content
stringlengths
22
815k
id
int64
0
4.91M
def track_progress( iterable: Iterable, name: Optional[str] = None, total: Optional[int] = None, update_label: bool = False, label_func: Optional[Callable] = lambda x: x, clear: Optional[bool] = True, ): """ simple tracking loop using rich progress """ if name is None: name = "" if total is None: total = len(iterable) console.clear_live() with Progress(console=console, transient=clear) as progress: task = progress.add_task(name, total=total) for i in iterable: yield i if update_label: description = f"{name}: {label_func(i)}" else: description = name progress.update(task, advance=1, description=description)
7,900
def trainAndEvaluateKNN(): """ auxiliary function to call train_KNearestNeighbour() on full dataset takes no parameters and evaluates the currently loaded test set """ print('***Begin training KNN***') knn = train_KNearestNeighbour(x_train, y_train) print('***Begin evaluating KNN***') modelResults(knn, x_test) print("END PROGRAM\n\n")
7,901
def attach_common_event_handlers( parser, result, errors, is_response ): """Attach common event handlers to a HTTPParser. The ``result`` parameter must be ``dict`` that contains the results of parsing. The ``errors`` parameter must be a ``list`` of exceptions that happened. """ def on_error(ex): errors.append(ex) def on_method(method): result['req_method'] = method def on_uri(uri): result['req_uri'] = uri def on_version(ver): result['http_version'] = ver def on_reason(msg): result['reason'] = msg def on_status_code(code): result['status_code'] = code def on_header_name(field): result['raw_headers'].append(field) def on_header_value(value): result['raw_headers'].append(value) def on_data(chk): result['body'].append(chk) parser.on('header_name', on_header_name) parser.on('header_value', on_header_value) parser.on('data', on_data) parser.on('error', on_error) if is_response: # It's a response. parser.on('reason', on_reason) parser.on('status_code', on_status_code) parser.on('version', on_version) else: parser.on('req_method', on_method) parser.on('req_uri', on_uri) parser.on('version', on_version)
7,902
def _get_parse_pauli_sums(): """Helper function to obtain the generator of the sampled list of the pauli sum coefficients after parsing pauli sums.""" # TODO(jaeyoo) : this will be c++ op def _parse_pauli_sums(pauli_sums, n_programs, n_ops): """Helper function to parse given pauli sums to collect observable coefficients. Currently `cirq.PauliSum` is not subscriptable, which means it is not possible to construct a uniform-shape tensor whose elements are consistently matched to `cirq.PauliString` inside of given `PauliSum` because the order of `PauliString`'s can be different whenever accessed. So, the current version of _parse_pauli_sums only consider a `PauliSum` to be sampled, not a `PauliString`. The observable coefficients are then sum of the absolute value of coefficients of `PauliString`'s in the `PauliSum`. Args: pauli_sums : `tf.Tensor` of strings with shape [n_programs, n_ops] representing output observables for each program. n_programs: `tf.Tensor` of the number of programs. n_ops: `tf.Tensor` of the number of pauli sums. Returns: observable_coeff_: `tf.Tensor` of real numbers. This involves the coefficients of Pauli sum terms of the first PauliString. It is directly used to calculate probabilities. [n_programs, n_ops] """ pauli_sums = util.from_tensor(pauli_sums) def get_pauli_sum_coeff(i): def get_i_pauli_sum_coeff(j): # Because PauliSum object is not subscriptable, use for-loop. # pauli_sums[i][j] : j-th `PauliSum` of i-th program. return tf.reduce_sum( tf.abs([ pstring.coefficient.real for pstring in pauli_sums[i][j] ])) return tf.map_fn(get_i_pauli_sum_coeff, tf.range(n_ops), dtype=tf.float32) observable_coeff = tf.map_fn(get_pauli_sum_coeff, tf.range(n_programs), dtype=tf.float32) return observable_coeff def parse_pauli_sums_generator(pauli_sums, n_programs, n_ops): """tf.py_function wrapper generator of _parse_programs().""" # observable_coeff has the shape of [n_programs, n_ops] observable_coeff = tf.py_function(func=_parse_pauli_sums, inp=[ tf.stop_gradient(pauli_sums), tf.stop_gradient(n_programs), tf.stop_gradient(n_ops), ], Tout=tf.float32) return observable_coeff return parse_pauli_sums_generator
7,903
def is_fully_defined(x): """Returns True iff `x` is fully defined in every dimension. For more details, see `help(tf.TensorShape.is_fully_defined)`. Args: x: object representing a shape; convertible to `tf.TensorShape`. Returns: is_fully_defined: `bool` indicating that the shape is fully known. """ return tf.TensorShape(x).is_fully_defined()
7,904
def make_shell_context(): """ Creates a python REPL with several default imports in the context of the current_app :return: """ return dict(current_app=current_app)
7,905
def recommend_hybrid_user( df, model, interactions, user_id, user_dict, item_dict, topn, new_only=True, threshold=3, show=True): """Function to produce user recommendations. Hybrid version of recommend_known_user Args: model: trained matrix factorization model interactions: dataset used for training the model user_id: user ID for which we need to generate recommendation user_dict: Dictionary type input containing user_id as key and interaction_index as value item_dict: Dictionary type input containing item_id as key and item_name as value threshold: value above which the rating is favorable in interaction matrix topn: Number of output recommendation needed new_only: whether to only recommend items that users have not visited show: whether to show the result of function Returns: Prints list of items the given user has already visited Prints list of N recommended items which user hopefully will be interested in """ print('Recommending items for user {}...'.format(user_id)) n_users, n_items = interactions.shape user_features, item_features, user_x, _ = feature_matrix( df, user_id=user_id) scores = pd.Series(model.predict( user_x, interactions.values[user_x, :], user_features=user_features, item_features=item_features)) scores.index = interactions.columns scores = list(pd.Series(scores.sort_values(ascending=False).index)) known_items = list(pd.Series( interactions.loc[user_id, :] [interactions.loc[user_id, :] > threshold].index).sort_values( ascending=False)) if new_only: scores = [x for x in scores if x not in known_items] item_list = scores[:topn] known_items = list(pd.Series(known_items).apply(lambda x: item_dict[x])) recommended_items = list(pd.Series(item_list).apply( lambda x: item_dict[x])) if show is True: print("Known Likes:") counter = 1 for i in known_items: print(str(counter) + '- ' + i) counter += 1 print("Recommended Items:") counter = 1 for i in recommended_items: print(str(counter) + '- ' + i) counter += 1 return item_list
7,906
def addTopic(self, id, title='', REQUEST=None): """ Create an empty topic. """ topic = Topic(id) topic.id = id topic.title = title self._setObject(id, topic, suppress_events=True) if REQUEST is not None: REQUEST['RESPONSE'].redirect('manage_main')
7,907
def test_est_params_default_method(): """Assert that custom parameters overwrite the default ones.""" trainer = DirectClassifier("RF", est_params={"n_jobs": 3}, random_state=1) trainer.run(bin_train, bin_test) assert trainer.rf.estimator.get_params()["n_jobs"] == 3 assert trainer.rf.estimator.get_params()["random_state"] == 1
7,908
def i(mu_i, mu_ij, N) : """Calcule le tableau I[i, j]""" return [[I_ij(i, j, mu_i, mu_ij, N) for j in range(0, N)] for i in range(0, N)]
7,909
def format_datetime(this, date, date_format=None): """Convert datetime to a required format.""" date = dateutil.parser.isoparse(date) if date_format is None: date_format = "%d-%m-%Y" return date.strftime(date_format)
7,910
def _estimate_melting_levels(latitudes_deg, valid_time_unix_sec): """Estimates melting level at each point. This estimate is based on linear regression with respect to latitude. There is one set of regression coefficients for each month. :param latitudes_deg: numpy array of latitudes (deg N). :param valid_time_unix_sec: Valid time. :return: melting_levels_m_asl: numpy array of melting levels (metres above sea level), with same shape as `latitudes_deg`. """ month_index = int( time_conversion.unix_sec_to_string(valid_time_unix_sec, '%m') ) return ( MELT_LEVEL_INTERCEPT_BY_MONTH_M_ASL[month_index - 1] + MELT_LEVEL_SLOPE_BY_MONTH_M_DEG01[month_index - 1] * numpy.absolute(latitudes_deg) )
7,911
def train_word2vec(infile, outfile, skipgram, loss, size, epochs): """ train_word2vec(args**) -> Takes the input file, the output file and the model hyperparameters as arguments and trains the model accordingly. The model is saved at the output location. Arguments --------- infile : Input pre-processed wiki dump outfile : Output directory to save the model. skipgram : Layers of the model (0 - CBOW, 1 - Skipgram) loss : Loss Function (0 - Negative Sampling, 1 - Heirarichal Loss) size : Embedding size (100 ~ 300) epochs : Number of epochs """ sentence = LineSentence(infile) model = Word2Vec(sentence, sg=skipgram, hs=loss, size=size, alpha=0.05, window=5, min_count=5, workers=3, iter=epochs) model.save(outfile)
7,912
def test_child_events(): """Test that evented lists bubble child events.""" # create a random object that emits events class E: test = Signal(str) e_obj = E() root: EventedList[E] = EventedList(child_events=True) mock = Mock() root.events.connect(mock) root.append(e_obj) assert len(e_obj.test) == 1 assert root == [e_obj] e_obj.test.emit("hi") assert mock.call_count == 3 expected = [ call(EmissionInfo(root.events.inserting, (0,))), call(EmissionInfo(root.events.inserted, (0, e_obj))), call(EmissionInfo(root.events.child_event, (0, e_obj, e_obj.test, ("hi",)))), ] mock.assert_has_calls(expected) del root[0] assert len(e_obj.test) == 0
7,913
def do_sharedstoragepool_list(cs, args): """Output a list of sharedstoragepool.""" # sharedstoragepools = cs.sharedstoragepool.list(args.cluster) sharedstoragepools = cs.sharedstoragepool.list() _print_sharedstoragepool_list(sharedstoragepools)
7,914
def edit_municipality(self, request, form): """ Edit a municipality. """ layout = EditMunicipalityLayout(self, request) if form.submitted(request): form.update_model(self) request.message(_("Municipality modified."), 'success') return redirect(layout.success_url) if not form.errors: form.apply_model(self) return { 'layout': layout, 'form': form, 'button_text': _("Save"), 'cancel': layout.cancel_url, }
7,915
def plot_period_transactions( model, max_frequency=7, title="Frequency of Repeat Transactions", xlabel="Number of Calibration Period Transactions", ylabel="Customers", **kwargs ): """ Plot a figure with period actual and predicted transactions. Parameters ---------- model: lifetimes model A fitted lifetimes model. max_frequency: int, optional The maximum frequency to plot. title: str, optional Figure title xlabel: str, optional Figure xlabel ylabel: str, optional Figure ylabel kwargs Passed into the matplotlib.pyplot.plot command. Returns ------- axes: matplotlib.AxesSubplot """ from matplotlib import pyplot as plt labels = kwargs.pop("label", ["Actual", "Model"]) n = model.data.shape[0] simulated_data = model.generate_new_data(size=n) model_counts = pd.DataFrame(model.data["frequency"].value_counts().sort_index().iloc[:max_frequency]) simulated_counts = pd.DataFrame(simulated_data["frequency"].value_counts().sort_index().iloc[:max_frequency]) combined_counts = model_counts.merge(simulated_counts, how="outer", left_index=True, right_index=True).fillna(0) combined_counts.columns = labels ax = combined_counts.plot(kind="bar", **kwargs) plt.legend() plt.title(title) plt.ylabel(ylabel) plt.xlabel(xlabel) return ax
7,916
def operate_monitor(params): """ different apps has different required params""" ret_obj = copy.deepcopy(RET_OBJ) group_id = params.get("group_id", type=int, default=None) app_name = params.get("app_name") operate = "update" if key_exist(group_id, app_name) else "insert" valid_key = "_".join([app_name, operate]) if valid_key not in param_valids: raise CustomException("operate_monitor Not found corresponding valid function for %s" % app_name, 1005) params = param_valids[valid_key](params) api_create(params) if operate == "insert" else api_update(params) ret_obj['msg'] = operate + " monitor successfully." return ret_obj
7,917
def run_task(*_): """ Wrap DDPG training task in the run_task function. :param _: :return: """ env = TfEnv(gym.make('FetchReach-v1')) action_noise = OUStrategy(env.spec, sigma=0.2) policy = ContinuousMLPPolicy( env_spec=env.spec, name="Policy", hidden_sizes=[256, 256, 256], hidden_nonlinearity=tf.nn.relu, output_nonlinearity=tf.nn.tanh, input_include_goal=True, ) qf = ContinuousMLPQFunction( env_spec=env.spec, name="QFunction", hidden_sizes=[256, 256, 256], hidden_nonlinearity=tf.nn.relu, input_include_goal=True, ) replay_buffer = HerReplayBuffer( env_spec=env.spec, size_in_transitions=int(1e6), time_horizon=100, replay_k=0.4, reward_fun=env.compute_reward) ddpg = DDPG( env, policy=policy, policy_lr=1e-3, qf_lr=1e-3, qf=qf, replay_buffer=replay_buffer, plot=False, target_update_tau=0.05, n_epochs=50, n_epoch_cycles=20, max_path_length=100, n_train_steps=40, discount=0.9, exploration_strategy=action_noise, policy_optimizer=tf.train.AdamOptimizer, qf_optimizer=tf.train.AdamOptimizer, buffer_batch_size=256, input_include_goal=True, ) ddpg.train()
7,918
def construct_rgba_vector(img, n_alpha=0): """ Construct RGBA vector to be used to color faces of pcolormesh This funciton was taken from Flamingo. ---------- Args: img [Mandatory (np.ndarray)]: NxMx3 RGB image matrix n_alpha [Mandatory (float)]: Number of border pixels to use to increase alpha ---------- Returns: rgba [Mandatory (np.ndarray)]: (N*M)x4 RGBA image vector """ alpha = np.ones(img.shape[:2]) if n_alpha > 0: for i, a in enumerate(np.linspace(0, 1, n_alpha)): alpha[:, [i, -2-i]] = a rgb = img[:, :-1, :].reshape((-1, 3)) # we have 1 less faces than grid rgba = np.concatenate((rgb, alpha[:, :-1].reshape((-1, 1))), axis=1) if np.any(img > 1): rgba[:, :3] /= 255.0 return rgba
7,919
def nice(val): """Make sure this value is nice""" if pd.isna(val): return None return val
7,920
def retrieve_tree(issue_id): """Retrieve a tree of issues from Redmine, starting at `issue_id`.""" logging.info(f" Retrieving issue #{issue_id} ...") params = { 'issue_id': issue_id } response = requests.get(ISSUES_ENDPOINT, params=params, headers=HEADERS) data = json.loads(response.text) issue = data['issues'][0] issue['children'] = retrieve_children(issue_id) return issue
7,921
def cmdline_args(argv: Sequence[str], options: Sequence[Option], *, process: callable = None, error: callable = None, results: dict = None) -> (Dict, Sequence[str]): """ Take an array of command line args, process them :param argv: argument array :param options: sequence of options to parse :param process: process function :param error: error function :param results: optional dict to contain results (alternative to process callable) :return: parsed results, remaining unprocessed arguments """ def select_option(short_opt, long_opt): selected_option = None for current_opt in options: if short_opt is not None and short_opt == current_opt.short: selected_option = current_opt break elif long_opt is not None and current_opt.long is not None: if current_opt.long.startswith(long_opt) or long_opt.startswith(current_opt.long): selected_option = current_opt break else: if error is not None: if short_opt: error(f"unknown short option '-{short_opt}'") else: error(f"unknown long option '--{long_opt}'") return selected_option def dispatch_option(_option: Option, _opt: str, _args): if _option.fn is not None: return _option.fn(_option, _opt, _args) if callable(_option.fn) else _option.fn if process: tmp = process(_option, _opt, _args) if tmp is not None: return tmp return _args if _option.has_arg else True if results is None: results = dict() index = skip_count = 0 saved_args = [] for index, arg in enumerate(argv): if skip_count: skip_count -= 1 elif arg.startswith('--'): # long arg skip_count = 0 longopt = arg[2:] option = select_option(None, longopt) if option is None: saved_args.append(f"--{longopt}") else: args = None if option.has_arg: if '=' in longopt: longopt, args = longopt.split('=', maxsplit=1) else: skip_count += 1 args = argv[index + skip_count] results[option.long] = dispatch_option(option, longopt, args) elif arg.startswith('-'): skip_count = 0 for opt in arg[1:]: option = select_option(opt, None) if option is None: saved_args.append(f"-{opt}") else: if option.has_arg: skip_count += 1 args = argv[index + skip_count] if option.has_arg else None results[option.long] = dispatch_option(option, opt, args) else: break return results, saved_args + [arg for arg in argv[index + skip_count:]]
7,922
def trailing_zeroes(value): # type: (int) -> int """Count the number of trailing zeros in a given 8-bit integer""" return CTZ_TABLE[value]
7,923
def test_text_tweet(): """Ensure that text tweets are properly parsed.""" results = { 'tweets': 0, 'retweets': 0, 'media': [] } parse_tweet(TEXT_TWEET, True, 'large', results) assert results['tweets'] == 1 assert results['retweets'] == 0 assert len(results['media']) == 1 assert results['media'][0]['tweet_id'] == '123456' assert results['media'][0]['original_tweet_id'] == '123456' assert results['media'][0]['text'] == 'Hello world!'
7,924
def _calc_WaterCirculation(heat_load, CT_design, WBT, DBT, fixedCWT_ctrl, pump_ctrl, ignore_CT_eff, max_CT_eff=0.85): """Calculates the water circulation loop. Used by simulate_CT(). Parameters: Returns: All (time x CT) arrays as HWT Hot water temp [pint, C] CWT Cold water temp [pint, C] waterflow Water mass flow rate [pint, kg/s]. This is the input water stream to the CTs. Notes: 1) This routine determines the temperatures of the water circuit (HWT, CWT) and the water flow rate to transfer the heat load to the CT. 2) The WBT serves as a lower limit to CWT. (variables: WBT is an iterable (length nTime), whereas WBT2 is a 2d array (time x CT)) """ nTime = len(WBT) nCT = CT_design.shape[0] # .......................................................... 1) Calc CWT (based on WBT) and approach # i) CWT if fixedCWT_ctrl: raise NotImplementedError # This ctrl is not as simple as setting CWT to rated, because what if ambient WBT + min approach is above this? # CWT fixed at design value # CWT = Q_(np.tile(CT_design['CWT [°C]'].values, (Nsimul, 1)), 'degC') else: # CWT from CT performance curves perf_m = CT_design['CT perf slope'].values perf_b = CT_design['CT perf y-int'].values # time x CT CWT = Q_(np.outer(WBT, perf_m) + np.tile(perf_b, (nTime, 1)), 'degC') # ii) Approach WBT2 = Q_(np.transpose(np.tile(WBT, (nCT, 1))), 'degC') approach = CWT - WBT2 # .......................................................... 2) Calc water circulation loop # (calc deltaT, waterflow, assuming loaded) # Forms a time-invariant array with shape (time x CT) and as a Pint quantity tile_and_pint = lambda arr, units: Q_(np.tile(arr, (nTime, 1)), units) HWT_r = tile_and_pint(CT_design['HWT [°C]'].values, 'degC') waterflow_r = tile_and_pint(CT_design['water flow [kg/s]'].values, 'kg/s') if pump_ctrl == 'fixed HWT': deltaT = HWT_r - CWT waterflow = (heat_load / (cp_water * deltaT)).to_base_units() elif pump_ctrl == 'range limit': # Calc range as if HWT = HWT_r deltaT = HWT_r - CWT # i) Adjust deltaT deltaT_min = np.tile(CT_design['Min Range [C°]'].values, (nTime, 1)) deltaT = Q_(np.clip((deltaT).magnitude, deltaT_min, None), 'delta_degC') # ii) Calc water flow waterflow = (heat_load / (cp_water * deltaT)).to_base_units() elif pump_ctrl == 'c': # Calc range & water flow as if HWT = HWT_r deltaT = HWT_r - CWT waterflow = (heat_load / (cp_water * deltaT)).to_base_units() waterflow_units = waterflow.units # i) Adjust water flow # Clip violating values waterflow_ub = np.tile((CT_design['Max per unit water flow'] * CT_design['water flow [kg/s]']).values, (nTime, 1)) waterflow_lb = np.tile((CT_design['Min per unit water flow'] * CT_design['water flow [kg/s]']).values, (nTime, 1)) _wf = np.clip(waterflow.magnitude, waterflow_lb, waterflow_ub) # Back to pint waterflow = Q_(_wf, waterflow_units) # ii) Calc deltaT deltaT = (heat_load / (cp_water * waterflow)).to('delta_degC') else: waterflow = waterflow_r deltaT = (heat_load / (cp_water * waterflow)).to('delta_degC') # .......................................................... 3) No-load fix # This part is necessary for all conrtol modes because the operational limits applied # in the step 2 assumed loaded operation. After this step, water flow and deltaT are final. CT_load_mask = (heat_load != 0).astype('int') # 0 if no load, 1 otherwise waterflow = waterflow * CT_load_mask deltaT = deltaT * CT_load_mask HWT = CWT + deltaT # .......................................................... 4) HWT and CWT adjustment # HWT cannot be less than DBT; in which case, HWT is limited to DBT and CWT rises. # Vectorize DBT into (time x CT) DBT = np.tile(DBT, (nCT, 1)).transpose() HWT = Q_(np.maximum(HWT.magnitude, DBT), 'degC') CWT = HWT - deltaT # .......................................................... 5) Checks and return assert waterflow.units == ureg.kg / ureg.s assert deltaT.units == ureg.delta_degC, deltaT.units # Check that CT efficiency is realistic. In practice, efficiency is 65-70% (normal operating conditions) CT_eff = deltaT / (deltaT + approach) assert ignore_CT_eff or np.all(CT_eff < max_CT_eff), \ "CT efficiency exceeded the limit: {}".format(CT_eff) assert all(obj.shape == (nTime, nCT) for obj in (HWT, CWT, waterflow, deltaT, approach, CT_eff)) # Check energy balance assert np.allclose(heat_load.magnitude, (cp_water * deltaT * waterflow).to(heat_load.units).magnitude) res = { 'HWT': HWT, 'CWT': CWT, 'water flow': waterflow, 'range': deltaT, 'approach': approach, 'CT_eff': CT_eff, } return res
7,925
def make_zipfile(zip_filename, base_dir, verbose=0, dry_run=0, compress=None, mode='w' ): """Create a zip file from all the files under 'base_dir'. The output zip file will be named 'base_dir' + ".zip". Uses either the "zipfile" Python module (if available) or the InfoZIP "zip" utility (if installed and found on the default search path). If neither tool is available, raises DistutilsExecError. Returns the name of the output zip file. """ import zipfile mkpath(os.path.dirname(zip_filename), dry_run=dry_run) log.info("creating '%s' and adding '%s' to it", zip_filename, base_dir) def visit(z, dirname, names): for name in names: path = os.path.normpath(os.path.join(dirname, name)) if os.path.isfile(path): p = path[len(base_dir)+1:] if not dry_run: z.write(path, p) log.debug("adding '%s'" % p) if compress is None: compress = (sys.version>="2.4") # avoid 2.3 zipimport bug when 64 bits compression = [zipfile.ZIP_STORED, zipfile.ZIP_DEFLATED][bool(compress)] if not dry_run: z = zipfile.ZipFile(zip_filename, mode, compression=compression) os.path.walk(base_dir, visit, z) z.close() else: os.path.walk(base_dir, visit, None) return zip_filename
7,926
def read_dataset_from_csv(data_type, path): """Read dataset from csv Args: data_type (str): train/valid/test Returns: pd: data """ data = pd.read_csv(tf.io.gfile.glob(path + data_type + "*")[0]) return data
7,927
def _ReportMissing(missing): """Report missing utilities, then exit. Args: missing: List of missing utilities, as returned by osutils.FindMissingBinaries. If non-empty, will not return. """ if missing: raise SystemExit( 'The tool(s) %s were not found.\n' 'Please install the appropriate package in your host.\n' 'Example(ubuntu):\n' ' sudo apt-get install <packagename>' % ', '.join(missing))
7,928
def search_ignore_case(s, *keywords): """Convenience function to search a string for keywords. Case insensitive version. """ acora = AcoraBuilder(keywords, ignore_case=True).build() return acora.findall(s)
7,929
def print_caves(): """ Print out the current cave structure """ for number in cave_numbers: print(number, ":", caves[number]) print('----------')
7,930
def _logger_setup(logger: logging.Logger, header_label: str, formatter: Formatter = None, level: int = logging.INFO, level_normalized: int = logging.INFO, handler_delegate=Union[logging.StreamHandler,Iterable[logging.StreamHandler]], **handler_kwargs) ->logging.Logger: """A convenience function for creating well named loggers with optional custom formatter. This function will implement an already defined formatter for you if the formatter param is None. For an example of a good general use logger see the example code at the bottom of this file. SPECIAL NOTE: Although this function's signature allows the caller to pass virtually any logging.Handler subclass into the handler_delegate parameter, I've only tested this functionality against the logging.StreamHandler class. If you wish to use it for others you will likely encounter bugs. But if you are up to the task it seems like it could potentially be a helpful tool for allowing the instantiation of a wide array of utility loggers under a single interface. :param header_label: :param logger: an initialized logger object that needs to have its formatter and optinoal handlers set. :param child_name: The auxiliary logger you wish to create to handle some specific task. The logger which maps to this child will set its level, handlers, and formatters according to your inputs, allowing you to specify many different loggers to manage data output in a form that suites you. :type child_name: A string :param formatter: An optional parameter that specifies the manner in which you wish to format the available logging-event-_data as well as how you wish to present the message _data for your log events. The default formatter will take one of two styles, based the given `level`. For level==logging.INFO (20) and bellow: log messages will be presented in two parts. * First, a header line that's formatted to be bold, and underlined, that gives the time-stamp for when the log was submitted, the child_name, the model and function and line number from which the log-message was originated * Followed by an indented new-line where the log-message will be be printed. The message For level==logging.INFO+1 (21) and above: log messages will be presented in two parts. * First, a header line that's formatted to be bold, and underlined, that gives the time-stamp for when the log was submitted, the child_name, the model and function and line number from which the log-message was originated * Followed, on the same line as the header, the log-message. This distinction, as opposed to the indented new-line in lower level messaged, is done because it is often the case the when higher level messages occur, there are very many of them. Forcing each one to then be a multi-line message actually makes it much harder to visually parse. * Special note: In order to aid in automated parsing of these log-messages, the header details and log message will be seperated by the following character key: `::>` :type formatter: an instance of logging.Formatter :param handler_delegate: An optional parameter that Specifies the type of handler you want to associate to the logger instance that's mapped to the root_name.child_name you've passed in. The handler will be set up inside of this function, this parameter simply allows you to indicate the way you wish to have your output handled. (E.G. to std_out, std_err, or some file output stream) :type handler_delegate: This should be a delegate function of your desired handler's constructor, DEFAULT=logging.StreamHandler :param level: Specifies the desired logging level of the resulting logger. DEFAULT=logging.DEBUG :type level: An int, must be in the range of [0,0xffffffff] :type handler_kwargs: Any additional keywords that should be passed into the construction of the handler. These are necessary for the instantiation of handlers that will output to anything other than sys.std_out, and sys.std_err. :return: a reference to the logger instance that's mapped to the input naming scheme of <root_name>.<child_name > :rtype: logging.Logger """ logger.propagate = False level_normalized = level if level_normalized is None else level_normalized try: colr_id = log_id_map[level_normalized] except KeyError: # level_normalized isn't in our custom log_id_map if level_normalized in logging._levelToName: # but it has been registered with the logging library LEVELS_STR2INT[logging._levelToName[level_normalized]] = level_normalized for lvl,color_code in sorted(log_id_map.items(),key=lambda tpl:tpl[0]): if lvl<=level_normalized: colr_id = color_code else: break else: colr_id = log_id_map["NOTSET"] log_id_map[level_normalized] = colr_id if formatter is None: formatter = _build_default_formatter(level,header_label,colr_id,formatter) logger.addHandler(_ensured_configure_handler(formatter, level, handler_delegate, handler_kwargs)) return logger
7,931
def _prepare_directory(data_dir: Union[str, PathLike], ignore_bad: bool = True, confirm_uids: bool = True) -> List[str]: """ Reorganizes PPMI `data_dir` to a structure compatible with ``heudiconv`` PPMI data starts off with a sub-directory structure that is not conducive to use with ``heudiconv``. By default, scans are grouped by scan type rather than by session, and there are a number of redundant sub-directories that we don't need. This script reorganizes the data, moving things around so that the general hierarchy is {subject}/{session}/{scan}, which makes for a much easier time converting the PPMI dataset into BIDS format. An added complication is that a minority of the scans in the PPMI database are "bad" to some degree. For most, it is likely that there was some issue with exporting/uploading the DICOM files. For others, the conversion process we intend to utilize (``heudiconv`` and ``dcm2niix``) fails to appropriately convert the files due to some idiosyncratic reason that could be fixed but we don't have the patience to fix at the current juncture. Nonetheless, these scans need to be removed so that we can run the batch of subjects through ``heudiconv`` without any abrupt failures. By default, these scans are moved to a sub-directory of `data_dir`; setting `ignore_bad` to False will retain these scans (but be warned!) Parameters ---------- data_dir : str or pathlib.Path Filepath to PPMI dataset, as downloaded from https://ppmi-info.org ignore_bad : bool, optional Whether to ignore "bad" scans (i.e., ones that are known to fail conversion or reconstruction) confirm_uids : bool, optional Whether to check that DICOM study instance UIDs for provided subject are all consistent for a given session. Only applicable if `pydicom` is installed. Default: True Returns ------- subjects : list List of subjects who are ready to be converted / reconstructed with ``heudiconv`` coerce : list List of paths to data directories where subjects / sessions may have had inconsistent study instance UIDs that should be coerced """ if isinstance(data_dir, str): data_dir = pathlib.Path(data_dir).resolve() # location where "bad" scans will be moved if ignore_bad: timeout = data_dir / 'bad' timeout.mkdir(exist_ok=True) else: timeout = None subjects, coerce = [], [] for subj_dir in sorted(data_dir.glob('*')): if not subj_dir.is_dir() or subj_dir.name == 'bad': continue subj, force = _prepare_subject(subj_dir, timeout=timeout, confirm_uids=confirm_uids) subjects.append(subj) coerce.extend(force) return subjects, coerce
7,932
def find_log_for(tool_code, form_id, log_f): """Returns an array of lines from log for given tool code (P1,N3,...) and form_id. The form_id is taken from runner - thus we search for formula number ``form_id+1`` """ log = open(log_f,'r') current_f = -1 formula = re.compile('.*ltl:(\d+): (.*)$') tool = re.compile('.*\[([PN]\d+)\]: (.*)$') gather = re.compile('Performing sanity checks and gathering statistics') output = [] for line in log: m_form = formula.match(line) if m_form: current_f = int(m_form.group(1)) curr_tool = '' if current_f < form_id+1: continue if current_f > form_id+1: break m_tool = tool.match(line) if m_tool: curr_tool = m_tool.group(1) if gather.match(line): curr_tool = 'end' if curr_tool == tool_code: output.append(line.strip()) log.close() return output
7,933
def test_decode_goto(): """Create program with GOTO from program number""" program_number = GOTO # expected program expected_program = read_program("test_goto.s") # decode program assert expected_program == decode_number_as_code(program_number)
7,934
def get_images(repository_name): """Call ecr to get available images""" eprint("obtaining available images") try: out = json.loads( run_command([ "aws", "ecr", "describe-images", "--repository-name", repository_name, "--no-paginate" ]).stdout) except subprocess.CalledProcessError as e: err(f"failed to get availabe images from repository: {e}" ) return list(sorted(out["imageDetails"], key=lambda image: image["imagePushedAt"], reverse=True))
7,935
def lint_repo(*, fail_on_missing_sub_src, exclude_lint, warn_lint): """Lint all sites using checks defined in :mod:`pegleg.engine.errorcodes`. """ warns = pegleg_main.run_lint( exclude_lint, fail_on_missing_sub_src, warn_lint) if warns: click.echo("Linting passed, but produced some warnings.") for w in warns: click.echo(w)
7,936
def exe_cmd_and_poll_output(cmd, encoding='UTF-8', is_capture_output=False): """ 将命令输出实时打印到标准输出 :param is_capture_output: :param cmd: 命令行 :param encoding: 字符编码 :return: 标准输出字符串列表 """ import shlex func_name = inspect.stack()[0][3] hlog.enter_func(func_name) hlog.trace("cmd=%s" % cmd) output = list() cmd = shlex.split(cmd) with subprocess.Popen(cmd, shell=False, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) as p: while p.poll() is None: line = p.stdout.readline() line = str(line, encoding=encoding) print(line, end='') if is_capture_output: output.append(line) if p.returncode != 0: hlog.error('Command execution failed') hlog.exit_func(func_name) return output
7,937
def throw(exception, *args, **kwargs): # pragma: no cover """ Raises an exception (as an expression) """ raise exception(*args, **kwargs)
7,938
def create_patric_boolean_dict(genome_dict,all_ECs): """ Create new dict of dicts to store genome names :param genome_dict: dict of key=genome_id, value=dict of genome's name, id, ec_numbers :param all_ECs: set of all ECs found across all genomes """ ## new format: key=genome, value={EC:0 or 1} ## This makes it easy to write to file with pandas boolean_genome_dict = {} for genome_id in genome_dict: boolean_genome_dict[genome_id] = {} boolean_genome_dict[genome_id]['genome_name'] = genome_dict[genome_id]['genome_name'] boolean_genome_dict[genome_id]['genome_name_with_id'] = genome_dict[genome_id]['genome_name_with_id'] boolean_genome_dict[genome_id]['duplicate'] = genome_dict[genome_id]['duplicate'] for EC in all_ECs: if EC in genome_dict[genome_id]['ECs']: boolean_genome_dict[genome_id][EC] = 1 else: boolean_genome_dict[genome_id][EC] = 0 return boolean_genome_dict
7,939
def append_ast_if_req(field): """ Adds a new filter to template tags that for use in templates. Used by writing {{ field | append_ast_if_req }} @register registers the filter into the django template library so it can be used in template. :param Form.field field: a field of a form that you would like to return the label and potentially an asterisk for. :returns: The field label and, if it's a required field, an asterisk :rtype: string """ if field.field.required: return field.label + '*' else: return field.label
7,940
def getPileupMixingModules(process): """ Method returns two lists: 1) list of mixing modules ("MixingModule") 2) list of data mixing modules ("DataMixingModules") The first gets added only pileup files of type "mc", the second pileup files of type "data". """ mixModules, dataMixModules = [], [] prodsAndFilters = {} prodsAndFilters.update(process.producers) prodsAndFilters.update(process.filters) for key, value in prodsAndFilters.items(): if value.type_() in ["MixingModule", "DataMixingModule", "PreMixingModule"]: mixModules.append(value) if value.type_() == "DataMixingModule": dataMixModules.append(value) return mixModules, dataMixModules
7,941
def GetFirstTypeArgImpl_(type_: Hashable, parentClass: Type[Any]) -> Type[Any]: """ Returns the actual type, even if type_ is a string. """ if isinstance(type_, type): return type_ if not isinstance(type_, str): # It's not a type and it's not a str. # We don't know what to do with it. raise ValueError("Bad type argument: {}".format(type_)) forwardRef = ForwardRef(type_, is_argument=False) # pylint: disable=protected-access evaluated = forwardRef._evaluate(GetClassNamespace_(parentClass), None) if evaluated is None: raise RuntimeError("Unable to resolve type {}".format(type_)) if isinstance(evaluated, typing._GenericAlias): # type: ignore if isinstance( evaluated.__args__[0], typing._GenericAlias): # type: ignore # Now use the origin to retrieve the default value type. return evaluated.__args__[0].__origin__ return evaluated.__args__[0] return evaluated
7,942
def tree_map_zipped(fn: Callable[..., Any], nests: Sequence[Any]): """Map a function over a list of identical nested structures. Args: fn: the function to map; must have arity equal to `len(list_of_nests)`. nests: a list of identical nested structures. Returns: a nested structure whose leaves are outputs of applying `fn`. """ if not nests: return nests tree_def = tree_structure(nests[0]) if any([tree_structure(x) != tree_def for x in nests[1:]]): raise ValueError('All elements must share the same tree structure.') return jax.tree_unflatten( tree_def, [fn(*d) for d in zip(*[jax.tree_leaves(x) for x in nests])])
7,943
def square_area(side): """Returns the area of a square""" # You have to code here # REMEMBER: Tests first!!! return pow(side,2)
7,944
def match_collision_name_to_mesh_name(properties): """ This function matches the selected collison to the selected mesh. :param object properties: The property group that contains variables that maintain the addon's correct state. :return str: The changed collision name. """ collisions = get_from_collection(properties.collision_collection_name, 'MESH', properties) meshes = get_from_collection(properties.mesh_collection_name, 'MESH', properties) if collisions and meshes: selected_mesh = [mesh for mesh in meshes if mesh.select_get()][0] selected_collision = [collision for collision in collisions if collision.select_get()][0] name = f'{selected_collision.name.split("_")[0]}_{selected_mesh.name}' selected_collision.name = name return name return ''
7,945
def prepare_ms_tree_certificates(ms_tree): """ filter and process the uploaded device pem certificates """ pem_certificates = ms_tree.pop("pem_certificates", []) certificates = [] for pem_certificate in pem_certificates: certificate = x509.load_pem_x509_certificate(pem_certificate.encode("utf-8")) # filter out CA certificates if is_ca(certificate): continue # build the cert tree cert_tree = build_cert_tree(certificate) if cert_tree not in certificates: certificates.append(cert_tree) # update the ms tree if certificates: ms_tree["certificates"] = certificates
7,946
def main(args=None): """Perform the validation.""" # Read the CLI args if args: schema = args.schema data = args.data # Validate validator = Validator(schema, data) validator.validate()
7,947
def _handle_event_colors(color_dict, unique_events, event_id): """Create event-integer-to-color mapping, assigning defaults as needed.""" default_colors = dict(zip(sorted(unique_events), cycle(_get_color_list()))) # warn if not enough colors if color_dict is None: if len(unique_events) > len(_get_color_list()): warn('More events than default colors available. You should pass ' 'a list of unique colors.') else: custom_colors = dict() for key, color in color_dict.items(): if key in unique_events: # key was a valid event integer custom_colors[key] = color elif key in event_id: # key was an event label custom_colors[event_id[key]] = color else: # key not a valid event, warn and ignore warn('Event ID %s is in the color dict but is not ' 'present in events or event_id.' % str(key)) # warn if color_dict is missing any entries unassigned = sorted(set(unique_events) - set(custom_colors)) if len(unassigned): unassigned_str = ', '.join(str(e) for e in unassigned) warn('Color was not assigned for event%s %s. Default colors will ' 'be used.' % (_pl(unassigned), unassigned_str)) default_colors.update(custom_colors) return default_colors
7,948
def redirect_logs_and_warnings_to_lists( used_logs: list[logging.LogRecord], used_warnings: list ) -> RedirectedLogsAndWarnings: """For example if using many processes with multiprocessing, it may be beneficial to log from one place. It's possible to log to variables (logs as well as warnings), pass it to the main process and then log it with workings filter etc. To log stored logs and warnings, use Args: used_logs (list): List where logs will be stored used_warnings (list): List where warnings will be stored Returns: RedirectedLogsAndWarnings: Object, where you can reset redirect. Logs and warnings you already have from inserted parameters. """ showwarning_backup = warnings.showwarning OUTPUT_backup = config.OUTPUT STREAM_backup = config.STREAM def custom_warn(message, category, filename, lineno, file=None, line=None): used_warnings.append( { "message": message, "category": category, "filename": filename, "lineno": lineno, "file": file, "line": line, } ) warnings.showwarning = custom_warn config.OUTPUT = None config.STREAM = None config.TO_LIST = used_logs return RedirectedLogsAndWarnings( logs=used_logs, warnings=used_warnings, showwarning_backup=showwarning_backup, OUTPUT_backup=OUTPUT_backup, STREAM_backup=STREAM_backup, )
7,949
def get_file_picker_settings(): """Return all the data FileUploader needs to start the Google Drive Picker.""" google_settings = frappe.get_single("Google Settings") if not (google_settings.enable and google_settings.google_drive_picker_enabled): return {} return { "enabled": True, "appId": google_settings.app_id, "developerKey": google_settings.api_key, "clientId": google_settings.client_id }
7,950
def find_version(*file_paths): """ Args: *file_paths: Returns: """ here = os.path.abspath(os.path.dirname(__file__)) def read(*parts): """ Args: *parts: Returns: """ with codecs.open(os.path.join(here, *parts), "r") as fp: return fp.read() version_file = read(*file_paths) version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.")
7,951
def match_subset(pattern: oechem.OEMol, target:oechem.OEMol): """Check if target is a subset of pattern.""" # Atoms are equal if they have same atomic number (so explicit Hydrogens are needed as well for a match) atomexpr = oechem.OEExprOpts_AtomicNumber # single or double bonds are considered identical (resonance,chirality fix) bondexpr = oechem.OEExprOpts_EqSingleDouble ss = oechem.OESubSearch(pattern, atomexpr, bondexpr ) oechem.OEPrepareSearch(target, ss) return ss.SingleMatch(target)
7,952
def get_quad_strike_vector(q): """ Compute the unit vector pointing in the direction of strike for a quadrilateral in ECEF coordinates. Top edge assumed to be horizontal. Args: q (list): A quadrilateral; list of four points. Returns: Vector: The unit vector pointing in strike direction in ECEF coords. """ P0, P1, P2, P3 = q p0 = Vector.fromPoint(P0) # fromPoint converts to ECEF p1 = Vector.fromPoint(P1) v1 = (p1 - p0).norm() return v1
7,953
def CP_to_TT( cp_cores, max_rank, eps=1e-8, final_round=None, rsvd_kwargs=None, verbose=False, ): """ Approximate a CP tensor by a TT tensor. All cores of the TT are rounded to have a TT-rank of most `max_rank`, and singular values of at most `eps` times the largest singular value. For the first core and last core this rounding is done using SVD, for all other cores a randomized SVD is employed. Uses `sklearn.utils.extmath.randomized_svd¶` for randomized SVD. After forming the TT, it is optionally rounded again with an accuracy of `final_round`. Parameters ---------- cp_cores: list<np.ndarray> List of CP cores max_rank: int eps: float (default: 1e-8) rsvd_kwargs: dict (optional) keyword arguments to pass to the randomized svd method. verbose: bool (default: False) """ d = len(cp_cores) tt_cores = [None] * d prev_rank = 1 if rsvd_kwargs is None: rsvd_kwargs = {} for alpha in range(d): core = cp_cores[alpha] dim = core.shape[0] if alpha == 0: U, S, V = svd(cp_cores[0], full_matrices=False) elif alpha < d - 1: # Use randomized SVD for middle cores core = np.einsum("ik,jk->ijk", SV, core) core_mat = core.reshape( core.shape[0] * core.shape[1], core.shape[2] ) U, S, V = randomized_svd( core_mat, n_components=max_rank, **rsvd_kwargs ) else: # alpha = d - 1 core = np.einsum("ik,jk->ij", SV, core) U, S, V = svd(core) r = 1 r = max(1, min(max_rank, np.sum(S > eps))) U = U[:, :r] S = S[:r] V = V[:r, :] SV = (S * V.T).T if alpha == d - 1: tt_cores[alpha - 1] = np.einsum( "ijk,kl->ijl", tt_cores[alpha - 1], U ) tt_cores[alpha] = SV.reshape(SV.shape + (1,)) else: tt_cores[alpha] = U.reshape((prev_rank, dim, r)) if verbose: print( f"feature {alpha+1}/{d}, compressed TT core size is {tt_cores[alpha].shape}" ) prev_rank = r if verbose: print("Orthogonalizing") tt = TensorTrain(tt_cores, is_orth=True) if final_round is not None: if verbose: print(f"Rounding to {final_round}...") tt.round(eps=final_round) if verbose: print(f"Final TT rank: {tt.tt_rank}") return tt
7,954
def _create_key_list(entries): """ Checks if entries are from FieldInfo objects and extracts keys :param entries: to create key list from :return: the list of keys """ if len(entries) == 0: return [] if all(isinstance(entry, FieldInfo) for entry in entries): return [entry.key for entry in entries] # this should be a regular list of strings return entries
7,955
def compose_rule_hierarchies(rule_hierarchy1, lhs_instances1, rhs_instances1, rule_hierarchy2, lhs_instances2, rhs_instances2): """Compose two rule hierarchies.""" if len(rule_hierarchy1["rules"]) == 0: return rule_hierarchy2, lhs_instances2, rhs_instances2 if len(rule_hierarchy2["rules"]) == 0: return rule_hierarchy1, lhs_instances1, rhs_instances1 graphs = set(rule_hierarchy1["rules"].keys()).union( rule_hierarchy2["rules"].keys()) homomorphisms = set(rule_hierarchy1["rule_homomorphisms"].keys()).union( rule_hierarchy2["rule_homomorphisms"].keys()) new_rule_hierarchy = { "rules": {}, "rule_homomorphisms": {} } new_lhs_instances = {} new_rhs_instances = {} composition_data = {} # Compose rules for graph in graphs: if graph in rule_hierarchy1["rules"]: rule1 = rule_hierarchy1["rules"][graph] lhs_instance1 = lhs_instances1[graph] rhs_instance1 = rhs_instances1[graph] else: rule1 = Rule.identity_rule() lhs_instance1 = {} rhs_instance1 = {} if graph in rule_hierarchy2["rules"]: rule2 = rule_hierarchy2["rules"][graph] lhs_instance2 = lhs_instances2[graph] rhs_instance2 = rhs_instances2[graph] else: rule2 = Rule.identity_rule() lhs_instance2 = {} rhs_instance2 = {} new_rule, new_lhs_instance, new_rhs_instance, data = compose_rules( rule1, lhs_instance1, rhs_instance1, rule2, lhs_instance2, rhs_instance2, return_all=True) new_rule_hierarchy["rules"][graph] = new_rule new_lhs_instances[graph] = new_lhs_instance new_rhs_instances[graph] = new_rhs_instance composition_data[graph] = data # Compute rule homomorphisms for source, target in homomorphisms: lhs_hom1, p_hom1, rhs_hom1 = rule_hierarchy1["rule_homomorphisms"][ (source, target)] lhs_hom2, p_hom2, rhs_hom2 = rule_hierarchy2["rule_homomorphisms"][ (source, target)] source_data = composition_data[source] target_data = composition_data[target] # H_G -> H_T h_hom = get_unique_map_from_pushout( source_data["h"].nodes(), source_data["rhs1_h"], source_data["lhs2_h"], compose(rhs_hom1, target_data["rhs1_h"]), compose(lhs_hom2, target_data["lhs2_h"]) ) # P*G_1 -> P*T_1 p1_p_hom = get_unique_map_to_pullback_complement( target_data["p1_p1_p"], target_data["p1_p_h"], p_hom1, source_data["p1_p1_p"], compose(source_data["p1_p_h"], h_hom)) # P*G_2 -> P*T_2 p2_p_hom = get_unique_map_to_pullback_complement( target_data["p2_p2_p"], target_data["p2_p_h"], p_hom2, source_data["p2_p2_p"], compose(source_data["p2_p_h"], h_hom)) # Pi_G -> Pi_T pi_hom = get_unique_map_to_pullback( new_rule_hierarchy["rules"][target].p.nodes(), target_data["pi_p1_p"], target_data["pi_p2_p"], compose(source_data["pi_p1_p"], p1_p_hom), compose(source_data["pi_p2_p"], p2_p_hom)) # L_G -> L_T lambda_hom = get_unique_map_from_pushout( new_rule_hierarchy["rules"][source].lhs.nodes(), source_data["lhs1_lambda"], source_data["p1_p_lambda"], compose(lhs_hom1, target_data["lhs1_lambda"]), compose(p1_p_hom, target_data["p1_p_lambda"])) # R_G -> R_T rho_hom = get_unique_map_from_pushout( new_rule_hierarchy["rules"][source].rhs.nodes(), source_data["p2_p_rho"], source_data["rhs2_rho"], compose(p2_p_hom, target_data["p2_p_rho"]), compose(rhs_hom2, target_data["rhs2_rho"])) new_rule_hierarchy["rule_homomorphisms"][(source, target)] = ( lambda_hom, pi_hom, rho_hom ) return new_rule_hierarchy, new_lhs_instances, new_rhs_instances
7,956
def write_drc_script(cell_name, gds_name, extract, final_verification, output_path, sp_name=None): """ Write a klayout script to perform DRC and optionally extraction. """ global OPTS # DRC: # klayout -b -r drc_FreePDK45.lydrc -rd input=sram_8_256_freepdk45.gds -rd topcell=sram_8_256_freepdk45 -rd output=drc_FreePDK45.lyrdb # Copy .lydrc file into the output directory full_drc_file = OPTS.openram_tech + "tech/{}.lydrc".format(OPTS.tech_name) drc_file = os.path.basename(full_drc_file) if os.path.exists(full_drc_file): shutil.copy(full_drc_file, output_path) else: debug.warning("Could not locate file: {}".format(full_drc_file)) # Create an auxiliary script to run calibre with the runset run_file = output_path + "run_drc.sh" f = open(run_file, "w") f.write("#!/bin/sh\n") cmd = "{0} -b -r {1} -rd input={2} -rd topcell={3} -rd output={3}.drc.report".format(OPTS.drc_exe[1], drc_file, gds_name, cell_name) f.write(cmd) f.write("\n") f.close() os.system("chmod u+x {}".format(run_file))
7,957
def expand_tile(value, size): """Add a new axis of given size.""" value = tf.convert_to_tensor(value=value, name='value') ndims = value.shape.ndims return tf.tile(tf.expand_dims(value, axis=0), [size] + [1]*ndims)
7,958
def before_request(): """Set parameters in g before each request.""" g.user = None if 'user_id' in session: g.user = User.query.get(session['user_id']) g.referer = get_referer(request) or url_for('index') g.request_headers = request.headers
7,959
def fetch_exchange(zone_key1='DK-DK1', zone_key2='DK-DK2', session=None, target_datetime=None, logger=logging.getLogger(__name__)): """ Fetches 5-minute frequency exchange data for Danish bidding zones from api.energidataservice.dk """ r = session or requests.session() sorted_keys = '->'.join(sorted([zone_key1, zone_key2])) # pick the correct zone to search if 'DK1' in sorted_keys and 'DK2' in sorted_keys: zone = 'DK1' elif 'DK1' in sorted_keys: zone = 'DK1' elif 'DK2' in sorted_keys: zone = 'DK2' elif 'DK-BHM' in sorted_keys: zone = 'DK2' else: raise NotImplementedError( 'Only able to fetch exchanges for Danish bidding zones') exch_map = { 'DE->DK-DK1': '"ExchangeGermany"', 'DE->DK-DK2': '"ExchangeGermany"', 'DK-DK1->DK-DK2': '"ExchangeGreatBelt"', 'DK-DK1->NO-NO2': '"ExchangeNorway"', 'DK-DK1->NL': '"ExchangeNetherlands"', 'DK-DK1->SE': '"ExchangeSweden"', 'DK-DK1->SE-SE3': '"ExchangeSweden"', 'DK-DK1->NL': '"ExchangeNetherlands"', 'DK-DK2->SE': '("ExchangeSweden" - "BornholmSE4")', # Exchange from Bornholm to Sweden is included in "ExchangeSweden" 'DK-DK2->SE-SE4': '("ExchangeSweden" - "BornholmSE4")', # but Bornholm island is reported separately from DK-DK2 in eMap 'DK-BHM->SE': '"BornholmSE4"', } if sorted_keys not in exch_map: raise NotImplementedError( 'Exchange {} not implemented'.format(sorted_keys)) timestamp = arrow.get(target_datetime).strftime('%Y-%m-%d %H:%M') # fetch real-time/5-min data sqlstr = 'SELECT "Minutes5UTC" as timestamp, {0} as "netFlow" \ from "{1}" WHERE "PriceArea" = \'{2}\' AND \ "Minutes5UTC" >= (timestamp\'{3}\'-INTERVAL \'24 hours\') AND \ "Minutes5UTC" <= timestamp\'{3}\' \ ORDER BY "Minutes5UTC" ASC'.format(exch_map[sorted_keys], ids['real_time'], zone, timestamp) url = 'https://api.energidataservice.dk/datastore_search_sql?sql={}'.format(sqlstr) response = r.get(url) # raise errors for responses with an error or no data retry_count = 0 while response.status_code in [429, 403, 500]: retry_count += 1 if retry_count > 5: raise Exception('Retried too many times..') # Wait and retry logger.warn('Retrying..') time.sleep(5 ** retry_count) response = r.get(url) if response.status_code != 200: j = response.json() if 'error' in j and 'info' in j['error']: error = j['error']['__type'] text = j['error']['info']['orig'] msg = '"{}" fetching exchange data for {}: {}'.format( error, sorted_keys, text) else: msg = 'error while fetching exchange data for {}: {}'.format( sorted_keys, json.dumps(j)) raise requests.exceptions.HTTPError(msg) if not response.json()['result']['records']: raise ParserException( "DK.py", 'API returned no data', zone_key=sorted_keys) df = pd.DataFrame(response.json()['result']['records']) df = df.set_index('timestamp') df.index = pd.DatetimeIndex(df.index) # drop empty rows df.dropna(how='all', inplace=True) # all exchanges are reported as net import, # where as eMap expects net export from # the first zone in alphabetical order if 'DE' not in sorted_keys: df['netFlow'] = -1 * df['netFlow'] # Format output output = [] for dt in df.index: data = { 'sortedZoneKeys': sorted_keys, 'datetime': None, 'netFlow': None, 'source': 'api.energidataservice.dk' } data['datetime'] = dt.to_pydatetime() data['datetime'] = data['datetime'].replace(tzinfo=pytz.utc) data['netFlow'] = df.loc[dt, 'netFlow'] output.append(data) return output
7,960
def snitch(func): """ This method is used to add test function to TestCase classes. snitch method gets test function and returns a copy of this function with 'test_' prefix at the beginning (to identify this function as an executable test). It provides a way to implement a storage (python module that contains non-executable test functions) for tests and to include different set of functions into different test cases. """ return FunctionType(func.func_code, func.func_globals, 'test_' + func.func_name, closure=func.func_closure)
7,961
async def test_sensor_entity_meter_model( hass, mock_config_entry_data, mock_config_entry ): """Test entity loads meter model.""" api = get_mock_device() api.data.available_datapoints = [ "meter_model", ] api.data.meter_model = "Model X" with patch( "aiohwenergy.HomeWizardEnergy", return_value=api, ): entry = mock_config_entry entry.data = mock_config_entry_data entry.add_to_hass(hass) await hass.config_entries.async_setup(entry.entry_id) await hass.async_block_till_done() entity_registry = er.async_get(hass) state = hass.states.get("sensor.product_name_aabbccddeeff_smart_meter_model") entry = entity_registry.async_get( "sensor.product_name_aabbccddeeff_smart_meter_model" ) assert entry assert state assert entry.unique_id == "aabbccddeeff_meter_model" assert not entry.disabled assert state.state == "Model X" assert ( state.attributes.get(ATTR_FRIENDLY_NAME) == "Product Name (aabbccddeeff) Smart Meter Model" ) assert ATTR_STATE_CLASS not in state.attributes assert ATTR_UNIT_OF_MEASUREMENT not in state.attributes assert ATTR_DEVICE_CLASS not in state.attributes assert state.attributes.get(ATTR_ICON) == "mdi:gauge"
7,962
def average_h5(path, path_dc): """Return averaged data from HDF5 DC measurements. Subtracts dark current from the signal measurements. Args: - path, path_dc: paths to signal and dark measurement files. Returns: - 2D array containing averaged and DC-subtracted measurement. """ with h5.File(path, 'r') as f: with h5.File(path_dc, 'r') as fdc: arr = (f['data'][...].mean(axis=0) - fdc['data'][...].mean(axis=0)) return arr
7,963
def test_profile_to_osco_execute_bogus_config(tmp_path): """Test execute call bogus config.""" section = None tgt = profile_to_osco.ProfileToOsco(section) retval = tgt.execute() assert retval == TaskOutcome.FAILURE
7,964
def init(templates_path: str = None, modules: dict = None, log: logging = None) -> None: """Set templates_path, and modules to import in Jinja2. :param templates_path: Path to templates :param modules: List of modules to import in Jinja2 :param log: logging :return: None""" import sys global _templates_path, _modules if not templates_path: templates_path = sys.path[0] + '/templates' _templates_path = templates_path if not modules: modules = dict() _modules = modules log.debug('Compiler has been initialised.')
7,965
def edit_distance(hypothesis, truth, normalize=True, name="edit_distance"): """Computes the Levenshtein distance between sequences. This operation takes variable-length sequences (`hypothesis` and `truth`), each provided as a `SparseTensor`, and computes the Levenshtein distance. You can normalize the edit distance by length of `truth` by setting `normalize` to true. For example, given the following input: ```python # 'hypothesis' is a tensor of shape `[2, 1]` with variable-length values: # (0,0) = ["a"] # (1,0) = ["b"] hypothesis = tf.SparseTensor( [[0, 0, 0], [1, 0, 0]], ["a", "b"], (2, 1, 1)) # 'truth' is a tensor of shape `[2, 2]` with variable-length values: # (0,0) = [] # (0,1) = ["a"] # (1,0) = ["b", "c"] # (1,1) = ["a"] truth = tf.SparseTensor( [[0, 1, 0], [1, 0, 0], [1, 0, 1], [1, 1, 0]], ["a", "b", "c", "a"], (2, 2, 2)) normalize = True ``` This operation would return the following: ```python # 'output' is a tensor of shape `[2, 2]` with edit distances normalized # by 'truth' lengths. output ==> [[inf, 1.0], # (0,0): no truth, (0,1): no hypothesis [0.5, 1.0]] # (1,0): addition, (1,1): no hypothesis ``` Args: hypothesis: A `SparseTensor` containing hypothesis sequences. truth: A `SparseTensor` containing truth sequences. normalize: A `bool`. If `True`, normalizes the Levenshtein distance by length of `truth.` name: A name for the operation (optional). Returns: A dense `Tensor` with rank `R - 1`, where R is the rank of the `SparseTensor` inputs `hypothesis` and `truth`. Raises: TypeError: If either `hypothesis` or `truth` are not a `SparseTensor`. """ if not isinstance( hypothesis, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)): raise TypeError("Hypothesis must be a SparseTensor.") if not isinstance( truth, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)): raise TypeError("Truth must be a SparseTensor.") return gen_array_ops.edit_distance( hypothesis.indices, hypothesis.values, hypothesis.dense_shape, truth.indices, truth.values, truth.dense_shape, normalize=normalize, name=name)
7,966
def file_timestamp(path): """ Returns a datetime.datetime() object representing the given path's "latest" timestamp, which is calculated via the maximum (newest/youngest) value between ctime and mtime. This accounts for platform variations in said values. If the path doesn't exist, the earliest timestamp supported by the system is returned -- typically the epoch. """ try: st = os.stat(path) timestamp = max(st.st_mtime, st.st_ctime) except OSError: timestamp = 0 return datetime.datetime.fromtimestamp(timestamp)
7,967
def kl_bernoulli(p: np.ndarray, q: np.ndarray) -> np.ndarray: """ Compute KL-divergence between 2 probabilities `p` and `q`. `len(p)` divergences are calculated simultaneously. Parameters ---------- p Probability. q Probability. Returns ------- Array with the KL-divergence between `p` and `q`. """ m = np.clip(p, 0.0000001, 0.9999999999999999).astype(float) n = np.clip(q, 0.0000001, 0.9999999999999999).astype(float) return m * np.log(m / n) + (1. - m) * np.log((1. - m) / (1. - n))
7,968
def _incremental_mean_and_var(X, last_mean, last_variance, last_sample_count): """Calculate mean update and a Youngs and Cramer variance update. last_mean and last_variance are statistics computed at the last step by the function. Both must be initialized to 0.0. In case no scaling is required last_variance can be None. The mean is always required and returned because necessary for the calculation of the variance. last_n_samples_seen is the number of samples encountered until now. From the paper "Algorithms for computing the sample variance: analysis and recommendations", by Chan, Golub, and LeVeque. Parameters ---------- X : array-like, shape (n_samples, n_features) Data to use for variance update last_mean : array-like, shape: (n_features,) last_variance : array-like, shape: (n_features,) last_sample_count : array-like, shape (n_features,) Returns ------- updated_mean : array, shape (n_features,) updated_variance : array, shape (n_features,) If None, only mean is computed updated_sample_count : array, shape (n_features,) Notes ----- NaNs are ignored during the algorithm. References ---------- T. Chan, G. Golub, R. LeVeque. Algorithms for computing the sample variance: recommendations, The American Statistician, Vol. 37, No. 3, pp. 242-247 Also, see the sparse implementation of this in `utils.sparsefuncs.incr_mean_variance_axis` and `utils.sparsefuncs_fast.incr_mean_variance_axis0` """ # old = stats until now # new = the current increment # updated = the aggregated stats last_sum = last_mean * last_sample_count new_sum = _safe_accumulator_op(np.nansum, X, axis=0) new_sample_count = np.sum(~np.isnan(X), axis=0) updated_sample_count = last_sample_count + new_sample_count updated_mean = (last_sum + new_sum) / updated_sample_count if last_variance is None: updated_variance = None else: new_unnormalized_variance = ( _safe_accumulator_op(np.nanvar, X, axis=0) * new_sample_count) last_unnormalized_variance = last_variance * last_sample_count with cupyx.errstate(divide=None, invalid=None): last_over_new_count = last_sample_count / new_sample_count updated_unnormalized_variance = ( last_unnormalized_variance + new_unnormalized_variance + last_over_new_count / updated_sample_count * (last_sum / last_over_new_count - new_sum) ** 2) zeros = last_sample_count == 0 updated_unnormalized_variance[zeros] = new_unnormalized_variance[zeros] updated_variance = updated_unnormalized_variance / updated_sample_count return updated_mean, updated_variance, updated_sample_count
7,969
def avg_pds_from_events( times, gti, segment_size, dt, norm="frac", use_common_mean=True, silent=False, fluxes=None, errors=None, ): """Calculate the average periodogram from a list of event times or a light curve. If the input is a light curve, the time array needs to be uniformly sampled inside GTIs (it can have gaps outside), and the fluxes need to be passed through the ``fluxes`` array. Otherwise, times are interpeted as photon arrival times. Parameters ---------- times : float `np.array` Array of times gti : [[gti00, gti01], [gti10, gti11], ...] good time intervals segment_size : float length of segments dt : float Time resolution of the light curves used to produce periodograms Other Parameters ---------------- norm : str, default "frac" The normalization of the periodogram. "abs" is absolute rms, "frac" is fractional rms, "leahy" is Leahy+83 normalization, and "none" is the unnormalized periodogram use_common_mean : bool, default True The mean of the light curve can be estimated in each interval, or on the full light curve. This gives different results (Alston+2013). Here we assume the mean is calculated on the full light curve, but the user can set ``use_common_mean`` to False to calculate it on a per-segment basis. silent : bool, default False Silence the progress bars fluxes : float `np.array`, default None Array of counts per bin or fluxes errors : float `np.array`, default None Array of errors on the fluxes above Returns ------- freq : `np.array` The periodogram frequencies power : `np.array` The normalized periodogram powers n_bin : int the number of bins in the light curves used in each segment n_ave : int the number of averaged periodograms mean : float the mean flux """ if segment_size is None: segment_size = gti.max() - gti.min() n_bin = np.rint(segment_size / dt).astype(int) dt = segment_size / n_bin flux_iterable = get_flux_iterable_from_segments( times, gti, segment_size, n_bin, fluxes=fluxes, errors=errors ) cross = avg_pds_from_iterable( flux_iterable, dt, norm=norm, use_common_mean=use_common_mean, silent=silent ) if cross is not None: cross.meta["gti"] = gti return cross
7,970
def check_random_state(seed): """ Turn seed into a random.Random instance If seed is None, return the Random singleton used by random. If seed is an int, return a new Random instance seeded with seed. If seed is already a Random instance, return it. Otherwise raise ValueError. """ # Code slightly adjusted from scikit-learn utils/validation.py if seed is None or isinstance(seed, int): rng = random.Random(seed) elif isinstance(seed, random.Random): rng = seed else: raise ValueError( "### error: '{}' cannot be used to seed random.Random instance.".format( seed ) ) return rng
7,971
def chunk(seq, size, groupByList=True): """Returns list of lists/tuples broken up by size input""" func = tuple if groupByList: func = list return [func(seq[i:i + size]) for i in range(0, len(seq), size)]
7,972
def registerNamespace(namespace, prefix): """ Register a namespace in libxmp.exempi @namespace : the namespace to register @prefix : the prefix to use with this namespace """ try: registered_prefix = libxmp.exempi.namespace_prefix(namespace) # The namespace already exists, return actual prefix. return registered_prefix except libxmp.XMPError: # This namespace does not exist, that's cool pass try: libxmp.exempi.prefix_namespace_uri(prefix) # Prefix is already used, but not by us. raise NameError("Prefix is already used") except libxmp.XMPError: # This prefix is not used yet, that's cool pass return libxmp.exempi.register_namespace(namespace, prefix)[:-1]
7,973
def definition(): """ Lists the parent-child relationships through the curriculum structure. """ sql = """ --Course to session SELECT c.course_id as parent_id, CASE WHEN cc.course_id IS NULL THEN 0 ELSE 1 END as linked, cs.course_session_id as child_id, 'course' as parent, cs.description + ' ' + cast(cs.session as char(1)) as description, -1 as ratio,0 as changed FROM c_course c LEFT OUTER JOIN c_course_session cs on cs.curriculum_id = c.curriculum_id LEFT OUTER JOIN c_course_config cc on c.course_id = cc.course_id AND cc.course_session_id = cs.course_session_id UNION ALL --session to group SELECT a.course_session_id as parent_id, CASE WHEN c.course_session_id IS NULL THEN 0 ELSE 1 END as linked, b.cgroup_id as child_id, 'course_session' as parent, b.description, -1 as ratio, 0 as changed FROM c_course_session a LEFT OUTER JOIN c_cgroup b ON a.curriculum_id = b.curriculum_id LEFT OUTER JOIN c_course_session_config c on a.course_session_id = c.course_session_id AND b.cgroup_id = c.cgroup_id UNION ALL --CGroup to component SELECT a.cgroup_id as parent_id, CASE WHEN c.component_id IS NULL THEN 0 ELSE 1 END as linked, b.component_id as child_id, 'cgroup' as parent, b.description, ISNULL(c.ratio, 1) as ratio, 0 as changed FROM c_cgroup a LEFT OUTER JOIN c_component b ON a.curriculum_id = b.curriculum_id LEFT OUTER JOIN c_cgroup_config c on a.cgroup_id = c.cgroup_id AND b.component_id = c.component_id """ return sql
7,974
def create_user(strategy, details, backend, user=None, *args, **kwargs): """Aggressively attempt to register and sign in new user""" if user: return None request = strategy.request settings = request.settings email = details.get("email") username = kwargs.get("clean_username") if not email or not username: return None try: validate_email(email) validate_new_registration(request, {"email": email, "username": username}) except ValidationError: return None activation_kwargs = {} if settings.account_activation == "admin": activation_kwargs = {"requires_activation": User.ACTIVATION_ADMIN} new_user = User.objects.create_user( username, email, joined_from_ip=request.user_ip, **activation_kwargs ) setup_new_user(settings, new_user) send_welcome_email(request, new_user) return {"user": new_user, "is_new": True}
7,975
def enumerate_benchmark_replay(folder, runtime='python', time_kwargs=None, skip_long_test=True, time_kwargs_fact=None, time_limit=4, verbose=1, fLOG=None): """ Replays a benchmark stored with function :func:`enumerate_validated_operator_opsets <mlprodict.onnxrt.validate.validate.enumerate_validated_operator_opsets>` or command line :ref:`validate_runtime <l-cmd-validate_runtime>`. Enumerates the results. @param folder folder where to find pickled files, all files must have *pkl* or *pickle* extension @param runtime runtime or runtimes @param time_kwargs to define a more precise way to measure a model @param skip_long_test skips tests for high values of N if they seem too long @param time_kwargs_fact see :func:`_multiply_time_kwargs <mlprodict.onnxrt.validate.validate_helper._multiply_time_kwargs>` @param time_limit to skip the rest of the test after this limit (in second) @param verbose if >= 1, uses :epkg:`tqdm` @param fLOG logging function @return iterator on results """ files = [_ for _ in os.listdir(folder) if _.endswith( ".pkl") or _.endswith("_.pickle")] if len(files) == 0: raise FileNotFoundError( "Unable to find any file in folder '{}'.".format(folder)) if time_kwargs in (None, ''): time_kwargs = default_time_kwargs() if isinstance(runtime, str): runtime = runtime.split(",") loop = files if verbose >= 1: try: from tqdm import tqdm loop = tqdm(files) except ImportError: # pragma: no cover pass for pkl in loop: if "ERROR" in pkl: # An error. if verbose >= 2 and fLOG is not None: # pragma: no cover fLOG( # pragma: no cover "[enumerate_benchmark_replay] skip '{}'.".format(pkl)) continue # pragma: no cover if verbose >= 2 and fLOG is not None: fLOG("[enumerate_benchmark_replay] process '{}'.".format(pkl)) row = {} with open(os.path.join(folder, pkl), 'rb') as f: obj = pickle.load(f) X_test = obj['X_test'] ort_test = obj['Xort_test'] onx = obj['onnx_bytes'] model = obj['skl_model'] tkw = _multiply_time_kwargs(time_kwargs, time_kwargs_fact, model) row['folder'] = folder row['filename'] = pkl row['n_features'] = X_test.shape[1] for key in ['assume_finite', 'conv_options', 'init_types', 'idtype', 'method_name', 'n_features', 'name', 'optim', 'opset', 'predict_kwargs', 'output_index', 'problem', 'scenario']: row[key] = obj['obs_op'][key] # 'bench-batch', # 'bench-skl', oinfs = {} for rt in runtime: if rt == 'onnxruntime': try: oinfs[rt] = SimplifiedOnnxInference(onx) except (OrtFail, RuntimeError) as e: # pragma: no cover row['ERROR'] = str(e) oinfs[rt] = None else: try: oinfs[rt] = OnnxInference( onx, runtime=rt, runtime_options=dict( log_severity_level=3)) except (OrtFail, RuntimeError) as e: # pragma: no cover row['ERROR'] = str(e) oinfs[rt] = None for k, v in sorted(tkw.items()): if verbose >= 3 and fLOG is not None: fLOG( # pragma: no cover "[enumerate_benchmark_replay] process n_rows={} - {}".format(k, v)) xt = make_n_rows(X_test, k) number = v['number'] repeat = v['repeat'] meth = getattr(model, row['method_name']) with sklearn.config_context(assume_finite=row['assume_finite']): skl = measure_time(lambda x: meth(x), xt, number=number, repeat=repeat, div_by_number=True) if verbose >= 4 and fLOG is not None: fLOG( # pragma: no cover "[enumerate_benchmark_replay] skl={}".format(skl)) row['%d-skl-details' % k] = skl row['%d-skl' % k] = skl['average'] xto = make_n_rows(ort_test, k) for rt in runtime: oinf = oinfs[rt] if oinf is None: continue # pragma: no cover if len(oinf.input_names) != 1: raise NotImplementedError( # pragma: no cover "This function only allows one input not {}".format( len(oinf.input_names))) name = oinf.input_names[0] ort = measure_time(lambda x: oinf.run({name: x}), xto, number=number, repeat=repeat, div_by_number=True) if verbose >= 4 and fLOG is not None: fLOG( # pragma: no cover "[enumerate_benchmark_replay] {}={}".format(rt, ort)) row['%d-%s-detail' % (k, rt)] = ort row['%d-%s' % (k, rt)] = ort['average'] yield row
7,976
def add_regex_def(name: str, regex: str, priority: str, entity: str): """ Add additional regexes to the JSON file. Parameters ---------- name : str Regex name. regex : str Regex definition. priority : str Regex priority. entity : str Entity corresponding to the regex. """ with open("regexes.json") as json_file: data = json.load(json_file) y = {name: {"regex": regex, "priority": priority, "entity": entity}} data.update(y) with open("regexes.json", "w") as f: json.dump(data, f)
7,977
def wiggles(data, wiggleInterval=10, overlap=5, posFill='black', negFill=None, lineColor='black', rescale=True, extent=None, ax=None): """ 2-D Wiggle Trace Variable Amplitude Plot Parameters ---------- x: input data (2D numpy array) wiggleInterval: (default, 10) Plot 'wiggles' every wiggleInterval traces overlap: (default, 0.7) amount to overlap 'wiggles' by (1.0 = scaled to wiggleInterval) posFill: (default, black) color to fill positive wiggles with (string or None) negFill: (default, None) color to fill negative wiggles with (string or None) lineColor: (default, black) color of wiggle trace (string or None) resampleRatio: (default, 10) factor to resample traces by before plotting (1 = raw data) (float) extent: (default, (0, nx, 0, ny)) The extent to use for the plot. A 4-tuple of (xmin, xmax, ymin, ymax) ax: (default, current axis) The matplotlib axis to plot onto. Output: a matplotlib plot on the current axes """ # Rescale so that the data ranges from -1 to 1 if rescale: data = data.astype(np.float) data -= data.min() data /= data.ptp() data *= 2 data -= 1 if extent is None: xmin, ymin = 0, data.shape[0] ymax, xmax = 0, data.shape[1] else: xmin, xmax, ymin, ymax = extent if ax is None: _, ax = plt.subplots() ax.invert_yaxis() ax.set(xlim=[xmin, xmax], ylim=[ymin, ymax]) # xrange should be larger!!! ny, nx = data.shape x_loc = np.linspace(xmin, xmax, nx) for i in range(wiggleInterval//2, nx, wiggleInterval): x = overlap * (wiggleInterval / 2.0) * (x_loc[1] - x_loc[0]) * data[:, i] wiggle(x + x_loc[i], origin=x_loc[i], posFill=posFill, negFill=negFill, lineColor=lineColor, zmin=ymin, zmax=ymax, ax=ax) # decorations ax.xaxis.set_ticks_position('both') ax.yaxis.set_ticks_position('both') ax.xaxis.set_tick_params(labeltop='on', labelbottom='off') # # ticks_list = [(0.2, 0.2), (0.4, 0.4), (0.6, 0.6), (0.8, 0.8)] # ticks_list = [(0.2,0.2),(1,1)] # ax.set( # yticks=[item[1] for item in ax.transAxes.transform(ticks_list)], # xticks=[item[0] for item in ax.transAxes.transform(ticks_list)] # )
7,978
def save_dumps(module_name, dumps, dump_root="."): """ Serialize dump files to the disk. Parameters ---------- module_name : str File name, referring to the module that generated the dump contents dumps : dict The output contents to be saved into the files dump_root : str, optional Path in which dump files will be created """ for dump_format in dumps: dump_name = module_name + "." + dump_format with open(Path(dump_root, dump_name), "w") as f: f.write(dumps[dump_format])
7,979
def prendreTresorPlateau(plateau,lig,col,numTresor): """ prend le tresor numTresor qui se trouve sur la carte en lin,col du plateau retourne True si l'opération s'est bien passée (le trésor était vraiment sur la carte paramètres: plateau: le plateau considéré lig: la ligne où se trouve la carte col: la colonne où se trouve la carte numTresor: le numéro du trésor à prendre sur la carte resultat: un booléen indiquant si le trésor était bien sur la carte considérée """ if getTresor(getVal(plateau,lig,col))==numTresor: prendreTresor(getVal(plateau,lig,col)) return True else: return False
7,980
def load_styles(style_yaml) -> dict: """ Load point style dictionary """ default_style = {"icon_image": DEFAULT_ICON_IMAGE, "icon_color": DEFAULT_ICON_COLOR, "icon_scale": DEFAULT_ICON_SCALE, "text_scale": DEFAULT_TEXT_SCALE, } styles = {'Default': default_style} if style_yaml is None: return styles if not os.path.isfile(style_yaml): logging.error('Invalid style file location %s', style_yaml) return styles with open(style_yaml, 'r') as stream: new_styles = yaml.load(stream) for style in new_styles: if style in styles: logging.warning('Style %s already exists', style) continue else: styles[style] = dict() # Create new style for attr in ['icon_image', 'icon_color', 'icon_scale', 'text_scale']: if attr in new_styles[style]: attr_val = new_styles[style][attr] else: attr_val = default_style[attr] styles[style][attr] = attr_val return styles
7,981
def everything_deployed(project, chain, web3, accounts, deploy_address) -> dict: """Deploy our token plan.""" yaml_filename = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", "..","crowdsales", "allocated-token-sale-acceptance-test.yml")) deployment_name = "testrpc" chain_data = load_crowdsale_definitions(yaml_filename, deployment_name) runtime_data, statistics, contracts = _deploy_contracts(project, chain, web3, yaml_filename, chain_data, deploy_address) return contracts
7,982
def task_get_all(context, filters=None, marker=None, limit=None, sort_key='created_at', sort_dir='desc', admin_as_user=False): """ Get all tasks that match zero or more filters. :param filters: dict of filter keys and values. :param marker: task id after which to start page :param limit: maximum number of tasks to return :param sort_key: task attribute by which results should be sorted :param sort_dir: direction in which results should be sorted (asc, desc) :param admin_as_user: For backwards compatibility. If true, then return to an admin the equivalent set of tasks which it would see if it were a regular user :returns: tasks set """ filters = filters or {} session = get_session() query = session.query(models.Task) if not (context.is_admin or admin_as_user) and context.owner is not None: query = query.filter(models.Task.owner == context.owner) _task_soft_delete(context, session=session) showing_deleted = False if 'deleted' in filters: deleted_filter = filters.pop('deleted') query = query.filter_by(deleted=deleted_filter) showing_deleted = deleted_filter for (k, v) in filters.items(): if v is not None: key = k if hasattr(models.Task, key): query = query.filter(getattr(models.Task, key) == v) marker_task = None if marker is not None: marker_task = _task_get(context, marker, force_show_deleted=showing_deleted) sort_keys = ['created_at', 'id'] if sort_key not in sort_keys: sort_keys.insert(0, sort_key) query = _paginate_query(query, models.Task, limit, sort_keys, marker=marker_task, sort_dir=sort_dir) task_refs = query.all() tasks = [] for task_ref in task_refs: tasks.append(_task_format(task_ref, task_info_ref=None)) return tasks
7,983
def updateAppMonConf(AppID, requestModel): """Update an Application Monitoring Configuration for a given application Args: AppID (str): This is the application ID of the Web App you are interested in. requestModel: This is the data you wish to update and you need to put it in this format: { "enabled": true, "scanUrl": "https://mywebapp.com/directory" } explanation: { enabled (boolean): Enable Application Monitoring , scanUrl (string): Scan Url } Returns: dict: Dictionary with the following layout { "success": true, "errors": [ "string" ] } In the case of a return code 204, the update will take place but you will not get the above layout, instead you will get a custom layout like this: {'Response_Text': u'', 'Status_code': 204} """ url = "https://api.ams.fortify.com/api/v3/applications/{applicationId}/application-monitoring/configuration".format(applicationId=AppID) req = fodRequest() r = req.put(url, params=requestModel) return r #*******************************************************Applications**************************************************************
7,984
def plot_morphology(morphology, order=MORPHOLOGY_ORDER, colors=MORPHOLOGY_COLORS, metastases=None, metastasis_color=METASTASIS_COLOR, ax=None, bg_color='#f6f6f6', **kwargs): """Plots morphology matrix as 2D heatmap. Plots a morphology matrix (typically obtained from the parse_morphology function) as a 2D heatmap. Matrix is expected to correspond with the three categories returned by parse_morphology (ILC, Spindle cell and Squamous). Parameters ---------- morphology : pd.DataFrame Boolean matrix of samples-by-morphologies. order : colors : metastases : pd.DataFrame Optional dataframe (single column) indicating which samples have a metastasis. Used to draw metastases as an extra row in the heatmap. metastasis_color : ax : matplotlib.Axis Axis to use for plotting. bg_color : str **kwargs Any kwargs are passed to seaborns heatmap function. Returns ------- matplotlib.Axis Axis that was used for plotting. """ if ax is None: _, ax = plt.subplots() # Add metastasis data if given. if metastases is not None: morphology = pd.concat([morphology, metastases], axis=1) order = list(order) + [metastases.columns[0]] colors = list(colors) + [metastasis_color] # Sort by rows/columns. morphology = morphology[list(order)] morphology = sort_matrix(morphology, sort_columns=False) # Convert to numeric matrix (for heatmap). num_matrix = pd.DataFrame( { col: morphology[col].astype(int) * (i + 1) for i, col in enumerate(morphology) }, columns=morphology.columns) # Draw heatmap. cmap = ListedColormap([bg_color] + list(colors)) sns.heatmap( num_matrix.T, ax=ax, cbar=False, cmap=cmap, vmin=0, vmax=len(colors), **kwargs) ax.set_xticks([]) ax.set_xlim(0, num_matrix.shape[0]) ax.set_title('Tumor morphology') ax.set_xlabel('Samples ({})'.format(morphology.shape[0])) # Add counts to labels. ax.set_yticklabels( ['{} ({})'.format(k, v) for k, v in morphology.sum().items()][::-1], rotation=0) return ax
7,985
def get_btc(path, date1, date2, period="5-min", delay=3): """ period = '5-min', 'Hourly' """ url2_1 = ( r"https://bitcoincharts.com/charts/chart.json?m=krakenUSD&SubmitButton=Draw&r=5&i=" + period + "&c=1&s=" ) url2_2 = r"&Prev=&Next=&t=S&b=&a1=&m1=10&a2=&m2=25&x=0&i1=&i2=&i3=&i4=&v=1&cv=0&ps=0&l=0&p=0&" Path(path).mkdir(parents=True, exist_ok=True) with ProgressBar() as pb: # print(int((end - start).days))cl for d in pb(dates(date1, date2), total=int((date2 - date1).days)): date = d.strftime("%Y-%m-%d") r = requests.get(url2_1 + date + "&e=" + date + url2_2) assert r.status_code == 200, "Page returned invalid response" data = ast.literal_eval(r.text) assert len(data[0]) == 8, "Data was improperly parsed" headers = [ "Timestamp", "Open", "High", "Low", "Close", "Volume(BTC)", "Volume(Currency)", "WeightedPrice", ] with open( os.path.join(path, f"{date}.csv"), mode="w", newline="" ) as data_file: writer = csv.writer(data_file) writer.writerow(headers) writer.writerows(data) time.sleep(delay)
7,986
def test_section_trsp(get_test_ds,myfunc,tfld,xflds,yflds,factor,args,mask,error): """compute a volume transport, within the lat/lon portion of the domain""" ds = get_test_ds grid = ecco_v4_py.get_llc_grid(ds) ds['U'],ds['V'] = get_fake_vectors(ds['U'],ds['V']) for fx,fy in zip(xflds,yflds): ds[fx] = ds['U'].copy() ds[fy] = ds['V'].copy() myargs = args.copy() if mask: myargs['maskW'],myargs['maskS'] = ecco_v4_py.vector_calc.get_latitude_masks(30,ds['YC'],grid) else: myargs['maskW']=None myargs['maskS']=None if error is None: trsp = myfunc(ds,grid=grid,**myargs) maskW,maskS = ecco_v4_py.calc_section_trsp._parse_section_trsp_inputs(ds, grid=grid,**myargs) expx = (ds['drF']*ds['dyG']).copy() if tfld == 'vol_trsp_z' else 2.*xr.ones_like(ds['hFacW']) expy = (ds['drF']*ds['dxG']).copy() if tfld == 'vol_trsp_z' else 2.*xr.ones_like(ds['hFacS']) trspx = (expx*np.abs(maskW)).where(ds['maskW']).sum(dim=['i_g','j','tile']) trspy = (expy*np.abs(maskS)).where(ds['maskS']).sum(dim=['i','j_g','tile']) test = trsp[tfld].squeeze().reset_coords(drop=True) expected = (factor*(trspx+trspy)).reset_coords(drop=True) xr.testing.assert_equal(test,expected) else: with pytest.raises(error): trsp = myfunc(ds,**myargs)
7,987
def scores_summary(CurDataDir, steps = 300, population_size = 40, regenerate=False): """Obsolete for the one above! better and more automatic""" ScoreEvolveTable = np.full((steps, population_size,), np.NAN) ImagefnTable = [[""] * population_size for i in range(steps)] fncatalog = os.listdir(CurDataDir) if "scores_summary_table.npz" in fncatalog and (not regenerate): # if the summary table exist, just read from it! with np.load(os.path.join(CurDataDir, "scores_summary_table.npz")) as data: ScoreEvolveTable = data['ScoreEvolveTable'] ImagefnTable = data['ImagefnTable'] return ScoreEvolveTable, ImagefnTable startnum = 0 for stepi in range(startnum, steps): try: with np.load(os.path.join(CurDataDir, "scores_end_block{0:03}.npz".format(stepi))) as data: score_tmp = data['scores'] image_ids = data['image_ids'] ScoreEvolveTable[stepi, :len(score_tmp)] = score_tmp if stepi==0: image_fns = image_ids else: image_fns = [] for imgid in image_ids: fn_tmp_list = [fn for fn in fncatalog if (imgid in fn) and ('.npy' in fn)] assert len(fn_tmp_list) is 1, "Code file not found or wrong Code file number" image_fns.append(fn_tmp_list[0]) ImagefnTable[stepi][0:len(score_tmp)] = image_fns # FIXME: 1st generation natural stimuli is not in the directory! so it's not possible to get the file name there. Here just put the codeid except FileNotFoundError: if stepi == 0: startnum += 1 steps += 1 continue else: print("maximum steps is %d." % stepi) ScoreEvolveTable = ScoreEvolveTable[0:stepi, :] ImagefnTable = ImagefnTable[0:stepi] steps = stepi break ImagefnTable = np.asarray(ImagefnTable) savez(os.path.join(CurDataDir, "scores_summary_table.npz"), {"ScoreEvolveTable": ScoreEvolveTable, "ImagefnTable": ImagefnTable}) return ScoreEvolveTable, ImagefnTable
7,988
def post(name,url,message,params=None): """Wrap a post in some basic error reporting""" start = dt.now() s = requests.session() if params is None: response = s.post(url,json=message) else: response = s.post(url,json=message,params=params) end = dt.now() if not response.status_code == 200: print(name, 'error:',response.status_code) print(response.json()) return response.json() print(f'{name} returned in {end-start}s') m = response.json() if 'message' in m: if 'results' in m['message']: print(f'Num Results: {len(m["message"]["results"])}') print_errors(m) return m
7,989
def get_lin_reg_results(est, true, zero_tol=0): """ Parameters ---------- est: an Estimator A covariance estimator. true: array-like, shape (n_features, n_features) zero_tol: float Output ------ out: dict with keys 'utri' and 'graph' """ est_coef = get_coef(est)[0] est_adj = fill_hollow_sym(est_coef) true_adj = fill_hollow_sym(est_coef) coef_results = compare_vecs(est=est_coef, truth=true, zero_tol=zero_tol) graph_results = compare_adj_mats(est=est_adj, truth=true_adj, zero_tol=zero_tol) results = merge_dicts(coef_results, graph_results, allow_key_overlap=False) return results
7,990
def download_file(requested_url: str) -> str: """Download a file from github repository""" url = f"https://github.com/{requested_url.replace('blob', 'raw')}" resp = requests.get(url) logging.info(F"Requested URL: {requested_url}") if resp.status_code != 200: logging.info(f"Can not download {url}") raise NotebookDownloadException("Can not download the file. Please, check the URL") return resp.text
7,991
def readBody(response): """ Get the body of an L{IResponse} and return it as a byte string. This is a helper function for clients that don't want to incrementally receive the body of an HTTP response. @param response: The HTTP response for which the body will be read. @type response: L{IResponse} provider @return: A L{Deferred} which will fire with the body of the response. Cancelling it will close the connection to the server immediately. """ def cancel(deferred): """ Cancel a L{readBody} call, close the connection to the HTTP server immediately, if it is still open. @param deferred: The cancelled L{defer.Deferred}. """ abort = getAbort() if abort is not None: abort() d = defer.Deferred(cancel) protocol = _ReadBodyProtocol(response.code, response.phrase, d) def getAbort(): return getattr(protocol.transport, 'abortConnection', None) response.deliverBody(protocol) if protocol.transport is not None and getAbort() is None: warnings.warn( 'Using readBody with a transport that does not have an ' 'abortConnection method', category=DeprecationWarning, stacklevel=2) return d
7,992
def is_valid_mac(address): """Verify the format of a MAC address.""" class mac_dialect(netaddr.mac_eui48): word_fmt = '%.02x' word_sep = ':' try: na = netaddr.EUI(address, dialect=mac_dialect) except Exception: return False return str(na) == address.lower()
7,993
def build_state_abstraction(similar_states, mdp, tol=0.1): """ """ bools = similar_states + np.eye(similar_states.shape[0]) < tol # approximate abstraction if bools.sum() == 0: raise ValueError('No abstraction') mapping, parts = partitions(bools) idx = list(set(np.array([p[0] for p in parts]))) # pick a representative set of states. one from each partition f = construct_abstraction_fn(mapping, idx, mdp.S, len(idx)) # print('Abstracting from {} states to {} states'.format(mdp.S, len(parts))) # print('idx', idx) # print('mapping', mapping) # print('parts', parts) # mapping, parts = fix_mapping(mapping) # print(f) # print(f.shape, abs_mdp.S) abs_mdp = abstract_the_mdp(mdp, idx) # want a way to do this stuff in numpy!? # should calculate the error of the abstraction?! check it is related to tol!? return idx, abs_mdp, f
7,994
def diagram(source, rstrip=True): """High level API to generate ASCII diagram. This function is equivalent to: .. code-block:: python Diagram(source).renders() :param source: The ADia source code. :type source: str or file-like :param rstrip: If ``True``, the trailing wihtespaces at the end of each line will be removed. :type rstrip: bool, optional, default: True :return: ASCII diagram. :rtype: str """ return Diagram(source).renders(rstrip)
7,995
def eng_to_kong(eng_word: str)-> list[str]: """ Translate given English word into Korean into matching pronounciation, matching the English Loanword Orthography. For example, "hello" will be translated into 헐로. # Panics When given a english word that it cannot translate, `eng_to_kong` will raise a KeyError. Example ```python import konglog def main(): word = "shrimp" print(konglog.eng_to_kong(word)) ``` """ # Parse word into phonemes string for passing to Prolog Query. prolog_arg_aras = "]" for phe in cmudict.dict()[eng_word.lower().strip()][0]: if phe[-1] == '0' or phe[-1] == '1' or phe[-1] == '2': phe = phe[:-1] prolog_arg_aras = "," + phe.lower() + prolog_arg_aras prolog_arg_aras = "[" + prolog_arg_aras[1:] # Execute Prolog query with PrologMQI() as mqi: with mqi.create_thread() as prolog_thread: assert(prolog_thread.query("consult(\"ipa.pl\")")) prolog_res = prolog_thread.query(f"ipa_to_kr(X,{prolog_arg_aras})") # Parse results jamo_lists = [] try: for jls in prolog_res: temp = jls['X'] temp.reverse() jamo_lists.append(temp) except TypeError: raise KeyError jamo_all = [] for jamo_list in jamo_lists: temp_jamo_all = [""] for jamos in jamo_list: if isinstance(jamos, str): for i in range(len(temp_jamo_all)): temp_jamo_all[i] += jamos else: temp = [] for jamo in jamos: for s in temp_jamo_all: temp.append(s + jamo) temp_jamo_all = temp jamo_all.extend(temp_jamo_all) # Combine jamos into Konglish word jamo_all.sort(key = lambda x : len(x)) for jamos in jamo_all: try: return join_jamos(jamos, False) except ValueError: continue
7,996
def test_ME109(applicability_code, amount): """ If the flag 'amount' on duty expression is 'mandatory' then an amount must be specified. If the flag is set to 'not permitted' then no amount may be entered. """ measure = factories.MeasureFactory.create() condition = factories.MeasureConditionComponentFactory.create( condition__dependent_measure=measure, duty_expression__duty_amount_applicability_code=applicability_code, duty_amount=amount, ) with pytest.raises(BusinessRuleViolation): business_rules.ME109(condition.transaction).validate(measure)
7,997
def write_csv(path, data): """TODO""" with open(path, 'w', newline='', encoding='utf-8') as csv_file: writer = csv.writer(csv_file) writer.writerows(data)
7,998
def targets_to_moves( initial: Coordinates[AxisKey, CoordinateValue], targets: List[MoveTarget[AxisKey]] ) -> Iterator[Move[AxisKey]]: """Transform a list of MoveTargets into a list of Moves.""" all_axes: Set[AxisKey] = set() for target in targets: all_axes.update(set(target.position.keys())) initial_checked = {k: np.float64(initial.get(k, 0)) for k in all_axes} for target in targets: position = {k: np.float64(target.position.get(k, 0)) for k in all_axes} unit_vector, distance = get_unit_vector(initial_checked, position) third_distance = np.float64(distance / 3) m = Move( unit_vector=unit_vector, distance=distance, max_speed=target.max_speed, blocks=( Block( distance=third_distance, initial_speed=target.max_speed, acceleration=np.float64(0), ), Block( distance=third_distance, initial_speed=target.max_speed, acceleration=np.float64(0), ), Block( distance=third_distance, initial_speed=target.max_speed, acceleration=np.float64(0), ), ), ) log.debug(f"Built move from {initial} to {target} as {m}") yield m initial_checked = position
7,999