size, dilation[i]), ) for i in range(len(dilation)) ] ) self.convs2 = nn.ModuleList( [ nn.Conv1d( channels, channels, kernel_size, stride=1, dilation=1, padding=self.get_padding(kernel_size, 1), ) for _ in range(len(dilation)) ] ) def get_padding(self, kernel_size, dilation=1): return (kernel_size * dilation - dilation) // 2 def apply_weight_norm(self): weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm for layer in self.convs1: weight_norm(layer) for layer in self.convs2: weight_norm(layer) def remove_weight_norm(self): for layer in self.convs1: nn.utils.remove_weight_norm(layer) for layer in self.convs2: nn.utils.remove_weight_norm(layer) def forward(self, hidden_states): for conv1, conv2 in zip(self.convs1, self.convs2): residual = hidden_states hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = conv1(hidden_states) hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = conv2(hidden_states) hidden_states = hidden_states + residual return hidden_states
class_definition
20,580
22,709
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vits/modeling_vits.py
null
3,248
class VitsHifiGan(nn.Module): def __init__(self, config: VitsConfig): super().__init__() self.config = config self.num_kernels = len(config.resblock_kernel_sizes) self.num_upsamples = len(config.upsample_rates) self.conv_pre = nn.Conv1d( config.flow_size, config.upsample_initial_channel, kernel_size=7, stride=1, padding=3, ) self.upsampler = nn.ModuleList() for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)): self.upsampler.append( nn.ConvTranspose1d( config.upsample_initial_channel // (2**i), config.upsample_initial_channel // (2 ** (i + 1)), kernel_size=kernel_size, stride=upsample_rate, padding=(kernel_size - upsample_rate) // 2, ) ) self.resblocks = nn.ModuleList() for i in range(len(self.upsampler)): channels = config.upsample_initial_channel // (2 ** (i + 1)) for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes): self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope)) self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3, bias=False) if config.speaker_embedding_size != 0: self.cond = nn.Conv1d(config.speaker_embedding_size, config.upsample_initial_channel, 1) def apply_weight_norm(self): weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm for layer in self.upsampler: weight_norm(layer) for layer in self.resblocks: layer.apply_weight_norm() def remove_weight_norm(self): for layer in self.upsampler: nn.utils.remove_weight_norm(layer) for layer in self.resblocks: layer.remove_weight_norm() def forward( self, spectrogram: torch.FloatTensor, global_conditioning: Optional[torch.FloatTensor] = None ) -> torch.FloatTensor: r""" Converts a spectrogram into a speech waveform. Args: spectrogram (`torch.FloatTensor` of shape `(batch_size, config.spectrogram_bins, sequence_length)`): Tensor containing the spectrograms. global_conditioning (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_size, 1)`, *optional*): Tensor containing speaker embeddings, for multispeaker models. Returns: `torch.FloatTensor`: Tensor of shape shape `(batch_size, 1, num_frames)` containing the speech waveform. """ hidden_states = self.conv_pre(spectrogram) if global_conditioning is not None: hidden_states = hidden_states + self.cond(global_conditioning) for i in range(self.num_upsamples): hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope) hidden_states = self.upsampler[i](hidden_states) res_state = self.resblocks[i * self.num_kernels](hidden_states) for j in range(1, self.num_kernels): res_state += self.resblocks[i * self.num_kernels + j](hidden_states) hidden_states = res_state / self.num_kernels hidden_states = nn.functional.leaky_relu(hidden_states) hidden_states = self.conv_post(hidden_states) waveform = torch.tanh(hidden_states) return waveform
class_definition
22,712
26,448
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vits/modeling_vits.py
null
3,249
class VitsResidualCouplingLayer(nn.Module): def __init__(self, config: VitsConfig): super().__init__() self.half_channels = config.flow_size // 2 self.conv_pre = nn.Conv1d(self.half_channels, config.hidden_size, 1) self.wavenet = VitsWaveNet(config, num_layers=config.prior_encoder_num_wavenet_layers) self.conv_post = nn.Conv1d(config.hidden_size, self.half_channels, 1) def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False): first_half, second_half = torch.split(inputs, [self.half_channels] * 2, dim=1) hidden_states = self.conv_pre(first_half) * padding_mask hidden_states = self.wavenet(hidden_states, padding_mask, global_conditioning) mean = self.conv_post(hidden_states) * padding_mask log_stddev = torch.zeros_like(mean) if not reverse: second_half = mean + second_half * torch.exp(log_stddev) * padding_mask outputs = torch.cat([first_half, second_half], dim=1) log_determinant = torch.sum(log_stddev, [1, 2]) return outputs, log_determinant else: second_half = (second_half - mean) * torch.exp(-log_stddev) * padding_mask outputs = torch.cat([first_half, second_half], dim=1) return outputs, None
class_definition
26,451
27,776
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vits/modeling_vits.py
null
3,250
class VitsResidualCouplingBlock(nn.Module): def __init__(self, config: VitsConfig): super().__init__() self.flows = nn.ModuleList() for _ in range(config.prior_encoder_num_flows): self.flows.append(VitsResidualCouplingLayer(config)) def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False): if not reverse: for flow in self.flows: inputs, _ = flow(inputs, padding_mask, global_conditioning) inputs = torch.flip(inputs, [1]) else: for flow in reversed(self.flows): inputs = torch.flip(inputs, [1]) inputs, _ = flow(inputs, padding_mask, global_conditioning, reverse=True) return inputs
class_definition
27,779
28,544
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vits/modeling_vits.py
null
3,251
class VitsDilatedDepthSeparableConv(nn.Module): def __init__(self, config: VitsConfig, dropout_rate=0.0): super().__init__() kernel_size = config.duration_predictor_kernel_size channels = config.hidden_size self.num_layers = config.depth_separable_num_layers self.dropout = nn.Dropout(dropout_rate) self.convs_dilated = nn.ModuleList() self.convs_pointwise = nn.ModuleList() self.norms_1 = nn.ModuleList() self.norms_2 = nn.ModuleList() for i in range(self.num_layers): dilation = kernel_size**i padding = (kernel_size * dilation - dilation) // 2 self.convs_dilated.append( nn.Conv1d( in_channels=channels, out_channels=channels, kernel_size=kernel_size, groups=channels, dilation=dilation, padding=padding, ) ) self.convs_pointwise.append(nn.Conv1d(channels, channels, 1)) self.norms_1.append(nn.LayerNorm(channels)) self.norms_2.append(nn.LayerNorm(channels)) def forward(self, inputs, padding_mask, global_conditioning=None): if global_conditioning is not None: inputs = inputs + global_conditioning for i in range(self.num_layers): hidden_states = self.convs_dilated[i](inputs * padding_mask) hidden_states = self.norms_1[i](hidden_states.transpose(1, -1)).transpose(1, -1) hidden_states = nn.functional.gelu(hidden_states) hidden_states = self.convs_pointwise[i](hidden_states) hidden_states = self.norms_2[i](hidden_states.transpose(1, -1)).transpose(1, -1) hidden_states = nn.functional.gelu(hidden_states) hidden_states = self.dropout(hidden_states) inputs = inputs + hidden_states return inputs * padding_mask
class_definition
28,547
30,525
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vits/modeling_vits.py
null
3,252
class VitsConvFlow(nn.Module): def __init__(self, config: VitsConfig): super().__init__() self.filter_channels = config.hidden_size self.half_channels = config.depth_separable_channels // 2 self.num_bins = config.duration_predictor_flow_bins self.tail_bound = config.duration_predictor_tail_bound self.conv_pre = nn.Conv1d(self.half_channels, self.filter_channels, 1) self.conv_dds = VitsDilatedDepthSeparableConv(config) self.conv_proj = nn.Conv1d(self.filter_channels, self.half_channels * (self.num_bins * 3 - 1), 1) def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False): first_half, second_half = torch.split(inputs, [self.half_channels] * 2, dim=1) hidden_states = self.conv_pre(first_half) hidden_states = self.conv_dds(hidden_states, padding_mask, global_conditioning) hidden_states = self.conv_proj(hidden_states) * padding_mask batch_size, channels, length = first_half.shape hidden_states = hidden_states.reshape(batch_size, channels, -1, length).permute(0, 1, 3, 2) unnormalized_widths = hidden_states[..., : self.num_bins] / math.sqrt(self.filter_channels) unnormalized_heights = hidden_states[..., self.num_bins : 2 * self.num_bins] / math.sqrt(self.filter_channels) unnormalized_derivatives = hidden_states[..., 2 * self.num_bins :] second_half, log_abs_det = _unconstrained_rational_quadratic_spline( second_half, unnormalized_widths, unnormalized_heights, unnormalized_derivatives, reverse=reverse, tail_bound=self.tail_bound, ) outputs = torch.cat([first_half, second_half], dim=1) * padding_mask if not reverse: log_determinant = torch.sum(log_abs_det * padding_mask, [1, 2]) return outputs, log_determinant else: return outputs, None
class_definition
30,528
32,506
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vits/modeling_vits.py
null
3,253
class VitsElementwiseAffine(nn.Module): def __init__(self, config: VitsConfig): super().__init__() self.channels = config.depth_separable_channels self.translate = nn.Parameter(torch.zeros(self.channels, 1)) self.log_scale = nn.Parameter(torch.zeros(self.channels, 1)) def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False): if not reverse: outputs = self.translate + torch.exp(self.log_scale) * inputs outputs = outputs * padding_mask log_determinant = torch.sum(self.log_scale * padding_mask, [1, 2]) return outputs, log_determinant else: outputs = (inputs - self.translate) * torch.exp(-self.log_scale) * padding_mask return outputs, None
class_definition
32,509
33,305
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vits/modeling_vits.py
null
3,254
class VitsStochasticDurationPredictor(nn.Module): def __init__(self, config): super().__init__() embed_dim = config.speaker_embedding_size filter_channels = config.hidden_size self.conv_pre = nn.Conv1d(filter_channels, filter_channels, 1) self.conv_proj = nn.Conv1d(filter_channels, filter_channels, 1) self.conv_dds = VitsDilatedDepthSeparableConv( config, dropout_rate=config.duration_predictor_dropout, ) if embed_dim != 0: self.cond = nn.Conv1d(embed_dim, filter_channels, 1) self.flows = nn.ModuleList() self.flows.append(VitsElementwiseAffine(config)) for _ in range(config.duration_predictor_num_flows): self.flows.append(VitsConvFlow(config)) self.post_conv_pre = nn.Conv1d(1, filter_channels, 1) self.post_conv_proj = nn.Conv1d(filter_channels, filter_channels, 1) self.post_conv_dds = VitsDilatedDepthSeparableConv( config, dropout_rate=config.duration_predictor_dropout, ) self.post_flows = nn.ModuleList() self.post_flows.append(VitsElementwiseAffine(config)) for _ in range(config.duration_predictor_num_flows): self.post_flows.append(VitsConvFlow(config)) def forward(self, inputs, padding_mask, global_conditioning=None, durations=None, reverse=False, noise_scale=1.0): inputs = torch.detach(inputs) inputs = self.conv_pre(inputs) if global_conditioning is not None: global_conditioning = torch.detach(global_conditioning) inputs = inputs + self.cond(global_conditioning) inputs = self.conv_dds(inputs, padding_mask) inputs = self.conv_proj(inputs) * padding_mask if not reverse: hidden_states = self.post_conv_pre(durations) hidden_states = self.post_conv_dds(hidden_states, padding_mask) hidden_states = self.post_conv_proj(hidden_states) * padding_mask random_posterior = ( torch.randn(durations.size(0), 2, durations.size(2)).to(device=inputs.device, dtype=inputs.dtype) * padding_mask ) log_determinant_posterior_sum = 0 latents_posterior = random_posterior for flow in self.post_flows: latents_posterior, log_determinant = flow( latents_posterior, padding_mask, global_conditioning=inputs + hidden_states ) latents_posterior = torch.flip(latents_posterior, [1]) log_determinant_posterior_sum += log_determinant first_half, second_half = torch.split(latents_posterior, [1, 1], dim=1) log_determinant_posterior_sum += torch.sum( (nn.functional.logsigmoid(first_half) + nn.functional.logsigmoid(-first_half)) * padding_mask, [1, 2] ) logq = ( torch.sum(-0.5 * (math.log(2 * math.pi) + (random_posterior**2)) * padding_mask, [1, 2]) - log_determinant_posterior_sum ) first_half = (durations - torch.sigmoid(first_half)) * padding_mask first_half = torch.log(torch.clamp_min(first_half, 1e-5)) * padding_mask log_determinant_sum = torch.sum(-first_half, [1, 2]) latents = torch.cat([first_half, second_half], dim=1) for flow in self.flows: latents, log_determinant = flow(latents, padding_mask, global_conditioning=inputs) latents = torch.flip(latents, [1]) log_determinant_sum += log_determinant nll = torch.sum(0.5 * (math.log(2 * math.pi) + (latents**2)) * padding_mask, [1, 2]) - log_determinant_sum return nll + logq else: flows = list(reversed(self.flows)) flows = flows[:-2] + [flows[-1]] # remove a useless vflow latents = ( torch.randn(inputs.size(0), 2, inputs.size(2)).to(device=inputs.device, dtype=inputs.dtype) * noise_scale ) for flow in flows: latents = torch.flip(latents, [1]) latents, _ = flow(latents, padding_mask, global_conditioning=inputs, reverse=True) log_duration, _ = torch.split(latents, [1, 1], dim=1) return log_duration
class_definition
33,308
37,709
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vits/modeling_vits.py
null
3,255
class VitsDurationPredictor(nn.Module): def __init__(self, config): super().__init__() kernel_size = config.duration_predictor_kernel_size filter_channels = config.duration_predictor_filter_channels self.dropout = nn.Dropout(config.duration_predictor_dropout) self.conv_1 = nn.Conv1d(config.hidden_size, filter_channels, kernel_size, padding=kernel_size // 2) self.norm_1 = nn.LayerNorm(filter_channels, eps=config.layer_norm_eps) self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2) self.norm_2 = nn.LayerNorm(filter_channels, eps=config.layer_norm_eps) self.proj = nn.Conv1d(filter_channels, 1, 1) if config.speaker_embedding_size != 0: self.cond = nn.Conv1d(config.speaker_embedding_size, config.hidden_size, 1) def forward(self, inputs, padding_mask, global_conditioning=None): inputs = torch.detach(inputs) if global_conditioning is not None: global_conditioning = torch.detach(global_conditioning) inputs = inputs + self.cond(global_conditioning) inputs = self.conv_1(inputs * padding_mask) inputs = torch.relu(inputs) inputs = self.norm_1(inputs.transpose(1, -1)).transpose(1, -1) inputs = self.dropout(inputs) inputs = self.conv_2(inputs * padding_mask) inputs = torch.relu(inputs) inputs = self.norm_2(inputs.transpose(1, -1)).transpose(1, -1) inputs = self.dropout(inputs) inputs = self.proj(inputs * padding_mask) return inputs * padding_mask
class_definition
37,712
39,336
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vits/modeling_vits.py
null
3,256
class VitsAttention(nn.Module): """Multi-headed attention with relative positional representation.""" def __init__(self, config: VitsConfig): super().__init__() self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.dropout = config.attention_dropout self.window_size = config.window_size self.head_dim = self.embed_dim // self.num_heads self.scaling = self.head_dim**-0.5 if (self.head_dim * self.num_heads) != self.embed_dim: raise ValueError( f"hidden_size must be divisible by num_attention_heads (got `hidden_size`: {self.embed_dim}" f" and `num_attention_heads`: {self.num_heads})." ) self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias) if self.window_size: self.emb_rel_k = nn.Parameter(torch.randn(1, self.window_size * 2 + 1, self.head_dim) * self.scaling) self.emb_rel_v = nn.Parameter(torch.randn(1, self.window_size * 2 + 1, self.head_dim) * self.scaling) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if self.window_size is not None: key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, src_len) relative_logits = torch.matmul(query_states, key_relative_embeddings.transpose(-2, -1)) rel_pos_bias = self._relative_position_to_absolute_position(relative_logits) attn_weights += rel_pos_bias if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) if self.window_size is not None: value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, src_len) relative_weights = self._absolute_position_to_relative_position(attn_probs) rel_pos_bias = torch.matmul(relative_weights, value_relative_embeddings) attn_output += rel_pos_bias attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned aross GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped def _get_relative_embeddings(self, relative_embeddings, length): pad_length = max(length - (self.window_size + 1), 0) if pad_length > 0: relative_embeddings = nn.functional.pad(relative_embeddings, [0, 0, pad_length, pad_length, 0, 0]) slice_start_position = max((self.window_size + 1) - length, 0) slice_end_position = slice_start_position + 2 * length - 1 return relative_embeddings[:, slice_start_position:slice_end_position] def _relative_position_to_absolute_position(self, x): batch_heads, length, _ = x.size() # Concat columns of pad to shift from relative to absolute indexing. x = nn.functional.pad(x, [0, 1, 0, 0, 0, 0]) # Concat extra elements so to add up to shape (len+1, 2*len-1). x_flat = x.view([batch_heads, length * 2 * length]) x_flat = nn.functional.pad(x_flat, [0, length - 1, 0, 0]) # Reshape and slice out the padded elements. x_final = x_flat.view([batch_heads, length + 1, 2 * length - 1]) x_final = x_final[:, :length, length - 1 :] return x_final def _absolute_position_to_relative_position(self, x): batch_heads, length, _ = x.size() # Pad along column x = nn.functional.pad(x, [0, length - 1, 0, 0, 0, 0]) x_flat = x.view([batch_heads, length * (2 * length - 1)]) # Add 0's in the beginning that will skew the elements after reshape x_flat = nn.functional.pad(x_flat, [length, 0, 0, 0]) x_final = x_flat.view([batch_heads, length, 2 * length])[:, :, 1:] return x_final
class_definition
39,339
47,123
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vits/modeling_vits.py
null
3,257
class VitsFeedForward(nn.Module): def __init__(self, config): super().__init__() self.conv_1 = nn.Conv1d(config.hidden_size, config.ffn_dim, config.ffn_kernel_size) self.conv_2 = nn.Conv1d(config.ffn_dim, config.hidden_size, config.ffn_kernel_size) self.dropout = nn.Dropout(config.activation_dropout) if isinstance(config.hidden_act, str): self.act_fn = ACT2FN[config.hidden_act] else: self.act_fn = config.hidden_act if config.ffn_kernel_size > 1: pad_left = (config.ffn_kernel_size - 1) // 2 pad_right = config.ffn_kernel_size // 2 self.padding = [pad_left, pad_right, 0, 0, 0, 0] else: self.padding = None def forward(self, hidden_states, padding_mask): hidden_states = hidden_states.permute(0, 2, 1) padding_mask = padding_mask.permute(0, 2, 1) hidden_states = hidden_states * padding_mask if self.padding is not None: hidden_states = nn.functional.pad(hidden_states, self.padding) hidden_states = self.conv_1(hidden_states) hidden_states = self.act_fn(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states * padding_mask if self.padding is not None: hidden_states = nn.functional.pad(hidden_states, self.padding) hidden_states = self.conv_2(hidden_states) hidden_states = hidden_states * padding_mask hidden_states = hidden_states.permute(0, 2, 1) return hidden_states
class_definition
47,126
48,715
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vits/modeling_vits.py
null
3,258
class VitsEncoderLayer(nn.Module): def __init__(self, config: VitsConfig): super().__init__() self.attention = VitsAttention(config) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = VitsFeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, padding_mask: torch.FloatTensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ): residual = hidden_states hidden_states, attn_weights = self.attention( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = self.dropout(hidden_states) hidden_states = self.layer_norm(residual + hidden_states) residual = hidden_states hidden_states = self.feed_forward(hidden_states, padding_mask) hidden_states = self.dropout(hidden_states) hidden_states = self.final_layer_norm(residual + hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
class_definition
48,718
50,078
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vits/modeling_vits.py
null
3,259
class VitsEncoder(nn.Module): def __init__(self, config: VitsConfig): super().__init__() self.config = config self.layers = nn.ModuleList([VitsEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False self.layerdrop = config.layerdrop def forward( self, hidden_states: torch.FloatTensor, padding_mask: torch.FloatTensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) hidden_states = hidden_states * padding_mask synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self) for encoder_layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = np.random.uniform(0, 1) skip_the_layer = self.training and (dropout_probability < self.layerdrop) if not skip_the_layer or synced_gpus: # under fsdp or deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, padding_mask, attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask=attention_mask, padding_mask=padding_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) hidden_states = hidden_states * padding_mask if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, )
class_definition
50,081
53,145
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vits/modeling_vits.py
null
3,260
class VitsTextEncoder(nn.Module): """ Transformer encoder that uses relative positional representation instead of absolute positional encoding. """ def __init__(self, config: VitsConfig): super().__init__() self.config = config self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) self.encoder = VitsEncoder(config) self.project = nn.Conv1d(config.hidden_size, config.flow_size * 2, kernel_size=1) def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, input_ids: torch.Tensor, padding_mask: torch.FloatTensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], VitsTextEncoderOutput]: hidden_states = self.embed_tokens(input_ids) * math.sqrt(self.config.hidden_size) encoder_outputs = self.encoder( hidden_states=hidden_states, padding_mask=padding_mask, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] if not return_dict else encoder_outputs.last_hidden_state stats = self.project(last_hidden_state.transpose(1, 2)).transpose(1, 2) * padding_mask prior_means, prior_log_variances = torch.split(stats, self.config.flow_size, dim=2) if not return_dict: outputs = (last_hidden_state, prior_means, prior_log_variances) + encoder_outputs[1:] return outputs return VitsTextEncoderOutput( last_hidden_state=last_hidden_state, prior_means=prior_means, prior_log_variances=prior_log_variances, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
class_definition
53,148
55,307
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vits/modeling_vits.py
null
3,261
class VitsPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = VitsConfig base_model_prefix = "vits" main_input_name = "input_ids" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_()
class_definition
55,310
56,570
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vits/modeling_vits.py
null
3,262
class VitsModel(VitsPreTrainedModel): def __init__(self, config: VitsConfig): super().__init__(config) self.config = config self.text_encoder = VitsTextEncoder(config) self.flow = VitsResidualCouplingBlock(config) self.decoder = VitsHifiGan(config) if config.use_stochastic_duration_prediction: self.duration_predictor = VitsStochasticDurationPredictor(config) else: self.duration_predictor = VitsDurationPredictor(config) if config.num_speakers > 1: self.embed_speaker = nn.Embedding(config.num_speakers, config.speaker_embedding_size) # This is used only for training. self.posterior_encoder = VitsPosteriorEncoder(config) # These parameters control the synthesised speech properties self.speaking_rate = config.speaking_rate self.noise_scale = config.noise_scale self.noise_scale_duration = config.noise_scale_duration # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.text_encoder @add_start_docstrings_to_model_forward(VITS_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=VitsModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, speaker_id: Optional[int] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.FloatTensor] = None, ) -> Union[Tuple[Any], VitsModelOutput]: r""" labels (`torch.FloatTensor` of shape `(batch_size, config.spectrogram_bins, sequence_length)`, *optional*): Float values of target spectrogram. Timesteps set to `-100.0` are ignored (masked) for the loss computation. Returns: Example: ```python >>> from transformers import VitsTokenizer, VitsModel, set_seed >>> import torch >>> tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng") >>> model = VitsModel.from_pretrained("facebook/mms-tts-eng") >>> inputs = tokenizer(text="Hello - my dog is cute", return_tensors="pt") >>> set_seed(555) # make deterministic >>> with torch.no_grad(): ... outputs = model(inputs["input_ids"]) >>> outputs.waveform.shape torch.Size([1, 45824]) ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: raise NotImplementedError("Training of VITS is not supported yet.") if attention_mask is not None: input_padding_mask = attention_mask.unsqueeze(-1).float() else: input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float() if self.config.num_speakers > 1 and speaker_id is not None: if not 0 <= speaker_id < self.config.num_speakers: raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.") if isinstance(speaker_id, int): speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device) speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1) else: speaker_embeddings = None text_encoder_output = self.text_encoder( input_ids=input_ids, padding_mask=input_padding_mask, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state hidden_states = hidden_states.transpose(1, 2) input_padding_mask = input_padding_mask.transpose(1, 2) prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances if self.config.use_stochastic_duration_prediction: log_duration = self.duration_predictor( hidden_states, input_padding_mask, speaker_embeddings, reverse=True, noise_scale=self.noise_scale_duration, ) else: log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings) length_scale = 1.0 / self.speaking_rate duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale) predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long() # Create a padding mask for the output lengths of shape (batch, 1, max_output_length) indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device) output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1) output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype) # Reconstruct an attention tensor of shape (batch, 1, out_length, in_length) attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1) batch_size, _, output_length, input_length = attn_mask.shape cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1) indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device) valid_indices = indices.unsqueeze(0) < cum_duration valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length) padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1] attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask # Expand prior distribution prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2) prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2) prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True) spectrogram = latents * output_padding_mask waveform = self.decoder(spectrogram, speaker_embeddings) waveform = waveform.squeeze(1) sequence_lengths = predicted_lengths * np.prod(self.config.upsample_rates) if not return_dict: outputs = (waveform, sequence_lengths, spectrogram) + text_encoder_output[3:] return outputs return VitsModelOutput( waveform=waveform, sequence_lengths=sequence_lengths, spectrogram=spectrogram, hidden_states=text_encoder_output.hidden_states, attentions=text_encoder_output.attentions, )
class_definition
59,080
66,510
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vits/modeling_vits.py
null
3,263
class OlmoeRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-5): """ OlmoeRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class_definition
5,195
5,915
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/olmoe/modeling_olmoe.py
null
3,264
class OlmoeRotaryEmbedding(nn.Module): def __init__(self, config: OlmoeConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq def _dynamic_frequency_update(self, position_ids, device): """ dynamic RoPE layers should recompute `inv_freq` in the following situations: 1 - growing beyond the cached sequence length (allow scaling) 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) """ seq_len = torch.max(position_ids) + 1 if seq_len > self.max_seq_len_cached: # growth inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation self.max_seq_len_cached = seq_len if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset # This .to() is needed if the model has been moved to a device after being initialized (because # the buffer is automatically moved, but not the original copy) self.original_inv_freq = self.original_inv_freq.to(device) self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) self.max_seq_len_cached = self.original_max_seq_len @torch.no_grad() def forward(self, x, position_ids): if "dynamic" in self.rope_type: self._dynamic_frequency_update(position_ids, device=x.device) # Core RoPE block inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 (see https://github.com/huggingface/transformers/pull/29285) device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() sin = emb.sin() # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention cos = cos * self.attention_scaling sin = sin * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class_definition
6,056
9,251
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/olmoe/modeling_olmoe.py
null
3,265
class OlmoeMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj
class_definition
11,200
11,868
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/olmoe/modeling_olmoe.py
null
3,266
class OlmoeAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: OlmoeConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.attention_dropout = config.attention_dropout self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.is_causal = True if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias) self.q_norm = OlmoeRMSNorm(self.hidden_size, eps=config.rms_norm_eps) self.k_norm = OlmoeRMSNorm( (self.hidden_size // self.num_heads) * self.num_key_value_heads, eps=config.rms_norm_eps ) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_norm(self.q_proj(hidden_states)) key_states = self.k_norm(self.k_proj(hidden_states)) value_states = self.v_proj(hidden_states) if self.config.clip_qkv is not None: query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value
class_definition
12,545
17,832
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/olmoe/modeling_olmoe.py
null
3,267
class OlmoeFlashAttention2(OlmoeAttention): """ OLMoE flash attention module. This module inherits from `OlmoeAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: output_attentions = False bsz, q_len, _ = hidden_states.size() query_states = self.q_norm(self.q_proj(hidden_states)) key_states = self.k_norm(self.k_proj(hidden_states)) value_states = self.v_proj(hidden_states) if self.config.clip_qkv is not None: query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim # therefore we just need to keep the original shape query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache # to be able to avoid many of these transpose/reshape/view. query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) dropout_rate = self.attention_dropout if self.training else 0.0 # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (OlmoeRMSNorm handles it correctly) input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) attn_output = _flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate, use_top_left_mask=self._flash_attn_uses_top_left_mask, is_causal=self.is_causal, ) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value
class_definition
17,835
23,399
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/olmoe/modeling_olmoe.py
null
3,268
class OlmoeSdpaAttention(OlmoeAttention): """ OLMoE attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from `OlmoeAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to SDPA API. """ # Adapted from OlmoeAttention.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "OlmoeModel is using OlmoeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, ) bsz, q_len, _ = hidden_states.size() query_states = self.q_norm(self.q_proj(hidden_states)) key_states = self.k_norm(self.k_proj(hidden_states)) value_states = self.v_proj(hidden_states) if self.config.clip_qkv is not None: query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) causal_mask = attention_mask # if attention_mask is not None and cache_position is not None: if attention_mask is not None: causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and causal_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. is_causal = True if causal_mask is None and q_len > 1 else False attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=causal_mask, dropout_p=self.attention_dropout if self.training else 0.0, is_causal=is_causal, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value
class_definition
23,402
28,336
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/olmoe/modeling_olmoe.py
null
3,269
class OlmoeSparseMoeBlock(nn.Module): def __init__(self, config): super().__init__() self.num_experts = config.num_experts self.top_k = config.num_experts_per_tok self.norm_topk_prob = config.norm_topk_prob self.gate = nn.Linear(config.hidden_size, self.num_experts, bias=False) self.experts = nn.ModuleList([OlmoeMLP(config) for _ in range(self.num_experts)]) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: batch_size, sequence_length, hidden_dim = hidden_states.shape hidden_states = hidden_states.view(-1, hidden_dim) # router_logits: (batch * sequence_length, n_experts) router_logits = self.gate(hidden_states) routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) if self.norm_topk_prob: routing_weights /= routing_weights.sum(dim=-1, keepdim=True) # we cast back to the input dtype routing_weights = routing_weights.to(hidden_states.dtype) final_hidden_states = torch.zeros( (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device ) # One hot encode the selected experts to create an expert mask # this will be used to easily index which expert is going to be selected expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) # Loop over all available experts in the model and perform the computation on each expert for expert_idx in range(self.num_experts): expert_layer = self.experts[expert_idx] idx, top_x = torch.where(expert_mask[expert_idx]) # Index the correct hidden states and compute the expert hidden state for # the current expert. We need to make sure to multiply the output hidden # states by `routing_weights` on the corresponding tokens (top-1 and top-2) current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None] # However `index_add_` only support torch tensors for indexing so we'll use # the `top_x` tensor here. final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) return final_hidden_states, router_logits
class_definition
28,479
31,096
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/olmoe/modeling_olmoe.py
null
3,270
class OlmoeDecoderLayer(nn.Module): def __init__(self, config: OlmoeConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = OLMOE_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) self.mlp = OlmoeSparseMoeBlock(config) self.input_layernorm = OlmoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = OlmoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, output_router_logits: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, query_sequence_length, key_sequence_length)` if default attention is used. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_router_logits (`bool`, *optional*): Whether or not to return the logits of all the routers. They are useful for computing the router loss, and should not be returned during inference. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, with `head_dim` being the embedding dimension of each attention head. kwargs (`dict`, *optional*): Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code into the model """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states, router_logits = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) if output_router_logits: outputs += (router_logits,) return outputs
class_definition
31,099
35,215
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/olmoe/modeling_olmoe.py
null
3,271
class OlmoePreTrainedModel(PreTrainedModel): config_class = OlmoeConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["OlmoeDecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn_2 = True _supports_sdpa = True _supports_flex_attn = True _supports_cache_class = True _supports_quantized_cache = True _supports_static_cache = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_()
class_definition
36,331
37,254
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/olmoe/modeling_olmoe.py
null
3,272
class OlmoeModel(OlmoePreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`OlmoeDecoderLayer`] Args: config: OlmoeConfig """ def __init__(self, config: OlmoeConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [OlmoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = OlmoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = OlmoeRotaryEmbedding(config=config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(OLMOE_INPUTS_DOCSTRING) # Ignore copy def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, MoeModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) # kept for BC (non `Cache` `past_key_values` inputs) return_legacy_cache = False if use_cache and not isinstance(past_key_values, Cache): return_legacy_cache = True if past_key_values is None: past_key_values = DynamicCache() else: past_key_values = DynamicCache.from_legacy_cache(past_key_values) logger.warning_once( "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and " "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class " "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)" ) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) # embed positions hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_router_logits = () if output_router_logits else None next_decoder_cache = None for decoder_layer in self.layers[: self.config.num_hidden_layers]: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, output_router_logits, use_cache, cache_position, position_embeddings, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, output_router_logits=output_router_logits, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) if output_router_logits and layer_outputs[-1] is not None: all_router_logits += (layer_outputs[-1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if return_legacy_cache: next_cache = next_cache.to_legacy_cache() if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return MoeModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, router_logits=all_router_logits, ) def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device sequence_length = input_tensor.shape[1] if using_static_cache: target_length = past_key_values.get_max_cache_shape() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type == "cuda" and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 min_dtype = torch.finfo(dtype).min causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, **kwargs, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to plcae the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask
class_definition
42,296
55,056
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/olmoe/modeling_olmoe.py
null
3,273
class OlmoeForCausalLM(OlmoePreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = OlmoeModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.router_aux_loss_coef = config.router_aux_loss_coef self.num_experts = config.num_experts self.num_experts_per_tok = config.num_experts_per_tok # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(OLMOE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, num_logits_to_keep: int = 0, **loss_kwargs, ) -> Union[Tuple, MoeCausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. num_logits_to_keep (`int`, *optional*): Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. Returns: Example: ```python >>> from transformers import AutoTokenizer, OlmoeForCausalLM >>> model = OlmoeForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0924") >>> tokenizer = AutoTokenizer.from_pretrained("allenai/OLMoE-1B-7B-0924") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] 'Hey, are you conscious? Can you talk to me?\nI’m not sure if you’re conscious of this, but I’m' ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_router_logits=output_router_logits, return_dict=return_dict, cache_position=cache_position, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs) aux_loss = None if output_router_logits: aux_loss = load_balancing_loss_func( outputs.router_logits if return_dict else outputs[-1], self.num_experts, self.num_experts_per_tok, attention_mask, ) if labels is not None: loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device if not return_dict: output = (logits,) + outputs[1:] if output_router_logits: output = (aux_loss,) + output return (loss,) + output if loss is not None else output return MoeCausalLMOutputWithPast( loss=loss, aux_loss=aux_loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, router_logits=outputs.router_logits, )
class_definition
55,059
61,138
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/olmoe/modeling_olmoe.py
null
3,274
class OlmoeConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`OlmoeModel`]. It is used to instantiate an OLMoE model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [allenai/OLMoE-1B-7B-0924](https://huggingface.co/allenai/OLMoE-1B-7B-0924). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50304): Vocabulary size of the OLMoE model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`OlmoeModel`] hidden_size (`int`, *optional*, defaults to 2048): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 2048): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 16): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 4096): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*, defaults to 1): Padding token id. bos_token_id (`int`, *optional*): Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 50279): End of stream token id. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update `max_position_embeddings` to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. clip_qkv (`float`, *optional*): If not `None`, elements of query, key and value attention states are clipped so that their absolute value does not exceed this value. num_experts_per_tok (`int`, *optional*, defaults to 8): Number of selected experts. num_experts (`int`, *optional*, defaults to 64): Number of routed experts. output_router_logits (`bool`, *optional*, defaults to `False`): Whether or not the router logits should be returned by the model. Enabeling this will also allow the model to output the auxiliary loss, including load balancing loss and router z-loss. router_aux_loss_coef (`float`, *optional*, defaults to 0.01): The aux loss factor for the total loss. norm_topk_prob (`bool`, *optional*, defaults to `False`): Whether to normalize the topk probabilities. ```python >>> from transformers import OlmoeModel, OlmoeConfig >>> # Initializing a OLMoE 7B A1B style configuration >>> configuration = OlmoeConfig() >>> # Initializing a model from the OLMoE 7B A1B style configuration >>> model = OlmoeModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "olmoe" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=50304, hidden_size=2048, intermediate_size=2048, num_hidden_layers=16, num_attention_heads=16, num_key_value_heads=None, hidden_act="silu", max_position_embeddings=4096, initializer_range=0.02, rms_norm_eps=1e-05, use_cache=True, pad_token_id=1, bos_token_id=None, eos_token_id=50279, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, attention_bias=False, attention_dropout=0.0, clip_qkv=None, num_experts_per_tok=8, num_experts=64, output_router_logits=False, router_aux_loss_coef=0.01, norm_topk_prob=False, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.clip_qkv = clip_qkv self.num_experts_per_tok = num_experts_per_tok self.num_experts = num_experts self.output_router_logits = output_router_logits self.router_aux_loss_coef = router_aux_loss_coef self.norm_topk_prob = norm_topk_prob # Validate the correctness of rotary position embeddings parameters # BC: if there is a 'type' field, move it to 'rope_type'. if self.rope_scaling is not None and "type" in self.rope_scaling: self.rope_scaling["rope_type"] = self.rope_scaling["type"] rope_config_validation(self) super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )
class_definition
689
9,035
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/olmoe/configuration_olmoe.py
null
3,275
class Speech2TextTokenizer(PreTrainedTokenizer): """ Construct an Speech2Text tokenizer. This tokenizer inherits from [`PreTrainedTokenizer`] which contains some of the main methods. Users should refer to the superclass for more information regarding such methods. Args: vocab_file (`str`): File containing the vocabulary. spm_file (`str`): Path to the [SentencePiece](https://github.com/google/sentencepiece) model file bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sentence token. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sentence token. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. do_upper_case (`bool`, *optional*, defaults to `False`): Whether or not to uppercase the output when decoding. do_lower_case (`bool`, *optional*, defaults to `False`): Whether or not to lowercase the input when tokenizing. tgt_lang (`str`, *optional*): A string representing the target language. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. **kwargs Additional keyword arguments passed along to [`PreTrainedTokenizer`] """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] prefix_tokens: List[int] = [] def __init__( self, vocab_file, spm_file, bos_token="<s>", eos_token="</s>", pad_token="<pad>", unk_token="<unk>", do_upper_case=False, do_lower_case=False, tgt_lang=None, lang_codes=None, additional_special_tokens=None, sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.do_upper_case = do_upper_case self.do_lower_case = do_lower_case self.encoder = load_json(vocab_file) self.decoder = {v: k for k, v in self.encoder.items()} self.spm_file = spm_file self.sp_model = load_spm(spm_file, self.sp_model_kwargs) if lang_codes is not None: self.lang_codes = lang_codes self.langs = LANGUAGES[lang_codes] self.lang_tokens = [f"<lang:{lang}>" for lang in self.langs] self.lang_code_to_id = {lang: self.sp_model.PieceToId(f"<lang:{lang}>") for lang in self.langs} if additional_special_tokens is not None: additional_special_tokens = self.lang_tokens + additional_special_tokens else: additional_special_tokens = self.lang_tokens self._tgt_lang = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang) else: self.lang_code_to_id = {} super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, do_upper_case=do_upper_case, do_lower_case=do_lower_case, tgt_lang=tgt_lang, lang_codes=lang_codes, sp_model_kwargs=self.sp_model_kwargs, additional_special_tokens=additional_special_tokens, **kwargs, ) @property def vocab_size(self) -> int: return len(self.encoder) def get_vocab(self) -> Dict: vocab = self.encoder.copy() vocab.update(self.added_tokens_encoder) return vocab @property def tgt_lang(self) -> str: return self._tgt_lang @tgt_lang.setter def tgt_lang(self, new_tgt_lang) -> None: self._tgt_lang = new_tgt_lang self.set_tgt_lang_special_tokens(new_tgt_lang) def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None: """Reset the special tokens to the target language setting. prefix=[eos, tgt_lang_code] and suffix=[eos].""" lang_code_id = self.lang_code_to_id[tgt_lang] self.prefix_tokens = [lang_code_id] def _tokenize(self, text: str) -> List[str]: return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): return self.encoder.get(token, self.encoder[self.unk_token]) def _convert_id_to_token(self, index: int) -> str: """Converts an index (integer) in a token (str) using the decoder.""" return self.decoder.get(index, self.unk_token) def convert_tokens_to_string(self, tokens: List[str]) -> str: """Converts a sequence of tokens (strings for sub-words) in a single string.""" current_sub_tokens = [] out_string = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: decoded = self.sp_model.decode(current_sub_tokens) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " current_sub_tokens = [] else: current_sub_tokens.append(token) decoded = self.sp_model.decode(current_sub_tokens) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: """Build model inputs from a sequence by appending eos_token_id.""" if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + [self.eos_token_id] def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) prefix_ones = [1] * len(self.prefix_tokens) suffix_ones = [1] if token_ids_1 is None: return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones def __getstate__(self) -> Dict: state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d: Dict) -> None: self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = load_spm(self.spm_file, self.sp_model_kwargs) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: save_dir = Path(save_directory) assert save_dir.is_dir(), f"{save_directory} should be a directory" vocab_save_path = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) spm_save_path = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder, vocab_save_path) if os.path.abspath(self.spm_file) != os.path.abspath(spm_save_path) and os.path.isfile(self.spm_file): copyfile(self.spm_file, spm_save_path) elif not os.path.isfile(self.spm_file): with open(spm_save_path, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (str(vocab_save_path), str(spm_save_path))
class_definition
1,257
10,977
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/tokenization_speech_to_text.py
null
3,276
class Speech2TextFeatureExtractor(SequenceFeatureExtractor): r""" Constructs a Speech2Text feature extractor. This feature extractor inherits from [`Speech2TextFeatureExtractor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. This class extracts mel-filter bank features from raw speech using TorchAudio if installed or using numpy otherwise, and applies utterance-level cepstral mean and variance normalization to the extracted features. Args: feature_size (`int`, *optional*, defaults to 80): The feature dimension of the extracted features. sampling_rate (`int`, *optional*, defaults to 16000): The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). num_mel_bins (`int`, *optional*, defaults to 80): Number of Mel-frequency bins. padding_value (`float`, *optional*, defaults to 0.0): The value that is used to fill the padding vectors. do_ceptral_normalize (`bool`, *optional*, defaults to `True`): Whether or not to apply utterance-level cepstral mean and variance normalization to extracted features. normalize_means (`bool`, *optional*, defaults to `True`): Whether or not to zero-mean normalize the extracted features. normalize_vars (`bool`, *optional*, defaults to `True`): Whether or not to unit-variance normalize the extracted features. """ model_input_names = ["input_features", "attention_mask"] def __init__( self, feature_size=80, sampling_rate=16000, num_mel_bins=80, padding_value=0.0, do_ceptral_normalize=True, normalize_means=True, normalize_vars=True, **kwargs, ): super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs) self.num_mel_bins = num_mel_bins self.do_ceptral_normalize = do_ceptral_normalize self.normalize_means = normalize_means self.normalize_vars = normalize_vars self.return_attention_mask = True if not is_speech_available(): mel_filters = mel_filter_bank( num_frequency_bins=256, num_mel_filters=self.num_mel_bins, min_frequency=20, max_frequency=sampling_rate // 2, sampling_rate=sampling_rate, norm=None, mel_scale="kaldi", triangularize_in_mel_space=True, ) self.mel_filters = np.pad(mel_filters, ((0, 1), (0, 0))) self.window = window_function(400, "povey", periodic=False) def _extract_fbank_features( self, waveform: np.ndarray, ) -> np.ndarray: """ Get mel-filter bank features using TorchAudio. Note that TorchAudio requires 16-bit signed integers as inputs and hence the waveform should not be normalized before feature extraction. """ waveform = waveform * (2**15) # Kaldi compliance: 16-bit signed integers if is_speech_available(): waveform = torch.from_numpy(waveform).unsqueeze(0) features = ta_kaldi.fbank(waveform, num_mel_bins=self.num_mel_bins, sample_frequency=self.sampling_rate) features = features.numpy() else: waveform = np.squeeze(waveform) features = spectrogram( waveform, self.window, frame_length=400, hop_length=160, fft_length=512, power=2.0, center=False, preemphasis=0.97, mel_filters=self.mel_filters, log_mel="log", mel_floor=1.192092955078125e-07, remove_dc_offset=True, ).T return features @staticmethod def utterance_cmvn( x: np.ndarray, input_length: int, normalize_means: Optional[bool] = True, normalize_vars: Optional[bool] = True, padding_value: float = 0.0, ) -> np.ndarray: # make sure we normalize float32 arrays if normalize_means: mean = x[:input_length].mean(axis=0) x = np.subtract(x, mean) if normalize_vars: std = x[:input_length].std(axis=0) x = np.divide(x, std) if input_length < x.shape[0]: x[input_length:] = padding_value # make sure array is in float32 x = x.astype(np.float32) return x def normalize( self, input_features: List[np.ndarray], attention_mask: Optional[np.ndarray] = None ) -> List[np.ndarray]: lengths = attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(x, n, self.normalize_means, self.normalize_vars, self.padding_value) for x, n in zip(input_features, lengths) ] def __call__( self, raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], padding: Union[bool, str, PaddingStrategy] = False, max_length: Optional[int] = None, truncation: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, sampling_rate: Optional[int] = None, return_attention_mask: Optional[bool] = None, **kwargs, ) -> BatchFeature: """ Main method to featurize and prepare for the model one or several sequence(s). Args: raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`): The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not stereo, i.e. single float per timestep. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`): Activates truncation to cut input sequences longer than *max_length* to *max_length*. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific feature_extractor's default. [What are attention masks?](../glossary#attention-mask) <Tip> For Speech2TextTransformer models, `attention_mask` should always be passed for batched inference, to avoid subtle bugs. </Tip> return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. sampling_rate (`int`, *optional*): The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass `sampling_rate` at the forward call to prevent silent errors. padding_value (`float`, *optional*, defaults to 0.0): The value that is used to fill the padding values / vectors. """ if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") is_batched = is_batched_numpy or ( isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) ) if is_batched: raw_speech = [np.asarray(speech, dtype=np.float32) for speech in raw_speech] elif not is_batched and not isinstance(raw_speech, np.ndarray): raw_speech = np.asarray(raw_speech, dtype=np.float32) elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64): raw_speech = raw_speech.astype(np.float32) # always return batch if not is_batched: raw_speech = [raw_speech] # extract fbank features features = [self._extract_fbank_features(waveform) for waveform in raw_speech] # convert into correct format for padding encoded_inputs = BatchFeature({"input_features": features}) padded_inputs = self.pad( encoded_inputs, padding=padding, max_length=max_length, truncation=truncation, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, **kwargs, ) # make sure list is in array format input_features = padded_inputs.get("input_features") if isinstance(input_features[0], list): padded_inputs["input_features"] = [np.asarray(feature, dtype=np.float32) for feature in input_features] attention_mask = padded_inputs.get("attention_mask") if attention_mask is not None: padded_inputs["attention_mask"] = [np.asarray(array, dtype=np.int32) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: attention_mask = ( np.array(attention_mask, dtype=np.int32) if self._get_padding_strategies(padding, max_length=max_length) is not PaddingStrategy.DO_NOT_PAD else None ) padded_inputs["input_features"] = self.normalize( padded_inputs["input_features"], attention_mask=attention_mask ) if return_tensors is not None: padded_inputs = padded_inputs.convert_to_tensors(return_tensors) return padded_inputs
class_definition
1,132
13,187
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/feature_extraction_speech_to_text.py
null
3,277
class Conv1dSubsampler(nn.Module): """ Convolutional subsampler: a stack of 1D convolution (along temporal dimension) followed by non-linear activation via gated linear units (https://arxiv.org/abs/1911.08460) """ def __init__(self, config): super(Conv1dSubsampler, self).__init__() self.config = config self.num_layers = config.num_conv_layers self.in_channels = config.input_feat_per_channel * config.input_channels self.mid_channels = config.conv_channels self.out_channels = config.d_model self.kernel_sizes = config.conv_kernel_sizes self.conv_layers = nn.ModuleList( nn.Conv1d( self.in_channels if i == 0 else self.mid_channels // 2, self.mid_channels if i < self.num_layers - 1 else self.out_channels * 2, kernel_size=k, stride=2, padding=k // 2, ) for i, k in enumerate(self.kernel_sizes) ) def forward(self, input_features): hidden_states = input_features.transpose(1, 2).contiguous() # -> B x (C x D) x T for conv in self.conv_layers: hidden_states = conv(hidden_states) hidden_states = nn.functional.glu(hidden_states, dim=1) hidden_states = hidden_states.transpose(1, 2).contiguous() # -> T x B x (C x D) return hidden_states
class_definition
2,143
3,553
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/modeling_speech_to_text.py
null
3,278
class Speech2TextSinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): super().__init__() self.offset = 2 self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.make_weights(num_positions + self.offset, embedding_dim, padding_idx) def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx) if hasattr(self, "weights"): # in forward put the weights on the correct dtype and device of the param emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) self.weights = nn.Parameter(emb_weights) self.weights.requires_grad = False self.weights.detach_() @staticmethod def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): """ Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) if padding_idx is not None: emb[padding_idx, :] = 0 return emb.to(torch.get_default_dtype()) @torch.no_grad() def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0): bsz, seq_len = input_ids.size() # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to( input_ids.device ) # expand embeddings if needed max_pos = self.padding_idx + 1 + seq_len if max_pos > self.weights.size(0): self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx) return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, -1).detach() def create_position_ids_from_input_ids( self, input_ids: torch.Tensor, padding_idx: int, past_key_values_length: Optional[int] = 0 ): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx
class_definition
3,556
6,971
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/modeling_speech_to_text.py
null
3,279
class Speech2TextAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[Speech2TextConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value
class_definition
7,064
14,468
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/modeling_speech_to_text.py
null
3,280
class Speech2TextEncoderLayer(nn.Module): def __init__(self, config: Speech2TextConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = SPEECH_TO_TEXT_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, config=config, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, layer_head_mask: torch.Tensor, output_attentions: bool = False, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states if hidden_states.dtype == torch.float16 and ( torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() ): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
class_definition
14,660
17,816
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/modeling_speech_to_text.py
null
3,281
class Speech2TextDecoderLayer(nn.Module): def __init__(self, config: Speech2TextConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = SPEECH_TO_TEXT_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, is_causal=True, config=config, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = SPEECH_TO_TEXT_ATTENTION_CLASSES[config._attn_implementation]( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, config=config, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs
class_definition
17,939
23,845
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/modeling_speech_to_text.py
null
3,282
class Speech2TextPreTrainedModel(PreTrainedModel): config_class = Speech2TextConfig base_model_prefix = "model" main_input_name = "input_features" supports_gradient_checkpointing = True def _init_weights(self, module): std = self.config.init_std if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): """ Computes the output length of the convolutional layers """ for i in range(self.config.num_conv_layers): input_lengths = (input_lengths - 1) // 2 + 1 return input_lengths def _get_feature_vector_attention_mask(self, feature_vector_length, attention_mask): # generate creates 3D attention mask, because of the shape of input_features # convert it to 2D if thats the case if len(attention_mask.shape) > 2: attention_mask = attention_mask[:, :, -1] subsampled_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)) bsz = attention_mask.size()[0] attention_mask = torch.zeros( (bsz, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values # before the output lengths indices are attended to attention_mask[(torch.arange(bsz, device=attention_mask.device), subsampled_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).long() return attention_mask
class_definition
23,848
25,765
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/modeling_speech_to_text.py
null
3,283
class Speech2TextEncoder(Speech2TextPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`Speech2TextEncoderLayer`]. Args: config: Speech2TextConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: Speech2TextConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop embed_dim = config.d_model self.padding_idx = config.pad_token_id self.max_source_positions = config.max_source_positions self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 self.conv = Conv1dSubsampler(config) self.embed_positions = Speech2TextSinusoidalPositionalEmbedding( self.max_source_positions, embed_dim, self.padding_idx, ) self.layers = nn.ModuleList([Speech2TextEncoderLayer(config) for _ in range(config.encoder_layers)]) self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, input_features, attention_mask=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_features (`torch.LongTensor` of shape `(batch_size, sequence_length, feature_size)`): Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a tensor of type `torch.FloatTensor`. See [`~Speech2TextFeatureExtractor.__call__`] attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict inputs_embeds = self.conv(input_features) inputs_embeds = self.embed_scale * inputs_embeds # subsample attention mask if necessary if attention_mask is not None: attention_mask = self._get_feature_vector_attention_mask(inputs_embeds.shape[1], attention_mask) padding_mask = attention_mask.ne(1).long() else: padding_mask = torch.zeros(inputs_embeds.shape[:2], dtype=torch.long, device=inputs_embeds.device) embed_pos = self.embed_positions(padding_mask) hidden_states = inputs_embeds + embed_pos hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: assert head_mask.size()[0] == ( len(self.layers) ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True if to_drop: layer_outputs = (None, None) else: if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions )
class_definition
32,671
39,732
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/modeling_speech_to_text.py
null
3,284
class Speech2TextDecoder(Speech2TextPreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`Speech2TextDecoderLayer`] Args: config: Speech2TextConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: Speech2TextConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_target_positions self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) self.embed_positions = Speech2TextSinusoidalPositionalEmbedding( self.max_target_positions, config.d_model, self.padding_idx, ) self.layers = nn.ModuleList([Speech2TextDecoderLayer(config) for _ in range(config.decoder_layers)]) self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`Speech2TextTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) # embed positions positions = self.embed_positions(input_ids, past_key_values_length=past_key_values_length) hidden_states = inputs_embeds + positions hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache = True` is incompatible with gradient checkpointing. Setting `use_cache = False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: assert attn_mask.size()[0] == (len(self.layers)), ( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, )
class_definition
39,735
51,976
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/modeling_speech_to_text.py
null
3,285
class Speech2TextModel(Speech2TextPreTrainedModel): def __init__(self, config: Speech2TextConfig): super().__init__(config) self.encoder = Speech2TextEncoder(config) self.decoder = Speech2TextDecoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.decoder.embed_tokens def set_input_embeddings(self, value): self.decoder.embed_tokens = value def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_features: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: r""" Returns: Example: ```python >>> import torch >>> from transformers import Speech2TextModel, AutoFeatureExtractor >>> from datasets import load_dataset >>> model = Speech2TextModel.from_pretrained("facebook/s2t-small-librispeech-asr") >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/s2t-small-librispeech-asr") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = feature_extractor( ... ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt" ... ) >>> input_features = inputs.input_features >>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id >>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state >>> list(last_hidden_state.shape) [1, 2, 256] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_features, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # downsample encoder attention mask if attention_mask is not None: encoder_attention_mask = self._get_feature_vector_attention_mask( encoder_outputs[0].shape[1], attention_mask ) else: encoder_attention_mask = None # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=encoder_attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, )
class_definition
52,137
57,756
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/modeling_speech_to_text.py
null
3,286
class Speech2TextForConditionalGeneration(Speech2TextPreTrainedModel, GenerationMixin): base_model_prefix = "model" _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: Speech2TextConfig): super().__init__(config) self.model = Speech2TextModel(config) self.lm_head = nn.Linear(config.d_model, self.config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_features: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> import torch >>> from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration >>> from datasets import load_dataset >>> model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr") >>> processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor( ... ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt" ... ) >>> input_features = inputs.input_features >>> generated_ids = model.generate(inputs=input_features) >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] >>> transcription 'mister quilter is the apostle of the middle classes and we are glad to welcome his gospel' ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_features, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(outputs[0]) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (lm_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return Seq2SeqLMOutput( loss=loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past
class_definition
57,911
63,537
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/modeling_speech_to_text.py
null
3,287
class TFConv1dSubsampler(keras.layers.Layer): """ Convolutional subsampler: a stack of 1D convolution (along temporal dimension) followed by non-linear activation via gated linear units (https://arxiv.org/abs/1911.08460) """ def __init__(self, config: Speech2TextConfig, **kwargs): super().__init__(**kwargs) self.config = config self.num_layers = config.num_conv_layers self.in_channels = config.input_feat_per_channel * config.input_channels self.mid_channels = config.conv_channels self.out_channels = config.d_model self.kernel_sizes = config.conv_kernel_sizes self.conv_layers = [ keras.layers.Conv1D( filters=self.mid_channels if i < self.num_layers - 1 else self.out_channels * 2, kernel_size=k, strides=2, name=f"conv_layers.{i}", ) for i, k in enumerate(self.kernel_sizes) ] def call(self, input_features: tf.Tensor) -> tf.Tensor: # TF Conv1D assumes Batch x Time x Channels, same as the input hidden_states = tf.cast(input_features, tf.float32) for i, conv in enumerate(self.conv_layers): # equivalent to `padding=k // 2` on PT's `nn.Conv1d` pad_len = self.kernel_sizes[i] // 2 hidden_shapes = shape_list(hidden_states) hidden_states = tf.concat( ( tf.zeros((hidden_shapes[0], pad_len, hidden_shapes[2])), hidden_states, tf.zeros((hidden_shapes[0], pad_len, hidden_shapes[2])), ), axis=1, ) hidden_states = conv(hidden_states) hidden_states = glu(hidden_states, axis=2) # GLU over the Channel dimension return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "conv_layers", None) is not None: for i, layer in enumerate(self.conv_layers): with tf.name_scope(layer.name): layer.build([None, None, self.in_channels] if i == 0 else [None, None, self.mid_channels // 2])
class_definition
4,116
6,362
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/modeling_tf_speech_to_text.py
null
3,288
class TFSpeech2TextSinusoidalPositionalEmbedding(keras.layers.Layer): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None, **kwargs): super().__init__(**kwargs) self.offset = 2 self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.embedding_weights = self._get_embedding(num_positions + self.offset, embedding_dim, padding_idx) @staticmethod def _get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None) -> tf.Tensor: """ Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = tf.math.log(10000.0) / (half_dim - 1) emb = tf.math.exp(tf.range(half_dim, dtype=tf.float32) * -emb) emb = tf.expand_dims(tf.range(num_embeddings, dtype=tf.float32), axis=1) * tf.expand_dims(emb, axis=0) emb = tf.reshape(tf.concat([tf.math.sin(emb), tf.math.cos(emb)], axis=1), shape=[num_embeddings, -1]) if embedding_dim % 2 == 1: # zero pad emb = tf.concat([emb, tf.zeros(num_embeddings, 1)], axis=1) if padding_idx is not None: emb = tf.concat([emb[:padding_idx, :], tf.zeros((1, tf.shape(emb)[1])), emb[padding_idx + 1 :, :]], axis=0) return emb def call(self, input_ids: tf.Tensor, past_key_values_length: int = 0) -> tf.Tensor: bsz, seq_len = shape_list(input_ids) # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) # Matt: The PyTorch code does a lot of work to cache the embeddings, setting the cached values as a # model attribute in the forward pass. This is extremely forbidden in TF, which wants forward calls to be # idempotent. TF doesn't need that caching anyway, since it can just store constants during compilation, # so we just remove all of that code. embeddings = self._get_embedding( self.padding_idx + 1 + seq_len + self.offset + past_key_values_length, self.embedding_dim, self.padding_idx ) return tf.reshape(tf.gather(embeddings, tf.reshape(position_ids, (-1,)), axis=0), (bsz, seq_len, -1)) @staticmethod def create_position_ids_from_input_ids( input_ids: tf.Tensor, padding_idx: int, past_key_values_length: Optional[int] = 0 ) -> tf.Tensor: """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: tf.Tensor x: Returns: tf.Tensor """ mask = tf.cast(tf.math.not_equal(input_ids, padding_idx), dtype=tf.int32) incremental_indices = (tf.math.cumsum(mask, axis=1) + past_key_values_length) * mask return tf.cast(incremental_indices, dtype=tf.int64) + padding_idx
class_definition
6,365
9,623
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/modeling_tf_speech_to_text.py
null
3,289
class TFSpeech2TextAttention(keras.layers.Layer): """Multi-headed attention from "Attention Is All You Need""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, key_value_states: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor | None]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {shape_list(attn_weights)}" ), ) if attention_mask is not None: tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {shape_list(attention_mask)}" ), ) attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = stable_softmax(attn_weights, axis=-1) if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=( f"Head mask for a single layer should be of size {(self.num_heads)}, but is" f" {shape_list(layer_head_mask)}" ), ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {shape_list(attn_output)}" ), ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "k_proj", None) is not None: with tf.name_scope(self.k_proj.name): self.k_proj.build([None, None, self.embed_dim]) if getattr(self, "q_proj", None) is not None: with tf.name_scope(self.q_proj.name): self.q_proj.build([None, None, self.embed_dim]) if getattr(self, "v_proj", None) is not None: with tf.name_scope(self.v_proj.name): self.v_proj.build([None, None, self.embed_dim]) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build([None, None, self.embed_dim])
class_definition
9,721
17,302
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/modeling_tf_speech_to_text.py
null
3,290
class TFSpeech2TextEncoderLayer(keras.layers.Layer): def __init__(self, config: Speech2TextConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFSpeech2TextAttention( self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" ) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") self.config = config def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training: bool = False ): """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)` """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, self_attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, training=training, ) tf.debugging.assert_equal( shape_list(hidden_states), shape_list(residual), message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states return hidden_states, self_attn_weights def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "self_attn_layer_norm", None) is not None: with tf.name_scope(self.self_attn_layer_norm.name): self.self_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build([None, None, self.embed_dim]) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build([None, None, self.config.encoder_ffn_dim]) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.embed_dim])
class_definition
17,305
21,006
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/modeling_tf_speech_to_text.py
null
3,291
class TFSpeech2TextDecoderLayer(keras.layers.Layer): def __init__(self, config: Speech2TextConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFSpeech2TextAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, name="self_attn", is_decoder=True, ) self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.encoder_attn = TFSpeech2TextAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, name="encoder_attn", is_decoder=True, ) self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") self.config = config def call( self, hidden_states, attention_mask: tf.Tensor | None = None, encoder_hidden_states: tf.Tensor | None = None, encoder_attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, cross_attn_layer_head_mask: tf.Tensor | None = None, past_key_value: Tuple[tf.Tensor] | None = None, training=False, ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`tf.Tensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`tf.Tensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size `(decoder_attention_heads,)` cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. `(decoder_attention_heads,)` past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, training=training, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, training=training, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states return ( hidden_states, self_attn_weights, cross_attn_weights, present_key_value, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "self_attn_layer_norm", None) is not None: with tf.name_scope(self.self_attn_layer_norm.name): self.self_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "encoder_attn", None) is not None: with tf.name_scope(self.encoder_attn.name): self.encoder_attn.build(None) if getattr(self, "encoder_attn_layer_norm", None) is not None: with tf.name_scope(self.encoder_attn_layer_norm.name): self.encoder_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build([None, None, self.embed_dim]) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build([None, None, self.config.decoder_ffn_dim]) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.embed_dim])
class_definition
21,009
27,859
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/modeling_tf_speech_to_text.py
null
3,292
class TFSpeech2TextPreTrainedModel(TFPreTrainedModel): config_class = Speech2TextConfig base_model_prefix = "model" main_input_name = "input_features" _keys_to_ignore_on_load_unexpected = [r"encoder.embed_positions.weights"] def _get_feat_extract_output_lengths(self, input_lengths: tf.Tensor): """ Computes the output length of the convolutional layers """ for _ in range(self.config.num_conv_layers): input_lengths = (input_lengths - 1) // 2 + 1 return input_lengths @property def input_signature(self): return { "input_features": tf.TensorSpec( (None, None, self.config.input_feat_per_channel * self.config.input_channels), tf.float32, name="input_features", ), "attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"), "decoder_input_ids": tf.TensorSpec((None, None), tf.int32, name="decoder_input_ids"), "decoder_attention_mask": tf.TensorSpec((None, None), tf.int32, name="decoder_attention_mask"), }
class_definition
27,862
28,997
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/modeling_tf_speech_to_text.py
null
3,293
class TFSpeech2TextEncoder(keras.layers.Layer): config_class = Speech2TextConfig """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`TFSpeech2TextEncoderLayer`]. Args: config: Speech2TextConfig """ def __init__(self, config: Speech2TextConfig, **kwargs): super().__init__(**kwargs) self.config = config self.dropout = keras.layers.Dropout(config.dropout) self.layerdrop = config.encoder_layerdrop embed_dim = config.d_model self.padding_idx = config.pad_token_id self.max_source_positions = config.max_source_positions self.embed_scale = tf.math.sqrt(float(embed_dim)) if config.scale_embedding else 1.0 self.conv = TFConv1dSubsampler(config, name="conv") self.embed_positions = TFSpeech2TextSinusoidalPositionalEmbedding( num_positions=config.max_source_positions, embedding_dim=embed_dim, padding_idx=self.padding_idx, name="embed_positions", ) self.layers = [TFSpeech2TextEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") def _get_feat_extract_output_lengths(self, input_lengths: tf.Tensor): """ Computes the output length of the convolutional layers """ for _ in range(self.config.num_conv_layers): input_lengths = (input_lengths - 1) // 2 + 1 return input_lengths def _get_feature_vector_attention_mask(self, feature_vector_length, attention_mask): # generate creates 3D attention mask, because of the shape of input_features # convert it to 2D if thats the case if len(attention_mask.shape) > 2: attention_mask = attention_mask[:, :, -1] subsampled_lengths = self._get_feat_extract_output_lengths(tf.math.reduce_sum(attention_mask, -1)) bsz = shape_list(attention_mask)[0] indices = tf.concat( ( tf.expand_dims(tf.range(bsz, dtype=attention_mask.dtype), -1), tf.expand_dims(subsampled_lengths - 1, -1), ), axis=-1, ) attention_mask = tf.scatter_nd(indices=indices, updates=tf.ones(bsz), shape=[bsz, feature_vector_length]) attention_mask = tf.cast(tf.reverse(tf.math.cumsum(tf.reverse(attention_mask, [-1]), -1), [-1]), tf.int64) return attention_mask @unpack_inputs def call( self, input_features=None, attention_mask=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): """ Args: input_features (`tf.Tensor` of shape `(batch_size, sequence_length, feature_size)`): Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a tensor of floats. See [`~Speech2TextFeatureExtractor.__call__`] attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ if input_features is None: raise ValueError("You have to specify input_features") inputs_embeds = self.conv(input_features) inputs_embeds = self.embed_scale * inputs_embeds # subsample attention mask if necessary if attention_mask is not None: attention_mask = self._get_feature_vector_attention_mask(tf.shape(inputs_embeds)[1], attention_mask) padding_mask = tf.cast(tf.math.not_equal(attention_mask, 1), tf.int64) else: padding_mask = tf.zeros(tf.shape(inputs_embeds)[:-1], dtype=tf.int64) embed_pos = self.embed_positions(padding_mask) hidden_states = inputs_embeds + embed_pos hidden_states = self.dropout(hidden_states, training=training) # check attention mask and invert if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: tf.debugging.assert_equal( shape_list(head_mask)[0], len(self.layers), message=( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(head_mask)[0]}." ), ) for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): # skip the layer continue hidden_states, attn = encoder_layer( hidden_states, attention_mask, head_mask[idx] if head_mask is not None else None, training=training, ) if output_attentions: all_attentions += (attn,) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "conv", None) is not None: with tf.name_scope(self.conv.name): self.conv.build(None) if getattr(self, "embed_positions", None) is not None: with tf.name_scope(self.embed_positions.name): self.embed_positions.build(None) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.d_model]) if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None)
class_definition
37,300
45,526
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/modeling_tf_speech_to_text.py
null
3,294
class TFSpeech2TextDecoder(keras.layers.Layer): config_class = Speech2TextConfig """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFSpeech2TextDecoderLayer`] Args: config: Speech2TextConfig """ def __init__(self, config: Speech2TextConfig, **kwargs): super().__init__(**kwargs) self.config = config self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_target_positions self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.embed_tokens = TFSharedEmbeddings(config.vocab_size, config.d_model, name="embed_tokens") self.embed_positions = TFSpeech2TextSinusoidalPositionalEmbedding( num_positions=config.max_target_positions, embedding_dim=config.d_model, padding_idx=self.padding_idx, name="embed_positions", ) self.layers = [TFSpeech2TextDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") self.dropout = keras.layers.Dropout(config.dropout) def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens @unpack_inputs def call( self, input_ids=None, inputs_embeds=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`Speech2TextTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embed_tokens.vocab_size) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale else: inputs_embeds = inputs_embeds # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) else: combined_attention_mask = _expand_mask( tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] ) if attention_mask is not None: combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1]) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) # embed positions positions = self.embed_positions(input_ids, past_key_values_length=past_key_values_length) hidden_states = inputs_embeds + positions hidden_states = self.dropout(hidden_states, training=training) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: if attn_mask is not None: tf.debugging.assert_equal( shape_list(attn_mask)[0], len(self.layers), message=( f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(attn_mask)[0]}." ), ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None cross_attn_layer_head_mask = cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( hidden_states, attention_mask=combined_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=head_mask[idx] if head_mask is not None else None, cross_attn_layer_head_mask=cross_attn_layer_head_mask, past_key_value=past_key_value, ) if use_cache: next_decoder_cache += (present_key_value,) if output_attentions: all_self_attns += (layer_self_attn,) if encoder_hidden_states is not None: all_cross_attns += (layer_cross_attn,) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attns else: return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attns, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embed_tokens", None) is not None: with tf.name_scope(self.embed_tokens.name): self.embed_tokens.build(None) if getattr(self, "embed_positions", None) is not None: with tf.name_scope(self.embed_positions.name): self.embed_positions.build(None) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.d_model]) if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None)
class_definition
45,549
57,104
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/modeling_tf_speech_to_text.py
null
3,295
class TFSpeech2TextMainLayer(keras.layers.Layer): config_class = Speech2TextConfig def __init__(self, config: Speech2TextConfig, **kwargs): super().__init__(**kwargs) self.config = config self.encoder = TFSpeech2TextEncoder(config, name="encoder") self.decoder = TFSpeech2TextDecoder(config, name="decoder") def get_input_embeddings(self): return self.decoder.embed_tokens def set_input_embeddings(self, new_embeddings): self.decoder.embed_tokens = new_embeddings @unpack_inputs def call( self, input_features=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_features=input_features, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput): encoder_outputs = TFBaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False elif not return_dict and not isinstance(encoder_outputs, tuple): encoder_outputs = encoder_outputs.to_tuple() # downsample encoder attention mask if attention_mask is not None: encoder_attention_mask = self.encoder._get_feature_vector_attention_mask( tf.shape(encoder_outputs[0])[1], attention_mask ) else: encoder_attention_mask = None # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=encoder_attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return decoder_outputs + encoder_outputs return TFSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build(None)
class_definition
57,127
61,858
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/modeling_tf_speech_to_text.py
null
3,296
class TFSpeech2TextModel(TFSpeech2TextPreTrainedModel): def __init__(self, config: Speech2TextConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFSpeech2TextMainLayer(config, name="model") def get_encoder(self): return self.model.encoder def get_decoder(self): return self.model.decoder @unpack_inputs @add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_features: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, decoder_head_mask: np.ndarray | tf.Tensor | None = None, cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs, ) -> Union[Tuple, TFSeq2SeqModelOutput]: outputs = self.model( input_features=input_features, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqModelOutput( last_hidden_state=output.last_hidden_state, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None)
class_definition
62,019
65,715
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/modeling_tf_speech_to_text.py
null
3,297
class TFSpeech2TextForConditionalGeneration(TFSpeech2TextPreTrainedModel, TFCausalLanguageModelingLoss): def __init__(self, config: Speech2TextConfig): super().__init__(config) self.model = TFSpeech2TextMainLayer(config, name="model") self.lm_head = keras.layers.Dense(self.config.vocab_size, use_bias=False, name="lm_head") # TODO (Joao): investigate why Speech2Text has numerical issues in XLA generate self.supports_xla_generation = False self.config = config def get_encoder(self): return self.model.encoder def get_decoder(self): return self.model.decoder def resize_token_embeddings(self, new_num_tokens: int) -> tf.Variable: new_embeddings = super().resize_token_embeddings(new_num_tokens) return new_embeddings def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @unpack_inputs @add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_features: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, decoder_head_mask: np.ndarray | tf.Tensor | None = None, cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, labels: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, **kwargs, ) -> Union[Tuple, TFSeq2SeqLMOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> import tensorflow as tf >>> from transformers import Speech2TextProcessor, TFSpeech2TextForConditionalGeneration >>> from datasets import load_dataset >>> import soundfile as sf >>> model = TFSpeech2TextForConditionalGeneration.from_pretrained( ... "facebook/s2t-small-librispeech-asr", from_pt=True ... ) >>> processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr") >>> def map_to_array(batch): ... speech, _ = sf.read(batch["file"]) ... batch["speech"] = speech ... return batch >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.map(map_to_array) >>> ds.set_format(type="tf") >>> input_features = processor( ... ds["speech"][0], sampling_rate=16000, return_tensors="tf" ... ).input_features # Batch size 1 >>> generated_ids = model.generate(input_features) >>> transcription = processor.batch_decode(generated_ids) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_features=input_features, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) lm_logits = self.lm_head(outputs[0]) masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return TFSeq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqLMOutput( logits=output.logits, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] return { "input_features": None, # needs to be passed to make Keras.layer.__call__ happy "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) } def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None) if getattr(self, "lm_head", None) is not None: with tf.name_scope(self.lm_head.name): self.lm_head.build([None, None, self.config.d_model]) def tf_to_pt_weight_rename(self, tf_weight): if tf_weight == "lm_head.weight": return tf_weight, "model.decoder.embed_tokens.weight" else: return (tf_weight,)
class_definition
65,870
74,311
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/modeling_tf_speech_to_text.py
null
3,298
class Speech2TextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Speech2TextModel`]. It is used to instantiate a Speech2Text model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Speech2Text [facebook/s2t-small-librispeech-asr](https://huggingface.co/facebook/s2t-small-librispeech-asr) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 10000): Vocabulary size of the Speech2Text model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Speech2TextModel`] encoder_layers (`int`, *optional*, defaults to 12): Number of encoder layers. encoder_ffn_dim (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (often named feed-forward) layer in encoder. encoder_attention_heads (`int`, *optional*, defaults to 4): Number of attention heads for each attention layer in the Transformer encoder. decoder_layers (`int`, *optional*, defaults to 6): Number of decoder layers. decoder_ffn_dim (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. decoder_attention_heads (`int`, *optional*, defaults to 4): Number of attention heads for each attention layer in the Transformer decoder. encoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](https://arxiv.org/abs/1909.11556) for more details. decoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the decoder. See the [LayerDrop paper](https://arxiv.org/abs/1909.11556) for more details. use_cache (`bool`, *optional*, defaults to `True`): Whether the model should return the last key/values attentions (not used by all models). is_encoder_decoder (`bool`, *optional*, defaults to `True`): Whether the model is set up as an encoder-decoder architecture for sequence-to-sequence tasks. activation_function (`str` or `function`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. d_model (`int`, *optional*, defaults to 256): Dimensionality of the layers and the pooler layer. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. decoder_start_token_id (`int`, *optional*, defaults to 2): The initial token ID of the decoder when decoding sequences. scale_embedding (`bool`, *optional*, defaults to `True`): Whether the embeddings are scaled by the square root of `d_model`. pad_token_id (`int`, *optional*, defaults to 1): Padding token id. bos_token_id (`int`, *optional*, defaults to 0): The id of the beginning-of-sequence token. eos_token_id (`int`, *optional*, defaults to 2): The id of the end-of-sequence token. max_source_positions (`int`, *optional*, defaults to 6000): The maximum sequence length of log-mel filter-bank features that this model might ever be used with. max_target_positions (`int`, *optional*, defaults to 1024): The maximum sequence length that this model might ever be used with. Typically, set this to something large just in case (e.g., 512 or 1024 or 2048). num_conv_layers (`int`, *optional*, defaults to 2): Number of 1D convolutional layers in the conv module. conv_kernel_sizes (`Tuple[int]`, *optional*, defaults to `(5, 5)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the conv module. The length of `conv_kernel_sizes` has to match `num_conv_layers`. conv_channels (`int`, *optional*, defaults to 1024): An integer defining the number of output channels of each convolution layers except the final one in the conv module. input_feat_per_channel (`int`, *optional*, defaults to 80): An integer specifying the size of feature vector. This is also the dimensions of log-mel filter-bank features. input_channels (`int`, *optional*, defaults to 1): An integer specifying number of input channels of the input feature vector. Example: ```python >>> from transformers import Speech2TextConfig, Speech2TextModel >>> # Initializing a Speech2Text s2t_transformer_s style configuration >>> configuration = Speech2TextConfig() >>> # Initializing a model (with random weights) from the s2t_transformer_s style configuration >>> model = Speech2TextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "speech_to_text" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, vocab_size=10000, encoder_layers=12, encoder_ffn_dim=2048, encoder_attention_heads=4, decoder_layers=6, decoder_ffn_dim=2048, decoder_attention_heads=4, encoder_layerdrop=0.0, decoder_layerdrop=0.0, use_cache=True, is_encoder_decoder=True, activation_function="relu", d_model=256, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, decoder_start_token_id=2, scale_embedding=True, pad_token_id=1, bos_token_id=0, eos_token_id=2, max_source_positions=6000, max_target_positions=1024, num_conv_layers=2, conv_kernel_sizes=(5, 5), conv_channels=1024, input_feat_per_channel=80, input_channels=1, **kwargs, ): self.vocab_size = vocab_size self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.use_cache = use_cache self.num_hidden_layers = encoder_layers self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True self.max_source_positions = max_source_positions self.max_target_positions = max_target_positions self.num_conv_layers = num_conv_layers self.conv_kernel_sizes = list(conv_kernel_sizes) self.conv_channels = conv_channels self.input_feat_per_channel = input_feat_per_channel self.input_channels = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` " f"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, " f"`config.num_conv_layers = {self.num_conv_layers}`." ) super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=decoder_start_token_id, **kwargs, )
class_definition
788
9,774
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_to_text/configuration_speech_to_text.py
null
3,299