content
stringlengths
22
815k
id
int64
0
4.91M
def index(a: protocols.SupportsIndex) -> int: """ Return _a_ converted to an integer. Equivalent to a.__index__(). Example: >>> class Index: ... def __index__(self) -> int: ... return 0 >>> [1][Index()] 1 Args: a: """ return operator.index(a)
7,500
def col_to_num(col_str): """ Convert base26 column string to number. """ expn = 0 col_num = 0 for char in reversed(col_str): col_num += (ord(char) - ord('A') + 1) * (26 ** expn) expn += 1 return col_num
7,501
def process_chunk(chunk, verbose=False): """Return a tuple of chunk kind, task-create links, task-create times, task-leave times and the chunk's graph""" # Make function for looking up event attributes get_attr = attr_getter(chunk.attr) # Unpack events from chunk (_, (first_event, *events, last_event)), = chunk.items() if verbose and len(events) > 0: print(chunk) # Make the graph representing this chunk g = ig.Graph(directed=True) prior_node = g.add_vertex(event=first_event) # Used to save taskgroup-enter event to match to taskgroup-leave event taskgroup_enter_event = None # Match master-enter event to corresponding master-leave master_enter_event = first_event if get_attr(first_event, 'region_type') == 'master' else None if chunk.kind == 'parallel': parallel_id = get_attr(first_event, 'unique_id') prior_node["parallel_sequence_id"] = (parallel_id, get_attr(first_event, 'endpoint')) task_create_nodes = deque() task_links = deque() task_crt_ts = deque() task_leave_ts = deque() if type(first_event) is Enter and get_attr(first_event, 'region_type') in ['initial_task']: task_crt_ts.append((get_attr(first_event, 'unique_id'), first_event.time)) k = 1 for event in chain(events, (last_event,)): if get_attr(event, 'region_type') in ['implicit_task']: if type(event) is Enter: task_links.append((get_attr(event, 'encountering_task_id'), get_attr(event, 'unique_id'))) task_crt_ts.append((get_attr(event, 'unique_id'), event.time)) elif type(event) is Leave: task_leave_ts.append((get_attr(event, 'unique_id'), event.time)) continue # The node representing this event node = g.add_vertex(event=event) # Add task-leave time if type(event) is Leave and get_attr(event, 'region_type') == 'explicit_task': task_leave_ts.append((get_attr(event, 'unique_id'), event.time)) # Add task links and task crt ts if (type(event) is Enter and get_attr(event, 'region_type') == 'implicit_task') \ or (type(event) is ThreadTaskCreate): task_links.append((get_attr(event, 'encountering_task_id'), get_attr(event, 'unique_id'))) task_crt_ts.append((get_attr(event, 'unique_id'), event.time)) # Match taskgroup-enter/-leave events if get_attr(event, 'region_type') in ['taskgroup']: if type(event) is Enter: taskgroup_enter_event = event elif type(event) is Leave: if taskgroup_enter_event is None: raise ValueError("taskgroup-enter event was None") node['taskgroup_enter_event'] = taskgroup_enter_event taskgroup_enter_event = None # Match master-enter/-leave events if get_attr(event, 'region_type') in ['master']: if type(event) is Enter: master_enter_event = event elif type(event) is Leave: if master_enter_event is None: raise ValueError("master-enter event was None") node['master_enter_event'] = master_enter_event master_enter_event = None # Label nodes in a parallel chunk by their position for easier merging if (chunk.kind == 'parallel' and type(event) is not ThreadTaskCreate and get_attr(event, 'region_type') != 'master'): node["parallel_sequence_id"] = (parallel_id, k) k += 1 if get_attr(event, 'region_type') == 'parallel': # Label nested parallel regions for easier merging... if event is not last_event: node["parallel_sequence_id"] = (get_attr(event, 'unique_id'), get_attr(event, 'endpoint')) # ... but distinguish from a parallel chunk's terminating parallel-end event else: node["parallel_sequence_id"] = (parallel_id, get_attr(event, 'endpoint')) # Add edge except for (single begin -> single end) and (parallel N begin -> parallel N end) if events_bridge_region(prior_node['event'], node['event'], ['single_executor', 'single_other', 'master'], get_attr) \ or (events_bridge_region(prior_node['event'], node['event'], ['parallel'], get_attr) and get_attr(node['event'], 'unique_id') == get_attr(prior_node['event'], 'unique_id')): pass else: g.add_edge(prior_node, node) # For task_create add dummy nodes for easier merging if type(event) is ThreadTaskCreate: node['task_cluster_id'] = (get_attr(event, 'unique_id'), 'enter') dummy_node = g.add_vertex(event=event, task_cluster_id=(get_attr(event, 'unique_id'), 'leave')) task_create_nodes.append(dummy_node) continue elif len(task_create_nodes) > 0: task_create_nodes = deque() prior_node = node if chunk.kind == 'explicit_task' and len(events) == 0: g.delete_edges([0]) # Require at least 1 edge between start and end nodes if there are no internal nodes, except for empty explicit # task chunks if chunk.kind != "explicit_task" and len(events) == 0 and g.ecount() == 0: g.add_edge(g.vs[0], g.vs[1]) return chunk.kind, task_links, task_crt_ts, task_leave_ts, g
7,502
def delazi_wgs84(lat1, lon1, lat2, lon2): """delazi_wgs84(double lat1, double lon1, double lat2, double lon2)""" return _Math.delazi_wgs84(lat1, lon1, lat2, lon2)
7,503
def clipped_zoom(x: np.ndarray, zoom_factor: float) -> np.ndarray: """ Helper function for zoom blur. Parameters ---------- x Instance to be perturbed. zoom_factor Zoom strength. Returns ------- Cropped and zoomed instance. """ h = x.shape[0] ch = int(np.ceil(h / float(zoom_factor))) # ceil crop height(= crop width) top = (h - ch) // 2 x = zoom(x[top:top + ch, top:top + ch], (zoom_factor, zoom_factor, 1), order=1) trim_top = (x.shape[0] - h) // 2 # trim off any extra pixels return x[trim_top:trim_top + h, trim_top:trim_top + h]
7,504
def NextFchunk(ea): """ Get next function chunk @param ea: any address @return: the starting address of the next function chunk or BADADDR @note: This function enumerates all chunks of all functions in the database """ func = idaapi.get_next_fchunk(ea) if func: return func.startEA else: return BADADDR
7,505
def test_private_access_through_object(enable_accessify): """ Case: access to the private member through member's class object. Expect: inaccessible due to its protection level error message. """ car = CarWithPrivateEngine() expected_error_message = INACCESSIBLE_DUE_TO_ITS_PROTECTION_LEVEL_EXCEPTION_MESSAGE.format( class_name=CarWithPrivateEngine.__name__, class_method_name='start_engine', ) with pytest.raises(InaccessibleDueToItsProtectionLevelException) as error: car.start_engine() assert expected_error_message == error.value.message
7,506
def draw(): """Render everything on the screen once per frame""" # Clear the screen first screen.clear() # noqa: F821 # Set the background color to pink screen.fill("pink") # noqa: F821 # Draw the player player.draw() # Draw the remaining coins for coin in coin_list: coin.draw() # Draw the current score at the bottom screen.draw.text( # noqa: F821 f"Score: {score}", (50, HEIGHT - 50), fontsize=48, color="black", )
7,507
def share_to_group(request, repo, group, permission): """Share repo to group with given permission. """ repo_id = repo.id group_id = group.id from_user = request.user.username if is_org_context(request): org_id = request.user.org.org_id group_repo_ids = seafile_api.get_org_group_repoids(org_id, group.id) else: group_repo_ids = seafile_api.get_group_repoids(group.id) if repo.id in group_repo_ids: return False try: if is_org_context(request): org_id = request.user.org.org_id seafile_api.add_org_group_repo(repo_id, org_id, group_id, from_user, permission) else: seafile_api.set_group_repo(repo_id, group_id, from_user, permission) return True except Exception as e: logger.error(e) return False
7,508
def test_get_os_platform_windows(): """Get platform from a patched Windows machine.""" with patch("platform.system", return_value="Windows"): with patch("platform.release", return_value="10"): with patch("platform.machine", return_value="AMD64"): os_platform = get_os_platform() assert os_platform.system == "Windows" assert os_platform.release == "10" assert os_platform.machine == "AMD64"
7,509
def change_config(python, backend, cheatsheet, asciiart): """ Show/update configuration (Python, Backend, Cheatsheet, ASCIIART). """ asciiart_file = "suppress_asciiart" cheatsheet_file = "suppress_cheatsheet" python_file = 'PYTHON_MAJOR_MINOR_VERSION' backend_file = 'BACKEND' if asciiart is not None: if asciiart: delete_cache(asciiart_file) console.print('[bright_blue]Enable ASCIIART![/]') else: touch_cache_file(asciiart_file) console.print('[bright_blue]Disable ASCIIART![/]') if cheatsheet is not None: if cheatsheet: delete_cache(cheatsheet_file) console.print('[bright_blue]Enable Cheatsheet[/]') elif cheatsheet is not None: touch_cache_file(cheatsheet_file) console.print('[bright_blue]Disable Cheatsheet[/]') if python is not None: write_to_cache_file(python_file, python) console.print(f'[bright_blue]Python default value set to: {python}[/]') if backend is not None: write_to_cache_file(backend_file, backend) console.print(f'[bright_blue]Backend default value set to: {backend}[/]') def get_status(file: str): return "disabled" if check_if_cache_exists(file) else "enabled" console.print() console.print("[bright_blue]Current configuration:[/]") console.print() console.print(f"[bright_blue]* Python: {read_from_cache_file(python_file)}[/]") console.print(f"[bright_blue]* Backend: {read_from_cache_file(backend_file)}[/]") console.print(f"[bright_blue]* ASCIIART: {get_status(asciiart_file)}[/]") console.print(f"[bright_blue]* Cheatsheet: {get_status(cheatsheet_file)}[/]") console.print()
7,510
def get_memcached_usage(socket=None): """ Returns memcached statistics. :param socket: Path to memcached's socket file. """ cmd = 'echo \'stats\' | nc -U {0}'.format(socket) output = getoutput(cmd) curr_items = None bytes_ = None rows = output.split('\n')[:-1] for row in rows: row = row.split() if row[1] == 'curr_items': curr_items = int(row[2]) if row[1] == 'bytes': bytes_ = int(row[2]) return (bytes_, curr_items)
7,511
def list_installed(executable=None): """ List installed resources """ resmgr = OcrdResourceManager() ret = [] for executable, reslist in resmgr.list_installed(executable): print_resources(executable, reslist, resmgr)
7,512
def _process_video_files(name, filenames, labels, num_shards): """Process and save list of images as TFRecord of Example protos. Args: name: string, unique identifier specifying the data set filenames: list of strings; each string is a path to an image file texts: list of strings; each string is human readable, e.g. 'dog' labels: list of integer; each integer identifies the ground truth num_shards: integer number of shards for this data set. """ assert len(filenames) == len(labels) # Break all images into batches with a [ranges[i][0], ranges[i][1]]. spacing = np.linspace(0, len(filenames), FLAGS.num_threads + 1).astype(np.int) ranges = [] for i in range(len(spacing) - 1): ranges.append([spacing[i], spacing[i + 1]]) # Launch a thread for each batch. print('Launching %d threads for spacings: %s' % (FLAGS.num_threads, ranges)) sys.stdout.flush() # Create a mechanism for monitoring when all threads are finished. coord = tf.train.Coordinator() # Create a generic TensorFlow-based utility for converting all image codings. coder = ImageCoder() threads = [] for thread_index in range(len(ranges)): args = (coder, thread_index, ranges, name, filenames, labels, num_shards) t = threading.Thread(target=_process_video_files_batch, args=args) threads.append(t) for t in threads: t.setDaemon(True) t.start() # Wait for all the threads to terminate. coord.join(threads) print('%s: Finished writing all %d images in data set.' % (datetime.now(), len(filenames))) sys.stdout.flush()
7,513
def dataset_config(): """Return a DatasetConfig for testing.""" return hubs.DatasetConfig(factory=Dataset, flag=True)
7,514
def combinations(): """Produce all the combinations for different items.""" combined = itertools.combinations('ABC', r=2) combined = [''.join(possibility) for possibility in combined] return combined
7,515
def setup(hass, config): """Create a Honeywell (EMEA/EU) evohome CH/DHW system. One controller with 0+ heating zones (e.g. TRVs, relays) and, optionally, a DHW controller. Does not work for US-based systems. """ evo_data = hass.data[DATA_EVOHOME] = {} evo_data['timers'] = {} evo_data['params'] = dict(config[DOMAIN]) evo_data['params'][CONF_SCAN_INTERVAL] = SCAN_INTERVAL_DEFAULT from evohomeclient2 import EvohomeClient _LOGGER.debug("setup(): API call [4 request(s)]: client.__init__()...") try: # There's a bug in evohomeclient2 v0.2.7: the client.__init__() sets # the root loglevel when EvohomeClient(debug=?), so remember it now... log_level = logging.getLogger().getEffectiveLevel() client = EvohomeClient( evo_data['params'][CONF_USERNAME], evo_data['params'][CONF_PASSWORD], debug=False ) # ...then restore it to what it was before instantiating the client logging.getLogger().setLevel(log_level) except HTTPError as err: if err.response.status_code == HTTP_BAD_REQUEST: _LOGGER.error( "Failed to establish a connection with evohome web servers, " "Check your username (%s), and password are correct." "Unable to continue. Resolve any errors and restart HA.", evo_data['params'][CONF_USERNAME] ) return False # unable to continue raise # we dont handle any other HTTPErrors finally: # Redact username, password as no longer needed. evo_data['params'][CONF_USERNAME] = 'REDACTED' evo_data['params'][CONF_PASSWORD] = 'REDACTED' evo_data['client'] = client # Redact any installation data we'll never need. if client.installation_info[0]['locationInfo']['locationId'] != 'REDACTED': for loc in client.installation_info: loc['locationInfo']['streetAddress'] = 'REDACTED' loc['locationInfo']['city'] = 'REDACTED' loc['locationInfo']['locationOwner'] = 'REDACTED' loc[GWS][0]['gatewayInfo'] = 'REDACTED' # Pull down the installation configuration. loc_idx = evo_data['params'][CONF_LOCATION_IDX] try: evo_data['config'] = client.installation_info[loc_idx] except IndexError: _LOGGER.warning( "setup(): Parameter '%s' = %s , is outside its range (0-%s)", CONF_LOCATION_IDX, loc_idx, len(client.installation_info) - 1 ) return False # unable to continue evo_data['status'] = {} if _LOGGER.isEnabledFor(logging.DEBUG): tmp_loc = dict(evo_data['config']) tmp_loc['locationInfo']['postcode'] = 'REDACTED' tmp_tcs = tmp_loc[GWS][0][TCS][0] if 'zones' in tmp_tcs: tmp_tcs['zones'] = '...' if 'dhw' in tmp_tcs: tmp_tcs['dhw'] = '...' _LOGGER.debug("setup(), location = %s", tmp_loc) load_platform(hass, 'climate', DOMAIN) return True
7,516
def test_api_keys(enter_password, config): """ Test creating, revoking, expiring API keys. Test that they have appropriate scope-limited access. """ # Make alice an admin. Leave bob as a user. config["authentication"]["tiled_admins"] = [{"provider": "toy", "id": "alice"}] with enter_password("secret1"): admin_client = from_config(config, username="alice", token_cache={}) with enter_password("secret2"): user_client = from_config(config, username="bob", token_cache={}) # Make and use an API key. Check that latest_activity is updated. user_key_info = user_client.context.create_api_key() assert user_key_info["latest_activity"] is None # never used user_client_from_key = from_config(config, api_key=user_key_info["secret"]) # Check that api_key property is set. assert user_client_from_key.context.api_key == user_key_info["secret"] # Use the key for a couple requests and see that latest_activity becomes set and then increases. user_client_from_key["A1"] key_activity1 = user_client_from_key.context.which_api_key()["latest_activity"] principal_activity1 = user_client_from_key.context.whoami()["latest_activity"] assert key_activity1 is not None time.sleep(2) # Ensure time resolution (1 second) has ticked up. user_client_from_key["A1"] key_activity2 = user_client_from_key.context.which_api_key()["latest_activity"] principal_activity2 = user_client_from_key.context.whoami()["latest_activity"] assert key_activity2 > key_activity1 assert principal_activity2 > principal_activity1 assert len(user_client_from_key.context.whoami()["api_keys"]) == 1 # Unset the API key. secret = user_client_from_key.context.api_key user_client_from_key.context.api_key = None with pytest.raises(RuntimeError): user_client_from_key.context.which_api_key() # Set the API key. user_client_from_key.context.api_key = secret # Now this works again. user_client_from_key.context.which_api_key() # Request a key with reduced scope that cannot read metadata. admin_key_info = admin_client.context.create_api_key(scopes=["metrics"]) with fail_with_status_code(401): from_config(config, api_key=admin_key_info["secret"]) # Request a key with reduced scope that can *only* read metadata. admin_key_info = admin_client.context.create_api_key(scopes=["read:metadata"]) restricted_client = from_config(config, api_key=admin_key_info["secret"]) restricted_client["A1"] with fail_with_status_code(401): restricted_client["A1"].read() # no 'read:data' scope # Try to request a key with more scopes that the user has. with fail_with_status_code(400): user_client.context.create_api_key(scopes=["admin:apikeys"]) # Create and revoke key. user_key_info = user_client.context.create_api_key(note="will revoke soon") assert len(user_client_from_key.context.whoami()["api_keys"]) == 2 # There should now be two keys, one from above and this new one, with our note. for api_key in user_client_from_key.context.whoami()["api_keys"]: if api_key["note"] == "will revoke soon": break else: assert False, "No api keys had a matching note." # Revoke the new key. user_client_from_key.context.revoke_api_key(user_key_info["first_eight"]) with fail_with_status_code(401): from_config(config, api_key=user_key_info["secret"]) assert len(user_client_from_key.context.whoami()["api_keys"]) == 1 # Create a key with a very short lifetime. user_key_info = user_client.context.create_api_key( note="will expire very soon", expires_in=1 ) # units: seconds time.sleep(2) with fail_with_status_code(401): from_config(config, api_key=user_key_info["secret"])
7,517
def _check_valid_settings_for_input(input_value: Any, pivot_reg: PivotRegistration): """Check input against settings in `pivot_reg`.""" # Must have one of these specified if not (pivot_reg.func_df_col_param_name or pivot_reg.func_input_value_arg): raise ValueError( "A value for one of 'func_df_col_param_name' ", "or 'func_input_value_arg' must be given", ) # If the function accepts only value type and cannot iterate. Make sure # that the input_value is a simple value if pivot_reg.input_type == "value": if not pivot_reg.func_input_value_arg: raise ValueError("No value for pivot func input argument was given") if not pivot_reg.can_iterate and ( isinstance(input_value, pd.DataFrame) or ( # pylint: disable=isinstance-second-argument-not-valid-type isinstance(input_value, pd.DataFrame) and not isinstance(input_value, str) # pylint: enable=isinstance-second-argument-not-valid-type ) ): raise ValueError( f"This function does not accept inputs of {type(input_value)}" )
7,518
def geo_exps_MD(n_nodes, radius, l_0, l_1, K=40, thinRatio=1, gammas=10, max_iter=100, nSamp=50, Niid=1, seed=0): """Solves the Connected Subgraph Detection problem and calculates AUC using Mirror Descent Optimisation for a random geometric graph. Parameters ---------- n_nodes : int Number of nodes for the random graph. radius : float Distance threshold value. l_0 : float Base rate. l_1 : float Anomalous rate. K : int Anomaly size. thinRatio : float Ratio of max semi axis length to min semi axis length. Determines if graph is an ellipsoid or a sphere. gammas : int or np.array Conductance rates. max_iter : int Number of iterations. nSamp : int Number of samples. Niid : int Number of iid runs. seed : int Random seed. Returns ------- scores_noise : np.array List of shape (nSamp, gammas_n) with AUC scores of optimisation. """ graph = Geo_graph_3d(n_nodes=n_nodes, radius=radius, seed=seed) A, pts = graph.Adj, graph.pos_array if type(gammas) == int: gammas = np.logspace(-3, np.log10(2), gammas) gammas_n = gammas.shape[0] yy, S = genMeasurements(pts, K, l_0, l_1, nSamp, thinRatio) s = S[0] scores_noise = np.zeros((Niid, nSamp, gammas_n), dtype='float32') for niid in range(Niid): print('No of iid run: {}'.format(niid+1)) scores = np.zeros((nSamp, gammas_n)) with trange(nSamp, ncols=100) as tqdm: for ns in tqdm: ys = yy[:,ns] c = ys / np.linalg.norm(ys) * np.sqrt(ys.shape[0]) C = c.reshape(-1,1) @ c.reshape(1,-1) for gind in range(gammas_n): tqdm.set_description('MD || Run = {} gamma = {:2f}'.format(niid+1, gammas[gind])) M = runOpt_md(A=A, C=C, gamma=gammas[gind], s=s, max_iter=max_iter) scores[ns, gind] = np.trace(ys.reshape(-1,1) @ ys.reshape(1,-1) @ M) tqdm.set_postfix(Loss='{:8f}'.format(np.trace(C.T @ M))) scores_noise[niid] = scores return scores_noise.mean(0)
7,519
def validate_sig_integrity(signer_info: cms.SignedData, cert: x509.Certificate, expected_content_type: str, actual_digest: bytes) -> Tuple[bool, bool]: """ Validate the integrity of a signature for a particular signerInfo object inside a CMS signed data container. .. warning:: This function does not do any trust checks, and is considered "dangerous" API because it is easy to misuse. :param signer_info: A :class:`cms.SignerInfo` object. :param cert: The signer's certificate. .. note:: This function will not attempt to extract certificates from the signed data. :param expected_content_type: The expected value for the content type attribute (as a Python string, see :class:`cms.ContentType`). :param actual_digest: The actual digest to be matched to the message digest attribute. :return: A tuple of two booleans. The first indicates whether the provided digest matches the value in the signed attributes. The second indicates whether the signature of the digest is valid. """ signature_algorithm: cms.SignedDigestAlgorithm = \ signer_info['signature_algorithm'] digest_algorithm_obj = signer_info['digest_algorithm'] md_algorithm = digest_algorithm_obj['algorithm'].native signature = signer_info['signature'].native # signed_attrs comes with some context-specific tagging. # We need to re-tag it with a universal SET OF tag. signed_attrs = signer_info['signed_attrs'].untag() if not signed_attrs: embedded_digest = None prehashed = True signed_data = actual_digest else: prehashed = False # check the CMSAlgorithmProtection attr, if present try: cms_algid_protection, = find_cms_attribute( signed_attrs, 'cms_algorithm_protection' ) signed_digest_algorithm = \ cms_algid_protection['digest_algorithm'].native if signed_digest_algorithm != digest_algorithm_obj.native: raise SignatureValidationError( "Digest algorithm does not match CMS algorithm protection " "attribute." ) signed_sig_algorithm = \ cms_algid_protection['signature_algorithm'].native if signed_sig_algorithm is None: raise SignatureValidationError( "CMS algorithm protection attribute not valid for signed " "data" ) elif signed_sig_algorithm != signature_algorithm.native: raise SignatureValidationError( "Signature mechanism does not match CMS algorithm " "protection attribute." ) except KeyError: pass except SignatureValidationError: raise except ValueError: raise SignatureValidationError( 'Multiple CMS protection attributes present' ) try: content_type, = find_cms_attribute(signed_attrs, 'content_type') content_type = content_type.native if content_type != expected_content_type: raise SignatureValidationError( f'Content type {content_type} did not match expected value ' f'{expected_content_type}' ) except SignatureValidationError: raise except (KeyError, ValueError): raise SignatureValidationError( 'Content type not found in signature, or multiple content-type ' 'attributes present.' ) try: embedded_digest, = find_cms_attribute( signed_attrs, 'message_digest' ) embedded_digest = embedded_digest.native except (KeyError, ValueError): raise SignatureValidationError( 'Message digest not found in signature, or multiple message ' 'digest attributes present.' ) signed_data = signed_attrs.dump() try: _validate_raw( signature, signed_data, cert, signature_algorithm, md_algorithm, prehashed=prehashed ) valid = True except InvalidSignature: valid = False intact = ( actual_digest == embedded_digest if embedded_digest is not None else valid ) return intact, valid
7,520
def linemod_dpt(path): """ read a depth image @return uint16 image of distance in [mm]""" dpt = open(path, "rb") rows = np.frombuffer(dpt.read(4), dtype=np.int32)[0] cols = np.frombuffer(dpt.read(4), dtype=np.int32)[0] return (np.fromfile(dpt, dtype=np.uint16).reshape((rows, cols)) / 1000.).astype(np.float32)
7,521
def findNode(nodes: Iterable[AstNode], name: str) -> Optional[SExpr]: """ Finds a node with given name in a list of nodes """ for node in nodes: if isinstance(node, Atom): continue if len(node.items) == 0: continue nameNode = node.items[0] if isinstance(nameNode, Atom) and nameNode.value == name: return node return None
7,522
def test_repository_to_branches(neo4j_session): """ Ensure that repositories are connected to branches. """ _ensure_local_neo4j_has_test_repositories_data(neo4j_session) query = """ MATCH(branch:GitHubBranch)<-[:BRANCH]-(repo:GitHubRepository{id:{RepositoryId}}) RETURN branch.name, repo.id, repo.name """ expected_repository_id = 'https://fake.github.net/graphql/:MDEwOlJlcG9zaXRvcnkxNg==' nodes = neo4j_session.run( query, RepositoryId=expected_repository_id, ) actual_nodes = { ( n['branch.name'], n['repo.id'], n['repo.name'], ) for n in nodes } expected_nodes = { ( 'master', 'https://fake.github.net/graphql/:MDEwOlJlcG9zaXRvcnkxNg==', 'pythontestlib', ), } assert actual_nodes == expected_nodes
7,523
def search(keywords=None, servicetype=None, waveband=None): """ execute a simple query to the RegTAP registry. Parameters ---------- keywords : list of str keyword terms to match to registry records. Use this parameter to find resources related to a particular topic. servicetype : str the service type to restrict results to. Allowed values include 'conesearch', 'sia' , 'ssa', 'slap', 'tap' waveband : str the name of a desired waveband; resources returned will be restricted to those that indicate as having data in that waveband. Allowed values include 'radio', 'millimeter', 'infrared', 'optical', 'uv', 'euv', 'x-ray' 'gamma-ray' Returns ------- RegistryResults a container holding a table of matching resource (e.g. services) See Also -------- RegistryResults """ if not any((keywords, servicetype, waveband)): raise dalq.DALQueryError( "No search parameters passed to registry search") joins = set(["rr.interface"]) joins = set(["rr.resource"]) wheres = list() if keywords: joins.add("rr.res_subject") joins.add("rr.resource") wheres.extend(["({})".format(" AND ".join(""" ( 1=ivo_nocasematch(res_subject, '%{0}%') OR 1=ivo_hasword(res_description, '{0}') OR 1=ivo_hasword(res_title, '{0}') )""".format(tap.escape(keyword)) for keyword in keywords ))]) if servicetype: servicetype = _service_type_map.get(servicetype, servicetype) joins.add("rr.interface") wheres.append("standard_id LIKE 'ivo://ivoa.net/std/{}%'".format( tap.escape(servicetype))) wheres.append("intf_type = 'vs:paramhttp'") else: wheres.append("""( standard_id LIKE 'ivo://ivoa.net/std/conesearch%' OR standard_id LIKE 'ivo://ivoa.net/std/sia%' OR standard_id LIKE 'ivo://ivoa.net/std/ssa%' OR standard_id LIKE 'ivo://ivoa.net/std/slap%' OR standard_id LIKE 'ivo://ivoa.net/std/tap%' )""") if waveband: joins.add("rr.resource") wheres.append("1 = ivo_hashlist_has('{}', waveband)".format( tap.escape(waveband))) query = """SELECT DISTINCT rr.interface.*, rr.capability.*, rr.resource.* FROM rr.capability {} {} """.format( ''.join("NATURAL JOIN {} ".format(j) for j in joins), ("WHERE " if wheres else "") + " AND ".join(wheres) ) service = tap.TAPService(REGISTRY_BASEURL) query = tap.TAPQuery(service.baseurl, query, maxrec=service.hardlimit) query.RESULTS_CLASS = RegistryResults return query.execute()
7,524
def shadingLightRelCtx(*args, **kwargs): """ This command creates a context that can be used for associating lights to shading groups. You can put the context into shading-centric mode by using the -shadingCentric flag and specifying true. This means that the shading group is selected first then lights associated with the shading group are highlighted. Subsequent selections result in assignments. Specifying -shadingCentric false means that the light is to be selected first. The shading groups associated with the light will then be selected and subsequent selections will result in assignments being made. Flags: - exists : ex (bool) [create] Returns true or false depending upon whether the specified object exists. Other flags are ignored. - history : ch (bool) [create] If this is a tool command, turn the construction history on for the tool in question. - image1 : i1 (unicode) [create,query,edit] First of three possible icons representing the tool associated with the context. - image2 : i2 (unicode) [create,query,edit] Second of three possible icons representing the tool associated with the context. - image3 : i3 (unicode) [create,query,edit] Third of three possible icons representing the tool associated with the context. - name : n (unicode) [create] If this is a tool command, name the tool appropriately. - offCommand : ofc (unicode) [create,query,edit] command to be issued when context is turned on - onCommand : onc (unicode) [create,query,edit] command to be issued when context is turned on - shadingCentric : s (bool) [create,query,edit] shading-centric mode. Flag can have multiple arguments, passed either as a tuple or a list. Derived from mel command `maya.cmds.shadingLightRelCtx` """ pass
7,525
def describe_data_sources(FilterVariable=None, EQ=None, GT=None, LT=None, GE=None, LE=None, NE=None, Prefix=None, SortOrder=None, NextToken=None, Limit=None): """ Returns a list of DataSource that match the search criteria in the request. See also: AWS API Documentation :example: response = client.describe_data_sources( FilterVariable='CreatedAt'|'LastUpdatedAt'|'Status'|'Name'|'DataLocationS3'|'IAMUser', EQ='string', GT='string', LT='string', GE='string', LE='string', NE='string', Prefix='string', SortOrder='asc'|'dsc', NextToken='string', Limit=123 ) :type FilterVariable: string :param FilterVariable: Use one of the following variables to filter a list of DataSource : CreatedAt - Sets the search criteria to DataSource creation dates. Status - Sets the search criteria to DataSource statuses. Name - Sets the search criteria to the contents of DataSource **** Name . DataUri - Sets the search criteria to the URI of data files used to create the DataSource . The URI can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory. IAMUser - Sets the search criteria to the user account that invoked the DataSource creation. :type EQ: string :param EQ: The equal to operator. The DataSource results will have FilterVariable values that exactly match the value specified with EQ . :type GT: string :param GT: The greater than operator. The DataSource results will have FilterVariable values that are greater than the value specified with GT . :type LT: string :param LT: The less than operator. The DataSource results will have FilterVariable values that are less than the value specified with LT . :type GE: string :param GE: The greater than or equal to operator. The DataSource results will have FilterVariable values that are greater than or equal to the value specified with GE . :type LE: string :param LE: The less than or equal to operator. The DataSource results will have FilterVariable values that are less than or equal to the value specified with LE . :type NE: string :param NE: The not equal to operator. The DataSource results will have FilterVariable values not equal to the value specified with NE . :type Prefix: string :param Prefix: A string that is found at the beginning of a variable, such as Name or Id . For example, a DataSource could have the Name 2014-09-09-HolidayGiftMailer . To search for this DataSource , select Name for the FilterVariable and any of the following strings for the Prefix : 2014-09 2014-09-09 2014-09-09-Holiday :type SortOrder: string :param SortOrder: A two-value parameter that determines the sequence of the resulting list of DataSource . asc - Arranges the list in ascending order (A-Z, 0-9). dsc - Arranges the list in descending order (Z-A, 9-0). Results are sorted by FilterVariable . :type NextToken: string :param NextToken: The ID of the page in the paginated results. :type Limit: integer :param Limit: The maximum number of DataSource to include in the result. :rtype: dict :return: { 'Results': [ { 'DataSourceId': 'string', 'DataLocationS3': 'string', 'DataRearrangement': 'string', 'CreatedByIamUser': 'string', 'CreatedAt': datetime(2015, 1, 1), 'LastUpdatedAt': datetime(2015, 1, 1), 'DataSizeInBytes': 123, 'NumberOfFiles': 123, 'Name': 'string', 'Status': 'PENDING'|'INPROGRESS'|'FAILED'|'COMPLETED'|'DELETED', 'Message': 'string', 'RedshiftMetadata': { 'RedshiftDatabase': { 'DatabaseName': 'string', 'ClusterIdentifier': 'string' }, 'DatabaseUserName': 'string', 'SelectSqlQuery': 'string' }, 'RDSMetadata': { 'Database': { 'InstanceIdentifier': 'string', 'DatabaseName': 'string' }, 'DatabaseUserName': 'string', 'SelectSqlQuery': 'string', 'ResourceRole': 'string', 'ServiceRole': 'string', 'DataPipelineId': 'string' }, 'RoleARN': 'string', 'ComputeStatistics': True|False, 'ComputeTime': 123, 'FinishedAt': datetime(2015, 1, 1), 'StartedAt': datetime(2015, 1, 1) }, ], 'NextToken': 'string' } :returns: PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create a DataSource . INPROGRESS - The creation process is underway. FAILED - The request to create a DataSource did not run to completion. It is not usable. COMPLETED - The creation process completed successfully. DELETED - The DataSource is marked as deleted. It is not usable. """ pass
7,526
def copyFile(filename, sourceDir, targetDir, renameTo=None, silent=True): """ Copy file from sourceDir to targetDir. """ if renameTo == None: renameTo = filename fullname_source = os.path.join(sourceDir, filename) fullname_target = os.path.join(targetDir, renameTo) shutil.copy(fullname_source, fullname_target) if silent==False: print("File "+fullname_source+" copied to "+source_dir)
7,527
def _get_credentials(vcap_services, service_name=None): """Retrieves the credentials of the VCAP Service of the specified `service_name`. If `service_name` is not specified, it takes the information from STREAMING_ANALYTICS_SERVICE_NAME environment variable. Args: vcap_services (dict): A dict representation of the VCAP Services information. service_name (str): One of the service name stored in `vcap_services` Returns: dict: A dict representation of the credentials. Raises: ValueError: Cannot find `service_name` in `vcap_services` """ service_name = service_name or os.environ.get('STREAMING_ANALYTICS_SERVICE_NAME', None) # Get the service corresponding to the SERVICE_NAME services = vcap_services['streaming-analytics'] creds = None for service in services: if service['name'] == service_name: creds = service['credentials'] break # If no corresponding service is found, error if creds is None: raise ValueError("Streaming Analytics service " + str(service_name) + " was not found in VCAP_SERVICES") return creds
7,528
def all_are_independent_from_all(program, xs, ys): """ Returns true iff all xs are statistially independent from all ys, where the xs are from the current iteration and the ys are from the previous iteration. """ for x in xs: if not is_independent_from_all(program, x, ys): return False return True
7,529
def save_file(window, txt_edit, event=False): # print(txt_edit.get(1.0, tk.END)) """Save the current file as a new file.""" filepath = asksaveasfilename( defaultextension="txt", filetypes=[("Text Files", "*.txt"), ("All Files", "*.*")], ) if not filepath: return with open(filepath, "w") as output_file: text = txt_edit.get(1.0, tk.END) output_file.write(text) window.title(f"Текстовый редактор - {filepath}")
7,530
def get_exc_short(): """Print only error type and error value. """ exType, exValue, exTb = sys.exc_info() resL1 = traceback.format_exception_only(exType, exValue) return string.join(resL1, "")
7,531
def setup_install_dir(): """Sets up install dir and ensures its owned by Galaxy""" if not exists(env.install_dir): sudo("mkdir -p %s" % env.install_dir) if not exists(env.jars_dir): sudo("mkdir -p %s" % env.jars_dir) # TODO: Fix bug here chown_galaxy(os.path.split(env.install_dir)[0])
7,532
def is_str_str_dict(x): """Tests if something is a str:str dictionary""" return isinstance(x, dict) and all( isinstance(k, str) and isinstance(v, str) for k, v in x.items() )
7,533
def _ensureListLike(item): """ Return the item if it is a list or tuple, otherwise add it to a list and return that. """ return item if (isinstance(item, list) or isinstance(item, tuple)) \ else [item]
7,534
def rule_asc(n): """ Produce the integer partitions of n as ascending compositions. See: http://jeromekelleher.net/generating-integer-partitions.html """ a = [0 for _ in range(n + 1)] k = 1 a[1] = n while k != 0: x = a[k - 1] + 1 y = a[k] - 1 k -= 1 while x <= y: a[k] = x y -= x k += 1 a[k] = x + y yield a[: k + 1]
7,535
def get_file_from_gitlab(gitpkg, path, ref="master"): """Retrieves a file from a Gitlab repository, returns a (StringIO) file.""" return io.StringIO(gitpkg.files.get(file_path=path, ref=ref).decode())
7,536
def tsne(x, no_dims=2, initial_dims=50, perplexity=30.0, max_iter=1000): """Runs t-SNE on the dataset in the NxD array x to reduce its dimensionality to no_dims dimensions. The syntaxis of the function is Y = tsne.tsne(x, no_dims, perplexity), where x is an NxD NumPy array. """ # Check inputs if isinstance(no_dims, float): print("Error: array x should have type float.") return -1 if round(no_dims) != no_dims: print("Error: number of dimensions should be an integer.") return -1 # 初始化参数和变量 x = pca(x, initial_dims).real (n, d) = x.shape initial_momentum = 0.5 final_momentum = 0.8 eta = 500 min_gain = 0.01 y = np.random.randn(n, no_dims) dy = np.zeros((n, no_dims)) iy = np.zeros((n, no_dims)) gains = np.ones((n, no_dims)) # 对称化 P = seach_prob(x, 1e-5, perplexity) P = P + np.transpose(P) P = P / np.sum(P) # early exaggeration P = P * 4 P = np.maximum(P, 1e-12) # Run iterations for iter in range(max_iter): # Compute pairwise affinities sum_y = np.sum(np.square(y), 1) num = 1 / (1 + np.add(np.add(-2 * np.dot(y, y.T), sum_y).T, sum_y)) num[range(n), range(n)] = 0 Q = num / np.sum(num) Q = np.maximum(Q, 1e-12) # Compute gradient PQ = P - Q for i in range(n): dy[i,:] = np.sum(np.tile(PQ[:,i] * num[:,i], (no_dims, 1)).T * (y[i,:] - y), 0) # Perform the update if iter < 20: momentum = initial_momentum else: momentum = final_momentum gains = (gains + 0.2) * ((dy > 0) != (iy > 0)) + (gains * 0.8) * ((dy > 0) == (iy > 0)) gains[gains < min_gain] = min_gain iy = momentum * iy - eta * (gains * dy) y = y + iy y = y - np.tile(np.mean(y, 0), (n, 1)) # Compute current value of cost function if (iter + 1) % 100 == 0: if iter > 100: C = np.sum(P * np.log(P / Q)) else: C = np.sum( P/4 * np.log( P/4 / Q)) print("Iteration ", (iter + 1), ": error is ", C) # Stop lying about P-values if iter == 100: P = P / 4 print("finished training!") return y
7,537
def add_corp(): """ 添加投顾信息页面,可以让用户手动添加投顾 :by zhoushaobo :return: """ if request.method == 'GET': fof_list = cache.get(str(current_user.id)) return render_template("add_corp.html", fof_list=fof_list) if request.method == 'POST': name = request.form['name'] alias = request.form['alias'] register_capital = request.form['register_capital'] status = request.form['status'] site = request.form['site'] desc = request.form['description'] corp = Invest_corp(name=name, alias=alias, review_status=int(status), address=site, description=desc, registered_capital=register_capital) db.session.add(corp) db.session.commit() return redirect(url_for('f_app.invest_corp'))
7,538
def reset_circuit() -> None: """ Clear the circuit and create a new one. """ global _current_circuit if _current_circuit is None: return try: _current_circuit.abort(EdzedCircuitError('forced circuit reset')) # abort is ignored if not running except Exception as err: # e.g. RuntimeError: Event loop is closed _logger.warning("reset_circuit(): %r error ignored", err) _current_circuit = Circuit()
7,539
def nll_loss(output: Tensor, target: Tensor): """ Negative log likelihood loss function. ## Parameters output: `Tensor` - model's prediction target: `Target` - training sample targets ## Example usage ```python from beacon.tensor import Tensor from beacon.functional import functions as F output = Tensor([[0.2, 0.7, 0.1], [0.4, 0.45, 0.15]], requires_grad=True) target = Tensor([[0, 1, 0], [1, 0, 0]], requires_grad=True) loss = F.nll_loss(output, target) ``` """ output, target = fn.to_tensor(output), fn.to_tensor(target) output = fn.clip(output, 1e-7, 1 - 1e-7) return -target * fn.log(output)
7,540
async def album_upload(sessionid: str = Form(...), files: List[UploadFile] = File(...), caption: str = Form(...), usertags: Optional[List[Usertag]] = Form([]), location: Optional[Location] = Form(None), clients: ClientStorage = Depends(get_clients) ) -> Media: """Upload album to feed """ cl = clients.get(sessionid) return await album_upload_post( cl, files, caption=caption, usertags=usertags, location=location)
7,541
def mocked_requests_get(*args, **kwargs): """Mock requests.get invocations.""" class MockResponse: """Class to represent a mocked response.""" def __init__(self, json_data, status_code): """Initialize the mock response class.""" self.json_data = json_data self.status_code = status_code def json(self): """Return the json of the response.""" return self.json_data if str(args[0]).startswith('https://api.ring.com/clients_api/session'): return MockResponse({ "profile": { "authentication_token": "12345678910", "email": "foo@bar.org", "features": { "chime_dnd_enabled": False, "chime_pro_enabled": True, "delete_all_enabled": True, "delete_all_settings_enabled": False, "device_health_alerts_enabled": True, "floodlight_cam_enabled": True, "live_view_settings_enabled": True, "lpd_enabled": True, "lpd_motion_announcement_enabled": False, "multiple_calls_enabled": True, "multiple_delete_enabled": True, "nw_enabled": True, "nw_larger_area_enabled": False, "nw_user_activated": False, "owner_proactive_snoozing_enabled": True, "power_cable_enabled": False, "proactive_snoozing_enabled": False, "reactive_snoozing_enabled": False, "remote_logging_format_storing": False, "remote_logging_level": 1, "ringplus_enabled": True, "starred_events_enabled": True, "stickupcam_setup_enabled": True, "subscriptions_enabled": True, "ujet_enabled": False, "video_search_enabled": False, "vod_enabled": False}, "first_name": "Home", "id": 999999, "last_name": "Assistant"} }, 201) elif str(args[0])\ .startswith("https://api.ring.com/clients_api/ring_devices"): return MockResponse({ "authorized_doorbots": [], "chimes": [ { "address": "123 Main St", "alerts": {"connection": "online"}, "description": "Downstairs", "device_id": "abcdef123", "do_not_disturb": {"seconds_left": 0}, "features": {"ringtones_enabled": True}, "firmware_version": "1.2.3", "id": 999999, "kind": "chime", "latitude": 12.000000, "longitude": -70.12345, "owned": True, "owner": { "email": "foo@bar.org", "first_name": "Marcelo", "id": 999999, "last_name": "Assistant"}, "settings": { "ding_audio_id": None, "ding_audio_user_id": None, "motion_audio_id": None, "motion_audio_user_id": None, "volume": 2}, "time_zone": "America/New_York"}], "doorbots": [ { "address": "123 Main St", "alerts": {"connection": "online"}, "battery_life": 4081, "description": "Front Door", "device_id": "aacdef123", "external_connection": False, "features": { "advanced_motion_enabled": False, "motion_message_enabled": False, "motions_enabled": True, "people_only_enabled": False, "shadow_correction_enabled": False, "show_recordings": True}, "firmware_version": "1.4.26", "id": 987652, "kind": "lpd_v1", "latitude": 12.000000, "longitude": -70.12345, "motion_snooze": None, "owned": True, "owner": { "email": "foo@bar.org", "first_name": "Home", "id": 999999, "last_name": "Assistant"}, "settings": { "chime_settings": { "duration": 3, "enable": True, "type": 0}, "doorbell_volume": 1, "enable_vod": True, "live_view_preset_profile": "highest", "live_view_presets": [ "low", "middle", "high", "highest"], "motion_announcement": False, "motion_snooze_preset_profile": "low", "motion_snooze_presets": [ "none", "low", "medium", "high"]}, "subscribed": True, "subscribed_motions": True, "time_zone": "America/New_York"}] }, 200) elif str(args[0]).startswith("https://api.ring.com/clients_api/doorbots"): return MockResponse([{ "answered": False, "created_at": "2017-03-05T15:03:40.000Z", "events": [], "favorite": False, "id": 987654321, "kind": "motion", "recording": {"status": "ready"}, "snapshot_url": "" }], 200)
7,542
def count_disordered(arr, size): """Counts the number of items that are out of the expected order (monotonous increase) in the given list.""" counter = 0 state = { "expected": next(item for item in range(size) if item in arr), "checked": [] } def advance_state(): state["expected"] += 1 while True: in_arr = state["expected"] in arr is_overflow = state["expected"] > size not_checked = state["expected"] not in state["checked"] if not_checked and (in_arr or is_overflow): return state["expected"] += 1 for val in arr: if val == state["expected"]: advance_state() else: counter += 1 state["checked"].append(val) return counter
7,543
def multi_process(directory: str, modifiers: dict, base: str, end: bool = False): """ Verarbeitet ein ganzes Verzeichnis mit Emojis :param directory: Der Ordner :param modifiers: Die Skin-Modifier :param base: Der Name des Basis-Typen :param end: Ob noch eine fe0f-Sequenz angefügt werden soll. :return: Nix """ files = os.listdir(directory) for file in files: # Nur SVG wird derzeit unterstützt if os.path.splitext(file)[-1].lower() in {'.svg'}: # Erstelle ein Emoji-Objekt emoji = Emoji(modifiers, os.path.join(directory, file), base, end) # Und wende die Modifier an emoji.batch_modify()
7,544
def lookup_flag_values(flag_list: Iterable[str]) -> collections.OrderedDict: """Returns a dictionary of (flag_name, flag_value) pairs for an iterable of flag names.""" flag_odict = collections.OrderedDict() for flag_name in flag_list: if not isinstance(flag_name, str): raise ValueError( 'All flag names must be strings. Flag {} was of type {}.'.format( flag_name, type(flag_name))) if flag_name not in flags.FLAGS: raise ValueError('"{}" is not a defined flag.'.format(flag_name)) flag_odict[flag_name] = flags.FLAGS[flag_name].value return flag_odict
7,545
def test_alignment(): """Ensure A.M. cosine's peaks are aligned across joint slices.""" if skip_all: return None if run_without_pytest else pytest.skip() N = 1025 J = 7 Q = 16 Q_fr = 2 F = 4 # generate A.M. cosine ################################################### f1, f2 = 8, 256 t = np.linspace(0, 1, N, 1) a = (np.cos(2*np.pi * f1 * t) + 1) / 2 c = np.cos(2*np.pi * f2 * t) x = a * c # scatter ################################################################ for out_3D in (True, False): for sampling_psi_fr in ('resample', 'exclude'): if sampling_psi_fr == 'exclude' and out_3D: continue # incompatible for J_fr in (3, 5): out_type = ('dict:array' if out_3D else 'dict:list') # for convenience test_params = dict(out_3D=out_3D, sampling_filters_fr=(sampling_psi_fr, 'resample')) test_params_str = '\n'.join(f'{k}={v}' for k, v in test_params.items()) jtfs = TimeFrequencyScattering1D( J, N, Q, J_fr=J_fr, Q_fr=Q_fr, F=F, average=True, average_fr=True, aligned=True, out_type=out_type, frontend=default_backend, pad_mode='zero', pad_mode_fr='zero', **pad_kw, **test_params) Scx = jtfs(x) Scx = drop_batch_dim_jtfs(Scx) Scx = jtfs_to_numpy(Scx) # assert peaks share an index ################################# def max_row_idx(c): coef = c['coef'] if 'list' in out_type else c return np.argmax(np.sum(coef**2, axis=-1)) first_coef = Scx['psi_t * psi_f_up'][0] mx_idx = max_row_idx(first_coef) for pair in Scx: if pair in ('S0', 'S1'): # joint only continue for i, c in enumerate(Scx[pair]): mx_idx_i = max_row_idx(c) assert abs(mx_idx_i - mx_idx) < 2, ( "{} != {} -- Scx[{}][{}]\n{}").format( mx_idx_i, mx_idx, pair, i, test_params_str) if J_fr == 3: # assert not all J_pad_frs are same so test covers this case assert_pad_difference(jtfs, test_params_str)
7,546
def main(): """ Create an aligned functional group based on command line arguments. """ parser = argparse.ArgumentParser( description='Create a functional group from a smiles pattern', epilog='Example usage: %(prog)s -s OPr -n PropylEther -c "Alkyl Ether" -m OCCC') parser.add_argument('smi_string', help="Smiles string to generate group") parser.add_argument('-s', '--short-name', help='Short name (defaults to smiles string)') parser.add_argument('-n', '--name', required=True, help='Descriptive name (e.g. PropylEther)') parser.add_argument('-m', '--mepo-compatible', action='store_true', help='Record group as compatible with MEPO-QEq') parser.add_argument('-c', '--classification', help='General classification (e.g. "Alkyl Halide")') parser.add_argument('-t', '--terminal', action='store_true', help='Output to terminal as well as files') args = parser.parse_args() fgroup = args.smi_string if '%99' in fgroup: print('Do not use ring closure 99') raise SystemExit if not args.short_name: args.short_name = fgroup # Use an explicitly defined benzene as a base # Do rings closure at 99 in case functional group has other closures attached = '[cH]%99[cH][cH][cH][cH]c%99' # make3D by default gives an optimised structure, great! pybel_mol = pybel.readstring('smi', attached + fgroup) pybel_mol.title = "[{}] {}".format(args.short_name, args.name) pybel_mol.make3D(forcefield='UFF') uff = ob.OBForceField_FindForceField('uff') uff.Setup(pybel_mol.OBMol) uff.GetAtomTypes(pybel_mol.OBMol) coordinates = [] for ob_atom in pybel_mol: coordinates.append(ob_atom.coords) rotated_coordinates = realign(coordinates, 11, 10, 8) bonds = {} # look at all the bonds separately from the atoms for bond in ob.OBMolBondIter(pybel_mol.OBMol): # These rules are translated from ob/forcefielduff.cpp... start_idx = bond.GetBeginAtomIdx() end_idx = bond.GetEndAtomIdx() start_atom = bond.GetBeginAtom() end_atom = bond.GetEndAtom() bond_order = bond.GetBondOrder() if bond.IsAromatic(): bond_order = 1.5 # e.g., in Cp rings, may not be "aromatic" by OB # but check for explicit hydrogen counts #(e.g., biphenyl inter-ring is not aromatic) #FIXME(tdaff): aromatic C from GetType is "Car" is this correct? if (start_atom.GetType()[-1] == 'R' and end_atom.GetType()[-1] == 'R' and start_atom.ExplicitHydrogenCount() == 1 and end_atom.ExplicitHydrogenCount() == 1): bond_order = 1.5 if bond.IsAmide(): bond_order = 1.41 # Zero the indicies for the connecting atom so that # negative indexes are benzene atoms bond_length = bond.GetLength() bond_id = tuple(sorted((start_idx-12, end_idx-12))) bonds[bond_id] = (bond_length, bond_order) # We can start building our output now! output_text = [ "[{}]\n".format(args.short_name), "name = {}\n".format(args.name), "smiles = {}\n".format(fgroup), "mepo_compatible = {}\n".format(args.mepo_compatible)] if args.classification: output_text.append("class = {}\n".format(args.classification)) # functional group fingerprint nbins = 10 max_distance = 10.0 bin_width = max_distance/nbins fingerprint = [0.0]*(nbins*3) atom_block = [] base_atom = pybel_mol.atoms[10].OBAtom for ob_atom, coord in zip(pybel_mol, rotated_coordinates): atom_idx = ob_atom.OBAtom.GetIndex() if atom_idx > 10: atomicnum = ob_atom.atomicnum element = ATOMIC_NUMBER[atomicnum] ff_type = ob_atom.OBAtom.GetData("FFAtomType").GetValue() atom_block.append(" {0:4} {1:5} {2[0]:10.6f} {2[1]:10.6f} {2[2]:10.6f}\n".format(element, ff_type, coord)) # Generate fingerprint data distance = ob_atom.OBAtom.GetDistance(base_atom) if distance > max_distance: continue # Put in distance bin fingerprint[int(distance/bin_width)] += 1 # Put in electronegativity bin electronegativity = ob.etab.GetElectroNeg(atomicnum) fingerprint[nbins + int(distance/bin_width)] += electronegativity # Put in vdw radii vdw_radius = ob.etab.GetVdwRad(atomicnum) fingerprint[2*nbins + int(distance/bin_width)] += vdw_radius fingerprint = ",".join("{:.2f}".format(i) for i in fingerprint) # # 3D fingerprint # xmin, xmax = -5.658385, 6.758497 ymin, ymax = -2.506779, 7.580274 zmin, zmax = -2.469688, 4.024162 spacing = 1.0 # make gridpoints have the cartesian coordinates of all the # points of interest on the grid x_range = np.arange(xmin-2.0*spacing, xmax+3.0*spacing, spacing) y_range = np.arange(ymin-2.0*spacing, ymax+3.0*spacing, spacing) z_range = np.arange(zmin-2.0*spacing, zmax+3.0*spacing, spacing) gridpoints = [(x, y, z) for x in x_range for y in y_range for z in z_range] grid_shape = (len(x_range), len(y_range), len(z_range)) # Calculate all the atom-point distances distance_matrix = cdist(rotated_coordinates, gridpoints) # Find charges for all the atoms manually. # Automatically would do gasteiger, but fails for # some elements and we use qeq anyway qeq = ob.OBChargeModel_FindType('qeq') qeq.ComputeCharges(pybel_mol.OBMol) # coulomb = q1q2/4pie0r no units yet... coulomb_matrix = np.zeros(len(gridpoints)) for ob_atom, distances in zip(pybel_mol, distance_matrix): coulomb_matrix += ob_atom.partialcharge/distances # LJ potential based off UFF also no units yet... vdw_matrix = np.zeros(len(gridpoints)) for ob_atom, distances in zip(pybel_mol, distance_matrix): # Lorentz-Berthelot mixing rules probe = (3.4309, 0.1050) # Carbon source = UFF[ATOMIC_NUMBER[ob_atom.atomicnum]] sigma = (source[0] + probe[0]) / 2.0 epsilon = (source[1] * probe[1])**0.5 vdw_matrix += 4*epsilon*((sigma/distances)**12 - (sigma/distances)**6) # Make into 3D gridded data coulomb_matrix = np.reshape(coulomb_matrix, grid_shape) vdw_matrix = np.reshape(vdw_matrix, grid_shape) # Can clip the maximums here or elsewhere coulomb_matrix = np.clip(coulomb_matrix, -0.1, 0.1) vdw_matrix = np.clip(vdw_matrix, -10, 0) # 3D plotting for visualisation #from mayavi import mlab #s = mlab.contour3d(coulomb_matrix) #s = mlab.contour3d(vdw_matrix) #mlab.show() # # Output # output_text.append('atoms =\n') output_text.extend(atom_block) output_text.append('orientation = 0.0 1.0 0.0\n') output_text.append('normal = 0.0 0.0 1.0\n') output_text.append('carbon_bond = {:.3f}\n'.format(bonds[(-1, 0)][0])) output_text.append('fingerprint = {}\n'.format(fingerprint)) bonds_block = [] # no bonds < idx 11 for bond in sorted(bonds): if not bond[0] < 0 and not bond[1] < 0: bonds_block.append(" {0[0]:4} {0[1]:4} {1[1]:5.2f}\n".format(bond, bonds[bond])) output_text.append('bonds =\n') output_text.extend(bonds_block[:]) # Make some pictures; do this now so the ascii can go in the file # But first get rid of the benzene for _idx in range(10): pybel_mol.OBMol.DeleteAtom(pybel_mol.atoms[0].OBAtom) pybel_mol.atoms[0].OBAtom.SetType('R') if not 'ascii' in pybel.outformats: print("Ascii art not available, please upgrade openbabel") else: ascii_mol = pybel_mol.write(format='ascii', opt={'a': 2, 'w': 40}) ascii_mol = ['# {}\n'.format(x) for x in ascii_mol.splitlines() if x.strip()] output_text[2:2] = ['#\n'] + ascii_mol + ['#\n'] basename = args.short_name pybel_mol.write(format='mol', filename='{}.mol'.format(basename)) # Always output to a library with open('{}.flib'.format(basename), 'w') as out_lib: out_lib.writelines(output_text) # Make the image with R groups and implicit hydrogen unopt_mol = pybel.readstring('smi', "[*:1]" + fgroup) unopt_mol.write(format='svg', filename='{}.svg'.format(basename), opt={'C': None}) # Make a table row in html with open('{}.html'.format(basename), 'w') as out_html: out_html.write("""\ <td>{args.short_name}</td> <td><p>name: {args.name}</p> <p>smiles: {args.smi_string}</p> <p>MEPO-QEq compatible: {args.mepo_compatible}</td> <td><a href="img/{args.short_name}.svg"> <img src="img/{args.short_name}.svg" alt="Group: {args.short_name}" title="[{args.short_name}] {args.name} {args.smi_string})" style="height: 75px"/></a> </td> """.format(args=args)) if args.terminal: print("".join(output_text))
7,547
def request_text(photo_file, max_results=5): """ Request the Google service to find text in an image :param photo_file: The filename (or path) of the image in a local directory :param max_results: The requested maximum number of results :return: A list of text entries found in the image Note: The argument max_results does not modify the number of results for text detection """ credentials = GoogleCredentials.get_application_default() service = discovery.build('vision', 'v1', credentials=credentials) with open(photo_file, 'rb') as phf: image_content = base64.b64encode(phf.read()) service_request = service.images().annotate(body={ 'requests': [{'image': {'content': image_content.decode('UTF-8')}, 'features': [{'type': 'TEXT_DETECTION', 'maxResults': max_results}] }] }) response = service_request.execute() text_list = response['responses'][0].get('textAnnotations', None) if text_list is None: return [] else: text_vec = map(lambda s: s['description'].strip().strip('\n'), text_list) return text_vec
7,548
def config(request): """render a ProsperConfig object for testing""" return p_config.ProsperConfig(request.config.getini('app_cfg'))
7,549
def flatatt(attrs): """ Convert a dictionary of attributes to a single string. The returned string will contain a leading space followed by key="value", XML-style pairs. It is assumed that the keys do not need to be XML-escaped. If the passed dictionary is empty, then return an empty string. If the value passed is None writes only the attribute (eg. required) """ ret_arr = [] for k, v in attrs.items(): if v is None: ret_arr.append(u' %s' % k) else: ret_arr.append(u' %s="%s"' % (k, conditional_escape(v))) return u''.join(ret_arr)
7,550
def json_io_dump(filename, data): """ Dumps the the JSON data and returns it as a dictionary from filename :arg filename <string> - Filename of json to point to :arg data - The already formatted data to dump to JSON """ with open(filename, encoding='utf-8', mode='w') as json_file: json.dump(data, json_file) return True
7,551
def get_restaurants(_lat, _lng): """緯度: lat 経度: lng""" response = requests.get(URL.format(API_KEY, _lat, _lng)) result = json.loads(response.text) lat_lng = [] for restaurant in result['results']['shop']: lat = float(restaurant['lat']) lng = float(restaurant['lng']) lat_lng.append((lat, lng, restaurant['name'])) r = [] for lat, lng, name in lat_lng: r2 = [] difference = (_lat - lat) * 3600 r2.append(int(difference * byou)) difference = (lng - _lng) * 3600 r2.append(int(difference * byou)) r2.append(name) r.append(r2) return r
7,552
def geomfill_GetCircle(*args): """ :param TConv: :type TConv: Convert_ParameterisationType :param ns1: :type ns1: gp_Vec :param ns2: :type ns2: gp_Vec :param nplan: :type nplan: gp_Vec :param pt1: :type pt1: gp_Pnt :param pt2: :type pt2: gp_Pnt :param Rayon: :type Rayon: float :param Center: :type Center: gp_Pnt :param Poles: :type Poles: TColgp_Array1OfPnt :param Weigths: :type Weigths: TColStd_Array1OfReal & :rtype: void :param TConv: :type TConv: Convert_ParameterisationType :param ns1: :type ns1: gp_Vec :param ns2: :type ns2: gp_Vec :param dn1w: :type dn1w: gp_Vec :param dn2w: :type dn2w: gp_Vec :param nplan: :type nplan: gp_Vec :param dnplan: :type dnplan: gp_Vec :param pts1: :type pts1: gp_Pnt :param pts2: :type pts2: gp_Pnt :param tang1: :type tang1: gp_Vec :param tang2: :type tang2: gp_Vec :param Rayon: :type Rayon: float :param DRayon: :type DRayon: float :param Center: :type Center: gp_Pnt :param DCenter: :type DCenter: gp_Vec :param Poles: :type Poles: TColgp_Array1OfPnt :param DPoles: :type DPoles: TColgp_Array1OfVec :param Weigths: :type Weigths: TColStd_Array1OfReal & :param DWeigths: :type DWeigths: TColStd_Array1OfReal & :rtype: bool :param TConv: :type TConv: Convert_ParameterisationType :param ns1: :type ns1: gp_Vec :param ns2: :type ns2: gp_Vec :param dn1w: :type dn1w: gp_Vec :param dn2w: :type dn2w: gp_Vec :param d2n1w: :type d2n1w: gp_Vec :param d2n2w: :type d2n2w: gp_Vec :param nplan: :type nplan: gp_Vec :param dnplan: :type dnplan: gp_Vec :param d2nplan: :type d2nplan: gp_Vec :param pts1: :type pts1: gp_Pnt :param pts2: :type pts2: gp_Pnt :param tang1: :type tang1: gp_Vec :param tang2: :type tang2: gp_Vec :param Dtang1: :type Dtang1: gp_Vec :param Dtang2: :type Dtang2: gp_Vec :param Rayon: :type Rayon: float :param DRayon: :type DRayon: float :param D2Rayon: :type D2Rayon: float :param Center: :type Center: gp_Pnt :param DCenter: :type DCenter: gp_Vec :param D2Center: :type D2Center: gp_Vec :param Poles: :type Poles: TColgp_Array1OfPnt :param DPoles: :type DPoles: TColgp_Array1OfVec :param D2Poles: :type D2Poles: TColgp_Array1OfVec :param Weigths: :type Weigths: TColStd_Array1OfReal & :param DWeigths: :type DWeigths: TColStd_Array1OfReal & :param D2Weigths: :type D2Weigths: TColStd_Array1OfReal & :rtype: bool """ return _GeomFill.geomfill_GetCircle(*args)
7,553
def dwconv3x3_block(in_channels, out_channels, stride, padding=1, dilation=1, bias=False, activation=(lambda: nn.ReLU(inplace=True)), activate=True): """ 3x3 depthwise version of the standard convolution block with ReLU6 activation. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. stride : int or tuple/list of 2 int Strides of the convolution. padding : int or tuple/list of 2 int, default 1 Padding value for convolution layer. dilation : int or tuple/list of 2 int, default 1 Dilation value for convolution layer. bias : bool, default False Whether the layer uses a bias vector. activation : function or str or None, default nn.ReLU(inplace=True) Activation function or name of activation function. activate : bool, default True Whether activate the convolution block. """ return conv3x3_block( in_channels=in_channels, out_channels=out_channels, stride=stride, padding=padding, dilation=dilation, groups=out_channels, bias=bias, activation=activation, activate=activate)
7,554
def predict() -> str: """ Creates route for model prediction for given number of inputs. :return: predicted price """ try: input_params = process_input(request.data) print(input_params) predictions = regressor.predict(input_params) return json.dumps({"predicted_price": predictions.tolist()}) except (KeyError, json.JSONDecodeError, AssertionError): return json.dumps({"error": "CHECK INPUT"}), 400 except: return json.dumps({"error": "PREDICTION FAILED"}), 500
7,555
def all_h2h_pairs_all_lanes(matches_df, file_name=''): """Produces all head to head win rates for all lane matchups -- even across different lanes (eg. TOP_SOLO Renekton vs MID_SOLO Xerath).""" df = pd.DataFrame() lanes = dc.get_lanes_roles() for lane1 in lanes: print(lane1) for lane2 in lanes: print(lane1 + '_' + lane2) temp = all_h2h_pairs_fixed_lane(matches_df, lane1, lane2) df[lane1 + '_' + lane2 + '_wr'] = temp['win_rate'] df[lane1 + '_' + lane2 + '_gp'] = temp['games_played'] df[lane1 + '_' + lane2 + '_wins'] = temp['wins'] if file_name != '': df.to_csv(file_name) return df
7,556
def sort_list_of_dates(b): """ مرتب سازی نویسنده: ندا """ i = 0 while i<len(b)-1: #if b.value("year") in b[i]<b.value("year") in b[i+1]: # if b.value("month") in b[i]<b.value("month") in b[i+1]: # if b.value("day") in b[i]<b.value("day") in b[i+1]: if earlier_than(b[i+1], b[i]): t = b[i+1] b[i+1] = b[i] b[i] = t i = -1 #if b[i] == b[i+1]: # b.remove(b[i]) #i = 0 i = i+1 return
7,557
def reload_rules(testcase, rest_url): """ :param TestCase self: TestCase object :param str rest_url: http://host:port :rtype: dict """ resp = requests.get(rest_url + "/rest/reload").json() print("Reload rules response: {}".format(resp)) testcase.assertEqual(resp.get("success"), True) return resp
7,558
def encryptMessage(key: str, message: str) -> str: """Vigenère cipher encryption Wrapper function that encrypts given message with given key using the Vigenère cipher. Args: key: String encryption key to encrypt with Vigenère cipher. message: Message string to encrypt. Returns: Encrypted message string. """ return translateMessage(key, message, 'encrypt')
7,559
def pytest_configure(config): """Inject documentation.""" config.addinivalue_line( "markers", "trio: " "mark the test as an async trio test; " "it will be run using trio.run" )
7,560
def rae(label, pred): """computes the relative absolute error (condensed using standard deviation formula)""" #compute the root of the sum of the squared error numerator = np.mean(np.abs(label - pred), axis=None) #numerator = np.sum(np.abs(label - pred), axis = None) #compute AE if we were to simply predict the average of the previous values denominator = np.mean(np.abs(label - np.mean(label, axis=None)), axis=None) #denominator = np.sum(np.abs(label - np.mean(label, axis = None)), axis=None) return numerator / denominator
7,561
def subset_sum(arr, target_sum, i, cache): """ Returns whether any subset(not contiguous) of the array has sum equal to target sum. """ if target_sum == 0: return True, {} if i < 0: return False, {} if target_sum in cache[i]: return cache[i][target_sum] # Either include this element or not! sub_ans, sub_ans_indices = subset_sum(arr, target_sum, i - 1, cache) if not sub_ans and target_sum >= arr[i]: sub_ans, sub_ans_indices = subset_sum(arr, target_sum - arr[i], i - 1, cache) sub_ans_indices = set(sub_ans_indices) sub_ans_indices.add(i) if not sub_ans: sub_ans_indices = {} cache[i][target_sum] = sub_ans, sub_ans_indices return cache[i][target_sum]
7,562
def set_runtime_parameter_pb( pb: pipeline_pb2.RuntimeParameter, name: Text, ptype: Type[types.Property], default_value: Optional[types.Property] = None ) -> pipeline_pb2.RuntimeParameter: """Helper function to fill a RuntimeParameter proto. Args: pb: A RuntimeParameter proto to be filled in. name: Name to be set at pb.name. ptype: The Python type to be set at pb.type. default_value: Optional. If provided, it will be pb.default_value. Returns: A RuntimeParameter proto filled with provided values. """ pb.name = name if ptype == int: pb.type = pipeline_pb2.RuntimeParameter.Type.INT if default_value: pb.default_value.int_value = default_value elif ptype == float: pb.type = pipeline_pb2.RuntimeParameter.Type.DOUBLE if default_value: pb.default_value.double_value = default_value elif ptype == str: pb.type = pipeline_pb2.RuntimeParameter.Type.STRING if default_value: pb.default_value.string_value = default_value else: raise ValueError("Got unsupported runtime parameter type: {}".format(ptype)) return pb
7,563
def get_loader(content_type): """Returns loader class for specified content type. :type content_type: constants.ContentType :param content_type: Content type. :returns: Loader class for specified content type. :raise ValueError: If no loader found for specified content type. """ for loader_cls in ALL_LOADERS: content_types = loader_cls.content_types if not isinstance(loader_cls.content_types, (list, tuple)): content_types = [content_types] if content_type in content_types: return loader_cls raise ValueError('Loader for content type "{0}" not found' .format(content_type))
7,564
def get_basis_script(max_degree: int, use_pad_trick: bool, spherical_harmonics: List[Tensor], clebsch_gordon: List[List[Tensor]], amp: bool) -> Dict[str, Tensor]: """ Compute pairwise bases matrices for degrees up to max_degree :param max_degree: Maximum input or output degree :param use_pad_trick: Pad some of the odd dimensions for a better use of Tensor Cores :param spherical_harmonics: List of computed spherical harmonics :param clebsch_gordon: List of computed CB-coefficients :param amp: When true, return bases in FP16 precision """ basis = {} idx = 0 # Double for loop instead of product() because of JIT script for d_in in range(max_degree + 1): for d_out in range(max_degree + 1): key = f'{d_in},{d_out}' K_Js = [] for freq_idx, J in enumerate(range(abs(d_in - d_out), d_in + d_out + 1)): Q_J = clebsch_gordon[idx][freq_idx] K_Js.append(torch.einsum('n f, k l f -> n l k', spherical_harmonics[J].float(), Q_J.float())) basis[key] = torch.stack(K_Js, 2) # Stack on second dim so order is n l f k if amp: basis[key] = basis[key].half() if use_pad_trick: basis[key] = F.pad(basis[key], (0, 1)) # Pad the k dimension, that can be sliced later idx += 1 return basis
7,565
def get_iterative_process_for_minimal_sum_example(): """Returns an iterative process for a sum example. This iterative process contains the fewest components required to compile to `forms.MapReduceForm`. """ @computations.federated_computation def init_fn(): """The `init` function for `tff.templates.IterativeProcess`.""" zero = computations.tf_computation(lambda: [0, 0]) return intrinsics.federated_eval(zero, placements.SERVER) @computations.tf_computation(tf.int32) def work(client_data): del client_data # Unused return 1, 1 @computations.federated_computation([ computation_types.FederatedType([tf.int32, tf.int32], placements.SERVER), computation_types.FederatedType(tf.int32, placements.CLIENTS), ]) def next_fn(server_state, client_data): """The `next` function for `tff.templates.IterativeProcess`.""" del server_state # Unused # No call to `federated_map` with prepare. # No call to `federated_broadcast`. client_updates = intrinsics.federated_map(work, client_data) unsecure_update = intrinsics.federated_sum(client_updates[0]) secure_update = intrinsics.federated_secure_sum_bitwidth( client_updates[1], 8) new_server_state = intrinsics.federated_zip( [unsecure_update, secure_update]) # No call to `federated_map` with an `update` function. server_output = intrinsics.federated_value([], placements.SERVER) return new_server_state, server_output return iterative_process.IterativeProcess(init_fn, next_fn)
7,566
def test_nbconv_file_contents(tmp_path: Path): """Run ``nbconv`` with the ``exporter`` or ``out_file`` argument.""" nb = make_notebook(tmp_path) assert nbconv(in_file=nb, exporter="html")[1].startswith("<!DOCTYPE html>") assert nbconv(in_file=nb, out_file="o.html")[1].startswith("<!DOCTYPE html") assert nbconv(in_file=nb, out_file="o.___")[1].startswith("<!DOCTYPE html>") assert nbconv(in_file=nb, out_file="o.asc")[1].startswith("\n[[background]") assert nbconv(in_file=nb, exporter="rst")[1].startswith("\nBackground\n") assert nbconv(in_file=nb, out_file="o.rst")[1].startswith("\nBackground\n")
7,567
def get_r_port_p_d_t(p): """玄関ポーチに設置された照明設備の使用時間率 Args: p(int): 居住人数 Returns: ndarray: r_port_p_d_t 日付dの時刻tにおける居住人数がp人の場合の玄関ポーチに設置された照明設備の使用時間率 """ return get_r_i_p_d_t(19, p)
7,568
def remove_comments_from_json(string): """ Removes comments from a JSON string, supports // and /* formats. From Stack Overflow. @param str string: Original text. @return: Text without comments. @rtype: str """ pattern = r"((?<!\\)\".*?(?<!\\)\"|\'.*?\')|(/\*.*?\*/|//[^\r\n]*$)" # first group captures quoted strings (double or single) # second group captures comments (//single-line or /* multi-line */) regex = re.compile(pattern, re.MULTILINE | re.DOTALL) def _replacer(match): # if the 2nd group (capturing comments) is not None, # it means we have captured a non-quoted (real) comment string. if match.group(2) is not None: return "" # so we will return empty to remove the comment else: # otherwise, we will return the 1st group return match.group(1) # captured quoted-string return regex.sub(_replacer, string)
7,569
def visualize_depth(visual_dict, disp_or_error="disp", dataset="KITTI"): """visual_dict:"left_img": raw left image "depth_error" or "disp" "est_left_img": image reprojected from right "depth": output depth "photo_error": photometric error all tensor should be normalized to [0, 1]befor input with shape [C, H, W] with .detach() disp_or_error: output "disp"arity when used in training or "error" dataset: from "KITTI" "CS" """ for k, v, in visual_dict.items(): v = v.unsqueeze(0) if dataset == "KITTI": v = F.interpolate(v, [375, 1242], mode="bilinear", align_corners=False) elif dataset == "CS": v = F.interpolate(v, [384, 1000], mode="bilinear", align_corners=False) v = v.cpu().squeeze(0).permute(1, 2, 0).numpy() visual_dict[k] = v left_img = visual_dict["left_img"] * 255 est_left_img = visual_dict["est_left_img"] * 255 if disp_or_error == "error": error = visual_dict["depth_error"][..., 0] normal_error = mpl.colors.Normalize(vmin=0, vmax=1) mapper_error = cm.ScalarMappable(norm=normal_error, cmap='coolwarm') error = (mapper_error.to_rgba(error)[:, :, :3] * 255) else: error = visual_dict["disp"] * 255 error = cv.applyColorMap(error.astype(np.uint8), cv.COLORMAP_OCEAN) depth = visual_dict["depth"][..., 0] disp = 1 / depth vmin = np.percentile(disp, 5) normal_disp = mpl.colors.Normalize(vmin=vmin, vmax=disp.max()) mapper_disp = cm.ScalarMappable(norm=normal_disp, cmap='magma') depth_color = (mapper_disp.to_rgba(disp)[:, :, :3] * 255) photo_error = visual_dict["photo_error"] * 255 photo_error = cv.applyColorMap(photo_error.astype(np.uint8), cv.COLORMAP_JET) photo_error = cv.cvtColor(photo_error, cv.COLOR_RGB2BGR) fused_img = (left_img + est_left_img)/2 photoerror_img = left_img + 0.5 * photo_error photoerror_img = photoerror_img / np.max(photoerror_img) photoerror_img *= 255 depth_img = left_img + 0.8 * depth_color depth_img = depth_img / np.max(depth_img) depth_img *= 255 img1 = np.vstack([left_img, est_left_img, depth_color, photo_error]) img2 = np.vstack([error, fused_img, depth_img, photoerror_img]) all_img = np.hstack([img1, img2]).astype(np.uint8) all_img = cv.cvtColor(all_img, cv.COLOR_RGB2BGR) return all_img
7,570
def put_s3_object(bucket, key_name, local_file): """Upload a local file in the execution environment to S3 Parameters ---------- bucket: string, required S3 bucket that will holds the attachment key_name: string, required S3 key is the destination of attachment local_file: string, required Location of the attachment to process Returns ------- boolean (True if successful, False if not successful) """ tracer.put_metadata('object', f's3://{bucket}/{key_name}') try: s3_resource.Bucket(bucket).upload_file(local_file, key_name) result = True tracer.put_annotation('ATTACHMENT_UPLOAD', 'SUCCESS') except Exception as e: logger.error(str(e)) tracer.put_annotation('ATTACHMENT_UPLOAD', 'FAILURE') result = False return(result)
7,571
def parse_parionssport(url): """ Get ParionsSport odds from url """ if "parionssport" not in sb.TOKENS: try: token = get_parionssport_token() sb.TOKENS["parionssport"] = token except OpenSSL.crypto.Error: return {} if "paris-" in url.split("/")[-1] and "?" not in url: sport = url.split("/")[-1].split("paris-")[-1] return parse_sport_parionssport(sport) regex = re.findall(r'\d+', url) if regex: id_league = regex[-1] try: return parse_parionssport_api("p" + str(id_league)) except TypeError: return {} return {}
7,572
def get_index(channel_urls=(), prepend=True, platform=None, use_local=False, use_cache=False, unknown=False, prefix=False): """ Return the index of packages available on the channels If prepend=False, only the channels passed in as arguments are used. If platform=None, then the current platform is used. If prefix is supplied, then the packages installed in that prefix are added. """ if use_local: channel_urls = ['local'] + list(channel_urls) channel_urls = normalize_urls(channel_urls, platform) if prepend: channel_urls.extend(get_channel_urls(platform)) channel_urls = prioritize_channels(channel_urls) index = fetch_index(channel_urls, use_cache=use_cache, unknown=unknown) if prefix: priorities = {c: p for c, p in itervalues(channel_urls)} maxp = max(itervalues(priorities)) + 1 if priorities else 1 for dist, info in iteritems(install.linked_data(prefix)): fn = info['fn'] schannel = info['schannel'] prefix = '' if schannel == 'defaults' else schannel + '::' priority = priorities.get(schannel, maxp) key = prefix + fn if key in index: # Copy the link information so the resolver knows this is installed index[key] = index[key].copy() index[key]['link'] = info.get('link') or True else: # only if the package in not in the repodata, use local # conda-meta (with 'depends' defaulting to []) info.setdefault('depends', []) info['priority'] = priority index[key] = info return index
7,573
def is__invsign1(*args): """ is__invsign1(ea) -> bool """ return _ida_nalt.is__invsign1(*args)
7,574
def bind(bind_to, bind_with, name): """ A cool hata features, that lets you bind object to existing one. Parameters ---------- bind_to : `type` The type to bind to. bind_with : `type` The type to bind with. name : `str` The name of the binding. Raises ------ TypeError - If `bind_to` is not a type. - If `bind_to`-s do not support weakreferencing. - If `bind_to` has already an attribute named `name`. Examples -------- Generic binder: ```py from hata import ClientUserBase, bind class Inventory(object): def __init__(self, parent_self): self.user = parent_self self.inv = [] def add_item(self, name): self.inv.append(name) def give_user(self, item, recipient): del self.inv[self.inv.index(item)] recipient.inventory.add_item(item) bind(ClientUserBase, Inventory, 'inventory') # Usage: user.inventory.add_item('cake') ``` Descriptor binder: ```py from hata import ClientUserBase, bind class InventorySize(object): def __init__(self, parent_self): self.value = 10 def __get__(self, instance, type_): return self.value def __set__(self, instance, value): self.value = value bind(ClientUserBase, InventorySize, 'inventory_size') # Usage: user.inventory_size += 10 ``` Descriptor binders are familiar ot normal descriptors, except, they are created per object and not per class. """ if not isinstance(bind_to, type): raise TypeError( f'`bind_to` can be `type`, got {bind_to.__class__.__name__}; {bind_to!r}.' ) name_space = bind_to.__dict__ if ('__weakref__' in name_space) or ('__slots__' not in name_space): raise TypeError( f'`bind_to`-s must support weakreferencing, got {bind_to!r}.' ) if hasattr(bind_to, name): raise TypeError( f'`bind_to` already has an attribute named, as bind_to={bind_to!r}, name={name!r}.' ) if (getattr(bind_with, '__get__', None) is not None): binder = DescriptorObjectBinder(name, bind_with) else: binder = GenericObjectBinder(name, bind_with) setattr(bind_to, name, binder)
7,575
def every(n_steps): """Returns True every n_steps, for use as *_at functions in various places.""" return lambda step: step % n_steps == 0
7,576
def read_files(mousefile,humanfile): """ Read into anndata objects and return """ mouse = sc.read_10x_h5(mousefile) if humanfile != None: human = sc.read_10x_h5(humanfile) else: human = None return(mouse,human)
7,577
def calc_batch_size(num_examples, batches_per_loop, batch_size): """Reduce the batch size if needed to cover all examples without a remainder.""" assert batch_size > 0 assert num_examples % batches_per_loop == 0 while num_examples % (batch_size * batches_per_loop) != 0: batch_size -= 1 return batch_size
7,578
def test_real_distinct_irrational(): """ Test that the roots of x^2 - 2 x + (1 - 10**(-10)) = 0 are 1 \pm 1e-5. """ roots = (1 + 1e-5, 1 - 1e-5) assert_allclose(real_quadratic_roots(1, -2.0, 1.0 - 1e-10), roots, err_msg="Testing x^2-2x+(1-1e-10)=0; roots should be 1 +- 1e-5.")
7,579
def upload_volume(request, *args, **kwargs): """ User upload volume data, delete the original data first. """ if not (request.user and request.user.is_authenticated()): raise PermissionDenied() user = request.user assert 'pid' in kwargs pid = kwargs['pid'] assert 'pk' in kwargs id = kwargs['pk'] volume = Volume.objects.get(project__id=pid, id=id) # Check whether the user is the member of this project if not check_member_in_project(volume.project, user): raise PermissionDenied(detail="User {} is not in project {}." .format(user.username, volume.project.name)) if not request.FILES.get('file'): raise ParseError(detail="There is no upload file.") logger.info("User {} upload files to volume {}-{}.".format( user.username, volume.project.name, volume.name)) filename = get_upload_volume_filename(volume, user) save_upload_file_to_disk(request.FILES['file'], filename) client = NFSLocalClient() volume_dir = get_volume_direction_on_nfs(volume) # Clear the dir first client.removedir(volume_dir) client.makedir(volume_dir) client.copy_file_to_remote_and_untar(filename, volume_dir) remove_file_from_disk(filename) return JsonResponse({"detail": "success"})
7,580
def has_admin_access(user): """Check if a user has admin access.""" return user == 'admin'
7,581
def get_compss_type(value, depth=0): # type: (object, int) -> int """ Retrieve the value type mapped to COMPSs types. :param value: Value to analyse. :param depth: Collections depth. :return: The Type of the value. """ # First check if it is a PSCO since a StorageNumpy can be detected # as a numpy object. if has_id(value): # If has method getID maybe is a PSCO try: if get_id(value) not in [None, 'None']: # the 'getID' + id == criteria for persistent object return TYPE.EXTERNAL_PSCO else: return TYPE.OBJECT except TypeError: # A PSCO class has been used to check its type (when checking # the return). Since we still don't know if it is going to be # persistent inside, we assume that it is not. It will be checked # later on the worker side when the task finishes. return TYPE.OBJECT # If it is a numpy scalar, we manage it as all objects to avoid to # infer its type wrong. For instance isinstance(np.float64 object, float) # returns true if np and isinstance(value, np.generic): return TYPE.OBJECT if isinstance(value, (bool, str, int, PYCOMPSS_LONG, float)): value_type = type(value) if value_type is bool: return TYPE.BOOLEAN elif value_type is str: # Char does not exist as char, only strings. # Files will be detected as string, since it is a path. # The difference among them is defined by the parameter # decoration as FILE. return TYPE.STRING elif value_type is int: if IS_PYTHON3: if value < PYTHON_MAX_INT: # noqa return TYPE.INT else: return TYPE.LONG else: return TYPE.INT elif value_type is PYCOMPSS_LONG: return TYPE.LONG elif value_type is float: return TYPE.DOUBLE elif depth > 0 and is_basic_iterable(value): return TYPE.COLLECTION elif depth > 0 and is_dict(value): return TYPE.DICT_COLLECTION else: # Default type return TYPE.OBJECT
7,582
def pytask_parse_config(config, config_from_cli, config_from_file): """Register the r marker.""" config["markers"]["stata"] = "Tasks which are executed with Stata." config["platform"] = sys.platform if config_from_file.get("stata"): config["stata"] = config_from_file["stata"] else: config["stata"] = next( (executable for executable in STATA_COMMANDS if shutil.which(executable)), None, ) config["stata_keep_log"] = get_first_non_none_value( config_from_cli, config_from_file, key="stata_keep_log", callback=convert_truthy_or_falsy_to_bool, default=False, ) config["stata_check_log_lines"] = get_first_non_none_value( config_from_cli, config_from_file, key="stata_check_log_lines", callback=_nonnegative_nonzero_integer, default=10, ) config["stata_source_key"] = config_from_file.get("stata_source_key", "source")
7,583
def set_namedtuple_defaults(namedtuple, default=None): """ Set *all* of the fields for a given nametuple to a singular value. Modifies the tuple in place, but returns it anyway. More info: https://stackoverflow.com/a/18348004 :param namedtuple: A constructed collections.namedtuple :param default: The default value to set. :return: the modified namedtuple """ namedtuple.__new__.__defaults__ = (default,) * len(namedtuple._fields) return namedtuple
7,584
def test_tuple_get_item_merge(): """Test composite function can be merged from pattern containing TupleGetItem nodes.""" pattern_table = [ ("bn_relu", make_bn_relu_pattern()) ] def before(): x = relay.var('x', shape=(1, 8)) gamma = relay.var("gamma", shape=(8,)) beta = relay.var("beta", shape=(8,)) moving_mean = relay.var("moving_mean", shape=(8,)) moving_var = relay.var("moving_var", shape=(8,)) bn_node = relay.nn.batch_norm(x, gamma, beta, moving_mean, moving_var) tuple_get_item_node = bn_node[0] r = relay.nn.relu(tuple_get_item_node) return relay.Function([x, gamma, beta, moving_mean, moving_var], r) def expected(): x = relay.var('x', shape=(1, 8)) beta = relay.var("beta", shape=(8,)) gamma = relay.var("gamma", shape=(8,)) moving_mean = relay.var("moving_mean", shape=(8,)) moving_var = relay.var("moving_var", shape=(8,)) # bn_relu function in_1 = relay.var('x1', shape=(1, 8)) in_2 = relay.var('gamma1', shape=(8,)) in_3 = relay.var('beta1', shape=(8,)) in_4 = relay.var('moving_mean1', shape=(8,)) in_5 = relay.var('moving_var1', shape=(8,)) bn_node = relay.nn.batch_norm(in_1, in_2, in_3, in_4, in_5) tuple_get_item_node = bn_node[0] relu_node = relay.nn.relu(tuple_get_item_node) bn_relu = relay.Function([in_1, in_2, in_3, in_4, in_5], relu_node) bn_relu = bn_relu.with_attr("Composite", "bn_relu") bn_relu = bn_relu.with_attr("PartitionedFromPattern", "nn.batch_norm_TupleGetItem0_nn.relu_") # merged function r = relay.Call(bn_relu, [x, gamma, beta, moving_mean, moving_var]) return relay.Function([x, gamma, beta, moving_mean, moving_var], r) check_result(pattern_table, before(), expected())
7,585
def prepare_data_for_storage(major_version, minor_version, patch_version): """Prepares data to store to file. """ temp = Template( u'''/*Copyright (c) 2016, Ford Motor Company\n''' u'''All rights reserved.\n''' u'''Redistribution and use in source and binary forms, with or without\n''' u'''modification, are permitted provided that the following conditions are met:\n''' u'''Redistributions of source code must retain the above copyright notice, this\n''' u'''list of conditions and the following disclaimer.\n''' u'''Redistributions in binary form must reproduce the above copyright notice,\n''' u'''this list of conditions and the following\n''' u'''disclaimer in the documentation and/or other materials provided with the\n''' u'''distribution.\n''' u'''Neither the name of the Ford Motor Company nor the names of its contributors\n''' u'''may be used to endorse or promote products derived from this software\n''' u'''without specific prior written permission.\n''' u'''THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\"\n''' u'''AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE\n''' u'''IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE\n''' u'''ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE\n''' u'''LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR\n''' u'''CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF\n''' u'''SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS\n''' u'''INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN\n''' u'''CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)\n''' u'''ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE\n''' u'''POSSIBILITY OF SUCH DAMAGE.\n''' u'''*/\n''' u'''#ifndef GENERATED_MSG_VERSION_H\n''' u'''#define GENERATED_MSG_VERSION_H\n\n''' u'''namespace application_manager {\n\n''' u'''const uint16_t major_version = $m_version;\n''' u'''const uint16_t minor_version = $min_version;\n''' u'''const uint16_t patch_version = $p_version;\n''' u'''} // namespace application_manager\n''' u'''#endif // GENERATED_MSG_VERSION_H''') data_to_file = temp.substitute(m_version = major_version, min_version = minor_version, p_version = patch_version) return data_to_file
7,586
def flatten_mock_calls(mock): """ Flatten the calls performed on a particular mock object, into a list of calls with arguments. """ result = [] for call in mock.mock_calls: call = list(call) call_name = call[0] if '.' in str(call_name): call_name = str(call_name).split('.')[-1] result.append([call_name] + call[1:]) return result
7,587
def clean_setting( name: str, default_value: object, min_value: int = None, max_value: int = None, required_type: type = None, choices: list = None, ) -> Any: """cleans the user input for an app's setting in the Django settings file Will use default_value if setting is not defined. Will use minimum or maximum value if respective boundary is exceeded. Args: default_value: value to use if setting is not defined min_value: minimum allowed value (0 assumed for int) max_value: maximum value value required_type: Mandatory if `default_value` is `None`, otherwise derived from default_value Returns: cleaned value for setting This function is designed to be used in a dedicated module like ``app_settings.py`` as layer between the actual settings and all other modules. ``app_settings.py`` will import and clean all settings and all other modules are supposed to import the settings it. Example for app_settings: .. code-block:: python from app_utils.django import clean_setting EXAMPLE_SETTING = clean_setting("EXAMPLE_SETTING", 10) """ if default_value is None and not required_type: raise ValueError("You must specify a required_type for None defaults") if not required_type: required_type = type(default_value) if min_value is None and issubclass(required_type, int): min_value = 0 if issubclass(required_type, int) and default_value is not None: if min_value is not None and default_value < min_value: raise ValueError("default_value can not be below min_value") if max_value is not None and default_value > max_value: raise ValueError("default_value can not be above max_value") if not hasattr(settings, name): cleaned_value = default_value else: dirty_value = getattr(settings, name) if dirty_value is None or ( isinstance(dirty_value, required_type) and (min_value is None or dirty_value >= min_value) and (max_value is None or dirty_value <= max_value) and (choices is None or dirty_value in choices) ): cleaned_value = dirty_value elif ( isinstance(dirty_value, required_type) and min_value is not None and dirty_value < min_value ): logger.warn( "You setting for {} it not valid. Please correct it. " "Using minimum value for now: {}".format(name, min_value) ) cleaned_value = min_value elif ( isinstance(dirty_value, required_type) and max_value is not None and dirty_value > max_value ): logger.warn( "You setting for {} it not valid. Please correct it. " "Using maximum value for now: {}".format(name, max_value) ) cleaned_value = max_value else: logger.warn( "You setting for {} it not valid. Please correct it. " "Using default for now: {}".format(name, default_value) ) cleaned_value = default_value return cleaned_value
7,588
def update_not_existing_kwargs(to_update, update_from): """ This function updates the keyword aguments from update_from in to_update, only if the keys are not set in to_update. This is used for updated kwargs from the default dicts. """ if to_update is None: to_update = {} to_update.update({k:v for k,v in update_from.items() if k not in to_update}) return to_update
7,589
def get_reddit(): """Returns the reddit dataset, downloading locally if necessary. This dataset was released here: https://www.reddit.com/r/redditdev/comments/dtg4j/want_to_help_reddit_build_a_recommender_a_public/ and contains 23M up/down votes from 44K users on 3.4M links. Returns a CSR matrix of (item, user, rating""" filename = os.path.join(_download.LOCAL_CACHE_DIR, "reddit.hdf5") if not os.path.isfile(filename): log.info("Downloading dataset to '%s'", filename) _download.download_file(URL, filename) else: log.info("Using cached dataset at '%s'", filename) with h5py.File(filename, "r") as f: m = f.get("item_user_ratings") return csr_matrix((m.get("data"), m.get("indices"), m.get("indptr")))
7,590
def linear_forward(A, W, b): """Returns Z, (A, W, b)""" Z = (W @ A) + b cache = (A, W, b) return Z, cache
7,591
def read_wave(path): """Reads a .wav file. Takes the path, and returns (PCM audio data, sample rate). """ with contextlib.closing(wave.open(path, 'rb')) as wf: num_channels = wf.getnchannels() assert num_channels == 1 sample_width = wf.getsampwidth() assert sample_width == 2 sample_rate = wf.getframerate() assert sample_rate in (16000, 22050, 32000, 48000) pcm_data = wf.readframes(wf.getnframes()) return pcm_data, sample_rate
7,592
def update_rho_hat(rho_hat_q, rho_hat_g, phi_hat, K, Q, Y_tp1, gamma_t, W): """ rho_hat is an intermediate quantity rho_hat_{n, nu, theta}(x) = 1/n E[ sum_{t=1}^n s(X_{t-1}, X_t, Y_t | Y_{0:n}, X_n=x)] where s() are the sufficient statistics see Cappe (2.5) In our case (discrete emissions HMM), it be broken down into two separable components: rho_hat_q{n, nu, theta}(i,j,k; theta) = 1/n E[ sum_{t=1}^n I_{X_{t-1}=i, X_t=j} | Y_{0:n}, X_n=k)] rho_hat_g{n, nu, theta}(i,k; theta) = 1/n E[ sum_{t=0}^n I_{X_t=i} s(Y_t)| Y_{0:n}, X_n=k)] where s() here is just a multinoulli vector with W entries, so we can re-express it as rho_hat_g{n, nu, theta}(i,w,k; theta) = 1/n E[ sum_{t=0}^n I_{X_t=i, Y_t=w}| Y_{0:n}, X_n=k)] rho_hat_q has KxKxK entries rho_hat_g has KxWxK entries """ rho_hat_q = update_rho_hat_q(rho_hat_q, phi_hat, Q, gamma_t, K) rho_hat_g = update_rho_hat_g(rho_hat_g, Y_tp1, phi_hat, Q, gamma_t, K, W) return rho_hat_q, rho_hat_g
7,593
def obtain_dihedral_angles(system_coords, bond_distance): """ system_coords: coords for 1 frame """ ref_selection = system_coords[0] # Process bonds for reference frame (first) bonds = [] sq_bond_distance = bond_distance**2 for i in range(len(ref_selection)-1): for j in range(i+1, len(ref_selection)): if mathTools.sq_distance(ref_selection[i], ref_selection[j]) <= sq_bond_distance: bonds.append(tuple(sorted([i, j]))) print "DBG: Found %d bonds"%(len(bonds)) # Find angles angles = [] for i in range(len(bonds)-1): for j in range(i+1, len(bonds)): if bonds_are_linked(bonds[i], bonds[j]): angles.append(tuple(sorted([bonds[i], bonds[j]]))) print "DBG: Found %d angles"%(len(angles)) # Finally, find dihedrals dihedrals = [] for i in range(len(angles)-1): for j in range(i+1, len(angles)): if angles_share_bond(angles[i], angles[j]): dihedrals.append(tuple(sorted([angles[i], angles[j]]))) print "DBG: Found %d dihedrals"%(len(dihedrals)) # Now reorganize atoms in dihedrals so that # they are consecutive and we can calculate the # actual dihedral angle r_dihedrals = [] for dihedral in dihedrals: indices = get_dihedral_indices(dihedral) # Get permutation of minimum distance distances = [] for perm in itertools.permutations(indices): #print dihedral, perm distances.append(( mathTools.sq_distance(ref_selection[perm[0]],ref_selection[perm[1]])+ mathTools.sq_distance(ref_selection[perm[1]],ref_selection[perm[2]])+ mathTools.sq_distance(ref_selection[perm[2]],ref_selection[perm[3]]), perm)) # We will pick the one which summed distances is smaller distances.sort() r_dihedrals.append(distances[0][1]) all_angles = [] for ref in system_coords: #Calculate the angles for a ref angles = [] for dihedral_indexes in r_dihedrals: atom1 = ref[dihedral_indexes[0]] atom2 = ref[dihedral_indexes[1]] atom3 = ref[dihedral_indexes[2]] atom4 = ref[dihedral_indexes[3]] angles.append( mathTools.calc_dihedral(atom1, atom2, atom3, atom4)) all_angles.append(angles) return numpy.array(all_angles)
7,594
def piecewise_accel(duration,initial,final): """Defines a piecewise acceleration. Args: duration (float): Length of time for the acceleration to complete. initial (float): Initial value. final (float): Final value. """ a = (final-initial) return lambda t: initial + a * ( (9./2 * t**3/duration**3) * (t<duration/3) + (-9*t**3/duration**3 + 27./2*t**2/duration**2 - 9./2*t/duration + 1./2) * (t<2*duration/3)*(t>=duration/3) + (9./2*t**3/duration**3 - 27./2 * t**2/duration**2 + 27./2*t/duration - 7./2) * (t>= 2*duration/3))
7,595
def download_data(symbols, from_date): """Download the desired symbol data from specified date to today, with a daily basis.""" curr_date = datetime.now() from_date = datetime.strptime(from_date, '%Y-%m-%d') for symbol in symbols: link = "http://chart.finance.yahoo.com/table.csv?s={}&a={}&b={}&c={}&d={}&e={}&f={}&g=d&ignore=.csv".format( symbol, from_date.month - 1, from_date.day, from_date.year, curr_date.month - 1, curr_date.day, curr_date.year) file_name = "data\{}.csv".format(symbol) print "Downloading {}...".format(file_name) urllib.urlretrieve(link, file_name)
7,596
def get_displayed_views(id): """ get views in window rect by view id str :param res_id: :return: """ return get_solo().get_displayed_views(id)
7,597
def get_build_version(xform): """ there are a bunch of unreliable places to look for a build version this abstracts that out """ version = get_version_from_build_id(xform.domain, xform.build_id) if version: return version, BuildVersionSource.BUILD_ID version = get_version_from_appversion_text( get_meta_appversion_text(xform) ) if version: return version, BuildVersionSource.APPVERSION_TEXT xform_version = xform.version if xform_version and xform_version != '1': return int(xform_version), BuildVersionSource.XFORM_VERSION return None, BuildVersionSource.NONE
7,598
def get_shortlist(routing_table: 'TreeRoutingTable', key: bytes, shortlist: typing.Optional[typing.List['KademliaPeer']]) -> typing.List['KademliaPeer']: """ If not provided, initialize the shortlist of peers to probe to the (up to) k closest peers in the routing table :param routing_table: a TreeRoutingTable :param key: a 48 byte hash :param shortlist: optional manually provided shortlist, this is done during bootstrapping when there are no peers in the routing table. During bootstrap the shortlist is set to be the seed nodes. """ if len(key) != constants.HASH_LENGTH: raise ValueError("invalid key length: %i" % len(key)) return shortlist or routing_table.find_close_peers(key)
7,599