text
stringlengths 31
243k
| type
stringclasses 1
value | start
int64 36
275k
| end
int64 286
280k
| depth
int64 0
1
| filepath
stringlengths 85
188
| parent_class
stringclasses 3
values | class_index
int64 0
10.8k
|
---|---|---|---|---|---|---|---|
class Blip2ProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"add_special_tokens": True,
"padding": False,
"stride": 0,
"return_overflowing_tokens": False,
"return_special_tokens_mask": False,
"return_offsets_mapping": False,
"return_token_type_ids": False,
"return_length": False,
"verbose": True,
},
"images_kwargs": {},
}
|
class_definition
| 1,033 | 1,526 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip_2/processing_blip_2.py
| null | 3,100 |
class Blip2Processor(ProcessorMixin):
r"""
Constructs a BLIP-2 processor which wraps a BLIP image processor and an OPT/T5 tokenizer into a single processor.
[`BlipProcessor`] offers all the functionalities of [`BlipImageProcessor`] and [`AutoTokenizer`]. See the docstring
of [`~BlipProcessor.__call__`] and [`~BlipProcessor.decode`] for more information.
Args:
image_processor (`BlipImageProcessor`):
An instance of [`BlipImageProcessor`]. The image processor is a required input.
tokenizer (`AutoTokenizer`):
An instance of ['PreTrainedTokenizer`]. The tokenizer is a required input.
num_query_tokens (`int`, *optional*):
Number of tokens used by the Qformer as queries, should be same as in model's config.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["num_query_tokens"]
image_processor_class = "BlipImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor, tokenizer, num_query_tokens=None, **kwargs):
tokenizer.return_token_type_ids = False
self.current_processor = image_processor
if not hasattr(tokenizer, "image_token"):
self.image_token = AddedToken("<image>", normalized=False, special=True)
tokenizer.add_tokens([self.image_token], special_tokens=True)
else:
self.image_token = tokenizer.image_token
self.num_query_tokens = num_query_tokens
super().__init__(image_processor, tokenizer)
def __call__(
self,
images: ImageInput = None,
text: Optional[Union[str, List[str], TextInput, PreTokenizedInput]] = None,
audio=None,
videos=None,
**kwargs: Unpack[Blip2ProcessorKwargs],
) -> BatchEncoding:
"""
This method uses [`BlipImageProcessor.__call__`] method to prepare image(s) for the model, and
[`BertTokenizerFast.__call__`] to prepare text for the model.
Please refer to the docstring of the above two methods for more information.
Args:
images (`ImageInput`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`TextInput`, `PreTokenizedInput`, `List[TextInput]`, `List[PreTokenizedInput]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
"""
if images is None and text is None:
raise ValueError("You have to specify either images or text.")
output_kwargs = self._merge_kwargs(
Blip2ProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
# BC for explicit return_tensors
if "return_tensors" in output_kwargs["common_kwargs"]:
return_tensors = output_kwargs["common_kwargs"].pop("return_tensors", None)
else:
return_tensors = None
encoding = BatchFeature(tensor_type=return_tensors)
if text is not None:
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
text_encoding = {}
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
_text_encoding = self.tokenizer(text, **output_kwargs["text_kwargs"], return_tensors=None)
output_kwargs["text_kwargs"]["return_tensors"] = return_tensors
# if we know how many query tokens, expand text inside processor. We need this hacky manipulation
# because BLIP expects image tokens to be at the beginning even before BOS token
if self.num_query_tokens is not None:
image_tokens = self.image_token.content * self.num_query_tokens
image_token_encoding = self.tokenizer(
[image_tokens] * len(text), add_special_tokens=False, return_tensors=None
)
for k in _text_encoding:
text_encoding[k] = [
img_encoding + txt_encoding
for img_encoding, txt_encoding in zip(image_token_encoding[k], _text_encoding[k])
]
else:
text_encoding = _text_encoding
logger.warning_once(
"Expanding inputs for image tokens in BLIP-2 should be done in processing. "
"Please follow instruction here (https://gist.github.com/zucchini-nlp/e9f20b054fa322f84ac9311d9ab67042) to update your BLIP-2 model. "
"Using processors without these attributes in the config is deprecated and will throw an error in v4.50."
)
# cast to desired return tensors type
encoding.update(BatchEncoding(text_encoding, tensor_type=return_tensors))
# add pixel_values encoding. If we also have text_encoding, update image encoding and return it.
# else, return the text encoding.
if images is not None:
image_encoding = self.image_processor(images, **output_kwargs["images_kwargs"])
encoding.update(image_encoding)
return encoding
# Copied from transformers.models.blip.processing_blip.BlipProcessor.batch_decode with BertTokenizerFast->PreTrainedTokenizer
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.blip.processing_blip.BlipProcessor.decode with BertTokenizerFast->PreTrainedTokenizer
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
class_definition
| 1,529 | 8,869 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip_2/processing_blip_2.py
| null | 3,101 |
class FlavaModelOutput(ModelOutput):
"""
Output from FlavaModel containing embeddings and outputs from individual encoders.
Note that `image_embeddings` and `text_embeddigns` returned are similar to pooled output returned from a
transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and
`text_projection` layers on `image_embeddings` and `text_embeddings` respectively.
Args:
image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
The image embeddings which are basically the pooled output of [`FlavaImageModel`].
image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
The output of the [`FlavaImageModel`].
text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present):
The text embeddings which are basically the pooled output of [`FlavaTextModel`].
text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present):
The output of the [`FlavaTextModel`].
multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`):
The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`):
The output of the [`FlavaMultimodalModel`].
"""
image_embeddings: Optional[torch.FloatTensor] = None
image_output: Optional[BaseModelOutputWithPooling] = None
text_embeddings: Optional[torch.FloatTensor] = None
text_output: Optional[BaseModelOutputWithPooling] = None
multimodal_embeddings: Optional[torch.FloatTensor] = None
multimodal_output: Optional[BaseModelOutputWithPooling] = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_output", "image_output", "multimodal_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
|
class_definition
| 2,021 | 4,376 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,102 |
class FlavaLosses(ModelOutput):
"""Class representing pretraining losses from FLAVA model
Args:
mim (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels` and `pixel_values` are present, `input_ids_masked` is absent and `mim_weight` > 0.:
Masked Image Modeling loss as used in BeIT calculated only for unimodal image data.
mlm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels` and `input_ids_masked` are present, `pixel_values` is absent and `mlm_weight` > 0.:
Masked Language Modeling loss as used in BERT calculated only for unimodal text data.
itm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `itm_labels`, `input_ids_masked`, `pixel_values` are present and `itm_weight` > 0.:
Image Text Matching (ITM) loss calculated for paired image-text data. Note that ITM loss is calculated on
masked pairs in FLAVA.
global_contrastive (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `input_ids` and `pixel_values` are present and `global_contrastive_weight` > 0.:
Contrastive loss for image-text similarity similar to CLIP but calculated globally for paired image-text
data. This is calculated on unmasked images and texts.
mmm_image (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_image_weight` > 0.:
Masked Multimodal Modeling loss's image component calculated on paired image-text data.
mmm_text (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_text_weight` > 0.:
Masked Multimodal Modeling loss's text component calculated on paired image-text data.
"""
mim: Optional[torch.FloatTensor] = None
mlm: Optional[torch.FloatTensor] = None
itm: Optional[torch.FloatTensor] = None
global_contrastive: Optional[torch.FloatTensor] = None
mmm_image: Optional[torch.FloatTensor] = None
mmm_text: Optional[torch.FloatTensor] = None
def all_none(self) -> bool:
all_none = True
for v in self.values():
if v is not None:
all_none = False
break
return all_none
|
class_definition
| 4,390 | 6,747 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,103 |
class FlavaForPreTrainingOutput(ModelOutput):
"""
Output from FlavaForPreTraining containing embeddings, and outputs from individual encoders.
Note that `image_embeddings` and `text_embeddings` returned are similar to pooled output returned from a
transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and
`text_projection` layers on `image_embeddings` and `text_embeddings` respectively.
Args:
loss (`torch.FloatTensor`, *optional*, returned when `return_loss` is True):
Total loss calculated for this model.
loss_info (`FlavaLosses`):
Detailed info for FLAVA Pretraining losses. Check `FlavaLosses` class description for the information on
the keys.
image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
The image embeddings which are basically the pooled output of [`FlavaImageModel`].
image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
The output of the [`FlavaImageModel`].
text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present):
The text embeddings which are basically the pooled output of [`FlavaTextModel`].
text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present):
The output of the [`FlavaTextModel`].
multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`):
The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`):
The output of the [`FlavaMultimodalModel`].
image_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
The image embeddings which are basically the pooled output of [`FlavaImageModel`]. Uses `bool_masked_pos`
to create masked images.
image_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
The output of the [`FlavaImageModel`]. Uses `bool_masked_pos` to create masked images.
text_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids_masked` are present):
The text embeddings which are basically the pooled output of [`FlavaTextModel`].
text_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids_masked` are present):
The output of the [`FlavaTextModel`].
multimodal_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present):
The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
multimodal_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids_masked` and `pixel_values` are present):
The output of the [`FlavaMultimodalModel`].
mim_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape `(total_masked_patches, image_vocab_size)` , *optional*, returned when `pixel_values` are present and `input_ids_masked` are not):
The logits for MIM unimodal loss. Uses `book_masked_pos` to get masked patches. The flattened output is
returned when `bool_masked_pos` has some of the patches masked.
mlm_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(total_masked_seq_length, text_vocab_size)`, *optional*, returned when `input_ids_masked` are present and `pixel_values` are not):
The logits for MLM unimodal loss. The flattened output is returned when `input_ids_masked` has some of
the tokens masked.
itm_logits (`torch.FloatTensor` of shape `(batch_size, 2)`, *optional*, returned when `input_ids_masked` and `pixel_values` are present):
The logits for ITM loss. Note that ITM loss is calculated on masked pairs in FLAVA.
mmm_image_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape`(total_masked_patches, image_vocab_size)`, *optional*, returned when `pixel_values` and `input_ids_masked` are present):
The logits for MMM image multimodal loss. Uses `book_masked_pos` to get masked patches. The flattened
output is returned when `bool_masked_pos` has some of the patches masked.
mmm_text_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(`(total_masked_seq_length, text_vocab_size)`), *optional*, returned when `pixel_values` and `input_ids_masked` are present):
The logits for MMM text multimodal loss. The flattened output is returned when `input_ids_masked` has
some of the tokens masked.
contrastive_logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeddings` and `text_embeddings` but passed through FLAVA's
`image_projection` and `text_projection` layers respectively. This represents the image-text similarity
scores. This is calculated on unmasked images and texts.
contrastive_logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
The scaled dot product scores between `text_embeddings` and `image_embeddings` but passed through FLAVA's
`text_projection` and `image_projection` layers respectively. This is calculated on unmasked images and
texts.
"""
loss: Optional[torch.FloatTensor] = None
loss_info: FlavaLosses = None
image_embeddings: Optional[torch.FloatTensor] = None
image_output: Optional[BaseModelOutputWithPooling] = None
text_embeddings: Optional[torch.FloatTensor] = None
text_output: Optional[BaseModelOutputWithPooling] = None
multimodal_embeddings: Optional[torch.FloatTensor] = None
multimodal_output: Optional[BaseModelOutputWithPooling] = None
image_masked_embeddings: Optional[torch.FloatTensor] = None
image_masked_output: Optional[BaseModelOutputWithPooling] = None
text_masked_embeddings: Optional[torch.FloatTensor] = None
text_masked_output: Optional[BaseModelOutputWithPooling] = None
multimodal_masked_embeddings: Optional[torch.FloatTensor] = None
multimodal_masked_output: Optional[BaseModelOutputWithPooling] = None
mim_logits: Optional[torch.FloatTensor] = None
mlm_logits: Optional[torch.FloatTensor] = None
itm_logits: Optional[torch.FloatTensor] = None
contrastive_logits_per_image: Optional[torch.FloatTensor] = None
contrastive_logits_per_text: Optional[torch.FloatTensor] = None
mmm_image_logits: Optional[torch.FloatTensor] = None
mmm_text_logits: Optional[torch.FloatTensor] = None
def to_tuple(self) -> Tuple[Any]:
transformer_outputs = [
"text_output",
"image_output",
"multimodal_output",
"text_masked_output",
"image_masked_output",
"multimodal_masked_output",
]
return tuple(self[k] if k not in transformer_outputs else getattr(self, k).to_tuple() for k in self.keys())
|
class_definition
| 6,761 | 14,615 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,104 |
class FlavaImageEmbeddings(nn.Module):
"""
Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
"""
def __init__(self, config: FlavaImageConfig, use_mask_token: bool = False) -> None:
super().__init__()
use_mask_token = use_mask_token or config.mask_token
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None
self.patch_embeddings = PatchEmbeddings(
image_size=config.image_size,
patch_size=config.patch_size,
num_channels=config.num_channels,
embed_dim=config.hidden_size,
)
num_patches = self.patch_embeddings.num_patches
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.patch_size = config.patch_size
self.config = config
# Copied from transformers.models.vit.modeling_vit.ViTEmbeddings.interpolate_pos_encoding
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
images. This method is also adapted to support torch.jit tracing.
Adapted from:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
"""
num_patches = embeddings.shape[1] - 1
num_positions = self.position_embeddings.shape[1] - 1
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
return self.position_embeddings
class_pos_embed = self.position_embeddings[:, :1]
patch_pos_embed = self.position_embeddings[:, 1:]
dim = embeddings.shape[-1]
new_height = height // self.patch_size
new_width = width // self.patch_size
sqrt_num_positions = torch_int(num_positions**0.5)
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
size=(new_height, new_width),
mode="bicubic",
align_corners=False,
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
def forward(
self,
pixel_values: torch.Tensor,
bool_masked_pos: Optional[torch.BoolTensor] = None,
interpolate_pos_encoding: bool = False,
) -> torch.Tensor:
batch_size, num_channels, height, width = pixel_values.shape
embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
batch_size, seq_len, _ = embeddings.size()
if bool_masked_pos is not None:
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
# B X H X W = B X HW
if bool_masked_pos.dim() == 3:
bool_masked_pos = bool_masked_pos.view(bool_masked_pos.size(0), -1)
# replace the masked visual tokens by mask_tokens
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
# add the [CLS] token to the embedded patch tokens
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
# add positional encoding to each token
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings)
return embeddings
|
class_definition
| 14,772 | 19,116 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,105 |
class PatchEmbeddings(nn.Module):
"""
Image to Patch Embedding.
"""
def __init__(
self,
image_size: int = 224,
patch_size: Union[int, Tuple[int, int]] = 16,
num_channels: int = 3,
embed_dim: int = 768,
):
super().__init__()
if not isinstance(image_size, collections.abc.Iterable):
image_size = (image_size, image_size)
if not isinstance(patch_size, collections.abc.Iterable):
patch_size = (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_patches = num_patches
self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
batch_size, num_channels, height, width = pixel_values.shape
if not interpolate_pos_encoding:
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model"
f" ({self.image_size[0]}*{self.image_size[1]})."
)
x = self.projection(pixel_values).flatten(2).transpose(1, 2)
return x
|
class_definition
| 19,273 | 20,683 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,106 |
class FlavaTextEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.register_buffer(
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
):
input_shape = input_ids.size()
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
|
class_definition
| 20,686 | 23,544 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,107 |
class FlavaSelfAttention(nn.Module):
def __init__(self, config: FlavaPossibleConfigs) -> None:
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
|
class_definition
| 23,547 | 26,703 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,108 |
class FlavaSelfOutput(nn.Module):
"""
The residual connection is defined in FlavaLayer (same as ViTLayer) instead of here (as is the case with other
models), due to the layernorm applied before each block.
"""
def __init__(self, config: FlavaPossibleConfigs) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
|
class_definition
| 26,706 | 27,383 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,109 |
class FlavaAttention(nn.Module):
def __init__(self, config: FlavaPossibleConfigs) -> None:
super().__init__()
self.attention = FlavaSelfAttention(config)
self.output = FlavaSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads: Set[int]) -> None:
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_outputs = self.attention(
hidden_states, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
|
class_definition
| 27,386 | 29,216 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,110 |
class FlavaIntermediate(nn.Module):
def __init__(self, config: FlavaPossibleConfigs) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate.forward
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
|
class_definition
| 29,219 | 29,895 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,111 |
class FlavaOutput(nn.Module):
def __init__(self, config: FlavaPossibleConfigs) -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# Copied from transformers.models.vit.modeling_vit.ViTOutput.forward
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
return hidden_states
|
class_definition
| 29,898 | 30,511 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,112 |
class FlavaLayer(nn.Module):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config: FlavaPossibleConfigs) -> None:
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = FlavaAttention(config)
self.intermediate = FlavaIntermediate(config)
self.output = FlavaOutput(config)
# TODO: Check fp32 layer norm possiblity
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_attention_outputs = self.attention(
self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# first residual connection
hidden_states = attention_output + hidden_states
# in ViT, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
# second residual connection is done here
layer_output = self.output(layer_output, hidden_states)
outputs = (layer_output,) + outputs
return outputs
|
class_definition
| 30,514 | 32,367 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,113 |
class FlavaEncoder(nn.Module):
def __init__(self, config: FlavaConfig) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([FlavaLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions
)
|
class_definition
| 32,370 | 34,379 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,114 |
class FlavaPooler(nn.Module):
def __init__(self, config: FlavaPossibleConfigs):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
|
class_definition
| 34,382 | 34,948 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,115 |
class FlavaPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FlavaConfig
base_model_prefix = "flava"
supports_gradient_checkpointing = True
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
|
class_definition
| 42,224 | 43,395 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,116 |
class FlavaImageModel(FlavaPreTrainedModel):
config_class = FlavaImageConfig
# This override allows us to load FlavaImageModel from FlavaModel/FlavaForPreTraining checkpoints.
base_model_prefix = "flava.image_model"
main_input_name = "pixel_values"
def __init__(self, config: FlavaImageConfig, add_pooling_layer: bool = True):
super().__init__(config)
self.config = config
self.embeddings = FlavaImageEmbeddings(config)
self.encoder = FlavaEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pooler = FlavaPooler(config) if add_pooling_layer else None
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.embeddings.patch_embeddings
def set_input_embeddings(self, value: nn.Module):
self.embeddings.patch_embeddings = value
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(FLAVA_IMAGE_INPUTS_DOCSTRING.format("batch_size, image_num_patches"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_CLASS_FOR_IMAGE_MODEL_DOC,
modality="vision",
expected_output=_EXPECTED_IMAGE_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
interpolate_pos_encoding: Optional[bool] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
|
class_definition
| 43,593 | 47,629 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,117 |
class FlavaTextModel(FlavaPreTrainedModel):
config_class = FlavaTextConfig
# This override allows us to load FlavaTextModel from FlavaModel/FlavaForPreTraining checkpoints.
base_model_prefix = "flava.text_model"
def __init__(self, config: FlavaTextConfig, add_pooling_layer: bool = True):
super().__init__(config)
self.config = config
self.embeddings = FlavaTextEmbeddings(config)
self.encoder = FlavaEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pooler = FlavaPooler(config) if add_pooling_layer else None
self.post_init()
def get_input_embeddings(self) -> PatchEmbeddings:
return self.embeddings.word_embeddings
def set_input_embeddings(self, value: nn.Module):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(FLAVA_TEXT_INPUTS_DOCSTRING.format("batch_size, text_seq_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_CLASS_FOR_TEXT_MODEL_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is None:
raise ValueError("You have to specify input_ids")
input_shape = input_ids.size()
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=input_ids.device)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
attention_mask, input_shape, input_ids.device
)
embedding_output = self.embeddings(
input_ids=input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
|
class_definition
| 47,825 | 52,037 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,118 |
class FlavaMultimodalModel(FlavaPreTrainedModel):
config_class = FlavaMultimodalConfig
# This override allows us to load FlavaMultimodalModel from FlavaModel/FlavaForPreTraining checkpoints.
base_model_prefix = "flava.multimodal_model"
main_input_name = "hidden_states"
def __init__(self, config: FlavaMultimodalConfig, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.use_cls_token = self.config.use_cls_token
if self.use_cls_token:
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
self.encoder = FlavaEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pooler = FlavaPooler(config) if add_pooling_layer else None
self.post_init()
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(
FLAVA_MULTIMODAL_INPUTS_DOCSTRING.format("batch_size, image_num_patches + text_seq_len")
)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_CLASS_FOR_MULTIMODAL_MODEL_DOC,
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, seq_length, _ = hidden_states.size()
if self.use_cls_token:
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
hidden_states = torch.cat((cls_tokens, hidden_states), dim=1)
seq_length += 1
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_length), device=hidden_states.device)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
attention_mask, (batch_size, seq_length), hidden_states.device
)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
|
class_definition
| 52,245 | 56,333 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,119 |
class FlavaModel(FlavaPreTrainedModel):
config_class = FlavaConfig
def __init__(self, config: FlavaConfig):
super().__init__(config)
if not isinstance(config.text_config, FlavaTextConfig):
raise TypeError(
"config.text_config is expected to be of type FlavaTextConfig but is of type"
f" {type(config.text_config)}."
)
if not isinstance(config.image_config, FlavaImageConfig):
raise TypeError(
"config.image_config is expected to be of type FlavaImageConfig but is of type"
f" {type(config.image_config)}."
)
if not isinstance(config.multimodal_config, FlavaMultimodalConfig):
raise TypeError(
"config.multimodal_config is expected to be of type FlavaMultimodalConfig but "
+ f"is of type {type(config.multimodal_config)}."
)
text_config = config.text_config
image_config = config.image_config
multimodal_config = config.multimodal_config
self.projection_dim = config.projection_dim
self.text_hidden_size = text_config.hidden_size
self.image_hidden_size = image_config.hidden_size
self.mm_hidden_size = multimodal_config.hidden_size
self.text_model = FlavaTextModel(text_config)
self.image_model = FlavaImageModel(image_config)
self.multimodal_model = FlavaMultimodalModel(multimodal_config)
self.image_projection = nn.Linear(self.image_hidden_size, self.projection_dim)
self.text_projection = nn.Linear(self.text_hidden_size, self.projection_dim)
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
self.image_to_mm_projection = nn.Linear(self.image_hidden_size, self.mm_hidden_size)
self.text_to_mm_projection = nn.Linear(self.text_hidden_size, self.mm_hidden_size)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FLAVA_TEXT_INPUTS_DOCSTRING.format("batch_size, text_seq_length"))
def get_text_features(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
applying the projection layer to the pooled output of [`FlavaTextModel`].
Examples:
```python
>>> from transformers import AutoProcessor, FlavaModel
>>> model = FlavaModel.from_pretrained("{0}")
>>> processor = AutoProcessor.from_pretrained("{0}")
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], max_length=77, padding="max_length", return_tensors="pt"
... )
>>> text_features = model.get_text_features(**inputs)
```""".format(_CHECKPOINT_FOR_DOC)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = text_outputs[0] # last_hidden_state
text_features = self.text_projection(pooled_output)
return text_features
@add_start_docstrings_to_model_forward(FLAVA_IMAGE_INPUTS_DOCSTRING.format("batch_size, image_num_patches"))
def get_image_features(
self,
pixel_values: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
interpolate_pos_encoding: Optional[bool] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
applying the projection layer to the pooled output of [`FlavaImageModel`].
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, FlavaModel
>>> model = FlavaModel.from_pretrained("{0}")
>>> processor = AutoProcessor.from_pretrained("{0}")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)
```""".format(_CHECKPOINT_FOR_DOC)
image_outputs = self.image_model(
pixel_values=pixel_values,
bool_masked_pos=bool_masked_pos,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
pooled_output = image_outputs[0] # last_hidden_state
image_features = self.image_projection(pooled_output)
return image_features
@add_start_docstrings_to_model_forward(
FLAVA_MODEL_INPUTS_DOCSTRING.format("batch_size, image_num_patches + text_seq_len")
)
@replace_return_docstrings(output_type=FlavaModelOutput, config_class=FlavaConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
image_attention_mask: Optional[torch.Tensor] = None,
skip_multimodal_encoder: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: bool = True,
return_dict: Optional[bool] = None,
) -> Union[Tuple, FlavaOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, FlavaModel
>>> model = FlavaModel.from_pretrained("facebook/flava-full")
>>> processor = AutoProcessor.from_pretrained("facebook/flava-full")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=["a photo of a cat"], images=image, return_tensors="pt", padding=True)
>>> outputs = model(**inputs)
>>> image_embeddings = outputs.image_embeddings
>>> text_embeddings = outputs.text_embeddings
>>> multimodal_embeddings = outputs.multimodal_embeddings
>>> outputs.image_embeddings.shape
torch.Size([1, 197, 768])
>>> text_embeddings.shape
torch.Size([1, 7, 768])
>>> multimodal_embeddings.shape
torch.Size([1, 205, 768])
```
"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
if not output_hidden_states:
raise ValueError("FLAVA model requires hidden states to work. Please set `output_hidden_states=True`")
image_embeddings = None
image_states = None
image_mm_projection = None
image_output = None
if pixel_values is not None:
image_output = self.image_model(
pixel_values=pixel_values,
bool_masked_pos=bool_masked_pos,
attention_mask=image_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeddings, image_states = image_output[0], image_output[2]
# Note that these states don't use final layernorm in the transformer model
image_mm_projection = self.image_to_mm_projection(image_states[-1])
text_embeddings = None
text_states = None
text_mm_projection = None
text_output = None
if input_ids is not None:
text_output = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
token_type_ids=token_type_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_embeddings, text_states = text_output[0], text_output[2]
# Note that these states don't use final layernorm in the transformer model
text_mm_projection = self.text_to_mm_projection(text_states[-1])
multimodal_embeddings = None
multimodal_output = None
if image_mm_projection is not None and text_mm_projection is not None and not skip_multimodal_encoder:
if attention_mask is not None:
batch_size, seq_len, _ = image_mm_projection.shape
if self.multimodal_model.use_cls_token:
seq_len += 1
attention_mask_image = torch.ones(batch_size, seq_len, device=image_mm_projection.device)
attention_multimodal = torch.cat([attention_mask_image, attention_mask], dim=1)
else:
attention_multimodal = None
multimodal_input = torch.cat([image_mm_projection, text_mm_projection], dim=1)
multimodal_output = self.multimodal_model(
multimodal_input, attention_mask=attention_multimodal, return_dict=return_dict
)
multimodal_embeddings = multimodal_output[0]
if not return_dict:
return (
image_embeddings,
image_output,
text_embeddings,
text_output,
multimodal_embeddings,
multimodal_output,
)
return FlavaModelOutput(
image_embeddings=image_embeddings,
image_output=image_output,
text_embeddings=text_embeddings,
text_output=text_output,
multimodal_embeddings=multimodal_embeddings,
multimodal_output=multimodal_output,
)
|
class_definition
| 56,520 | 67,567 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,120 |
class FlavaImageCodebookResPath(nn.Module):
def __init__(self, in_size: int, out_size: int, **kwargs):
super().__init__()
hid_size = out_size // 4
path = OrderedDict()
path["relu_1"] = nn.ReLU()
path["conv_1"] = nn.Conv2d(in_size, hid_size, kernel_size=3, padding=1)
path["relu_2"] = nn.ReLU()
path["conv_2"] = nn.Conv2d(hid_size, hid_size, kernel_size=3, padding=1)
path["relu_3"] = nn.ReLU()
path["conv_3"] = nn.Conv2d(hid_size, hid_size, kernel_size=3, padding=1)
path["relu_4"] = nn.ReLU()
path["conv_4"] = nn.Conv2d(hid_size, out_size, kernel_size=1, padding=0)
self.path = nn.Sequential(path)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.path(x)
|
class_definition
| 67,570 | 68,355 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,121 |
class FlavaImageCodebookBlock(nn.Module):
def __init__(self, in_size: int, out_size: int, num_layers: int, **kwargs):
super().__init__()
self.post_gain = 1 / (num_layers**2)
if in_size != out_size:
self.id_path = nn.Conv2d(in_size, out_size, kernel_size=1, padding=0)
else:
self.id_path = nn.Identity()
self.res_path = FlavaImageCodebookResPath(in_size, out_size)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.id_path(x) + self.post_gain * self.res_path(x)
|
class_definition
| 68,358 | 68,916 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,122 |
class FlavaImageCodebookLayerGroup(nn.Module):
def __init__(self, num_blocks: int, num_layers: int, in_size: int, out_size: int, use_pool: bool = True):
super().__init__()
blocks = OrderedDict()
for i in range(num_blocks):
if i == 0:
blocks[f"block_{i+1}"] = FlavaImageCodebookBlock(in_size, out_size, num_layers)
else:
blocks[f"block_{i+1}"] = FlavaImageCodebookBlock(out_size, out_size, num_layers)
if use_pool:
blocks["pool"] = nn.MaxPool2d(kernel_size=2)
self.group = nn.Sequential(blocks)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.group(x)
|
class_definition
| 68,919 | 69,612 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,123 |
class FlavaImageCodebook(FlavaPreTrainedModel):
base_model_prefix = ""
config_class = FlavaImageCodebookConfig
main_input_name = "pixel_values"
supports_gradient_checkpointing = False
def __init__(
self,
config: FlavaImageCodebookConfig,
**kwargs: Any,
):
super().__init__(config)
self.config = config
self.num_groups = config.num_groups
self.input_channels = config.input_channels
self.num_blocks_per_group = config.num_blocks_per_group
self.hidden_size = config.hidden_size
self.vocab_size = config.vocab_size
num_layers = self.num_groups * self.num_blocks_per_group
output_blocks = OrderedDict()
output_blocks["relu"] = nn.ReLU()
output_blocks["conv"] = nn.Conv2d(8 * self.hidden_size, self.vocab_size, kernel_size=1, padding=0)
blocks = OrderedDict()
blocks["input"] = nn.Conv2d(self.input_channels, 1 * self.hidden_size, kernel_size=7, padding=3)
blocks["group_1"] = FlavaImageCodebookLayerGroup(
self.num_blocks_per_group, num_layers, 1 * self.hidden_size, 1 * self.hidden_size
)
blocks["group_2"] = FlavaImageCodebookLayerGroup(
self.num_blocks_per_group, num_layers, 1 * self.hidden_size, 2 * self.hidden_size
)
blocks["group_3"] = FlavaImageCodebookLayerGroup(
self.num_blocks_per_group, num_layers, 2 * self.hidden_size, 4 * self.hidden_size
)
blocks["group_4"] = FlavaImageCodebookLayerGroup(
self.num_blocks_per_group, num_layers, 4 * self.hidden_size, 8 * self.hidden_size, use_pool=False
)
blocks["output"] = nn.Sequential(output_blocks)
self.blocks = nn.Sequential(blocks)
self.post_init()
if self.config.freeze:
for param in self.parameters():
param.requires_grad = False
def get_codebook_indices(self, pixel_values: torch.Tensor) -> torch.Tensor:
"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing
`return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details.
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoImageProcessor, FlavaImageCodebook
>>> model = FlavaImageCodebook.from_pretrained("{0}")
>>> image_processor = AutoImageProcessor.from_pretrained("{0}")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt")
>>> inputs = dict(pixel_values=inputs.codebook_pixel_values)
>>> outputs = model.get_codebook_indices(**inputs)
```
""".format(_CHECKPOINT_FOR_CODEBOOK_DOC)
z_logits = self.blocks(pixel_values)
return torch.argmax(z_logits, axis=1)
def get_codebook_probs(self, pixel_values: torch.Tensor) -> torch.Tensor:
z_logits = self.blocks(pixel_values)
return nn.Softmax(dim=1)(z_logits)
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing
`return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details.
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoImageProcessor, FlavaImageCodebook
>>> model = FlavaImageCodebook.from_pretrained("{0}")
>>> image_processor = AutoImageProcessor.from_pretrained("{0}")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt")
>>> inputs = dict(pixel_values=inputs.codebook_pixel_values)
>>> outputs = model(**inputs)
>>> print(outputs.shape)
(1, 196)
```
""".format(_CHECKPOINT_FOR_CODEBOOK_DOC)
if len(pixel_values.shape) != 4:
raise ValueError(f"input shape {pixel_values.shape} is not 4d")
if pixel_values.shape[1] != self.input_channels:
raise ValueError(f"input has {pixel_values.shape[1]} channels but model built for {self.input_channels}")
return self.blocks(pixel_values)
|
class_definition
| 70,143 | 74,981 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,124 |
class FlavaPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
|
class_definition
| 74,984 | 75,655 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,125 |
class FlavaMaskedPredictionHead(nn.Module):
def __init__(self, config, weight=None):
super().__init__()
self.config = config
self.transform = FlavaPredictionHeadTransform(config)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
if weight is not None:
self.decoder.weight = weight
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def _tie_weights(self):
self.decoder.bias = self.bias
def forward(self, x):
x = self.transform(x)
x = self.decoder(x)
return x
|
class_definition
| 75,658 | 76,410 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,126 |
class FlavaITMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.pooler = FlavaPooler(config)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, x):
x = self.pooler(x)
x = self.seq_relationship(x)
return x
|
class_definition
| 76,413 | 76,746 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,127 |
class FlavaGlobalContrastiveHead(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.global_backprop_contrastive = config.global_backprop_contrastive
def forward(self, image_embeddings, text_embeddings, logit_scale):
temperature = torch.exp(logit_scale)
if not torch.distributed.is_available() or not torch.distributed.is_initialized():
labels = torch.arange(image_embeddings.size(0), device=image_embeddings.device)
image_embeddings_all = [image_embeddings]
text_embeddings_all = [text_embeddings]
else:
local_batch_size = image_embeddings.size(0)
world_size = torch.distributed.get_world_size()
if self.global_backprop_contrastive:
# `torch.distributed.nn.functional.all_gather` does backprop on all active workers
# whereas `torch.distributed.all_gather` does only backpropagates on the current worker.
image_embeddings_all = torch.distributed.nn.functional.all_gather(image_embeddings)
text_embeddings_all = torch.distributed.nn.functional.all_gather(text_embeddings)
else:
image_embeddings_all = [torch.zeros_like(text_embeddings) for _ in range(world_size)]
text_embeddings_all = [torch.zeros_like(image_embeddings) for _ in range(world_size)]
torch.distributed.all_gather(image_embeddings_all, image_embeddings)
torch.distributed.all_gather(text_embeddings_all, text_embeddings)
labels = local_batch_size * torch.distributed.get_rank() + torch.arange(
local_batch_size, device=image_embeddings.device
)
image_embeddings_all = torch.cat(image_embeddings_all)
text_embeddings_all = torch.cat(text_embeddings_all)
logits_per_image = torch.matmul(image_embeddings, text_embeddings_all.transpose(0, 1)) * temperature
logits_per_text = torch.matmul(text_embeddings, image_embeddings_all.transpose(0, 1)) * temperature
return logits_per_image, logits_per_text, labels
|
class_definition
| 76,749 | 78,903 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,128 |
class FlavaForPreTraining(FlavaPreTrainedModel):
# Those are linked to xxx.bias
_tied_weights_keys = [
"mmm_text_head.decoder.bias",
"mmm_image_head.decoder.bias",
"mlm_head.decoder.bias",
"mim_head.decoder.bias",
]
def __init__(self, config: FlavaConfig, image_codebook: Optional[nn.Module] = None):
super().__init__(config)
self.flava = FlavaModel(config)
self.image_codebook = image_codebook
if self.image_codebook is None and config.init_codebook:
self.image_codebook = FlavaImageCodebook(config.image_codebook_config)
# Levarage text and image encoder configs to create the masked
# head since it has the right vocab
self.mim_head = FlavaMaskedPredictionHead(config.image_config)
self.mlm_head = FlavaMaskedPredictionHead(config.text_config)
self.itm_head = FlavaITMHead(config)
self.mmm_image_head = FlavaMaskedPredictionHead(config.image_config)
self.mmm_text_head = FlavaMaskedPredictionHead(config.text_config)
self.global_contrastive_head = FlavaGlobalContrastiveHead(config)
self.image_vocab_size = config.image_config.vocab_size
self.text_vocab_size = config.text_config.vocab_size
self.mlm_weight = config.mlm_weight
self.mim_weight = config.mim_weight
self.global_contrastive_weight = config.global_contrastive_weight
self.ce_ignore_index = config.ce_ignore_index
self.itm_weight = config.itm_weight
self.mmm_image_weight = config.mmm_image_weight
self.mmm_text_weight = config.mmm_text_weight
self.skip_unmasked_multimodal_encoder = config.skip_unmasked_multimodal_encoder
self.post_init()
def _resize_to_2d(self, x: torch.Tensor):
if x.dim() > 2:
x = x.view(x.size(0), -1)
return x
@add_start_docstrings_to_model_forward(
FLAVA_PRETRAINING_INPUTS_DOCSTRING.format("batch_size, text_seq_len", "batch_size, image_num_patches")
)
@replace_return_docstrings(output_type=FlavaForPreTrainingOutput, config_class=FlavaConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
input_ids_masked: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
codebook_pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
image_attention_mask: Optional[torch.Tensor] = None,
skip_unmasked_multimodal_encoder: bool = None,
mlm_labels: Optional[torch.Tensor] = None,
mim_labels: Optional[torch.Tensor] = None,
itm_labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: bool = True,
return_dict: Optional[bool] = None,
return_loss: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], FlavaForPreTrainingOutput]:
"""
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import FlavaForPreTraining, AutoProcessor
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> model = FlavaForPreTraining.from_pretrained("facebook/flava-full")
>>> processor = AutoProcessor.from_pretrained("facebook/flava-full")
>>> text = ["a photo of a cat"]
>>> inputs = processor(
... images=[image],
... text=text,
... return_masks=True,
... return_codebook_pixels=True,
... padding=True,
... max_length=77,
... return_tensors="pt",
... )
>>> output = model(**inputs)
```
Return:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
return_loss = return_loss if return_loss is not None else self.config.return_loss
skip_unmasked_multimodal_encoder = (
skip_unmasked_multimodal_encoder
if skip_unmasked_multimodal_encoder is not None
else self.skip_unmasked_multimodal_encoder
)
if input_ids_masked is None and input_ids is not None:
logger.warning(
"`input_ids_masked` isn't passed which means MLM loss won't be calculated correctlySetting it to"
" `input_ids` so that model can work. Please pass it if this is unintentional. This is usually OKAY if"
" you are doing inference on unmasked text..."
)
input_ids_masked = input_ids
flava_output = self.flava(
input_ids=input_ids,
pixel_values=pixel_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
image_attention_mask=image_attention_mask,
# Don't need unmasked multimodal embedding for anything so skip it
# NOTE: ITM uses masked version
skip_multimodal_encoder=skip_unmasked_multimodal_encoder,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
# Pass true to have deterministic outputs
return_dict=True,
)
flava_masked_output = self.flava(
input_ids=input_ids_masked,
pixel_values=pixel_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
image_attention_mask=image_attention_mask,
bool_masked_pos=bool_masked_pos,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
pos_mask = None
image_embeddings = flava_output.image_embeddings
text_embeddings = flava_output.text_embeddings
image_masked_embeddings = flava_masked_output.image_embeddings
text_masked_embeddings = flava_masked_output.text_embeddings
multimodal_masked_embeddings = flava_masked_output.multimodal_embeddings
total_loss = mim_loss = mlm_loss = mmm_text_loss = mmm_image_loss = gc_loss = itm_loss = None
mim_logits = mlm_logits = mmm_text_logits = mmm_image_logits = None
itm_logits = logits_per_image = logits_per_text = None
# Calculate mim_labels if necessary from the image_codebook
if image_masked_embeddings is not None or multimodal_masked_embeddings is not None:
if mim_labels is None and return_loss:
if self.image_codebook is None:
raise RuntimeError(
"`return_loss` is set to True but the image codebook is not initialized and no `mim_labels` "
" have been passed. Reinstantiate the model with `init_codebook` set to True or "
"pass in your custom `mim_labels`"
)
if codebook_pixel_values is None:
raise ValueError(
"`codebook_pixel_value` are required to generate `mim_labels` if loss is expected. "
"Call `AutoProcessor` with `return_codebook_pixels` set to True"
)
mim_labels = self.image_codebook.get_codebook_indices(codebook_pixel_values)
# Unimodal MIM Loss
# If multimodal embeddings are present, we will calculate MMM loss
if self.mim_weight > 0 and image_masked_embeddings is not None and multimodal_masked_embeddings is None:
sequence_for_image = image_masked_embeddings
if mim_labels is not None:
mim_labels = self._resize_to_2d(mim_labels)
bool_masked_pos = self._resize_to_2d(bool_masked_pos)
mim_labels[bool_masked_pos.ne(True)] = self.ce_ignore_index
sequence_for_image = sequence_for_image[:, -mim_labels.size(1) :, :]
masked_tokens = mim_labels.ne(self.ce_ignore_index)
mim_labels_filtered = mim_labels[masked_tokens]
sequence_for_image = sequence_for_image[masked_tokens, :]
mim_logits = self.mim_head(sequence_for_image)
if return_loss:
mim_loss = nn.functional.cross_entropy(
mim_logits.view(-1, self.image_vocab_size), mim_labels_filtered.view(-1)
)
mim_loss *= self.mim_weight
else:
mim_logits = self.mim_head(sequence_for_image)
# Unimodal MLM Loss
if self.mlm_weight > 0 and text_masked_embeddings is not None and multimodal_masked_embeddings is None:
sequence_for_text = text_masked_embeddings
if mlm_labels is not None:
mlm_labels = self._resize_to_2d(mlm_labels)
sequence_for_text = sequence_for_text[:, -mlm_labels.size(1) :, :]
masked_tokens = mlm_labels.ne(self.ce_ignore_index)
mlm_labels_filtered = mlm_labels[masked_tokens]
sequence_for_text = sequence_for_text[masked_tokens, :]
mlm_logits = self.mlm_head(sequence_for_text)
if return_loss:
mlm_loss = nn.functional.cross_entropy(
mlm_logits.view(-1, self.text_vocab_size), mlm_labels_filtered.view(-1)
)
mlm_loss *= self.mlm_weight
else:
mlm_logits = self.mlm_head(sequence_for_text)
# ITM Loss
if self.itm_weight > 0 and multimodal_masked_embeddings is not None:
itm_logits = self.itm_head(multimodal_masked_embeddings)
if itm_labels is not None:
pos_pairs = itm_labels.ne(0)
pos_mask = torch.where(pos_pairs.any(), pos_pairs, pos_pairs.new([True]))
if return_loss:
itm_loss = nn.functional.cross_entropy(itm_logits, itm_labels)
itm_loss *= self.itm_weight
if multimodal_masked_embeddings is not None:
multimodal_masked_embeddings = multimodal_masked_embeddings[pos_mask]
if mlm_labels is not None:
mlm_labels = mlm_labels[pos_mask]
if mim_labels is not None:
mim_labels = mim_labels[pos_mask]
bool_masked_pos = bool_masked_pos[pos_mask]
# MMM Image Loss
if multimodal_masked_embeddings is not None and self.mmm_image_weight > 0:
sequence_for_image = multimodal_masked_embeddings
end_index = image_masked_embeddings.size(1) - 1
sequence_for_image = sequence_for_image[:, 2 : 2 + end_index, :]
if mim_labels is not None:
mim_labels = self._resize_to_2d(mim_labels)
bool_masked_pos = self._resize_to_2d(bool_masked_pos)
mim_labels[bool_masked_pos.ne(True)] = self.ce_ignore_index
masked_tokens = mim_labels.ne(self.ce_ignore_index)
mim_labels_filtered = mim_labels[masked_tokens]
sequence_for_image = sequence_for_image[masked_tokens, :]
mmm_image_logits = self.mmm_image_head(sequence_for_image)
if return_loss:
mmm_image_loss = nn.functional.cross_entropy(
mmm_image_logits.view(-1, self.image_vocab_size), mim_labels_filtered.view(-1)
)
mmm_image_loss *= self.mmm_image_weight
else:
mmm_image_logits = self.mmm_image_head(sequence_for_image)
# MMM Text Loss
if multimodal_masked_embeddings is not None and self.mmm_text_weight > 0:
sequence_for_text = multimodal_masked_embeddings
sequence_for_text = sequence_for_text[:, -text_masked_embeddings.size(1) :, :]
if mlm_labels is not None:
mlm_labels = self._resize_to_2d(mlm_labels)
masked_tokens = mlm_labels.ne(self.ce_ignore_index)
mlm_labels_filtered = mlm_labels[masked_tokens]
sequence_for_text = sequence_for_text[masked_tokens, :]
mmm_text_logits = self.mmm_text_head(sequence_for_text)
if return_loss:
mmm_text_loss = nn.functional.cross_entropy(
mmm_text_logits.view(-1, self.text_vocab_size), mlm_labels_filtered.view(-1)
)
mmm_text_loss *= self.mmm_text_weight
else:
mmm_text_logits = self.mmm_text_head(sequence_for_text)
# Global Contrastive Loss
if image_embeddings is not None and text_embeddings is not None and self.global_contrastive_weight > 0:
text_embedding = self.flava.text_projection(text_embeddings[:, 0, :])
text_embedding = nn.functional.normalize(text_embedding, dim=-1)
image_embedding = self.flava.image_projection(image_embeddings[:, 0, :])
image_embedding = nn.functional.normalize(image_embedding, dim=-1)
self.flava.logit_scale.data.clamp_(LOGIT_SCALE_CLAMP_MIN, LOGIT_SCALE_CLAMP_MAX)
logits_per_image, logits_per_text, gc_labels = self.global_contrastive_head(
image_embedding, text_embedding, self.flava.logit_scale
)
# Apply ITM negative mask if any
if pos_mask is not None:
logits_per_image = logits_per_image[pos_mask]
logits_per_text = logits_per_text[pos_mask]
gc_labels = gc_labels[pos_mask]
if return_loss:
gc_loss_image = nn.functional.cross_entropy(logits_per_image, gc_labels)
gc_loss_text = nn.functional.cross_entropy(logits_per_text, gc_labels)
gc_loss = (gc_loss_image + gc_loss_text) / 2
gc_loss *= self.global_contrastive_weight
flava_losses = FlavaLosses(
mim=mim_loss,
mlm=mlm_loss,
itm=itm_loss,
global_contrastive=gc_loss,
mmm_image=mmm_image_loss,
mmm_text=mmm_text_loss,
)
if return_loss and not flava_losses.all_none():
total_loss = sum(loss if loss is not None else 0 for loss in flava_losses.values())
if not return_dict:
output = (
image_embeddings,
flava_output.image_output.to_tuple() if flava_output.image_output is not None else None,
text_embeddings,
flava_output.text_output.to_tuple() if flava_output.text_output is not None else None,
flava_output.multimodal_embeddings,
flava_output.multimodal_output.to_tuple() if flava_output.multimodal_output is not None else None,
image_masked_embeddings,
flava_masked_output.image_output.to_tuple() if flava_masked_output.image_output is not None else None,
text_masked_embeddings,
flava_masked_output.text_output.to_tuple() if flava_masked_output.text_output is not None else None,
multimodal_masked_embeddings,
flava_masked_output.multimodal_output.to_tuple()
if flava_masked_output.multimodal_output is not None
else None,
mim_logits,
mlm_logits,
itm_logits,
logits_per_image,
logits_per_image,
mmm_image_logits,
mmm_text_logits,
)
if return_loss and not flava_losses.all_none():
output = (
total_loss,
flava_losses,
) + output
# Filter None as transformer by default won't handle it
return tuple(x for x in output if x is None)
return FlavaForPreTrainingOutput(
loss=total_loss,
loss_info=flava_losses,
image_embeddings=image_embeddings,
image_output=flava_output.image_output,
text_embeddings=text_embeddings,
text_output=flava_output.text_output,
multimodal_embeddings=flava_output.multimodal_embeddings,
multimodal_output=flava_output.multimodal_output,
image_masked_embeddings=image_masked_embeddings,
image_masked_output=flava_masked_output.image_output,
text_masked_embeddings=text_masked_embeddings,
text_masked_output=flava_masked_output.text_output,
multimodal_masked_embeddings=multimodal_masked_embeddings,
multimodal_masked_output=flava_masked_output.multimodal_output,
mim_logits=mim_logits,
mlm_logits=mlm_logits,
itm_logits=itm_logits,
contrastive_logits_per_image=logits_per_image,
contrastive_logits_per_text=logits_per_text,
mmm_image_logits=mmm_image_logits,
mmm_text_logits=mmm_text_logits,
)
|
class_definition
| 79,148 | 96,511 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/modeling_flava.py
| null | 3,129 |
class FlavaFeatureExtractor(FlavaImageProcessor):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
"The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use FlavaImageProcessor instead.",
FutureWarning,
)
super().__init__(*args, **kwargs)
|
class_definition
| 834 | 1,200 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/feature_extraction_flava.py
| null | 3,130 |
class FlavaImageConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FlavaImageModel`]. It is used to instantiate an
FLAVA model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
[facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
mask_token (`bool`, *optional*, defaults to `True`):
Whether to use a mask token or not. Used in MIM (Masked Image Modeling) loss for FLAVA.
vocab_size (`int`, *optional*, defaults to 8192):
Vocabulary size of the [`FlavaImageCodebook`] used in conjunction with [`FlavaImageModel`] for MIM (Masked
Image Modeling) loss for FLAVA.
Example:
```python
>>> from transformers import FlavaImageConfig, FlavaImageModel
>>> # Initializing a FlavaImageModel with style configuration
>>> configuration = FlavaImageConfig()
>>> # Initializing a FlavaImageModel model (with random weights) from the style configuration
>>> model = FlavaImageModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "flava_image_model"
base_config_key = "image_config"
def __init__(
self,
hidden_size: int = 768,
num_hidden_layers: int = 12,
num_attention_heads: int = 12,
intermediate_size: int = 3072,
hidden_act: int = "gelu",
hidden_dropout_prob: float = 0.0,
attention_probs_dropout_prob: float = 0.0,
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-12,
image_size: int = 224,
patch_size: int = 16,
num_channels: int = 3,
qkv_bias: bool = True,
mask_token: bool = True,
vocab_size: int = 8192,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.qkv_bias = qkv_bias
self.mask_token = mask_token
self.vocab_size = vocab_size
|
class_definition
| 835 | 5,587 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/configuration_flava.py
| null | 3,131 |
class FlavaTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FlavaTextModel`]. It is used to instantiate an
FLAVA model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
[facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`FlavaTextModel`].
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`FlavaTextModel`]. Note that even though
text encoder allows `token_type_ids`'s value as 2, for text-only pretraining and fine-tuning, only 1 is
used similar to RoBERTa.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048). For VL, max_length passed to model is 77.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
Example:
```python
>>> from transformers import FlavaTextConfig, FlavaTextModel
>>> # Initializing a FlavaTextModel with style configuration
>>> configuration = FlavaTextConfig()
>>> # Initializing a FlavaTextModel model (with random weights) from the style configuration
>>> model = FlavaTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "flava_text_model"
base_config_key = "text_config"
def __init__(
self,
vocab_size: int = 30522,
type_vocab_size: int = 2,
max_position_embeddings: int = 512,
position_embedding_type: str = "absolute",
hidden_size: int = 768,
num_hidden_layers: int = 12,
num_attention_heads: int = 12,
intermediate_size: int = 3072,
hidden_act: str = "gelu",
hidden_dropout_prob: float = 0.0,
attention_probs_dropout_prob: float = 0.0,
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-12,
pad_token_id: int = 0,
qkv_bias: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.type_vocab_size = type_vocab_size
self.max_position_embeddings = max_position_embeddings
self.position_embedding_type = position_embedding_type
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.qkv_bias = qkv_bias
self.pad_token_id = pad_token_id
|
class_definition
| 5,590 | 11,547 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/configuration_flava.py
| null | 3,132 |
class FlavaMultimodalConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FlavaMultimodalModel`]. It is used to instantiate
an FLAVA model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
[facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
use_cls_token (`bool`, *optional*, defaults to `True`):
Whether to use an extra CLS token for multimodal settings. Usually needed by the FLAVA model.
Example:
```python
>>> from transformers import FlavaMultimodalConfig, FlavaMultimodalModel
>>> # Initializing a FlavaMultimodalModel with style configuration
>>> configuration = FlavaMultimodalConfig()
>>> # Initializing a FlavaMultimodalModel model (with random weights) from the style configuration
>>> model = FlavaMultimodalModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "flava_multimodal_model"
base_config_key = "multimodal_config"
def __init__(
self,
hidden_size: int = 768,
num_hidden_layers: int = 6,
num_attention_heads: int = 12,
intermediate_size: int = 3072,
hidden_act: int = "gelu",
hidden_dropout_prob: int = 0.0,
attention_probs_dropout_prob: int = 0.0,
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-12,
qkv_bias: bool = True,
use_cls_token: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.qkv_bias = qkv_bias
self.use_cls_token = use_cls_token
|
class_definition
| 11,550 | 15,558 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/configuration_flava.py
| null | 3,133 |
class FlavaImageCodebookConfig(PretrainedConfig):
model_type = "flava_image_codebook"
base_config_key = "image_codebook_config"
r"""
[`FlavaImageCodebookConfig`] is the configuration class to store the configuration of a [`FlavaImageCodebook`]. It
is used to instantiate an FLAVA model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
[facebook/flava-image-codebook](https://huggingface.co/facebook/flava-image-codebook) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_groups (`int`, *optional*, defaults to 4):
Number of groups to be created. This parameter as of now doesn't affect the model and is used for some
internal calculation and estimations.
input_channels (`int`, *optional*, defaults to 3):
Number of channels in the image to be passed.
num_blocks_per_group (`int`, *optional*, defaults to 2):
Number of conv-based blocks per group.
hidden_size (`int`, *optional*, defaults to 256):
Size of hidden dim for the blocks.
vocab_size (`int`, *optional*, defaults to 8192):
Size of the output vocabulary for the codebook.
freeze (`bool`, defaults to `True`):
Whether to freeze the weights of the model.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import FlavaImageCodebookConfig, FlavaImageCodebook
>>> # Initializing a FlavaImageCodebook with style configuration
>>> configuration = FlavaImageCodebookConfig()
>>> # Initializing a FlavaImageCodebook model (with random weights) from the style configuration
>>> model = FlavaImageCodebook(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
def __init__(
self,
num_groups: int = 4,
input_channels: int = 3,
num_blocks_per_group: int = 2,
hidden_size: int = 256,
vocab_size: int = 8192,
freeze: int = True,
initializer_range: float = 0.02,
**kwargs,
):
super().__init__(**kwargs)
self.num_groups = num_groups
self.input_channels = input_channels
self.num_blocks_per_group = num_blocks_per_group
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.freeze = freeze
self.initializer_range = initializer_range
|
class_definition
| 15,561 | 18,469 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/configuration_flava.py
| null | 3,134 |
class FlavaConfig(PretrainedConfig):
r"""
[`FlavaConfig`] is the configuration class to store the configuration of a [`FlavaModel`]. It is used to
instantiate FLAVA model according to the specified arguments, defining the text model, image model, image codebook
and multimodal model configs. Instantiating a configuration with the defaults will yield a similar configuration to
that of the FLAVA [facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`FlavaTextConfig`].
image_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`FlavaImageConfig`].
multimodal_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`FlavaMultimodalConfig`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
projection_dim (`int`, *optional*, defaults to 512):
Dimensionality of text and image projection layers.
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
The initial value of the *logit_scale* parameter. Default is used as per the original FLAVA/CLIP
implementation.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
ce_ignore_index (`int`, *optional*, defaults to -100):
Cross entropy index to ignore.
mim_weight (`float`, *optional*, defaults to 1.0):
Weight to be assigned to MIM (Masked Image Modeling) unimodal loss
mlm_weight (`float`, *optional*, defaults to 1.0):
Weight to be assigned to MLM (Masked Language Modeling) unimodal loss
global_contrastive_weight (`float`, *optional*, defaults to 1.0):
Weight to be assigned to global contrastive cross-alignment loss.
itm_weight (`float`, *optional*, defaults to 1.0):
Weight to be assigned to image-text matching multimodal loss.
mmm_image_weight (`float`, *optional*, defaults to 1.0):
Weight to be assigned to MMM loss's image part.
mmm_text_weight (`float`, *optional*, defaults to 1.0):
Weight to be assigned to MMM loss's text part.
global_backprop_contrastive (`bool`, *optional*, defaults to `True`):
Whether to use global backpropgation through all workers in contrastive loss.
skip_unmasked_multimodal_encoder (`bool`, *optional*, defaults to `True`):
Whether to skip running unmasked multimodal encoder whose outputs are not used by FLAVA losses.
return_loss (`bool`, *optional*, defaults to `True`):
Whether to return loss or not
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import FlavaConfig, FlavaModel, FlavaForPreTraining
>>> # Initializing a FlavaConfig with style configuration
>>> configuration = FlavaConfig()
>>> # Initializing a FlavaModel and FlavaForPreTraining model (with random weights) from the style configuration
>>> model = FlavaModel(configuration)
>>> model_pre = FlavaForPreTraining(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> configuration_pre = model_pre.config
```
"""
model_type = "flava"
sub_configs = {
"text_config": FlavaTextConfig,
"image_config": FlavaImageConfig,
"multimodal_config": FlavaMultimodalConfig,
"image_codebook_config": FlavaImageCodebookConfig,
}
def __init__(
self,
image_config: Dict[str, Any] = None,
text_config: Dict[str, Any] = None,
multimodal_config: Dict[str, Any] = None,
image_codebook_config: Dict[str, Any] = None,
hidden_size: int = 768,
layer_norm_eps: float = 1e-12,
projection_dim: int = 768,
init_codebook: bool = True,
logit_scale_init_value: float = 2.6592,
initializer_range: float = 0.02,
ce_ignore_index: int = -100,
mim_weight: float = 1.0,
mlm_weight: float = 1.0,
global_contrastive_weight: float = 1.0,
itm_weight: float = 1.0,
mmm_image_weight: float = 1.0,
mmm_text_weight: float = 1.0,
global_backprop_contrastive: bool = True,
skip_unmasked_multimodal_encoder: bool = True,
return_loss: bool = True,
**kwargs,
):
# If `_config_dict` exist, we use them for the backward compatibility.
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
# of confusion!).
text_config_dict = kwargs.pop("text_config_dict", None)
image_config_dict = kwargs.pop("image_config_dict", None)
multimodal_config_dict = kwargs.pop("multimodal_config_dict", None)
image_codebook_config_dict = kwargs.pop("image_codebook_config_dict", None)
super().__init__(**kwargs)
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
if text_config_dict is not None:
if text_config is None:
text_config = {}
# This is the complete result when using `text_config_dict`.
_text_config_dict = FlavaTextConfig(**text_config_dict).to_dict()
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
for key, value in _text_config_dict.items():
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
# If specified in `text_config_dict`
if key in text_config_dict:
message = (
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
f'The value `text_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`text_config_dict` is provided which will be used to initialize `FlavaTextConfig`. The "
f'value `text_config["{key}"]` will be overridden.'
)
logger.info(message)
# Update all values in `text_config` with the ones in `_text_config_dict`.
text_config.update(_text_config_dict)
if image_config_dict is not None:
if image_config is None:
image_config = {}
# This is the complete result when using `image_config_dict`.
_image_config_dict = FlavaImageConfig(**image_config_dict).to_dict()
# convert keys to string instead of integer
if "id2label" in _image_config_dict:
_image_config_dict["id2label"] = {
str(key): value for key, value in _image_config_dict["id2label"].items()
}
# Give a warning if the values exist in both `_image_config_dict` and `image_config` but being different.
for key, value in _image_config_dict.items():
if key in image_config and value != image_config[key] and key not in ["transformers_version"]:
# If specified in `image_config_dict`
if key in image_config_dict:
message = (
f"`{key}` is found in both `image_config_dict` and `image_config` but with different "
f'values. The value `image_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`image_config_dict` is provided which will be used to initialize `FlavaImageConfig`. "
f'The value `image_config["{key}"]` will be overridden.'
)
logger.info(message)
# Update all values in `image_config` with the ones in `_image_config_dict`.
image_config.update(_image_config_dict)
if multimodal_config_dict is not None:
if multimodal_config is None:
multimodal_config = {}
# This is the complete result when using `multimodal_config_dict`.
_multimodal_config_dict = FlavaMultimodalConfig(**multimodal_config_dict).to_dict()
# Give a warning if the values exist in both `_multimodal_config_dict` and `multimodal_config` but being
# different.
for key, value in _multimodal_config_dict.items():
if (
key in multimodal_config
and value != multimodal_config[key]
and key not in ["transformers_version"]
):
# If specified in `multimodal_config_dict`
if key in multimodal_config_dict:
message = (
f"`{key}` is found in both `multimodal_config_dict` and `multimodal_config` but with "
f'different values. The value `multimodal_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`multimodal_config_dict` is provided which will be used to initialize "
f'`FlavaMultimodalConfig`. The value `multimodal_config["{key}"]` will be overridden.'
)
logger.info(message)
# Update all values in `multimodal_config` with the ones in `_multimodal_config_dict`.
multimodal_config.update(_multimodal_config_dict)
if image_codebook_config_dict is not None:
if image_codebook_config is None:
image_codebook_config = {}
# This is the complete result when using `image_codebook_config_dict`.
_image_codebook_config_dict = FlavaImageCodebookConfig(**image_codebook_config_dict).to_dict()
# Give a warning if the values exist in both `_image_codebook_config_dict` and `image_codebook_config` but
# being different.
for key, value in _image_codebook_config_dict.items():
if (
key in image_codebook_config
and value != image_codebook_config[key]
and key not in ["transformers_version"]
):
# If specified in `image_codebook_config_dict`
if key in image_codebook_config_dict:
message = (
f"`{key}` is found in both `image_codebook_config_dict` and `image_codebook_config` but "
f'with different values. The value `image_codebook_config_dict["{key}"]` will be used '
"instead."
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`image_codebook_config_dict` is provided which will be used to initialize "
f'`FlavaImageCodebookConfig`. The value `image_codebook_config["{key}"]` will be overridden.'
)
logger.info(message)
# Update all values in `image_codebook_config` with the ones in `_image_codebook_config_dict`.
image_codebook_config.update(_image_codebook_config_dict)
if image_config is None:
image_config = {}
logger.info("`image_config` is `None`. initializing the `FlavaImageConfig` with default values.")
if text_config is None:
text_config = {}
logger.info("`text_config` is `None`. Initializing the `FlavaTextConfig` with default values.")
if multimodal_config is None:
multimodal_config = {}
logger.info("`multimodal_config` is `None`. initializing the `FlavaMultimodalConfig` with default values.")
if image_codebook_config is None:
image_codebook_config = {}
logger.info(
"`image_codebook_config` is `None`. initializing the `FlavaImageCodebookConfig` with default values."
)
self.image_config = FlavaImageConfig(**image_config)
self.text_config = FlavaTextConfig(**text_config)
self.multimodal_config = FlavaMultimodalConfig(**multimodal_config)
self.image_codebook_config = FlavaImageCodebookConfig(**image_codebook_config)
self.projection_dim = projection_dim
self.init_codebook = init_codebook
self.hidden_size = hidden_size
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
self.logit_scale_init_value = logit_scale_init_value
self.initializer_factor = 1.0
self.ce_ignore_index = ce_ignore_index
self.mim_weight = mim_weight
self.mlm_weight = mlm_weight
self.global_contrastive_weight = global_contrastive_weight
self.itm_weight = itm_weight
self.mmm_image_weight = mmm_image_weight
self.mmm_text_weight = mmm_text_weight
self.global_backprop_contrastive = global_backprop_contrastive
self.skip_unmasked_multimodal_encoder = skip_unmasked_multimodal_encoder
self.return_loss = return_loss
@classmethod
def from_configs(
cls,
image_config: FlavaImageConfig,
text_config: FlavaTextConfig,
multimodal_config: FlavaMultimodalConfig,
image_codebook_config: FlavaImageCodebookConfig,
**kwargs,
):
r"""
Instantiate a [`FlavaConfig`] (or a derived class) from flava text model configuration, flava image model
configuration, flava multimodal model and flava codebook model configuration.
Returns:
[`FlavaConfig`]: An instance of a configuration object
"""
return cls(
image_config=image_config.to_dict(),
text_config=text_config.to_dict(),
multimodal_config=multimodal_config.to_dict(),
image_codebook_config=image_codebook_config.to_dict(),
**kwargs,
)
|
class_definition
| 18,472 | 33,944 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/configuration_flava.py
| null | 3,135 |
class FlavaMaskingGenerator:
def __init__(
self,
input_size: Union[int, Tuple[int, int]] = 14,
total_mask_patches: int = 75,
mask_group_max_patches: Optional[int] = None,
mask_group_min_patches: int = 16,
mask_group_min_aspect_ratio: Optional[float] = 0.3,
mask_group_max_aspect_ratio: float = None,
):
if not isinstance(input_size, tuple):
input_size = (input_size,) * 2
self.height, self.width = input_size
self.num_patches = self.height * self.width
self.total_mask_patches = total_mask_patches
self.mask_group_min_patches = mask_group_min_patches
self.mask_group_max_patches = total_mask_patches if mask_group_max_patches is None else mask_group_max_patches
mask_group_max_aspect_ratio = mask_group_max_aspect_ratio or 1 / mask_group_min_aspect_ratio
self.log_aspect_ratio = (math.log(mask_group_min_aspect_ratio), math.log(mask_group_max_aspect_ratio))
def __repr__(self):
repr_str = "MaskingGenerator(%d, %d -> [%d ~ %d], max = %d, %.3f ~ %.3f)" % (
self.height,
self.width,
self.mask_group_min_patches,
self.mask_group_max_patches,
self.total_mask_patches,
self.log_aspect_ratio[0],
self.log_aspect_ratio[1],
)
return repr_str
def get_shape(self):
return self.height, self.width
def _mask(self, mask, max_mask_patches):
delta = 0
for _attempt in range(10):
target_area = random.uniform(self.mask_group_min_patches, max_mask_patches)
aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio))
height = int(round(math.sqrt(target_area * aspect_ratio)))
width = int(round(math.sqrt(target_area / aspect_ratio)))
if width < self.width and height < self.height:
top = random.randint(0, self.height - height)
left = random.randint(0, self.width - width)
num_masked = mask[top : top + height, left : left + width].sum()
# Overlap
if 0 < height * width - num_masked <= max_mask_patches:
for i in range(top, top + height):
for j in range(left, left + width):
if mask[i, j] == 0:
mask[i, j] = 1
delta += 1
if delta > 0:
break
return delta
def __call__(self):
mask = np.zeros(shape=self.get_shape(), dtype=int)
mask_count = 0
while mask_count < self.total_mask_patches:
max_mask_patches = self.total_mask_patches - mask_count
max_mask_patches = min(max_mask_patches, self.mask_group_max_patches)
delta = self._mask(mask, max_mask_patches)
if delta == 0:
break
else:
mask_count += delta
return mask
|
class_definition
| 1,741 | 4,782 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/image_processing_flava.py
| null | 3,136 |
class FlavaImageProcessor(BaseImageProcessor):
r"""
Constructs a Flava image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
`do_resize` parameter in `preprocess`.
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the image after resizing. Can be overridden by the `size` parameter in `preprocess`.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in
`preprocess`.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the images. Can be overridden by the `do_center_crop` parameter in `preprocess`.
crop_size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
Size of image after the center crop `(crop_size["height"], crop_size["width"])`. Can be overridden by the
`crop_size` parameter in `preprocess`.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in `preprocess`.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in
`preprocess`.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in `preprocess`.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
return_image_mask (`bool`, *optional*, defaults to `False`):
Whether to return the image mask. Can be overridden by the `return_image_mask` parameter in `preprocess`.
input_size_patches (`int`, *optional*, defaults to 14):
Number of patches in the image in height and width direction. 14x14 = 196 total patches. Can be overridden
by the `input_size_patches` parameter in `preprocess`.
total_mask_patches (`int`, *optional*, defaults to 75):
Total number of patches that should be masked. Can be overridden by the `total_mask_patches` parameter in
`preprocess`.
mask_group_min_patches (`int`, *optional*, defaults to 16):
Minimum number of patches that should be masked. Can be overridden by the `mask_group_min_patches`
parameter in `preprocess`.
mask_group_max_patches (`int`, *optional*):
Maximum number of patches that should be masked. Can be overridden by the `mask_group_max_patches`
parameter in `preprocess`.
mask_group_min_aspect_ratio (`float`, *optional*, defaults to 0.3):
Minimum aspect ratio of the mask window. Can be overridden by the `mask_group_min_aspect_ratio` parameter
in `preprocess`.
mask_group_max_aspect_ratio (`float`, *optional*):
Maximum aspect ratio of the mask window. Can be overridden by the `mask_group_max_aspect_ratio` parameter
in `preprocess`.
codebook_do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the input for codebook to a certain. Can be overridden by the `codebook_do_resize`
parameter in `preprocess`. `codebook_size`.
codebook_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Resize the input for codebook to the given size. Can be overridden by the `codebook_size` parameter in
`preprocess`.
codebook_resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.LANCZOS`):
Resampling filter to use if resizing the codebook image. Can be overridden by the `codebook_resample`
parameter in `preprocess`.
codebook_do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to crop the input for codebook at the center. If the input size is smaller than
`codebook_crop_size` along any edge, the image is padded with 0's and then center cropped. Can be
overridden by the `codebook_do_center_crop` parameter in `preprocess`.
codebook_crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Desired output size for codebook input when applying center-cropping. Can be overridden by the
`codebook_crop_size` parameter in `preprocess`.
codebook_do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the input for codebook by the specified scale `codebook_rescale_factor`. Can be
overridden by the `codebook_do_rescale` parameter in `preprocess`.
codebook_rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Defines the scale factor to use if rescaling the codebook image. Can be overridden by the
`codebook_rescale_factor` parameter in `preprocess`.
codebook_do_map_pixels (`bool`, *optional*, defaults to `True`):
Whether to map the pixel values of the codebook input to (1 - 2e)x + e. Can be overridden by the
`codebook_do_map_pixels` parameter in `preprocess`.
codebook_do_normalize (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the input for codebook with `codebook_image_mean` and `codebook_image_std`. Can
be overridden by the `codebook_do_normalize` parameter in `preprocess`.
codebook_image_mean (`Optional[Union[float, Iterable[float]]]`, *optional*, defaults to `[0, 0, 0]`):
The sequence of means for each channel, to be used when normalizing images for codebook. Can be overridden
by the `codebook_image_mean` parameter in `preprocess`.
codebook_image_std (`Optional[Union[float, Iterable[float]]]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
The sequence of standard deviations for each channel, to be used when normalizing images for codebook. Can
be overridden by the `codebook_image_std` parameter in `preprocess`.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, Iterable[float]]] = None,
image_std: Optional[Union[float, Iterable[float]]] = None,
# Mask related params
return_image_mask: bool = False,
input_size_patches: int = 14,
total_mask_patches: int = 75,
mask_group_min_patches: int = 16,
mask_group_max_patches: Optional[int] = None,
mask_group_min_aspect_ratio: float = 0.3,
mask_group_max_aspect_ratio: Optional[float] = None,
# Codebook related params
return_codebook_pixels: bool = False,
codebook_do_resize: bool = True,
codebook_size: bool = None,
codebook_resample: int = PILImageResampling.LANCZOS,
codebook_do_center_crop: bool = True,
codebook_crop_size: int = None,
codebook_do_rescale: bool = True,
codebook_rescale_factor: Union[int, float] = 1 / 255,
codebook_do_map_pixels: bool = True,
codebook_do_normalize: bool = True,
codebook_image_mean: Optional[Union[float, Iterable[float]]] = None,
codebook_image_std: Optional[Union[float, Iterable[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 224, "width": 224}
size = get_size_dict(size)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, param_name="crop_size")
codebook_size = codebook_size if codebook_size is not None else {"height": 112, "width": 112}
codebook_size = get_size_dict(codebook_size, param_name="codebook_size")
codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else {"height": 112, "width": 112}
codebook_crop_size = get_size_dict(codebook_crop_size, param_name="codebook_crop_size")
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else FLAVA_IMAGE_MEAN
self.image_std = image_std if image_std is not None else FLAVA_IMAGE_STD
self.return_image_mask = return_image_mask
self.input_size_patches = input_size_patches
self.total_mask_patches = total_mask_patches
self.mask_group_min_patches = mask_group_min_patches
self.mask_group_max_patches = mask_group_max_patches
self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio
self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio
self.return_codebook_pixels = return_codebook_pixels
self.codebook_do_resize = codebook_do_resize
self.codebook_size = codebook_size
self.codebook_resample = codebook_resample
self.codebook_do_center_crop = codebook_do_center_crop
self.codebook_crop_size = codebook_crop_size
self.codebook_do_rescale = codebook_do_rescale
self.codebook_rescale_factor = codebook_rescale_factor
self.codebook_do_map_pixels = codebook_do_map_pixels
self.codebook_do_normalize = codebook_do_normalize
self.codebook_image_mean = codebook_image_mean
self.codebook_image_mean = codebook_image_mean if codebook_image_mean is not None else FLAVA_CODEBOOK_MEAN
self.codebook_image_std = codebook_image_std if codebook_image_std is not None else FLAVA_CODEBOOK_STD
@classmethod
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
"""
Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is
created using from_dict and kwargs e.g. `FlavaImageProcessor.from_pretrained(checkpoint, codebook_size=600)`
"""
image_processor_dict = image_processor_dict.copy()
if "codebook_size" in kwargs:
image_processor_dict["codebook_size"] = kwargs.pop("codebook_size")
if "codebook_crop_size" in kwargs:
image_processor_dict["codebook_crop_size"] = kwargs.pop("codebook_crop_size")
return super().from_dict(image_processor_dict, **kwargs)
@lru_cache()
def masking_generator(
self,
input_size_patches,
total_mask_patches,
mask_group_min_patches,
mask_group_max_patches,
mask_group_min_aspect_ratio,
mask_group_max_aspect_ratio,
) -> FlavaMaskingGenerator:
return FlavaMaskingGenerator(
input_size=input_size_patches,
total_mask_patches=total_mask_patches,
mask_group_min_patches=mask_group_min_patches,
mask_group_max_patches=mask_group_max_patches,
mask_group_min_aspect_ratio=mask_group_min_aspect_ratio,
mask_group_max_aspect_ratio=mask_group_max_aspect_ratio,
)
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
output_size = (size["height"], size["width"])
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def map_pixels(self, image: np.ndarray) -> np.ndarray:
return (1 - 2 * LOGIT_LAPLACE_EPS) * image + LOGIT_LAPLACE_EPS
def _preprocess_image(
self,
image: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_map_pixels: bool = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[ChannelDimension] = None,
) -> np.ndarray:
"""Preprocesses a single image."""
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_resize=do_resize,
size=size,
resample=resample,
)
# All transformations expect numpy arrays.
image = to_numpy_array(image)
if do_rescale and is_scaled_image(image):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(image)
if do_resize:
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
if do_center_crop:
image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
if do_map_pixels:
image = self.map_pixels(image)
if data_format is not None:
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
return image
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None,
crop_size: Optional[Dict[str, int]] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
# Mask related params
return_image_mask: Optional[bool] = None,
input_size_patches: Optional[int] = None,
total_mask_patches: Optional[int] = None,
mask_group_min_patches: Optional[int] = None,
mask_group_max_patches: Optional[int] = None,
mask_group_min_aspect_ratio: Optional[float] = None,
mask_group_max_aspect_ratio: Optional[float] = None,
# Codebook related params
return_codebook_pixels: Optional[bool] = None,
codebook_do_resize: Optional[bool] = None,
codebook_size: Optional[Dict[str, int]] = None,
codebook_resample: Optional[int] = None,
codebook_do_center_crop: Optional[bool] = None,
codebook_crop_size: Optional[Dict[str, int]] = None,
codebook_do_rescale: Optional[bool] = None,
codebook_rescale_factor: Optional[float] = None,
codebook_do_map_pixels: Optional[bool] = None,
codebook_do_normalize: Optional[bool] = None,
codebook_image_mean: Optional[Iterable[float]] = None,
codebook_image_std: Optional[Iterable[float]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
return_image_mask (`bool`, *optional*, defaults to `self.return_image_mask`):
Whether to return the image mask.
input_size_patches (`int`, *optional*, defaults to `self.input_size_patches`):
Size of the patches to extract from the image.
total_mask_patches (`int`, *optional*, defaults to `self.total_mask_patches`):
Total number of patches to extract from the image.
mask_group_min_patches (`int`, *optional*, defaults to `self.mask_group_min_patches`):
Minimum number of patches to extract from the image.
mask_group_max_patches (`int`, *optional*, defaults to `self.mask_group_max_patches`):
Maximum number of patches to extract from the image.
mask_group_min_aspect_ratio (`float`, *optional*, defaults to `self.mask_group_min_aspect_ratio`):
Minimum aspect ratio of the patches to extract from the image.
mask_group_max_aspect_ratio (`float`, *optional*, defaults to `self.mask_group_max_aspect_ratio`):
Maximum aspect ratio of the patches to extract from the image.
return_codebook_pixels (`bool`, *optional*, defaults to `self.return_codebook_pixels`):
Whether to return the codebook pixels.
codebook_do_resize (`bool`, *optional*, defaults to `self.codebook_do_resize`):
Whether to resize the codebook pixels.
codebook_size (`Dict[str, int]`, *optional*, defaults to `self.codebook_size`):
Size of the codebook pixels.
codebook_resample (`int`, *optional*, defaults to `self.codebook_resample`):
Resampling filter to use if resizing the codebook pixels. This can be one of the enum
`PILImageResampling`, Only has an effect if `codebook_do_resize` is set to `True`.
codebook_do_center_crop (`bool`, *optional*, defaults to `self.codebook_do_center_crop`):
Whether to center crop the codebook pixels.
codebook_crop_size (`Dict[str, int]`, *optional*, defaults to `self.codebook_crop_size`):
Size of the center crop of the codebook pixels. Only has an effect if `codebook_do_center_crop` is set
to `True`.
codebook_do_rescale (`bool`, *optional*, defaults to `self.codebook_do_rescale`):
Whether to rescale the codebook pixels values between [0 - 1].
codebook_rescale_factor (`float`, *optional*, defaults to `self.codebook_rescale_factor`):
Rescale factor to rescale the codebook pixels by if `codebook_do_rescale` is set to `True`.
codebook_do_map_pixels (`bool`, *optional*, defaults to `self.codebook_do_map_pixels`):
Whether to map the codebook pixels values.
codebook_do_normalize (`bool`, *optional*, defaults to `self.codebook_do_normalize`):
Whether to normalize the codebook pixels.
codebook_image_mean (`float` or `List[float]`, *optional*, defaults to `self.codebook_image_mean`):
Codebook pixels mean to normalize the codebook pixels by if `codebook_do_normalize` is set to `True`.
codebook_image_std (`float` or `List[float]`, *optional*, defaults to `self.codebook_image_std`):
Codebook pixels standard deviation to normalize the codebook pixels by if `codebook_do_normalize` is
set to `True`.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size)
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size")
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
return_image_mask = return_image_mask if return_image_mask is not None else self.return_image_mask
input_size_patches = input_size_patches if input_size_patches is not None else self.input_size_patches
total_mask_patches = total_mask_patches if total_mask_patches is not None else self.total_mask_patches
mask_group_min_patches = (
mask_group_min_patches if mask_group_min_patches is not None else self.mask_group_min_patches
)
mask_group_max_patches = (
mask_group_max_patches if mask_group_max_patches is not None else self.mask_group_max_patches
)
mask_group_min_aspect_ratio = (
mask_group_min_aspect_ratio
if mask_group_min_aspect_ratio is not None
else self.mask_group_min_aspect_ratio
)
mask_group_max_aspect_ratio = (
mask_group_max_aspect_ratio
if mask_group_max_aspect_ratio is not None
else self.mask_group_max_aspect_ratio
)
return_codebook_pixels = (
return_codebook_pixels if return_codebook_pixels is not None else self.return_codebook_pixels
)
codebook_do_resize = codebook_do_resize if codebook_do_resize is not None else self.codebook_do_resize
codebook_size = codebook_size if codebook_size is not None else self.codebook_size
codebook_size = get_size_dict(codebook_size, param_name="codebook_size")
codebook_resample = codebook_resample if codebook_resample is not None else self.codebook_resample
codebook_do_rescale = codebook_do_rescale if codebook_do_rescale is not None else self.codebook_do_rescale
codebook_rescale_factor = (
codebook_rescale_factor if codebook_rescale_factor is not None else self.codebook_rescale_factor
)
codebook_do_center_crop = (
codebook_do_center_crop if codebook_do_center_crop is not None else self.codebook_do_center_crop
)
codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else self.codebook_crop_size
codebook_crop_size = get_size_dict(codebook_crop_size, param_name="codebook_crop_size")
codebook_do_map_pixels = (
codebook_do_map_pixels if codebook_do_map_pixels is not None else self.codebook_do_map_pixels
)
codebook_do_normalize = (
codebook_do_normalize if codebook_do_normalize is not None else self.codebook_do_normalize
)
codebook_image_mean = codebook_image_mean if codebook_image_mean is not None else self.codebook_image_mean
codebook_image_std = codebook_image_std if codebook_image_std is not None else self.codebook_image_std
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
processed_images = [
self._preprocess_image(
image=img,
do_resize=do_resize,
size=size,
resample=resample,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_map_pixels=False,
data_format=data_format,
input_data_format=input_data_format,
)
for img in images
]
data = {"pixel_values": processed_images}
if return_codebook_pixels:
codebook_images = [
self._preprocess_image(
image=img,
do_resize=codebook_do_resize,
size=codebook_size,
resample=codebook_resample,
do_center_crop=codebook_do_center_crop,
crop_size=codebook_crop_size,
do_rescale=codebook_do_rescale,
rescale_factor=codebook_rescale_factor,
do_normalize=codebook_do_normalize,
image_mean=codebook_image_mean,
image_std=codebook_image_std,
do_map_pixels=codebook_do_map_pixels,
data_format=data_format,
input_data_format=input_data_format,
)
for img in images
]
data["codebook_pixel_values"] = codebook_images
if return_image_mask:
mask_generator = self.masking_generator(
input_size_patches=input_size_patches,
total_mask_patches=total_mask_patches,
mask_group_min_patches=mask_group_min_patches,
mask_group_max_patches=mask_group_max_patches,
mask_group_min_aspect_ratio=mask_group_min_aspect_ratio,
mask_group_max_aspect_ratio=mask_group_max_aspect_ratio,
)
masks = [mask_generator() for _ in images]
data["bool_masked_pos"] = masks
return BatchFeature(data=data, tensor_type=return_tensors)
|
class_definition
| 4,785 | 37,400 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/image_processing_flava.py
| null | 3,137 |
class FlavaProcessor(ProcessorMixin):
r"""
Constructs a FLAVA processor which wraps a FLAVA image processor and a FLAVA tokenizer into a single processor.
[`FlavaProcessor`] offers all the functionalities of [`FlavaImageProcessor`] and [`BertTokenizerFast`]. See the
[`~FlavaProcessor.__call__`] and [`~FlavaProcessor.decode`] for more information.
Args:
image_processor ([`FlavaImageProcessor`], *optional*): The image processor is a required input.
tokenizer ([`BertTokenizerFast`], *optional*): The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "FlavaImageProcessor"
tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
feature_extractor = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead.",
FutureWarning,
)
feature_extractor = kwargs.pop("feature_extractor")
image_processor = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(image_processor, tokenizer)
self.current_processor = self.image_processor
def __call__(
self,
images: Optional[ImageInput] = None,
text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = False,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_image_mask: Optional[bool] = None,
return_codebook_pixels: Optional[bool] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs,
):
"""
This method uses [`FlavaImageProcessor.__call__`] method to prepare image(s) for the model, and
[`BertTokenizerFast.__call__`] to prepare text for the model.
Please refer to the docstring of the above two methods for more information.
"""
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none.")
if text is not None:
encoding = self.tokenizer(
text=text,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
return_tensors=return_tensors,
**kwargs,
)
if images is not None:
image_features = self.image_processor(
images,
return_image_mask=return_image_mask,
return_codebook_pixels=return_codebook_pixels,
return_tensors=return_tensors,
**kwargs,
)
if text is not None and images is not None:
encoding.update(image_features)
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
@property
def feature_extractor_class(self):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
FutureWarning,
)
return self.image_processor_class
@property
def feature_extractor(self):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
FutureWarning,
)
return self.image_processor
|
class_definition
| 991 | 6,831 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/flava/processing_flava.py
| null | 3,138 |
class AlbertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`AlbertModel`] or a [`TFAlbertModel`]. It is used
to instantiate an ALBERT model according to the specified arguments, defining the model architecture. Instantiating
a configuration with the defaults will yield a similar configuration to that of the ALBERT
[albert/albert-xxlarge-v2](https://huggingface.co/albert/albert-xxlarge-v2) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30000):
Vocabulary size of the ALBERT model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`AlbertModel`] or [`TFAlbertModel`].
embedding_size (`int`, *optional*, defaults to 128):
Dimensionality of vocabulary embeddings.
hidden_size (`int`, *optional*, defaults to 4096):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_hidden_groups (`int`, *optional*, defaults to 1):
Number of groups for the hidden layers, parameters in the same group are shared.
num_attention_heads (`int`, *optional*, defaults to 64):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 16384):
The dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
inner_group_num (`int`, *optional*, defaults to 1):
The number of inner repetition of attention and ffn.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
(e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`AlbertModel`] or [`TFAlbertModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for attached classifiers.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 3):
End of stream token id.
Examples:
```python
>>> from transformers import AlbertConfig, AlbertModel
>>> # Initializing an ALBERT-xxlarge style configuration
>>> albert_xxlarge_configuration = AlbertConfig()
>>> # Initializing an ALBERT-base style configuration
>>> albert_base_configuration = AlbertConfig(
... hidden_size=768,
... num_attention_heads=12,
... intermediate_size=3072,
... )
>>> # Initializing a model (with random weights) from the ALBERT-base style configuration
>>> model = AlbertModel(albert_xxlarge_configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "albert"
def __init__(
self,
vocab_size=30000,
embedding_size=128,
hidden_size=4096,
num_hidden_layers=12,
num_hidden_groups=1,
num_attention_heads=64,
intermediate_size=16384,
inner_group_num=1,
hidden_act="gelu_new",
hidden_dropout_prob=0,
attention_probs_dropout_prob=0,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
classifier_dropout_prob=0.1,
position_embedding_type="absolute",
pad_token_id=0,
bos_token_id=2,
eos_token_id=3,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_hidden_groups = num_hidden_groups
self.num_attention_heads = num_attention_heads
self.inner_group_num = inner_group_num
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.classifier_dropout_prob = classifier_dropout_prob
self.position_embedding_type = position_embedding_type
|
class_definition
| 892 | 7,493 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/configuration_albert.py
| null | 3,139 |
class AlbertOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
]
)
|
class_definition
| 7,590 | 8,087 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/configuration_albert.py
| null | 3,140 |
class AlbertEmbeddings(nn.Module):
"""
Construct the embeddings from word, position and token_type embeddings.
"""
def __init__(self, config: AlbertConfig):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
)
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.forward
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values_length: int = 0,
) -> torch.Tensor:
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
|
class_definition
| 6,728 | 10,020 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_albert.py
| null | 3,141 |
class AlbertAttention(nn.Module):
def __init__(self, config: AlbertConfig):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads}"
)
self.num_attention_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.attention_head_size = config.hidden_size // config.num_attention_heads
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.attention_dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.output_dropout = nn.Dropout(config.hidden_dropout_prob)
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pruned_heads = set()
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention.transpose_for_scores
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def prune_heads(self, heads: List[int]) -> None:
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.num_attention_heads, self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.query = prune_linear_layer(self.query, index)
self.key = prune_linear_layer(self.key, index)
self.value = prune_linear_layer(self.value, index)
self.dense = prune_linear_layer(self.dense, index, dim=1)
# Update hyper params and store pruned heads
self.num_attention_heads = self.num_attention_heads - len(heads)
self.all_head_size = self.attention_head_size * self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
seq_length = hidden_states.size()[1]
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.attention_dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.transpose(2, 1).flatten(2)
projected_context_layer = self.dense(context_layer)
projected_context_layer_dropout = self.output_dropout(projected_context_layer)
layernormed_context_layer = self.LayerNorm(hidden_states + projected_context_layer_dropout)
return (layernormed_context_layer, attention_probs) if output_attentions else (layernormed_context_layer,)
|
class_definition
| 10,023 | 16,209 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_albert.py
| null | 3,142 |
class AlbertSdpaAttention(AlbertAttention):
def __init__(self, config):
super().__init__(config)
self.dropout_prob = config.attention_probs_dropout_prob
self.require_contiguous_qkv = not is_torch_greater_or_equal_than_2_2
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
if self.position_embedding_type != "absolute" or output_attentions or head_mask is not None:
logger.warning(
"AlbertSdpaAttention is used but `torch.nn.functional.scaled_dot_product_attention` does not support "
"non-absolute `position_embedding_type` or `output_attentions=True` or `head_mask`. Falling back to "
"the eager attention implementation, but specifying the eager implementation will be required from "
"Transformers version v5.0.0 onwards. This warning can be removed using the argument "
'`attn_implementation="eager"` when loading the model.'
)
return super().forward(hidden_states, attention_mask, head_mask, output_attentions)
batch_size, seq_len, _ = hidden_states.size()
query_layer = self.transpose_for_scores(self.query(hidden_states))
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
# SDPA with memory-efficient backend is broken in torch==2.1.2 when using non-contiguous inputs and a custom
# attn_mask, so we need to call `.contiguous()` here. This was fixed in torch==2.2.0.
# Reference: https://github.com/pytorch/pytorch/issues/112577
if self.require_contiguous_qkv and query_layer.device.type == "cuda" and attention_mask is not None:
query_layer = query_layer.contiguous()
key_layer = key_layer.contiguous()
value_layer = value_layer.contiguous()
attention_output = torch.nn.functional.scaled_dot_product_attention(
query=query_layer,
key=key_layer,
value=value_layer,
attn_mask=attention_mask,
dropout_p=self.dropout_prob if self.training else 0.0,
is_causal=False,
)
attention_output = attention_output.transpose(1, 2)
attention_output = attention_output.reshape(batch_size, seq_len, self.all_head_size)
projected_context_layer = self.dense(attention_output)
projected_context_layer_dropout = self.output_dropout(projected_context_layer)
layernormed_context_layer = self.LayerNorm(hidden_states + projected_context_layer_dropout)
return (layernormed_context_layer,)
|
class_definition
| 16,212 | 19,102 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_albert.py
| null | 3,143 |
class AlbertLayer(nn.Module):
def __init__(self, config: AlbertConfig):
super().__init__()
self.config = config
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.full_layer_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.attention = ALBERT_ATTENTION_CLASSES[config._attn_implementation](config)
self.ffn = nn.Linear(config.hidden_size, config.intermediate_size)
self.ffn_output = nn.Linear(config.intermediate_size, config.hidden_size)
self.activation = ACT2FN[config.hidden_act]
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
attention_output = self.attention(hidden_states, attention_mask, head_mask, output_attentions)
ffn_output = apply_chunking_to_forward(
self.ff_chunk,
self.chunk_size_feed_forward,
self.seq_len_dim,
attention_output[0],
)
hidden_states = self.full_layer_layer_norm(ffn_output + attention_output[0])
return (hidden_states,) + attention_output[1:] # add attentions if we output them
def ff_chunk(self, attention_output: torch.Tensor) -> torch.Tensor:
ffn_output = self.ffn(attention_output)
ffn_output = self.activation(ffn_output)
ffn_output = self.ffn_output(ffn_output)
return ffn_output
|
class_definition
| 19,201 | 20,916 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_albert.py
| null | 3,144 |
class AlbertLayerGroup(nn.Module):
def __init__(self, config: AlbertConfig):
super().__init__()
self.albert_layers = nn.ModuleList([AlbertLayer(config) for _ in range(config.inner_group_num)])
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
layer_hidden_states = ()
layer_attentions = ()
for layer_index, albert_layer in enumerate(self.albert_layers):
layer_output = albert_layer(hidden_states, attention_mask, head_mask[layer_index], output_attentions)
hidden_states = layer_output[0]
if output_attentions:
layer_attentions = layer_attentions + (layer_output[1],)
if output_hidden_states:
layer_hidden_states = layer_hidden_states + (hidden_states,)
outputs = (hidden_states,)
if output_hidden_states:
outputs = outputs + (layer_hidden_states,)
if output_attentions:
outputs = outputs + (layer_attentions,)
return outputs # last-layer hidden state, (layer hidden states), (layer attentions)
|
class_definition
| 20,919 | 22,280 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_albert.py
| null | 3,145 |
class AlbertTransformer(nn.Module):
def __init__(self, config: AlbertConfig):
super().__init__()
self.config = config
self.embedding_hidden_mapping_in = nn.Linear(config.embedding_size, config.hidden_size)
self.albert_layer_groups = nn.ModuleList([AlbertLayerGroup(config) for _ in range(config.num_hidden_groups)])
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[BaseModelOutput, Tuple]:
hidden_states = self.embedding_hidden_mapping_in(hidden_states)
all_hidden_states = (hidden_states,) if output_hidden_states else None
all_attentions = () if output_attentions else None
head_mask = [None] * self.config.num_hidden_layers if head_mask is None else head_mask
for i in range(self.config.num_hidden_layers):
# Number of layers in a hidden group
layers_per_group = int(self.config.num_hidden_layers / self.config.num_hidden_groups)
# Index of the hidden group
group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups))
layer_group_output = self.albert_layer_groups[group_idx](
hidden_states,
attention_mask,
head_mask[group_idx * layers_per_group : (group_idx + 1) * layers_per_group],
output_attentions,
output_hidden_states,
)
hidden_states = layer_group_output[0]
if output_attentions:
all_attentions = all_attentions + layer_group_output[-1]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
|
class_definition
| 22,283 | 24,490 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_albert.py
| null | 3,146 |
class AlbertPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = AlbertConfig
load_tf_weights = load_tf_weights_in_albert
base_model_prefix = "albert"
_supports_sdpa = True
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
|
class_definition
| 24,493 | 25,635 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_albert.py
| null | 3,147 |
class AlbertForPreTrainingOutput(ModelOutput):
"""
Output type of [`AlbertForPreTraining`].
Args:
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the masked language modeling loss and the next sequence prediction
(classification) loss.
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
sop_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
prediction_logits: torch.FloatTensor = None
sop_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
class_definition
| 25,649 | 27,577 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_albert.py
| null | 3,148 |
class AlbertModel(AlbertPreTrainedModel):
config_class = AlbertConfig
base_model_prefix = "albert"
def __init__(self, config: AlbertConfig, add_pooling_layer: bool = True):
super().__init__(config)
self.config = config
self.embeddings = AlbertEmbeddings(config)
self.encoder = AlbertTransformer(config)
if add_pooling_layer:
self.pooler = nn.Linear(config.hidden_size, config.hidden_size)
self.pooler_activation = nn.Tanh()
else:
self.pooler = None
self.pooler_activation = None
self.attn_implementation = config._attn_implementation
self.position_embedding_type = config.position_embedding_type
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Embedding:
return self.embeddings.word_embeddings
def set_input_embeddings(self, value: nn.Embedding) -> None:
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} ALBERT has
a different architecture in that its layers are shared across groups, which then has inner groups. If an ALBERT
model has 12 hidden layers and 2 hidden groups, with two inner groups, there is a total of 4 different layers.
These layers are flattened: the indices [0,1] correspond to the two inner groups of the first hidden layer,
while [2,3] correspond to the two inner groups of the second hidden layer.
Any layer with in index other than [0,1,2,3] will result in an error. See base class PreTrainedModel for more
information about head pruning
"""
for layer, heads in heads_to_prune.items():
group_idx = int(layer / self.config.inner_group_num)
inner_group_idx = int(layer - group_idx * self.config.inner_group_num)
self.encoder.albert_layer_groups[group_idx].albert_layers[inner_group_idx].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[BaseModelOutputWithPooling, Tuple]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
embedding_output = self.embeddings(
input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
)
use_sdpa_attention_mask = (
self.attn_implementation == "sdpa"
and self.position_embedding_type == "absolute"
and head_mask is None
and not output_attentions
)
if use_sdpa_attention_mask:
extended_attention_mask = _prepare_4d_attention_mask_for_sdpa(
attention_mask, embedding_output.dtype, tgt_len=seq_length
)
else:
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
encoder_outputs = self.encoder(
embedding_output,
extended_attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler_activation(self.pooler(sequence_output[:, 0])) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
|
class_definition
| 31,246 | 37,599 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_albert.py
| null | 3,149 |
class AlbertForPreTraining(AlbertPreTrainedModel):
_tied_weights_keys = ["predictions.decoder.bias", "predictions.decoder.weight"]
def __init__(self, config: AlbertConfig):
super().__init__(config)
self.albert = AlbertModel(config)
self.predictions = AlbertMLMHead(config)
self.sop_classifier = AlbertSOPHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self) -> nn.Linear:
return self.predictions.decoder
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
self.predictions.decoder = new_embeddings
def get_input_embeddings(self) -> nn.Embedding:
return self.albert.embeddings.word_embeddings
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=AlbertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
sentence_order_label: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[AlbertForPreTrainingOutput, Tuple]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
sentence_order_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
(see `input_ids` docstring) Indices should be in `[0, 1]`. `0` indicates original order (sequence A, then
sequence B), `1` indicates switched order (sequence B, then sequence A).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, AlbertForPreTraining
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
>>> model = AlbertForPreTraining.from_pretrained("albert/albert-base-v2")
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)
>>> # Batch size 1
>>> outputs = model(input_ids)
>>> prediction_logits = outputs.prediction_logits
>>> sop_logits = outputs.sop_logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.albert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output, pooled_output = outputs[:2]
prediction_scores = self.predictions(sequence_output)
sop_scores = self.sop_classifier(pooled_output)
total_loss = None
if labels is not None and sentence_order_label is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
sentence_order_loss = loss_fct(sop_scores.view(-1, 2), sentence_order_label.view(-1))
total_loss = masked_lm_loss + sentence_order_loss
if not return_dict:
output = (prediction_scores, sop_scores) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return AlbertForPreTrainingOutput(
loss=total_loss,
prediction_logits=prediction_scores,
sop_logits=sop_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 37,838 | 42,457 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_albert.py
| null | 3,150 |
class AlbertMLMHead(nn.Module):
def __init__(self, config: AlbertConfig):
super().__init__()
self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
self.dense = nn.Linear(config.hidden_size, config.embedding_size)
self.decoder = nn.Linear(config.embedding_size, config.vocab_size)
self.activation = ACT2FN[config.hidden_act]
self.decoder.bias = self.bias
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
hidden_states = self.decoder(hidden_states)
prediction_scores = hidden_states
return prediction_scores
def _tie_weights(self) -> None:
# For accelerate compatibility and to not break backward compatibility
if self.decoder.bias.device.type == "meta":
self.decoder.bias = self.bias
else:
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
self.bias = self.decoder.bias
|
class_definition
| 42,460 | 43,681 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_albert.py
| null | 3,151 |
class AlbertSOPHead(nn.Module):
def __init__(self, config: AlbertConfig):
super().__init__()
self.dropout = nn.Dropout(config.classifier_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, pooled_output: torch.Tensor) -> torch.Tensor:
dropout_pooled_output = self.dropout(pooled_output)
logits = self.classifier(dropout_pooled_output)
return logits
|
class_definition
| 43,684 | 44,137 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_albert.py
| null | 3,152 |
class AlbertForMaskedLM(AlbertPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["predictions.decoder.bias", "predictions.decoder.weight"]
def __init__(self, config):
super().__init__(config)
self.albert = AlbertModel(config, add_pooling_layer=False)
self.predictions = AlbertMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self) -> nn.Linear:
return self.predictions.decoder
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
self.predictions.decoder = new_embeddings
self.predictions.bias = new_embeddings.bias
def get_input_embeddings(self) -> nn.Embedding:
return self.albert.embeddings.word_embeddings
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[MaskedLMOutput, Tuple]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
Returns:
Example:
```python
>>> import torch
>>> from transformers import AutoTokenizer, AlbertForMaskedLM
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
>>> model = AlbertForMaskedLM.from_pretrained("albert/albert-base-v2")
>>> # add mask_token
>>> inputs = tokenizer("The capital of [MASK] is Paris.", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
'france'
```
```python
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
0.81
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.albert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_outputs = outputs[0]
prediction_scores = self.predictions(sequence_outputs)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 44,253 | 48,623 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_albert.py
| null | 3,153 |
class AlbertForSequenceClassification(AlbertPreTrainedModel):
def __init__(self, config: AlbertConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.albert = AlbertModel(config)
self.dropout = nn.Dropout(config.classifier_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="textattack/albert-base-v2-imdb",
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="'LABEL_1'",
expected_loss=0.12,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[SequenceClassifierOutput, Tuple]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.albert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 48,849 | 52,838 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_albert.py
| null | 3,154 |
class AlbertForTokenClassification(AlbertPreTrainedModel):
def __init__(self, config: AlbertConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.albert = AlbertModel(config, add_pooling_layer=False)
classifier_dropout_prob = (
config.classifier_dropout_prob
if config.classifier_dropout_prob is not None
else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[TokenClassifierOutput, Tuple]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.albert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 53,071 | 56,005 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_albert.py
| null | 3,155 |
class AlbertForQuestionAnswering(AlbertPreTrainedModel):
def __init__(self, config: AlbertConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.albert = AlbertModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="twmkn9/albert-base-v2-squad2",
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
qa_target_start_index=12,
qa_target_end_index=13,
expected_output="'a nice puppet'",
expected_loss=7.36,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[AlbertForPreTrainingOutput, Tuple]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.albert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits: torch.Tensor = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 56,296 | 60,715 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_albert.py
| null | 3,156 |
class AlbertForMultipleChoice(AlbertPreTrainedModel):
def __init__(self, config: AlbertConfig):
super().__init__(config)
self.albert = AlbertModel(config)
self.dropout = nn.Dropout(config.classifier_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[AlbertForPreTrainingOutput, Tuple]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where *num_choices* is the size of the second dimension of the input tensors. (see
*input_ids* above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.albert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits: torch.Tensor = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 60,950 | 64,499 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_albert.py
| null | 3,157 |
class AlbertTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" ALBERT tokenizer (backed by HuggingFace's *tokenizers* library). Based on
[Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This
tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
remove_space (`bool`, *optional*, defaults to `True`):
Whether or not to strip the text when tokenizing (removing excess spaces before and after the string).
keep_accents (`bool`, *optional*, defaults to `False`):
Whether or not to keep accents when tokenizing.
bos_token (`str`, *optional*, defaults to `"[CLS]"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"[SEP]"`):
The end of sequence token. .. note:: When building a sequence using special tokens, this is not the token
that is used for the end of sequence. The token used is the `sep_token`.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
"""
vocab_files_names = VOCAB_FILES_NAMES
slow_tokenizer_class = AlbertTokenizer
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
do_lower_case=True,
remove_space=True,
keep_accents=False,
bos_token="[CLS]",
eos_token="[SEP]",
unk_token="<unk>",
sep_token="[SEP]",
pad_token="<pad>",
cls_token="[CLS]",
mask_token="[MASK]",
**kwargs,
):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
mask_token = (
AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False)
if isinstance(mask_token, str)
else mask_token
)
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
do_lower_case=do_lower_case,
remove_space=remove_space,
keep_accents=keep_accents,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
**kwargs,
)
self.do_lower_case = do_lower_case
self.remove_space = remove_space
self.keep_accents = keep_accents
self.vocab_file = vocab_file
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An ALBERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return cls + token_ids_0 + sep
return cls + token_ids_0 + sep + token_ids_1 + sep
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
if token_ids_1 is None, only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer."
)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
|
class_definition
| 1,200 | 8,829 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/tokenization_albert_fast.py
| null | 3,158 |
class FlaxAlbertForPreTrainingOutput(ModelOutput):
"""
Output type of [`FlaxAlbertForPreTraining`].
Args:
prediction_logits (`jnp.ndarray` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
sop_logits (`jnp.ndarray` of shape `(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
prediction_logits: jnp.ndarray = None
sop_logits: jnp.ndarray = None
hidden_states: Optional[Tuple[jnp.ndarray]] = None
attentions: Optional[Tuple[jnp.ndarray]] = None
|
class_definition
| 1,714 | 3,306 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,159 |
class FlaxAlbertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
config: AlbertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.word_embeddings = nn.Embed(
self.config.vocab_size,
self.config.embedding_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.position_embeddings = nn.Embed(
self.config.max_position_embeddings,
self.config.embedding_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.token_type_embeddings = nn.Embed(
self.config.type_vocab_size,
self.config.embedding_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, input_ids, token_type_ids, position_ids, deterministic: bool = True):
# Embed
inputs_embeds = self.word_embeddings(input_ids.astype("i4"))
position_embeds = self.position_embeddings(position_ids.astype("i4"))
token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4"))
# Sum all embeddings
hidden_states = inputs_embeds + token_type_embeddings + position_embeds
# Layer Norm
hidden_states = self.LayerNorm(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states
|
class_definition
| 6,866 | 8,594 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,160 |
class FlaxAlbertSelfAttention(nn.Module):
config: AlbertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
if self.config.hidden_size % self.config.num_attention_heads != 0:
raise ValueError(
"`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` "
" : {self.config.num_attention_heads}"
)
self.query = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.key = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.value = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, hidden_states, attention_mask, deterministic=True, output_attentions: bool = False):
head_dim = self.config.hidden_size // self.config.num_attention_heads
query_states = self.query(hidden_states).reshape(
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
)
value_states = self.value(hidden_states).reshape(
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
)
key_states = self.key(hidden_states).reshape(
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
)
# Convert the boolean attention mask to an attention bias.
if attention_mask is not None:
# attention mask in the form of attention bias
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.config.attention_probs_dropout_prob,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
projected_attn_output = self.dense(attn_output)
projected_attn_output = self.dropout(projected_attn_output, deterministic=deterministic)
layernormed_attn_output = self.LayerNorm(projected_attn_output + hidden_states)
outputs = (layernormed_attn_output, attn_weights) if output_attentions else (layernormed_attn_output,)
return outputs
|
class_definition
| 8,597 | 12,255 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,161 |
class FlaxAlbertLayer(nn.Module):
config: AlbertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.attention = FlaxAlbertSelfAttention(self.config, dtype=self.dtype)
self.ffn = nn.Dense(
self.config.intermediate_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.activation = ACT2FN[self.config.hidden_act]
self.ffn_output = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.full_layer_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(
self,
hidden_states,
attention_mask,
deterministic: bool = True,
output_attentions: bool = False,
):
attention_outputs = self.attention(
hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions
)
attention_output = attention_outputs[0]
ffn_output = self.ffn(attention_output)
ffn_output = self.activation(ffn_output)
ffn_output = self.ffn_output(ffn_output)
ffn_output = self.dropout(ffn_output, deterministic=deterministic)
hidden_states = self.full_layer_layer_norm(ffn_output + attention_output)
outputs = (hidden_states,)
if output_attentions:
outputs += (attention_outputs[1],)
return outputs
|
class_definition
| 12,258 | 13,923 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,162 |
class FlaxAlbertLayerCollection(nn.Module):
config: AlbertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxAlbertLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.inner_group_num)
]
def __call__(
self,
hidden_states,
attention_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
):
layer_hidden_states = ()
layer_attentions = ()
for layer_index, albert_layer in enumerate(self.layers):
layer_output = albert_layer(
hidden_states,
attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
)
hidden_states = layer_output[0]
if output_attentions:
layer_attentions = layer_attentions + (layer_output[1],)
if output_hidden_states:
layer_hidden_states = layer_hidden_states + (hidden_states,)
outputs = (hidden_states,)
if output_hidden_states:
outputs = outputs + (layer_hidden_states,)
if output_attentions:
outputs = outputs + (layer_attentions,)
return outputs # last-layer hidden state, (layer hidden states), (layer attentions)
|
class_definition
| 13,926 | 15,352 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,163 |
class FlaxAlbertLayerCollections(nn.Module):
config: AlbertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
layer_index: Optional[str] = None
def setup(self):
self.albert_layers = FlaxAlbertLayerCollection(self.config, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
):
outputs = self.albert_layers(
hidden_states,
attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
return outputs
|
class_definition
| 15,355 | 16,116 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,164 |
class FlaxAlbertLayerGroups(nn.Module):
config: AlbertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxAlbertLayerCollections(self.config, name=str(i), layer_index=str(i), dtype=self.dtype)
for i in range(self.config.num_hidden_groups)
]
def __call__(
self,
hidden_states,
attention_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = (hidden_states,) if output_hidden_states else None
for i in range(self.config.num_hidden_layers):
# Index of the hidden group
group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups))
layer_group_output = self.layers[group_idx](
hidden_states,
attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
hidden_states = layer_group_output[0]
if output_attentions:
all_attentions = all_attentions + layer_group_output[-1]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
|
class_definition
| 16,119 | 17,884 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,165 |
class FlaxAlbertEncoder(nn.Module):
config: AlbertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.embedding_hidden_mapping_in = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.albert_layer_groups = FlaxAlbertLayerGroups(self.config, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
hidden_states = self.embedding_hidden_mapping_in(hidden_states)
return self.albert_layer_groups(
hidden_states,
attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
|
class_definition
| 17,887 | 18,902 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,166 |
class FlaxAlbertOnlyMLMHead(nn.Module):
config: AlbertConfig
dtype: jnp.dtype = jnp.float32
bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros
def setup(self):
self.dense = nn.Dense(self.config.embedding_size, dtype=self.dtype)
self.activation = ACT2FN[self.config.hidden_act]
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.decoder = nn.Dense(self.config.vocab_size, dtype=self.dtype, use_bias=False)
self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,))
def __call__(self, hidden_states, shared_embedding=None):
hidden_states = self.dense(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
if shared_embedding is not None:
hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
hidden_states = self.decoder(hidden_states)
hidden_states += self.bias
return hidden_states
|
class_definition
| 18,905 | 19,997 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,167 |
class FlaxAlbertSOPHead(nn.Module):
config: AlbertConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.dropout = nn.Dropout(self.config.classifier_dropout_prob)
self.classifier = nn.Dense(2, dtype=self.dtype)
def __call__(self, pooled_output, deterministic=True):
pooled_output = self.dropout(pooled_output, deterministic=deterministic)
logits = self.classifier(pooled_output)
return logits
|
class_definition
| 20,000 | 20,455 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,168 |
class FlaxAlbertPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = AlbertConfig
base_model_prefix = "albert"
module_class: nn.Module = None
def __init__(
self,
config: AlbertConfig,
input_shape: Tuple = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
token_type_ids = jnp.zeros_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
attention_mask = jnp.ones_like(input_ids)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(
rngs, input_ids, attention_mask, token_type_ids, position_ids, return_dict=False
)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# init input tensors if not passed
if token_type_ids is None:
token_type_ids = jnp.zeros_like(input_ids)
if position_ids is None:
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
return self.module.apply(
{"params": params or self.params},
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
jnp.array(token_type_ids, dtype="i4"),
jnp.array(position_ids, dtype="i4"),
not train,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
)
|
class_definition
| 20,458 | 24,020 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,169 |
class FlaxAlbertModule(nn.Module):
config: AlbertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
add_pooling_layer: bool = True
def setup(self):
self.embeddings = FlaxAlbertEmbeddings(self.config, dtype=self.dtype)
self.encoder = FlaxAlbertEncoder(self.config, dtype=self.dtype)
if self.add_pooling_layer:
self.pooler = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
name="pooler",
)
self.pooler_activation = nn.tanh
else:
self.pooler = None
self.pooler_activation = None
def __call__(
self,
input_ids,
attention_mask,
token_type_ids: Optional[np.ndarray] = None,
position_ids: Optional[np.ndarray] = None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# make sure `token_type_ids` is correctly initialized when not passed
if token_type_ids is None:
token_type_ids = jnp.zeros_like(input_ids)
# make sure `position_ids` is correctly initialized when not passed
if position_ids is None:
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
hidden_states = self.embeddings(input_ids, token_type_ids, position_ids, deterministic=deterministic)
outputs = self.encoder(
hidden_states,
attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.add_pooling_layer:
pooled = self.pooler(hidden_states[:, 0])
pooled = self.pooler_activation(pooled)
else:
pooled = None
if not return_dict:
# if pooled is None, don't return it
if pooled is None:
return (hidden_states,) + outputs[1:]
return (hidden_states, pooled) + outputs[1:]
return FlaxBaseModelOutputWithPooling(
last_hidden_state=hidden_states,
pooler_output=pooled,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 24,023 | 26,552 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,170 |
class FlaxAlbertModel(FlaxAlbertPreTrainedModel):
module_class = FlaxAlbertModule
|
class_definition
| 26,712 | 26,797 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,171 |
class FlaxAlbertForPreTrainingModule(nn.Module):
config: AlbertConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype)
self.predictions = FlaxAlbertOnlyMLMHead(config=self.config, dtype=self.dtype)
self.sop_classifier = FlaxAlbertSOPHead(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.albert(
input_ids,
attention_mask,
token_type_ids,
position_ids,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.tie_word_embeddings:
shared_embedding = self.albert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
else:
shared_embedding = None
hidden_states = outputs[0]
pooled_output = outputs[1]
prediction_scores = self.predictions(hidden_states, shared_embedding=shared_embedding)
sop_scores = self.sop_classifier(pooled_output, deterministic=deterministic)
if not return_dict:
return (prediction_scores, sop_scores) + outputs[2:]
return FlaxAlbertForPreTrainingOutput(
prediction_logits=prediction_scores,
sop_logits=sop_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 26,918 | 28,710 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,172 |
class FlaxAlbertForPreTraining(FlaxAlbertPreTrainedModel):
module_class = FlaxAlbertForPreTrainingModule
|
class_definition
| 28,949 | 29,057 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,173 |
class FlaxAlbertForMaskedLMModule(nn.Module):
config: AlbertConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.albert = FlaxAlbertModule(config=self.config, add_pooling_layer=False, dtype=self.dtype)
self.predictions = FlaxAlbertOnlyMLMHead(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.albert(
input_ids,
attention_mask,
token_type_ids,
position_ids,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.albert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
else:
shared_embedding = None
# Compute the prediction scores
logits = self.predictions(hidden_states, shared_embedding=shared_embedding)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxMaskedLMOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 29,912 | 31,457 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,174 |
class FlaxAlbertForMaskedLM(FlaxAlbertPreTrainedModel):
module_class = FlaxAlbertForMaskedLMModule
|
class_definition
| 31,566 | 31,668 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,175 |
class FlaxAlbertForSequenceClassificationModule(nn.Module):
config: AlbertConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype)
classifier_dropout = (
self.config.classifier_dropout_prob
if self.config.classifier_dropout_prob is not None
else self.config.hidden_dropout_prob
)
self.dropout = nn.Dropout(rate=classifier_dropout)
self.classifier = nn.Dense(
self.config.num_labels,
dtype=self.dtype,
)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.albert(
input_ids,
attention_mask,
token_type_ids,
position_ids,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output, deterministic=deterministic)
logits = self.classifier(pooled_output)
if not return_dict:
return (logits,) + outputs[2:]
return FlaxSequenceClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 31,812 | 33,442 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,176 |
class FlaxAlbertForSequenceClassification(FlaxAlbertPreTrainedModel):
module_class = FlaxAlbertForSequenceClassificationModule
|
class_definition
| 33,668 | 33,798 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,177 |
class FlaxAlbertForMultipleChoiceModule(nn.Module):
config: AlbertConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
self.classifier = nn.Dense(1, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
num_choices = input_ids.shape[1]
input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None
attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None
token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None
# Model
outputs = self.albert(
input_ids,
attention_mask,
token_type_ids,
position_ids,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output, deterministic=deterministic)
logits = self.classifier(pooled_output)
reshaped_logits = logits.reshape(-1, num_choices)
if not return_dict:
return (reshaped_logits,) + outputs[2:]
return FlaxMultipleChoiceModelOutput(
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 33,956 | 35,898 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,178 |
class FlaxAlbertForMultipleChoice(FlaxAlbertPreTrainedModel):
module_class = FlaxAlbertForMultipleChoiceModule
|
class_definition
| 36,133 | 36,247 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,179 |
class FlaxAlbertForTokenClassificationModule(nn.Module):
config: AlbertConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype, add_pooling_layer=False)
classifier_dropout = (
self.config.classifier_dropout_prob
if self.config.classifier_dropout_prob is not None
else self.config.hidden_dropout_prob
)
self.dropout = nn.Dropout(rate=classifier_dropout)
self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.albert(
input_ids,
attention_mask,
token_type_ids,
position_ids,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
logits = self.classifier(hidden_states)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxTokenClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 36,534 | 38,148 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,180 |
class FlaxAlbertForTokenClassification(FlaxAlbertPreTrainedModel):
module_class = FlaxAlbertForTokenClassificationModule
|
class_definition
| 38,381 | 38,505 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,181 |
class FlaxAlbertForQuestionAnsweringModule(nn.Module):
config: AlbertConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.albert = FlaxAlbertModule(config=self.config, dtype=self.dtype, add_pooling_layer=False)
self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.albert(
input_ids,
attention_mask,
token_type_ids,
position_ids,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.qa_outputs(hidden_states)
start_logits, end_logits = logits.split(self.config.num_labels, axis=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
if not return_dict:
return (start_logits, end_logits) + outputs[1:]
return FlaxQuestionAnsweringModelOutput(
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 38,657 | 40,173 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,182 |
class FlaxAlbertForQuestionAnswering(FlaxAlbertPreTrainedModel):
module_class = FlaxAlbertForQuestionAnsweringModule
|
class_definition
| 40,464 | 40,584 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_flax_albert.py
| null | 3,183 |
class AlbertTokenizer(PreTrainedTokenizer):
"""
Construct an ALBERT tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
remove_space (`bool`, *optional*, defaults to `True`):
Whether or not to strip the text when tokenizing (removing excess spaces before and after the string).
keep_accents (`bool`, *optional*, defaults to `False`):
Whether or not to keep accents when tokenizing.
bos_token (`str`, *optional*, defaults to `"[CLS]"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"[SEP]"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
Attributes:
sp_model (`SentencePieceProcessor`):
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
"""
vocab_files_names = VOCAB_FILES_NAMES
def __init__(
self,
vocab_file,
do_lower_case=True,
remove_space=True,
keep_accents=False,
bos_token="[CLS]",
eos_token="[SEP]",
unk_token="<unk>",
sep_token="[SEP]",
pad_token="<pad>",
cls_token="[CLS]",
mask_token="[MASK]",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> None:
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
mask_token = (
AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False)
if isinstance(mask_token, str)
else mask_token
)
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.do_lower_case = do_lower_case
self.remove_space = remove_space
self.keep_accents = keep_accents
self.vocab_file = vocab_file
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)
super().__init__(
do_lower_case=do_lower_case,
remove_space=remove_space,
keep_accents=keep_accents,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
sp_model_kwargs=self.sp_model_kwargs,
**kwargs,
)
@property
def vocab_size(self) -> int:
return len(self.sp_model)
def get_vocab(self) -> Dict[str, int]:
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def preprocess_text(self, inputs):
if self.remove_space:
outputs = " ".join(inputs.strip().split())
else:
outputs = inputs
outputs = outputs.replace("``", '"').replace("''", '"')
if not self.keep_accents:
outputs = unicodedata.normalize("NFKD", outputs)
outputs = "".join([c for c in outputs if not unicodedata.combining(c)])
if self.do_lower_case:
outputs = outputs.lower()
return outputs
def _tokenize(self, text: str) -> List[str]:
"""Tokenize a string."""
text = self.preprocess_text(text)
pieces = self.sp_model.encode(text, out_type=str)
new_pieces = []
for piece in pieces:
if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit():
# Logic to handle special cases see https://github.com/google-research/bert/blob/master/README.md#tokenization
# `9,9` -> ['▁9', ',', '9'] instead of [`_9,`, '9']
cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, ""))
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0]) == 1:
cur_pieces = cur_pieces[1:]
else:
cur_pieces[0] = cur_pieces[0][1:]
cur_pieces.append(piece[-1])
new_pieces.extend(cur_pieces)
else:
new_pieces.append(piece)
return new_pieces
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.PieceToId(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.sp_model.IdToPiece(index)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
out_string = ""
prev_is_special = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(current_sub_tokens) + token
prev_is_special = True
current_sub_tokens = []
else:
current_sub_tokens.append(token)
prev_is_special = False
out_string += self.sp_model.decode(current_sub_tokens)
return out_string.strip()
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An ALBERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return cls + token_ids_0 + sep
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
|
class_definition
| 1,111 | 14,498 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/tokenization_albert.py
| null | 3,184 |
class TFAlbertPreTrainingLoss:
"""
Loss function suitable for ALBERT pretraining, that is, the task of pretraining a language model by combining SOP +
MLM. .. note:: Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
"""
def hf_compute_loss(self, labels: tf.Tensor, logits: tf.Tensor) -> tf.Tensor:
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE)
if self.config.tf_legacy_loss:
# make sure only labels that are not equal to -100
# are taken into account as loss
masked_lm_active_loss = tf.not_equal(tf.reshape(tensor=labels["labels"], shape=(-1,)), -100)
masked_lm_reduced_logits = tf.boolean_mask(
tensor=tf.reshape(tensor=logits[0], shape=(-1, shape_list(logits[0])[2])),
mask=masked_lm_active_loss,
)
masked_lm_labels = tf.boolean_mask(
tensor=tf.reshape(tensor=labels["labels"], shape=(-1,)), mask=masked_lm_active_loss
)
sentence_order_active_loss = tf.not_equal(
tf.reshape(tensor=labels["sentence_order_label"], shape=(-1,)), -100
)
sentence_order_reduced_logits = tf.boolean_mask(
tensor=tf.reshape(tensor=logits[1], shape=(-1, 2)), mask=sentence_order_active_loss
)
sentence_order_label = tf.boolean_mask(
tensor=tf.reshape(tensor=labels["sentence_order_label"], shape=(-1,)), mask=sentence_order_active_loss
)
masked_lm_loss = loss_fn(y_true=masked_lm_labels, y_pred=masked_lm_reduced_logits)
sentence_order_loss = loss_fn(y_true=sentence_order_label, y_pred=sentence_order_reduced_logits)
masked_lm_loss = tf.reshape(tensor=masked_lm_loss, shape=(-1, shape_list(sentence_order_loss)[0]))
masked_lm_loss = tf.reduce_mean(input_tensor=masked_lm_loss, axis=0)
return masked_lm_loss + sentence_order_loss
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
unmasked_lm_losses = loss_fn(y_true=tf.nn.relu(labels["labels"]), y_pred=logits[0])
# make sure only labels that are not equal to -100
# are taken into account for the loss computation
lm_loss_mask = tf.cast(labels["labels"] != -100, dtype=unmasked_lm_losses.dtype)
masked_lm_losses = unmasked_lm_losses * lm_loss_mask
reduced_masked_lm_loss = tf.reduce_sum(masked_lm_losses) / tf.reduce_sum(lm_loss_mask)
sop_logits = tf.reshape(logits[1], (-1, 2))
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
unmasked_sop_loss = loss_fn(y_true=tf.nn.relu(labels["sentence_order_label"]), y_pred=sop_logits)
sop_loss_mask = tf.cast(labels["sentence_order_label"] != -100, dtype=unmasked_sop_loss.dtype)
masked_sop_loss = unmasked_sop_loss * sop_loss_mask
reduced_masked_sop_loss = tf.reduce_sum(masked_sop_loss) / tf.reduce_sum(sop_loss_mask)
return tf.reshape(reduced_masked_lm_loss + reduced_masked_sop_loss, (1,))
|
class_definition
| 1,942 | 5,200 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_tf_albert.py
| null | 3,185 |
class TFAlbertEmbeddings(keras.layers.Layer):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config: AlbertConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embedding_size = config.embedding_size
self.max_position_embeddings = config.max_position_embeddings
self.initializer_range = config.initializer_range
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
def build(self, input_shape=None):
with tf.name_scope("word_embeddings"):
self.weight = self.add_weight(
name="weight",
shape=[self.config.vocab_size, self.embedding_size],
initializer=get_initializer(self.initializer_range),
)
with tf.name_scope("token_type_embeddings"):
self.token_type_embeddings = self.add_weight(
name="embeddings",
shape=[self.config.type_vocab_size, self.embedding_size],
initializer=get_initializer(self.initializer_range),
)
with tf.name_scope("position_embeddings"):
self.position_embeddings = self.add_weight(
name="embeddings",
shape=[self.max_position_embeddings, self.embedding_size],
initializer=get_initializer(self.initializer_range),
)
if self.built:
return
self.built = True
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.embedding_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertEmbeddings.call
def call(
self,
input_ids: tf.Tensor = None,
position_ids: tf.Tensor = None,
token_type_ids: tf.Tensor = None,
inputs_embeds: tf.Tensor = None,
past_key_values_length=0,
training: bool = False,
) -> tf.Tensor:
"""
Applies embedding based on inputs tensor.
Returns:
final_embeddings (`tf.Tensor`): output embedding tensor.
"""
if input_ids is None and inputs_embeds is None:
raise ValueError("Need to provide either `input_ids` or `input_embeds`.")
if input_ids is not None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
input_shape = shape_list(inputs_embeds)[:-1]
if token_type_ids is None:
token_type_ids = tf.fill(dims=input_shape, value=0)
if position_ids is None:
position_ids = tf.expand_dims(
tf.range(start=past_key_values_length, limit=input_shape[1] + past_key_values_length), axis=0
)
position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
final_embeddings = inputs_embeds + position_embeds + token_type_embeds
final_embeddings = self.LayerNorm(inputs=final_embeddings)
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
return final_embeddings
|
class_definition
| 5,203 | 8,648 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_tf_albert.py
| null | 3,186 |
class TFAlbertAttention(keras.layers.Layer):
"""Contains the complete attention sublayer, including both dropouts and layer norm."""
def __init__(self, config: AlbertConfig, **kwargs):
super().__init__(**kwargs)
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number "
f"of attention heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
self.output_attentions = config.output_attentions
self.query = keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
)
self.key = keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
)
self.value = keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
)
self.dense = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
# Two different dropout probabilities; see https://github.com/google-research/albert/blob/master/modeling.py#L971-L993
self.attention_dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
self.output_dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
return tf.transpose(tensor, perm=[0, 2, 1, 3])
def call(
self,
input_tensor: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
batch_size = shape_list(input_tensor)[0]
mixed_query_layer = self.query(inputs=input_tensor)
mixed_key_layer = self.key(inputs=input_tensor)
mixed_value_layer = self.value(inputs=input_tensor)
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
# Take the dot product between "query" and "key" to get the raw attention scores.
# (batch size, num_heads, seq_len_q, seq_len_k)
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
attention_scores = tf.divide(attention_scores, dk)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in TFAlbertModel call() function)
attention_scores = tf.add(attention_scores, attention_mask)
# Normalize the attention scores to probabilities.
attention_probs = stable_softmax(logits=attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.attention_dropout(inputs=attention_probs, training=training)
# Mask heads if we want to
if head_mask is not None:
attention_probs = tf.multiply(attention_probs, head_mask)
context_layer = tf.matmul(attention_probs, value_layer)
context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3])
# (batch_size, seq_len_q, all_head_size)
context_layer = tf.reshape(tensor=context_layer, shape=(batch_size, -1, self.all_head_size))
self_outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
hidden_states = self_outputs[0]
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.output_dropout(inputs=hidden_states, training=training)
attention_output = self.LayerNorm(inputs=hidden_states + input_tensor)
# add attentions if we output them
outputs = (attention_output,) + self_outputs[1:]
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "query", None) is not None:
with tf.name_scope(self.query.name):
self.query.build([None, None, self.config.hidden_size])
if getattr(self, "key", None) is not None:
with tf.name_scope(self.key.name):
self.key.build([None, None, self.config.hidden_size])
if getattr(self, "value", None) is not None:
with tf.name_scope(self.value.name):
self.value.build([None, None, self.config.hidden_size])
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
|
class_definition
| 8,651 | 14,709 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_tf_albert.py
| null | 3,187 |
class TFAlbertLayer(keras.layers.Layer):
def __init__(self, config: AlbertConfig, **kwargs):
super().__init__(**kwargs)
self.attention = TFAlbertAttention(config, name="attention")
self.ffn = keras.layers.Dense(
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="ffn"
)
if isinstance(config.hidden_act, str):
self.activation = get_tf_activation(config.hidden_act)
else:
self.activation = config.hidden_act
self.ffn_output = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="ffn_output"
)
self.full_layer_layer_norm = keras.layers.LayerNormalization(
epsilon=config.layer_norm_eps, name="full_layer_layer_norm"
)
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
attention_outputs = self.attention(
input_tensor=hidden_states,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
training=training,
)
ffn_output = self.ffn(inputs=attention_outputs[0])
ffn_output = self.activation(ffn_output)
ffn_output = self.ffn_output(inputs=ffn_output)
ffn_output = self.dropout(inputs=ffn_output, training=training)
hidden_states = self.full_layer_layer_norm(inputs=ffn_output + attention_outputs[0])
# add attentions if we output them
outputs = (hidden_states,) + attention_outputs[1:]
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "ffn", None) is not None:
with tf.name_scope(self.ffn.name):
self.ffn.build([None, None, self.config.hidden_size])
if getattr(self, "ffn_output", None) is not None:
with tf.name_scope(self.ffn_output.name):
self.ffn_output.build([None, None, self.config.intermediate_size])
if getattr(self, "full_layer_layer_norm", None) is not None:
with tf.name_scope(self.full_layer_layer_norm.name):
self.full_layer_layer_norm.build([None, None, self.config.hidden_size])
|
class_definition
| 14,712 | 17,461 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_tf_albert.py
| null | 3,188 |
class TFAlbertLayerGroup(keras.layers.Layer):
def __init__(self, config: AlbertConfig, **kwargs):
super().__init__(**kwargs)
self.albert_layers = [
TFAlbertLayer(config, name=f"albert_layers_._{i}") for i in range(config.inner_group_num)
]
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
output_hidden_states: bool,
training: bool = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
layer_hidden_states = () if output_hidden_states else None
layer_attentions = () if output_attentions else None
for layer_index, albert_layer in enumerate(self.albert_layers):
if output_hidden_states:
layer_hidden_states = layer_hidden_states + (hidden_states,)
layer_output = albert_layer(
hidden_states=hidden_states,
attention_mask=attention_mask,
head_mask=head_mask[layer_index],
output_attentions=output_attentions,
training=training,
)
hidden_states = layer_output[0]
if output_attentions:
layer_attentions = layer_attentions + (layer_output[1],)
# Add last layer
if output_hidden_states:
layer_hidden_states = layer_hidden_states + (hidden_states,)
return tuple(v for v in [hidden_states, layer_hidden_states, layer_attentions] if v is not None)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "albert_layers", None) is not None:
for layer in self.albert_layers:
with tf.name_scope(layer.name):
layer.build(None)
|
class_definition
| 17,464 | 19,317 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_tf_albert.py
| null | 3,189 |
class TFAlbertTransformer(keras.layers.Layer):
def __init__(self, config: AlbertConfig, **kwargs):
super().__init__(**kwargs)
self.num_hidden_layers = config.num_hidden_layers
self.num_hidden_groups = config.num_hidden_groups
# Number of layers in a hidden group
self.layers_per_group = int(config.num_hidden_layers / config.num_hidden_groups)
self.embedding_hidden_mapping_in = keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
name="embedding_hidden_mapping_in",
)
self.albert_layer_groups = [
TFAlbertLayerGroup(config, name=f"albert_layer_groups_._{i}") for i in range(config.num_hidden_groups)
]
self.config = config
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
output_hidden_states: bool,
return_dict: bool,
training: bool = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
hidden_states = self.embedding_hidden_mapping_in(inputs=hidden_states)
all_attentions = () if output_attentions else None
all_hidden_states = (hidden_states,) if output_hidden_states else None
for i in range(self.num_hidden_layers):
# Index of the hidden group
group_idx = int(i / (self.num_hidden_layers / self.num_hidden_groups))
layer_group_output = self.albert_layer_groups[group_idx](
hidden_states=hidden_states,
attention_mask=attention_mask,
head_mask=head_mask[group_idx * self.layers_per_group : (group_idx + 1) * self.layers_per_group],
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
training=training,
)
hidden_states = layer_group_output[0]
if output_attentions:
all_attentions = all_attentions + layer_group_output[-1]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embedding_hidden_mapping_in", None) is not None:
with tf.name_scope(self.embedding_hidden_mapping_in.name):
self.embedding_hidden_mapping_in.build([None, None, self.config.embedding_size])
if getattr(self, "albert_layer_groups", None) is not None:
for layer in self.albert_layer_groups:
with tf.name_scope(layer.name):
layer.build(None)
|
class_definition
| 19,320 | 22,374 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_tf_albert.py
| null | 3,190 |
class TFAlbertPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = AlbertConfig
base_model_prefix = "albert"
|
class_definition
| 22,377 | 22,637 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_tf_albert.py
| null | 3,191 |
class TFAlbertMLMHead(keras.layers.Layer):
def __init__(self, config: AlbertConfig, input_embeddings: keras.layers.Layer, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embedding_size = config.embedding_size
self.dense = keras.layers.Dense(
config.embedding_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
if isinstance(config.hidden_act, str):
self.activation = get_tf_activation(config.hidden_act)
else:
self.activation = config.hidden_act
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = input_embeddings
def build(self, input_shape=None):
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
self.decoder_bias = self.add_weight(
shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="decoder/bias"
)
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.embedding_size])
def get_output_embeddings(self) -> keras.layers.Layer:
return self.decoder
def set_output_embeddings(self, value: tf.Variable):
self.decoder.weight = value
self.decoder.vocab_size = shape_list(value)[0]
def get_bias(self) -> Dict[str, tf.Variable]:
return {"bias": self.bias, "decoder_bias": self.decoder_bias}
def set_bias(self, value: tf.Variable):
self.bias = value["bias"]
self.decoder_bias = value["decoder_bias"]
self.config.vocab_size = shape_list(value["bias"])[0]
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = self.LayerNorm(inputs=hidden_states)
seq_length = shape_list(tensor=hidden_states)[1]
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size])
hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True)
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.decoder_bias)
return hidden_states
|
class_definition
| 22,640 | 25,492 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_tf_albert.py
| null | 3,192 |
class TFAlbertMainLayer(keras.layers.Layer):
config_class = AlbertConfig
def __init__(self, config: AlbertConfig, add_pooling_layer: bool = True, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embeddings = TFAlbertEmbeddings(config, name="embeddings")
self.encoder = TFAlbertTransformer(config, name="encoder")
self.pooler = (
keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="pooler",
)
if add_pooling_layer
else None
)
def get_input_embeddings(self) -> keras.layers.Layer:
return self.embeddings
def set_input_embeddings(self, value: tf.Variable):
self.embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if attention_mask is None:
attention_mask = tf.fill(dims=input_shape, value=1)
if token_type_ids is None:
token_type_ids = tf.fill(dims=input_shape, value=0)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
training=training,
)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1]))
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.config.num_hidden_layers
encoder_outputs = self.encoder(
hidden_states=embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(inputs=sequence_output[:, 0]) if self.pooler is not None else None
if not return_dict:
return (
sequence_output,
pooled_output,
) + encoder_outputs[1:]
return TFBaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "pooler", None) is not None:
with tf.name_scope(self.pooler.name):
self.pooler.build([None, None, self.config.hidden_size])
|
class_definition
| 25,515 | 31,430 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_tf_albert.py
| null | 3,193 |
class TFAlbertForPreTrainingOutput(ModelOutput):
"""
Output type of [`TFAlbertForPreTraining`].
Args:
prediction_logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
sop_logits (`tf.Tensor` of shape `(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: tf.Tensor = None
prediction_logits: tf.Tensor = None
sop_logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
|
class_definition
| 31,444 | 33,033 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_tf_albert.py
| null | 3,194 |
class TFAlbertModel(TFAlbertPreTrainedModel):
def __init__(self, config: AlbertConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.albert = TFAlbertMainLayer(config, name="albert")
@unpack_inputs
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
outputs = self.albert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "albert", None) is not None:
with tf.name_scope(self.albert.name):
self.albert.build(None)
|
class_definition
| 38,906 | 40,780 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_tf_albert.py
| null | 3,195 |
class TFAlbertForPreTraining(TFAlbertPreTrainedModel, TFAlbertPreTrainingLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"predictions.decoder.weight"]
def __init__(self, config: AlbertConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.albert = TFAlbertMainLayer(config, name="albert")
self.predictions = TFAlbertMLMHead(config, input_embeddings=self.albert.embeddings, name="predictions")
self.sop_classifier = TFAlbertSOPHead(config, name="sop_classifier")
def get_lm_head(self) -> keras.layers.Layer:
return self.predictions
@unpack_inputs
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFAlbertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
sentence_order_label: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFAlbertForPreTrainingOutput, Tuple[tf.Tensor]]:
r"""
Return:
Example:
```python
>>> import tensorflow as tf
>>> from transformers import AutoTokenizer, TFAlbertForPreTraining
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
>>> model = TFAlbertForPreTraining.from_pretrained("albert/albert-base-v2")
>>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :]
>>> # Batch size 1
>>> outputs = model(input_ids)
>>> prediction_logits = outputs.prediction_logits
>>> sop_logits = outputs.sop_logits
```"""
outputs = self.albert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output, pooled_output = outputs[:2]
prediction_scores = self.predictions(hidden_states=sequence_output)
sop_scores = self.sop_classifier(pooled_output=pooled_output, training=training)
total_loss = None
if labels is not None and sentence_order_label is not None:
d_labels = {"labels": labels}
d_labels["sentence_order_label"] = sentence_order_label
total_loss = self.hf_compute_loss(labels=d_labels, logits=(prediction_scores, sop_scores))
if not return_dict:
output = (prediction_scores, sop_scores) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return TFAlbertForPreTrainingOutput(
loss=total_loss,
prediction_logits=prediction_scores,
sop_logits=sop_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "albert", None) is not None:
with tf.name_scope(self.albert.name):
self.albert.build(None)
if getattr(self, "predictions", None) is not None:
with tf.name_scope(self.predictions.name):
self.predictions.build(None)
if getattr(self, "sop_classifier", None) is not None:
with tf.name_scope(self.sop_classifier.name):
self.sop_classifier.build(None)
|
class_definition
| 41,004 | 45,385 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_tf_albert.py
| null | 3,196 |
class TFAlbertSOPHead(keras.layers.Layer):
def __init__(self, config: AlbertConfig, **kwargs):
super().__init__(**kwargs)
self.dropout = keras.layers.Dropout(rate=config.classifier_dropout_prob)
self.classifier = keras.layers.Dense(
units=config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
name="classifier",
)
self.config = config
def call(self, pooled_output: tf.Tensor, training: bool) -> tf.Tensor:
dropout_pooled_output = self.dropout(inputs=pooled_output, training=training)
logits = self.classifier(inputs=dropout_pooled_output)
return logits
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
|
class_definition
| 45,388 | 46,375 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_tf_albert.py
| null | 3,197 |
class TFAlbertForMaskedLM(TFAlbertPreTrainedModel, TFMaskedLanguageModelingLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"pooler", r"predictions.decoder.weight"]
def __init__(self, config: AlbertConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.albert = TFAlbertMainLayer(config, add_pooling_layer=False, name="albert")
self.predictions = TFAlbertMLMHead(config, input_embeddings=self.albert.embeddings, name="predictions")
def get_lm_head(self) -> keras.layers.Layer:
return self.predictions
@unpack_inputs
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
Returns:
Example:
```python
>>> import tensorflow as tf
>>> from transformers import AutoTokenizer, TFAlbertForMaskedLM
>>> tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
>>> model = TFAlbertForMaskedLM.from_pretrained("albert/albert-base-v2")
>>> # add mask_token
>>> inputs = tokenizer(f"The capital of [MASK] is Paris.", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> # retrieve index of [MASK]
>>> mask_token_index = tf.where(inputs.input_ids == tokenizer.mask_token_id)[0][1]
>>> predicted_token_id = tf.math.argmax(logits[0, mask_token_index], axis=-1)
>>> tokenizer.decode(predicted_token_id)
'france'
```
```python
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
>>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)
>>> round(float(outputs.loss), 2)
0.81
```
"""
outputs = self.albert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
prediction_scores = self.predictions(hidden_states=sequence_output, training=training)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFMaskedLMOutput(
loss=loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "albert", None) is not None:
with tf.name_scope(self.albert.name):
self.albert.build(None)
if getattr(self, "predictions", None) is not None:
with tf.name_scope(self.predictions.name):
self.predictions.build(None)
|
class_definition
| 46,484 | 51,042 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_tf_albert.py
| null | 3,198 |
class TFAlbertForSequenceClassification(TFAlbertPreTrainedModel, TFSequenceClassificationLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"predictions"]
_keys_to_ignore_on_load_missing = [r"dropout"]
def __init__(self, config: AlbertConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.albert = TFAlbertMainLayer(config, name="albert")
self.dropout = keras.layers.Dropout(rate=config.classifier_dropout_prob)
self.classifier = keras.layers.Dense(
units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="vumichien/albert-base-v2-imdb",
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="'LABEL_1'",
expected_loss=0.12,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs = self.albert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = outputs[1]
pooled_output = self.dropout(inputs=pooled_output, training=training)
logits = self.classifier(inputs=pooled_output)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "albert", None) is not None:
with tf.name_scope(self.albert.name):
self.albert.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
|
class_definition
| 51,268 | 55,048 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/albert/modeling_tf_albert.py
| null | 3,199 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.