text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
time_embedding_input_dim = base_block_out_channels[0] time_embedding_dim = base_block_out_channels[0] * 4 # Check inputs if conditioning_channel_order not in ["rgb", "bgr"]: raise ValueError(f"unknown `conditioning_channel_order`: {conditioning_channel_order}") if len(block_out_channels) != len(down_block_types): raise ValueError( f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." )
1,080
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
if not isinstance(transformer_layers_per_block, (list, tuple)): transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) if not isinstance(cross_attention_dim, (list, tuple)): cross_attention_dim = [cross_attention_dim] * len(down_block_types) # see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why `ControlNetXSAdapter` takes `num_attention_heads` instead of `attention_head_dim` if not isinstance(num_attention_heads, (list, tuple)): num_attention_heads = [num_attention_heads] * len(down_block_types) if len(num_attention_heads) != len(down_block_types): raise ValueError( f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." )
1,080
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# 5 - Create conditioning hint embedding self.controlnet_cond_embedding = ControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0], block_out_channels=conditioning_embedding_out_channels, conditioning_channels=conditioning_channels, ) # time if learn_time_embedding: self.time_embedding = TimestepEmbedding(time_embedding_input_dim, time_embedding_dim) else: self.time_embedding = None self.down_blocks = nn.ModuleList([]) self.up_connections = nn.ModuleList([]) # input self.conv_in = nn.Conv2d(4, block_out_channels[0], kernel_size=3, padding=1) self.control_to_base_for_conv_in = make_zero_conv(block_out_channels[0], base_block_out_channels[0])
1,080
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# down base_out_channels = base_block_out_channels[0] ctrl_out_channels = block_out_channels[0] for i, down_block_type in enumerate(down_block_types): base_in_channels = base_out_channels base_out_channels = base_block_out_channels[i] ctrl_in_channels = ctrl_out_channels ctrl_out_channels = block_out_channels[i] has_crossattn = "CrossAttn" in down_block_type is_final_block = i == len(down_block_types) - 1
1,080
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
self.down_blocks.append( get_down_block_adapter( base_in_channels=base_in_channels, base_out_channels=base_out_channels, ctrl_in_channels=ctrl_in_channels, ctrl_out_channels=ctrl_out_channels, temb_channels=time_embedding_dim, max_norm_num_groups=max_norm_num_groups, has_crossattn=has_crossattn, transformer_layers_per_block=transformer_layers_per_block[i], num_attention_heads=num_attention_heads[i], cross_attention_dim=cross_attention_dim[i], add_downsample=not is_final_block, upcast_attention=upcast_attention, use_linear_projection=use_linear_projection, ) )
1,080
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# mid self.mid_block = get_mid_block_adapter( base_channels=base_block_out_channels[-1], ctrl_channels=block_out_channels[-1], temb_channels=time_embedding_dim, transformer_layers_per_block=transformer_layers_per_block[-1], num_attention_heads=num_attention_heads[-1], cross_attention_dim=cross_attention_dim[-1], upcast_attention=upcast_attention, use_linear_projection=use_linear_projection, ) # up # The skip connection channels are the output of the conv_in and of all the down subblocks ctrl_skip_channels = [block_out_channels[0]] for i, out_channels in enumerate(block_out_channels): number_of_subblocks = ( 3 if i < len(block_out_channels) - 1 else 2 ) # every block has 3 subblocks, except last one, which has 2 as it has no downsampler ctrl_skip_channels.extend([out_channels] * number_of_subblocks)
1,080
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
reversed_base_block_out_channels = list(reversed(base_block_out_channels)) base_out_channels = reversed_base_block_out_channels[0] for i in range(len(down_block_types)): prev_base_output_channel = base_out_channels base_out_channels = reversed_base_block_out_channels[i] ctrl_skip_channels_ = [ctrl_skip_channels.pop() for _ in range(3)] self.up_connections.append( get_up_block_adapter( out_channels=base_out_channels, prev_output_channel=prev_base_output_channel, ctrl_skip_channels=ctrl_skip_channels_, ) )
1,080
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
@classmethod def from_unet( cls, unet: UNet2DConditionModel, size_ratio: Optional[float] = None, block_out_channels: Optional[List[int]] = None, num_attention_heads: Optional[List[int]] = None, learn_time_embedding: bool = False, time_embedding_mix: int = 1.0, conditioning_channels: int = 3, conditioning_channel_order: str = "rgb", conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256), ): r""" Instantiate a [`ControlNetXSAdapter`] from a [`UNet2DConditionModel`].
1,080
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
Parameters: unet (`UNet2DConditionModel`): The UNet model we want to control. The dimensions of the ControlNetXSAdapter will be adapted to it. size_ratio (float, *optional*, defaults to `None`): When given, block_out_channels is set to a fraction of the base model's block_out_channels. Either this or `block_out_channels` must be given. block_out_channels (`List[int]`, *optional*, defaults to `None`): Down blocks output channels in control model. Either this or `size_ratio` must be given. num_attention_heads (`List[int]`, *optional*, defaults to `None`): The dimension of the attention heads. The naming seems a bit confusing and it is, see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why. learn_time_embedding (`bool`, defaults to `False`):
1,080
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
Whether the `ControlNetXSAdapter` should learn a time embedding. time_embedding_mix (`float`, defaults to 1.0): If 0, then only the control adapter's time embedding is used. If 1, then only the base unet's time embedding is used. Otherwise, both are combined. conditioning_channels (`int`, defaults to 3): Number of channels of conditioning input (e.g. an image) conditioning_channel_order (`str`, defaults to `"rgb"`): The channel order of conditional image. Will convert to `rgb` if it's `bgr`. conditioning_embedding_out_channels (`Tuple[int]`, defaults to `(16, 32, 96, 256)`): The tuple of output channel for each block in the `controlnet_cond_embedding` layer. """
1,080
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# Check input fixed_size = block_out_channels is not None relative_size = size_ratio is not None if not (fixed_size ^ relative_size): raise ValueError( "Pass exactly one of `block_out_channels` (for absolute sizing) or `size_ratio` (for relative sizing)." ) # Create model block_out_channels = block_out_channels or [int(b * size_ratio) for b in unet.config.block_out_channels] if num_attention_heads is None: # The naming seems a bit confusing and it is, see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why. num_attention_heads = unet.config.attention_head_dim
1,080
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
model = cls( conditioning_channels=conditioning_channels, conditioning_channel_order=conditioning_channel_order, conditioning_embedding_out_channels=conditioning_embedding_out_channels, time_embedding_mix=time_embedding_mix, learn_time_embedding=learn_time_embedding, num_attention_heads=num_attention_heads, block_out_channels=block_out_channels, base_block_out_channels=unet.config.block_out_channels, cross_attention_dim=unet.config.cross_attention_dim, down_block_types=unet.config.down_block_types, sample_size=unet.config.sample_size, transformer_layers_per_block=unet.config.transformer_layers_per_block, upcast_attention=unet.config.upcast_attention, max_norm_num_groups=unet.config.norm_num_groups, use_linear_projection=unet.config.use_linear_projection, )
1,080
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# ensure that the ControlNetXSAdapter is the same dtype as the UNet2DConditionModel model.to(unet.dtype) return model def forward(self, *args, **kwargs): raise ValueError( "A ControlNetXSAdapter cannot be run by itself. Use it together with a UNet2DConditionModel to instantiate a UNetControlNetXSModel." )
1,080
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
class UNetControlNetXSModel(ModelMixin, ConfigMixin): r""" A UNet fused with a ControlNet-XS adapter model This model inherits from [`ModelMixin`] and [`ConfigMixin`]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving). `UNetControlNetXSModel` is compatible with StableDiffusion and StableDiffusion-XL. It's default parameters are compatible with StableDiffusion. It's parameters are either passed to the underlying `UNet2DConditionModel` or used exactly like in `ControlNetXSAdapter` . See their documentation for details. """ _supports_gradient_checkpointing = True
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
@register_to_config def __init__( self, # unet configs sample_size: Optional[int] = 96, down_block_types: Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ), up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), block_out_channels: Tuple[int] = (320, 640, 1280, 1280), norm_num_groups: Optional[int] = 32, cross_attention_dim: Union[int, Tuple[int]] = 1024, transformer_layers_per_block: Union[int, Tuple[int]] = 1, num_attention_heads: Union[int, Tuple[int]] = 8, addition_embed_type: Optional[str] = None, addition_time_embed_dim: Optional[int] = None, upcast_attention: bool = True, use_linear_projection: bool = True, time_cond_proj_dim: Optional[int] = None,
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
projection_class_embeddings_input_dim: Optional[int] = None, # additional controlnet configs time_embedding_mix: float = 1.0, ctrl_conditioning_channels: int = 3, ctrl_conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256), ctrl_conditioning_channel_order: str = "rgb", ctrl_learn_time_embedding: bool = False, ctrl_block_out_channels: Tuple[int] = (4, 8, 16, 16), ctrl_num_attention_heads: Union[int, Tuple[int]] = 4, ctrl_max_norm_num_groups: int = 32, ): super().__init__()
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
if time_embedding_mix < 0 or time_embedding_mix > 1: raise ValueError("`time_embedding_mix` needs to be between 0 and 1.") if time_embedding_mix < 1 and not ctrl_learn_time_embedding: raise ValueError("To use `time_embedding_mix` < 1, `ctrl_learn_time_embedding` must be `True`") if addition_embed_type is not None and addition_embed_type != "text_time": raise ValueError( "As `UNetControlNetXSModel` currently only supports StableDiffusion and StableDiffusion-XL, `addition_embed_type` must be `None` or `'text_time'`." )
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
if not isinstance(transformer_layers_per_block, (list, tuple)): transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) if not isinstance(cross_attention_dim, (list, tuple)): cross_attention_dim = [cross_attention_dim] * len(down_block_types) if not isinstance(num_attention_heads, (list, tuple)): num_attention_heads = [num_attention_heads] * len(down_block_types) if not isinstance(ctrl_num_attention_heads, (list, tuple)): ctrl_num_attention_heads = [ctrl_num_attention_heads] * len(down_block_types) base_num_attention_heads = num_attention_heads self.in_channels = 4
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# # Input self.base_conv_in = nn.Conv2d(4, block_out_channels[0], kernel_size=3, padding=1) self.controlnet_cond_embedding = ControlNetConditioningEmbedding( conditioning_embedding_channels=ctrl_block_out_channels[0], block_out_channels=ctrl_conditioning_embedding_out_channels, conditioning_channels=ctrl_conditioning_channels, ) self.ctrl_conv_in = nn.Conv2d(4, ctrl_block_out_channels[0], kernel_size=3, padding=1) self.control_to_base_for_conv_in = make_zero_conv(ctrl_block_out_channels[0], block_out_channels[0]) # # Time time_embed_input_dim = block_out_channels[0] time_embed_dim = block_out_channels[0] * 4
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
self.base_time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos=True, downscale_freq_shift=0) self.base_time_embedding = TimestepEmbedding( time_embed_input_dim, time_embed_dim, cond_proj_dim=time_cond_proj_dim, ) if ctrl_learn_time_embedding: self.ctrl_time_embedding = TimestepEmbedding( in_channels=time_embed_input_dim, time_embed_dim=time_embed_dim ) else: self.ctrl_time_embedding = None if addition_embed_type is None: self.base_add_time_proj = None self.base_add_embedding = None else: self.base_add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos=True, downscale_freq_shift=0) self.base_add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# # Create down blocks down_blocks = [] base_out_channels = block_out_channels[0] ctrl_out_channels = ctrl_block_out_channels[0] for i, down_block_type in enumerate(down_block_types): base_in_channels = base_out_channels base_out_channels = block_out_channels[i] ctrl_in_channels = ctrl_out_channels ctrl_out_channels = ctrl_block_out_channels[i] has_crossattn = "CrossAttn" in down_block_type is_final_block = i == len(down_block_types) - 1
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
down_blocks.append( ControlNetXSCrossAttnDownBlock2D( base_in_channels=base_in_channels, base_out_channels=base_out_channels, ctrl_in_channels=ctrl_in_channels, ctrl_out_channels=ctrl_out_channels, temb_channels=time_embed_dim, norm_num_groups=norm_num_groups, ctrl_max_norm_num_groups=ctrl_max_norm_num_groups, has_crossattn=has_crossattn, transformer_layers_per_block=transformer_layers_per_block[i], base_num_attention_heads=base_num_attention_heads[i], ctrl_num_attention_heads=ctrl_num_attention_heads[i], cross_attention_dim=cross_attention_dim[i], add_downsample=not is_final_block, upcast_attention=upcast_attention, use_linear_projection=use_linear_projection, )
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
)
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# # Create mid block self.mid_block = ControlNetXSCrossAttnMidBlock2D( base_channels=block_out_channels[-1], ctrl_channels=ctrl_block_out_channels[-1], temb_channels=time_embed_dim, norm_num_groups=norm_num_groups, ctrl_max_norm_num_groups=ctrl_max_norm_num_groups, transformer_layers_per_block=transformer_layers_per_block[-1], base_num_attention_heads=base_num_attention_heads[-1], ctrl_num_attention_heads=ctrl_num_attention_heads[-1], cross_attention_dim=cross_attention_dim[-1], upcast_attention=upcast_attention, use_linear_projection=use_linear_projection, ) # # Create up blocks up_blocks = [] rev_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) rev_num_attention_heads = list(reversed(base_num_attention_heads)) rev_cross_attention_dim = list(reversed(cross_attention_dim))
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# The skip connection channels are the output of the conv_in and of all the down subblocks ctrl_skip_channels = [ctrl_block_out_channels[0]] for i, out_channels in enumerate(ctrl_block_out_channels): number_of_subblocks = ( 3 if i < len(ctrl_block_out_channels) - 1 else 2 ) # every block has 3 subblocks, except last one, which has 2 as it has no downsampler ctrl_skip_channels.extend([out_channels] * number_of_subblocks) reversed_block_out_channels = list(reversed(block_out_channels)) out_channels = reversed_block_out_channels[0] for i, up_block_type in enumerate(up_block_types): prev_output_channel = out_channels out_channels = reversed_block_out_channels[i] in_channels = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] ctrl_skip_channels_ = [ctrl_skip_channels.pop() for _ in range(3)]
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
has_crossattn = "CrossAttn" in up_block_type is_final_block = i == len(block_out_channels) - 1
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
up_blocks.append( ControlNetXSCrossAttnUpBlock2D( in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, ctrl_skip_channels=ctrl_skip_channels_, temb_channels=time_embed_dim, resolution_idx=i, has_crossattn=has_crossattn, transformer_layers_per_block=rev_transformer_layers_per_block[i], num_attention_heads=rev_num_attention_heads[i], cross_attention_dim=rev_cross_attention_dim[i], add_upsample=not is_final_block, upcast_attention=upcast_attention, norm_num_groups=norm_num_groups, use_linear_projection=use_linear_projection, ) ) self.down_blocks = nn.ModuleList(down_blocks) self.up_blocks = nn.ModuleList(up_blocks)
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
self.base_conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups) self.base_conv_act = nn.SiLU() self.base_conv_out = nn.Conv2d(block_out_channels[0], 4, kernel_size=3, padding=1) @classmethod def from_unet( cls, unet: UNet2DConditionModel, controlnet: Optional[ControlNetXSAdapter] = None, size_ratio: Optional[float] = None, ctrl_block_out_channels: Optional[List[float]] = None, time_embedding_mix: Optional[float] = None, ctrl_optional_kwargs: Optional[Dict] = None, ): r""" Instantiate a [`UNetControlNetXSModel`] from a [`UNet2DConditionModel`] and an optional [`ControlNetXSAdapter`] .
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
Parameters: unet (`UNet2DConditionModel`): The UNet model we want to control. controlnet (`ControlNetXSAdapter`): The ConntrolNet-XS adapter with which the UNet will be fused. If none is given, a new ConntrolNet-XS adapter will be created. size_ratio (float, *optional*, defaults to `None`): Used to contruct the controlnet if none is given. See [`ControlNetXSAdapter.from_unet`] for details. ctrl_block_out_channels (`List[int]`, *optional*, defaults to `None`): Used to contruct the controlnet if none is given. See [`ControlNetXSAdapter.from_unet`] for details, where this parameter is called `block_out_channels`. time_embedding_mix (`float`, *optional*, defaults to None): Used to contruct the controlnet if none is given. See [`ControlNetXSAdapter.from_unet`] for details.
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
ctrl_optional_kwargs (`Dict`, *optional*, defaults to `None`): Passed to the `init` of the new controlent if no controlent was given. """ if controlnet is None: controlnet = ControlNetXSAdapter.from_unet( unet, size_ratio, ctrl_block_out_channels, **ctrl_optional_kwargs ) else: if any( o is not None for o in (size_ratio, ctrl_block_out_channels, time_embedding_mix, ctrl_optional_kwargs) ): raise ValueError( "When a controlnet is passed, none of these parameters should be passed: size_ratio, ctrl_block_out_channels, time_embedding_mix, ctrl_optional_kwargs." )
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# # get params params_for_unet = [ "sample_size", "down_block_types", "up_block_types", "block_out_channels", "norm_num_groups", "cross_attention_dim", "transformer_layers_per_block", "addition_embed_type", "addition_time_embed_dim", "upcast_attention", "use_linear_projection", "time_cond_proj_dim", "projection_class_embeddings_input_dim", ] params_for_unet = {k: v for k, v in unet.config.items() if k in params_for_unet} # The naming seems a bit confusing and it is, see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why. params_for_unet["num_attention_heads"] = unet.config.attention_head_dim
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
params_for_controlnet = [ "conditioning_channels", "conditioning_embedding_out_channels", "conditioning_channel_order", "learn_time_embedding", "block_out_channels", "num_attention_heads", "max_norm_num_groups", ] params_for_controlnet = {"ctrl_" + k: v for k, v in controlnet.config.items() if k in params_for_controlnet} params_for_controlnet["time_embedding_mix"] = controlnet.config.time_embedding_mix # # create model model = cls.from_config({**params_for_unet, **params_for_controlnet}) # # load weights # from unet modules_from_unet = [ "time_embedding", "conv_in", "conv_norm_out", "conv_out", ] for m in modules_from_unet: getattr(model, "base_" + m).load_state_dict(getattr(unet, m).state_dict())
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
optional_modules_from_unet = [ "add_time_proj", "add_embedding", ] for m in optional_modules_from_unet: if hasattr(unet, m) and getattr(unet, m) is not None: getattr(model, "base_" + m).load_state_dict(getattr(unet, m).state_dict()) # from controlnet model.controlnet_cond_embedding.load_state_dict(controlnet.controlnet_cond_embedding.state_dict()) model.ctrl_conv_in.load_state_dict(controlnet.conv_in.state_dict()) if controlnet.time_embedding is not None: model.ctrl_time_embedding.load_state_dict(controlnet.time_embedding.state_dict()) model.control_to_base_for_conv_in.load_state_dict(controlnet.control_to_base_for_conv_in.state_dict())
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# from both model.down_blocks = nn.ModuleList( ControlNetXSCrossAttnDownBlock2D.from_modules(b, c) for b, c in zip(unet.down_blocks, controlnet.down_blocks) ) model.mid_block = ControlNetXSCrossAttnMidBlock2D.from_modules(unet.mid_block, controlnet.mid_block) model.up_blocks = nn.ModuleList( ControlNetXSCrossAttnUpBlock2D.from_modules(b, c) for b, c in zip(unet.up_blocks, controlnet.up_connections) ) # ensure that the UNetControlNetXSModel is the same dtype as the UNet2DConditionModel model.to(unet.dtype) return model def freeze_unet_params(self) -> None: """Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine tuning.""" # Freeze everything for param in self.parameters(): param.requires_grad = True
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# Unfreeze ControlNetXSAdapter base_parts = [ "base_time_proj", "base_time_embedding", "base_add_time_proj", "base_add_embedding", "base_conv_in", "base_conv_norm_out", "base_conv_act", "base_conv_out", ] base_parts = [getattr(self, part) for part in base_parts if getattr(self, part) is not None] for part in base_parts: for param in part.parameters(): param.requires_grad = False for d in self.down_blocks: d.freeze_base_params() self.mid_block.freeze_base_params() for u in self.up_blocks: u.freeze_base_params() def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
@property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys())
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor)
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnAddedKVProcessor() elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnProcessor() else: raise ValueError( f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" ) self.set_attn_processor(processor)
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.enable_freeu def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497. The suffixes after the scaling factors represent the stage blocks where they are being applied. Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
Args: s1 (`float`): Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to mitigate the "oversmoothing effect" in the enhanced denoising process. s2 (`float`): Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to mitigate the "oversmoothing effect" in the enhanced denoising process. b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. """ for i, upsample_block in enumerate(self.up_blocks): setattr(upsample_block, "s1", s1) setattr(upsample_block, "s2", s2) setattr(upsample_block, "b1", b1) setattr(upsample_block, "b2", b2)
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.disable_freeu def disable_freeu(self): """Disables the FreeU mechanism.""" freeu_keys = {"s1", "s2", "b1", "b2"} for i, upsample_block in enumerate(self.up_blocks): for k in freeu_keys: if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None: setattr(upsample_block, k, None) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections def fuse_qkv_projections(self): """ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ self.original_attn_processors = None
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
for _, attn_processor in self.attn_processors.items(): if "Added" in str(attn_processor.__class__.__name__): raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") self.original_attn_processors = self.attn_processors for module in self.modules(): if isinstance(module, Attention): module.fuse_projections(fuse=True) self.set_attn_processor(FusedAttnProcessor2_0()) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections def unfuse_qkv_projections(self): """Disables the fused QKV projection if enabled. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ if self.original_attn_processors is not None: self.set_attn_processor(self.original_attn_processors)
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
def forward( self, sample: Tensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, controlnet_cond: Optional[torch.Tensor] = None, conditioning_scale: Optional[float] = 1.0, class_labels: Optional[torch.Tensor] = None, timestep_cond: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, return_dict: bool = True, apply_control: bool = True, ) -> Union[ControlNetXSOutput, Tuple]: """ The [`ControlNetXSModel`] forward method.
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
Args: sample (`Tensor`): The noisy input tensor. timestep (`Union[torch.Tensor, float, int]`): The number of timesteps to denoise an input. encoder_hidden_states (`torch.Tensor`): The encoder hidden states. controlnet_cond (`Tensor`): The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. conditioning_scale (`float`, defaults to `1.0`): How much the control model affects the base model outputs. class_labels (`torch.Tensor`, *optional*, defaults to `None`): Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. timestep_cond (`torch.Tensor`, *optional*, defaults to `None`): Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep embeddings. attention_mask (`torch.Tensor`, *optional*, defaults to `None`): An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens. cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`): A kwargs dictionary that if specified is passed along to the `AttnProcessor`. added_cond_kwargs (`dict`): Additional conditions for the Stable Diffusion XL UNet. return_dict (`bool`, defaults to `True`): Whether or not to return a [`~models.controlnets.controlnet.ControlNetOutput`] instead of a plain tuple.
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
apply_control (`bool`, defaults to `True`): If `False`, the input is run only through the base model.
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
Returns: [`~models.controlnetxs.ControlNetXSOutput`] **or** `tuple`: If `return_dict` is `True`, a [`~models.controlnetxs.ControlNetXSOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ # check channel order if self.config.ctrl_conditioning_channel_order == "bgr": controlnet_cond = torch.flip(controlnet_cond, dims=[1]) # prepare attention_mask if attention_mask is not None: attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 attention_mask = attention_mask.unsqueeze(1)
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# 1. time timesteps = timestep if not torch.is_tensor(timesteps): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = sample.device.type == "mps" if isinstance(timestep, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) elif len(timesteps.shape) == 0: timesteps = timesteps[None].to(sample.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timesteps = timesteps.expand(sample.shape[0]) t_emb = self.base_time_proj(timesteps)
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# timesteps does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=sample.dtype) if self.config.ctrl_learn_time_embedding and apply_control: ctrl_temb = self.ctrl_time_embedding(t_emb, timestep_cond) base_temb = self.base_time_embedding(t_emb, timestep_cond) interpolation_param = self.config.time_embedding_mix**0.3 temb = ctrl_temb * interpolation_param + base_temb * (1 - interpolation_param) else: temb = self.base_time_embedding(t_emb) # added time & text embeddings aug_emb = None
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
if self.config.addition_embed_type is None: pass elif self.config.addition_embed_type == "text_time": # SDXL - style if "text_embeds" not in added_cond_kwargs: raise ValueError( f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" ) text_embeds = added_cond_kwargs.get("text_embeds") if "time_ids" not in added_cond_kwargs: raise ValueError( f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" ) time_ids = added_cond_kwargs.get("time_ids") time_embeds = self.base_add_time_proj(time_ids.flatten()) time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) add_embeds = add_embeds.to(temb.dtype) aug_emb = self.base_add_embedding(add_embeds) else: raise ValueError( f"ControlNet-XS currently only supports StableDiffusion and StableDiffusion-XL, so addition_embed_type = {self.config.addition_embed_type} is currently not supported." )
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
temb = temb + aug_emb if aug_emb is not None else temb # text embeddings cemb = encoder_hidden_states # Preparation h_ctrl = h_base = sample hs_base, hs_ctrl = [], [] # Cross Control guided_hint = self.controlnet_cond_embedding(controlnet_cond) # 1 - conv in & down h_base = self.base_conv_in(h_base) h_ctrl = self.ctrl_conv_in(h_ctrl) if guided_hint is not None: h_ctrl += guided_hint if apply_control: h_base = h_base + self.control_to_base_for_conv_in(h_ctrl) * conditioning_scale # add ctrl -> base hs_base.append(h_base) hs_ctrl.append(h_ctrl)
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
for down in self.down_blocks: h_base, h_ctrl, residual_hb, residual_hc = down( hidden_states_base=h_base, hidden_states_ctrl=h_ctrl, temb=temb, encoder_hidden_states=cemb, conditioning_scale=conditioning_scale, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, apply_control=apply_control, ) hs_base.extend(residual_hb) hs_ctrl.extend(residual_hc) # 2 - mid h_base, h_ctrl = self.mid_block( hidden_states_base=h_base, hidden_states_ctrl=h_ctrl, temb=temb, encoder_hidden_states=cemb, conditioning_scale=conditioning_scale, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, apply_control=apply_control, )
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# 3 - up for up in self.up_blocks: n_resnets = len(up.resnets) skips_hb = hs_base[-n_resnets:] skips_hc = hs_ctrl[-n_resnets:] hs_base = hs_base[:-n_resnets] hs_ctrl = hs_ctrl[:-n_resnets] h_base = up( hidden_states=h_base, res_hidden_states_tuple_base=skips_hb, res_hidden_states_tuple_ctrl=skips_hc, temb=temb, encoder_hidden_states=cemb, conditioning_scale=conditioning_scale, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, apply_control=apply_control, ) # 4 - conv out h_base = self.base_conv_norm_out(h_base) h_base = self.base_conv_act(h_base) h_base = self.base_conv_out(h_base) if not return_dict: return (h_base,) return ControlNetXSOutput(sample=h_base)
1,081
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
class ControlNetXSCrossAttnDownBlock2D(nn.Module): def __init__( self, base_in_channels: int, base_out_channels: int, ctrl_in_channels: int, ctrl_out_channels: int, temb_channels: int, norm_num_groups: int = 32, ctrl_max_norm_num_groups: int = 32, has_crossattn=True, transformer_layers_per_block: Optional[Union[int, Tuple[int]]] = 1, base_num_attention_heads: Optional[int] = 1, ctrl_num_attention_heads: Optional[int] = 1, cross_attention_dim: Optional[int] = 1024, add_downsample: bool = True, upcast_attention: Optional[bool] = False, use_linear_projection: Optional[bool] = True, ): super().__init__() base_resnets = [] base_attentions = [] ctrl_resnets = [] ctrl_attentions = [] ctrl_to_base = [] base_to_ctrl = [] num_layers = 2 # only support sd + sdxl
1,082
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
if isinstance(transformer_layers_per_block, int): transformer_layers_per_block = [transformer_layers_per_block] * num_layers for i in range(num_layers): base_in_channels = base_in_channels if i == 0 else base_out_channels ctrl_in_channels = ctrl_in_channels if i == 0 else ctrl_out_channels # Before the resnet/attention application, information is concatted from base to control. # Concat doesn't require change in number of channels base_to_ctrl.append(make_zero_conv(base_in_channels, base_in_channels))
1,082
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
base_resnets.append( ResnetBlock2D( in_channels=base_in_channels, out_channels=base_out_channels, temb_channels=temb_channels, groups=norm_num_groups, ) ) ctrl_resnets.append( ResnetBlock2D( in_channels=ctrl_in_channels + base_in_channels, # information from base is concatted to ctrl out_channels=ctrl_out_channels, temb_channels=temb_channels, groups=find_largest_factor( ctrl_in_channels + base_in_channels, max_factor=ctrl_max_norm_num_groups ), groups_out=find_largest_factor(ctrl_out_channels, max_factor=ctrl_max_norm_num_groups), eps=1e-5, ) )
1,082
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
if has_crossattn: base_attentions.append( Transformer2DModel( base_num_attention_heads, base_out_channels // base_num_attention_heads, in_channels=base_out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, norm_num_groups=norm_num_groups, ) ) ctrl_attentions.append( Transformer2DModel( ctrl_num_attention_heads, ctrl_out_channels // ctrl_num_attention_heads, in_channels=ctrl_out_channels, num_layers=transformer_layers_per_block[i],
1,082
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
cross_attention_dim=cross_attention_dim, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, norm_num_groups=find_largest_factor(ctrl_out_channels, max_factor=ctrl_max_norm_num_groups), ) )
1,082
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# After the resnet/attention application, information is added from control to base # Addition requires change in number of channels ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels)) if add_downsample: # Before the downsampler application, information is concatted from base to control # Concat doesn't require change in number of channels base_to_ctrl.append(make_zero_conv(base_out_channels, base_out_channels)) self.base_downsamplers = Downsample2D( base_out_channels, use_conv=True, out_channels=base_out_channels, name="op" ) self.ctrl_downsamplers = Downsample2D( ctrl_out_channels + base_out_channels, use_conv=True, out_channels=ctrl_out_channels, name="op" )
1,082
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# After the downsampler application, information is added from control to base # Addition requires change in number of channels ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels)) else: self.base_downsamplers = None self.ctrl_downsamplers = None self.base_resnets = nn.ModuleList(base_resnets) self.ctrl_resnets = nn.ModuleList(ctrl_resnets) self.base_attentions = nn.ModuleList(base_attentions) if has_crossattn else [None] * num_layers self.ctrl_attentions = nn.ModuleList(ctrl_attentions) if has_crossattn else [None] * num_layers self.base_to_ctrl = nn.ModuleList(base_to_ctrl) self.ctrl_to_base = nn.ModuleList(ctrl_to_base) self.gradient_checkpointing = False
1,082
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
@classmethod def from_modules(cls, base_downblock: CrossAttnDownBlock2D, ctrl_downblock: DownBlockControlNetXSAdapter): # get params def get_first_cross_attention(block): return block.attentions[0].transformer_blocks[0].attn2
1,082
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
base_in_channels = base_downblock.resnets[0].in_channels base_out_channels = base_downblock.resnets[0].out_channels ctrl_in_channels = ( ctrl_downblock.resnets[0].in_channels - base_in_channels ) # base channels are concatted to ctrl channels in init ctrl_out_channels = ctrl_downblock.resnets[0].out_channels temb_channels = base_downblock.resnets[0].time_emb_proj.in_features num_groups = base_downblock.resnets[0].norm1.num_groups ctrl_num_groups = ctrl_downblock.resnets[0].norm1.num_groups if hasattr(base_downblock, "attentions"): has_crossattn = True transformer_layers_per_block = len(base_downblock.attentions[0].transformer_blocks) base_num_attention_heads = get_first_cross_attention(base_downblock).heads ctrl_num_attention_heads = get_first_cross_attention(ctrl_downblock).heads cross_attention_dim = get_first_cross_attention(base_downblock).cross_attention_dim
1,082
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
upcast_attention = get_first_cross_attention(base_downblock).upcast_attention use_linear_projection = base_downblock.attentions[0].use_linear_projection else: has_crossattn = False transformer_layers_per_block = None base_num_attention_heads = None ctrl_num_attention_heads = None cross_attention_dim = None upcast_attention = None use_linear_projection = None add_downsample = base_downblock.downsamplers is not None
1,082
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# create model model = cls( base_in_channels=base_in_channels, base_out_channels=base_out_channels, ctrl_in_channels=ctrl_in_channels, ctrl_out_channels=ctrl_out_channels, temb_channels=temb_channels, norm_num_groups=num_groups, ctrl_max_norm_num_groups=ctrl_num_groups, has_crossattn=has_crossattn, transformer_layers_per_block=transformer_layers_per_block, base_num_attention_heads=base_num_attention_heads, ctrl_num_attention_heads=ctrl_num_attention_heads, cross_attention_dim=cross_attention_dim, add_downsample=add_downsample, upcast_attention=upcast_attention, use_linear_projection=use_linear_projection, )
1,082
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# # load weights model.base_resnets.load_state_dict(base_downblock.resnets.state_dict()) model.ctrl_resnets.load_state_dict(ctrl_downblock.resnets.state_dict()) if has_crossattn: model.base_attentions.load_state_dict(base_downblock.attentions.state_dict()) model.ctrl_attentions.load_state_dict(ctrl_downblock.attentions.state_dict()) if add_downsample: model.base_downsamplers.load_state_dict(base_downblock.downsamplers[0].state_dict()) model.ctrl_downsamplers.load_state_dict(ctrl_downblock.downsamplers.state_dict()) model.base_to_ctrl.load_state_dict(ctrl_downblock.base_to_ctrl.state_dict()) model.ctrl_to_base.load_state_dict(ctrl_downblock.ctrl_to_base.state_dict()) return model
1,082
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
def freeze_base_params(self) -> None: """Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine tuning.""" # Unfreeze everything for param in self.parameters(): param.requires_grad = True # Freeze base part base_parts = [self.base_resnets] if isinstance(self.base_attentions, nn.ModuleList): # attentions can be a list of Nones base_parts.append(self.base_attentions) if self.base_downsamplers is not None: base_parts.append(self.base_downsamplers) for part in base_parts: for param in part.parameters(): param.requires_grad = False
1,082
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
def forward( self, hidden_states_base: Tensor, temb: Tensor, encoder_hidden_states: Optional[Tensor] = None, hidden_states_ctrl: Optional[Tensor] = None, conditioning_scale: Optional[float] = 1.0, attention_mask: Optional[Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, encoder_attention_mask: Optional[Tensor] = None, apply_control: bool = True, ) -> Tuple[Tensor, Tensor, Tuple[Tensor, ...], Tuple[Tensor, ...]]: if cross_attention_kwargs is not None: if cross_attention_kwargs.get("scale", None) is not None: logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") h_base = hidden_states_base h_ctrl = hidden_states_ctrl base_output_states = () ctrl_output_states = ()
1,082
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
base_blocks = list(zip(self.base_resnets, self.base_attentions)) ctrl_blocks = list(zip(self.ctrl_resnets, self.ctrl_attentions)) def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward for (b_res, b_attn), (c_res, c_attn), b2c, c2b in zip( base_blocks, ctrl_blocks, self.base_to_ctrl, self.ctrl_to_base ): # concat base -> ctrl if apply_control: h_ctrl = torch.cat([h_ctrl, b2c(h_base)], dim=1)
1,082
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# apply base subblock if torch.is_grad_enabled() and self.gradient_checkpointing: ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} h_base = torch.utils.checkpoint.checkpoint( create_custom_forward(b_res), h_base, temb, **ckpt_kwargs, ) else: h_base = b_res(h_base, temb) if b_attn is not None: h_base = b_attn( h_base, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0]
1,082
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# apply ctrl subblock if apply_control: if torch.is_grad_enabled() and self.gradient_checkpointing: ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} h_ctrl = torch.utils.checkpoint.checkpoint( create_custom_forward(c_res), h_ctrl, temb, **ckpt_kwargs, ) else: h_ctrl = c_res(h_ctrl, temb) if c_attn is not None: h_ctrl = c_attn( h_ctrl, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0]
1,082
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# add ctrl -> base if apply_control: h_base = h_base + c2b(h_ctrl) * conditioning_scale base_output_states = base_output_states + (h_base,) ctrl_output_states = ctrl_output_states + (h_ctrl,) if self.base_downsamplers is not None: # if we have a base_downsampler, then also a ctrl_downsampler b2c = self.base_to_ctrl[-1] c2b = self.ctrl_to_base[-1] # concat base -> ctrl if apply_control: h_ctrl = torch.cat([h_ctrl, b2c(h_base)], dim=1) # apply base subblock h_base = self.base_downsamplers(h_base) # apply ctrl subblock if apply_control: h_ctrl = self.ctrl_downsamplers(h_ctrl) # add ctrl -> base if apply_control: h_base = h_base + c2b(h_ctrl) * conditioning_scale
1,082
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
base_output_states = base_output_states + (h_base,) ctrl_output_states = ctrl_output_states + (h_ctrl,) return h_base, h_ctrl, base_output_states, ctrl_output_states
1,082
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
class ControlNetXSCrossAttnMidBlock2D(nn.Module): def __init__( self, base_channels: int, ctrl_channels: int, temb_channels: Optional[int] = None, norm_num_groups: int = 32, ctrl_max_norm_num_groups: int = 32, transformer_layers_per_block: int = 1, base_num_attention_heads: Optional[int] = 1, ctrl_num_attention_heads: Optional[int] = 1, cross_attention_dim: Optional[int] = 1024, upcast_attention: bool = False, use_linear_projection: Optional[bool] = True, ): super().__init__() # Before the midblock application, information is concatted from base to control. # Concat doesn't require change in number of channels self.base_to_ctrl = make_zero_conv(base_channels, base_channels)
1,083
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
self.base_midblock = UNetMidBlock2DCrossAttn( transformer_layers_per_block=transformer_layers_per_block, in_channels=base_channels, temb_channels=temb_channels, resnet_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, num_attention_heads=base_num_attention_heads, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, )
1,083
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
self.ctrl_midblock = UNetMidBlock2DCrossAttn( transformer_layers_per_block=transformer_layers_per_block, in_channels=ctrl_channels + base_channels, out_channels=ctrl_channels, temb_channels=temb_channels, # number or norm groups must divide both in_channels and out_channels resnet_groups=find_largest_factor( gcd(ctrl_channels, ctrl_channels + base_channels), ctrl_max_norm_num_groups ), cross_attention_dim=cross_attention_dim, num_attention_heads=ctrl_num_attention_heads, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, ) # After the midblock application, information is added from control to base # Addition requires change in number of channels self.ctrl_to_base = make_zero_conv(ctrl_channels, base_channels) self.gradient_checkpointing = False
1,083
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
@classmethod def from_modules( cls, base_midblock: UNetMidBlock2DCrossAttn, ctrl_midblock: MidBlockControlNetXSAdapter, ): base_to_ctrl = ctrl_midblock.base_to_ctrl ctrl_to_base = ctrl_midblock.ctrl_to_base ctrl_midblock = ctrl_midblock.midblock # get params def get_first_cross_attention(midblock): return midblock.attentions[0].transformer_blocks[0].attn2
1,083
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
base_channels = ctrl_to_base.out_channels ctrl_channels = ctrl_to_base.in_channels transformer_layers_per_block = len(base_midblock.attentions[0].transformer_blocks) temb_channels = base_midblock.resnets[0].time_emb_proj.in_features num_groups = base_midblock.resnets[0].norm1.num_groups ctrl_num_groups = ctrl_midblock.resnets[0].norm1.num_groups base_num_attention_heads = get_first_cross_attention(base_midblock).heads ctrl_num_attention_heads = get_first_cross_attention(ctrl_midblock).heads cross_attention_dim = get_first_cross_attention(base_midblock).cross_attention_dim upcast_attention = get_first_cross_attention(base_midblock).upcast_attention use_linear_projection = base_midblock.attentions[0].use_linear_projection
1,083
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# create model model = cls( base_channels=base_channels, ctrl_channels=ctrl_channels, temb_channels=temb_channels, norm_num_groups=num_groups, ctrl_max_norm_num_groups=ctrl_num_groups, transformer_layers_per_block=transformer_layers_per_block, base_num_attention_heads=base_num_attention_heads, ctrl_num_attention_heads=ctrl_num_attention_heads, cross_attention_dim=cross_attention_dim, upcast_attention=upcast_attention, use_linear_projection=use_linear_projection, ) # load weights model.base_to_ctrl.load_state_dict(base_to_ctrl.state_dict()) model.base_midblock.load_state_dict(base_midblock.state_dict()) model.ctrl_midblock.load_state_dict(ctrl_midblock.state_dict()) model.ctrl_to_base.load_state_dict(ctrl_to_base.state_dict()) return model
1,083
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
def freeze_base_params(self) -> None: """Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine tuning.""" # Unfreeze everything for param in self.parameters(): param.requires_grad = True # Freeze base part for param in self.base_midblock.parameters(): param.requires_grad = False
1,083
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
def forward( self, hidden_states_base: Tensor, temb: Tensor, encoder_hidden_states: Tensor, hidden_states_ctrl: Optional[Tensor] = None, conditioning_scale: Optional[float] = 1.0, cross_attention_kwargs: Optional[Dict[str, Any]] = None, attention_mask: Optional[Tensor] = None, encoder_attention_mask: Optional[Tensor] = None, apply_control: bool = True, ) -> Tuple[Tensor, Tensor]: if cross_attention_kwargs is not None: if cross_attention_kwargs.get("scale", None) is not None: logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") h_base = hidden_states_base h_ctrl = hidden_states_ctrl
1,083
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
joint_args = { "temb": temb, "encoder_hidden_states": encoder_hidden_states, "attention_mask": attention_mask, "cross_attention_kwargs": cross_attention_kwargs, "encoder_attention_mask": encoder_attention_mask, } if apply_control: h_ctrl = torch.cat([h_ctrl, self.base_to_ctrl(h_base)], dim=1) # concat base -> ctrl h_base = self.base_midblock(h_base, **joint_args) # apply base mid block if apply_control: h_ctrl = self.ctrl_midblock(h_ctrl, **joint_args) # apply ctrl mid block h_base = h_base + self.ctrl_to_base(h_ctrl) * conditioning_scale # add ctrl -> base return h_base, h_ctrl
1,083
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
class ControlNetXSCrossAttnUpBlock2D(nn.Module): def __init__( self, in_channels: int, out_channels: int, prev_output_channel: int, ctrl_skip_channels: List[int], temb_channels: int, norm_num_groups: int = 32, resolution_idx: Optional[int] = None, has_crossattn=True, transformer_layers_per_block: int = 1, num_attention_heads: int = 1, cross_attention_dim: int = 1024, add_upsample: bool = True, upcast_attention: bool = False, use_linear_projection: Optional[bool] = True, ): super().__init__() resnets = [] attentions = [] ctrl_to_base = [] num_layers = 3 # only support sd + sdxl self.has_cross_attention = has_crossattn self.num_attention_heads = num_attention_heads if isinstance(transformer_layers_per_block, int): transformer_layers_per_block = [transformer_layers_per_block] * num_layers
1,084
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
for i in range(num_layers): res_skip_channels = in_channels if (i == num_layers - 1) else out_channels resnet_in_channels = prev_output_channel if i == 0 else out_channels ctrl_to_base.append(make_zero_conv(ctrl_skip_channels[i], resnet_in_channels)) resnets.append( ResnetBlock2D( in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, groups=norm_num_groups, ) )
1,084
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
if has_crossattn: attentions.append( Transformer2DModel( num_attention_heads, out_channels // num_attention_heads, in_channels=out_channels, num_layers=transformer_layers_per_block[i], cross_attention_dim=cross_attention_dim, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, norm_num_groups=norm_num_groups, ) ) self.resnets = nn.ModuleList(resnets) self.attentions = nn.ModuleList(attentions) if has_crossattn else [None] * num_layers self.ctrl_to_base = nn.ModuleList(ctrl_to_base) if add_upsample: self.upsamplers = Upsample2D(out_channels, use_conv=True, out_channels=out_channels) else: self.upsamplers = None
1,084
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
self.gradient_checkpointing = False self.resolution_idx = resolution_idx @classmethod def from_modules(cls, base_upblock: CrossAttnUpBlock2D, ctrl_upblock: UpBlockControlNetXSAdapter): ctrl_to_base_skip_connections = ctrl_upblock.ctrl_to_base # get params def get_first_cross_attention(block): return block.attentions[0].transformer_blocks[0].attn2
1,084
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
out_channels = base_upblock.resnets[0].out_channels in_channels = base_upblock.resnets[-1].in_channels - out_channels prev_output_channels = base_upblock.resnets[0].in_channels - out_channels ctrl_skip_channelss = [c.in_channels for c in ctrl_to_base_skip_connections] temb_channels = base_upblock.resnets[0].time_emb_proj.in_features num_groups = base_upblock.resnets[0].norm1.num_groups resolution_idx = base_upblock.resolution_idx if hasattr(base_upblock, "attentions"): has_crossattn = True transformer_layers_per_block = len(base_upblock.attentions[0].transformer_blocks) num_attention_heads = get_first_cross_attention(base_upblock).heads cross_attention_dim = get_first_cross_attention(base_upblock).cross_attention_dim upcast_attention = get_first_cross_attention(base_upblock).upcast_attention use_linear_projection = base_upblock.attentions[0].use_linear_projection
1,084
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
else: has_crossattn = False transformer_layers_per_block = None num_attention_heads = None cross_attention_dim = None upcast_attention = None use_linear_projection = None add_upsample = base_upblock.upsamplers is not None
1,084
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# create model model = cls( in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channels, ctrl_skip_channels=ctrl_skip_channelss, temb_channels=temb_channels, norm_num_groups=num_groups, resolution_idx=resolution_idx, has_crossattn=has_crossattn, transformer_layers_per_block=transformer_layers_per_block, num_attention_heads=num_attention_heads, cross_attention_dim=cross_attention_dim, add_upsample=add_upsample, upcast_attention=upcast_attention, use_linear_projection=use_linear_projection, )
1,084
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# load weights model.resnets.load_state_dict(base_upblock.resnets.state_dict()) if has_crossattn: model.attentions.load_state_dict(base_upblock.attentions.state_dict()) if add_upsample: model.upsamplers.load_state_dict(base_upblock.upsamplers[0].state_dict()) model.ctrl_to_base.load_state_dict(ctrl_to_base_skip_connections.state_dict()) return model def freeze_base_params(self) -> None: """Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine tuning.""" # Unfreeze everything for param in self.parameters(): param.requires_grad = True
1,084
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
# Freeze base part base_parts = [self.resnets] if isinstance(self.attentions, nn.ModuleList): # attentions can be a list of Nones base_parts.append(self.attentions) if self.upsamplers is not None: base_parts.append(self.upsamplers) for part in base_parts: for param in part.parameters(): param.requires_grad = False
1,084
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
def forward( self, hidden_states: Tensor, res_hidden_states_tuple_base: Tuple[Tensor, ...], res_hidden_states_tuple_ctrl: Tuple[Tensor, ...], temb: Tensor, encoder_hidden_states: Optional[Tensor] = None, conditioning_scale: Optional[float] = 1.0, cross_attention_kwargs: Optional[Dict[str, Any]] = None, attention_mask: Optional[Tensor] = None, upsample_size: Optional[int] = None, encoder_attention_mask: Optional[Tensor] = None, apply_control: bool = True, ) -> Tensor: if cross_attention_kwargs is not None: if cross_attention_kwargs.get("scale", None) is not None: logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") is_freeu_enabled = ( getattr(self, "s1", None) and getattr(self, "s2", None) and getattr(self, "b1", None) and getattr(self, "b2", None) )
1,084
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward def maybe_apply_freeu_to_subblock(hidden_states, res_h_base): # FreeU: Only operate on the first two stages if is_freeu_enabled: return apply_freeu( self.resolution_idx, hidden_states, res_h_base, s1=self.s1, s2=self.s2, b1=self.b1, b2=self.b2, ) else: return hidden_states, res_h_base
1,084
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
for resnet, attn, c2b, res_h_base, res_h_ctrl in zip( self.resnets, self.attentions, self.ctrl_to_base, reversed(res_hidden_states_tuple_base), reversed(res_hidden_states_tuple_ctrl), ): if apply_control: hidden_states += c2b(res_h_ctrl) * conditioning_scale hidden_states, res_h_base = maybe_apply_freeu_to_subblock(hidden_states, res_h_base) hidden_states = torch.cat([hidden_states, res_h_base], dim=1)
1,084
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
if torch.is_grad_enabled() and self.gradient_checkpointing: ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs, ) else: hidden_states = resnet(hidden_states, temb) if attn is not None: hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0]
1,084
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
if self.upsamplers is not None: hidden_states = self.upsamplers(hidden_states, upsample_size) return hidden_states
1,084
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_xs.py
class QuickGELU(nn.Module): """ Applies GELU approximation that is fast but somewhat inaccurate. See: https://github.com/hendrycks/GELUs """ def forward(self, input: torch.Tensor) -> torch.Tensor: return input * torch.sigmoid(1.702 * input)
1,085
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_union.py
class ResidualAttentionMlp(nn.Module): def __init__(self, d_model: int): super().__init__() self.c_fc = nn.Linear(d_model, d_model * 4) self.gelu = QuickGELU() self.c_proj = nn.Linear(d_model * 4, d_model) def forward(self, x: torch.Tensor): x = self.c_fc(x) x = self.gelu(x) x = self.c_proj(x) return x
1,086
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_union.py
class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = nn.LayerNorm(d_model) self.mlp = ResidualAttentionMlp(d_model) self.ln_2 = nn.LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x: torch.Tensor): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x: torch.Tensor): x = x + self.attention(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x
1,087
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnets/controlnet_union.py