content
stringlengths
22
815k
id
int64
0
4.91M
def unit_parameters(_bb_spine_db_export: dict, _grid_name: str, _node_name: str, _unit_name: str, _time_index, _alternative='Base', _eff_level=1, _p_unit=False, _node_name_if_output=None, _node_name_if_input=None ): """ :param _bb_spine_db_export: :param _grid_name: :param _node_name: name used to search in _bb_spine_db_export :param _unit_name: :param _time_index: used only for time-variant fuel prices :param _alternative: :param _eff_level: default efficiency level for units without effLevelGroupUnit definition, should be set to the highest level in practice :param _p_unit: default Fault, True to enable parsing unit specific values from p_unit :param _node_name_if_output: str, set a new name for the sought node (_node_name) if the unit outputs to it :param _node_name_if_input: str, set a new name for the sought node (_node_name) if the unit receives its input :return: """ _temp_importer = SpineDBImporter() # Parameters 1: from BB_gdx p_gnu_io (SpineDB grid__node__unit__io) _parameters_1 = [ x for x in _bb_spine_db_export['relationship_parameter_values'] if all([x[0] == 'grid__node__unit__io', x[1][:3] == [_grid_name, _node_name, _unit_name]]) ] _fuel_commodity = [ x[1][0] for x in _bb_spine_db_export['relationships'] if x[0] == 'commodity' ] _unit_capacity = 0 # Parameters 2: from BB_gdx effLevelGroupUnit (SpineDB efflevel__group__unit) # unit_online_type _parameters_2 = [ x for x in _bb_spine_db_export['relationships'] if all([x[0] == 'efflevel__group__unit', _unit_name in x[1]]) ] # Parameters 3: from BB_gdx p_unit (SpineDB unit) _parameters_3 = [ x for x in _bb_spine_db_export['object_parameter_values'] if all([x[0] == 'unit', x[1] == _unit_name]) ] # Translate Parameter 1 # TODO: other bb parameter under the category p_gnu_io, unitSize for investment for par in _parameters_1: if par[1][3] == 'output': if _node_name_if_output: _node_name = _node_name_if_output # add unit__to_node relationship for output _temp_importer.relationships.append(("unit__to_node", (_unit_name, _node_name))) if par[2] == 'capacity': # capacity is aggregated in Backbone but SpineOpt requires unit capacity _number_of_units = __get_number_of_units(_bb_spine_db_export, _unit_name, default=1) _unit_capacity = par[3] / _number_of_units[0] _temp_importer.relationship_parameter_values += [ ("unit__to_node", [_unit_name, _node_name], "unit_capacity", _unit_capacity, _alternative), ] elif par[2] == 'conversionCoeff': _temp_importer.relationship_parameter_values += [ ("unit__to_node", [_unit_name, _node_name], "unit_conv_cap_to_flow", par[3], _alternative), ] elif par[2] == 'vomCosts': _temp_importer.relationship_parameter_values += [ ("unit__to_node", [_unit_name, _node_name], "vom_cost", par[3], _alternative), ] elif par[1][3] == 'input': if _node_name_if_input: _node_name = _node_name_if_input # add unit__from_node relationship for input _temp_importer.relationships.append(("unit__from_node", (_unit_name, _node_name))) # build parameters if par[2] == 'capacity': # capacity is aggregated in Backbone but SpineOpt requires unit capacity _number_of_units = __get_number_of_units(_bb_spine_db_export, _unit_name, default=1) _unit_capacity = par[3] / _number_of_units[0] _temp_importer.relationship_parameter_values += [ ("unit__from_node", [_unit_name, _node_name], "unit_capacity", _unit_capacity, _alternative), ] elif par[2] == 'conversionCoeff': _temp_importer.relationship_parameter_values += [ ("unit__from_node", [_unit_name, _node_name], "unit_conv_cap_to_flow", par[3], _alternative), ] elif par[2] == 'vomCosts': _temp_importer.relationship_parameter_values += [ ("unit__from_node", [_unit_name, _node_name], "vom_cost", par[3], _alternative), ] # For nodes which are created to supply fuels if _node_name in _fuel_commodity: # add an additional dummy unit to balance the input node that is particularly for fuel source _temp_importer = dummy_unit_for_node( _temp_importer, _node_name, f"Fueling_unit_{_node_name}", "to_node" ) # build fuel price, in either TimeSeries or constant value _fuel_price_dict = __restore_fuel_price_map(_bb_spine_db_export, _node_name, _alternative=_alternative) if len(_fuel_price_dict) != 1: __time_index = [str(x) for x in _time_index] _fuel_price_ts = dict(zip(__time_index, list(_fuel_price_dict.values())[:len(__time_index)])) _temp_importer.relationship_parameter_values += [ ( "unit__from_node", [_unit_name, _node_name], "fuel_cost", {"type": "time_series", "data": _fuel_price_ts, "index": {"repeat": timeseries_repeat}}, _alternative ), ] # constant value else: _fuel_price = list(_fuel_price_dict.values())[0] _temp_importer.relationship_parameter_values += [ ("unit__from_node", [_unit_name, _node_name], "fuel_cost", _fuel_price, _alternative), ] # grid in bb_format translated as commodity in spineopt # node in bb_format translated as node in spineopt # unit in bb_format translated as unit in spineopt _temp_importer.objects += [("commodity", _grid_name), ("node", _node_name), ("unit", _unit_name)] # add node__commodity relationship _temp_importer.relationships.append(("node__commodity", (_node_name, _grid_name))) # Translate Parameters 2 if _parameters_2: # TODO: level?, lambda eff type? _unit_on = _parameters_2['level1' in _parameters_2] if _unit_on[1][1] == 'directOnMIP': _temp_importer.object_parameter_values.append( ("unit", _unit_name, "online_variable_type", "unit_online_variable_type_integer", _alternative), ) elif _unit_on[1][1] == 'directOnLP': _temp_importer.object_parameter_values.append( ("unit", _unit_name, "online_variable_type", "unit_online_variable_type_linear", _alternative), ) elif _unit_on[1][1] == 'directOff': _number_of_units = __get_number_of_units(_bb_spine_db_export, _unit_name, default=1) _temp_importer.object_parameter_values.append( ("unit", _unit_name, "fix_units_on", _number_of_units[0], _alternative), ) # Translate Parameters 3 _operating_points = [0] _min_operating_point = _operating_points[0] # for units with efficiency levels if _parameters_2: _eff_level = len(_parameters_2) _direction = set([x[1][3] for x in _parameters_1]) # TODO: what about the units with _direction containing both input and output? _constraint_name = f"Eff_{_unit_name}" if 'output' in _direction and len(_direction) == 1: if ("unit_constraint", _constraint_name) not in _temp_importer.objects: _temp_importer.objects += [("unit_constraint", _constraint_name), ] # specify constraint settings _temp_importer.object_parameter_values += [ ("unit_constraint", _constraint_name, "constraint_sense", "==", _alternative), ("unit_constraint", _constraint_name, "right_hand_side", 0.0, _alternative), ] _temp_importer.relationships += [ ("unit__unit_constraint", (_unit_name, _constraint_name)), ("unit__to_node__unit_constraint", (_unit_name, _node_name, _constraint_name)), ] # data for units with constant efficiency is stored in the highest effLevel if all(['directOff' in x[1] for x in _parameters_2]): _max_level = max(range(0, _eff_level)) _operating_points = [x[3] for x in _parameters_3 if x[2] == f"op{_max_level:02d}"] # eff = output/input _unit_flow_coefficient = [-(x[3] ** -1) for x in _parameters_3 if x[2] == f"eff{_max_level:02d}"] else: _operating_points = list( map(lambda i: [x[3] for x in _parameters_3 if x[2] == f"op{i:02d}"][0], range(0, _eff_level)) ) # TODO: to be confirmed _min_operating_point = _operating_points[0] # eff = output/input _unit_flow_coefficient = list( map(lambda i: [-(x[3] ** -1) for x in _parameters_3 if x[2] == f"eff{i:02d}"][0], range(0, _eff_level)) ) _temp_importer.relationship_parameter_values += [ ("unit__to_node", (_unit_name, _node_name), "operating_points", {"type": "array", "value_type": "float", "data": _operating_points}, _alternative), ("unit__to_node", (_unit_name, _node_name), "minimum_operating_point", _min_operating_point, _alternative), ("unit__to_node__unit_constraint", (_unit_name, _node_name, _constraint_name), "unit_flow_coefficient", {"type": "array", "value_type": "float", "data": _unit_flow_coefficient}, _alternative) ] elif 'input' in _direction and len(_direction) == 1: if ("unit_constraint", _constraint_name) not in _temp_importer.objects: _temp_importer.objects += [("unit_constraint", _constraint_name), ] # specify constraint settings _temp_importer.object_parameter_values += [ ("unit_constraint", _constraint_name, "constraint_sense", "==", _alternative), ("unit_constraint", _constraint_name, "right_hand_side", 0.0, _alternative), ] _temp_importer.relationships += [ ("unit__unit_constraint", (_unit_name, _constraint_name)), ("unit__from_node__unit_constraint", (_unit_name, _node_name, _constraint_name)), ] _unit_flow_coefficient = [ x[3] for x in _parameters_1 if all([x[2] == "conversionCoeff"]) ][0] _temp_importer.relationship_parameter_values += [ ("unit__from_node__unit_constraint", (_unit_name, _node_name, _constraint_name), "unit_flow_coefficient", _unit_flow_coefficient, _alternative), ] # Whether to parse unit specific values from p_unit if _p_unit: # parameters directly translatable def _rename_unit_para(obj_para_value_entity: tuple, _target_para_name: str, __alternative: str): _para = list(obj_para_value_entity) _para[2] = _target_para_name _para[4] = __alternative return _para for par in _parameters_3: if par[2] == 'availability': _parameter = _rename_unit_para(par, "unit_availability_factor", _alternative) _temp_importer.object_parameter_values.append(tuple(_parameter)) elif par[2] == 'minOperationHours': _parameter = _rename_unit_para(par, "min_up_time", _alternative) _parameter[3] = {"type": "duration", "data": f"{int(_parameter[3])}h"} _temp_importer.object_parameter_values.append(tuple(_parameter)) elif par[2] == 'minShutdownHours': _parameter = _rename_unit_para(par, "min_down_time", _alternative) _parameter[3] = {"type": "duration", "data": f"{int(_parameter[3])}h"} _temp_importer.object_parameter_values.append(tuple(_parameter)) # number of units, 1 is default value defined in SpineOpt database template elif par[2] == 'unitCount': _parameter = _rename_unit_para(par, "number_of_units", _alternative) _temp_importer.object_parameter_values.append(tuple(_parameter)) # EUR/start/unit, start per unit capacity elif par[2] == 'startCostCold': _start_up_cost = par[3] * _unit_capacity _temp_importer.object_parameter_values.append( ("unit", _unit_name, "start_up_cost", _start_up_cost, _alternative) ) elif par[2] == 'startFuelConsCold': # MWh fuel/unit startup _start_up_fuel_consumption = - par[3] * _unit_capacity # Parameters 4: from BB_gdx p_uStartupfuel (SpineDB unit__startupFuel) _parameters_4 = [ x for x in _bb_spine_db_export['relationship_parameter_values'] if all([x[0] == 'unit__startupFuel', _unit_name in x[1]]) ] if _parameters_4: # the corresponding fuel node for te startup fuel _start_up_fuel = _parameters_4[0][1][1] # explicit startup fuel node for clarity _startup_fuel_node = f"{_start_up_fuel}_for_unit_startup" # _startup_fuel_node links to the same fueling unit as the fuel node if ("node", _startup_fuel_node) not in _temp_importer.objects: _temp_importer.objects.append(("node", _startup_fuel_node)) _temp_importer = dummy_unit_for_node( _temp_importer, _startup_fuel_node, f"Fueling_unit_{_start_up_fuel}", "to_node" ) # add commodity for the fuel node if there is any # _startup_fuel_node shares the same commodity with the fuel node _grid_for_fuel_commodity = [ x[1][0] for x in _bb_spine_db_export['relationships'] if all([x[0] == 'grid__node', _start_up_fuel in x[1]]) ] if _grid_for_fuel_commodity: _fuel_commodity = _grid_for_fuel_commodity[0] if ("commodity", _fuel_commodity) not in _temp_importer.objects: _temp_importer.objects.append(("commodity", _fuel_commodity)) _temp_importer.relationships += [ ("node__commodity", (_startup_fuel_node, _fuel_commodity)), ] else: print(f"The corresponding grid for fuel node {_start_up_fuel} is missing.") # build unit_constraint for startup fuel flow _constraint_name = f"Startup_fuel_{_unit_name}" _temp_importer.objects += [ ("unit_constraint", _constraint_name), ] _temp_importer.relationships += [ ("unit__from_node", (_unit_name, _startup_fuel_node)), ("unit__unit_constraint", (_unit_name, _constraint_name)), ("unit__from_node__unit_constraint", (_unit_name, _startup_fuel_node, _constraint_name)), ] _temp_importer.object_parameter_values += [ ("unit_constraint", _constraint_name, "constraint_sense", "==", _alternative), ("unit_constraint", _constraint_name, "right_hand_side", 0.0, _alternative), ] _temp_importer.relationship_parameter_values += [ ("unit__unit_constraint", (_unit_name, _constraint_name), "units_started_up_coefficient", _start_up_fuel_consumption, _alternative), ("unit__from_node__unit_constraint", (_unit_name, _startup_fuel_node, _constraint_name), "unit_flow_coefficient", 1.0, _alternative), ] # build fuel price, in either TimeSeries or constant value, if there is any _fuel_price_dict = __restore_fuel_price_map( _bb_spine_db_export, _start_up_fuel, _alternative=_alternative ) if len(_fuel_price_dict) != 1: __time_index = [str(x) for x in _time_index] _fuel_price_ts = dict( zip(__time_index, list(_fuel_price_dict.values())[:len(__time_index)])) _temp_importer.relationship_parameter_values += [ ("unit__from_node", [_unit_name, _startup_fuel_node], "fuel_cost", {"type": "time_series", "data": _fuel_price_ts, "index": {"repeat": timeseries_repeat}}, _alternative), ] # constant value else: _fuel_price = list(_fuel_price_dict.values())[0] _temp_importer.relationship_parameter_values += [ ("unit__from_node", [_unit_name, _startup_fuel_node], "fuel_cost", _fuel_price, _alternative), ] # set default number_of_units and unit_availability_factor to 1.0 if not explicitly recorded in the database # else: # _temp_importer.object_parameter_values += [ # ("unit", _unit_name, "unit_availability_factor", 1.0, _alternative), # ("unit", _unit_name, "number_of_units", 1.0, _alternative), # ] return _temp_importer
7,800
def read_from_file(file_path): """ Read a file and return a list with all the lines in the file """ file_in_list = [] with open(file_path, 'r') as f: for line in f.readlines(): file_in_list.append(line) return file_in_list
7,801
def count(predicate, iterable): """ Iterate over iterable, pass the value to the predicate predicate and return the number of times the predicate returns value considered True. @param predicate: Predicate function. @param iterable: Iterable containing the elements to count. @return: The number of true element. """ result = 0L for i in iterable: if predicate(i): result += 1 return result
7,802
def get_object_from_path(path): """ :param path: dot seperated path. Assumes last item is the object and first part is module path(str) - example: cls = get_object_from_path("a.module.somewhere.MyClass") you can create a path like this: class_path = "{0}.{1}".format(MyClass.__module__, MyClass.__name__) """ module_path, _, obj_name = path.rpartition(".") module = __import__(module_path, globals(), locals(), [obj_name], -1) obj = getattr(module, obj_name, None) return obj
7,803
def _get_collection_memcache_key(collection_id, version=None): """Returns a memcache key for the collection. Args: collection_id: str. ID of the collection. version: int. Schema version of the collection. Returns: str. The memcache key of the collection. """ if version: return 'collection-version:%s:%s' % (collection_id, version) else: return 'collection:%s' % collection_id
7,804
def test_landsat_id_pre_invalid(): """Raises error on invalid pre-collection.""" scene = "L0300342017083LGN00" with pytest.raises(InvalidLandsatSceneId): landsat8._landsat_parse_scene_id(scene)
7,805
def test_kubeadm_binary_which(host): """ Tests the output to confirm kubeadm's binary location. """ assert host.check_output('which kubeadm') == PACKAGE_BINARY
7,806
def biKmeans(dataSet, k, distMeas=calcEuclideanDistance): """ 二分K-均值算法 :param dataSet: :param k: :param distMeas: :return: """ m = np.shape(dataSet)[0] clusterAssment = np.mat(np.zeros((m, 2))) centroid0 = np.mean(dataSet, axis=0).tolist()[0] centList = [centroid0] # create a list with one centroid for j in range(m): # calc initial Error clusterAssment[j, 1] = distMeas(np.mat(centroid0), dataSet[j, :]) ** 2 while len(centList) < k: lowestSSE = np.inf for i in range(len(centList)): # get the data points currently in cluster i ptsInCurrCluster = dataSet[np.nonzero(clusterAssment[:, 0].A == i)[0], :] centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas) sseSplit = sum(splitClustAss[:, 1]) # compare the SSE to the currrent minimum sseNotSplit = sum(clusterAssment[np.nonzero(clusterAssment[:, 0].A != i)[0], 1]) print "sseSplit, and notSplit: ", sseSplit, sseNotSplit if (sseSplit + sseNotSplit) < lowestSSE: bestCentToSplit = i bestNewCents = centroidMat bestClustAss = splitClustAss.copy() lowestSSE = sseSplit + sseNotSplit bestClustAss[np.nonzero(bestClustAss[:, 0].A == 1)[0], 0] = len(centList) # change 1 to 3,4, or whatever bestClustAss[np.nonzero(bestClustAss[:, 0].A == 0)[0], 0] = bestCentToSplit print 'the bestCentToSplit is: ', bestCentToSplit print 'the len of bestClustAss is: ', len(bestClustAss) centList[bestCentToSplit] = bestNewCents[0, :].tolist()[0] # replace a centroid with two best centroids centList.append(bestNewCents[1, :].tolist()[0]) # reassign new clusters, and SSE clusterAssment[np.nonzero(clusterAssment[:, 0].A == bestCentToSplit)[0], :] = bestClustAss return np.mat(centList), clusterAssment
7,807
def get(directory): """Prepare df and gdf with solar atlas tiled data.""" files_list = glob.glob(os.path.join(directory, "*", "*.csv")) data = [] for file in files_list: logging.info(file) tiles = pd.read_csv(file, header=None) tiles.columns = ["tilename", "minx", "maxx", "miny", "maxy"] tiles["extentBox"] = tiles.apply( lambda x: box(x.minx, x.miny, x.maxx, x.maxy), axis=1 ) tiles["tilename"] = ( os.path.basename(os.path.dirname(file)) + "/" + tiles["tilename"] ) tiles["start_at"] = pd.to_datetime( "2099-" + os.path.dirname(file).split("_")[1], format="%Y-%m" ) data.append(tiles) data = pd.concat(data, ignore_index=True) enermaps_data = utilities.ENERMAPS_DF enermaps_data["fid"] = data["tilename"] enermaps_data["start_at"] = data["start_at"] enermaps_data["variable"] = VARIABLE enermaps_data["unit"] = UNIT enermaps_data["israster"] = ISRASTER enermaps_data["dt"] = DT spatial = gpd.GeoDataFrame(geometry=data["extentBox"], crs="EPSG:3035",) spatial["fid"] = data["tilename"] return enermaps_data, spatial
7,808
def cleanup(args, repo): """Clean up undeployed pods.""" if args.keep < 0: raise ValueError('negative keep: %d' % args.keep) def _is_enabled_or_started(pod): for instance in pod.iter_instances(): if scripts.systemctl_is_enabled(instance.unit_name): return True if scripts.systemctl_is_active(instance.unit_name): return True return False for pod_dir_name in repo.get_pod_dir_names(): LOG.info('%s - cleanup', pod_dir_name) all_pods = list(repo.iter_pods(pod_dir_name)) num_left = len(all_pods) for pod in all_pods: if num_left <= args.keep: break if _is_enabled_or_started(pod): LOG.info('refuse to undeploy pod: %s', pod) continue _undeploy_pod(repo, pod) num_left -= 1 return 0
7,809
def optimizer_builder( config: Dict): """ Instantiate an optimizer. :param config: :return: """ # --- argument checking if not isinstance(config, dict): raise ValueError("config must be a dictionary") # --- read configuration decay_rate = config["decay_rate"] decay_steps = config["decay_steps"] learning_rate = config["learning_rate"] gradient_clipping_by_norm = config["gradient_clipping_by_norm"] # --- set up schedule lr_schedule = \ keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=learning_rate, decay_steps=decay_steps, decay_rate=decay_rate) return \ keras.optimizers.RMSprop( learning_rate=lr_schedule, global_clipnorm=gradient_clipping_by_norm),\ lr_schedule
7,810
def convertfile(filename, orig=1): """Convert the filename given from using Numeric to using NumPy Copies the file to filename.orig and then over-writes the file with the updated code """ fid = open(filename) filestr = fid.read() fid.close() filestr, changed = fromstr(filestr) if changed: if orig: base, ext = os.path.splitext(filename) os.rename(filename, base+".orig") else: os.remove(filename) makenewfile(filename, filestr)
7,811
def psi(z: float, a: float, b: float) -> float: """Penalty function with uniformly bounded derivative (Eq. 20) Args: z: Relative distance a: Cohesion strength b: Separation strength """ c = np.abs(a - b) / (2 * np.sqrt(a * b)) return ((a + b) / 2) * (np.sqrt(1 + (z + c) ** 2) - np.sqrt(1 + c ** 2)) + ((a - b) / 2) * z
7,812
def caselessSort(alist): """Return a sorted copy of a list. If there are only strings in the list, it will not consider case. """ try: return sorted(alist, key=lambda a: (a.lower(), a)) except TypeError: return sorted(alist)
7,813
def EnableRing(serialPort): """ Enable the ISU to listen for SBD Ring Alerts. When SBD Ring Alert indication is enabled, the 9602 asserts the RI line and issues the unsolicited result code SBDRING when an SBD Ring Alert is received. """ # Enables Ring message to indicate there's a message to read. Log("EnableRing()") if not WriteAndCheck(serialPort, "AT+SBDMTA=1\r", "OK", 30): Log("Issue enabling ring notifications.") return False Log("OK.") return True
7,814
def verify_image(filename_or_obj, format, resolution): """ Verify that the image in filename_or_obj has the specified format and resolution. """ width, height = resolution if format in RAW_FORMATS: size1 = ( math.ceil(width / 16) * 16 * math.ceil(height / 16) * 16 * RAW_FORMATS[format] ) size2 = ( math.ceil(width / 32) * 32 * math.ceil(height / 16) * 16 * RAW_FORMATS[format] ) if isinstance(filename_or_obj, str): stream = io.open(filename_or_obj, 'rb') else: stream = filename_or_obj stream.seek(0, os.SEEK_END) assert stream.tell() in (size1, size2) else: img = Image.open(filename_or_obj) assert img.size == resolution assert img.format.lower() == format.lower() img.verify()
7,815
def render(template, **context): """Render the given template. :param template: The template file name or string to render. :param **context: Context keyword-arguments. """ class Undefined(BaseUndefined): def _fail_with_undefined_error(self, *args, **kwargs): try: super(Undefined, self)._fail_with_undefined_error(*args, **kwargs) except Exception, error: return "{{{{ {0} }}}}".format(error) try: try: template_file = file(expanduser(template)) loader = FileSystemLoader(dirname(template_file.name)) environment = Environment(loader=loader, undefined=Undefined) try: template = environment.get_template(basename( template_file.name)) except TemplateSyntaxError, error: message = "Template {0}:{1}, {2}{3}".format(error.filename, error.lineno, error.message[:1].lower(), error.message[1:]) exit(message) except IOError: try: template = Template(template, undefined=Undefined) except TemplateSyntaxError, error: message = "Template \"{0}\" {1}{2}".format(template, error.message[:1].lower(), error.message[1:]) exit(message) except TemplateError, error: message = "Template error: {0}".format(error.message) exit(message) return template.render(context)
7,816
def read(pth, format=None, encoding=None, cols=None, **kwargs): """Returns the contents of a file into a string or format-dependent data type (with special handling for json and csv files). The format will either be inferred from the file extension or can be set explicitly using the `format` arg. Text will be read using the specified `encoding` or default to UTF-8. JSON files will be parsed and an appropriate python type will be selected based on the top-level object defined in the file. The optional keyword argument `dict` can be set to `adict` or `odict` if you'd prefer not to use the standard python dictionary for decoded objects. CSV files will return a list of rows. By default each row will be an ordered list of column values. If the first line of the file defines column names, you can call read() with cols=True in which case each row will be a namedtuple using those names as keys. If the file doesn't define its own column names, you can pass a list of strings as the `cols` parameter. Rows can be formatted as column-keyed dictionaries by passing True as the `dict` parameter. """ if re.match(r'https?:', pth): resp = HTTP.get(pth) resp.raise_for_status() extension_type = splitext(urlparse(pth).path)[-1] content_type = resp.headers.get('content-type', extension_type).lower() for data_t in ['json', 'csv']: if data_t in content_type: extension_type = data_t if binaryish(content_type, format): fd = BytesIO(resp.content) else: if encoding: resp.encoding = encoding elif 'charset' not in content_type: resp.encoding = resp.apparent_encoding fd = StringIO(resp.text) else: enc = encoding or 'utf-8' extension_type = splitext(pth)[-1].lower() if binaryish(extension_type, format): fd = open(os.path.expanduser(pth), 'rb') else: fd = open(os.path.expanduser(pth), 'rt', encoding=enc) if kwargs.get('dict') is True: kwargs['dict'] = dict elif kwargs.get('dict') is False: del kwargs['dict'] dict_type = kwargs.get('dict', dict) format = (format or extension_type).lstrip('.') if format=='json': return json.load(fd, object_pairs_hook=dict_type) elif format=='csv': dialect = csv_dialect(fd) if cols: if kwargs.get('dict'): return list(csv_dict(fd, dialect=dialect, cols=cols, dict=dict_type)) else: return list(csv_tuple(fd, dialect=dialect, cols=cols)) return list(csv_rows(fd, dialect=dialect)) else: return fd.read()
7,817
def audio(src: str) -> str: """ Insert audio tag The tag is currently not supported by Nuance, please use `audio_player` kit: docs/use_kits_and_actions.md :param src: :return: """ return f'<audio src="{src}"/>'
7,818
def read(*rnames): """ Read content of a file. We assume the file to be in utf8 """ return open(os.path.join(os.path.dirname(__file__), *rnames), encoding="utf8", mode="r").read()
7,819
def PerpendicularDistanceToFinish(point_b_angle: float, point_b: gps_pb2.Point) -> float: """ cos(B) = Adjacent / Hypotenuse https://www.mathsisfun.com/algebra/trig-finding-side-right-triangle.html """ return math.cos(math.radians(point_b_angle)) * point_b.start_finish_distance
7,820
def get_revolut_stocks() -> List[str]: """ Gets all tickers offered on Revolut trading platform. Returns: list(str) """ import requests req = requests.get("https://globefunder.com/revolut-stocks-list/") tickers = list(pd.read_html(req.content)[0]["Symbol"]) tickers = [ticker.replace(".", "-") for ticker in tickers] return tickers
7,821
def move_recipes_by_condition(path, directory_name, condition): """ Moves the recipes that satisfy conditon to a new directory called directory_name """ os.mkdir(directory_name) recipe_list = list_recipes_by_condition(path, condition) for recipe in recipe_list: shutil.move(recipe, os.getcwd()+"/"+directory_name)
7,822
def response_text(response_class): """ Return the UTF-8 encoding of the API response. :param response_class: class to cast the response to :return: Text of the response casted to the specified class """ def _inner(f): @wraps(f) def wrapper(obj, *args, **kwargs): result = f(obj, *args, **kwargs) if isinstance(result, response_class): return result try: return response_class(result.text) except Exception: logger.debug("Exception during response parsing.", exc_info=True) raise APIError("Exception during response parsing") return wrapper return _inner
7,823
def create_rankings( a: Dataset, b: Dataset, n_samples: int = 100, unravel: bool = False, **kwargs: int ) -> Tuple[ndarray, ndarray]: """ Sample a dataset 'a' with 'n' negative samples given interactions in dataset 'a' and 'b'. Practically, this function allows you to generate evaluation data as described in the work of He et al. [1]. The evaluation procedure assumes that the input datasets 'a' and 'b' have been generated with a leave 'n' out policy, such that dataset 'b' corresponds to the 'training' dataset (i.e. dataset with 'left out' samples removed) and 'a' corresponds to the 'test' dataset with 'n' for each user with n_interactions > n. For each user in 'a', the function will return that user's 'n' left-out interactions, plus 'n_samples' negative samples (items the user has not interacted with in both the 'train' and 'test' datasets). Parameters ---------- a: Dataset The 'test' dataset (the dataset you wish to use for evaluation). b: Dataset The 'train' dataset (the dataset you wish to include for purposes of sampling items the user has not interacted with -- negative samples). n_samples: int The total number of negative samples per user to generate. For example, if the dataset 'a' was generated from a leave-one-out split, and n_samples=100, that user would receive 101 samples. unravel: bool If 'True', the function will return two arrays, where the first element of the first array corresponds to the user _vector_ (i.e. user ID + optional metadata), the first element of the first array corresponds to an associated sampled item vector(i.e. item ID + optional metadata). Returns ------- output: (ndarray, List[ndarray]) If 'unravel=False', the first element corresponds to an array of _ordered_ user ids, the second the `n_samples+1`per-user samples. If `unravel=True`, the first element corresponds to an array of _ordered_ user vectors, the second to each individual item vector. See `unravel` argument and `_unravel_ranked`, below. This function is provided for use when evaluating Keras Models with the `predict` method. References ---------- [1] He et al. https://dl.acm.org/doi/10.1145/3038912.3052569 """ users, items, _ = a.to_components( negative_samples=n_samples, aux_matrix=b.interactions.tocsr(), shuffle=False, sampling_mode="absolute", ) unique_users = unique(users) sampled_users, sampled_items = ( users[len(unique_users) :], items[len(unique_users) :], ) _, grouped = groupby(sampled_users, sampled_items) grouped = c_[grouped, items[: len(unique_users)]] if unravel: return _unravel_sampled(unique_users, grouped, a, **kwargs) else: return unique_users, grouped
7,824
def make_even(x): """Make number divisible by 2""" if x % 2 != 0: x -= 1 return x
7,825
def get_num_vehicles(session, query_filters): """Gets the total number of annotations.""" # pylint: disable-msg=E1101 num_vehicles_query = session.query( func.count(Vehicle.id)) \ .join(Photo) \ .filter(Photo.test == True) \ # pylint: enable-msg=E1101 for query_filter in query_filters: num_vehicles_query = num_vehicles_query.filter(query_filter) num_vehicles, = num_vehicles_query.one() return num_vehicles
7,826
def create_python_src_file(basedir, daystr, sample_count): """Creates a skeleton python file.""" filename = '' if sample_count == 1: filename = '../input/sample.txt' else: filename = '../input/sample1.txt' with open(os.path.join(basedir, 'src', daystr + '.py'), 'w') as file: message = ( "import argparse\n" "\n" "def main():\n" " parser = argparse.ArgumentParser()\n" f" parser.add_argument('-f', '--filename', default='{filename}')\n" " parser.add_argument('-p', '--part', choices=[1, 2], default=1, type=int)\n" " args = parser.parse_args()\n" "\n" "if __name__ == \"__main__\":\n" " main()\n" ) file.write(message)
7,827
def task_status_edit(request, status_id, response_format='html'): """TaskStatus edit""" status = get_object_or_404(TaskStatus, pk=status_id) if not request.user.profile.has_permission(status, mode='w'): return user_denied(request, message="You don't have access to this Task Status") if request.POST: if 'cancel' not in request.POST: form = TaskStatusForm( request.user.profile, request.POST, instance=status) if form.is_valid(): status = form.save() return HttpResponseRedirect(reverse('projects_index_by_status', args=[status.id])) else: return HttpResponseRedirect(reverse('projects_index_by_status', args=[status.id])) else: form = TaskStatusForm(request.user.profile, instance=status) context = _get_default_context(request) context.update({'form': form, 'status': status}) return render_to_response('projects/status_edit', context, context_instance=RequestContext(request), response_format=response_format)
7,828
def is_windows_system(): """ | ##@函数目的: 获取系统是否为Windows | ##@参数说明:True or False | ##@返回值: | ##@函数逻辑: | ##@开发人:jhuang | ##@时间: """ return 'Windows' in platform.system()
7,829
def seepage_from_unitary(U): """ Calculates leakage by summing over all in and output states in the computational subspace. L1 = 1- sum_i sum_j abs(|<phi_i|U|phi_j>|)**2 """ sump = 0 for i in range(2): for j in range(2): bra_i = qtp.tensor(qtp.ket([i], dim=[2]), qtp.ket([2], dim=[3])).dag() ket_j = qtp.tensor(qtp.ket([j], dim=[2]), qtp.ket([2], dim=[3])) p = np.abs((bra_i*U*ket_j).data[0, 0])**2 sump += p sump /= 2 # divide by dimension of comp subspace L1 = 1-sump return L1
7,830
def auto_get(*args): """ auto_get(type, lowEA, highEA) -> ea_t Retrieve an address from queues regarding their priority. Returns 'BADADDR' if no addresses not lower than 'lowEA' and less than 'highEA' are found in the queues. Otherwise *type will have queue type. @param type (C++: atype_t *) @param lowEA (C++: ea_t) @param highEA (C++: ea_t) """ return _ida_auto.auto_get(*args)
7,831
def isLineForUser(someLine=None, username=None): """determins if a raw output line is for a user""" doesMatch = False try: doesMatch = utils.isLineForMatch(someLine, username) except Exception as matchErr: logs.log(str(type(matchErr)), "Error") logs.log(str(matchErr), "Error") logs.log(str((matchErr.args)), "Error") matchErr = None del matchErr doesMatch = False return doesMatch
7,832
def get_view_class(callback): """ Try to get the class from given callback """ if hasattr(callback, 'view_class'): return callback.view_class if hasattr(callback, 'cls'): return callback.cls # TODO: Below code seems to not do anything.. mod = importlib.import_module(callback.__module__) cls = getattr(mod, callback.__name__) return cls
7,833
def create_multipart_upload(s3_obj, bucketname, object_key): """ Initiates Multipart Upload Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket on which multipart upload to be initiated on object_key (str): Unique object Identifier Returns: str : Multipart Upload-ID """ mpu = s3_obj.s3_client.create_multipart_upload(Bucket=bucketname, Key=object_key) upload_id = mpu["UploadId"] return upload_id
7,834
def test_dispatcher_config_needed_problem(): """Command needs a config, which is not there.""" class MyCommand(BaseCommand): help_msg = "some help" name = 'cmdname' needs_config = True def run(self, parsed_args): pass groups = [('test-group', 'title', [MyCommand])] dispatcher = Dispatcher(['cmdname'], groups) with pytest.raises(CommandError) as err: dispatcher.run() assert str(err.value) == ( "The specified command needs a valid 'charmcraft.yaml' configuration file (in the " "current directory or where specified with --project-dir option); see the reference: " "https://discourse.charmhub.io/t/charmcraft-configuration/4138")
7,835
def cn(DB): """Return the cursor and connection object.""" conn = sqlite3.connect(DB) c = conn.cursor() return (c,conn)
7,836
def _build_category_tree(slug, reference=None, items=None): """ Builds a recursive tree with category relations as children. """ if items is None: items = [] for key in reference: category = reference[key] if category["parent"] == slug: children = _build_category_tree(category["nicename"], reference=reference) category["children"] = children items.append(category) return items
7,837
def test_parse_config(): """Test noded.conf parsing.""" config = noded.parse_config("conf/noded.conf") assert config.get("defaults", "redis_host") == "localhost" assert config.getint("defaults", "redis_port") == 6379 assert config.getint("defaults", "redis_db") == 0 assert config.getint("defaults", "redis_timeout") == 1 assert config.getint("defaults", "sleep_time") == 30 assert config.getint("defaults", "expire_time") == 300 assert config.getint("defaults", "rb_maxlen") == 4
7,838
def partially_matched_crossover(random, mom, dad, args): """Return the offspring of partially matched crossover on the candidates. This function performs partially matched crossover (PMX). This type of crossover assumes that candidates are composed of discrete values that are permutations of a given set (typically integers). It produces offspring that are themselves permutations of the set. .. Arguments: random -- the random number generator object mom -- the first parent candidate dad -- the second parent candidate args -- a dictionary of keyword arguments Optional keyword arguments in args: - *crossover_rate* -- the rate at which crossover is performed (default 1.0) """ crossover_rate = args.setdefault('crossover_rate', 1.0) if random.random() < crossover_rate: size = len(mom) points = random.sample(range(size), 2) x, y = min(points), max(points) bro = copy.copy(dad) bro[x:y+1] = mom[x:y+1] sis = copy.copy(mom) sis[x:y+1] = dad[x:y+1] for parent, child in zip([dad, mom], [bro, sis]): for i in range(x, y+1): if parent[i] not in child[x:y+1]: spot = i while x <= spot <= y: spot = parent.index(child[spot]) child[spot] = parent[i] return [bro, sis] else: return [mom, dad]
7,839
def add(eq, sign): """Adds a character to the "equation" list, consisting of two numbers and an operation sign between them""" print(sign, end=" ") add_more(eq, sign) print(eq) if len(eq) > 3: count(eq) print(eq)
7,840
def regex_trim(input, regex, replace=''): """ Trims or replaces the regex match in an input string. input (string): the input string to search for matches regex (string): regex to match replace (string - optional): a string to replace any matches with. Defaults to trimming the match. """ return re.sub(regex, replace, input)
7,841
def test_d2scan(): """ Test ``d2scan`` scan (1D step scan) along two axes with ZP motors. """ print("Running scan ..") uid, = RE(d2scan([sclr1,zebra,merlin1,xspress3],10,zpssx,-1,1,zpssy,-1,1,0.1)) print("Scan is completed") print("Filling the table ...") _ = db[uid].table(fill=True) print("Table is filled")
7,842
def getENVIframeDir(strPathScene, sSubDir=None): """ Return directory containing envi frames frame bsqs in this dir are named FR_yyyy.mm.dd_X.bsq Optional subdirectory name sSubDir. workaround for non standard directory organization. """ strWild = strPathScene + r'SEQhdr\ENVI_FR*' if sSubDir is not None: strWild = strWild + os.sep + sSubDir lstDirs = [f for f in glob.glob(strWild) if os.path.isdir(f)] if len(lstDirs) == 0: raise Exception('No match found for: ' + strWild) elif len(lstDirs) > 1: raise Exception('Multiple matchs found for: ' + strWild) return lstDirs[0]
7,843
def LoadAllSuitesOfProject(project_name): """Loads all of the suites of a project.""" project_key = db.Key.from_path(bite_project.BiteProject.kind(), project_name) return BiteSuite.all().ancestor(project_key)
7,844
def debug(line: str = None, cell: str = None, local_ns = None): """Toggle debugging mode for the current cell."""
7,845
def calc_temps(start_date, end_date): """TMIN, TAVG, and TMAX for a list of dates. Args: start_date (string): A date string in the format %Y-%m-%d end_date (string): A date string in the format %Y-%m-%d Returns: TMIN, TAVG, and TMAX """ return session.query(func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).\ filter(Measurement.date >= start_date).filter(Measurement.date <= end_date).all()
7,846
def __check_rse_usage(rse: RseData, greedy: bool = False, logger: "Callable[..., Any]" = logging.log) -> 'Tuple[int, bool]': """ Internal method to check RSE usage and limits. :param rse_name: The RSE name. :param rse_id: The RSE id. :param greedy: If True, needed_free_space will be set to 1TB regardless of actual rse usage. :returns: needed_free_space, only_delete_obsolete. """ # First of all check if greedy mode is enabled for this RSE if greedy: return 1000000000000, False rse.ensure_loaded(load_limits=True, load_usage=True, load_attributes=True) # Get RSE limits min_free_space = rse.limits.get('MinFreeSpace', 0) # Check from which sources to get used and total spaces # Default is storage source_for_total_space = rse.attributes.get('source_for_total_space', 'storage') source_for_used_space = rse.attributes.get('source_for_used_space', 'storage') logger(logging.DEBUG, 'RSE: %s, source_for_total_space: %s, source_for_used_space: %s', rse.name, source_for_total_space, source_for_used_space) # Get total, used and obsolete space total_space_entry = None used_space_entry = None obsolete_entry = None for entry in rse.usage: if total_space_entry and used_space_entry and obsolete_entry: break entry_source = entry['source'] if not total_space_entry and entry_source == source_for_total_space: total_space_entry = entry if not used_space_entry and entry_source == source_for_used_space: used_space_entry = entry if not obsolete_entry and entry_source == 'obsolete': obsolete_entry = entry obsolete = 0 if obsolete_entry: obsolete = obsolete_entry['used'] # If no information is available about disk space, do nothing except if there are replicas with Epoch tombstone needed_free_space = 0 if not total_space_entry: if not obsolete: return needed_free_space, False return obsolete, True if not used_space_entry: return needed_free_space, False # Extract the total and used space total, used = total_space_entry['total'], used_space_entry['used'] free = total - used if min_free_space: needed_free_space = min_free_space - free # If needed_free_space negative, nothing to delete except if some Epoch tombstoned replicas if needed_free_space <= 0: return obsolete, True else: return needed_free_space, False
7,847
def train_model(ad, rsrc_loc, algo='IR', log_dir=None): """ Train a CellO model based on the genes of an input dataset. Parameters ---------- ad : AnnData object Expression matrix of n cells by m genes algo : String The name of the algorithm used to train the model. 'IR' trains a model using isotonic regression. 'CLR' trains a model using cascaded logistic regression. rsrc_loc: String The location of the "resources" directory downloaded via the '' log_dir : String Path to a directory in which to write logging information Returns ------- A trained CellO model """ _download_resources(rsrc_loc) genes = ad.var.index # Load the training data r = load_training_data.load(UNITS, rsrc_loc) og = r[0] label_graph = r[1] label_to_name = r[2] the_exps = r[3] exp_to_index = r[4] exp_to_labels = r[5] exp_to_tags = r[6] exp_to_study = r[7] study_to_exps = r[8] exp_to_ms_labels = r[9] X = r[10] all_genes = r[11] # Match genes in test data to those in training # data train_genes, gene_to_indices = _match_genes( genes, all_genes, rsrc_loc, log_dir=log_dir ) # Take a subset of the columns for the training-genes. Note # that if a given gene in the test set maps to multiple training # genes, then we sum over the training genes. X_train = [] for gene in train_genes: indices = gene_to_indices[gene] X_train.append(np.sum(X[:,indices], axis=1)) X_train = np.array(X_train).T assert X_train.shape[1] == len(train_genes) # Train the model on these genes print('Training model...') mod = model.train_model( ALGO_TO_INTERNAL[algo], ALGO_TO_PARAMS[algo], X_train, the_exps, exp_to_labels, label_graph, item_to_group=exp_to_study, features=train_genes, preprocessor_names=PREPROCESSORS, preprocessor_params=PREPROCESSOR_PARAMS ) print('done.') return mod
7,848
def ps_roi_max_align_2d( x, rois, roi_indices, outsize, spatial_scale, group_size, sampling_ratio=None ): """Position Sensitive Region of Interest (ROI) Max align function. This function computes position sensitive max value of input spatial patch with the given region of interests. Each ROI is splitted into :math:`(group\_size, group\_size)` regions, and position sensitive values in each region is computed. Args: x (~chainer.Variable): Input variable. The shape is expected to be 4 dimentional: (n: batch, c: channel, h, height, w: width). rois (array): Input roi. The shape is expected to be :math:`(R, 4)`, and each datum is set as below: (y_min, x_min, y_max, x_max). The dtype is :obj:`numpy.float32`. roi_indices (array): Input roi indices. The shape is expected to be :math:`(R, )`. The dtype is :obj:`numpy.int32`. outsize ((int, int, int) or (int, int) or int): Expected output size after pooled: (channel, height, width) or (height, width) or outsize. ``outsize=o`` and ``outsize=(o, o)`` are equivalent. Channel parameter is used to assert the input shape. spatial_scale (float): Scale of the roi is resized. group_size (int): Position sensitive group size. sampling_ratio ((int, int) or int): Sampling step for the alignment. It must be an integer over :math:`1` or :obj:`None`, and the value is automatically decided when :obj:`None` is passed. Use of different ratio in height and width axis is also supported by passing tuple of int as ``(sampling_ratio_h, sampling_ratio_w)``. ``sampling_ratio=s`` and ``sampling_ratio=(s, s)`` are equivalent. Returns: ~chainer.Variable: Output variable. See the original paper proposing PSROIPooling: `R-FCN <https://arxiv.org/abs/1605.06409>`_. See the original paper proposing ROIAlign: `Mask R-CNN <https://arxiv.org/abs/1703.06870>`_. """ return PSROIMaxAlign2D( outsize, spatial_scale, group_size, sampling_ratio)(x, rois, roi_indices)
7,849
def received_date_date(soup): """ Find the received date in human readable form """ return utils.date_text(history_date(soup, date_type="received"))
7,850
def show_avail_tasks() -> None: """ Print the available and callable tasks (FabSim3 APIs or plugins tasks) """ avail_task_dict = {} for task_name, task_obj in env.avail_tasks.items(): if not hasattr(task_obj, "task_type"): continue if hasattr(task_obj, "plugin_name"): key = "{} {}".format(task_obj.plugin_name, task_obj.task_type) else: key = "{}".format(task_obj.task_type) if key not in avail_task_dict: avail_task_dict.update({key: []}) avail_task_dict[key].append(task_name) table = Table( title="\n\nList of available Tasks", show_header=True, show_lines=True, # expand=True, box=box.ROUNDED, header_style="dark_cyan", ) table.add_column("Task Type", style="blue") table.add_column("Tasks name", style="magenta") for task_type, tasks_name in avail_task_dict.items(): table.add_row( "{}".format(task_type), "{}".format(", ".join(tasks_name)), ) console = Console() console.print(table)
7,851
def create_observation_from_inat_data(inaturalist_data): """Creates an observation in our local database according to the data from iNaturalist API. :returns: the observation (instance of Nest or Individual) created. Raises: TaxonMatchError """ observation_time = dateparser.parse(inaturalist_data['observed_on_string'], settings={'TIMEZONE': inaturalist_data['observed_time_zone']}) if observation_time is None: # Sometimes, dateparser doesn't understand the string but we have the bits and pieces in # inaturalist_data['observed_on_details'] details = inaturalist_data['observed_on_details'] observation_time = datetime(year=details['year'], month=details['month'], day=details['day'], hour=details['hour']) # in the observed cases, we had nothing more precise than the # hour # Sometimes, the time is naive (even when specifying it to dateparser), because (for the detected cases, at least) # The time is 00:00:00. In that case we make it aware to avoid Django warnings (in the local time zone since all # observations occur in Belgium if is_naive(observation_time): # Some dates (apparently) observation_time = make_aware(observation_time) if observation_time: # Reconcile the taxon try: taxon = get_taxon_from_inat_taxon_id(inaturalist_data['taxon']['id']) except Taxon.DoesNotExist: raise TaxonMatchError inat_vv_confirmed = inat_data_confirms_vv(inaturalist_data) # Check if it has the vespawatch_evidence observation field value and if it's set to "nest" if 'ofvs' in inaturalist_data: is_nest_ofv = next((item for item in inaturalist_data['ofvs'] if item["field_id"] == settings.VESPAWATCH_EVIDENCE_OBS_FIELD_ID), None) else: is_nest_ofv = None if is_nest_ofv and is_nest_ofv['value'] == "nest": created = Nest.objects.create( inat_vv_confirmed=inat_vv_confirmed, originates_in_vespawatch=False, inaturalist_id=inaturalist_data['id'], taxon=taxon, latitude=inaturalist_data['geojson']['coordinates'][1], longitude=inaturalist_data['geojson']['coordinates'][0], observation_time=observation_time) # TODO: What to do with iNat observations without (parsable) time? else: # Default is specimen created = Individual.objects.create( inat_vv_confirmed=inat_vv_confirmed, originates_in_vespawatch=False, inaturalist_id=inaturalist_data['id'], taxon=taxon, latitude=inaturalist_data['geojson']['coordinates'][1], longitude=inaturalist_data['geojson']['coordinates'][0], observation_time=observation_time) # TODO: What to do with iNat observations without (parsable) time? for photo in inaturalist_data['photos']: created.assign_picture_from_url(photo['url']) return created else: raise ParseDateError
7,852
def get_cert_sha256_by_openssl(certraw: str) -> str: """calc the sha1 of a certificate, return openssl result str""" res: str = None tmpname = None try: tmpname = tmppath / f"{uuid.uuid1()}.crt" while tmpname.exists(): tmpname = tmppath / f"{uuid.uuid1()}.crt" tmpname.write_text(certraw, encoding="utf-8") cmd = f"openssl x509 -in {tmpname} -fingerprint -noout -sha256" res = exec_openssl(cmd) except Exception as ex: raise Exception(f"Parse ssl data error, err:{ex}") finally: if tmpname is not None: tmpname.unlink() return res
7,853
def analytic_pi(x, c, w, h): """Analytic response function for an even pair of Lorentz distributions. Correspond to .. math:: \\Pi(x) = \\int_{-\infty}^{\\infty} \\frac{\\omega^2}{\\omega^2+x^2}\sigma()_{i} where :math:`\\sigma(\\omega)` is :func:`~even_lorentzian`. Args: x (array): matsubara at which the response function is evaluated c (float): Center of the distribution (+ or -) w (float): Width of the distribution (variance) h (float): Height/weight of the distribtuion (area under the curve) Returns: array: Values of the integral at imaginary `x` """ return 2*h*c/(c**2+(x+w)**2)
7,854
def run(canvas): """ This function runs the rules of game through all points, and changes their status accordingly.(in the same canvas) @Args: -- canvas : canvas of population to run the rules on. @returns: -- None """ canvas = np.array(canvas) next_gen_canvas = np.array(create_canvas(canvas.shape[0])) for r, row in enumerate(canvas): for c, pt in enumerate(row): # print(r-1,r+2,c-1,c+2) next_gen_canvas[r][c] = __judge_point( pt, canvas[r - 1: r + 2, c - 1: c + 2] ) canvas = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. return canvas.tolist()
7,855
def initialize_vocabulary(vocabulary_path): """Initialize vocabulary from file. We assume the vocabulary is stored one-item-per-line, so a file: dog cat will result in a vocabulary {"dog": 0, "cat": 1}, and this function will also return the reversed-vocabulary ["dog", "cat"]. Args: vocabulary_path: path to the file containing the vocabulary. Returns: a pair: the vocabulary (a dictionary mapping string to integers), and the reversed vocabulary (a list, which reverses the vocabulary mapping). Raises: ValueError: if the provided vocabulary_path does not exist. """ if tf.gfile.Exists(vocabulary_path): rev_vocab = [] with tf.gfile.GFile(vocabulary_path, mode="rb") as f: rev_vocab.extend(f.readlines()) rev_vocab = [line.strip() for line in rev_vocab] vocab = dict([(x, y) for (y, x) in enumerate(rev_vocab)]) return vocab, rev_vocab else: raise ValueError("Vocabulary file %s not found.", vocabulary_path)
7,856
def ravel_space(space): """ Convert the space into a Discrete space. """ dims = _nested_dim_helper(space) return Discrete(dims[0])
7,857
def _add_col(dataframe, metadata, col_limits, families, weights, random_state): """Add a new column to the end of the dataframe by sampling a distribution from ``families`` according to the column limits and distribution weights and sampling the required number of values from that distribution.""" nrows, ncols = dataframe.shape if isinstance(col_limits[1], tuple): family_counts = get_family_counts(metadata, families) while len(dataframe.columns) != ncols + 1: family = random_state.choice(families, p=weights) idx = families.index(family) if family_counts[family] < col_limits[1][idx]: pdf = family.make_instance(random_state) dataframe[ncols] = pdf.sample(nrows, random_state) metadata.append(pdf) dataframe = _rename(dataframe) return dataframe, metadata family = random_state.choice(families, p=weights) pdf = family.make_instance(random_state) dataframe[ncols] = pdf.sample(nrows, random_state) metadata.append(pdf) dataframe = _rename(dataframe) return dataframe, metadata
7,858
def read_and_decrypt_mylogin_cnf(f): """Read and decrypt the contents of .mylogin.cnf. This decryption algorithm mimics the code in MySQL's mysql_config_editor.cc. The login key is 20-bytes of random non-printable ASCII. It is written to the actual login path file. It is used to generate the real key used in the AES cipher. :param f: an I/O object opened in binary mode :return: the decrypted login path file :rtype: io.BytesIO or None """ # Number of bytes used to store the length of ciphertext. MAX_CIPHER_STORE_LEN = 4 LOGIN_KEY_LEN = 20 # Move past the unused buffer. buf = f.read(4) if not buf or len(buf) != 4: logger.error('Login path file is blank or incomplete.') return None # Read the login key. key = f.read(LOGIN_KEY_LEN) # Generate the real key. rkey = [0] * 16 for i in range(LOGIN_KEY_LEN): try: rkey[i % 16] ^= ord(key[i:i+1]) except TypeError: # ord() was unable to get the value of the byte. logger.error('Unable to generate login path AES key.') return None rkey = struct.pack('16B', *rkey) # Create a decryptor object using the key. decryptor = _get_decryptor(rkey) # Create a bytes buffer to hold the plaintext. plaintext = BytesIO() while True: # Read the length of the ciphertext. len_buf = f.read(MAX_CIPHER_STORE_LEN) if len(len_buf) < MAX_CIPHER_STORE_LEN: break cipher_len, = struct.unpack("<i", len_buf) # Read cipher_len bytes from the file and decrypt. cipher = f.read(cipher_len) plain = _remove_pad(decryptor.update(cipher)) if plain is False: continue plaintext.write(plain) if plaintext.tell() == 0: logger.error('No data successfully decrypted from login path file.') return None plaintext.seek(0) return plaintext
7,859
def list_files(tag=None, inst_id=None, data_path=None, format_str=None, supported_tags=None, file_cadence=dt.timedelta(days=1), two_digit_year_break=None, delimiter=None, file_type=None): """Return a Pandas Series of every file for chosen Instrument data. Parameters ---------- tag : string or NoneType Denotes type of file to load. Accepted types are <tag strings>. (default=None) inst_id : string or NoneType Specifies the satellite ID for a constellation. Not used. (default=None) data_path : string or NoneType Path to data directory. If None is specified, the value previously set in Instrument.files.data_path is used. (default=None) format_str : string or NoneType User specified file format. If None is specified, the default formats associated with the supplied tags are used. (default=None) supported_tags : dict or NoneType keys are inst_id, each containing a dict keyed by tag where the values file format template strings. (default=None) file_cadence : dt.timedelta or pds.DateOffset pysat assumes a daily file cadence, but some instrument data file contain longer periods of time. This parameter allows the specification of regular file cadences greater than or equal to a day (e.g., weekly, monthly, or yearly). (default=dt.timedelta(days=1)) two_digit_year_break : int or NoneType If filenames only store two digits for the year, then '1900' will be added for years >= two_digit_year_break and '2000' will be added for years < two_digit_year_break. If None, then four-digit years are assumed. (default=None) delimiter : string or NoneType Delimiter string upon which files will be split (e.g., '.'). If None, filenames will be parsed presuming a fixed width format. (default=None) file_type : str or NoneType File format for Madrigal data. Load routines currently accepts 'hdf5', 'simple', and 'netCDF4', but any of the Madrigal options may be used here. If None, will look for all known file types. (default=None) Returns ------- out : pds.Series A pandas Series containing the verified available files """ # Initialize the transitional variables list_file_types = file_types.keys() if file_type is None else [file_type] sup_tags = {inst_id: {tag: supported_tags[inst_id][tag]}} out_series = list() # Cycle through each requested file type, loading the requested files for ftype in list_file_types: if supported_tags[inst_id][tag].find('{file_type}') > 0: sup_tags[inst_id][tag] = supported_tags[inst_id][tag].format( file_type=file_types[ftype]) out_series.append(pysat.instruments.methods.general.list_files( tag=tag, inst_id=inst_id, data_path=data_path, format_str=format_str, supported_tags=sup_tags, file_cadence=file_cadence, two_digit_year_break=two_digit_year_break, delimiter=delimiter)) # Combine the file lists, ensuring the files are correctly ordered if len(out_series) == 0: out = pds.Series(dtype=str) elif len(out_series) == 1: out = out_series[0] else: out = pds.concat(out_series).sort_index() return out
7,860
def is_on_top(bb1, bb2): """ For obj 1 to be on top of obj 2: - obj1 must be above obj 2 - the bottom of obj 1 must be close to the top of obj 2 """ bb1_min, _ = bb1 _, bb2_max = bb2 x1,y1,z1 = bb1_min x2,y2,z2 = bb2_max return z1 < z2 + ONTOP_EPSILON and is_above(bb1, bb2)
7,861
def main_menu(args): """ Display main menu """ # Main menu prompts selection contains function choice = qust.select('Public Building Manager - Main Menu', choices=load_main_entires(), style=st).ask() # Call funtion of menu entry if choice: choice(args)
7,862
def finishing(): """ Finish the deployment, clean up server(s). """
7,863
def prepare_definitions(defs, prefix=None): """ prepares definitions from a dictionary With a provided dictionary of definitions in key-value pairs and builds them into an definition list. For example, if a dictionary contains a key ``foo`` with a value ``bar``, the returns definitions will be a list with the values ``['foo=bar']``. If a key contains a value of ``None``, the key will be ignored and will not be part of the final definition list. If a ``prefix`` value is provided, each definition entry will be prefixed with the provided value. Args: defs: the arguments to process prefix (optional): prefix value to prefix each definition Returns: list of arguments """ final = [] if defs: for key, val in defs.items(): if val is None: continue if prefix: key = prefix + key if val: final.append('{}={}'.format(key, val)) else: final.append(key) return final
7,864
def load_training_data(mapsize=512, grfized=False, exclude_fid=False, dense_grid=False, random_split=False, from_files=False): """Load data for different training scenarios.""" if not grfized and (not dense_grid) and (not random_split): # the default data to loas X_train, X_test, y_train, y_test = load_sparse_grid(imsize=mapsize, from_files=from_files) elif grfized: # equivalent gaussian random filed maps assert not from_files X_train, X_test, y_train, y_test = load_grf_sparse_grid() elif dense_grid: assert not from_files # data with additional points around a cosmology X_train, X_test, y_train, y_test = load_dense_grid(imsize=mapsize) elif random_split: # random train and test split X_train, X_test, y_train, y_test = load_randomsplit_grid( imsize=mapsize, from_files=from_files) # aleays predict newidf, why not, it takes not time # anyway we will not use it with the experiemnts fn = '../../data/columbia_data_fiducial_new_idf_pix'+str(mapsize)+'.npy' X_new_idf = np.load(fn) y_new_idf = np.ones((len(y_test),2)) y_new_idf[:,0], y_new_idf[:,1] = 0.309, 0.816 if exclude_fid: # exclude fiducial cosmo params if asked for idx = (y_train[:,0] == 0.309) & (y_train[:,1] == 0.816) X_train, y_train = X_train[~idx], y_train[~idx] return X_train, X_test, X_new_idf, y_train, y_test, y_new_idf
7,865
def concat_features(args, feature_dim_name='feature'): """Concatenate Xs along a set of feature dimensions Parameters ---------- args : iterable list of tuples of the form (dims, DataArray) where dims is a tuple of dimensions that will be considered feature dimensions Returns ------- stacked : xr.DataArray The output where the data has been stacked along the feature_dim_name """ indexes = [] arrays = [] for dims, xarr in args: stacked_arr = xarr.stack(**{feature_dim_name: dims}) indexes.append(stacked_arr.indexes[feature_dim_name]) arrays.append(stacked_arr) index = concat_multi_indexes(indexes) return xr.concat(arrays, dim=index)
7,866
def _inspect_mixin( self, geoctx=None, format="pyarrow", file=None, timeout=30, client=None, **params ): """ Quickly compute this proxy object using a low-latency, lower-reliability backend. Inspect is meant for getting simple computations out of Workflows, primarily for interactive use. It's quicker but less resilient, won't be retried if it fails, and has no progress updates. If you have a larger computation (longer than ~30sec), or you want to be sure the computation will succeed, use `~.compute` instead. `~.compute` creates a `.Job`, which runs asynchronously, will be retried if it fails, and stores its results for later retrieval. Parameters ---------- geoctx: `.scenes.geocontext.GeoContext`, `~.workflows.types.geospatial.GeoContext`, or None The GeoContext parameter under which to run the computation. Almost all computations will require a `~.workflows.types.geospatial.GeoContext`, but for operations that only involve non-geospatial types, this parameter is optional. format: str or dict, default "pyarrow" The serialization format for the result. See the `formats <https://docs.descarteslabs.com/descarteslabs/workflows/docs/formats.html#output-formats>`_ documentation for more information. If "pyarrow" (the default), returns an appropriate Python object, otherwise returns raw bytes. file: path or file-like object, optional If specified, writes results to the path or file instead of returning them. timeout: int, optional, default 30 The number of seconds to wait for the result. Raises `~descarteslabs.workflows.models.JobTimeoutError` if the timeout passes. client: `.workflows.inspect.InspectClient`, optional Allows you to use a specific InspectClient instance with non-default auth and parameters **params: Proxytype Parameters under which to run the computation. Returns ------- result: Python object or bytes When ``format="pyarrow"`` (the default), returns an appropriate Python object representing the result, either as a plain Python type, or object from `descarteslabs.workflows.result_types`. For other formats, returns raw bytes. Consider using `file` in that case to save the results to a file. """ if geoctx is not None: params["geoctx"] = GeoContext._promote(geoctx) if client is None: client = _get_global_inspect_client() return client.inspect(self, format=format, file=file, timeout=timeout, **params)
7,867
def list_dvs(service_instance): """ Returns a list of distributed virtual switches associated with a given service instance. service_instance The Service Instance Object from which to obtain distributed virtual switches. """ return utils_common.list_objects(service_instance, vim.DistributedVirtualSwitch)
7,868
def setup(app): """Call methods during builder initiated.""" app.connect("builder-inited", build_mapping_tables)
7,869
def generate(env): """Add Builders and construction variables for LaTeX to an Environment.""" env.AppendUnique(LATEXSUFFIXES=SCons.Tool.LaTeXSuffixes) import dvi dvi.generate(env) import pdf pdf.generate(env) bld = env['BUILDERS']['DVI'] bld.add_action('.ltx', LaTeXAuxAction) bld.add_action('.latex', LaTeXAuxAction) bld.add_emitter('.ltx', SCons.Tool.tex.tex_eps_emitter) bld.add_emitter('.latex', SCons.Tool.tex.tex_eps_emitter) SCons.Tool.tex.generate_common(env)
7,870
def gdb_cli_args(request: FixtureRequest) -> Optional[str]: """ Enable parametrization for the same cli option """ return getattr(request, 'param', None) or request.config.getoption('gdb_cli_args', None)
7,871
def coerce_rfc_3339_date(input_date): """This function returns true if its argument is a valid RFC 3339 date.""" if input_date: return datetime.datetime.strptime(input_date, "%Y-%m-%dT%H:%M:%SZ") return False
7,872
def extract_job_url(job): """ parse the job data and extract the str for the URL of the job posted params: job str: html str representation from bs4 returns: url str: relative URL path of the job ad """ return job.a["href"]
7,873
def test_upsert_page(mocker): """Base case: page doesn't already exist""" confluence = mocker.Mock(spec=Confluence) parent_page_mock = mocker.Mock() parent_page_mock.id = mocker.sentinel.parent_page_id confluence.get_page.side_effect = [None, parent_page_mock] page = Page( space=mocker.sentinel.space, title=mocker.sentinel.title, body=mocker.sentinel.body, parent_title=mocker.sentinel.parent, ) message = mocker.sentinel.message main.upsert_page( confluence=confluence, page=page, message=message, ) confluence.get_page.assert_has_calls( [ mocker.call(title=page.title, space_key=page.space, page_id=None), mocker.call(title=page.parent_title, space_key=page.space), ], any_order=False, ) confluence.create_page.assert_called_once_with( space=page.space, title=page.title, body=page.body, parent_id=mocker.sentinel.parent_page_id, update_message=message, )
7,874
def commit(experiment_name, time): """ Try to commit repo exactly as it is when starting the experiment for reproducibility. """ try: sh.git.commit('-a', m='"auto commit tracked files for new experiment: {} on {}"'.format(experiment_name, time), allow_empty=True ) commit_hash = sh.git('rev-parse', 'HEAD').strip() return commit_hash except: return '<Unable to commit>'
7,875
def weighted_loss(class_weights): """ Create a weighted loss function. Penalise the misclassification of classes more with the higher usage """ weight_values = list(class_weights.values()) def weighted_binary_crossentropy(y_true, y_pred): # add another dimension to compute dot product expanded_weights = K.expand_dims(weight_values, axis=-1) return K.dot(K.binary_crossentropy(y_true, y_pred), expanded_weights) return weighted_binary_crossentropy
7,876
def delete_cluster(resource_root, name): """ Delete a cluster by name @param resource_root: The root Resource object. @param name: Cluster name @return: The deleted ApiCluster object """ resp = resource_root.delete("%s/%s" % (CLUSTERS_PATH, name)) return ApiCluster.from_json_dict(resp, resource_root)
7,877
def reload_plugin(name): """Reloads the MIBI plug-in 'name'.""" reload('mibi.plugin.' + name)
7,878
def mk_test(x, alpha = 0.05): """This perform the MK (Mann-Kendall) test to check if there is any trend present in data or not Args: x: a vector of data alpha: significance level Returns: trend: tells the trend (increasing, decreasing or no trend) h: True (if trend is present) or False (if trend is absence) p: p value of the sifnificance test z: normalized test statistics Examples:: >>> x = np.random.rand(100) >>> trend = mk_test(x,0.05) >>> print(trend.trend) increasing Credit: http://pydoc.net/Python/ambhas/0.4.0/ambhas.stats/ """ n = len(x) ta = n*(n-1)/2 # calculate S s = 0 for k in xrange(n-1): for j in xrange(k+1,n): s += np.sign(x[j] - x[k]) # calculate the unique data unique_x = np.unique(x) g = len(unique_x) # calculate the var(s) if n == g: # there is no tie var_s = (n*(n-1)*(2*n+5))/18 else: # there are some ties in data tp = np.zeros(unique_x.shape) for i in xrange(len(unique_x)): tp[i] = sum(unique_x[i] == x) var_s = (n*(n-1)*(2*n+5) - np.sum(tp*(tp-1)*(2*tp+5)))/18 if s>0: z = (s - 1)/np.sqrt(var_s) elif s == 0: z = 0 elif s<0: z = (s + 1)/np.sqrt(var_s) else: z = 0 # calculate the p_value p = 2*(1- norm.cdf(abs(z))) # two tail test h = abs(z) > norm.ppf(1-alpha/2) if (z<0) and h: trend = 'decreasing' elif (z>0) and h: trend = 'increasing' else: trend = 'no trend' return pd.Series({'trend':trend, 'varS':round(var_s,3), 'p':round(p,3), 'z':round(z,3), 's':round(s,3), 'n':n, 'ta':ta})
7,879
def convert_event_to_boxes(event: Event) -> List[EventBox]: """Takes in an event and converts this into a list of boxes that when combined completely cover the time allocated to this event. Usually, this list will contain a single EventBox as many events start and end on the same day, but any events split across multiple day boundaries will be split into multiple boxes.""" start_date = event.start_datetime.date() end_date = event.end_datetime.date() start_time_float = time_to_float(event.start_datetime.time()) end_time_float = time_to_float(event.end_datetime.time()) days_spanned = (end_date - start_date).days + 1 boxes = [] if days_spanned == 1: boxes.append(EventBox(0, start_time_float, end_time_float)) else: boxes.append(EventBox(0, start_time_float, 24.0)) for i in range(max(0, days_spanned - 2)): boxes.append(EventBox(i + 1, 0.0, 24.0)) boxes.append(EventBox(days_spanned - 1, 0.0, end_time_float)) return boxes
7,880
def limit_bone(bone, x, y, z, ik=True): """ bone: PoseBone x: (float, float) y: (float, float) z: (float, float) ik: bool """ # Bone Constraints limit = bone.constraints.new(type='LIMIT_ROTATION') limit.use_limit_x = True limit.use_limit_y = True limit.use_limit_z = True limit.min_x, limit.max_x = x limit.min_y, limit.max_y = y limit.min_z, limit.max_z = z limit.owner_space = 'LOCAL' if ik: # IK Constraints bone.use_ik_limit_x = True bone.use_ik_limit_y = True bone.use_ik_limit_z = True bone.ik_min_x, bone.ik_max_x = x bone.ik_min_y, bone.ik_max_y = y bone.ik_min_z, bone.ik_max_z = z
7,881
def _reduce_consecutive_layers(conv_defs, start_id, end_id, multiplier=0.5): """Reduce the outputs of consecutive layers with multiplier. Args: conv_defs: Mobilenet conv_defs. start_id: 0-based index of the starting conv_def to be reduced. end_id: 0-based index of the last conv_def to be reduced. multiplier: The multiplier by which to reduce the conv_defs. Returns: Mobilenet conv_defs where the output sizes from layers [start_id, end_id], inclusive, are reduced by multiplier. Raises: ValueError if any layer to be reduced does not have the 'num_outputs' attribute. """ defs = copy.deepcopy(conv_defs) for d in defs['spec'][start_id:end_id+1]: d.params.update({ 'num_outputs': np.int(np.round(d.params['num_outputs'] * multiplier)) }) return defs
7,882
def ajax_save_content(request): """ Save front end edited content """ site = get_current_site(request) content_name = request.POST['content_name'] cms_content = CmsContent.objects.get(site=site, name=content_name) cms_content.content = request.POST['content'] cms_content.save() return HttpResponse('SUCCESS')
7,883
def add_regional_group_costs(ws, data_sheet): """ """ ws.sheet_properties.tabColor = "92D050" ##Color white ws.sheet_view.showGridLines = False #Set blue and red border strips set_cell_color(ws, 'A1:AZ1', "004C97") set_cell_color(ws, 'A2:AZ2', "C00000") ws = bar_chart(ws, "Estimates!$C$64:$C$71", "Estimates!$B$65:$B$71", "Total Cost by Region", 'Cost ($Bn)', "B4") ws = bar_chart(ws, "Estimates!$F$64:$F$71", "Estimates!$E$65:$E$71", "Mean Annual 10-Year GDP by Region",'GDP ($Bn)', "L4") ws = bar_chart(ws, "Estimates!$I$64:$I$71", "Estimates!$H$65:$H$71", "Initial Investment by Region",'Cost ($Bn)', "B20") ws = bar_chart(ws, "Estimates!$C$75:$C$82", "Estimates!$B$76:$B$82", "GDP Share by Region",'Percent of GDP (%)', "L20") return ws
7,884
def normal(loc=0.0, scale=1.0, size=(1,1), sparsity=1.0): """ Draw random samples from a normal (Gaussian) distribution. Parameters ---------- loc: Mean ("centre") of the distribution. scale: Standard deviation (spread or "width") of the distribution. size: Output shape (only tuple of length 2, i.e. (m, n), supported). sparsity: Sparsity (between 0.0 and 1.0). Examples -------- >>> import systemml as sml >>> import numpy as np >>> sml.setSparkContext(sc) >>> from systemml import random >>> m1 = sml.random.normal(loc=3, scale=2, size=(3,3)) >>> m1.toNumPyArray() array([[ 3.48857226, 6.17261819, 2.51167259], [ 3.60506708, -1.90266305, 3.97601633], [ 3.62245706, 5.9430881 , 2.53070413]]) """ if len(size) != 2: raise TypeError('Incorrect type for size. Expected tuple of length 2') INPUTS = [] rows = asStr(size[0]) cols = asStr(size[1]) loc = asStr(loc) scale = asStr(scale) sparsity = asStr(sparsity) # loc + scale*standard normal return constructSamplingNode(INPUTS, [OUTPUT_ID, ' = ', loc,' + ', scale,' * random.normal(', rows, ',', cols, ',', sparsity, ')\n'])
7,885
def random_data(num): """ will return json random float, hex, int and a random password {0: { 'float': 186.66541583209647, 'hex': '43435c553c722359e386804f6b28d2c2ee3754456c38f5e7e68f', 'int': 851482763158959204, 'password': '5AJ]-02X0J' } }""" data = {} count = 0 while count < num: data.update( { count: { "hex": random_hex(), "int": randint(1, 10**18), "float": uniform(0.1, 10**3.01), "password": randPwStr() } } ) count += 1 return data
7,886
def test_local_branch_exists(mock_repo): """ GIVEN GitRepo is initialized with a path and repo WHEN branch.exists is called with a valid branch and None remote THEN True is returned """ repo = GitRepo(repo=mock_repo) mock_repo.branches = ["master", "test"] assert repo.branch.exists("test") is True
7,887
def denied(request): """Authentication failed and user was denied.""" return render(request, 'djangosaml2/denied.html')
7,888
def getFontCoverage(f, glyphCache=None): """ Calculate a weighted average of all glyph coverages. Use frequencies of multiple languages to average out language specific bias. So it does not use all the glyphs, just the A-Z, a-z for the languages we have fequencies for. """ total = [] if glyphCache is None: glyphCache = {} supportedLanguages = coverage.data.checkLanguages(f) # make a prioritised list of glyphnames: # - only the glyphs we need for the tables # - and the components they need # - then do the glyphs without components first # - so that remove overlap work will propagate to the compoents, saving work availableGlyphs = [] for name in coverage.data.coverageNames: if not name in f: continue g = f[name] availableGlyphs.append(name) if not supportedLanguages: return None for lang in supportedLanguages: table = coverage.data.frequencies[lang] languageTotal = 0 for glyphName in availableGlyphs: if not glyphName in table: continue weight = table[glyphName] if glyphName in f: g = f[glyphName] else: continue try: a = calculateGlyphCoverage(g, f, cache=glyphCache) except: if f.path is not None: fontName = os.path.basename(f.path) else: fontName = "object: %s-%s" % (f.info.familyName, f.info.styleName) print("failed calculating the coverage for %s in %s" % (g.name, fontName)) traceback.print_exc(file=sys.stdout) a = 0 if a > 0: languageTotal += a * weight total.append(languageTotal / len(table)) return sum(total) / len(supportedLanguages)
7,889
def monday_of_week(year, week): """ Returns a datetime for the monday of the given week of the given year. """ str_time = time.strptime('{0} {1} 1'.format(year, week), '%Y %W %w') date = timezone.datetime(year=str_time.tm_year, month=str_time.tm_mon, day=str_time.tm_mday, tzinfo=timezone.utc) if timezone.datetime(year, 1, 4).isoweekday() > 4: # ISO 8601 where week 1 is the first week that has at least 4 days in # the current year date -= timezone.timedelta(days=7) return date
7,890
def preview_image(instance, sender, *args, **kwargs): """Updates book previews if the rating has changed""" if not ENABLE_PREVIEW_IMAGES or sender not in (Review, ReviewRating): return changed_fields = instance.field_tracker.changed() if len(changed_fields) > 0: edition = instance.book generate_edition_preview_image_task.delay(edition.id)
7,891
def object_meta(metadata: Metadata) -> Mapping[str, Any]: """ Return a minimal representation of an ObjectMeta with the supplied information. Spec: https://github.com/argoproj/argo-workflows/blob/v3.0.4/docs/fields.md#objectmeta """ meta: Dict[str, Any] = {} if metadata.generate_name_from_prefix: meta["generateName"] = metadata.name else: meta["name"] = metadata.name if metadata.annotations: meta["annotations"] = metadata.annotations if metadata.labels: meta["labels"] = metadata.labels if metadata.namespace: meta["namespace"] = metadata.namespace return meta
7,892
def assert_equal(actual: Literal["statespace"], desired: Literal["statespace"]): """ usage.statsmodels: 1 """ ...
7,893
def clear_cmd(): """ Utility function that clear the shell """ try: os.system('clear') except: pass try: os.system('cls') except: pass
7,894
def vectorize_timing(n_targets): """ Calculate the rise time of ``n_targets`` targets, return the run time in seconds. """ from time import time vega_coord = SkyCoord(279.23473479*u.degree, 38.78368896*u.degree) vega = FixedTarget(name="Vega", coord=vega_coord) target_list = n_targets*[vega] t = Time("2008-02-27 22:00:00") obs = Observer(location=EarthLocation(10*u.deg, 20*u.deg, 0*u.m)) start = time() obs.target_rise_time(t, target_list) end = time() return end-start
7,895
def print_stats(fromdir): """Print collected statistics.""" # Include statistics from subprocesses. for statfile in glob.glob('%s/*.dump' % fromdir): with open(statfile) as f: statblob = f.read() statdata = json.loads(statblob) for num, stat in enumerate([amqp_stats, layer_stats]): for k, v in statdata[num].items(): if isinstance(v, list): stat.setdefault(k, []) stat[k].extend(v) else: stat.setdefault(k, 0) stat[k] += v headers = ['method', 'calls', 'mean', 'median', 'stdev', '95%', '99%'] for num, stats in enumerate([amqp_stats, layer_stats], start=1): if stats: # Print statistic table. data = [] for method, latencies in stats.items(): if isinstance(latencies, list): data.append([ method, len(latencies), statistics.mean(latencies), statistics.median(latencies), statistics.stdev(latencies) if len(latencies) > 1 else None, percentile(latencies, 0.95), percentile(latencies, 0.99), ]) elif isinstance(latencies, int): data.append( [method, latencies, None, None, None, None, None], ) else: raise Exception( 'Stat(%d) was currupted at method %s' % (num, method), ) data = sorted(data, key=itemgetter(1), reverse=True) print() print(tabulate(data, headers)) else: print("%d) No statistic available" % num)
7,896
def get_game(name, all=False): """ Get the game information for a particular game. For response object structure, see: https://dev.twitch.tv/docs/v5/reference/search/#search-games May throw exceptions on network/Twitch error. """ search_opts = { 'query': name, 'type': 'suggest', 'live': 'false', } headers = { 'Client-ID': config['twitch_clientid'], 'Accept': 'application/vnd.twitchtv.v5+json', } res = common.http.request("https://api.twitch.tv/kraken/search/games", search_opts, headers=headers) res = json.loads(res) if all: return res['games'] or [] else: for game in res['games'] or []: if game['name'] == name: return game return None
7,897
def compute_correlation_prob_class_target(candidates_per_query_target): """This function computes the overall correlation between the probability of being in the positive class and the value of the target column """ probs_per_query_target = [] gains_per_query_target = [] for key in candidates_per_query_target.keys(): candidates = candidates_per_query_target[key].keys() tmp_probs = [candidates_per_query_target[key][candidate]['pred_prob'] for candidate in candidates] tmp_gains = [candidates_per_query_target[key][candidate][TARGET_COLUMN] for candidate in candidates] probs_per_query_target += tmp_probs gains_per_query_target += tmp_gains return pearsonr(probs_per_query_target, gains_per_query_target)
7,898
def get(sql: str): """ execute select SQL and return unique result. select count(1) form meters or select lass(ts) from meters where tag = 'xxx' :return: only value """ result = _query(sql) try: value = result.next() except StopIteration: return None except taos.error.OperationalError: return None if len(value) == 1: return value[0] else: raise MultiColumnsError('Expect only one column.')
7,899