text
stringlengths 1
1.02k
| class_index
int64 0
1.38k
| source
stringclasses 431
values |
---|---|---|
ff_output = self.ff(norm_hidden_states)
ff_output = gate_mlp * ff_output
hidden_states = ff_output + hidden_states
# TODO(aryan): maybe following line is not required
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
return hidden_states | 1,104 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py |
class AllegroTransformer3DModel(ModelMixin, ConfigMixin):
_supports_gradient_checkpointing = True
"""
A 3D Transformer model for video-like data. | 1,105 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py |
Args:
patch_size (`int`, defaults to `2`):
The size of spatial patches to use in the patch embedding layer.
patch_size_t (`int`, defaults to `1`):
The size of temporal patches to use in the patch embedding layer.
num_attention_heads (`int`, defaults to `24`):
The number of heads to use for multi-head attention.
attention_head_dim (`int`, defaults to `96`):
The number of channels in each head.
in_channels (`int`, defaults to `4`):
The number of channels in the input.
out_channels (`int`, *optional*, defaults to `4`):
The number of channels in the output.
num_layers (`int`, defaults to `32`):
The number of layers of Transformer blocks to use.
dropout (`float`, defaults to `0.0`):
The dropout probability to use.
cross_attention_dim (`int`, defaults to `2304`):
The dimension of the cross attention features. | 1,105 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py |
attention_bias (`bool`, defaults to `True`):
Whether or not to use bias in the attention projection layers.
sample_height (`int`, defaults to `90`):
The height of the input latents.
sample_width (`int`, defaults to `160`):
The width of the input latents.
sample_frames (`int`, defaults to `22`):
The number of frames in the input latents.
activation_fn (`str`, defaults to `"gelu-approximate"`):
Activation function to use in feed-forward.
norm_elementwise_affine (`bool`, defaults to `False`):
Whether or not to use elementwise affine in normalization layers.
norm_eps (`float`, defaults to `1e-6`):
The epsilon value to use in normalization layers.
caption_channels (`int`, defaults to `4096`):
Number of channels to use for projecting the caption embeddings.
interpolation_scale_h (`float`, defaults to `2.0`): | 1,105 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py |
Scaling factor to apply in 3D positional embeddings across height dimension.
interpolation_scale_w (`float`, defaults to `2.0`):
Scaling factor to apply in 3D positional embeddings across width dimension.
interpolation_scale_t (`float`, defaults to `2.2`):
Scaling factor to apply in 3D positional embeddings across time dimension.
""" | 1,105 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py |
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
patch_size: int = 2,
patch_size_t: int = 1,
num_attention_heads: int = 24,
attention_head_dim: int = 96,
in_channels: int = 4,
out_channels: int = 4,
num_layers: int = 32,
dropout: float = 0.0,
cross_attention_dim: int = 2304,
attention_bias: bool = True,
sample_height: int = 90,
sample_width: int = 160,
sample_frames: int = 22,
activation_fn: str = "gelu-approximate",
norm_elementwise_affine: bool = False,
norm_eps: float = 1e-6,
caption_channels: int = 4096,
interpolation_scale_h: float = 2.0,
interpolation_scale_w: float = 2.0,
interpolation_scale_t: float = 2.2,
):
super().__init__()
self.inner_dim = num_attention_heads * attention_head_dim | 1,105 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py |
interpolation_scale_t = (
interpolation_scale_t
if interpolation_scale_t is not None
else ((sample_frames - 1) // 16 + 1)
if sample_frames % 2 == 1
else sample_frames // 16
)
interpolation_scale_h = interpolation_scale_h if interpolation_scale_h is not None else sample_height / 30
interpolation_scale_w = interpolation_scale_w if interpolation_scale_w is not None else sample_width / 40
# 1. Patch embedding
self.pos_embed = PatchEmbed(
height=sample_height,
width=sample_width,
patch_size=patch_size,
in_channels=in_channels,
embed_dim=self.inner_dim,
pos_embed_type=None,
) | 1,105 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py |
# 2. Transformer blocks
self.transformer_blocks = nn.ModuleList(
[
AllegroTransformerBlock(
self.inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
attention_bias=attention_bias,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
)
for _ in range(num_layers)
]
)
# 3. Output projection & norm
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * out_channels) | 1,105 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py |
# 4. Timestep embeddings
self.adaln_single = AdaLayerNormSingle(self.inner_dim, use_additional_conditions=False)
# 5. Caption projection
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=self.inner_dim)
self.gradient_checkpointing = False
def _set_gradient_checkpointing(self, module, value=False):
self.gradient_checkpointing = value
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
timestep: torch.LongTensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
return_dict: bool = True,
):
batch_size, num_channels, num_frames, height, width = hidden_states.shape
p_t = self.config.patch_size_t
p = self.config.patch_size | 1,105 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py |
post_patch_num_frames = num_frames // p_t
post_patch_height = height // p
post_patch_width = width // p | 1,105 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py |
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) attention_mask_vid, attention_mask_img = None, None
if attention_mask is not None and attention_mask.ndim == 4:
# assume that mask is expressed as:
# (1 = keep, 0 = discard) | 1,105 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py |
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
# b, frame+use_image_num, h, w -> a video with images
# b, 1, h, w -> only images
attention_mask = attention_mask.to(hidden_states.dtype)
attention_mask = attention_mask[:, :num_frames] # [batch_size, num_frames, height, width] | 1,105 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py |
if attention_mask.numel() > 0:
attention_mask = attention_mask.unsqueeze(1) # [batch_size, 1, num_frames, height, width]
attention_mask = F.max_pool3d(attention_mask, kernel_size=(p_t, p, p), stride=(p_t, p, p))
attention_mask = attention_mask.flatten(1).view(batch_size, 1, -1)
attention_mask = (
(1 - attention_mask.bool().to(hidden_states.dtype)) * -10000.0 if attention_mask.numel() > 0 else None
)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
encoder_attention_mask = (1 - encoder_attention_mask.to(self.dtype)) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
# 1. Timestep embeddings
timestep, embedded_timestep = self.adaln_single(
timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype
) | 1,105 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py |
# 2. Patch embeddings
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
hidden_states = self.pos_embed(hidden_states)
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).flatten(1, 2)
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, encoder_hidden_states.shape[-1])
# 3. Transformer blocks
for i, block in enumerate(self.transformer_blocks):
# TODO(aryan): Implement gradient checkpointing
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward | 1,105 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
timestep,
attention_mask,
encoder_attention_mask,
image_rotary_emb,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=timestep,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
image_rotary_emb=image_rotary_emb,
) | 1,105 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py |
# 4. Output normalization & projection
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
hidden_states = self.norm_out(hidden_states)
# Modulation
hidden_states = hidden_states * (1 + scale) + shift
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.squeeze(1)
# 5. Unpatchify
hidden_states = hidden_states.reshape(
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p, p, -1
)
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
output = hidden_states.reshape(batch_size, -1, num_frames, height, width)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output) | 1,105 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py |
class AdaLayerNormShift(nn.Module):
r"""
Norm layer modified to incorporate timestep embeddings.
Parameters:
embedding_dim (`int`): The size of each embedding vector.
num_embeddings (`int`): The size of the embeddings dictionary.
"""
def __init__(self, embedding_dim: int, elementwise_affine=True, eps=1e-6):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, embedding_dim)
self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=elementwise_affine, eps=eps)
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
shift = self.linear(self.silu(emb.to(torch.float32)).to(emb.dtype))
x = self.norm(x) + shift.unsqueeze(dim=1)
return x | 1,106 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
class HunyuanDiTBlock(nn.Module):
r"""
Transformer block used in Hunyuan-DiT model (https://github.com/Tencent/HunyuanDiT). Allow skip connection and
QKNorm | 1,107 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
Parameters:
dim (`int`):
The number of channels in the input and output.
num_attention_heads (`int`):
The number of headsto use for multi-head attention.
cross_attention_dim (`int`,*optional*):
The size of the encoder_hidden_states vector for cross attention.
dropout(`float`, *optional*, defaults to 0.0):
The dropout probability to use.
activation_fn (`str`,*optional*, defaults to `"geglu"`):
Activation function to be used in feed-forward. .
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
Whether to use learnable elementwise affine parameters for normalization.
norm_eps (`float`, *optional*, defaults to 1e-6):
A small constant added to the denominator in normalization layers to prevent division by zero.
final_dropout (`bool` *optional*, defaults to False):
Whether to apply a final dropout after the last feed-forward layer. | 1,107 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
ff_inner_dim (`int`, *optional*):
The size of the hidden layer in the feed-forward block. Defaults to `None`.
ff_bias (`bool`, *optional*, defaults to `True`):
Whether to use bias in the feed-forward block.
skip (`bool`, *optional*, defaults to `False`):
Whether to use skip connection. Defaults to `False` for down-blocks and mid-blocks.
qk_norm (`bool`, *optional*, defaults to `True`):
Whether to use normalization in QK calculation. Defaults to `True`.
""" | 1,107 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
def __init__(
self,
dim: int,
num_attention_heads: int,
cross_attention_dim: int = 1024,
dropout=0.0,
activation_fn: str = "geglu",
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-6,
final_dropout: bool = False,
ff_inner_dim: Optional[int] = None,
ff_bias: bool = True,
skip: bool = False,
qk_norm: bool = True,
):
super().__init__()
# Define 3 blocks. Each block has its own normalization layer.
# NOTE: when new version comes, check norm2 and norm 3
# 1. Self-Attn
self.norm1 = AdaLayerNormShift(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | 1,107 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
self.attn1 = Attention(
query_dim=dim,
cross_attention_dim=None,
dim_head=dim // num_attention_heads,
heads=num_attention_heads,
qk_norm="layer_norm" if qk_norm else None,
eps=1e-6,
bias=True,
processor=HunyuanAttnProcessor2_0(),
)
# 2. Cross-Attn
self.norm2 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
dim_head=dim // num_attention_heads,
heads=num_attention_heads,
qk_norm="layer_norm" if qk_norm else None,
eps=1e-6,
bias=True,
processor=HunyuanAttnProcessor2_0(),
)
# 3. Feed-forward
self.norm3 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) | 1,107 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
self.ff = FeedForward(
dim,
dropout=dropout, ### 0.0
activation_fn=activation_fn, ### approx GeLU
final_dropout=final_dropout, ### 0.0
inner_dim=ff_inner_dim, ### int(dim * mlp_ratio)
bias=ff_bias,
)
# 4. Skip Connection
if skip:
self.skip_norm = FP32LayerNorm(2 * dim, norm_eps, elementwise_affine=True)
self.skip_linear = nn.Linear(2 * dim, dim)
else:
self.skip_linear = None
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
# Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
# Sets chunk feed-forward
self._chunk_size = chunk_size
self._chunk_dim = dim | 1,107 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
image_rotary_emb=None,
skip=None,
) -> torch.Tensor:
# Notice that normalization is always applied before the real computation in the following blocks.
# 0. Long Skip Connection
if self.skip_linear is not None:
cat = torch.cat([hidden_states, skip], dim=-1)
cat = self.skip_norm(cat)
hidden_states = self.skip_linear(cat)
# 1. Self-Attention
norm_hidden_states = self.norm1(hidden_states, temb) ### checked: self.norm1 is correct
attn_output = self.attn1(
norm_hidden_states,
image_rotary_emb=image_rotary_emb,
)
hidden_states = hidden_states + attn_output | 1,107 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
# 2. Cross-Attention
hidden_states = hidden_states + self.attn2(
self.norm2(hidden_states),
encoder_hidden_states=encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
)
# FFN Layer ### TODO: switch norm2 and norm3 in the state dict
mlp_inputs = self.norm3(hidden_states)
hidden_states = hidden_states + self.ff(mlp_inputs)
return hidden_states | 1,107 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
class HunyuanDiT2DModel(ModelMixin, ConfigMixin):
"""
HunYuanDiT: Diffusion model with a Transformer backbone.
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers. | 1,108 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
Parameters:
num_attention_heads (`int`, *optional*, defaults to 16):
The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 88):
The number of channels in each head.
in_channels (`int`, *optional*):
The number of channels in the input and output (specify if the input is **continuous**).
patch_size (`int`, *optional*):
The size of the patch to use for the input.
activation_fn (`str`, *optional*, defaults to `"geglu"`):
Activation function to use in feed-forward.
sample_size (`int`, *optional*):
The width of the latent images. This is fixed during training since it is used to learn a number of
position embeddings.
dropout (`float`, *optional*, defaults to 0.0):
The dropout probability to use.
cross_attention_dim (`int`, *optional*):
The number of dimension in the clip text embedding. | 1,108 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
hidden_size (`int`, *optional*):
The size of hidden layer in the conditioning embedding layers.
num_layers (`int`, *optional*, defaults to 1):
The number of layers of Transformer blocks to use.
mlp_ratio (`float`, *optional*, defaults to 4.0):
The ratio of the hidden layer size to the input size.
learn_sigma (`bool`, *optional*, defaults to `True`):
Whether to predict variance.
cross_attention_dim_t5 (`int`, *optional*):
The number dimensions in t5 text embedding.
pooled_projection_dim (`int`, *optional*):
The size of the pooled projection.
text_len (`int`, *optional*):
The length of the clip text embedding.
text_len_t5 (`int`, *optional*):
The length of the T5 text embedding.
use_style_cond_and_image_meta_size (`bool`, *optional*): | 1,108 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
Whether or not to use style condition and image meta size. True for version <=1.1, False for version >= 1.2
""" | 1,108 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
patch_size: Optional[int] = None,
activation_fn: str = "gelu-approximate",
sample_size=32,
hidden_size=1152,
num_layers: int = 28,
mlp_ratio: float = 4.0,
learn_sigma: bool = True,
cross_attention_dim: int = 1024,
norm_type: str = "layer_norm",
cross_attention_dim_t5: int = 2048,
pooled_projection_dim: int = 1024,
text_len: int = 77,
text_len_t5: int = 256,
use_style_cond_and_image_meta_size: bool = True,
):
super().__init__()
self.out_channels = in_channels * 2 if learn_sigma else in_channels
self.num_heads = num_attention_heads
self.inner_dim = num_attention_heads * attention_head_dim | 1,108 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
self.text_embedder = PixArtAlphaTextProjection(
in_features=cross_attention_dim_t5,
hidden_size=cross_attention_dim_t5 * 4,
out_features=cross_attention_dim,
act_fn="silu_fp32",
)
self.text_embedding_padding = nn.Parameter(
torch.randn(text_len + text_len_t5, cross_attention_dim, dtype=torch.float32)
)
self.pos_embed = PatchEmbed(
height=sample_size,
width=sample_size,
in_channels=in_channels,
embed_dim=hidden_size,
patch_size=patch_size,
pos_embed_type=None,
)
self.time_extra_emb = HunyuanCombinedTimestepTextSizeStyleEmbedding(
hidden_size,
pooled_projection_dim=pooled_projection_dim,
seq_len=text_len_t5,
cross_attention_dim=cross_attention_dim_t5,
use_style_cond_and_image_meta_size=use_style_cond_and_image_meta_size,
) | 1,108 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
# HunyuanDiT Blocks
self.blocks = nn.ModuleList(
[
HunyuanDiTBlock(
dim=self.inner_dim,
num_attention_heads=self.config.num_attention_heads,
activation_fn=activation_fn,
ff_inner_dim=int(self.inner_dim * mlp_ratio),
cross_attention_dim=cross_attention_dim,
qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details.
skip=layer > num_layers // 2,
)
for layer in range(num_layers)
]
)
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) | 1,108 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedHunyuanAttnProcessor2_0
def fuse_qkv_projections(self):
"""
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
are fused. For cross-attention modules, key and value projection matrices are fused.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
self.original_attn_processors = None
for _, attn_processor in self.attn_processors.items():
if "Added" in str(attn_processor.__class__.__name__):
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
self.original_attn_processors = self.attn_processors
for module in self.modules():
if isinstance(module, Attention):
module.fuse_projections(fuse=True) | 1,108 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
self.set_attn_processor(FusedHunyuanAttnProcessor2_0())
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
def unfuse_qkv_projections(self):
"""Disables the fused QKV projection if enabled.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
if self.original_attn_processors is not None:
self.set_attn_processor(self.original_attn_processors)
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {} | 1,108 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention. | 1,108 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
) | 1,108 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
self.set_attn_processor(HunyuanAttnProcessor2_0()) | 1,108 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
def forward(
self,
hidden_states,
timestep,
encoder_hidden_states=None,
text_embedding_mask=None,
encoder_hidden_states_t5=None,
text_embedding_mask_t5=None,
image_meta_size=None,
style=None,
image_rotary_emb=None,
controlnet_block_samples=None,
return_dict=True,
):
"""
The [`HunyuanDiT2DModel`] forward method. | 1,108 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
Args:
hidden_states (`torch.Tensor` of shape `(batch size, dim, height, width)`):
The input tensor.
timestep ( `torch.LongTensor`, *optional*):
Used to indicate denoising step.
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer. This is the output of `BertModel`.
text_embedding_mask: torch.Tensor
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output
of `BertModel`.
encoder_hidden_states_t5 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer. This is the output of T5 Text Encoder.
text_embedding_mask_t5: torch.Tensor
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output | 1,108 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
of T5 Text Encoder.
image_meta_size (torch.Tensor):
Conditional embedding indicate the image sizes
style: torch.Tensor:
Conditional embedding indicate the style
image_rotary_emb (`torch.Tensor`):
The image rotary embeddings to apply on query and key tensors during attention calculation.
return_dict: bool
Whether to return a dictionary.
""" | 1,108 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
height, width = hidden_states.shape[-2:]
hidden_states = self.pos_embed(hidden_states)
temb = self.time_extra_emb(
timestep, encoder_hidden_states_t5, image_meta_size, style, hidden_dtype=timestep.dtype
) # [B, D]
# text projection
batch_size, sequence_length, _ = encoder_hidden_states_t5.shape
encoder_hidden_states_t5 = self.text_embedder(
encoder_hidden_states_t5.view(-1, encoder_hidden_states_t5.shape[-1])
)
encoder_hidden_states_t5 = encoder_hidden_states_t5.view(batch_size, sequence_length, -1)
encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=1)
text_embedding_mask = torch.cat([text_embedding_mask, text_embedding_mask_t5], dim=-1)
text_embedding_mask = text_embedding_mask.unsqueeze(2).bool()
encoder_hidden_states = torch.where(text_embedding_mask, encoder_hidden_states, self.text_embedding_padding) | 1,108 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
skips = []
for layer, block in enumerate(self.blocks):
if layer > self.config.num_layers // 2:
if controlnet_block_samples is not None:
skip = skips.pop() + controlnet_block_samples.pop()
else:
skip = skips.pop()
hidden_states = block(
hidden_states,
temb=temb,
encoder_hidden_states=encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
skip=skip,
) # (N, L, D)
else:
hidden_states = block(
hidden_states,
temb=temb,
encoder_hidden_states=encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
) # (N, L, D)
if layer < (self.config.num_layers // 2 - 1):
skips.append(hidden_states) | 1,108 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
if controlnet_block_samples is not None and len(controlnet_block_samples) != 0:
raise ValueError("The number of controls is not equal to the number of skip connections.")
# final layer
hidden_states = self.norm_out(hidden_states, temb.to(torch.float32))
hidden_states = self.proj_out(hidden_states)
# (N, L, patch_size ** 2 * out_channels)
# unpatchify: (N, out_channels, H, W)
patch_size = self.pos_embed.patch_size
height = height // patch_size
width = width // patch_size | 1,108 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
hidden_states = hidden_states.reshape(
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)
)
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
output = hidden_states.reshape(
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
"""
Sets the attention processor to use [feed forward
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). | 1,108 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
Parameters:
chunk_size (`int`, *optional*):
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
over each tensor of dim=`dim`.
dim (`int`, *optional*, defaults to `0`):
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
or dim=1 (sequence length).
"""
if dim not in [0, 1]:
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
# By default chunk size is 1
chunk_size = chunk_size or 1
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
if hasattr(module, "set_chunk_feed_forward"):
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
for child in module.children():
fn_recursive_feed_forward(child, chunk_size, dim) | 1,108 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
for module in self.children():
fn_recursive_feed_forward(module, chunk_size, dim)
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking
def disable_forward_chunking(self):
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
if hasattr(module, "set_chunk_feed_forward"):
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
for child in module.children():
fn_recursive_feed_forward(child, chunk_size, dim)
for module in self.children():
fn_recursive_feed_forward(module, None, 0) | 1,108 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py |
class LuminaNextDiTBlock(nn.Module):
"""
A LuminaNextDiTBlock for LuminaNextDiT2DModel.
Parameters:
dim (`int`): Embedding dimension of the input features.
num_attention_heads (`int`): Number of attention heads.
num_kv_heads (`int`):
Number of attention heads in key and value features (if using GQA), or set to None for the same as query.
multiple_of (`int`): The number of multiple of ffn layer.
ffn_dim_multiplier (`float`): The multipier factor of ffn layer dimension.
norm_eps (`float`): The eps for norm layer.
qk_norm (`bool`): normalization for query and key.
cross_attention_dim (`int`): Cross attention embedding dimension of the input text prompt hidden_states.
norm_elementwise_affine (`bool`, *optional*, defaults to True),
""" | 1,109 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/lumina_nextdit2d.py |
def __init__(
self,
dim: int,
num_attention_heads: int,
num_kv_heads: int,
multiple_of: int,
ffn_dim_multiplier: float,
norm_eps: float,
qk_norm: bool,
cross_attention_dim: int,
norm_elementwise_affine: bool = True,
) -> None:
super().__init__()
self.head_dim = dim // num_attention_heads
self.gate = nn.Parameter(torch.zeros([num_attention_heads]))
# Self-attention
self.attn1 = Attention(
query_dim=dim,
cross_attention_dim=None,
dim_head=dim // num_attention_heads,
qk_norm="layer_norm_across_heads" if qk_norm else None,
heads=num_attention_heads,
kv_heads=num_kv_heads,
eps=1e-5,
bias=False,
out_bias=False,
processor=LuminaAttnProcessor2_0(),
)
self.attn1.to_out = nn.Identity() | 1,109 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/lumina_nextdit2d.py |
# Cross-attention
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
dim_head=dim // num_attention_heads,
qk_norm="layer_norm_across_heads" if qk_norm else None,
heads=num_attention_heads,
kv_heads=num_kv_heads,
eps=1e-5,
bias=False,
out_bias=False,
processor=LuminaAttnProcessor2_0(),
)
self.feed_forward = LuminaFeedForward(
dim=dim,
inner_dim=4 * dim,
multiple_of=multiple_of,
ffn_dim_multiplier=ffn_dim_multiplier,
)
self.norm1 = LuminaRMSNormZero(
embedding_dim=dim,
norm_eps=norm_eps,
norm_elementwise_affine=norm_elementwise_affine,
)
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) | 1,109 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/lumina_nextdit2d.py |
self.norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
self.norm1_context = RMSNorm(cross_attention_dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
image_rotary_emb: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_mask: torch.Tensor,
temb: torch.Tensor,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
):
"""
Perform a forward pass through the LuminaNextDiTBlock. | 1,109 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/lumina_nextdit2d.py |
Parameters:
hidden_states (`torch.Tensor`): The input of hidden_states for LuminaNextDiTBlock.
attention_mask (`torch.Tensor): The input of hidden_states corresponse attention mask.
image_rotary_emb (`torch.Tensor`): Precomputed cosine and sine frequencies.
encoder_hidden_states: (`torch.Tensor`): The hidden_states of text prompt are processed by Gemma encoder.
encoder_mask (`torch.Tensor`): The hidden_states of text prompt attention mask.
temb (`torch.Tensor`): Timestep embedding with text prompt embedding.
cross_attention_kwargs (`Dict[str, Any]`): kwargs for cross attention.
"""
residual = hidden_states | 1,109 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/lumina_nextdit2d.py |
# Self-attention
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
self_attn_output = self.attn1(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_hidden_states,
attention_mask=attention_mask,
query_rotary_emb=image_rotary_emb,
key_rotary_emb=image_rotary_emb,
**cross_attention_kwargs,
) | 1,109 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/lumina_nextdit2d.py |
# Cross-attention
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states)
cross_attn_output = self.attn2(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
attention_mask=encoder_mask,
query_rotary_emb=image_rotary_emb,
key_rotary_emb=None,
**cross_attention_kwargs,
)
cross_attn_output = cross_attn_output * self.gate.tanh().view(1, 1, -1, 1)
mixed_attn_output = self_attn_output + cross_attn_output
mixed_attn_output = mixed_attn_output.flatten(-2)
# linear proj
hidden_states = self.attn2.to_out[0](mixed_attn_output)
hidden_states = residual + gate_msa.unsqueeze(1).tanh() * self.norm2(hidden_states)
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1)))
hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output) | 1,109 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/lumina_nextdit2d.py |
return hidden_states | 1,109 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/lumina_nextdit2d.py |
class LuminaNextDiT2DModel(ModelMixin, ConfigMixin):
"""
LuminaNextDiT: Diffusion model with a Transformer backbone.
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers. | 1,110 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/lumina_nextdit2d.py |
Parameters:
sample_size (`int`): The width of the latent images. This is fixed during training since
it is used to learn a number of position embeddings.
patch_size (`int`, *optional*, (`int`, *optional*, defaults to 2):
The size of each patch in the image. This parameter defines the resolution of patches fed into the model.
in_channels (`int`, *optional*, defaults to 4):
The number of input channels for the model. Typically, this matches the number of channels in the input
images.
hidden_size (`int`, *optional*, defaults to 4096):
The dimensionality of the hidden layers in the model. This parameter determines the width of the model's
hidden representations.
num_layers (`int`, *optional*, default to 32):
The number of layers in the model. This defines the depth of the neural network.
num_attention_heads (`int`, *optional*, defaults to 32): | 1,110 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/lumina_nextdit2d.py |
The number of attention heads in each attention layer. This parameter specifies how many separate attention
mechanisms are used.
num_kv_heads (`int`, *optional*, defaults to 8):
The number of key-value heads in the attention mechanism, if different from the number of attention heads.
If None, it defaults to num_attention_heads.
multiple_of (`int`, *optional*, defaults to 256):
A factor that the hidden size should be a multiple of. This can help optimize certain hardware
configurations.
ffn_dim_multiplier (`float`, *optional*):
A multiplier for the dimensionality of the feed-forward network. If None, it uses a default value based on
the model configuration.
norm_eps (`float`, *optional*, defaults to 1e-5):
A small value added to the denominator for numerical stability in normalization layers.
learn_sigma (`bool`, *optional*, defaults to True): | 1,110 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/lumina_nextdit2d.py |
Whether the model should learn the sigma parameter, which might be related to uncertainty or variance in
predictions.
qk_norm (`bool`, *optional*, defaults to True):
Indicates if the queries and keys in the attention mechanism should be normalized.
cross_attention_dim (`int`, *optional*, defaults to 2048):
The dimensionality of the text embeddings. This parameter defines the size of the text representations used
in the model.
scaling_factor (`float`, *optional*, defaults to 1.0):
A scaling factor applied to certain parameters or layers in the model. This can be used for adjusting the
overall scale of the model's operations.
""" | 1,110 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/lumina_nextdit2d.py |
@register_to_config
def __init__(
self,
sample_size: int = 128,
patch_size: Optional[int] = 2,
in_channels: Optional[int] = 4,
hidden_size: Optional[int] = 2304,
num_layers: Optional[int] = 32,
num_attention_heads: Optional[int] = 32,
num_kv_heads: Optional[int] = None,
multiple_of: Optional[int] = 256,
ffn_dim_multiplier: Optional[float] = None,
norm_eps: Optional[float] = 1e-5,
learn_sigma: Optional[bool] = True,
qk_norm: Optional[bool] = True,
cross_attention_dim: Optional[int] = 2048,
scaling_factor: Optional[float] = 1.0,
) -> None:
super().__init__()
self.sample_size = sample_size
self.patch_size = patch_size
self.in_channels = in_channels
self.out_channels = in_channels * 2 if learn_sigma else in_channels
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads | 1,110 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/lumina_nextdit2d.py |
self.head_dim = hidden_size // num_attention_heads
self.scaling_factor = scaling_factor | 1,110 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/lumina_nextdit2d.py |
self.patch_embedder = LuminaPatchEmbed(
patch_size=patch_size, in_channels=in_channels, embed_dim=hidden_size, bias=True
)
self.pad_token = nn.Parameter(torch.empty(hidden_size))
self.time_caption_embed = LuminaCombinedTimestepCaptionEmbedding(
hidden_size=min(hidden_size, 1024), cross_attention_dim=cross_attention_dim
) | 1,110 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/lumina_nextdit2d.py |
self.layers = nn.ModuleList(
[
LuminaNextDiTBlock(
hidden_size,
num_attention_heads,
num_kv_heads,
multiple_of,
ffn_dim_multiplier,
norm_eps,
qk_norm,
cross_attention_dim,
)
for _ in range(num_layers)
]
)
self.norm_out = LuminaLayerNormContinuous(
embedding_dim=hidden_size,
conditioning_embedding_dim=min(hidden_size, 1024),
elementwise_affine=False,
eps=1e-6,
bias=True,
out_dim=patch_size * patch_size * self.out_channels,
)
# self.final_layer = LuminaFinalLayer(hidden_size, patch_size, self.out_channels)
assert (hidden_size // num_attention_heads) % 4 == 0, "2d rope needs head dim to be divisible by 4" | 1,110 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/lumina_nextdit2d.py |
def forward(
self,
hidden_states: torch.Tensor,
timestep: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_mask: torch.Tensor,
image_rotary_emb: torch.Tensor,
cross_attention_kwargs: Dict[str, Any] = None,
return_dict=True,
) -> torch.Tensor:
"""
Forward pass of LuminaNextDiT.
Parameters:
hidden_states (torch.Tensor): Input tensor of shape (N, C, H, W).
timestep (torch.Tensor): Tensor of diffusion timesteps of shape (N,).
encoder_hidden_states (torch.Tensor): Tensor of caption features of shape (N, D).
encoder_mask (torch.Tensor): Tensor of caption masks of shape (N, L).
"""
hidden_states, mask, img_size, image_rotary_emb = self.patch_embedder(hidden_states, image_rotary_emb)
image_rotary_emb = image_rotary_emb.to(hidden_states.device)
temb = self.time_caption_embed(timestep, encoder_hidden_states, encoder_mask) | 1,110 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/lumina_nextdit2d.py |
encoder_mask = encoder_mask.bool()
for layer in self.layers:
hidden_states = layer(
hidden_states,
mask,
image_rotary_emb,
encoder_hidden_states,
encoder_mask,
temb=temb,
cross_attention_kwargs=cross_attention_kwargs,
)
hidden_states = self.norm_out(hidden_states, temb)
# unpatchify
height_tokens = width_tokens = self.patch_size
height, width = img_size[0]
batch_size = hidden_states.size(0)
sequence_length = (height // height_tokens) * (width // width_tokens)
hidden_states = hidden_states[:, :sequence_length].view(
batch_size, height // height_tokens, width // width_tokens, height_tokens, width_tokens, self.out_channels
)
output = hidden_states.permute(0, 5, 1, 3, 2, 4).flatten(4, 5).flatten(2, 3)
if not return_dict:
return (output,) | 1,110 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/lumina_nextdit2d.py |
return Transformer2DModelOutput(sample=output) | 1,110 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/lumina_nextdit2d.py |
class DiTTransformer2DModel(ModelMixin, ConfigMixin):
r"""
A 2D Transformer model as introduced in DiT (https://arxiv.org/abs/2212.09748). | 1,111 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dit_transformer_2d.py |
Parameters:
num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (int, optional, defaults to 72): The number of channels in each head.
in_channels (int, defaults to 4): The number of channels in the input.
out_channels (int, optional):
The number of channels in the output. Specify this parameter if the output channel number differs from the
input.
num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use.
dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks.
norm_num_groups (int, optional, defaults to 32):
Number of groups for group normalization within Transformer blocks.
attention_bias (bool, optional, defaults to True):
Configure if the Transformer blocks' attention should contain a bias parameter. | 1,111 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dit_transformer_2d.py |
sample_size (int, defaults to 32):
The width of the latent images. This parameter is fixed during training.
patch_size (int, defaults to 2):
Size of the patches the model processes, relevant for architectures working on non-sequential data.
activation_fn (str, optional, defaults to "gelu-approximate"):
Activation function to use in feed-forward networks within Transformer blocks.
num_embeds_ada_norm (int, optional, defaults to 1000):
Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during
inference.
upcast_attention (bool, optional, defaults to False):
If true, upcasts the attention mechanism dimensions for potentially improved performance.
norm_type (str, optional, defaults to "ada_norm_zero"):
Specifies the type of normalization used, can be 'ada_norm_zero'.
norm_elementwise_affine (bool, optional, defaults to False): | 1,111 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dit_transformer_2d.py |
If true, enables element-wise affine parameters in the normalization layers.
norm_eps (float, optional, defaults to 1e-5):
A small constant added to the denominator in normalization layers to prevent division by zero.
""" | 1,111 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dit_transformer_2d.py |
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 72,
in_channels: int = 4,
out_channels: Optional[int] = None,
num_layers: int = 28,
dropout: float = 0.0,
norm_num_groups: int = 32,
attention_bias: bool = True,
sample_size: int = 32,
patch_size: int = 2,
activation_fn: str = "gelu-approximate",
num_embeds_ada_norm: Optional[int] = 1000,
upcast_attention: bool = False,
norm_type: str = "ada_norm_zero",
norm_elementwise_affine: bool = False,
norm_eps: float = 1e-5,
):
super().__init__() | 1,111 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dit_transformer_2d.py |
# Validate inputs.
if norm_type != "ada_norm_zero":
raise NotImplementedError(
f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
)
elif norm_type == "ada_norm_zero" and num_embeds_ada_norm is None:
raise ValueError(
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
)
# Set some common variables used across the board.
self.attention_head_dim = attention_head_dim
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
self.out_channels = in_channels if out_channels is None else out_channels
self.gradient_checkpointing = False
# 2. Initialize the position embedding and transformer blocks.
self.height = self.config.sample_size
self.width = self.config.sample_size | 1,111 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dit_transformer_2d.py |
self.patch_size = self.config.patch_size
self.pos_embed = PatchEmbed(
height=self.config.sample_size,
width=self.config.sample_size,
patch_size=self.config.patch_size,
in_channels=self.config.in_channels,
embed_dim=self.inner_dim,
) | 1,111 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dit_transformer_2d.py |
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
self.inner_dim,
self.config.num_attention_heads,
self.config.attention_head_dim,
dropout=self.config.dropout,
activation_fn=self.config.activation_fn,
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
attention_bias=self.config.attention_bias,
upcast_attention=self.config.upcast_attention,
norm_type=norm_type,
norm_elementwise_affine=self.config.norm_elementwise_affine,
norm_eps=self.config.norm_eps,
)
for _ in range(self.config.num_layers)
]
) | 1,111 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dit_transformer_2d.py |
# 3. Output blocks.
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim)
self.proj_out_2 = nn.Linear(
self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
def forward(
self,
hidden_states: torch.Tensor,
timestep: Optional[torch.LongTensor] = None,
class_labels: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
return_dict: bool = True,
):
"""
The [`DiTTransformer2DModel`] forward method. | 1,111 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dit_transformer_2d.py |
Args:
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
Input `hidden_states`.
timestep ( `torch.LongTensor`, *optional*):
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
`AdaLayerZeroNorm`.
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in | 1,111 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dit_transformer_2d.py |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
tuple. | 1,111 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dit_transformer_2d.py |
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
# 1. Input
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
hidden_states = self.pos_embed(hidden_states)
# 2. Blocks
for block in self.transformer_blocks:
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward | 1,111 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dit_transformer_2d.py |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
None,
None,
None,
timestep,
cross_attention_kwargs,
class_labels,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
timestep=timestep,
cross_attention_kwargs=cross_attention_kwargs,
class_labels=class_labels,
) | 1,111 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dit_transformer_2d.py |
# 3. Output
conditioning = self.transformer_blocks[0].norm1.emb(timestep, class_labels, hidden_dtype=hidden_states.dtype)
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
hidden_states = self.proj_out_2(hidden_states)
# unpatchify
height = width = int(hidden_states.shape[1] ** 0.5)
hidden_states = hidden_states.reshape(
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
)
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
output = hidden_states.reshape(
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output) | 1,111 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dit_transformer_2d.py |
class DualTransformer2DModel(nn.Module):
"""
Dual transformer wrapper that combines two `Transformer2DModel`s for mixed inference. | 1,112 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dual_transformer_2d.py |
Parameters:
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
in_channels (`int`, *optional*):
Pass if the input is continuous. The number of channels in the input and output.
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use.
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
Note that this is fixed at training time as it is used for learning a number of position embeddings. See
`ImagePositionalEmbeddings`.
num_vector_embeds (`int`, *optional*): | 1,112 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dual_transformer_2d.py |
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
Includes the class for the masked latent pixel.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
The number of diffusion steps used during training. Note that this is fixed at training time as it is used
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
up to but not more than steps than `num_embeds_ada_norm`.
attention_bias (`bool`, *optional*):
Configure if the TransformerBlocks' attention should contain a bias parameter.
""" | 1,112 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dual_transformer_2d.py |
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
sample_size: Optional[int] = None,
num_vector_embeds: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
):
super().__init__()
self.transformers = nn.ModuleList(
[
Transformer2DModel(
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
in_channels=in_channels,
num_layers=num_layers,
dropout=dropout,
norm_num_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim, | 1,112 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dual_transformer_2d.py |
attention_bias=attention_bias,
sample_size=sample_size,
num_vector_embeds=num_vector_embeds,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
)
for _ in range(2)
]
) | 1,112 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dual_transformer_2d.py |
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
self.mix_ratio = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
self.condition_lengths = [77, 257]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
self.transformer_index_for_condition = [1, 0] | 1,112 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dual_transformer_2d.py |
def forward(
self,
hidden_states,
encoder_hidden_states,
timestep=None,
attention_mask=None,
cross_attention_kwargs=None,
return_dict: bool = True,
):
"""
Args:
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
When continuous, `torch.Tensor` of shape `(batch size, channel, height, width)`): Input hidden_states.
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
timestep ( `torch.long`, *optional*):
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
attention_mask (`torch.Tensor`, *optional*):
Optional attention mask to be applied in Attention. | 1,112 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dual_transformer_2d.py |
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
tuple. | 1,112 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dual_transformer_2d.py |
Returns:
[`~models.transformers.transformer_2d.Transformer2DModelOutput`] or `tuple`:
[`~models.transformers.transformer_2d.Transformer2DModelOutput`] if `return_dict` is True, otherwise a
`tuple`. When returning a tuple, the first element is the sample tensor.
"""
input_states = hidden_states | 1,112 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dual_transformer_2d.py |
encoded_states = []
tokens_start = 0
# attention_mask is not used yet
for i in range(2):
# for each of the two transformers, pass the corresponding condition tokens
condition_state = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
transformer_index = self.transformer_index_for_condition[i]
encoded_state = self.transformers[transformer_index](
input_states,
encoder_hidden_states=condition_state,
timestep=timestep,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
encoded_states.append(encoded_state - input_states)
tokens_start += self.condition_lengths[i]
output_states = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
output_states = output_states + input_states | 1,112 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dual_transformer_2d.py |
if not return_dict:
return (output_states,)
return Transformer2DModelOutput(sample=output_states) | 1,112 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dual_transformer_2d.py |
class TransformerTemporalModelOutput(BaseOutput):
"""
The output of [`TransformerTemporalModel`].
Args:
sample (`torch.Tensor` of shape `(batch_size x num_frames, num_channels, height, width)`):
The hidden states output conditioned on `encoder_hidden_states` input.
"""
sample: torch.Tensor | 1,113 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_temporal.py |
class TransformerTemporalModel(ModelMixin, ConfigMixin):
"""
A Transformer model for video-like data. | 1,114 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_temporal.py |
Parameters:
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
in_channels (`int`, *optional*):
The number of channels in the input and output (specify if the input is **continuous**).
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
attention_bias (`bool`, *optional*):
Configure if the `TransformerBlock` attention should contain a bias parameter.
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). | 1,114 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_temporal.py |
This is fixed during training since it is used to learn a number of position embeddings.
activation_fn (`str`, *optional*, defaults to `"geglu"`):
Activation function to use in feed-forward. See `diffusers.models.activations.get_activation` for supported
activation functions.
norm_elementwise_affine (`bool`, *optional*):
Configure if the `TransformerBlock` should use learnable elementwise affine parameters for normalization.
double_self_attention (`bool`, *optional*):
Configure if each `TransformerBlock` should contain two self-attention layers.
positional_embeddings: (`str`, *optional*):
The type of positional embeddings to apply to the sequence input before passing use.
num_positional_embeddings: (`int`, *optional*):
The maximum length of the sequence over which to apply positional embeddings.
""" | 1,114 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_temporal.py |
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
out_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
sample_size: Optional[int] = None,
activation_fn: str = "geglu",
norm_elementwise_affine: bool = True,
double_self_attention: bool = True,
positional_embeddings: Optional[str] = None,
num_positional_embeddings: Optional[int] = None,
):
super().__init__()
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
self.in_channels = in_channels | 1,114 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_temporal.py |
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
self.proj_in = nn.Linear(in_channels, inner_dim)
# 3. Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
attention_bias=attention_bias,
double_self_attention=double_self_attention,
norm_elementwise_affine=norm_elementwise_affine,
positional_embeddings=positional_embeddings,
num_positional_embeddings=num_positional_embeddings,
)
for d in range(num_layers)
]
) | 1,114 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_temporal.py |
self.proj_out = nn.Linear(inner_dim, in_channels)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.LongTensor] = None,
timestep: Optional[torch.LongTensor] = None,
class_labels: torch.LongTensor = None,
num_frames: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> TransformerTemporalModelOutput:
"""
The [`TransformerTemporal`] forward method. | 1,114 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_temporal.py |
Args:
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.Tensor` of shape `(batch size, channel, height, width)` if continuous):
Input hidden_states.
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
timestep ( `torch.LongTensor`, *optional*):
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
`AdaLayerZeroNorm`.
num_frames (`int`, *optional*, defaults to 1): | 1,114 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_temporal.py |
The number of frames to be processed per batch. This is used to reshape the hidden states.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.transformers.transformer_temporal.TransformerTemporalModelOutput`]
instead of a plain tuple. | 1,114 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_temporal.py |
Returns:
[`~models.transformers.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`:
If `return_dict` is True, an
[`~models.transformers.transformer_temporal.TransformerTemporalModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
# 1. Input
batch_frames, channel, height, width = hidden_states.shape
batch_size = batch_frames // num_frames
residual = hidden_states
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, channel, height, width)
hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
hidden_states = self.norm(hidden_states)
hidden_states = hidden_states.permute(0, 3, 4, 2, 1).reshape(batch_size * height * width, num_frames, channel)
hidden_states = self.proj_in(hidden_states) | 1,114 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_temporal.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.