text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
# 2. Blocks for block in self.transformer_blocks: hidden_states = block( hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, class_labels=class_labels, ) # 3. Output hidden_states = self.proj_out(hidden_states) hidden_states = ( hidden_states[None, None, :] .reshape(batch_size, height, width, num_frames, channel) .permute(0, 3, 4, 1, 2) .contiguous() ) hidden_states = hidden_states.reshape(batch_frames, channel, height, width) output = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=output)
1,114
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_temporal.py
class TransformerSpatioTemporalModel(nn.Module): """ A Transformer model for video-like data. Parameters: num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. in_channels (`int`, *optional*): The number of channels in the input and output (specify if the input is **continuous**). out_channels (`int`, *optional*): The number of channels in the output (specify if the input is **continuous**). num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. """
1,115
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_temporal.py
def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: int = 320, out_channels: Optional[int] = None, num_layers: int = 1, cross_attention_dim: Optional[int] = None, ): super().__init__() self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim inner_dim = num_attention_heads * attention_head_dim self.inner_dim = inner_dim # 2. Define input layers self.in_channels = in_channels self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6) self.proj_in = nn.Linear(in_channels, inner_dim)
1,115
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_temporal.py
# 3. Define transformers blocks self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, cross_attention_dim=cross_attention_dim, ) for d in range(num_layers) ] ) time_mix_inner_dim = inner_dim self.temporal_transformer_blocks = nn.ModuleList( [ TemporalBasicTransformerBlock( inner_dim, time_mix_inner_dim, num_attention_heads, attention_head_dim, cross_attention_dim=cross_attention_dim, ) for _ in range(num_layers) ] )
1,115
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_temporal.py
time_embed_dim = in_channels * 4 self.time_pos_embed = TimestepEmbedding(in_channels, time_embed_dim, out_dim=in_channels) self.time_proj = Timesteps(in_channels, True, 0) self.time_mixer = AlphaBlender(alpha=0.5, merge_strategy="learned_with_images") # 4. Define output layers self.out_channels = in_channels if out_channels is None else out_channels # TODO: should use out_channels for continuous projections self.proj_out = nn.Linear(inner_dim, in_channels) self.gradient_checkpointing = False
1,115
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_temporal.py
def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, image_only_indicator: Optional[torch.Tensor] = None, return_dict: bool = True, ): """ Args: hidden_states (`torch.Tensor` of shape `(batch size, channel, height, width)`): Input hidden_states. num_frames (`int`): The number of frames to be processed per batch. This is used to reshape the hidden states. encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*): Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention. image_only_indicator (`torch.LongTensor` of shape `(batch size, num_frames)`, *optional*): A tensor indicating whether the input contains only images. 1 indicates that the input contains only
1,115
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_temporal.py
images, 0 indicates that the input contains video frames. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformers.transformer_temporal.TransformerTemporalModelOutput`] instead of a plain tuple.
1,115
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_temporal.py
Returns: [`~models.transformers.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`: If `return_dict` is True, an [`~models.transformers.transformer_temporal.TransformerTemporalModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ # 1. Input batch_frames, _, height, width = hidden_states.shape num_frames = image_only_indicator.shape[-1] batch_size = batch_frames // num_frames time_context = encoder_hidden_states time_context_first_timestep = time_context[None, :].reshape( batch_size, num_frames, -1, time_context.shape[-1] )[:, 0] time_context = time_context_first_timestep[:, None].broadcast_to( batch_size, height * width, time_context.shape[-2], time_context.shape[-1] ) time_context = time_context.reshape(batch_size * height * width, -1, time_context.shape[-1])
1,115
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_temporal.py
residual = hidden_states hidden_states = self.norm(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch_frames, height * width, inner_dim) hidden_states = self.proj_in(hidden_states) num_frames_emb = torch.arange(num_frames, device=hidden_states.device) num_frames_emb = num_frames_emb.repeat(batch_size, 1) num_frames_emb = num_frames_emb.reshape(-1) t_emb = self.time_proj(num_frames_emb) # `Timesteps` does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=hidden_states.dtype) emb = self.time_pos_embed(t_emb) emb = emb[:, None, :]
1,115
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_temporal.py
# 2. Blocks for block, temporal_block in zip(self.transformer_blocks, self.temporal_transformer_blocks): if torch.is_grad_enabled() and self.gradient_checkpointing: hidden_states = torch.utils.checkpoint.checkpoint( block, hidden_states, None, encoder_hidden_states, None, use_reentrant=False, ) else: hidden_states = block( hidden_states, encoder_hidden_states=encoder_hidden_states, ) hidden_states_mix = hidden_states hidden_states_mix = hidden_states_mix + emb
1,115
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_temporal.py
hidden_states_mix = temporal_block( hidden_states_mix, num_frames=num_frames, encoder_hidden_states=time_context, ) hidden_states = self.time_mixer( x_spatial=hidden_states, x_temporal=hidden_states_mix, image_only_indicator=image_only_indicator, ) # 3. Output hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.reshape(batch_frames, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() output = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=output)
1,115
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_temporal.py
class LTXVideoAttentionProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the LTX model. It applies a normalization layer and rotary embedding on the query and key vector. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "LTXVideoAttentionProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape )
1,116
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if encoder_hidden_states is None: encoder_hidden_states = hidden_states query = attn.to_q(hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.norm_q(query) key = attn.norm_k(key) if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2) key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2) value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
1,116
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).flatten(2, 3) hidden_states = hidden_states.to(query.dtype) hidden_states = attn.to_out[0](hidden_states) hidden_states = attn.to_out[1](hidden_states) return hidden_states
1,116
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
class LTXVideoRotaryPosEmbed(nn.Module): def __init__( self, dim: int, base_num_frames: int = 20, base_height: int = 2048, base_width: int = 2048, patch_size: int = 1, patch_size_t: int = 1, theta: float = 10000.0, ) -> None: super().__init__() self.dim = dim self.base_num_frames = base_num_frames self.base_height = base_height self.base_width = base_width self.patch_size = patch_size self.patch_size_t = patch_size_t self.theta = theta def forward( self, hidden_states: torch.Tensor, num_frames: int, height: int, width: int, rope_interpolation_scale: Optional[Tuple[torch.Tensor, float, float]] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: batch_size = hidden_states.size(0)
1,117
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
# Always compute rope in fp32 grid_h = torch.arange(height, dtype=torch.float32, device=hidden_states.device) grid_w = torch.arange(width, dtype=torch.float32, device=hidden_states.device) grid_f = torch.arange(num_frames, dtype=torch.float32, device=hidden_states.device) grid = torch.meshgrid(grid_f, grid_h, grid_w, indexing="ij") grid = torch.stack(grid, dim=0) grid = grid.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1) if rope_interpolation_scale is not None: grid[:, 0:1] = grid[:, 0:1] * rope_interpolation_scale[0] * self.patch_size_t / self.base_num_frames grid[:, 1:2] = grid[:, 1:2] * rope_interpolation_scale[1] * self.patch_size / self.base_height grid[:, 2:3] = grid[:, 2:3] * rope_interpolation_scale[2] * self.patch_size / self.base_width grid = grid.flatten(2, 4).transpose(1, 2)
1,117
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
start = 1.0 end = self.theta freqs = self.theta ** torch.linspace( math.log(start, self.theta), math.log(end, self.theta), self.dim // 6, device=hidden_states.device, dtype=torch.float32, ) freqs = freqs * math.pi / 2.0 freqs = freqs * (grid.unsqueeze(-1) * 2 - 1) freqs = freqs.transpose(-1, -2).flatten(2) cos_freqs = freqs.cos().repeat_interleave(2, dim=-1) sin_freqs = freqs.sin().repeat_interleave(2, dim=-1) if self.dim % 6 != 0: cos_padding = torch.ones_like(cos_freqs[:, :, : self.dim % 6]) sin_padding = torch.zeros_like(cos_freqs[:, :, : self.dim % 6]) cos_freqs = torch.cat([cos_padding, cos_freqs], dim=-1) sin_freqs = torch.cat([sin_padding, sin_freqs], dim=-1) return cos_freqs, sin_freqs
1,117
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
class LTXVideoTransformerBlock(nn.Module): r""" Transformer block used in [LTX](https://huggingface.co/Lightricks/LTX-Video). Args: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. qk_norm (`str`, defaults to `"rms_norm"`): The normalization layer to use. activation_fn (`str`, defaults to `"gelu-approximate"`): Activation function to use in feed-forward. eps (`float`, defaults to `1e-6`): Epsilon value for normalization layers. """
1,118
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, cross_attention_dim: int, qk_norm: str = "rms_norm_across_heads", activation_fn: str = "gelu-approximate", attention_bias: bool = True, attention_out_bias: bool = True, eps: float = 1e-6, elementwise_affine: bool = False, ): super().__init__() self.norm1 = RMSNorm(dim, eps=eps, elementwise_affine=elementwise_affine) self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, kv_heads=num_attention_heads, dim_head=attention_head_dim, bias=attention_bias, cross_attention_dim=None, out_bias=attention_out_bias, qk_norm=qk_norm, processor=LTXVideoAttentionProcessor2_0(), )
1,118
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
self.norm2 = RMSNorm(dim, eps=eps, elementwise_affine=elementwise_affine) self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, kv_heads=num_attention_heads, dim_head=attention_head_dim, bias=attention_bias, out_bias=attention_out_bias, qk_norm=qk_norm, processor=LTXVideoAttentionProcessor2_0(), ) self.ff = FeedForward(dim, activation_fn=activation_fn) self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
1,118
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, encoder_attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: batch_size = hidden_states.size(0) norm_hidden_states = self.norm1(hidden_states) num_ada_params = self.scale_shift_table.shape[0] ada_values = self.scale_shift_table[None, None] + temb.reshape(batch_size, temb.size(1), num_ada_params, -1) shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ada_values.unbind(dim=2) norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa attn_hidden_states = self.attn1( hidden_states=norm_hidden_states, encoder_hidden_states=None, image_rotary_emb=image_rotary_emb, ) hidden_states = hidden_states + attn_hidden_states * gate_msa
1,118
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
attn_hidden_states = self.attn2( hidden_states, encoder_hidden_states=encoder_hidden_states, image_rotary_emb=None, attention_mask=encoder_attention_mask, ) hidden_states = hidden_states + attn_hidden_states norm_hidden_states = self.norm2(hidden_states) * (1 + scale_mlp) + shift_mlp ff_output = self.ff(norm_hidden_states) hidden_states = hidden_states + ff_output * gate_mlp return hidden_states
1,118
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
class LTXVideoTransformer3DModel(ModelMixin, ConfigMixin, FromOriginalModelMixin, PeftAdapterMixin): r""" A Transformer model for video-like data used in [LTX](https://huggingface.co/Lightricks/LTX-Video).
1,119
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
Args: in_channels (`int`, defaults to `128`): The number of channels in the input. out_channels (`int`, defaults to `128`): The number of channels in the output. patch_size (`int`, defaults to `1`): The size of the spatial patches to use in the patch embedding layer. patch_size_t (`int`, defaults to `1`): The size of the tmeporal patches to use in the patch embedding layer. num_attention_heads (`int`, defaults to `32`): The number of heads to use for multi-head attention. attention_head_dim (`int`, defaults to `64`): The number of channels in each head. cross_attention_dim (`int`, defaults to `2048 `): The number of channels for cross attention heads. num_layers (`int`, defaults to `28`): The number of layers of Transformer blocks to use. activation_fn (`str`, defaults to `"gelu-approximate"`):
1,119
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
Activation function to use in feed-forward. qk_norm (`str`, defaults to `"rms_norm_across_heads"`): The normalization layer to use. """
1,119
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
_supports_gradient_checkpointing = True @register_to_config def __init__( self, in_channels: int = 128, out_channels: int = 128, patch_size: int = 1, patch_size_t: int = 1, num_attention_heads: int = 32, attention_head_dim: int = 64, cross_attention_dim: int = 2048, num_layers: int = 28, activation_fn: str = "gelu-approximate", qk_norm: str = "rms_norm_across_heads", norm_elementwise_affine: bool = False, norm_eps: float = 1e-6, caption_channels: int = 4096, attention_bias: bool = True, attention_out_bias: bool = True, ) -> None: super().__init__() out_channels = out_channels or in_channels inner_dim = num_attention_heads * attention_head_dim self.proj_in = nn.Linear(in_channels, inner_dim)
1,119
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5) self.time_embed = AdaLayerNormSingle(inner_dim, use_additional_conditions=False) self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim) self.rope = LTXVideoRotaryPosEmbed( dim=inner_dim, base_num_frames=20, base_height=2048, base_width=2048, patch_size=patch_size, patch_size_t=patch_size_t, theta=10000.0, )
1,119
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
self.transformer_blocks = nn.ModuleList( [ LTXVideoTransformerBlock( dim=inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, cross_attention_dim=cross_attention_dim, qk_norm=qk_norm, activation_fn=activation_fn, attention_bias=attention_bias, attention_out_bias=attention_out_bias, eps=norm_eps, elementwise_affine=norm_elementwise_affine, ) for _ in range(num_layers) ] ) self.norm_out = nn.LayerNorm(inner_dim, eps=1e-6, elementwise_affine=False) self.proj_out = nn.Linear(inner_dim, out_channels) self.gradient_checkpointing = False
1,119
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, timestep: torch.LongTensor, encoder_attention_mask: torch.Tensor, num_frames: int, height: int, width: int, rope_interpolation_scale: Optional[Tuple[float, float, float]] = None, attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ) -> torch.Tensor: if attention_kwargs is not None: attention_kwargs = attention_kwargs.copy() lora_scale = attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0
1,119
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: logger.warning( "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." ) image_rotary_emb = self.rope(hidden_states, num_frames, height, width, rope_interpolation_scale) # convert encoder_attention_mask to a bias the same way we do for attention_mask if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 encoder_attention_mask = encoder_attention_mask.unsqueeze(1) batch_size = hidden_states.size(0) hidden_states = self.proj_in(hidden_states)
1,119
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
temb, embedded_timestep = self.time_embed( timestep.flatten(), batch_size=batch_size, hidden_dtype=hidden_states.dtype, ) temb = temb.view(batch_size, -1, temb.size(-1)) embedded_timestep = embedded_timestep.view(batch_size, -1, embedded_timestep.size(-1)) encoder_hidden_states = self.caption_projection(encoder_hidden_states) encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.size(-1)) for block in self.transformer_blocks: if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward
1,119
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, temb, image_rotary_emb, encoder_attention_mask, **ckpt_kwargs, ) else: hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, image_rotary_emb=image_rotary_emb, encoder_attention_mask=encoder_attention_mask, ) scale_shift_values = self.scale_shift_table[None, None] + embedded_timestep[:, :, None] shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
1,119
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
hidden_states = self.norm_out(hidden_states) hidden_states = hidden_states * (1 + scale) + shift output = self.proj_out(hidden_states) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)
1,119
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
class LatteTransformer3DModel(ModelMixin, ConfigMixin): _supports_gradient_checkpointing = True """ A 3D Transformer model for video-like data, paper: https://arxiv.org/abs/2401.03048, offical code: https://github.com/Vchitect/Latte
1,120
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/latte_transformer_3d.py
Parameters: num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. in_channels (`int`, *optional*): The number of channels in the input. out_channels (`int`, *optional*): The number of channels in the output. num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. attention_bias (`bool`, *optional*): Configure if the `TransformerBlocks` attention should contain a bias parameter. sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
1,120
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/latte_transformer_3d.py
This is fixed during training since it is used to learn a number of position embeddings. patch_size (`int`, *optional*): The size of the patches to use in the patch embedding layer. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. num_embeds_ada_norm ( `int`, *optional*): The number of diffusion steps used during training. Pass if at least one of the norm_layers is `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`. norm_type (`str`, *optional*, defaults to `"layer_norm"`): The type of normalization to use. Options are `"layer_norm"` or `"ada_layer_norm"`. norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
1,120
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/latte_transformer_3d.py
Whether or not to use elementwise affine in normalization layers. norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use in normalization layers. caption_channels (`int`, *optional*): The number of channels in the caption embeddings. video_length (`int`, *optional*): The number of frames in the video-like data. """
1,120
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/latte_transformer_3d.py
@register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, out_channels: Optional[int] = None, num_layers: int = 1, dropout: float = 0.0, cross_attention_dim: Optional[int] = None, attention_bias: bool = False, sample_size: int = 64, patch_size: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, norm_type: str = "layer_norm", norm_elementwise_affine: bool = True, norm_eps: float = 1e-5, caption_channels: int = None, video_length: int = 16, ): super().__init__() inner_dim = num_attention_heads * attention_head_dim # 1. Define input layers self.height = sample_size self.width = sample_size
1,120
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/latte_transformer_3d.py
interpolation_scale = self.config.sample_size // 64 interpolation_scale = max(interpolation_scale, 1) self.pos_embed = PatchEmbed( height=sample_size, width=sample_size, patch_size=patch_size, in_channels=in_channels, embed_dim=inner_dim, interpolation_scale=interpolation_scale, )
1,120
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/latte_transformer_3d.py
# 2. Define spatial transformers blocks self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, norm_type=norm_type, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps, ) for d in range(num_layers) ] )
1,120
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/latte_transformer_3d.py
# 3. Define temporal transformers blocks self.temporal_transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=None, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, norm_type=norm_type, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps, ) for d in range(num_layers) ] )
1,120
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/latte_transformer_3d.py
# 4. Define output layers self.out_channels = in_channels if out_channels is None else out_channels self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5) self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) # 5. Latte other blocks. self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=False) self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim) # define temporal positional embedding temp_pos_embed = get_1d_sincos_pos_embed_from_grid( inner_dim, torch.arange(0, video_length).unsqueeze(1), output_type="pt" ) # 1152 hidden size self.register_buffer("temp_pos_embed", temp_pos_embed.float().unsqueeze(0), persistent=False) self.gradient_checkpointing = False
1,120
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/latte_transformer_3d.py
def _set_gradient_checkpointing(self, module, value=False): self.gradient_checkpointing = value def forward( self, hidden_states: torch.Tensor, timestep: Optional[torch.LongTensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, enable_temporal_attentions: bool = True, return_dict: bool = True, ): """ The [`LatteTransformer3DModel`] forward method.
1,120
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/latte_transformer_3d.py
Args: hidden_states shape `(batch size, channel, num_frame, height, width)`: Input `hidden_states`. timestep ( `torch.LongTensor`, *optional*): Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention. encoder_attention_mask ( `torch.Tensor`, *optional*): Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: * Mask `(batcheight, sequence_length)` True = keep, False = discard. * Bias `(batcheight, 1, sequence_length)` 0 = keep, -10000 = discard.
1,120
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/latte_transformer_3d.py
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format above. This bias will be added to the cross-attention scores. enable_temporal_attentions: (`bool`, *optional*, defaults to `True`): Whether to enable temporal attentions. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """
1,120
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/latte_transformer_3d.py
# Reshape hidden states batch_size, channels, num_frame, height, width = hidden_states.shape # batch_size channels num_frame height width -> (batch_size * num_frame) channels height width hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape(-1, channels, height, width) # Input height, width = ( hidden_states.shape[-2] // self.config.patch_size, hidden_states.shape[-1] // self.config.patch_size, ) num_patches = height * width hidden_states = self.pos_embed(hidden_states) # alrady add positional embeddings added_cond_kwargs = {"resolution": None, "aspect_ratio": None} timestep, embedded_timestep = self.adaln_single( timestep, added_cond_kwargs=added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype )
1,120
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/latte_transformer_3d.py
# Prepare text embeddings for spatial block # batch_size num_tokens hidden_size -> (batch_size * num_frame) num_tokens hidden_size encoder_hidden_states = self.caption_projection(encoder_hidden_states) # 3 120 1152 encoder_hidden_states_spatial = encoder_hidden_states.repeat_interleave(num_frame, dim=0).view( -1, encoder_hidden_states.shape[-2], encoder_hidden_states.shape[-1] ) # Prepare timesteps for spatial and temporal block timestep_spatial = timestep.repeat_interleave(num_frame, dim=0).view(-1, timestep.shape[-1]) timestep_temp = timestep.repeat_interleave(num_patches, dim=0).view(-1, timestep.shape[-1])
1,120
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/latte_transformer_3d.py
# Spatial and temporal transformer blocks for i, (spatial_block, temp_block) in enumerate( zip(self.transformer_blocks, self.temporal_transformer_blocks) ): if torch.is_grad_enabled() and self.gradient_checkpointing: hidden_states = torch.utils.checkpoint.checkpoint( spatial_block, hidden_states, None, # attention_mask encoder_hidden_states_spatial, encoder_attention_mask, timestep_spatial, None, # cross_attention_kwargs None, # class_labels use_reentrant=False, ) else: hidden_states = spatial_block( hidden_states, None, # attention_mask encoder_hidden_states_spatial, encoder_attention_mask, timestep_spatial,
1,120
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/latte_transformer_3d.py
None, # cross_attention_kwargs None, # class_labels )
1,120
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/latte_transformer_3d.py
if enable_temporal_attentions: # (batch_size * num_frame) num_tokens hidden_size -> (batch_size * num_tokens) num_frame hidden_size hidden_states = hidden_states.reshape( batch_size, -1, hidden_states.shape[-2], hidden_states.shape[-1] ).permute(0, 2, 1, 3) hidden_states = hidden_states.reshape(-1, hidden_states.shape[-2], hidden_states.shape[-1]) if i == 0 and num_frame > 1: hidden_states = hidden_states + self.temp_pos_embed
1,120
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/latte_transformer_3d.py
if torch.is_grad_enabled() and self.gradient_checkpointing: hidden_states = torch.utils.checkpoint.checkpoint( temp_block, hidden_states, None, # attention_mask None, # encoder_hidden_states None, # encoder_attention_mask timestep_temp, None, # cross_attention_kwargs None, # class_labels use_reentrant=False, ) else: hidden_states = temp_block( hidden_states, None, # attention_mask None, # encoder_hidden_states None, # encoder_attention_mask timestep_temp, None, # cross_attention_kwargs None, # class_labels )
1,120
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/latte_transformer_3d.py
# (batch_size * num_tokens) num_frame hidden_size -> (batch_size * num_frame) num_tokens hidden_size hidden_states = hidden_states.reshape( batch_size, -1, hidden_states.shape[-2], hidden_states.shape[-1] ).permute(0, 2, 1, 3) hidden_states = hidden_states.reshape(-1, hidden_states.shape[-2], hidden_states.shape[-1]) embedded_timestep = embedded_timestep.repeat_interleave(num_frame, dim=0).view(-1, embedded_timestep.shape[-1]) shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) hidden_states = self.norm_out(hidden_states) # Modulation hidden_states = hidden_states * (1 + scale) + shift hidden_states = self.proj_out(hidden_states)
1,120
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/latte_transformer_3d.py
# unpatchify if self.adaln_single is None: height = width = int(hidden_states.shape[1] ** 0.5) hidden_states = hidden_states.reshape( shape=(-1, height, width, self.config.patch_size, self.config.patch_size, self.out_channels) ) hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) output = hidden_states.reshape( shape=(-1, self.out_channels, height * self.config.patch_size, width * self.config.patch_size) ) output = output.reshape(batch_size, -1, output.shape[-3], output.shape[-2], output.shape[-1]).permute( 0, 2, 1, 3, 4 ) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)
1,120
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/latte_transformer_3d.py
class GLUMBConv(nn.Module): def __init__( self, in_channels: int, out_channels: int, expand_ratio: float = 4, norm_type: Optional[str] = None, residual_connection: bool = True, ) -> None: super().__init__() hidden_channels = int(expand_ratio * in_channels) self.norm_type = norm_type self.residual_connection = residual_connection self.nonlinearity = nn.SiLU() self.conv_inverted = nn.Conv2d(in_channels, hidden_channels * 2, 1, 1, 0) self.conv_depth = nn.Conv2d(hidden_channels * 2, hidden_channels * 2, 3, 1, 1, groups=hidden_channels * 2) self.conv_point = nn.Conv2d(hidden_channels, out_channels, 1, 1, 0, bias=False) self.norm = None if norm_type == "rms_norm": self.norm = RMSNorm(out_channels, eps=1e-5, elementwise_affine=True, bias=True)
1,121
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if self.residual_connection: residual = hidden_states hidden_states = self.conv_inverted(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.conv_depth(hidden_states) hidden_states, gate = torch.chunk(hidden_states, 2, dim=1) hidden_states = hidden_states * self.nonlinearity(gate) hidden_states = self.conv_point(hidden_states) if self.norm_type == "rms_norm": # move channel to the last dimension so we apply RMSnorm across channel dimension hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1) if self.residual_connection: hidden_states = hidden_states + residual return hidden_states
1,121
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
class SanaTransformerBlock(nn.Module): r""" Transformer block introduced in [Sana](https://huggingface.co/papers/2410.10629). """ def __init__( self, dim: int = 2240, num_attention_heads: int = 70, attention_head_dim: int = 32, dropout: float = 0.0, num_cross_attention_heads: Optional[int] = 20, cross_attention_head_dim: Optional[int] = 112, cross_attention_dim: Optional[int] = 2240, attention_bias: bool = True, norm_elementwise_affine: bool = False, norm_eps: float = 1e-6, attention_out_bias: bool = True, mlp_ratio: float = 2.5, ) -> None: super().__init__()
1,122
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
# 1. Self Attention self.norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=norm_eps) self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=None, processor=SanaLinearAttnProcessor2_0(), ) # 2. Cross Attention if cross_attention_dim is not None: self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_cross_attention_heads, dim_head=cross_attention_head_dim, dropout=dropout, bias=True, out_bias=attention_out_bias, processor=AttnProcessor2_0(), )
1,122
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
# 3. Feed-forward self.ff = GLUMBConv(dim, dim, mlp_ratio, norm_type=None, residual_connection=False) self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, timestep: Optional[torch.LongTensor] = None, height: int = None, width: int = None, ) -> torch.Tensor: batch_size = hidden_states.shape[0] # 1. Modulation shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) ).chunk(6, dim=1)
1,122
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
# 2. Self Attention norm_hidden_states = self.norm1(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa norm_hidden_states = norm_hidden_states.to(hidden_states.dtype) attn_output = self.attn1(norm_hidden_states) hidden_states = hidden_states + gate_msa * attn_output # 3. Cross Attention if self.attn2 is not None: attn_output = self.attn2( hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) hidden_states = attn_output + hidden_states # 4. Feed-forward norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
1,122
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
norm_hidden_states = norm_hidden_states.unflatten(1, (height, width)).permute(0, 3, 1, 2) ff_output = self.ff(norm_hidden_states) ff_output = ff_output.flatten(2, 3).permute(0, 2, 1) hidden_states = hidden_states + gate_mlp * ff_output return hidden_states
1,122
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
class SanaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): r""" A 2D Transformer model introduced in [Sana](https://huggingface.co/papers/2410.10629) family of models.
1,123
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
Args: in_channels (`int`, defaults to `32`): The number of channels in the input. out_channels (`int`, *optional*, defaults to `32`): The number of channels in the output. num_attention_heads (`int`, defaults to `70`): The number of heads to use for multi-head attention. attention_head_dim (`int`, defaults to `32`): The number of channels in each head. num_layers (`int`, defaults to `20`): The number of layers of Transformer blocks to use. num_cross_attention_heads (`int`, *optional*, defaults to `20`): The number of heads to use for cross-attention. cross_attention_head_dim (`int`, *optional*, defaults to `112`): The number of channels in each head for cross-attention. cross_attention_dim (`int`, *optional*, defaults to `2240`): The number of channels in the cross-attention output. caption_channels (`int`, defaults to `2304`):
1,123
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
The number of channels in the caption embeddings. mlp_ratio (`float`, defaults to `2.5`): The expansion ratio to use in the GLUMBConv layer. dropout (`float`, defaults to `0.0`): The dropout probability. attention_bias (`bool`, defaults to `False`): Whether to use bias in the attention layer. sample_size (`int`, defaults to `32`): The base size of the input latent. patch_size (`int`, defaults to `1`): The size of the patches to use in the patch embedding layer. norm_elementwise_affine (`bool`, defaults to `False`): Whether to use elementwise affinity in the normalization layer. norm_eps (`float`, defaults to `1e-6`): The epsilon value for the normalization layer. """
1,123
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
_supports_gradient_checkpointing = True _no_split_modules = ["SanaTransformerBlock", "PatchEmbed"] @register_to_config def __init__( self, in_channels: int = 32, out_channels: Optional[int] = 32, num_attention_heads: int = 70, attention_head_dim: int = 32, num_layers: int = 20, num_cross_attention_heads: Optional[int] = 20, cross_attention_head_dim: Optional[int] = 112, cross_attention_dim: Optional[int] = 2240, caption_channels: int = 2304, mlp_ratio: float = 2.5, dropout: float = 0.0, attention_bias: bool = False, sample_size: int = 32, patch_size: int = 1, norm_elementwise_affine: bool = False, norm_eps: float = 1e-6, interpolation_scale: Optional[int] = None, ) -> None: super().__init__() out_channels = out_channels or in_channels inner_dim = num_attention_heads * attention_head_dim
1,123
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
# 1. Patch Embedding self.patch_embed = PatchEmbed( height=sample_size, width=sample_size, patch_size=patch_size, in_channels=in_channels, embed_dim=inner_dim, interpolation_scale=interpolation_scale, pos_embed_type="sincos" if interpolation_scale is not None else None, ) # 2. Additional condition embeddings self.time_embed = AdaLayerNormSingle(inner_dim) self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim) self.caption_norm = RMSNorm(inner_dim, eps=1e-5, elementwise_affine=True)
1,123
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
# 3. Transformer blocks self.transformer_blocks = nn.ModuleList( [ SanaTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, num_cross_attention_heads=num_cross_attention_heads, cross_attention_head_dim=cross_attention_head_dim, cross_attention_dim=cross_attention_dim, attention_bias=attention_bias, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps, mlp_ratio=mlp_ratio, ) for _ in range(num_layers) ] ) # 4. Output blocks self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
1,123
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels) self.gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {}
1,123
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention.
1,123
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." )
1,123
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor)
1,123
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, timestep: torch.LongTensor, encoder_attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ) -> Union[Tuple[torch.Tensor, ...], Transformer2DModelOutput]: if attention_kwargs is not None: attention_kwargs = attention_kwargs.copy() lora_scale = attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0
1,123
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: logger.warning( "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." )
1,123
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension. # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. # expects mask of shape: # [batch, key_tokens] # adds singleton query_tokens dimension: # [batch, 1, key_tokens] # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) if attention_mask is not None and attention_mask.ndim == 2: # assume that mask is expressed as: # (1 = keep, 0 = discard) # convert mask into a bias that can be added to attention scores:
1,123
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
# (keep = +0, discard = -10000.0) attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 attention_mask = attention_mask.unsqueeze(1)
1,123
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
# convert encoder_attention_mask to a bias the same way we do for attention_mask if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 encoder_attention_mask = encoder_attention_mask.unsqueeze(1) # 1. Input batch_size, num_channels, height, width = hidden_states.shape p = self.config.patch_size post_patch_height, post_patch_width = height // p, width // p hidden_states = self.patch_embed(hidden_states) timestep, embedded_timestep = self.time_embed( timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype ) encoder_hidden_states = self.caption_projection(encoder_hidden_states) encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) encoder_hidden_states = self.caption_norm(encoder_hidden_states)
1,123
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
# 2. Transformer blocks if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
1,123
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
for block in self.transformer_blocks: hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, timestep, post_patch_height, post_patch_width, **ckpt_kwargs, ) else: for block in self.transformer_blocks: hidden_states = block( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, timestep, post_patch_height, post_patch_width, )
1,123
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
# 3. Normalization shift, scale = ( self.scale_shift_table[None] + embedded_timestep[:, None].to(self.scale_shift_table.device) ).chunk(2, dim=1) hidden_states = self.norm_out(hidden_states) # 4. Modulation hidden_states = hidden_states * (1 + scale) + shift hidden_states = self.proj_out(hidden_states) # 5. Unpatchify hidden_states = hidden_states.reshape( batch_size, post_patch_height, post_patch_width, self.config.patch_size, self.config.patch_size, -1 ) hidden_states = hidden_states.permute(0, 5, 1, 3, 2, 4) output = hidden_states.reshape(batch_size, -1, post_patch_height * p, post_patch_width * p) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)
1,123
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
class AuraFlowPatchEmbed(nn.Module): def __init__( self, height=224, width=224, patch_size=16, in_channels=3, embed_dim=768, pos_embed_max_size=None, ): super().__init__() self.num_patches = (height // patch_size) * (width // patch_size) self.pos_embed_max_size = pos_embed_max_size self.proj = nn.Linear(patch_size * patch_size * in_channels, embed_dim) self.pos_embed = nn.Parameter(torch.randn(1, pos_embed_max_size, embed_dim) * 0.1) self.patch_size = patch_size self.height, self.width = height // patch_size, width // patch_size self.base_size = height // patch_size
1,124
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
def pe_selection_index_based_on_dim(self, h, w): # select subset of positional embedding based on H, W, where H, W is size of latent # PE will be viewed as 2d-grid, and H/p x W/p of the PE will be selected # because original input are in flattened format, we have to flatten this 2d grid as well. h_p, w_p = h // self.patch_size, w // self.patch_size original_pe_indexes = torch.arange(self.pos_embed.shape[1]) h_max, w_max = int(self.pos_embed_max_size**0.5), int(self.pos_embed_max_size**0.5) original_pe_indexes = original_pe_indexes.view(h_max, w_max) starth = h_max // 2 - h_p // 2 endh = starth + h_p startw = w_max // 2 - w_p // 2 endw = startw + w_p original_pe_indexes = original_pe_indexes[starth:endh, startw:endw] return original_pe_indexes.flatten()
1,124
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
def forward(self, latent): batch_size, num_channels, height, width = latent.size() latent = latent.view( batch_size, num_channels, height // self.patch_size, self.patch_size, width // self.patch_size, self.patch_size, ) latent = latent.permute(0, 2, 4, 1, 3, 5).flatten(-3).flatten(1, 2) latent = self.proj(latent) pe_index = self.pe_selection_index_based_on_dim(height, width) return latent + self.pos_embed[:, pe_index]
1,124
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
class AuraFlowFeedForward(nn.Module): def __init__(self, dim, hidden_dim=None) -> None: super().__init__() if hidden_dim is None: hidden_dim = 4 * dim final_hidden_dim = int(2 * hidden_dim / 3) final_hidden_dim = find_multiple(final_hidden_dim, 256) self.linear_1 = nn.Linear(dim, final_hidden_dim, bias=False) self.linear_2 = nn.Linear(dim, final_hidden_dim, bias=False) self.out_projection = nn.Linear(final_hidden_dim, dim, bias=False) def forward(self, x: torch.Tensor) -> torch.Tensor: x = F.silu(self.linear_1(x)) * self.linear_2(x) x = self.out_projection(x) return x
1,125
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
class AuraFlowPreFinalBlock(nn.Module): def __init__(self, embedding_dim: int, conditioning_embedding_dim: int): super().__init__() self.silu = nn.SiLU() self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=False) def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor: emb = self.linear(self.silu(conditioning_embedding).to(x.dtype)) scale, shift = torch.chunk(emb, 2, dim=1) x = x * (1 + scale)[:, None, :] + shift[:, None, :] return x
1,126
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
class AuraFlowSingleTransformerBlock(nn.Module): """Similar to `AuraFlowJointTransformerBlock` with a single DiT instead of an MMDiT.""" def __init__(self, dim, num_attention_heads, attention_head_dim): super().__init__() self.norm1 = AdaLayerNormZero(dim, bias=False, norm_type="fp32_layer_norm") processor = AuraFlowAttnProcessor2_0() self.attn = Attention( query_dim=dim, cross_attention_dim=None, dim_head=attention_head_dim, heads=num_attention_heads, qk_norm="fp32_layer_norm", out_dim=dim, bias=False, out_bias=False, processor=processor, ) self.norm2 = FP32LayerNorm(dim, elementwise_affine=False, bias=False) self.ff = AuraFlowFeedForward(dim, dim * 4) def forward(self, hidden_states: torch.FloatTensor, temb: torch.FloatTensor): residual = hidden_states
1,127
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
# Norm + Projection. norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) # Attention. attn_output = self.attn(hidden_states=norm_hidden_states) # Process attention outputs for the `hidden_states`. hidden_states = self.norm2(residual + gate_msa.unsqueeze(1) * attn_output) hidden_states = hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] ff_output = self.ff(hidden_states) hidden_states = gate_mlp.unsqueeze(1) * ff_output hidden_states = residual + hidden_states return hidden_states
1,127
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
class AuraFlowJointTransformerBlock(nn.Module): r""" Transformer block for Aura Flow. Similar to SD3 MMDiT. Differences (non-exhaustive): * QK Norm in the attention blocks * No bias in the attention blocks * Most LayerNorms are in FP32 Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. is_last (`bool`): Boolean to determine if this is the last block in the model. """ def __init__(self, dim, num_attention_heads, attention_head_dim): super().__init__() self.norm1 = AdaLayerNormZero(dim, bias=False, norm_type="fp32_layer_norm") self.norm1_context = AdaLayerNormZero(dim, bias=False, norm_type="fp32_layer_norm")
1,128
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
processor = AuraFlowAttnProcessor2_0() self.attn = Attention( query_dim=dim, cross_attention_dim=None, added_kv_proj_dim=dim, added_proj_bias=False, dim_head=attention_head_dim, heads=num_attention_heads, qk_norm="fp32_layer_norm", out_dim=dim, bias=False, out_bias=False, processor=processor, context_pre_only=False, ) self.norm2 = FP32LayerNorm(dim, elementwise_affine=False, bias=False) self.ff = AuraFlowFeedForward(dim, dim * 4) self.norm2_context = FP32LayerNorm(dim, elementwise_affine=False, bias=False) self.ff_context = AuraFlowFeedForward(dim, dim * 4) def forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor ): residual = hidden_states residual_context = encoder_hidden_states
1,128
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
# Norm + Projection. norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( encoder_hidden_states, emb=temb ) # Attention. attn_output, context_attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states ) # Process attention outputs for the `hidden_states`. hidden_states = self.norm2(residual + gate_msa.unsqueeze(1) * attn_output) hidden_states = hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] hidden_states = gate_mlp.unsqueeze(1) * self.ff(hidden_states) hidden_states = residual + hidden_states
1,128
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
# Process attention outputs for the `encoder_hidden_states`. encoder_hidden_states = self.norm2_context(residual_context + c_gate_msa.unsqueeze(1) * context_attn_output) encoder_hidden_states = encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] encoder_hidden_states = c_gate_mlp.unsqueeze(1) * self.ff_context(encoder_hidden_states) encoder_hidden_states = residual_context + encoder_hidden_states return encoder_hidden_states, hidden_states
1,128
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
class AuraFlowTransformer2DModel(ModelMixin, ConfigMixin, FromOriginalModelMixin): r""" A 2D Transformer model as introduced in AuraFlow (https://blog.fal.ai/auraflow/).
1,129
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
Parameters: sample_size (`int`): The width of the latent images. This is fixed during training since it is used to learn a number of position embeddings. patch_size (`int`): Patch size to turn the input data into small patches. in_channels (`int`, *optional*, defaults to 16): The number of channels in the input. num_mmdit_layers (`int`, *optional*, defaults to 4): The number of layers of MMDiT Transformer blocks to use. num_single_dit_layers (`int`, *optional*, defaults to 4): The number of layers of Transformer blocks to use. These blocks use concatenated image and text representations. attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention. joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
1,129
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
caption_projection_dim (`int`): Number of dimensions to use when projecting the `encoder_hidden_states`. out_channels (`int`, defaults to 16): Number of output channels. pos_embed_max_size (`int`, defaults to 4096): Maximum positions to embed from the image latents. """
1,129
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
_no_split_modules = ["AuraFlowJointTransformerBlock", "AuraFlowSingleTransformerBlock", "AuraFlowPatchEmbed"] _supports_gradient_checkpointing = True @register_to_config def __init__( self, sample_size: int = 64, patch_size: int = 2, in_channels: int = 4, num_mmdit_layers: int = 4, num_single_dit_layers: int = 32, attention_head_dim: int = 256, num_attention_heads: int = 12, joint_attention_dim: int = 2048, caption_projection_dim: int = 3072, out_channels: int = 4, pos_embed_max_size: int = 1024, ): super().__init__() default_out_channels = in_channels self.out_channels = out_channels if out_channels is not None else default_out_channels self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
1,129
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
self.pos_embed = AuraFlowPatchEmbed( height=self.config.sample_size, width=self.config.sample_size, patch_size=self.config.patch_size, in_channels=self.config.in_channels, embed_dim=self.inner_dim, pos_embed_max_size=pos_embed_max_size, ) self.context_embedder = nn.Linear( self.config.joint_attention_dim, self.config.caption_projection_dim, bias=False ) self.time_step_embed = Timesteps(num_channels=256, downscale_freq_shift=0, scale=1000, flip_sin_to_cos=True) self.time_step_proj = TimestepEmbedding(in_channels=256, time_embed_dim=self.inner_dim)
1,129
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
self.joint_transformer_blocks = nn.ModuleList( [ AuraFlowJointTransformerBlock( dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, attention_head_dim=self.config.attention_head_dim, ) for i in range(self.config.num_mmdit_layers) ] ) self.single_transformer_blocks = nn.ModuleList( [ AuraFlowSingleTransformerBlock( dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, attention_head_dim=self.config.attention_head_dim, ) for _ in range(self.config.num_single_dit_layers) ] ) self.norm_out = AuraFlowPreFinalBlock(self.inner_dim, self.inner_dim) self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=False)
1,129
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
# https://arxiv.org/abs/2309.16588 # prevents artifacts in the attention maps self.register_tokens = nn.Parameter(torch.randn(1, 8, self.inner_dim) * 0.02) self.gradient_checkpointing = False @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor()
1,129
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers.
1,129
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor"))
1,129
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedAuraFlowAttnProcessor2_0 def fuse_qkv_projections(self): """ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ self.original_attn_processors = None
1,129
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
for _, attn_processor in self.attn_processors.items(): if "Added" in str(attn_processor.__class__.__name__): raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") self.original_attn_processors = self.attn_processors for module in self.modules(): if isinstance(module, Attention): module.fuse_projections(fuse=True) self.set_attn_processor(FusedAuraFlowAttnProcessor2_0()) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections def unfuse_qkv_projections(self): """Disables the fused QKV projection if enabled. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ if self.original_attn_processors is not None: self.set_attn_processor(self.original_attn_processors)
1,129
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py