text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
# Compute query, key, and value matrices query = self.to_q(latents) kv_input = torch.cat((image_embeds, latents), dim=-2) key, value = self.to_kv(kv_input).chunk(2, dim=-1) # Reshape the tensors for multi-head attention query = query.reshape(query.size(0), -1, self.heads, self.dim_head).transpose(1, 2) key = key.reshape(key.size(0), -1, self.heads, self.dim_head).transpose(1, 2) value = value.reshape(value.size(0), -1, self.heads, self.dim_head).transpose(1, 2) # attention scale = 1 / math.sqrt(math.sqrt(self.dim_head)) weight = (query * scale) @ (key * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) output = weight @ value # Reshape and return the final output output = output.permute(0, 2, 1, 3).reshape(batch_size, seq_len, -1) return self.to_out(output)
1,095
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
class LocalFacialExtractor(nn.Module): def __init__( self, id_dim: int = 1280, vit_dim: int = 1024, depth: int = 10, dim_head: int = 64, heads: int = 16, num_id_token: int = 5, num_queries: int = 32, output_dim: int = 2048, ff_mult: int = 4, num_scale: int = 5, ): super().__init__() # Storing identity token and query information self.num_id_token = num_id_token self.vit_dim = vit_dim self.num_queries = num_queries assert depth % num_scale == 0 self.depth = depth // num_scale self.num_scale = num_scale scale = vit_dim**-0.5 # Learnable latent query embeddings self.latents = nn.Parameter(torch.randn(1, num_queries, vit_dim) * scale) # Projection layer to map the latent output to the desired dimension self.proj_out = nn.Parameter(scale * torch.randn(vit_dim, output_dim))
1,096
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
# Attention and ConsisIDFeedForward layer stack self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append( nn.ModuleList( [ PerceiverAttention(dim=vit_dim, dim_head=dim_head, heads=heads), # Perceiver Attention layer nn.Sequential( nn.LayerNorm(vit_dim), nn.Linear(vit_dim, vit_dim * ff_mult, bias=False), nn.GELU(), nn.Linear(vit_dim * ff_mult, vit_dim, bias=False), ), # ConsisIDFeedForward layer ] ) )
1,096
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
# Mappings for each of the 5 different ViT features for i in range(num_scale): setattr( self, f"mapping_{i}", nn.Sequential( nn.Linear(vit_dim, vit_dim), nn.LayerNorm(vit_dim), nn.LeakyReLU(), nn.Linear(vit_dim, vit_dim), nn.LayerNorm(vit_dim), nn.LeakyReLU(), nn.Linear(vit_dim, vit_dim), ), ) # Mapping for identity embedding vectors self.id_embedding_mapping = nn.Sequential( nn.Linear(id_dim, vit_dim), nn.LayerNorm(vit_dim), nn.LeakyReLU(), nn.Linear(vit_dim, vit_dim), nn.LayerNorm(vit_dim), nn.LeakyReLU(), nn.Linear(vit_dim, vit_dim * num_id_token), )
1,096
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
def forward(self, id_embeds: torch.Tensor, vit_hidden_states: List[torch.Tensor]) -> torch.Tensor: # Repeat latent queries for the batch size latents = self.latents.repeat(id_embeds.size(0), 1, 1) # Map the identity embedding to tokens id_embeds = self.id_embedding_mapping(id_embeds) id_embeds = id_embeds.reshape(-1, self.num_id_token, self.vit_dim) # Concatenate identity tokens with the latent queries latents = torch.cat((latents, id_embeds), dim=1) # Process each of the num_scale visual feature inputs for i in range(self.num_scale): vit_feature = getattr(self, f"mapping_{i}")(vit_hidden_states[i]) ctx_feature = torch.cat((id_embeds, vit_feature), dim=1)
1,096
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
# Pass through the PerceiverAttention and ConsisIDFeedForward layers for attn, ff in self.layers[i * self.depth : (i + 1) * self.depth]: latents = attn(ctx_feature, latents) + latents latents = ff(latents) + latents # Retain only the query latents latents = latents[:, : self.num_queries] # Project the latents to the output dimension latents = latents @ self.proj_out return latents
1,096
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
class PerceiverCrossAttention(nn.Module): def __init__(self, dim: int = 3072, dim_head: int = 128, heads: int = 16, kv_dim: int = 2048): super().__init__() self.scale = dim_head**-0.5 self.dim_head = dim_head self.heads = heads inner_dim = dim_head * heads # Layer normalization to stabilize training self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim) self.norm2 = nn.LayerNorm(dim) # Linear transformations to produce queries, keys, and values self.to_q = nn.Linear(dim, inner_dim, bias=False) self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False) self.to_out = nn.Linear(inner_dim, dim, bias=False) def forward(self, image_embeds: torch.Tensor, hidden_states: torch.Tensor) -> torch.Tensor: # Apply layer normalization to the input image and latent features image_embeds = self.norm1(image_embeds) hidden_states = self.norm2(hidden_states)
1,097
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
batch_size, seq_len, _ = hidden_states.shape # Compute queries, keys, and values query = self.to_q(hidden_states) key, value = self.to_kv(image_embeds).chunk(2, dim=-1) # Reshape tensors to split into attention heads query = query.reshape(query.size(0), -1, self.heads, self.dim_head).transpose(1, 2) key = key.reshape(key.size(0), -1, self.heads, self.dim_head).transpose(1, 2) value = value.reshape(value.size(0), -1, self.heads, self.dim_head).transpose(1, 2) # Compute attention weights scale = 1 / math.sqrt(math.sqrt(self.dim_head)) weight = (query * scale) @ (key * scale).transpose(-2, -1) # More stable scaling than post-division weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) # Compute the output via weighted combination of values out = weight @ value
1,097
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
# Reshape and permute to prepare for final linear transformation out = out.permute(0, 2, 1, 3).reshape(batch_size, seq_len, -1) return self.to_out(out)
1,097
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
class ConsisIDBlock(nn.Module): r""" Transformer block used in [ConsisID](https://github.com/PKU-YuanGroup/ConsisID) model.
1,098
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. time_embed_dim (`int`): The number of channels in timestep embedding. dropout (`float`, defaults to `0.0`): The dropout probability to use. activation_fn (`str`, defaults to `"gelu-approximate"`): Activation function to be used in feed-forward. attention_bias (`bool`, defaults to `False`): Whether or not to use bias in attention projection layers. qk_norm (`bool`, defaults to `True`): Whether or not to use normalization after query and key projections in Attention. norm_elementwise_affine (`bool`, defaults to `True`): Whether to use learnable elementwise affine parameters for normalization.
1,098
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
norm_eps (`float`, defaults to `1e-5`): Epsilon value for normalization layers. final_dropout (`bool` defaults to `False`): Whether to apply a final dropout after the last feed-forward layer. ff_inner_dim (`int`, *optional*, defaults to `None`): Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used. ff_bias (`bool`, defaults to `True`): Whether or not to use bias in Feed-forward layer. attention_out_bias (`bool`, defaults to `True`): Whether or not to use bias in Attention output projection layer. """
1,098
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, time_embed_dim: int, dropout: float = 0.0, activation_fn: str = "gelu-approximate", attention_bias: bool = False, qk_norm: bool = True, norm_elementwise_affine: bool = True, norm_eps: float = 1e-5, final_dropout: bool = True, ff_inner_dim: Optional[int] = None, ff_bias: bool = True, attention_out_bias: bool = True, ): super().__init__() # 1. Self Attention self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
1,098
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
self.attn1 = Attention( query_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, qk_norm="layer_norm" if qk_norm else None, eps=1e-6, bias=attention_bias, out_bias=attention_out_bias, processor=CogVideoXAttnProcessor2_0(), ) # 2. Feed Forward self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) self.ff = FeedForward( dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout, inner_dim=ff_inner_dim, bias=ff_bias, ) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, ) -> torch.Tensor: text_seq_length = encoder_hidden_states.size(1)
1,098
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
# norm & modulate norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1( hidden_states, encoder_hidden_states, temb ) # attention attn_hidden_states, attn_encoder_hidden_states = self.attn1( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, image_rotary_emb=image_rotary_emb, ) hidden_states = hidden_states + gate_msa * attn_hidden_states encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states # norm & modulate norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2( hidden_states, encoder_hidden_states, temb ) # feed-forward norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1) ff_output = self.ff(norm_hidden_states)
1,098
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:] encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length] return hidden_states, encoder_hidden_states
1,098
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
class ConsisIDTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): """ A Transformer model for video-like data in [ConsisID](https://github.com/PKU-YuanGroup/ConsisID).
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
Parameters: num_attention_heads (`int`, defaults to `30`): The number of heads to use for multi-head attention. attention_head_dim (`int`, defaults to `64`): The number of channels in each head. in_channels (`int`, defaults to `16`): The number of channels in the input. out_channels (`int`, *optional*, defaults to `16`): The number of channels in the output. flip_sin_to_cos (`bool`, defaults to `True`): Whether to flip the sin to cos in the time embedding. time_embed_dim (`int`, defaults to `512`): Output dimension of timestep embeddings. text_embed_dim (`int`, defaults to `4096`): Input dimension of text embeddings from the text encoder. num_layers (`int`, defaults to `30`): The number of layers of Transformer blocks to use. dropout (`float`, defaults to `0.0`): The dropout probability to use.
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
attention_bias (`bool`, defaults to `True`): Whether to use bias in the attention projection layers. sample_width (`int`, defaults to `90`): The width of the input latents. sample_height (`int`, defaults to `60`): The height of the input latents. sample_frames (`int`, defaults to `49`): The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49 instead of 13 because ConsisID processed 13 latent frames at once in its default and recommended settings, but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1). patch_size (`int`, defaults to `2`): The size of the patches to use in the patch embedding layer. temporal_compression_ratio (`int`, defaults to `4`):
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
The compression ratio across the temporal dimension. See documentation for `sample_frames`. max_text_seq_length (`int`, defaults to `226`): The maximum sequence length of the input text embeddings. activation_fn (`str`, defaults to `"gelu-approximate"`): Activation function to use in feed-forward. timestep_activation_fn (`str`, defaults to `"silu"`): Activation function to use when generating the timestep embeddings. norm_elementwise_affine (`bool`, defaults to `True`): Whether to use elementwise affine in normalization layers. norm_eps (`float`, defaults to `1e-5`): The epsilon value to use in normalization layers. spatial_interpolation_scale (`float`, defaults to `1.875`): Scaling factor to apply in 3D positional embeddings across spatial dimensions. temporal_interpolation_scale (`float`, defaults to `1.0`):
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
Scaling factor to apply in 3D positional embeddings across temporal dimensions. is_train_face (`bool`, defaults to `False`): Whether to use enable the identity-preserving module during the training process. When set to `True`, the model will focus on identity-preserving tasks. is_kps (`bool`, defaults to `False`): Whether to enable keypoint for global facial extractor. If `True`, keypoints will be in the model. cross_attn_interval (`int`, defaults to `2`): The interval between cross-attention layers in the Transformer architecture. A larger value may reduce the frequency of cross-attention computations, which can help reduce computational overhead. cross_attn_dim_head (`int`, optional, defaults to `128`): The dimensionality of each attention head in the cross-attention layers of the Transformer architecture. A
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
larger value increases the capacity to attend to more complex patterns, but also increases memory and computation costs. cross_attn_num_heads (`int`, optional, defaults to `16`): The number of attention heads in the cross-attention layers. More heads allow for more parallel attention mechanisms, capturing diverse relationships between different components of the input, but can also increase computational requirements. LFE_id_dim (`int`, optional, defaults to `1280`): The dimensionality of the identity vector used in the Local Facial Extractor (LFE). This vector represents the identity features of a face, which are important for tasks like face recognition and identity preservation across different frames. LFE_vit_dim (`int`, optional, defaults to `1024`): The dimension of the vision transformer (ViT) output used in the Local Facial Extractor (LFE). This value
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
dictates the size of the transformer-generated feature vectors that will be processed for facial feature extraction. LFE_depth (`int`, optional, defaults to `10`): The number of layers in the Local Facial Extractor (LFE). Increasing the depth allows the model to capture more complex representations of facial features, but also increases the computational load. LFE_dim_head (`int`, optional, defaults to `64`): The dimensionality of each attention head in the Local Facial Extractor (LFE). This parameter affects how finely the model can process and focus on different parts of the facial features during the extraction process. LFE_num_heads (`int`, optional, defaults to `16`): The number of attention heads in the Local Facial Extractor (LFE). More heads can improve the model's ability to capture diverse facial features, but at the cost of increased computational complexity.
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
LFE_num_id_token (`int`, optional, defaults to `5`): The number of identity tokens used in the Local Facial Extractor (LFE). This defines how many identity-related tokens the model will process to ensure face identity preservation during feature extraction. LFE_num_querie (`int`, optional, defaults to `32`): The number of query tokens used in the Local Facial Extractor (LFE). These tokens are used to capture high-frequency face-related information that aids in accurate facial feature extraction. LFE_output_dim (`int`, optional, defaults to `2048`): The output dimension of the Local Facial Extractor (LFE). This dimension determines the size of the feature vectors produced by the LFE module, which will be used for subsequent tasks such as face recognition or tracking. LFE_ff_mult (`int`, optional, defaults to `4`):
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
The multiplication factor applied to the feed-forward network's hidden layer size in the Local Facial Extractor (LFE). A higher value increases the model's capacity to learn more complex facial feature transformations, but also increases the computation and memory requirements. LFE_num_scale (`int`, optional, defaults to `5`): The number of different scales visual feature. A higher value increases the model's capacity to learn more complex facial feature transformations, but also increases the computation and memory requirements. local_face_scale (`float`, defaults to `1.0`): A scaling factor used to adjust the importance of local facial features in the model. This can influence how strongly the model focuses on high frequency face-related content. """
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
_supports_gradient_checkpointing = True
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
@register_to_config def __init__( self, num_attention_heads: int = 30, attention_head_dim: int = 64, in_channels: int = 16, out_channels: Optional[int] = 16, flip_sin_to_cos: bool = True, freq_shift: int = 0, time_embed_dim: int = 512, text_embed_dim: int = 4096, num_layers: int = 30, dropout: float = 0.0, attention_bias: bool = True, sample_width: int = 90, sample_height: int = 60, sample_frames: int = 49, patch_size: int = 2, temporal_compression_ratio: int = 4, max_text_seq_length: int = 226, activation_fn: str = "gelu-approximate", timestep_activation_fn: str = "silu", norm_elementwise_affine: bool = True, norm_eps: float = 1e-5, spatial_interpolation_scale: float = 1.875, temporal_interpolation_scale: float = 1.0, use_rotary_positional_embeddings: bool = False,
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
use_learned_positional_embeddings: bool = False, is_train_face: bool = False, is_kps: bool = False, cross_attn_interval: int = 2, cross_attn_dim_head: int = 128, cross_attn_num_heads: int = 16, LFE_id_dim: int = 1280, LFE_vit_dim: int = 1024, LFE_depth: int = 10, LFE_dim_head: int = 64, LFE_num_heads: int = 16, LFE_num_id_token: int = 5, LFE_num_querie: int = 32, LFE_output_dim: int = 2048, LFE_ff_mult: int = 4, LFE_num_scale: int = 5, local_face_scale: float = 1.0, ): super().__init__() inner_dim = num_attention_heads * attention_head_dim
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
if not use_rotary_positional_embeddings and use_learned_positional_embeddings: raise ValueError( "There are no ConsisID checkpoints available with disable rotary embeddings and learned positional " "embeddings. If you're using a custom model and/or believe this should be supported, please open an " "issue at https://github.com/huggingface/diffusers/issues." )
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
# 1. Patch embedding self.patch_embed = CogVideoXPatchEmbed( patch_size=patch_size, in_channels=in_channels, embed_dim=inner_dim, text_embed_dim=text_embed_dim, bias=True, sample_width=sample_width, sample_height=sample_height, sample_frames=sample_frames, temporal_compression_ratio=temporal_compression_ratio, max_text_seq_length=max_text_seq_length, spatial_interpolation_scale=spatial_interpolation_scale, temporal_interpolation_scale=temporal_interpolation_scale, use_positional_embeddings=not use_rotary_positional_embeddings, use_learned_positional_embeddings=use_learned_positional_embeddings, ) self.embedding_dropout = nn.Dropout(dropout)
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
# 2. Time embeddings self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift) self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn) # 3. Define spatio-temporal transformers blocks self.transformer_blocks = nn.ModuleList( [ ConsisIDBlock( dim=inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, time_embed_dim=time_embed_dim, dropout=dropout, activation_fn=activation_fn, attention_bias=attention_bias, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps, ) for _ in range(num_layers) ] ) self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine)
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
# 4. Output blocks self.norm_out = AdaLayerNorm( embedding_dim=time_embed_dim, output_dim=2 * inner_dim, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps, chunk_dim=1, ) self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels) self.is_train_face = is_train_face self.is_kps = is_kps
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
# 5. Define identity-preserving config if is_train_face: # LFE configs self.LFE_id_dim = LFE_id_dim self.LFE_vit_dim = LFE_vit_dim self.LFE_depth = LFE_depth self.LFE_dim_head = LFE_dim_head self.LFE_num_heads = LFE_num_heads self.LFE_num_id_token = LFE_num_id_token self.LFE_num_querie = LFE_num_querie self.LFE_output_dim = LFE_output_dim self.LFE_ff_mult = LFE_ff_mult self.LFE_num_scale = LFE_num_scale # cross configs self.inner_dim = inner_dim self.cross_attn_interval = cross_attn_interval self.num_cross_attn = num_layers // cross_attn_interval self.cross_attn_dim_head = cross_attn_dim_head self.cross_attn_num_heads = cross_attn_num_heads self.cross_attn_kv_dim = int(self.inner_dim / 3 * 2) self.local_face_scale = local_face_scale # face modules
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
self._init_face_inputs()
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
self.gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value=False): self.gradient_checkpointing = value
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
def _init_face_inputs(self): self.local_facial_extractor = LocalFacialExtractor( id_dim=self.LFE_id_dim, vit_dim=self.LFE_vit_dim, depth=self.LFE_depth, dim_head=self.LFE_dim_head, heads=self.LFE_num_heads, num_id_token=self.LFE_num_id_token, num_queries=self.LFE_num_querie, output_dim=self.LFE_output_dim, ff_mult=self.LFE_ff_mult, num_scale=self.LFE_num_scale, ) self.perceiver_cross_attention = nn.ModuleList( [ PerceiverCrossAttention( dim=self.inner_dim, dim_head=self.cross_attn_dim_head, heads=self.cross_attn_num_heads, kv_dim=self.cross_attn_kv_dim, ) for _ in range(self.num_cross_attn) ] )
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
@property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys())
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor)
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, timestep: Union[int, float, torch.LongTensor], timestep_cond: Optional[torch.Tensor] = None, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, attention_kwargs: Optional[Dict[str, Any]] = None, id_cond: Optional[torch.Tensor] = None, id_vit_hidden: Optional[torch.Tensor] = None, return_dict: bool = True, ): if attention_kwargs is not None: attention_kwargs = attention_kwargs.copy() lora_scale = attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: logger.warning( "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." ) # fuse clip and insightface valid_face_emb = None if self.is_train_face: id_cond = id_cond.to(device=hidden_states.device, dtype=hidden_states.dtype) id_vit_hidden = [ tensor.to(device=hidden_states.device, dtype=hidden_states.dtype) for tensor in id_vit_hidden ] valid_face_emb = self.local_facial_extractor( id_cond, id_vit_hidden ) # torch.Size([1, 1280]), list[5](torch.Size([1, 577, 1024])) -> torch.Size([1, 32, 2048])
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
batch_size, num_frames, channels, height, width = hidden_states.shape # 1. Time embedding timesteps = timestep t_emb = self.time_proj(timesteps) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=hidden_states.dtype) emb = self.time_embedding(t_emb, timestep_cond) # 2. Patch embedding # torch.Size([1, 226, 4096]) torch.Size([1, 13, 32, 60, 90]) hidden_states = self.patch_embed(encoder_hidden_states, hidden_states) # torch.Size([1, 17776, 3072]) hidden_states = self.embedding_dropout(hidden_states) # torch.Size([1, 17776, 3072])
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
text_seq_length = encoder_hidden_states.shape[1] encoder_hidden_states = hidden_states[:, :text_seq_length] # torch.Size([1, 226, 3072]) hidden_states = hidden_states[:, text_seq_length:] # torch.Size([1, 17550, 3072]) # 3. Transformer blocks ca_idx = 0 for i, block in enumerate(self.transformer_blocks): if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, emb, image_rotary_emb, **ckpt_kwargs, ) else: hidden_states, encoder_hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=emb, image_rotary_emb=image_rotary_emb, )
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
if self.is_train_face: if i % self.cross_attn_interval == 0 and valid_face_emb is not None: hidden_states = hidden_states + self.local_face_scale * self.perceiver_cross_attention[ca_idx]( valid_face_emb, hidden_states ) # torch.Size([2, 32, 2048]) torch.Size([2, 17550, 3072]) ca_idx += 1 hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) hidden_states = self.norm_final(hidden_states) hidden_states = hidden_states[:, text_seq_length:] # 4. Final block hidden_states = self.norm_out(hidden_states, temb=emb) hidden_states = self.proj_out(hidden_states)
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
# 5. Unpatchify # Note: we use `-1` instead of `channels`: # - It is okay to `channels` use for ConsisID (number of input channels is equal to output channels) p = self.config.patch_size output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, -1, p, p) output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)
1,099
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/consisid_transformer_3d.py
class PriorTransformerOutput(BaseOutput): """ The output of [`PriorTransformer`]. Args: predicted_image_embedding (`torch.Tensor` of shape `(batch_size, embedding_dim)`): The predicted CLIP image embedding conditioned on the CLIP text embedding input. """ predicted_image_embedding: torch.Tensor
1,100
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/prior_transformer.py
class PriorTransformer(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin): """ A Prior Transformer model.
1,101
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/prior_transformer.py
Parameters: num_attention_heads (`int`, *optional*, defaults to 32): The number of heads to use for multi-head attention. attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. num_layers (`int`, *optional*, defaults to 20): The number of layers of Transformer blocks to use. embedding_dim (`int`, *optional*, defaults to 768): The dimension of the model input `hidden_states` num_embeddings (`int`, *optional*, defaults to 77): The number of embeddings of the model input `hidden_states` additional_embeddings (`int`, *optional*, defaults to 4): The number of additional tokens appended to the projected `hidden_states`. The actual length of the used `hidden_states` is `num_embeddings + additional_embeddings`. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. time_embed_act_fn (`str`, *optional*, defaults to 'silu'):
1,101
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/prior_transformer.py
The activation function to use to create timestep embeddings. norm_in_type (`str`, *optional*, defaults to None): The normalization layer to apply on hidden states before passing to Transformer blocks. Set it to `None` if normalization is not needed. embedding_proj_norm_type (`str`, *optional*, defaults to None): The normalization layer to apply on the input `proj_embedding`. Set it to `None` if normalization is not needed. encoder_hid_proj_type (`str`, *optional*, defaults to `linear`): The projection layer to apply on the input `encoder_hidden_states`. Set it to `None` if `encoder_hidden_states` is `None`. added_emb_type (`str`, *optional*, defaults to `prd`): Additional embeddings to condition the model. Choose from `prd` or `None`. if choose `prd`, it will prepend a token indicating the (quantized) dot
1,101
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/prior_transformer.py
product between the text embedding and image embedding as proposed in the unclip paper https://arxiv.org/abs/2204.06125 If it is `None`, no additional embeddings will be prepended. time_embed_dim (`int, *optional*, defaults to None): The dimension of timestep embeddings. If None, will be set to `num_attention_heads * attention_head_dim` embedding_proj_dim (`int`, *optional*, default to None): The dimension of `proj_embedding`. If None, will be set to `embedding_dim`. clip_embed_dim (`int`, *optional*, default to None): The dimension of the output. If None, will be set to `embedding_dim`. """
1,101
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/prior_transformer.py
@register_to_config def __init__( self, num_attention_heads: int = 32, attention_head_dim: int = 64, num_layers: int = 20, embedding_dim: int = 768, num_embeddings=77, additional_embeddings=4, dropout: float = 0.0, time_embed_act_fn: str = "silu", norm_in_type: Optional[str] = None, # layer embedding_proj_norm_type: Optional[str] = None, # layer encoder_hid_proj_type: Optional[str] = "linear", # linear added_emb_type: Optional[str] = "prd", # prd time_embed_dim: Optional[int] = None, embedding_proj_dim: Optional[int] = None, clip_embed_dim: Optional[int] = None, ): super().__init__() self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim inner_dim = num_attention_heads * attention_head_dim self.additional_embeddings = additional_embeddings
1,101
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/prior_transformer.py
time_embed_dim = time_embed_dim or inner_dim embedding_proj_dim = embedding_proj_dim or embedding_dim clip_embed_dim = clip_embed_dim or embedding_dim self.time_proj = Timesteps(inner_dim, True, 0) self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, out_dim=inner_dim, act_fn=time_embed_act_fn) self.proj_in = nn.Linear(embedding_dim, inner_dim) if embedding_proj_norm_type is None: self.embedding_proj_norm = None elif embedding_proj_norm_type == "layer": self.embedding_proj_norm = nn.LayerNorm(embedding_proj_dim) else: raise ValueError(f"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}") self.embedding_proj = nn.Linear(embedding_proj_dim, inner_dim)
1,101
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/prior_transformer.py
if encoder_hid_proj_type is None: self.encoder_hidden_states_proj = None elif encoder_hid_proj_type == "linear": self.encoder_hidden_states_proj = nn.Linear(embedding_dim, inner_dim) else: raise ValueError(f"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}") self.positional_embedding = nn.Parameter(torch.zeros(1, num_embeddings + additional_embeddings, inner_dim)) if added_emb_type == "prd": self.prd_embedding = nn.Parameter(torch.zeros(1, 1, inner_dim)) elif added_emb_type is None: self.prd_embedding = None else: raise ValueError( f"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." )
1,101
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/prior_transformer.py
self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, activation_fn="gelu", attention_bias=True, ) for d in range(num_layers) ] ) if norm_in_type == "layer": self.norm_in = nn.LayerNorm(inner_dim) elif norm_in_type is None: self.norm_in = None else: raise ValueError(f"Unsupported norm_in_type: {norm_in_type}.") self.norm_out = nn.LayerNorm(inner_dim) self.proj_to_clip_embeddings = nn.Linear(inner_dim, clip_embed_dim)
1,101
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/prior_transformer.py
causal_attention_mask = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings], -10000.0 ) causal_attention_mask.triu_(1) causal_attention_mask = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask", causal_attention_mask, persistent=False) self.clip_mean = nn.Parameter(torch.zeros(1, clip_embed_dim)) self.clip_std = nn.Parameter(torch.zeros(1, clip_embed_dim)) @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {}
1,101
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/prior_transformer.py
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention.
1,101
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/prior_transformer.py
Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." )
1,101
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/prior_transformer.py
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor)
1,101
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/prior_transformer.py
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnAddedKVProcessor() elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnProcessor() else: raise ValueError( f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" ) self.set_attn_processor(processor)
1,101
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/prior_transformer.py
def forward( self, hidden_states, timestep: Union[torch.Tensor, float, int], proj_embedding: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.BoolTensor] = None, return_dict: bool = True, ): """ The [`PriorTransformer`] forward method.
1,101
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/prior_transformer.py
Args: hidden_states (`torch.Tensor` of shape `(batch_size, embedding_dim)`): The currently predicted image embeddings. timestep (`torch.LongTensor`): Current denoising step. proj_embedding (`torch.Tensor` of shape `(batch_size, embedding_dim)`): Projected embedding vector the denoising process is conditioned on. encoder_hidden_states (`torch.Tensor` of shape `(batch_size, num_embeddings, embedding_dim)`): Hidden states of the text embeddings the denoising process is conditioned on. attention_mask (`torch.BoolTensor` of shape `(batch_size, num_embeddings)`): Text mask for the text embeddings. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformers.prior_transformer.PriorTransformerOutput`] instead of a plain tuple.
1,101
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/prior_transformer.py
Returns: [`~models.transformers.prior_transformer.PriorTransformerOutput`] or `tuple`: If return_dict is True, a [`~models.transformers.prior_transformer.PriorTransformerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ batch_size = hidden_states.shape[0] timesteps = timestep if not torch.is_tensor(timesteps): timesteps = torch.tensor([timesteps], dtype=torch.long, device=hidden_states.device) elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0: timesteps = timesteps[None].to(hidden_states.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timesteps = timesteps * torch.ones(batch_size, dtype=timesteps.dtype, device=timesteps.device) timesteps_projected = self.time_proj(timesteps)
1,101
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/prior_transformer.py
# timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. timesteps_projected = timesteps_projected.to(dtype=self.dtype) time_embeddings = self.time_embedding(timesteps_projected) if self.embedding_proj_norm is not None: proj_embedding = self.embedding_proj_norm(proj_embedding) proj_embeddings = self.embedding_proj(proj_embedding) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: encoder_hidden_states = self.encoder_hidden_states_proj(encoder_hidden_states) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set") hidden_states = self.proj_in(hidden_states) positional_embeddings = self.positional_embedding.to(hidden_states.dtype)
1,101
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/prior_transformer.py
additional_embeds = [] additional_embeddings_len = 0 if encoder_hidden_states is not None: additional_embeds.append(encoder_hidden_states) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape) == 2: proj_embeddings = proj_embeddings[:, None, :] if len(hidden_states.shape) == 2: hidden_states = hidden_states[:, None, :] additional_embeds = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: prd_embedding = self.prd_embedding.to(hidden_states.dtype).expand(batch_size, -1, -1) additional_embeds.append(prd_embedding) hidden_states = torch.cat( additional_embeds, dim=1, )
1,101
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/prior_transformer.py
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens additional_embeddings_len = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: positional_embeddings = F.pad( positional_embeddings, ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ), value=0.0, ) hidden_states = hidden_states + positional_embeddings
1,101
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/prior_transformer.py
if attention_mask is not None: attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 attention_mask = F.pad(attention_mask, (0, self.additional_embeddings), value=0.0) attention_mask = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype) attention_mask = attention_mask.repeat_interleave(self.config.num_attention_heads, dim=0) if self.norm_in is not None: hidden_states = self.norm_in(hidden_states) for block in self.transformer_blocks: hidden_states = block(hidden_states, attention_mask=attention_mask) hidden_states = self.norm_out(hidden_states) if self.prd_embedding is not None: hidden_states = hidden_states[:, -1] else: hidden_states = hidden_states[:, additional_embeddings_len:] predicted_image_embedding = self.proj_to_clip_embeddings(hidden_states)
1,101
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/prior_transformer.py
if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=predicted_image_embedding) def post_process_latents(self, prior_latents): prior_latents = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
1,101
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/prior_transformer.py
class SD3SingleTransformerBlock(nn.Module): r""" A Single Transformer block as part of the MMDiT architecture, used in Stable Diffusion 3 ControlNet. Reference: https://arxiv.org/abs/2403.03206 Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. """ def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, ): super().__init__() self.norm1 = AdaLayerNormZero(dim) if hasattr(F, "scaled_dot_product_attention"): processor = JointAttnProcessor2_0() else: raise ValueError( "The current PyTorch version does not support the `scaled_dot_product_attention` function." )
1,102
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
self.attn = Attention( query_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, bias=True, processor=processor, eps=1e-6, ) self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") def forward(self, hidden_states: torch.Tensor, temb: torch.Tensor): norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) # Attention. attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=None, ) # Process attention outputs for the `hidden_states`. attn_output = gate_msa.unsqueeze(1) * attn_output hidden_states = hidden_states + attn_output
1,102
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] ff_output = self.ff(norm_hidden_states) ff_output = gate_mlp.unsqueeze(1) * ff_output hidden_states = hidden_states + ff_output return hidden_states
1,102
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
class SD3Transformer2DModel( ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, SD3Transformer2DLoadersMixin ): """ The Transformer model introduced in Stable Diffusion 3. Reference: https://arxiv.org/abs/2403.03206
1,103
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
Parameters: sample_size (`int`): The width of the latent images. This is fixed during training since it is used to learn a number of position embeddings. patch_size (`int`): Patch size to turn the input data into small patches. in_channels (`int`, *optional*, defaults to 16): The number of channels in the input. num_layers (`int`, *optional*, defaults to 18): The number of layers of Transformer blocks to use. attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention. cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. caption_projection_dim (`int`): Number of dimensions to use when projecting the `encoder_hidden_states`. pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
1,103
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
out_channels (`int`, defaults to 16): Number of output channels.
1,103
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
""" _supports_gradient_checkpointing = True @register_to_config def __init__( self, sample_size: int = 128, patch_size: int = 2, in_channels: int = 16, num_layers: int = 18, attention_head_dim: int = 64, num_attention_heads: int = 18, joint_attention_dim: int = 4096, caption_projection_dim: int = 1152, pooled_projection_dim: int = 2048, out_channels: int = 16, pos_embed_max_size: int = 96, dual_attention_layers: Tuple[ int, ... ] = (), # () for sd3.0; (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) for sd3.5 qk_norm: Optional[str] = None, ): super().__init__() default_out_channels = in_channels self.out_channels = out_channels if out_channels is not None else default_out_channels self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
1,103
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
self.pos_embed = PatchEmbed( height=self.config.sample_size, width=self.config.sample_size, patch_size=self.config.patch_size, in_channels=self.config.in_channels, embed_dim=self.inner_dim, pos_embed_max_size=pos_embed_max_size, # hard-code for now. ) self.time_text_embed = CombinedTimestepTextProjEmbeddings( embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim ) self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.config.caption_projection_dim)
1,103
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
# `attention_head_dim` is doubled to account for the mixing. # It needs to crafted when we get the actual checkpoints. self.transformer_blocks = nn.ModuleList( [ JointTransformerBlock( dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, attention_head_dim=self.config.attention_head_dim, context_pre_only=i == num_layers - 1, qk_norm=qk_norm, use_dual_attention=True if i in dual_attention_layers else False, ) for i in range(self.config.num_layers) ] ) self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) self.gradient_checkpointing = False
1,103
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: """ Sets the attention processor to use [feed forward chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). Parameters: chunk_size (`int`, *optional*): The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually over each tensor of dim=`dim`. dim (`int`, *optional*, defaults to `0`): The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) or dim=1 (sequence length). """ if dim not in [0, 1]: raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") # By default chunk size is 1 chunk_size = chunk_size or 1
1,103
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): if hasattr(module, "set_chunk_feed_forward"): module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) for child in module.children(): fn_recursive_feed_forward(child, chunk_size, dim) for module in self.children(): fn_recursive_feed_forward(module, chunk_size, dim) # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking def disable_forward_chunking(self): def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): if hasattr(module, "set_chunk_feed_forward"): module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) for child in module.children(): fn_recursive_feed_forward(child, chunk_size, dim) for module in self.children(): fn_recursive_feed_forward(module, None, 0)
1,103
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
@property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors
1,103
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys())
1,103
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor)
1,103
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedJointAttnProcessor2_0 def fuse_qkv_projections(self): """ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ self.original_attn_processors = None for _, attn_processor in self.attn_processors.items(): if "Added" in str(attn_processor.__class__.__name__): raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") self.original_attn_processors = self.attn_processors for module in self.modules(): if isinstance(module, Attention): module.fuse_projections(fuse=True)
1,103
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
self.set_attn_processor(FusedJointAttnProcessor2_0()) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections def unfuse_qkv_projections(self): """Disables the fused QKV projection if enabled. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ if self.original_attn_processors is not None: self.set_attn_processor(self.original_attn_processors) def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value
1,103
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
def forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, pooled_projections: torch.FloatTensor = None, timestep: torch.LongTensor = None, block_controlnet_hidden_states: List = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, skip_layers: Optional[List[int]] = None, ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: """ The [`SD3Transformer2DModel`] forward method.
1,103
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
Args: hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input `hidden_states`. encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected from the embeddings of input conditions. timestep (`torch.LongTensor`): Used to indicate denoising step. block_controlnet_hidden_states (`list` of `torch.Tensor`): A list of tensors that if specified are added to the residuals of transformer blocks. joint_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in
1,103
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain tuple. skip_layers (`list` of `int`, *optional*): A list of layer indices to skip during the forward pass.
1,103
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ if joint_attention_kwargs is not None: joint_attention_kwargs = joint_attention_kwargs.copy() lora_scale = joint_attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: logger.warning( "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." ) height, width = hidden_states.shape[-2:]
1,103
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too. temb = self.time_text_embed(timestep, pooled_projections) encoder_hidden_states = self.context_embedder(encoder_hidden_states) if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs: ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds") ip_hidden_states, ip_temb = self.image_proj(ip_adapter_image_embeds, timestep) joint_attention_kwargs.update(ip_hidden_states=ip_hidden_states, temb=ip_temb) for index_block, block in enumerate(self.transformer_blocks): # Skip specified layers is_skip = True if skip_layers is not None and index_block in skip_layers else False if torch.is_grad_enabled() and self.gradient_checkpointing and not is_skip:
1,103
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward
1,103
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, temb, joint_attention_kwargs, **ckpt_kwargs, ) elif not is_skip: encoder_hidden_states, hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, joint_attention_kwargs=joint_attention_kwargs, )
1,103
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
# controlnet residual if block_controlnet_hidden_states is not None and block.context_pre_only is False: interval_control = len(self.transformer_blocks) / len(block_controlnet_hidden_states) hidden_states = hidden_states + block_controlnet_hidden_states[int(index_block / interval_control)] hidden_states = self.norm_out(hidden_states, temb) hidden_states = self.proj_out(hidden_states) # unpatchify patch_size = self.config.patch_size height = height // patch_size width = width // patch_size hidden_states = hidden_states.reshape( shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels) ) hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) output = hidden_states.reshape( shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size) )
1,103
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)
1,103
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
class AllegroTransformerBlock(nn.Module): r""" Transformer block used in [Allegro](https://github.com/rhymes-ai/Allegro) model.
1,104
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py
Args: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. dropout (`float`, defaults to `0.0`): The dropout probability to use. cross_attention_dim (`int`, defaults to `2304`): The dimension of the cross attention features. activation_fn (`str`, defaults to `"gelu-approximate"`): Activation function to be used in feed-forward. attention_bias (`bool`, defaults to `False`): Whether or not to use bias in attention projection layers. only_cross_attention (`bool`, defaults to `False`): norm_elementwise_affine (`bool`, defaults to `True`): Whether to use learnable elementwise affine parameters for normalization. norm_eps (`float`, defaults to `1e-5`):
1,104
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py
Epsilon value for normalization layers. final_dropout (`bool` defaults to `False`): Whether to apply a final dropout after the last feed-forward layer. """
1,104
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py
def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout=0.0, cross_attention_dim: Optional[int] = None, activation_fn: str = "geglu", attention_bias: bool = False, norm_elementwise_affine: bool = True, norm_eps: float = 1e-5, ): super().__init__() # 1. Self Attention self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=None, processor=AllegroAttnProcessor2_0(), )
1,104
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py
# 2. Cross Attention self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, processor=AllegroAttnProcessor2_0(), ) # 3. Feed Forward self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) self.ff = FeedForward( dim, dropout=dropout, activation_fn=activation_fn, ) # 4. Scale-shift self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
1,104
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py
def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, temb: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, image_rotary_emb=None, ) -> torch.Tensor: # 0. Self-Attention batch_size = hidden_states.shape[0] shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( self.scale_shift_table[None] + temb.reshape(batch_size, 6, -1) ).chunk(6, dim=1) norm_hidden_states = self.norm1(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa norm_hidden_states = norm_hidden_states.squeeze(1)
1,104
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py
attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=None, attention_mask=attention_mask, image_rotary_emb=image_rotary_emb, ) attn_output = gate_msa * attn_output hidden_states = attn_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) # 1. Cross-Attention if self.attn2 is not None: norm_hidden_states = hidden_states attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, image_rotary_emb=None, ) hidden_states = attn_output + hidden_states # 2. Feed-forward norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
1,104
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py