content
stringlengths
22
815k
id
int64
0
4.91M
def prepositionalPhrase(): """Builds and returns a prepositional phrase.""" return random.choice(prepositions) + " " + nounPhrase()
7,700
def output_yaml_key(dictionary, yaml_key, hierarchy_regex): """ Fancy print function that prints out a key in the global dictionary with the hierarchy ordered as defined in hiera.yaml """ print("%s:" % yaml_key) if len(dictionary[yaml_key]) > 1: # convert all 2nd level dict into ordereddict keys so that we can maintain hierarchy order awareness for yaml_key in global_dict.keys(): ordered_dict = OrderedDict(sorted(global_dict[yaml_key].items(), key=lambda x: get_regex_order(x[0], hierarchy_regex))) pp.pprint(ordered_dict) else: pp.pprint(dictionary[yaml_key]) print()
7,701
def check_possible_dtype(df): """Guess dtypes for each column in a dataframe, where dataframe must contains only string values. Raise an exception if dataframe contains non-string values. :param df: a DataFrame whose all values must be strings. """ column = [] int_cnt = [] dec_cnt = [] str_cnt = [] d = {"column": column, "int_cnt": int_cnt, "dec_cnt": dec_cnt, "str_cnt": str_cnt} for i in df.columns: ser = df[i].drop_duplicates() column.append(i) int_cnt.append(ser.apply(lambda x: is_int_str(x)).sum()) dec_cnt.append(ser.apply(lambda x: is_dec_str(x)).sum()) str_cnt.append(ser.apply(lambda x: not is_number_str(x)).sum()) dtype_options_df = pd.DataFrame(d, columns=["column", "int_cnt", "dec_cnt", "str_cnt"]) # Best-effort guess on dtype guessed_dtype = dtype_options_df.apply(guess_dtype, axis=1).rename("guessed_type_for_non_nan") return pd.concat([dtype_options_df, guessed_dtype], axis=1)
7,702
def display_image(img, heatmap, vectmap): """ Displays an image and associated heatmaps and pafs (all) :param img: :param heatmap: :param vectmap: :return: """ fig = plt.figure() a = fig.add_subplot(2, 2, 1) a.set_title('Image') plt.imshow(_get_bgimg(img)) a = fig.add_subplot(2, 2, 2) a.set_title('Heatmap') plt.imshow(_get_bgimg(img, target_size=(heatmap.shape[1], heatmap.shape[0])), alpha=0.5) tmp = np.amax(heatmap, axis=2) plt.imshow(tmp, cmap=plt.cm.gray, alpha=0.5) plt.colorbar() tmp2 = vectmap.transpose((2, 0, 1)) tmp2_odd = np.amax(np.absolute(tmp2[::2, :, :]), axis=0) tmp2_even = np.amax(np.absolute(tmp2[1::2, :, :]), axis=0) a = fig.add_subplot(2, 2, 3) a.set_title('paf-x') plt.imshow(_get_bgimg(img, target_size=(vectmap.shape[1], vectmap.shape[0])), alpha=0.5) plt.imshow(tmp2_odd, cmap=plt.cm.gray, alpha=0.5) plt.colorbar() a = fig.add_subplot(2, 2, 4) a.set_title('paf-y') plt.imshow(_get_bgimg(img, target_size=(vectmap.shape[1], vectmap.shape[0])), alpha=0.5) plt.imshow(tmp2_even, cmap=plt.cm.gray, alpha=0.5) plt.colorbar() plt.show()
7,703
def filter_objects_avoiding_duplicated(objects: List[Object], max_distance: int = 20) -> List[Object]: """Filtra los objetos evitando aquellas posibles que sean detecciones múltiples. El fundamento del algoritmo es que si se detectan dos objetos con un centroide muy cercano, a una distancia máxima indicada por ``max_distance``, entonces es una detección múltiple. El conflicto se resuelve eliminando las detecciones múltiple y escogiendo la que mejor puntuación ha obtenido en la detección. :param objects: lista de objetos. :param max_distance: máxima distancia entre centros para considerar que ese objeto puede ser un duplicado. :return: lista de objetos filtrados. """ # Lista de las posiciones en 'objects' de los objetos eliminados. removed_objects_id = list() # Buscar los posibles candidatos para cada objeto. for obj_id, obj_detection in enumerate(objects): for candidate_id, candidate_detection in enumerate(objects): # Ignorar el mismo objeto como posible candidato. if obj_id == candidate_id: continue # Ignorar si alguno de los que se está comparando ha sido eliminado ya. if obj_id in removed_objects_id or candidate_id in removed_objects_id: continue # Calcular la distancia euclídea entre ambas detecciones. p = np.array(obj_detection.center) q = np.array(candidate_detection.center) distance = np.linalg.norm(p - q) # Si hay poca distancia, puede ser el mismo objeto. if distance <= max_distance: # Eliminar el que menos puntuación tiene. if obj_detection.score > candidate_detection.score: removed_objects_id.append(candidate_id) else: removed_objects_id.append(obj_id) # Lista de los objetos que han pasado el filtro. objects_filtered: List[Object] = list() for obj_id, obj_detection in enumerate(objects): if obj_id not in removed_objects_id: objects_filtered.append(obj_detection) return objects_filtered
7,704
def splitall(path): """ Credit goes to Trent Mick SOURCE: https://www.oreilly.com/library/view/python-cookbook/0596001673/ch04s16.html """ allparts = [] while 1: parts = os.path.split(path) if parts[0] == path: # sentinel for absolute paths allparts.insert(0, parts[0]) break elif parts[1] == path: # sentinel for relative paths allparts.insert(0, parts[1]) break else: path = parts[0] allparts.insert(0, parts[1]) return allparts
7,705
def netstat(): """ Return list of all connections. Return list of TCP listenning connections and UDP connections. All localhost connections are filtered out. This script must run as root in order to be able to obtain PID values of all processes. For more information see: https://unix.stackexchange.com/questions/226276/read-proc-to-know-if-a-process-has-opened-a-port :return: List of connections """ uid = os.getuid() assert uid == 0, "This script must run as root" tcp4_list = netstat_tcp4() udp4_list = netstat_udp4() tcp6_list = netstat_tcp6() udp6_list = netstat_udp6() raw_list = netstat_raw() return tcp4_list + udp4_list + tcp6_list + udp6_list + raw_list
7,706
def print_hdr(soup, hdr, file = None): """ :param soup: [bs4.BeautifulSoup] document context :param hdr: [dict] header node to process :param file: [stream] I/O stream to print to :return: [stream] pass on the I/O stream so descent continues """ tag = hdr['tag'] tag_id = tag['id'] indent = (hdr['level'] - 1) * ' ' # do this replacement for (relative) readability content_tags = ["<%s>" % (h.name) if h.name else h.string for h in hdr['content']] print("%s%s - %s %s" % (indent, tag.name, tag_id, content_tags), file=file) return file
7,707
def usage(): """ Prints usage information """ print("usage: %s <title> <gof_fileroot> <indir> <outdir> <cutoff>" % (sys.argv[0]))
7,708
def test_peekleft_child_empty_deque(): """Test peekleft_child on an empty deque.""" test_deque = Deque() peek_value = test_deque.peekleft_child() assert peek_value is None
7,709
def __empty_2(): """ Empty used as parent of cube_2 """ obj = Mock() obj.name = 'empty_2' obj.mode = 'OBJECT' obj.to_mesh.return_value = None obj.matrix_world = Matrix.Identity(4) obj.visible_get.return_value = False obj.hide_viewport = True obj.hide_render = True return obj
7,710
def parse_args(args): """Parse command line parameters Args: args ([str]): command line parameters as list of strings Returns: :obj:`argparse.Namespace`: command line parameters namespace """ parser = argparse.ArgumentParser( description="A scaffolding program for developer notes") parser.add_argument( "-v", "--version", action="version", version="nota {ver}".format(ver=__version__)) parser.add_argument( dest="name", help="name of new note", metavar="<name>") parser.add_argument( "-c", "--config", dest="config", help="configuration file location") parser.add_argument( "-t", "--template", dest="template", help="custom template file location") parser.add_argument( "-i", "--identifier", dest="identifier", help="custom note identifier") parser.add_argument( "--directories", dest="dirs", help="additional directories to create", action="append", nargs="+") parser.add_argument( "--filename", dest="filename", help="custom note filename") parser.add_argument( "-l", "--list", dest="list", help="lists all notes available", action="store_true") parser.add_argument( "-r", "--root", dest="root", help="root directory for all notes") group = parser.add_mutually_exclusive_group(required=True) group.add_argument( "-d", "--defect", dest="note_type", help="create a defect note", action="store_const", const=NoteType.Defect) group.add_argument( "-b", "--bug", dest="note_type", help="create a bug note", action="store_const", const=NoteType.Bug) group.add_argument( "-s", "--story", dest="note_type", help="create a story note", action="store_const", const=NoteType.Story) group.add_argument( "-f", "--feature", dest="note_type", help="create a feature note", action="store_const", const=NoteType.Feature) group.add_argument( "-o", "--option", dest="custom", help="create a custom note") return parser.parse_args(args)
7,711
def get_gradient(bf_data: np.ndarray, smooth=10): """ Removes first dimension, Computes gradient of the image, applies gaussian filter Returns SegmentedImage object """ data = strip_dimensions(bf_data) gradient = get_2d_gradient(data) smoothed_gradient = gaussian_filter(gradient, smooth) # sm = multiwell.gaussian_filter(well, smooth) return smoothed_gradient.reshape(bf_data.shape)
7,712
def sum_seq(seq): """ Lambda wrapper for sum. """ return K.sum(seq, axis=1, keepdims=False)
7,713
def p_opt_visible_order_spec(t): """opt_visible_order_spec : LPAREN visible_order_spec RPAREN""" t[0] = t[2]
7,714
async def test_sensors(hass, setup_entry): """Test the SleepIQ binary sensors for a bed with two sides.""" entity_registry = er.async_get(hass) state = hass.states.get("sensor.sleepnumber_ile_test1_sleepnumber") assert state.state == "40" assert state.attributes.get(ATTR_ICON) == "mdi:bed" assert ( state.attributes.get(ATTR_FRIENDLY_NAME) == "SleepNumber ILE Test1 SleepNumber" ) entry = entity_registry.async_get("sensor.sleepnumber_ile_test1_sleepnumber") assert entry assert entry.unique_id == "-31_Test1_sleep_number" # If account type is set, only a single bed account was created and there will # not be a second entity if setup_entry["account_type"]: return state = hass.states.get("sensor.sleepnumber_ile_test2_sleepnumber") assert state.state == "80" assert state.attributes.get(ATTR_ICON) == "mdi:bed" assert ( state.attributes.get(ATTR_FRIENDLY_NAME) == "SleepNumber ILE Test2 SleepNumber" ) entry = entity_registry.async_get("sensor.sleepnumber_ile_test2_sleepnumber") assert entry assert entry.unique_id == "-31_Test2_sleep_number"
7,715
def split_by_time(files_rad): """Separate a list of files by their timestamp""" out = {} if type(files_rad) == dict: for k in files_rad.keys(): out[k] = _split_by_time(files_rad[k]) else: out = _split_by_time(files_rad) return out
7,716
def make_general_csv_rows(general_csv_dict): """ Method for make list of metrics from general metrics dict. Rows using in general metrics writer :param general_csv_dict: dict with all metrics :type general_csv_dict: dict :return: all metrics as rows :rtype: list """ rows = [] for key, value in general_csv_dict.items(): row = [key[0], key[1]] row.extend(value) rows.append(row) return rows
7,717
def build_hstwcs(crval1, crval2, crpix1, crpix2, naxis1, naxis2, pscale, orientat): """ Create an HSTWCS object for a default instrument without distortion based on user provided parameter values. """ wcsout = wcsutil.HSTWCS() wcsout.wcs.crval = np.array([crval1,crval2]) wcsout.wcs.crpix = np.array([crpix1,crpix2]) wcsout.naxis1 = naxis1 wcsout.naxis2 = naxis2 wcsout.wcs.cd = fileutil.buildRotMatrix(orientat)*[-1,1]*pscale/3600.0 # Synchronize updates with PyWCS/WCSLIB objects wcsout.wcs.set() wcsout.setPscale() wcsout.setOrient() wcsout.wcs.ctype = ['RA---TAN','DEC--TAN'] return wcsout
7,718
def build_regressor_for_ranking_positive_class(dataset, features, regression_target=TARGET_COLUMN): """This function builds a regressor based exclusively on positive class' examples present in the dataset """ if regression_target in features: print('The target for the regression task cannot be one of the features') return positive_examples = dataset.loc[dataset[TARGET_COLUMN] > ALPHA] X = positive_examples[features] y = positive_examples[regression_target] regressor = RandomForestRegressor(random_state=20) regressor.fit(X, y) return regressor
7,719
def get_speakable_timestamp(timestamp): """Return a 'speakable' timestamp, e.g. 8am, noon, 9pm, etc.""" speakable = f"{timestamp.strftime('%I').lstrip('0')} {timestamp.strftime('%p')}" if speakable == '12 PM': return 'noon' elif speakable == '12 AM': return 'midnight' return speakable
7,720
def compute_save_stat(outdir, trn_dict, dec_dict, wavlen_dict, declen_dict, fwlen_dict): """ Save computed statistics e.g. WER, decoding length, wave length Args: outdir(str): path to directory for the generated log files are saved. trn_dict(dict): (Wave name, transcription) dictionary dec_dict(dict): (Wave name, decoded transcription) dictionary wavlen_dict(dict): (Wave name, Wave length) dictionary declen_dict(dict): (Wave name, (decoding time + extraction time)) dictionary fwlen_dict(dict): (Wave name, decoding time) dictionary """ compute_rt_factor(outdir, trn_dict, dec_dict, wavlen_dict, declen_dict, fwlen_dict) reference = os.path.join(outdir, 'ref_trn.txt') hypothesis = os.path.join(outdir, 'dec_trn.txt') score(reference, hypothesis)
7,721
def createColor(red: int, green: int, blue: int) -> tuple: """ Create color Parameters: red -> 0-255 green -> 0-255 blue -> 0-255 """ return tuple( max(min(red, 255), 0), max(min(green, 255), 0), max(min(blue, 255), 0) )
7,722
def export_nodeclass_list(node_classes: List[NodeClass]) -> str: """Writes the Node data as a XML string. Does not write to a file -- use ``with open(output_file) as out_stream:`` etc. """ # This is the data string, the rest is formalities node_classes_string = '\n'.join([str(c) for c in node_classes]) lines = list() lines.append('<?xml version="1.0" encoding="utf-8"?>') lines.append('<NodeClasses noNamespaceSchema="mff-muscima-mlclasses.xsd">') lines.append(node_classes_string) lines.append('</NodeClasses>') return '\n'.join(lines)
7,723
def recognition(request): """ style transform service """ if request.method == 'POST': name = '' predicitons = '' try: # load image now = time.localtime() img = request.FILES['image'] image_name = '{}{}{}{}{}object.jpg'.format(now[1], now[2], now[3], now[4], now[5]) # get prediction predicitons = predict_app(img) # save to database Image = ContentImage() Image.name = 'static/images/predict/' + image_name Image.save() # save to disk addr = BASE_DIR + 'predict/' + image_name save_to_disk(addr, img) image_url = 'images/predict/' + image_name except Exception as e: print(e) return render(request, 'recognition/basic.html', {}) return render(request, 'recognition/basic.html', {'image_url':image_url, 'predictions': predicitons}) if request.method == 'GET': return render(request, 'recognition/basic.html', {})
7,724
def url(s): """Validate url input""" u = urlparse(s) if u.scheme not in ["http", "https"]: raise ValueError(s) return u.geturl()
7,725
def getGPLCs(df, savepath='./',plotpath='./', bands='ugrizY', ts='0000000', fn='GPSet'): """Short summary. Parameters ---------- df : type Description of parameter `df`. savepath : type Description of parameter `savepath`. plotpath : type Description of parameter `plotpath`. bands : type Description of parameter `bands`. ts : type Description of parameter `ts`. fn : type Description of parameter `fn`. Returns ------- type Description of returned object. """ #num_bands = len(np.unique(band_idx)) Npt = 100 tmin = -30 tmax = 150 num_bands = len(bands) GP_dict = {} # make our plots look nice stylePlots() for idx, row in df.iterrows(): t = np.array(row["T"]) f = np.array(row["Flux"]) f[f<0.] = 0. #getting rid of negative flux #the magnitude-like array for the sake of the conversion y = np.log(f + 1) yerr = np.array(row["Flux_Err"]) / np.array(row["Flux"]) t_test = np.linspace(tmin, tmax, Npt) band = row["Filter"] band_idx = pd.Series(row['Filter']).astype('category').cat.codes.values matrix = [t_test] def build_gp(params): time_kernel = tinygp.kernels.Matern32(jnp.exp(params["log_scale"])) kernel = Multiband(time_kernel, jnp.exp(params["log_diagonal"]), params["off_diagonal"]) diag = yerr ** 2 + jnp.exp(2 * params["log_jitter"][X[1]]) return tinygp.GaussianProcess(kernel, X, diag=diag, mean=lambda x: params["mean"][x[1]]) #the GP parameters @jax.jit def loss(params): return -build_gp(params).condition(y) X = (t, band_idx) solver = jaxopt.ScipyMinimize(fun=loss) soln = solver.run(params) gp = build_gp(soln.params) df_t = [] df_flux = [] df_flux_err = [] df_filt = [] if idx%50 == 0: plt.figure(figsize=(10,7)) for n in np.unique(band_idx): m = band_idx == n plt.errorbar(t[m], np.exp(y[m])-1,yerr=row['Flux_Err'][m], fmt="o", color=f"C{n}") mu, var = gp.predict(y, X_test=(t_test, np.full_like(t_test, n, dtype=int)), return_var=True) std = np.sqrt(var) if idx%50 == 0: plt.plot(t_test, np.exp(mu)-1, '.-', ms=2, color=f"C{n}") plt.fill_between(t_test,np.exp(mu - std)-1, np.exp(mu + std)+1, color=f"C{n}", alpha=0.3, label=bands[n]) #going in order of band here--don't forget it! matrix.append(np.exp(mu)-1) matrix.append(std) if idx%50 == 0: plt.xlim((t_test[0], t_test[-1])) plt.xlabel("Phase from Trigger (Days)") plt.ylabel("Flux") plt.legend() plt.savefig(plotpath + "/GP_%i.png"%row.CID,dpi=200, bbox_inches='tight') stacked = np.vstack(matrix) GP_dict[row.CID] = stacked with open(savepath + '/%s_%i.pkl'%(fn, ts), 'wb') as f: pickle.dump(GP_dict, f) return GP_dict
7,726
async def db_async_test_data(db_async_session): """A fixture to fill the DB with test data. Use this in asynchronous tests. """ async with db_async_session.begin(): for obj in _gen_test_data_objs(): db_async_session.add(obj)
7,727
def prepare_embeddings(): """ Prepares fastText embeddings (available at https://fasttext.cc/docs/en/english-vectors.html) for use in the model. Function expects unarchived fastText embedding file. """ file_in = io.open(cnf.embedding_file, 'r', encoding="utf-8", newline='\n', errors='ignore') n, d = list(map(int, file_in.readline().split(' '))) # Dimensions of embedding print("Preparing embedding with dimensions:", n, d) word_to_id = {"C_PAD": 0, "C_UNK": 1} word_to_vec = [['0' for _ in range(d)], [str(random.random()) for _ in range(d)]] word_id = 2 with open(cnf.emb_vector_file, "w") as vector_file: for line in file_in: tokens = line.rstrip().split() word_to_vec.append(tokens[1:]) word_to_id[tokens[0]] = word_id if word_id % 100000 == 0: vector_file.writelines([" ".join(word) + "\n" for word in word_to_vec]) word_to_vec = [] print("Done with", word_id, "word") word_id += 1 vector_file.writelines([" ".join(word) + "\n" for word in word_to_vec]) with open(cnf.emb_word_dictionary, "wb") as id_out: pickle.dump(word_to_id, id_out) # For faster load times save numpy array as binary file print('Pickled word dictionary') vector_file = np.loadtxt(cnf.emb_vector_file, dtype=np.float) with open(cnf.emb_vector_file, "wb") as emb_file_bin: # For faster load times save numpy array as binary file pickle.dump(vector_file, emb_file_bin) print('Pickled embedding')
7,728
def _featurize(inputs,model): """ Helper function used to featurize exemplars before feeding into buffer. """ with torch.no_grad(): # Forward pass outputs = model(*inputs).detach() #Featurize raw exem return outputs
7,729
def ligth_condition(img, args): """ Change ligthning condition in the image Inputs: img: Image to change ligthning args: Dictionary with "gamma" argument Return: Image with ligthning values changed """ invGamma = 1.0 / args["gamma"] table = np.array([((i / 255.0) ** invGamma) * 255 for i in np.arange(0, 256)]).astype("uint8") return cv2.LUT(img, table)
7,730
def calc_RMSE(varx,vary,lats,lons,weight): """ Calculates root mean square weighted average Parameters ---------- varx : 2d array vary : 2d array lons : 1d array of latitude weight : string (yes or no) Returns ------- rmse : 1d array Usage ----- rmse = calc_RMSE(varx,vary,lats,lons) """ print('\n>>> Using calc_RMSE function!') ### Import modules import numpy as np from sklearn.metrics import mean_squared_error if weight == 'yes': # Computed weighted correlation coefficient ### mask mask = 'yes' if mask == 'yes': latq = np.where(lats > 30)[0] lats = lats[latq] varx = varx[latq,:] vary = vary[latq,:] print('MASKING LATITUDES!') ### Create 2d meshgrid for weights lon2,lat2 = np.meshgrid(lons,lats) ### Create 2d array of weights based on latitude gw = np.cos(np.deg2rad(lat2)) ### Calculate rmse sq_err = (varx - vary)**2 rmse = np.sqrt((np.sum(sq_err*gw))/np.sum(gw)) elif weight == 'no': ### Root mean square error from sklearn (not weighted) rmse = np.sqrt(mean_squared_error(varx.ravel(),vary.ravel())) print('Completed: Computed NON-weighted correlation!') else: ValueError('Wrong weighted arguement in function!') print('*Completed: Finished calc_RMSE function!') return rmse
7,731
def sample(internal_nodes, alpha=0.5, beta=0.5, only_tree=False): """ Generates a junction tree with order internal nodes with the junction tree expander. Args: internal_nodes (int): number of nodes in the underlying graph alpha (float): parameter for the subtree kernel beta (float): parameter for the subtree kernel directory (string): path to Returns: NetworkX graph: a junction tree """ import trilearn.graph.decomposable as dlib nodes = None if type(internal_nodes) is int: nodes = range(internal_nodes) else: nodes = internal_nodes tree = JunctionTree() #from trilearn.graph.junction_tree_gt import JunctionTreeGT #tree = JunctionTreeGT() tree.add_node(frozenset([nodes[0]])) # print tree.nodes() # for n in tree.nodes(): # lab = tuple(n) # if len(n) == 1: # lab = "("+str(list(n)[0])+")" # tree.node[n] = {"color": "black", "label": lab} for j in nodes[1:]: if only_tree: jte.sample(tree, j, alpha, beta, only_tree=only_tree) else: (tree, _, _, _, _, _) = jte.sample(tree, j, alpha, beta, only_tree=only_tree) #print("vert dict: " + str(tree.gp.vert_dict)) #print("nodes: " + str(list(tree.vp.nodes))) return tree
7,732
def _get_version_tuple(): """ version as a tuple """ return major, minor, revision
7,733
def compare_activity_to_sector_flowamounts(fba_load, fbs_load, activity_set, config): """ Function to compare the loaded flowbyactivity with the final flowbysector by activityname (if exists) to target sector level output, checking for data loss :param fba_load: df, FBA loaded and mapped using FEDEFL :param fbs_load: df, final FBS df :param activity_set: str, activity set :param config: dictionary, method yaml :return: printout data differences between loaded FBA and FBS output, save results as csv in local directory """ if check_activities_sector_like(fba_load): vLog.debug('Not comparing loaded FlowByActivity to FlowBySector ' 'ratios for a dataset with sector-like activities because ' 'if there are modifications to flowamounts for a sector, ' 'then the ratios will be different') else: # subset fba df fba = fba_load[['Class', 'MetaSources', 'Flowable', 'Unit', 'FlowType', 'ActivityProducedBy', 'ActivityConsumedBy', 'Context', 'Location', 'LocationSystem', 'Year', 'FlowAmount']].drop_duplicates().reset_index(drop=True) fba.loc[:, 'Location'] = US_FIPS group_cols = ['ActivityProducedBy', 'ActivityConsumedBy', 'Flowable', 'Unit', 'FlowType', 'Context', 'Location', 'LocationSystem', 'Year'] fba_agg = aggregator(fba, group_cols) fba_agg.rename(columns={'FlowAmount': 'FBA_amount'}, inplace=True) # subset fbs df fbs = fbs_load[['Class', 'SectorSourceName', 'Flowable', 'Unit', 'FlowType', 'SectorProducedBy', 'SectorConsumedBy', 'ActivityProducedBy', 'ActivityConsumedBy', 'Context', 'Location', 'LocationSystem', 'Year', 'FlowAmount']].drop_duplicates().reset_index(drop=True) fbs = replace_NoneType_with_empty_cells(fbs) fbs['ProducedLength'] = fbs['SectorProducedBy'].str.len() fbs['ConsumedLength'] = fbs['SectorConsumedBy'].str.len() fbs['SectorLength'] = fbs[['ProducedLength', 'ConsumedLength']].max(axis=1) fbs.loc[:, 'Location'] = US_FIPS group_cols = ['ActivityProducedBy', 'ActivityConsumedBy', 'Flowable', 'Unit', 'FlowType', 'Context', 'Location', 'LocationSystem', 'Year', 'SectorLength'] fbs_agg = aggregator(fbs, group_cols) fbs_agg.rename(columns={'FlowAmount': 'FBS_amount'}, inplace=True) # merge compare 1 and compare 2 df_merge = fba_agg.merge( fbs_agg, left_on=['ActivityProducedBy', 'ActivityConsumedBy', 'Flowable', 'Unit', 'FlowType', 'Context', 'Location', 'LocationSystem', 'Year'], right_on=['ActivityProducedBy', 'ActivityConsumedBy', 'Flowable', 'Unit', 'FlowType', 'Context', 'Location', 'LocationSystem', 'Year'], how='left') df_merge['Ratio'] = df_merge['FBS_amount'] / df_merge['FBA_amount'] # reorder df_merge = df_merge[['ActivityProducedBy', 'ActivityConsumedBy', 'Flowable', 'Unit', 'FlowType', 'Context', 'Location', 'LocationSystem', 'Year', 'SectorLength', 'FBA_amount', 'FBS_amount', 'Ratio']] # keep onlyrows of specified sector length comparison = df_merge[ df_merge['SectorLength'] == sector_level_key[ config['target_sector_level']]].reset_index(drop=True) tolerance = 0.01 comparison2 = comparison[(comparison['Ratio'] < 1 - tolerance) | (comparison['Ratio'] > 1 + tolerance)] if len(comparison2) > 0: vLog.info('There are %s combinations of flowable/context/sector ' 'length where the flowbyactivity to flowbysector ratio ' 'is less than or greater than 1 by %s', len(comparison2), str(tolerance)) # include df subset in the validation log # only print rows where flowamount ratio is less t # han 1 (round flowamountratio) df_v = comparison2[comparison2['Ratio'].apply( lambda x: round(x, 3) < 1)].reset_index(drop=True) # save to validation log log.info('Save the comparison of FlowByActivity load ' 'to FlowBySector ratios for %s in validation log', activity_set) # if df not empty, print, if empty, print string if df_v.empty: vLogDetailed.info('Ratios for %s all round to 1', activity_set) else: vLogDetailed.info('Comparison of FlowByActivity load to ' 'FlowBySector ratios for %s: ' '\n {}'.format(df_v.to_string()), activity_set)
7,734
def _fit_seasonal_model_with_gibbs_sampling(observed_time_series, seasonal_structure, num_warmup_steps=50, num_results=100, seed=None): """Builds a seasonality-as-regression model and fits it by Gibbs sampling.""" with tf.name_scope('fit_seasonal_model_with_gibbs_sampling'): observed_time_series = sts_util.canonicalize_observed_time_series_with_mask( observed_time_series) dtype = observed_time_series.time_series.dtype design_matrix = seasonality_util.build_fixed_effects( num_steps=ps.shape(observed_time_series.time_series)[-2], seasonal_structure=seasonal_structure, dtype=dtype) # Default priors. # pylint: disable=protected-access one = tf.ones([], dtype=dtype) level_variance_prior = tfd.InverseGamma(concentration=16, scale=16. * 0.001**2 * one) level_variance_prior._upper_bound = one slope_variance_prior = tfd.InverseGamma(concentration=16, scale=16. * 0.05**2 * one) slope_variance_prior._upper_bound = 0.01 * one observation_noise_variance_prior = tfd.InverseGamma( concentration=0.05, scale=0.05 * one) observation_noise_variance_prior._upper_bound = 1.2 * one # pylint: enable=protected-access model = gibbs_sampler.build_model_for_gibbs_fitting( observed_time_series=observed_time_series, design_matrix=design_matrix, weights_prior=tfd.Normal(loc=0., scale=one), level_variance_prior=level_variance_prior, slope_variance_prior=slope_variance_prior, observation_noise_variance_prior=observation_noise_variance_prior) return [ model, gibbs_sampler.fit_with_gibbs_sampling(model, observed_time_series, num_results=num_results, num_warmup_steps=num_warmup_steps, seed=seed) ]
7,735
def deskew(data, angle, dx, dz, rotate=True, return_resolution=True, out=None): """ Args: data (ndarray): 3-D array to apply deskew angle (float): angle between the objective and coverslip, in degree dx (float): X resolution dz (float): Z resolution rotate (bool, optional): rotate and crop the output return_resolution (bool, optional): return deskewed X/Z resolution out (ndarray, optional): array to store the result """ angle = radians(angle) # shift along X axis, in pixels shift = dz * cos(angle) / dx logger.debug(f"layer shift: {shift:.04f} px") # estimate new size nw, nv, nu = data.shape nz, ny, nx = nw, nv, nu + ceil(shift * (nw - 1)) # upload texture ch = ChannelFormatDescriptor(32, 0, 0, 0, runtime.cudaChannelFormatKindFloat) arr = CUDAarray(ch, nu, nw) res = ResourceDescriptor(runtime.cudaResourceTypeArray, cuArr=arr) address_mode = (runtime.cudaAddressModeBorder, runtime.cudaAddressModeBorder) tex = TextureDescriptor( address_mode, runtime.cudaFilterModeLinear, runtime.cudaReadModeElementType ) # transpose data = np.swapaxes(data, 0, 1) data = np.ascontiguousarray(data) data_in = data.astype(np.float32) data_out = cp.empty((ny, nz, nx), np.float32) for i, layer in enumerate(data_in): arr.copy_from(layer) # TODO use stream texobj = TextureObject(res, tex) kernels["shear_kernel"]( (ceil(nx / 16), ceil(nz / 16)), (16, 16), (data_out[i, ...], texobj, nx, nz, nu, np.float32(shift)), ) data_out = cp.swapaxes(data_out, 0, 1) data_out = cp.asnumpy(data_out) data_out = data_out.astype(data.dtype) if return_resolution: # new resolution dz *= sin(angle) return data_out, (dz, dx) else: return data_out
7,736
def process_data(path,stage = 'train'): """ train test sample_submission """ # loading the data df = pd.read_csv(os.path.join(path,f'{stage}.csv')) MASK = -1 # fill NA with -1 T_HIST = 10 # time history, last 10 games # for cols "date", change to datatime for col in df.filter(regex='date', axis=1).columns: df[col] = pd.to_datetime(df[col]) # Creating some feature engineering print('processing hitorical data...') for i in tqdm(range(1, 11)): # range from 1 to 10 # Feat. difference of days df[f'home_team_history_match_DIFF_day_{i}'] = (df['match_date'] - df[f'home_team_history_match_date_{i}']).dt.days df[f'away_team_history_match_DIFF_days_{i}'] = (df['match_date'] - df[f'away_team_history_match_date_{i}']).dt.days # Feat. difference of scored goals df[f'home_team_history_DIFF_goal_{i}'] = df[f'home_team_history_goal_{i}'] - df[f'home_team_history_opponent_goal_{i}'] df[f'away_team_history_DIFF_goal_{i}'] = df[f'away_team_history_goal_{i}'] - df[f'away_team_history_opponent_goal_{i}'] # Results: multiple nested where df[f'home_team_result_{i}'] = np.where(df[f'home_team_history_DIFF_goal_{i}'] > 0, 1, (np.where(df[f'home_team_history_DIFF_goal_{i}'] == 0, 0, np.where(df[f'home_team_history_DIFF_goal_{i}'].isna(),np.nan, -1)))) df[f'away_team_result_{i}'] = np.where(df[f'away_team_history_DIFF_goal_{i}'] > 0, 1, (np.where(df[f'away_team_history_DIFF_goal_{i}'] == 0, 0, np.where(df[f'away_team_history_DIFF_goal_{i}'].isna(), np.nan, -1)))) # Feat. difference of rating ("modified" ELO RATING) df[f'home_team_history_ELO_rating_{i}'] = 1 / (1 + 10 ** ((df[f'home_team_history_opponent_rating_{i}'] - df[f'home_team_history_rating_{i}']) / 10)) df[f'away_team_history_ELO_rating_{i}'] = 1 / (1 + 10 ** ((df[f'away_team_history_opponent_rating_{i}'] - df[f'away_team_history_rating_{i}']) / 10)) # df[f'away_team_history_DIFF_rating_{i}'] = - df[f'away_team_history_opponent_rating_{i}'] # Feat. same coach id df[f'home_team_history_SAME_coaX_{i}'] = np.where(df['home_team_coach_id'] == df[f'home_team_history_coach_{i}'], 1, 0) df[f'away_team_history_SAME_coaX_{i}'] = np.where(df['away_team_coach_id'] == df[f'away_team_history_coach_{i}'], 1, 0) # Feat. same league id #df[f'home_team_history_SAME_leaG_{i}'] = np.where(df['league_id'] == df[f'home_team_history_league_id_{i}'],1, 0) #df[f'away_team_history_SAME_leaG_{i}'] = np.where(df['league_id'] == df[f'away_team_history_league_id_{i}'],1, 0) # Fill NA with -1 print('done') df.fillna(MASK, inplace=True) # le = LabelEncoder() # df['home_team_name'] = le.fit_transform(df['home_team_name']) # df['away_team_name'] = le.fit_transform(df['away_team_name']) # df['league_name'] = le.fit_transform(df['league_name']) # save targets # y_train = train[['target_int']].to_numpy().reshape(-1, 1) id = df['id'].copy() drop_list = ['id', 'target', 'home_team_name', 'away_team_name'] if stage =='train': y = df['target'].copy() drop_list.append('target') else: y = None # keep only some features df.drop(drop_list, axis=1, inplace=True) df['is_cup'] = df['is_cup'].replace({True: 1, False: 0}) # Exclude all date, league, coach columns df.drop(df.filter(regex='date').columns, axis=1, inplace=True) df.drop(df.filter(regex='league').columns, axis=1, inplace=True) df.drop(df.filter(regex='coach').columns, axis=1, inplace=True) # Store feature names feature_names = list(df.columns) # Scale features using statistics that are robust to outliers RS = RobustScaler() df = RS.fit_transform(df) # Back to pandas.dataframe df = pd.DataFrame(df, columns=feature_names) df = pd.concat([id, df], axis=1) # Pivot dataframe to create an input array for the LSTM network feature_groups = ["home_team_history_is_play_home", "home_team_history_is_cup", "home_team_history_goal", "home_team_history_opponent_goal", "home_team_history_rating", "home_team_history_opponent_rating", "away_team_history_is_play_home", "away_team_history_is_cup", "away_team_history_goal", "away_team_history_opponent_goal", "away_team_history_rating", "away_team_history_opponent_rating", "home_team_history_match_DIFF_day", "away_team_history_match_DIFF_days", "home_team_history_DIFF_goal", "away_team_history_DIFF_goal", "home_team_history_ELO_rating", "away_team_history_ELO_rating", "home_team_history_SAME_coaX", "away_team_history_SAME_coaX", "home_team_history_SAME_leaG", "away_team_history_SAME_leaG", "home_team_result", "away_team_result"] # Pivot dimension (id*features) x time_history x_pivot = pd.wide_to_long(df, stubnames=feature_groups,i='id', j='time', sep='_', suffix='\d+') # Trying to keep the same id order x = pd.merge(id, x_pivot, on="id") x = x.drop(['id'], axis=1).to_numpy().reshape(-1, T_HIST, x_pivot.shape[-1]) return x,y
7,737
def rm_standard_dev(var,window): """ Smoothed standard deviation """ import pandas as pd import numpy as np print('\n\n-----------STARTED: Rolling std!\n\n') rollingstd = np.empty((var.shape)) for ens in range(var.shape[0]): for i in range(var.shape[2]): for j in range(var.shape[3]): series = pd.Series(var[ens,:,i,j]) rollingstd[ens,:,i,j] = series.rolling(window).std().to_numpy() newdata = rollingstd[:,window:,:,:] print('-----------COMPLETED: Rolling std!\n\n') return newdata
7,738
def enable_scope(daq: ziDAQServer, device_id: str, *, single: int) -> None: """Enables the scope. Args: daq: Instance of a Zurich Instruments API session connected to a Data Server. The device with identifier device_id is assumed to already be connected to this instance. device_id: SHFQA device identifier, e.g. `dev12004` or 'shf-dev12004'. single: 0 = continuous mode, 1 = single-shot. """ daq.setInt(f"/{device_id}/scopes/0/single", single) path = f"/{device_id}/scopes/0/enable" if daq.getInt(path) == 1: daq.syncSetInt(path, 0) wait_for_state_change(daq, path, 0) daq.syncSetInt(path, 1) wait_for_state_change(daq, path, 1)
7,739
def test_outdated_local(tmpdir, local, remote): """Test with remote changes not pulled. :param tmpdir: pytest fixture. :param local: conftest fixture. :param remote: conftest fixture. """ # Setup separate local repo now before pushing changes to it from the primary local repo. local_outdated = tmpdir.ensure_dir('local_outdated') pytest.run(local_outdated, ['git', 'clone', '--branch', 'master', remote, '.']) sha = pytest.run(local_outdated, ['git', 'rev-parse', 'HEAD']).strip() remotes = list_remote(str(local_outdated)) expected = [ [sha, 'feature', 'heads'], [sha, 'master', 'heads'], [sha, 'annotated_tag', 'tags'], [sha, 'light_tag', 'tags'], ] assert remotes == expected # Make changes from primary local and push to common remote. local.join('README').write('changed') pytest.run(local, ['git', 'commit', '-am', 'Changed']) pytest.run(local, ['git', 'push', 'origin', 'master']) sha2 = pytest.run(local, ['git', 'rev-parse', 'HEAD']).strip() remotes = list_remote(str(local)) expected = [ [sha, 'feature', 'heads'], [sha2, 'master', 'heads'], [sha, 'annotated_tag', 'tags'], [sha, 'light_tag', 'tags'], ] assert remotes == expected # Run list_remote() on outdated repo and verify it still gets latest refs. remotes = list_remote(str(local_outdated)) assert remotes == expected
7,740
def load_letter(folder, min_num_images): """Load the data for a single letter label.""" image_files = os.listdir(folder) dataset = np.ndarray(shape=(len(image_files), image_size, image_size), dtype=np.float32) image_index = 0 print(folder) for image in os.listdir(folder): image_file = os.path.join(folder, image) try: image_data = (ndimage.imread(image_file).astype(float) - pixel_depth / 2) / pixel_depth if image_data.shape != (image_size, image_size): raise Exception('Unexpected image shape: %s' % str(image_data.shape)) dataset[image_index, :, :] = image_data image_index += 1 except IOError as e: print('Could not read:', image_file, ':', e, '- it\'s ok, skipping.') num_images = image_index dataset = dataset[0:num_images, :, :] if num_images < min_num_images: raise Exception('Many fewer images than expected: %d < %d' % (num_images, min_num_images)) print('Full dataset tensor:', dataset.shape) print('Mean:', np.mean(dataset)) print('Standard deviation:', np.std(dataset)) return dataset
7,741
def visualizeTimeSeriesCategorization(dataName, saveDir, numberOfLagsToDraw=3, autocorrelationBased=True): """Visualize time series classification. Parameters: dataName: str Data name, e.g. "myData_1" saveDir: str Path of directories pointing to data storage numberOfLagsToDraw: boolean, Default 3 First top-N lags (or frequencies) to draw autocorrelationBased: boolean, Default True Whether autocorrelation or frequency based Returns: None Usage: visualizeTimeSeriesClassification('myData_1', '/dir1/dir2/') """ info = 'Autocorrelations' if autocorrelationBased else 'Periodograms' def internal(className): print('\n\n%s of Time Series:'%(className)) clusteringObject = dataStorage.read(saveDir + 'consolidatedGroupsSubgroups/' + dataName + '_%s_%s'%(className,info) + '_GroupsSubgroups') if clusteringObject is None: print('Clustering object not found') return print('Plotting Dendrogram with Heatmaps.') visualizationFunctions.makeDendrogramHeatmapOfClusteringObject(clusteringObject, saveDir, dataName + '_%s_%sBased'%(className,info), AutocorrNotPeriodogr=autocorrelationBased) return for lag in range(1,numberOfLagsToDraw + 1): internal('LAG%s'%(lag)) internal('SpikeMax') internal('SpikeMin') return None
7,742
def refund(payment_information: Dict, connection_params) -> Dict: """Refund a payment using the culqi client. But it first check if the given payment instance is supported by the gateway. It first retrieve a `charge` transaction to retrieve the payment id to refund. And return an error with a failed transaction if the there is no such transaction, or if an error from culqi occurs during the refund.""" error = check_payment_supported(payment_information=payment_information) response_has_errors = False if error: response = get_error_response( payment_information.amount, error=error) else: setup_client(**connection_params) try: payload = format_culqui_payload( payment_information, TransactionKind.REFUND) response = culqipy.Refund.create(payload) print(f"DATA::response::{response}") # Fix: get specific errors except Exception as error: response_has_errors = True response = get_error_response( payment_information.amount, error=error) if not response_has_errors: if response.get('object', None) == 'error': error = response.get('user_message', None) if error is None: error = response.get('merchant_message', None) if error is None: error = 'Unkonw error!' response = get_error_response( payment_information.amount, error=error, id=payment_information.token) else: clean_culqi_response(response) return _generate_response( payment_information=payment_information, kind=TransactionKind.REFUND, data=response)
7,743
def get_args(): """Get command-line arguments""" parser = argparse.ArgumentParser( description='Howler', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('text', metavar='str', help='Input text or file') parser.add_argument('-o', '--outfile', help='Output filename', metavar='str', type=str, default='') args = parser.parse_args() #if the args.text is a file name (checks using os.path.isfile) if os.path.isfile(args.text): args.text = open(args.text).read().rstrip() #then open args.text, read its name and strip the whitespace out return args
7,744
def main (): """The function that is called in a command line context. """ # Make sure we aren't unintentionally overwriting an input file nonOverlapping([featListFile,inputFile,featDefsFile],[outputFile,templateFile]) # Initialize whatever script variables have to be initialized initializeScriptData() # Define the script's built-in features defineBuiltInFeatures() # Read any additional feature definitions that may have been specified if (featDefsFile): readExtraFeatDefsFile(featDefsFile) # Read the list of feature entries we will be working with readFeatureListFile(featListFile) # Print them out if we are in 'verbose' mode. if (verbose): printFeatsUsed() # Featurize the file. writeFeatMatrixFile(inputFile,outputFile,labeled) # Write out the template file if a template file argument was provided. if (templateFile): writeTemplateFile(templateFile)
7,745
def _ssim_map( X: torch.Tensor, Y: torch.Tensor, data_range: float, win: torch.Tensor, K: Tuple[float, float] = (0.01, 0.03), scales: Tuple[float, float, float] = (1, 1, 1), gradient_based: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Given two tensors it calculates the resulting SSIM and contrast sensitivity maps. Args: X (torch.Tensor): images Y (torch.Tensor): images data_range (float): value range of input images. win (torch.Tensor): 1-D gauss kernel K (Tuple[float,float]): stability constants (K1, K2). Defaults to (0.01, 0.03). gradient_based (bool): whether or not to use gradient based ssim. Returns: torch.Tensor: SSIM map torch.Tensor: contrast sensitivity map References: [1] Wang, Z., Bovik, A.C., Sheikh, H.R. and Simoncelli, E.P., 2004. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4), pp.600-612. """ K1, K2 = K alpha, beta, gamma = scales C1 = (K1 * data_range) ** 2 C2 = (K2 * data_range) ** 2 C3 = C2 / 2 win = win.to(X.device, dtype=X.dtype) # TODO: Replace this with fftconvolution mu1 = _gaussian_filter(X, win) mu2 = _gaussian_filter(Y, win) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) mu1_mu2 = mu1 * mu2 print(f"mu1: {torch.isnan(mu1).any()}") print(f"mu2: {torch.isnan(mu2).any()}") print(f"mu1_sq: {torch.isnan(mu1_sq).any()}") print(f"mu2_sq: {torch.isnan(mu2_sq).any()}") print(f"mu1_mu2: {torch.isnan(mu1_mu2).any()}") # Ref 1 - Sec 3.B - Eq 6 luminance = (2 * mu1_mu2 + C1) / (mu1_sq + mu2_sq + C1) print(f"Luminance: {torch.isnan(luminance).any()}") if gradient_based: X = _gradient_map(input=X) Y = _gradient_map(input=Y) mu1 = _gaussian_filter(X, win) mu2 = _gaussian_filter(Y, win) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) mu1_mu2 = mu1 * mu2 # TODO: Understand why it is squared sigma1_sq = _gaussian_filter(X * X, win) - mu1_sq sigma2_sq = _gaussian_filter(Y * Y, win) - mu2_sq sigma12 = _gaussian_filter(X * Y, win) - mu1_mu2 print(torch.min(sigma1_sq)) print(torch.min(sigma2_sq)) sigma1 = torch.sqrt(sigma1_sq) sigma2 = torch.sqrt(sigma2_sq) print(f"sigma1: {torch.isnan(sigma1).any()}") print(f"sigma2: {torch.isnan(sigma2).any()}") print(f"sigma12: {torch.isnan(sigma12).any()}") print(f"sigma1_sq: {torch.isnan(sigma1_sq).any()}") print(f"sigma2_sq: {torch.isnan(sigma2_sq).any()}") # Ref 1 - Sec 3.B - Eq 9 contrast = (2 * sigma1 * sigma2 + C2) / (sigma1_sq + sigma2_sq + C2) print(f"Contrast: {torch.isnan(contrast).any()}") # Ref 1 - Sec 3.B - Eq 10 structure = (sigma12 + C3) / (sigma1 * sigma2 + C3) print(f"Structure {torch.isnan(structure).any()}") # Ref 1 - Sec 3.B - Eq 12 luminance = torch.pow(luminance, alpha) contrast = torch.pow(contrast, beta) structure = torch.pow(structure, gamma) ssim_map = luminance * contrast * structure return ssim_map, contrast
7,746
def check_random_state(seed): """Turn `seed` into a `np.random.RandomState` instance. Parameters ---------- seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. Returns ------- seed : {`numpy.random.Generator`, `numpy.random.RandomState`} Random number generator. """ if seed is None or seed is np.random: return np.random.mtrand._rand if isinstance(seed, (numbers.Integral, np.integer)): return np.random.default_rng(seed) if isinstance(seed, (np.random.RandomState, np.random.Generator)): return seed raise ValueError( "%r cannot be used to seed a numpy.random.RandomState" " instance" % seed )
7,747
def power3_sum_2method(): """ Input: nothing, it have everything it needs. Output: sum: summ of all numbers which is power of 3 and fit in between 0 and upper bound == 1000000 """ k = 0 sum = 0 while True: a = 3**k k += 1 if a < 1000000: sum += a else: break return sum
7,748
def bitwise_right_shift(rasters, extent_type="FirstOf", cellsize_type="FirstOf", astype=None): """ The BitwiseRightShift operation The arguments for this function are as follows: :param rasters: array of rasters. If a scalar is needed for the operation, the scalar can be a double or string :param extent_type: one of "FirstOf", "IntersectionOf", "UnionOf", "LastOf" :param cellsize_type: one of "FirstOf", "MinOf", "MaxOf, "MeanOf", "LastOf" :param astype: output pixel type :return: the output raster """ return local(rasters, 15, extent_type=extent_type, cellsize_type=cellsize_type, astype=astype)
7,749
def strip_comments(line): """Strips comments from a line and return None if the line is empty or else the contents of line with leading and trailing spaces removed and all other whitespace collapsed""" commentIndex = line.find('//') if commentIndex is -1: commentIndex = len(line) line = re.sub(r'\s+', ' ', line[:commentIndex].strip()) if line == '': return None else: return line
7,750
def fft_pxscale(header,wave): """Compute conversion scale from telescope space to sky space. Parameters ---------- ima : array 2D Telescope pupil model. Returns ------- fftscale : float The frequency scale in sky space. Example ------- .. code-block:: python fftscale = fft_pxscale(ima) """ #size of the image. This should be taken from the header. gridsize = header['NAXIS1'] #pixel scale of the image. This should be taken from the header. pxscale_mod = header['PIXSCALE'] #in meters/px #1D FFT of the gridsize. fft_freq=np.fft.fftfreq(gridsize,pxscale_mod) #wavelength of the desires psf. This is a input of the user, wavelength in microns wave = (getQuantity(wave,recognized_units=UNITS['WAVE'])) lam = wave.to(u.m) #in meters #re-orginizing the 1D FFT to match with the grid. roll=np.floor(gridsize//2).astype("int") freq = np.fft.fftshift(fft_freq) ## ## pxscale -> fftscale fftscale=np.diff(freq)[0] ## cycles / mas per pixel in FFT image mas2rad=np.deg2rad(1./3600000.) ## mas per rad fftscale = fftscale/mas2rad * lam ## meters baseline per px in FFT image at a given wavelength logging.info("Pixel scale in PSF image is: %g mas per pixel" % fftscale.value) return fftscale.value
7,751
def parse_git_submodules(gitmodules_data): """Parse a .gitmodules file to extract a { name -> url } map from it.""" result = {} # NOTE: configparser.ConfigParser() doesn't seem to like the file # (i.e. read_string() always returns None), so do the parsing # manually here. section_name = None in_submodule_section = False submodule_name = None submodule_prefix = 'submodule "' urls = {} branches = {} for line in gitmodules_data.splitlines(): if line.startswith('['): section_name = line[1:-1] is_submodule_section = section_name.startswith(submodule_prefix) if is_submodule_section: submodule_name = section_name[len(submodule_prefix):-1] elif is_submodule_section: key, _, value = line.strip().partition('=') if not value: continue key = key.strip() value = value.strip() if key == 'url': urls[submodule_name] = value elif key == 'branch': branches[submodule_name] = value result = {} for submodule, url in urls.iteritems(): branch = branches.get(submodule) if not branch: branch = get_git_remote_ref(url, 'heads/master') result[submodule] = '%s@%s' % (url, branch) return result
7,752
def get_model_cases(dir_path: pathlib.Path) -> Dict[str, Dict[str, str]]: """ Returns the Zen model case for each test if it exists. :param dir_path: The path to the directory containing the DIFFERENCES directory. """ model_cases = defaultdict(dict) # type: Dict[str, Dict[str, str]] queries_dir = dir_path / QUERIES expected_res_dir = dir_path / QUERY_RESPONSES tag_dir = None if queries_dir.exists() and queries_dir.is_dir(): tag_dir = queries_dir elif expected_res_dir.exists() and expected_res_dir.is_dir(): tag_dir = expected_res_dir if isinstance(tag_dir, pathlib.Path): for queries_file in tag_dir.iterdir(): with open(queries_file, 'r') as qf_fp: queries_info = json.load(qf_fp) for qinfo in queries_info: if "ZenResponseTag" in qinfo: query_str = qinfo["Query"]["Name"] + ":" +\ qinfo["Query"]["Type"] model_cases[queries_file.stem][query_str] = qinfo["ZenResponseTag"] return model_cases
7,753
def _format_date(event): """Returns formated date json object for event""" old_date = event["date"] term = event["term"] dates = old_date.split("-") if len(dates) == 1: is_range = False else: is_range = True is_range = (len(dates) > 1) if is_range: start_date = dates[0] end_date = dates[-1] else: start_date = dates[0] end_date = dates[0] new_start_date = _format_date_string(start_date, term) new_end_date = _format_date_string(end_date, term) date = { "start_date": new_start_date, "end_date": new_end_date, "range": is_range, } return date
7,754
def fetch(bibcode, filename=None, replace=None): """ Attempt to fetch a PDF file from ADS. If successful, then add it into the database. If the fetch succeeds but the bibcode is not in th database, download file to current folder. Parameters ---------- bibcode: String ADS bibcode of entry to update. filename: String Filename to assign to the PDF file. If None, get from guess_name() funcion. Replace: Bool If True, enforce replacing a PDF regardless of a pre-existing one. If None (default), only ask when fetched PDF comes from arxiv. Returns ------- filename: String If successful, return the full path of the file name. If not, return None. """ arxiv = False print('Fetching PDF file from Journal website:') req = request_ads(bibcode, source='journal') if req is None: return if req.status_code != 200: print('Fetching PDF file from ADS website:') req = request_ads(bibcode, source='ads') if req is None: return if req.status_code != 200: print('Fetching PDF file from ArXiv website:') req = request_ads(bibcode, source='arxiv') arxiv = True if replace is None: replace = False if req is None: return if replace is None: replace = True if req.status_code == 200: if bm.find(bibcode=bibcode) is None: if filename is None: filename = f'{bibcode}.pdf' with builtin_open(filename, 'wb') as f: f.write(req.content) print(f"Saved PDF to: '{filename}'.\n" "(Note that BibTex entry is not in the Bibmanager database)") else: filename = set_pdf( bibcode, bin_pdf=req.content, filename=filename, arxiv=arxiv, replace=replace) return filename print('Could not fetch PDF from any source.')
7,755
def crop_multi(x, wrg, hrg, is_random=False, row_index=0, col_index=1): """Randomly or centrally crop multiple images. Parameters ---------- x : list of numpy.array List of images with dimension of [n_images, row, col, channel] (default). others : args See ``tl.prepro.crop``. Returns ------- numpy.array A list of processed images. """ h, w = x[0].shape[row_index], x[0].shape[col_index] if (h < hrg) or (w < wrg): raise AssertionError("The size of cropping should smaller than or equal to the original image") if is_random: h_offset = int(np.random.uniform(0, h - hrg)) w_offset = int(np.random.uniform(0, w - wrg)) results = [] for data in x: results.append(data[h_offset:hrg + h_offset, w_offset:wrg + w_offset]) return np.asarray(results) else: # central crop h_offset = int(np.floor((h - hrg) / 2.)) w_offset = int(np.floor((w - wrg) / 2.)) results = [] for data in x: results.append(data[h_offset:h - h_offset, w_offset:w - w_offset]) return np.asarray(results)
7,756
def read_payload_hiding_places(data, orig_filename, vm, vba_code, vba): """ Read in text values from all of the various places in Office 97/2000+ that text values can be hidden. This reads values from things like ActiveX captions, embedded image alternate text, document variables, form variables, etc. @param (data) The contents (bytes) of the Office file being analyzed. @param orig_filename (str) The name of the Office file being analyzed. @param vm (ViperMonkey object) The ViperMonkey emulation engine object that will do the emulation. The read values will be saved in the given emulation engine. @param vba_code (str) The VB code that will be emulated. @param vba (VBA_Parser object) The olevba VBA_Parser object for reading the Office file being analyzed. """ # Pull out document variables. _read_payload_doc_vars(data, orig_filename, vm) # Pull text associated with document comments. _read_payload_doc_comments(data, vm) # Pull text associated with Shapes() objects. _read_payload_shape_text(data, vm) # Pull embedded files. _get_embedded_files(data, vm) # Pull text associated with InlineShapes() objects. _read_payload_inline_shape_text(data, vm) # Pull out embedded OLE form textbox text. _read_payload_textbox_text(data, vba_code, vm) # Pull out custom document properties. _read_payload_custom_doc_props(data, vm) # Pull text associated with embedded objects. _read_payload_embedded_obj_text(data, vm) # Pull out the document text. log.info("Reading document text and tables...") vm.doc_text, vm.doc_tables = _read_doc_text('', data=data) # Read text from form variables. _read_payload_form_vars(vba, vm) # Save the form strings. #sys.exit(0) _read_payload_form_strings(vba, vm) # Save DefaultTargetFrame value. This only works for 2007+ files. _read_payload_default_target_frame(data, vm)
7,757
def value_loss_given_predictions(value_prediction, rewards, reward_mask, gamma, epsilon, value_prediction_old=None): """Computes the value loss given the prediction of the value function. Args: value_prediction: np.ndarray of shape (B, RT+1, 1) rewards: np.ndarray of shape (B, RT) of rewards. reward_mask: np.ndarray of shape (B, RT), the mask over rewards. gamma: float, discount factor. epsilon: float, clip-fraction, used if value_value_prediction_old isn't None value_prediction_old: np.ndarray of shape (B, RT+1, 1) of value predictions using the old parameters. If provided, we incorporate this in the loss as well. This is from the OpenAI baselines implementation. Returns: Pair (value_loss, summaries), where value_loss is the average L2 value loss, averaged over instances where reward_mask is 1. Summaries is a dict of summaries collected during value loss computation. """ B, RT = rewards.shape # pylint: disable=invalid-name assert (B, RT) == reward_mask.shape assert (B, RT + 1) == value_prediction.shape value_prediction = value_prediction[:, :-1] * reward_mask # (B, RT) r2g = rewards_to_go(rewards, reward_mask, gamma=gamma) # (B, RT) loss = (value_prediction - r2g)**2 # From the baselines implementation. if value_prediction_old is not None: value_prediction_old = value_prediction_old[:, :-1] * reward_mask # (B, RT) v_clipped = value_prediction_old + np.clip( value_prediction - value_prediction_old, -epsilon, epsilon) v_clipped_loss = (v_clipped - r2g)**2 loss = np.maximum(v_clipped_loss, loss) # Take an average on only the points where mask != 0. value_loss = np.sum(loss) / np.sum(reward_mask) summaries = { 'value_loss': value_loss, } return (value_loss, summaries)
7,758
def build_pkt(pkt): """Build and return a packet and eth type from a dict.""" def serialize(layers): """Concatenate packet layers and serialize.""" result = packet.Packet() for layer in reversed(layers): result.add_protocol(layer) result.serialize() return result layers = [] assert 'eth_dst' in pkt and 'eth_src' in pkt ethertype = None if 'arp_source_ip' in pkt and 'arp_target_ip' in pkt: ethertype = ether.ETH_TYPE_ARP arp_code = pkt.get('arp_code', arp.ARP_REQUEST) layers.append(arp.arp( src_ip=pkt['arp_source_ip'], dst_ip=pkt['arp_target_ip'], opcode=arp_code)) elif 'ipv6_src' in pkt and 'ipv6_dst' in pkt: ethertype = ether.ETH_TYPE_IPV6 if 'router_solicit_ip' in pkt: layers.append(icmpv6.icmpv6( type_=icmpv6.ND_ROUTER_SOLICIT)) elif 'neighbor_advert_ip' in pkt: layers.append(icmpv6.icmpv6( type_=icmpv6.ND_NEIGHBOR_ADVERT, data=icmpv6.nd_neighbor( dst=pkt['neighbor_advert_ip'], option=icmpv6.nd_option_sla(hw_src=pkt['eth_src'])))) elif 'neighbor_solicit_ip' in pkt: layers.append(icmpv6.icmpv6( type_=icmpv6.ND_NEIGHBOR_SOLICIT, data=icmpv6.nd_neighbor( dst=pkt['neighbor_solicit_ip'], option=icmpv6.nd_option_sla(hw_src=pkt['eth_src'])))) elif 'echo_request_data' in pkt: layers.append(icmpv6.icmpv6( type_=icmpv6.ICMPV6_ECHO_REQUEST, data=icmpv6.echo(id_=1, seq=1, data=pkt['echo_request_data']))) layers.append(ipv6.ipv6( src=pkt['ipv6_src'], dst=pkt['ipv6_dst'], nxt=inet.IPPROTO_ICMPV6)) elif 'ipv4_src' in pkt and 'ipv4_dst' in pkt: ethertype = ether.ETH_TYPE_IP proto = inet.IPPROTO_IP if 'echo_request_data' in pkt: echo = icmp.echo(id_=1, seq=1, data=pkt['echo_request_data']) layers.append(icmp.icmp(type_=icmp.ICMP_ECHO_REQUEST, data=echo)) proto = inet.IPPROTO_ICMP net = ipv4.ipv4(src=pkt['ipv4_src'], dst=pkt['ipv4_dst'], proto=proto) layers.append(net) elif 'actor_system' in pkt and 'partner_system' in pkt: ethertype = ether.ETH_TYPE_SLOW layers.append(slow.lacp( version=1, actor_system=pkt['actor_system'], actor_port=1, partner_system=pkt['partner_system'], partner_port=1, actor_key=1, partner_key=1, actor_system_priority=65535, partner_system_priority=1, actor_port_priority=255, partner_port_priority=255, actor_state_defaulted=0, partner_state_defaulted=0, actor_state_expired=0, partner_state_expired=0, actor_state_timeout=1, partner_state_timeout=1, actor_state_collecting=1, partner_state_collecting=1, actor_state_distributing=1, partner_state_distributing=1, actor_state_aggregation=1, partner_state_aggregation=1, actor_state_synchronization=pkt['actor_state_synchronization'], partner_state_synchronization=1, actor_state_activity=0, partner_state_activity=0)) elif 'chassis_id' in pkt and 'port_id' in pkt: ethertype = ether.ETH_TYPE_LLDP return valve_packet.lldp_beacon( pkt['eth_src'], pkt['chassis_id'], str(pkt['port_id']), 1, org_tlvs=pkt.get('org_tlvs', None), system_name=pkt.get('system_name', None)) assert ethertype is not None, pkt if 'vid' in pkt: tpid = ether.ETH_TYPE_8021Q layers.append(vlan.vlan(vid=pkt['vid'], ethertype=ethertype)) else: tpid = ethertype eth = ethernet.ethernet( dst=pkt['eth_dst'], src=pkt['eth_src'], ethertype=tpid) layers.append(eth) result = serialize(layers) return result
7,759
def make_file_prefix(run, component_name): """ Compose the run number and component name into string prefix to use with filenames. """ return "{}_{}".format(component_name, run)
7,760
def identifier_needs_escaping(text): """ Slightly slow, but absolutely correct determination if a given symbol _must_ be escaped. Necessary when you might be generating column names that could be a reserved keyword. >>> identifier_needs_escaping("my_column") False >>> identifier_needs_escaping("my_column3424") False >>> identifier_needs_escaping("my column with spaces") True >>> identifier_needs_escaping("mycolumn;") True >>> identifier_needs_escaping("SELECT") True >>> identifier_needs_escaping("my_column.blah") True >>> identifier_needs_escaping("UPDATE") True >>> identifier_needs_escaping("column ") True """ # TODO: Replace with custom caching decorator? global _ident_needs_escaping_cache if text not in _ident_needs_escaping_cache: try: ast = sql_subexpr_ast(text, "identifier") _ident_needs_escaping_cache[text] = not ( isinstance(ast, Identifier) and ast.text == text ) except Exception as e: _ident_needs_escaping_cache[text] = True return _ident_needs_escaping_cache[text]
7,761
def initialize_lock_and_key_ciphers() -> Dict[str, VigenereCipher]: """[summary] Returns: Dict[VigenereCipher]: [description]""" ciphers = {} with open(CIPHER_RESOURCE, "r") as cipher_resource_file: cipher_data = load(cipher_resource_file, Loader=FullLoader) for cipher_key_name, cipher_keys in cipher_data.items(): ciphers[cipher_key_name] = VigenereCipher(key=cipher_keys['key'], alphabet=cipher_keys['alphabet']) return ciphers
7,762
def download(redownload=False): """Download webpages of retsinformation.dk. Parameters ---------- redownload : bool, optional Controls whether the webpages should be redownloaded. Notes ----- This function uses the `wget` program, so it will need to be installed. Download may take considerable time. There is a wait of 5 seconds between requests. PDF and print pages are left out, e.g., https://www.retsinformation.dk/print.aspx?id=206363 https://www.retsinformation.dk/pdfPrint.aspx?id=206363 There seems to be lots of pages where reporting "Last-modified header missing" which means the page is downloaded a new. """ logger = logging.getLogger(__name__) make_data_directory() test_filename = join( data_directory(), 'www.retsinformation.dk', 'Forms', 'R0710.aspx?id=207290') if not redownload and isfile(test_filename): message = 'Not downloading as the file {} exists' logger.debug(message.format(test_filename)) return directory = data_directory() logger.info('Downloading Retsinformation.dk corpus to {}'.format( directory)) call(['wget', '-w', '5', # Wait five seconds '--recursive', '-l', 'inf', # '--no-clobber', '--timestamping', '--exclude-directories', '/includes,/js', '--reject-regex', '"(print)|(pdfPrint)"', DOWNLOAD_URL], cwd=directory) logger.debug('Retsinformation.dk corpus downloaded')
7,763
def add_service(): """ Used to register a new service """ form = ServiceForm() if form.validate_on_submit(): try: srv = Services() srv.populate_from_form(form) srv.authentication.value = {"db":request.form.get('authdb'),"user":request.form.get('authuser'),"pswd":request.form.get("authpass")} srv.save() flash('Datele au fost adaugate!', category='alert-success') return redirect(url_for('services.list_services')) except Exception as err: flash('Datele nu pot fi adaugate!', category='alert-danger') return render_template('services/settings/add.html', pagetitle='Adauga serviciu', form=form)
7,764
def f_columnas_pips(datos): """ Parameters ---------- datos : pandas.DataFrame : df con información de transacciones ejecutadas en Oanda, después de haber ejecutado f_columnas_tiempos Returns ------- datos : pandas.DataFrame : df modificado Debugging ------- datos = 'f_leer_archivo("archivo_tradeview_1.csv") """ datos['pips'] = [(datos.closeprice[i]-datos.openprice[i])*f_pip_size(datos.symbol[i]) for i in range(len(datos))] datos['pips'][datos.type=='sell'] *= -1 datos['pips_acm'] = datos.pips.cumsum() datos['profit_acm'] = datos['profit'].cumsum() return datos.copy()
7,765
def parse_resolution(resolution): """ return: width, height, resolution """ resolution = resolution.strip() splits = resolution.split(',') return int(splits[0]), int(splits[1]), int(splits[2])
7,766
def link_cube(cube, locale, provider=None, namespace=None, ignore_missing=False): """Links dimensions to the `cube` in the `context` object. The `context` object should implement a function `dimension(name, locale, namespace, provider)`. Modifies cube in place, returns the cube. """ # TODO: change this to: link_cube(cube, locale, namespace, provider) # Assumption: empty cube linked = set() for dim_name in list(cube.dimension_links.keys()): if dim_name in linked: raise ModelError("Dimension '{}' linked twice" .format(dim_name)) try: dim = find_dimension(dim_name, locale, provider=provider, namespace=namespace) except TemplateRequired as e: raise ModelError("Dimension template '%s' missing" % dim_name) if not dim and not ignore_missing: raise CubesError("Dimension '{}' not found.".format(dim_name)) cube.link_dimension(dim) return cube
7,767
def _parser() -> argparse.Namespace: """Take care of all the argparse stuff. :returns: the args """ # parser = GooeyParser(description='Remove : from data files') parser = argparse.ArgumentParser(description='Combines Nods using ') parser.add_argument('listspectra', help='List of spectra to combine.', default=False) parser.add_argument('-o', "--optimal-nods", help="Optimal nod bool matrix file.") parser.add_argument("-s", "--spectralcoords", default=False, action="store_true", help="Turn spectra into spectral coordinates first before adding. Default=False") parser.add_argument("-n", "--nod_num", help="Number of nods in the nod cycle, default=8", default=8, type=int) parser.add_argument("-c", "--combination", help="Nod combination method, default=all means do all three.", default="all", choices=["all", "optimal", "non-opt", "mix"]) parser.add_argument("-u", "--unnorm", help="Combine the un-normalized nods.", action="store_true") parser.add_argument("--snr", help="Show snr of continuum.", action="store_true") parser.add_argument("-p", "--plot", help="Show the plots.", action="store_true") parser.add_argument("--output_verify", help="Fits file verification mode", default="fix+warn") parser.add_argument("-r", "--overwrite", help="Overwrite output file if already exists", action="store_true") args = parser.parse_args() return args
7,768
def get_arguments(func): """Returns list of arguments this function has.""" if hasattr(func, '__code__'): # Regular function. return inspect.getargspec(func).args elif hasattr(func, '__call__'): # Callable object. print(func) return _get_arguments(func.__call__) elif hasattr(func, 'func'): # Partial function. return _get_arguments(func.func)
7,769
def _check(isamAppliance, name): """ Check if suffix exists """ ret_obj = get(isamAppliance) check_value, warnings = False, ret_obj['warnings'] if warnings == []: for suffix in ret_obj['data']: if suffix['name'] == name: logger.info("Suffix found in embedded ldap: " + name) check_value = True return check_value, suffix['id'], warnings logger.info("Suffix *not* found in embedded ldap: " + name) return check_value, None, warnings
7,770
def check_listening_address(address: str) -> bool: """Check entered ip address for validity.""" if address == 'localhost': return True return address in get_local_addresses()
7,771
def multibase_b64decode(data): """ Follow forge's base64 urlsafe encode convention to decode string Args: data(string): encoded string Returns: bytes Examples: >>> multibase_b64decode('aGVsbG8') b'hello' """ if isinstance(data, str): data = data.encode() return base64.urlsafe_b64decode( (data + b'=' * (-len(data) % 4)))
7,772
async def test_turn_off(hass): """Test that turn off service calls function.""" mock_entity_id = await setup_mock_component(hass) mock_func = "{}{}".format( "homeassistant.components.ps4.media_player.", "pyps4.Ps4Async.standby" ) with patch(mock_func) as mock_call: await hass.services.async_call( "media_player", "turn_off", {ATTR_ENTITY_ID: mock_entity_id} ) await hass.async_block_till_done() assert len(mock_call.mock_calls) == 1
7,773
def parse_ordering_params(param: List[str]) -> List[str]: """ Ignores the request to sort by "ord". Returns a sorting order based on the params and includes "readable_id" sorting in passed params if the sorting request contains title otherwise, it returns the requested order. """ if "ord" in param: order = [] elif "title" in param: prefix = "-" if param[0] == "-" else "" order = ["{prefix}coursepage__course__readable_id".format(prefix=prefix), param] else: order = [param] return order
7,774
def find_requests(from_dt=None, to_dt=None, contribs_and_sessions=True): """Finds requests matching certain criteria. :param from_dt: earliest event/contribution to include :param to_dt: latest event/contribution to include :param contribs_and_sessions: whether it should return contributions and sessions or only request """ from .definition import VCAssistanceRequest query = Request.query.join(Event).filter(~Event.is_deleted, Request.type == VCAssistanceRequest.name, Request.state == RequestState.accepted) if from_dt is not None or to_dt is not None: query = query.filter(Event.happens_between(from_dt, to_dt)) # We only want the latest one for each event query = limit_groups(query, Request, Request.event_id, Request.created_dt.desc(), 1) query = query.options(joinedload('event')) for req in query: event = req.event if to_dt is not None and event.start_dt > to_dt: continue if not contribs_and_sessions: yield req else: contribs = [x[0] for x in get_capable(req, get_contributions)] session_blocks = [x[0] for x in get_capable(req, get_session_blocks)] yield req, contribs, session_blocks
7,775
def file_senzing_rabbitmq(): """#!/usr/bin/env bash # --- Functions --------------------------------------------------------------- function up { echo -ne "\033[2K${CONTAINER_NAME} status: starting...\r" mkdir -p ${RABBITMQ_DIR} chmod 777 ${RABBITMQ_DIR} if [ "${CONTAINER_VERSION}" == "latest" ] then ${SENZING_SUDO} docker pull ${SENZING_DOCKER_REGISTRY_URL}/bitnami/rabbitmq:${CONTAINER_VERSION} >> ${CONTAINER_LOG} 2>&1 fi ${SENZING_SUDO} docker run \\ --detach \\ --env RABBITMQ_PASSWORD=${SENZING_RABBITMQ_PASSWORD} \\ --env RABBITMQ_USERNAME=${SENZING_RABBITMQ_USERNAME} \\ --interactive \\ --name ${CONTAINER_NAME} \\ --publish ${CONTAINER_PORT}:15672 \\ --publish ${SENZING_DOCKER_PORT_RABBITMQ}:5672 \\ --restart always \\ --tty \\ --volume ${RABBITMQ_DIR}:/bitnami \\ ${SENZING_DOCKER_RUN_PARAMETERS_GLOBAL} \\ ${SENZING_DOCKER_RUN_PARAMETERS_RABBITMQ} \\ ${SENZING_NETWORK_PARAMETER} \\ ${SENZING_PRIVILEGED_PARAMETER} \\ bitnami/rabbitmq:${CONTAINER_VERSION} \\ >> ${CONTAINER_LOG} 2>&1 COUNTER=0 COUNTER_NOTICE=5 TIME_STRING=".." CONTAINER_STATUS="$( docker container inspect -f '{{.State.Status}}' ${CONTAINER_NAME})" while [ "${CONTAINER_STATUS}" != "running" ]; do COUNTER=$((${COUNTER}+1)) if [ "${COUNTER}" -eq "${COUNTER_NOTICE}" ]; then echo -ne "\033[2K" echo "" echo "To see what is happening behind-the-scenes, view the log at" echo "${CONTAINER_LOG}" echo "and/or run 'docker logs ${CONTAINER_NAME}'" echo "" fi TIME_STRING="${TIME_STRING}." echo -ne "\033[2K${CONTAINER_NAME} status: ${CONTAINER_STATUS}${TIME_STRING}\r" sleep 5 CONTAINER_STATUS="$( docker container inspect -f '{{.State.Status}}' ${CONTAINER_NAME})" done sleep 10 echo "${SENZING_HORIZONTAL_RULE}" echo "${SENZING_HORIZONTAL_RULE:0:2} ${CONTAINER_NAME} running on http://${SENZING_DOCKER_HOST_IP_ADDR}:${CONTAINER_PORT}" echo "${SENZING_HORIZONTAL_RULE:0:2} Username: ${SENZING_RABBITMQ_USERNAME} Password: ${SENZING_RABBITMQ_PASSWORD}" echo "${SENZING_HORIZONTAL_RULE:0:2} Mount information: (Format: in container > on host)" echo "${SENZING_HORIZONTAL_RULE:0:2} /bitnami > ${RABBITMQ_DIR}" echo "${SENZING_HORIZONTAL_RULE:0:2} Logs:" echo "${SENZING_HORIZONTAL_RULE:0:2} ${CONTAINER_LOG}" echo "${SENZING_HORIZONTAL_RULE:0:2} and/or run 'docker logs ${CONTAINER_NAME}'" echo "${SENZING_HORIZONTAL_RULE:0:2} For more information:" echo "${SENZING_HORIZONTAL_RULE:0:2} ${SENZING_REFERENCE_URL}#senzing-rabbitmq" echo "${SENZING_HORIZONTAL_RULE}" } function down { ${SENZING_SUDO} docker stop ${CONTAINER_NAME} >> ${CONTAINER_LOG} 2>&1 ${SENZING_SUDO} docker rm ${CONTAINER_NAME} >> ${CONTAINER_LOG} 2>&1 } function usage { echo "usage: $0 [up | down | restart]" echo "For more information:" echo "${SENZING_REFERENCE_URL}#senzing-rabbitmq" } # --- Main -------------------------------------------------------------------- SCRIPT_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )" source ${SCRIPT_DIR}/docker-environment-vars.sh CONTAINER_LOG="${SENZING_LOG_RABBITMQ}" CONTAINER_NAME="${SENZING_DOCKER_CONTAINER_NAME_RABBITMQ}" CONTAINER_PORT="${SENZING_DOCKER_PORT_RABBITMQ_UI}" CONTAINER_VERSION="${SENZING_DOCKER_IMAGE_VERSION_RABBITMQ}" if [ "$1" == "up" ]; then up elif [ "$1" == "down" ]; then down elif [ "$1" == "restart" ]; then down up else usage fi """ return 0
7,776
def mse(predictions, targets): """Calculate MSE: (Mean squared error) """ return ((predictions - targets) ** 2).mean()
7,777
def export1d(hist): """Export a 1-dimensional `Hist` object to uproot This allows one to write a coffea histogram into a ROOT file, via uproot. Parameters ---------- hist : Hist A 1-dimensional histogram object Returns ------- out A ``uproot_methods.classes.TH1`` object Examples -------- Creating a coffea histogram, filling, and writing to a file:: import coffea, uproot, numpy h = coffea.hist.Hist("Events", coffea.hist.Bin("var", "some variable", 20, 0, 1)) h.fill(var=numpy.random.normal(size=100)) fout = uproot.create('output.root') fout['myhist'] = coffea.hist.export1d(h) fout.close() """ if hist.dense_dim() != 1: raise ValueError("export1d() can only support one dense dimension") if hist.sparse_dim() != 0: raise ValueError("export1d() expects zero sparse dimensions") axis = hist.axes()[0] sumw, sumw2 = hist.values(sumw2=True, overflow='all')[()] edges = axis.edges(overflow='none') out = TH1.__new__(TH1) out._fXaxis = TAxis(len(edges) - 1, edges[0], edges[-1]) out._fXaxis._fName = axis.name out._fXaxis._fTitle = axis.label if not axis._uniform: out._fXaxis._fXbins = edges.astype(">f8") centers = (edges[:-1] + edges[1:]) / 2.0 out._fEntries = out._fTsumw = out._fTsumw2 = sumw[1:-1].sum() out._fTsumwx = (sumw[1:-1] * centers).sum() out._fTsumwx2 = (sumw[1:-1] * centers**2).sum() out._fName = "histogram" out._fTitle = hist.label out._classname = b"TH1D" out.extend(sumw.astype(">f8")) out._fSumw2 = sumw2.astype(">f8") return out
7,778
def filter_words(w_map, emb_array, ck_filenames): """ delete word in w_map but not in the current corpus """ vocab = set() for filename in ck_filenames: for line in open(filename, 'r'): if not (line.isspace() or (len(line) > 10 and line[0:10] == '-DOCSTART-')): line = line.rstrip('\n').split() assert len(line) >= 3, 'wrong ck file format' word = line[0] vocab.add(word) word = word.lower() vocab.add(word) new_w_map = {} new_emb_array = [] for (word, idx) in w_map.items(): if word in vocab or word in ['<unk>', '<s>', '< >', '<\n>']: assert word not in new_w_map new_w_map[word] = len(new_emb_array) new_emb_array.append(emb_array[idx]) print('filtered %d --> %d' % (len(emb_array), len(new_emb_array))) return new_w_map, new_emb_array
7,779
def take(data, indices, dim): """Takes elements from an input array along the given dim. Parameters ---------- data : Tensor The data tensor. indices : Tensor The indices tensor. dim : Tensor The dimension to gather along. """ pass
7,780
def get_cache_template(sources, grids, geopackage, table_name="tiles"): """ Returns the cache template which is "controlled" settings for the application. The intent is to allow the user to configure certain things but impose specific behavior. :param sources: A name for the source :param grids: specific grid for the data source :param geopackage: Location for the geopackage :return: The dict template """ if sources == ["None"]: sources = [] return { "sources": sources, "cache": {"type": "geopackage", "filename": str(geopackage), "table_name": table_name}, "grids": [grid for grid in grids if grid == "default"] or grids, "format": "mixed", "request_format": "image/png", }
7,781
def plotter(fdict): """ Go """ pgconn = get_dbconn('coop') ccursor = pgconn.cursor(cursor_factory=psycopg2.extras.DictCursor) ctx = get_autoplot_context(fdict, get_description()) station = ctx['station'] lagmonths = ctx['lag'] months = ctx['months'] month = ctx['month'] highyears = [int(x) for x in ctx['year'].split(",")] h = ctx['h'] wantmonth = month + lagmonths yearoffset = 0 if month + lagmonths < 1: wantmonth = 12 - (month + lagmonths) yearoffset = 1 wanted = [] deltas = [] for m in range(month, month+months): if m < 13: wanted.append(m) deltas.append(0) else: wanted.append(m-12) deltas.append(-1) table = "alldata_%s" % (station[:2],) nt = network.Table("%sCLIMATE" % (station[:2],)) elnino = {} ccursor.execute("""SELECT monthdate, soi_3m, anom_34 from elnino""") for row in ccursor: if row[0].month != wantmonth: continue elnino[row[0].year + yearoffset] = dict(soi_3m=row[1], anom_34=row[2]) ccursor.execute(""" SELECT year, month, sum(precip), avg((high+low)/2.) from """ + table + """ where station = %s GROUP by year, month """, (station, )) yearly = {} for row in ccursor: (_year, _month, _precip, _temp) = row if _month not in wanted: continue effectiveyear = _year + deltas[wanted.index(_month)] nino = elnino.get(effectiveyear, {}).get('soi_3m', None) if nino is None: continue data = yearly.setdefault(effectiveyear, dict(precip=0, temp=[], nino=nino)) data['precip'] += _precip data['temp'].append(float(_temp)) fig = plt.figure(figsize=(10, 6)) ax = plt.axes([0.1, 0.12, 0.5, 0.75]) msg = ("[%s] %s\n%s\n%s SOI (3 month average)" ) % (station, nt.sts[station]['name'], title(wanted), datetime.date(2000, wantmonth, 1).strftime("%B")) ax.set_title(msg) cmap = plt.get_cmap("RdYlGn") zdata = np.arange(-2.0, 2.1, 0.5) norm = mpcolors.BoundaryNorm(zdata, cmap.N) rows = [] xs = [] ys = [] for year in yearly: x = yearly[year]['precip'] y = np.average(yearly[year]['temp']) xs.append(x) ys.append(y) val = yearly[year]['nino'] c = cmap(norm([val])[0]) if h == 'hide' and val > -0.5 and val < 0.5: ax.scatter(x, y, facecolor='#EEEEEE', edgecolor='#EEEEEE', s=30, zorder=2, marker='s') else: ax.scatter(x, y, facecolor=c, edgecolor='k', s=60, zorder=3, marker='o') if year in highyears: ax.text(x, y + 0.2, "%s" % (year, ), ha='center', va='bottom', zorder=5) rows.append(dict(year=year, precip=x, tmpf=y, soi3m=val)) ax.axhline(np.average(ys), lw=2, color='k', linestyle='-.', zorder=2) ax.axvline(np.average(xs), lw=2, color='k', linestyle='-.', zorder=2) sm = plt.cm.ScalarMappable(norm, cmap) sm.set_array(zdata) cb = plt.colorbar(sm, extend='both') cb.set_label("<-- El Nino :: SOI :: La Nina -->") ax.grid(True) ax.set_xlim(left=-0.01) ax.set_xlabel("Total Precipitation [inch], Avg: %.2f" % (np.average(xs),)) ax.set_ylabel((r"Average Temperature $^\circ$F, " "Avg: %.1f") % (np.average(ys), )) df = pd.DataFrame(rows) ax2 = plt.axes([0.67, 0.6, 0.28, 0.35]) ax2.scatter(df['soi3m'].values, df['tmpf'].values) ax2.set_xlabel("<-- El Nino :: SOI :: La Nina -->") ax2.set_ylabel(r"Avg Temp $^\circ$F") slp, intercept, r_value, _, _ = stats.linregress(df['soi3m'].values, df['tmpf'].values) y1 = -2.0 * slp + intercept y2 = 2.0 * slp + intercept ax2.plot([-2, 2], [y1, y2]) ax2.text(0.97, 0.9, "R$^2$=%.2f" % (r_value**2, ), ha='right', transform=ax2.transAxes, bbox=dict(color='white')) ax2.grid(True) ax3 = plt.axes([0.67, 0.1, 0.28, 0.35]) ax3.scatter(df['soi3m'].values, df['precip'].values) ax3.set_xlabel("<-- El Nino :: SOI :: La Nina -->") ax3.set_ylabel("Total Precip [inch]") slp, intercept, r_value, _, _ = stats.linregress(df['soi3m'].values, df['precip'].values) y1 = -2.0 * slp + intercept y2 = 2.0 * slp + intercept ax3.plot([-2, 2], [y1, y2]) ax3.text(0.97, 0.9, "R$^2$=%.2f" % (r_value**2, ), ha='right', transform=ax3.transAxes, bbox=dict(color='white')) ax3.grid(True) return fig, df
7,782
def output_folder_fixture(): """Creates the necessary folder and cleans up after test is done.""" if not os.path.exists(OUTPUT_FOLDER): os.mkdir(OUTPUT_FOLDER) yield OUTPUT_FOLDER shutil.rmtree(OUTPUT_FOLDER, ignore_errors=True)
7,783
def _action_spec(): """Returns the action spec.""" paddle_action_spec = dm_env_rpc_pb2.TensorSpec( dtype=dm_env_rpc_pb2.INT8, name=_ACTION_PADDLE) tensor_spec_utils.set_bounds( paddle_action_spec, minimum=np.min(_VALID_ACTIONS), maximum=np.max(_VALID_ACTIONS)) return {1: paddle_action_spec}
7,784
def test_split_stats_manual() -> None: """ Test that `get_split_statistics()` correctly computes the z-score over the pairwise differences in task gradients for manually computed values. """ # Set up case. settings = dict(V1_SETTINGS) settings["num_layers"] = 1 settings["num_tasks"] = 4 settings["ema_alpha"] = 0.8 input_size = 1 output_size = 2 settings["hidden_size"] = 2 ema_threshold = alpha_to_threshold(settings["ema_alpha"]) # Construct a sequence of task gradients. The network gradient statistics will be # updated with these task gradients, and the z-scores will be computed from these # statistics. task_grads = torch.Tensor( [ [ [[-0.117, 0.08, -0.091, -0.008]], [[0, 0, 0, 0]], [[-0.053, 0.078, -0.046, 0.017]], [[0, 0, 0, 0]], ], [ [[-0.006, 0.083, -0.065, -0.095]], [[0.037, 0.051, 0.009, -0.075]], [[0.107, 0.264, -0.072, 0.143]], [[0.049, 0.03, -0.051, -0.012]], ], [ [[0.106, -0.092, -0.015, 0.159]], [[0, 0, 0, 0]], [[0.055, 0.115, -0.096, 0.032]], [[-0.21, 0.11, -0.091, -0.014]], ], [ [[-0.116, 0.079, 0.087, 0.041]], [[0.094, 0.143, -0.015, -0.008]], [[-0.056, -0.054, 0.01, 0.073]], [[0.103, -0.085, -0.008, -0.018]], ], [ [[-0.147, -0.067, -0.063, -0.022]], [[-0.098, 0.059, 0.064, 0.045]], [[-0.037, 0.138, 0.06, -0.056]], [[0, 0, 0, 0]], ], [ [[-0.062, 0.001, 0.106, -0.176]], [[-0.007, 0.013, -0.095, 0.082]], [[-0.003, 0.066, 0.106, -0.17]], [[-0.035, -0.027, -0.105, 0.058]], ], [ [[0.114, -0.191, -0.054, -0.122]], [[0.053, 0.004, -0.019, 0.053]], [[0.155, -0.027, 0.054, -0.015]], [[0.073, 0.042, -0.08, 0.056]], ], [ [[0.094, 0.002, 0.078, -0.049]], [[-0.116, 0.205, 0.175, -0.026]], [[-0.178, 0.013, -0.012, 0.136]], [[-0.05, 0.105, 0.114, -0.053]], ], [ [[0, 0, 0, 0]], [[-0.171, -0.001, 0.069, -0.077]], [[0.11, 0.053, 0.039, -0.005]], [[-0.097, 0.046, 0.124, 0.072]], ], ] ) total_steps = len(task_grads) # Set expected values of gradient statistics. expected_grad_diff_mean = torch.Tensor( [ [[0, 0, 0.00675, 0], [0, 0, 0, 0], [0.00675, 0, 0, 0], [0, 0, 0, 0]], [ [0, 0.008749, 0.0544865, 0.012919], [0.008749, 0, 0.104354, 0.008154], [0.0544865, 0.104354, 0, 0.082586], [0.012919, 0.008154, 0.082586, 0], ], [ [0, 0.008749, 0.05903766667, 0.094642], [0.008749, 0, 0.104354, 0.008154], [0.05903766667, 0.104354, 0, 0.0774885], [0.094642, 0.008154, 0.0774885, 0], ], [ [0, 0.034875, 0.05133875, 0.09221566667], [0.034875, 0, 0.0864245, 0.030184], [0.05133875, 0.0864245, 0, 0.06327466667], [0.09221566667, 0.030184, 0.06327466667, 0], ], [ [0, 0.036215, 0.055153, 0.09221566667], [0.036215, 0, 0.06434266667, 0.030184], [0.055153, 0.06434266667, 0, 0.06327466667], [0.09221566667, 0.030184, 0.06327466667, 0], ], [ [0, 0.05469475, 0.0456708, 0.09435925], [0.05469475, 0, 0.0749395, 0.02114266667], [0.0456708, 0.0749395, 0, 0.0740005], [0.09435925, 0.02114266667, 0.0740005, 0], ], [ [0, 0.058475, 0.04687464, 0.0931534], [0.058475, 0, 0.0642152, 0.0172505], [0.04687464, 0.0642152, 0, 0.0660968], [0.0931534, 0.0172505, 0.0660968, 0], ], [ [0, 0.0658294, 0.060785712, 0.08105412], [0.0658294, 0, 0.07175636, 0.0175616], [0.060785712, 0.07175636, 0, 0.06816644], [0.08105412, 0.0175616, 0.06816644, 0], ], [ [0, 0.0658294, 0.060785712, 0.08105412], [0.0658294, 0, 0.074997288, 0.02063148], [0.060785712, 0.074997288, 0, 0.065743552], [0.08105412, 0.02063148, 0.065743552, 0], ], ] ) expected_grad_diff_mean = expected_grad_diff_mean.unsqueeze(-1) expected_grad_mean = torch.Tensor( [ [-0.034, 0, -0.001, 0], [-0.027375, 0.0055, 0.05475, 0.004], [-0.005083333333, 0.0055, 0.04533333333, -0.023625], [0.001875, 0.0295, 0.0323125, -0.01641666667], [-0.01345, 0.0255, 0.0311, -0.01641666667], [-0.01731, 0.0186875, 0.02483, -0.019125], [-0.026498, 0.0195, 0.028214, -0.01075], [-0.0149484, 0.0275, 0.0205212, -0.0028], [-0.0149484, 0.013, 0.02626696, 0.00501], ] ) expected_grad_var = torch.Tensor( [ [0.0059525, 0, 0.0028235, 0], [0.005326734375, 0.00238875, 0.0117619375, 0.0014955], [0.007792076389, 0.00238875, 0.009992055556, 0.008282234375], [0.007669109375, 0.004036, 0.008708839844, 0.007142576389], [0.0074847475, 0.004221083333, 0.00819259, 0.007142576389], [0.0081357339, 0.004302214844, 0.0089363611, 0.006214734375], [0.009410001996, 0.00364065, 0.008241032204, 0.0059802875], [0.008732512137, 0.00679957, 0.009333179951, 0.00633534], [0.008732512137, 0.007872256, 0.007936236492, 0.0066536939], ] ) expected_z = torch.Tensor( [ [ [-1.414213562, 0, -1.142280405, 0], [0, 0, 0, 0], [-1.142280405, 0, -1.414213562, 0], [0, 0, 0, 0], ], [ [-2, -1.170405699, 0.1473023578, -1.054200557], [-1.170405699, -1.414213562, 1.493813156, -1.186986529], [0.1473023578, 1.493813156, -2, 0.8872055932], [-1.054200557, -1.186986529, 0.8872055932, -1.414213562], ], [ [-2.449489743, -1.221703287, -0.1994752765, 0.9450617525], [-1.221703287, -1.414213562, 0.8819594016, -1.234795482], [-0.1994752765, 0.8819594016, -2.449489743, 0.4112805901], [0.9450617525, -1.234795482, 0.4112805901, -2], ], [ [-2.828427125, -0.8070526312, -0.3449088766, 1.413801122], [-0.8070526312, -2, 0.9562689571, -0.9675147418], [-0.3449088766, 0.9562689571, -2.828427125, 0.2013444437], [1.413801122, -0.9675147418, 0.2013444437, -2.449489743], ], [ [-3.16227766, -0.8721406803, -0.06105579169, 1.566975682], [-0.8721406803, -2.449489743, 0.3529635209, -0.926578017], [-0.06105579169, 0.3529635209, -3.16227766, 0.3064466412], [1.566975682, -0.926578017, 0.3064466412, -2.449489743], ], [ [-3.16227766, -0.09688841312, -0.6121886259, 1.884016833], [-0.09688841312, -2.828427125, 0.9141650853, -1.535056275], [-0.6121886259, 0.9141650853, -3.16227766, 0.8672700021], [1.884016833, -1.535056275, 0.8672700021, -2.828427125], ], [ [-3.16227766, 0.227909676, -0.4446408767, 2.238448753], [0.227909676, -3.16227766, 0.56070751, -1.933886337], [-0.4446408767, 0.56070751, -3.16227766, 0.6697964624], [2.238448753, -1.933886337, 0.6697964624, -3.16227766], ], [ [-3.16227766, 0.1737291325, -0.08186756787, 0.9452653965], [0.1737291325, -3.16227766, 0.4740870094, -2.272316383], [-0.08186756787, 0.4740870094, -3.16227766, 0.2921622538], [0.9452653965, -2.272316383, 0.2921622538, -3.16227766], ], [ [-3.16227766, 0.1743604677, -0.08128460407, 0.946042744], [0.1743604677, -3.16227766, 0.6390453145, -2.116547594], [-0.08128460407, 0.6390453145, -3.16227766, 0.170009164], [0.946042744, -2.116547594, 0.170009164, -3.16227766], ], ] ) expected_z = expected_z.unsqueeze(-1) expected_sample_size = torch.Tensor( [ [1, 0, 1, 0], [2, 1, 2, 1], [3, 1, 3, 2], [4, 2, 4, 3], [5, 3, 5, 3], [5, 4, 5, 4], [5, 5, 5, 5], [5, 5, 5, 5], [5, 5, 5, 5], ] ) expected_pair_sample_size = torch.Tensor( [ [[1, 0, 1, 0], [0, 0, 0, 0], [1, 0, 1, 0], [0, 0, 0, 0]], [[2, 1, 2, 1], [1, 1, 1, 1], [2, 1, 2, 1], [1, 1, 1, 1]], [[3, 1, 3, 2], [1, 1, 1, 1], [3, 1, 3, 2], [2, 1, 2, 2]], [[4, 2, 4, 3], [2, 2, 2, 2], [4, 2, 4, 3], [3, 2, 3, 3]], [[5, 3, 5, 3], [3, 3, 3, 2], [5, 3, 5, 3], [3, 2, 3, 3]], [[5, 4, 5, 4], [4, 4, 4, 3], [5, 4, 5, 4], [4, 3, 4, 4]], [[5, 5, 5, 5], [5, 5, 5, 4], [5, 5, 5, 5], [5, 4, 5, 5]], [[5, 5, 5, 5], [5, 5, 5, 5], [5, 5, 5, 5], [5, 5, 5, 5]], [[5, 5, 5, 5], [5, 5, 5, 5], [5, 5, 5, 5], [5, 5, 5, 5]], ] ) expected_pair_sample_size = expected_pair_sample_size.unsqueeze(-1) # Instantiate network. network = MultiTaskSplittingNetworkV1( input_size=input_size, output_size=output_size, num_tasks=settings["num_tasks"], num_layers=settings["num_layers"], hidden_size=settings["hidden_size"], ema_alpha=settings["ema_alpha"], ) # Update gradient statistics for each step. for step in range(total_steps): network.num_steps += 1 network.update_grad_stats(task_grads[step]) z = network.get_split_statistics() # Compare network statistics to expected values. assert torch.all(network.grad_stats.sample_size == expected_sample_size[step]) assert torch.all( network.grad_diff_stats.sample_size == expected_pair_sample_size[step] ) assert torch.allclose( network.grad_diff_stats.mean, expected_grad_diff_mean[step] ) assert torch.allclose(network.grad_stats.mean, expected_grad_mean[step]) assert torch.allclose(network.grad_stats.var, expected_grad_var[step]) assert torch.allclose(z, expected_z[step], atol=TOL)
7,785
def test_cli_compile(patch, runner, echo, app): """ Ensures the compile command compiles a story. """ patch.object(click, 'style') runner.invoke(Cli.compile, []) App.compile.assert_called_with(os.getcwd(), ebnf=None, ignored_path=None, concise=False, first=False) click.style.assert_called_with('Script syntax passed!', fg='green') click.echo.assert_called_with(click.style())
7,786
def test_kms_key_policy(): """ To test that key policy is applied is passed in """ template = Template() key_admins = "arn:aws:iam::111122223333:user/admin1" key_users = ["arn:aws:iam::111122223333:user/user1", "arn:aws:iam::444455556666:user/user2"] kms_key = (KmsKey(key_title='MyTestKey', key_rotation=True, key_admins=key_admins, key_users=key_users, template=template)) # Test policy is dict assert_equals(type(kms_key.k_key.KeyPolicy), dict) # TODO assert user in key policy # Test user are in policy for num, key_admin in enumerate(key_admins): admin_dict_key = kms_key.k_key.KeyPolicy['Statement'][0]['Principal']['AWS'][num] assert_in(key_admin, admin_dict_key) for num, key_user in enumerate(key_users): users_dict_key = kms_key.k_key.KeyPolicy['Statement'][1]['Principal']['AWS'][num] assert_in(key_user, users_dict_key)
7,787
async def uptime(ctx: commands.Context): """Tells how long the bot has been online.""" delta = datetime.timedelta(seconds=int(time.time() - botstart)) await ctx.send("**Uptime:** {}".format(str(delta)))
7,788
def stdin(sys_stdin): """ Imports standard input. """ inputs = [x.strip("[]\n") for x in sys_stdin] a = [int(x) for x in inputs[0].split(",")] x = int(inputs[1][0]) return a, x
7,789
def _row_key(row): """ :param row: a normalized row from STATEMENT_METRICS_QUERY :return: a tuple uniquely identifying this row """ return row['database_name'], row['user_name'], row['query_signature'], row['query_hash'], row['query_plan_hash']
7,790
def is_packet_length(outter_key, inner_key) -> None: """Prints packet length""" if outter_key == "packet": if inner_key.get('length').get('min') is not None: make_list = is_instance(inner_key.get('length').get('min')) print(f"{'Pkt Length(min):':>15} {', '.join(make_list)}") if inner_key.get('length').get('max') is not None: make_list = is_instance(inner_key.get('length').get('max')) print(f"{'Pkt Length(max):':>15} {', '.join(make_list)}")
7,791
def get (url, user_agent=UA, referrer=None): """Make a GET request of the url using pycurl and return the data (which is None if unsuccessful)""" data = None databuffer = StringIO() curl = pycurl.Curl() curl.setopt(pycurl.URL, url) curl.setopt(pycurl.FOLLOWLOCATION, 1) curl.setopt(pycurl.CONNECTTIMEOUT, 5) curl.setopt(pycurl.TIMEOUT, 8) curl.setopt(pycurl.WRITEFUNCTION, databuffer.write) curl.setopt(pycurl.COOKIEFILE, '') if user_agent: curl.setopt(pycurl.USERAGENT, user_agent) if referrer is not None: curl.setopt(pycurl.REFERER, referrer) try: curl.perform() data = databuffer.getvalue() except Exception: pass curl.close() return data
7,792
def detect_callec(tree): """Collect names of escape continuations from call_ec invocations in tree. Currently supported and unsupported cases:: # use as decorator, supported @call_ec def result(ec): # <-- we grab name "ec" from here ... # use directly on a literal lambda, supported result = call_ec(lambda ec: ...) # <-- we grab name "ec" from here # use as a function, **NOT supported** def g(ec): # <-- should grab from here ... ... result = call_ec(g) # <-- but this is here; g could be in another module """ # literal function names that are always interpreted as an ec. # "brk" is needed to combo with unpythonic.fploop.breakably_looped. fallbacks = ["ec", "brk"] iscallec = partial(isx, make_isxpred("call_ec")) @Walker def detect(tree, *, collect, **kw): # TODO: add support for general use of call_ec as a function (difficult) if type(tree) in (FunctionDef, AsyncFunctionDef) and any(iscallec(deco) for deco in tree.decorator_list): fdef = tree collect(fdef.args.args[0].arg) # FunctionDef.arguments.(list of arg objects).arg elif is_decorated_lambda(tree, mode="any"): decorator_list, thelambda = destructure_decorated_lambda(tree) if any(iscallec(decocall.func) for decocall in decorator_list): collect(thelambda.args.args[0].arg) # we assume it's the first arg, as that's what call_ec expects. return tree return fallbacks + detect.collect(tree)
7,793
def test_distributed_evaluation_multiprocessing(do_mwcp=True): """ Full test run using the Distributed Evaluator (fake nodes using processes). Note that this is not a very good test for the DistributedEvaluator, because we still work on one machine, not across multiple machines. We emulate the other machines using subprocesses created using the multiprocessing module. """ addr = ("localhost", random.randint(12000, 30000)) authkey = b"abcd1234" mp = multiprocessing.Process( name="Primary evaluation process", target=run_primary, args=(addr, authkey, 19), # 19 because stagnation is at 20 ) mp.start() if do_mwcp: mwcp = multiprocessing.Process( name="Child evaluation process (multiple workers)", target=run_secondary, args=(addr, authkey, 2), ) swcp = multiprocessing.Process( name="Child evaluation process (direct evaluation)", target=run_secondary, args=(addr, authkey, 1), ) swcp.daemon = True # we cannot set this on mwcp if do_mwcp: mwcp.start() swcp.start() try: print("Joining primary process") sys.stdout.flush() mp.join() if mp.exitcode != 0: raise Exception("Primary-process exited with status {s}!".format(s=mp.exitcode)) if do_mwcp: if not mwcp.is_alive(): print("mwcp is not 'alive'") print("children: {c}".format(c=multiprocessing.active_children())) print("Joining multiworker-secondary process") sys.stdout.flush() mwcp.join() if mwcp.exitcode != 0: raise Exception("Multiworker-secondary-process exited with status {s}!".format(s=mwcp.exitcode)) if not swcp.is_alive(): print("swcp is not 'alive'") print("Joining singleworker-secondary process") sys.stdout.flush() swcp.join() if swcp.exitcode != 0: raise Exception("Singleworker-secondary-process exited with status {s}!".format(s=swcp.exitcode)) finally: if mp.is_alive(): mp.terminate() if do_mwcp and mwcp.is_alive(): mwcp.terminate() if swcp.is_alive(): swcp.terminate()
7,794
def apply_filters( stream: StreamMeta, filters: List[Tuple[str, str]], config: Any ) -> StreamMeta: """Apply enabled filters ordered by priority on item""" filter_pool = get_filter_pool(filters, config) for filter_instance in filter( lambda x: x.enabled, sorted(filter_pool, key=lambda x: x.priority) ): filter_instance.apply(stream) return stream
7,795
def threading_d(func): """ A decorator to run function in background on thread Args: func:``function`` Function with args Return: background_thread: ``Thread`` """ @wraps(func) def wrapper(*args, **kwags): background_thread = Thread(target=func, args=(*args,)) background_thread.daemon = True background_thread.start() return background_thread return wrapper
7,796
def create_anchors_3d_stride( feature_size, sizes=[1.6, 3.9, 1.56], anchor_strides=[0.4, 0.4, 0.0], anchor_offsets=[0.2, -39.8, -1.78], rotations=[0, np.pi / 2], velocities=[], dtype=np.float32, ): """ Args: feature_size: list [D, H, W](zyx) sizes: [N, 3] list of list or array, size of anchors, xyz Returns: anchors: [*feature_size, num_sizes, num_rots, 7] tensor. """ # almost 2x faster than v1 x_stride, y_stride, z_stride = anchor_strides x_offset, y_offset, z_offset = anchor_offsets z_centers = np.arange(feature_size[0], dtype=dtype) y_centers = np.arange(feature_size[1], dtype=dtype) x_centers = np.arange(feature_size[2], dtype=dtype) z_centers = z_centers * z_stride + z_offset y_centers = y_centers * y_stride + y_offset x_centers = x_centers * x_stride + x_offset sizes = np.reshape(np.array(sizes, dtype=dtype), [-1, 3]) rotations = np.array(rotations, dtype=dtype) velocities = np.array(velocities, dtype=dtype).reshape([-1, 2]) combines = np.hstack([sizes, velocities]).reshape([-1, 5]) rets = np.meshgrid(x_centers, y_centers, z_centers, rotations, indexing="ij") tile_shape = [1] * 5 tile_shape[-2] = int(sizes.shape[0]) for i in range(len(rets)): rets[i] = np.tile(rets[i][..., np.newaxis, :], tile_shape) rets[i] = rets[i][..., np.newaxis] # for concat # sizes = np.reshape(sizes, [1, 1, 1, -1, 1, 3]) combines = np.reshape(combines, [1, 1, 1, -1, 1, 5]) tile_size_shape = list(rets[0].shape) tile_size_shape[3] = 1 # sizes = np.tile(sizes, tile_size_shape) combines = np.tile(combines, tile_size_shape) # rets.insert(3, sizes) rets.insert(3, combines) ret = np.concatenate(rets, axis=-1) return np.transpose(ret, [2, 1, 0, 3, 4, 5])
7,797
def test_mnemonic_inventory(): """Test the retrieval of the mnemonic inventory.""" all_mnemonics = mnemonic_inventory()[0] assert len(all_mnemonics) > 1000
7,798
def sha1_file(filename): """ Return the hex string representation of the SHA1 checksum of the filename """ import hashlib s = hashlib.sha1() with open(filename, "rb") as f: for line in f: s.update(line) return s.hexdigest()
7,799