content
stringlengths 22
815k
| id
int64 0
4.91M
|
---|---|
def read_students(path):
""" Read a tab-separated file of students. The only required field is 'github_repo', which is this
student's github repository. """
students = [line for line in csv.DictReader(open(path), delimiter='\t')]
check_students(students)
return students
| 7,300 |
def get_extended_attention_mask(
attention_mask: Tensor,
input_shape: Tuple[int],
device: torch.device,
is_decoder=False,
) -> Tensor:
"""
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
Arguments:
attention_mask (:obj:`torch.Tensor`):
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
input_shape (:obj:`Tuple[int]`):
The shape of the input to the model.
device: (:obj:`torch.device`):
The device of the input to the model.
Returns:
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
"""
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
elif attention_mask.dim() == 2:
# Provided a padding mask of dimensions [batch_size, seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
if is_decoder:
batch_size, seq_length = input_shape
seq_ids = torch.arange(seq_length, device=device)
causal_mask = (
seq_ids[None, None, :].repeat(batch_size, seq_length, 1)
<= seq_ids[None, :, None]
)
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
# causal and attention masks must have same type with pytorch version < 1.3
causal_mask = causal_mask.to(attention_mask.dtype)
if causal_mask.shape[1] < attention_mask.shape[1]:
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
causal_mask = torch.cat(
[
torch.ones(
(batch_size, seq_length, prefix_seq_len),
device=device,
dtype=causal_mask.dtype,
),
causal_mask,
],
axis=-1,
)
extended_attention_mask = (
causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
)
else:
extended_attention_mask = attention_mask[:, None, None, :]
else:
raise ValueError(
f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
# extended_attention_mask = extended_attention_mask.to(
# dtype=self.dtype
# ) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
return extended_attention_mask
| 7,301 |
def ci_generate(args):
"""Generate jobs file from a spack environment file containing CI info.
Before invoking this command, you can set the environment variable
SPACK_CDASH_AUTH_TOKEN to contain the CDash authorization token
for creating a build group for the generated workload and registering
all generated jobs under that build group. If this environment
variable is not set, no build group will be created on CDash."""
env = ev.get_env(args, 'ci generate', required=True)
output_file = args.output_file
copy_yaml_to = args.copy_to
spack_repo = args.spack_repo
spack_ref = args.spack_ref
run_optimizer = args.optimize
use_dependencies = args.dependencies
if not output_file:
output_file = os.path.abspath(".gitlab-ci.yml")
else:
output_file_path = os.path.abspath(output_file)
gen_ci_dir = os.path.dirname(output_file_path)
if not os.path.exists(gen_ci_dir):
os.makedirs(gen_ci_dir)
# Generate the jobs
spack_ci.generate_gitlab_ci_yaml(
env, True, output_file, spack_repo, spack_ref,
run_optimizer=run_optimizer,
use_dependencies=use_dependencies)
if copy_yaml_to:
copy_to_dir = os.path.dirname(copy_yaml_to)
if not os.path.exists(copy_to_dir):
os.makedirs(copy_to_dir)
shutil.copyfile(output_file, copy_yaml_to)
| 7,302 |
def setup(c): # type: ignore
"""Set this project up for Development."""
c.run("ls -lah --color=yes .venv")
c.run("poetry env info --path")
c.run("poetry debug info")
c.run("poetry run pre-commit install")
| 7,303 |
def getdiskuuidvm(diskuuid):
"""
get vm uuid from disk uuid and return it
"""
if debug:
print 'vm from disk uuid :',diskuuid
cmd='xe vbd-list vdi-uuid='+diskuuid
response=docmd(cmd).split('vm-uuid ( RO): ')
vmuuid=response[1].split('\n')[0]
return vmuuid
| 7,304 |
def storedata():
""" Upload a new file """
#path = os.path.join(app.config['UPLOAD_DIR'],current_user.name)
path = os.path.join(app.config['UPLOAD_DIR'])
dirs = os.listdir(path)
if dirs!="": # If user's directory is empty
dirs.sort(key=str.lower)
if request.method == 'POST':
if 'file' not in request.files:
flash('Chosse a file .csv',"alert alert-danger")
return render_template(
'uploadData.html',
infoUpload='Chosse a file .csv',
files=dirs)
file = request.files['file'] # get the file
if file.filename == '':
flash('File not selected',"alert alert-danger")
return render_template(
'uploadData.html',
infoUpload='file not selected',
files=dirs)
file_name = ''
data_name = ''
if file and allowed_file(file.filename):
file_name = secure_filename(file.filename)
file_path = os.path.join(path, file_name)
file.save(file_path)
dirs = os.listdir(path)
if dirs!="": # If user's directory is empty
dirs.sort(key=str.lower)
flash('Uploaded!! '+file_name,"alert alert-success")
return render_template(
'uploadData.html',
infoUpload='Uploaded!! '+file_name,
files=dirs)
flash('Error',"alert alert-danger")
return render_template(
'uploadData.html',
infoUpload='Error',
files=dirs)
else:
return redirect(url_for('defineData'))
| 7,305 |
def run_fpp_locs(
build: Build,
parsed: argparse.Namespace,
_: Dict[str, str],
make_args: Dict[str, str],
):
"""Runs the fpp_locs command
Args:
build: build cache
parsed: parsed arguments object
_: cmake args, not used
make_args: make arguments passed to the fpp-locs target
"""
print(
f"fpp Locations File: {fpp_get_locations_file(Path(parsed.path), build, make_args=make_args)}"
)
| 7,306 |
def adler32(string, start=ADLER32_DEFAULT_START):
"""
Compute the Adler-32 checksum of the string, possibly with the given
start value, and return it as a unsigned 32 bit integer.
"""
return _crc_or_adler(string, start, _adler32)
| 7,307 |
def list_projects(sortBy=None, sortOrder=None, nextToken=None):
"""
Gets a list of build project names, with each build project name representing a single build project.
See also: AWS API Documentation
:example: response = client.list_projects(
sortBy='NAME'|'CREATED_TIME'|'LAST_MODIFIED_TIME',
sortOrder='ASCENDING'|'DESCENDING',
nextToken='string'
)
:type sortBy: string
:param sortBy: The criterion to be used to list build project names. Valid values include:
CREATED_TIME : List the build project names based on when each build project was created.
LAST_MODIFIED_TIME : List the build project names based on when information about each build project was last changed.
NAME : List the build project names based on each build project's name.
Use sortOrder to specify in what order to list the build project names based on the preceding criteria.
:type sortOrder: string
:param sortOrder: The order in which to list build projects. Valid values include:
ASCENDING : List the build project names in ascending order.
DESCENDING : List the build project names in descending order.
Use sortBy to specify the criterion to be used to list build project names.
:type nextToken: string
:param nextToken: During a previous call, if there are more than 100 items in the list, only the first 100 items are returned, along with a unique string called a next token . To get the next batch of items in the list, call this operation again, adding the next token to the call. To get all of the items in the list, keep calling this operation with each subsequent next token that is returned, until no more next tokens are returned.
:rtype: dict
:return: {
'nextToken': 'string',
'projects': [
'string',
]
}
:returns:
(string) --
"""
pass
| 7,308 |
def find_earliest_brs_idx(g: Grid, V: np.ndarray, state: np.narray, low: int, high: int) -> int:
"""
Determines the earliest time the current state is in the reachable set
Args:
g: Grid
V: Value function
state: state of dynamical system
low: lower bound of search range (inclusive)
high: upper bound of search range (inclusive)
Returns:
t: Earliest time where the state is in the reachable set
"""
epsilon = 1e-4
while low < high:
mid = np.ceil((high + low) / 2)
value = g.get_value(V[..., mid], state)
if value < epsilon:
low = mid
else:
high = mid - 1
return low
| 7,309 |
def italic(s):
"""Returns the string italicized.
Source: http://stackoverflow.com/a/16264094/2570866
"""
return r'\textit{' + s + '}'
| 7,310 |
def skip_if_disabled(func):
"""Decorator that skips a test if test case is disabled."""
@functools.wraps(func)
def wrapped(*a, **kwargs):
func.__test__ = False
test_obj = a[0]
message = getattr(test_obj, 'disabled_message',
'Test disabled')
if getattr(test_obj, 'disabled', False):
test_obj.skipTest(message)
func(*a, **kwargs)
return wrapped
| 7,311 |
def _compare_keys(target: Any, key: Any) -> bool:
"""
Compare `key` to `target`.
Return True if each value in `key` == corresponding value in `target`.
If any value in `key` is slice(None), it is considered equal
to the corresponding value in `target`.
"""
if not isinstance(target, tuple):
return target == key
for k1, k2 in itertools.zip_longest(target, key, fillvalue=None):
if k2 == slice(None):
continue
if k1 != k2:
return False
return True
| 7,312 |
def parser(_, objconf, skip=False, **kwargs):
""" Parses the pipe content
Args:
_ (None): Ignored
objconf (obj): The pipe configuration (an Objectify instance)
skip (bool): Don't parse the content
kwargs (dict): Keyword arguments
Kwargs:
assign (str): Attribute to assign parsed content (default: content)
stream (dict): The original item
Returns:
Iter[dict]: The stream of items
Examples:
>>> from riko import get_path
>>> from riko.utils import get_abspath
>>> from meza.fntools import Objectify
>>>
>>> feed = 'http://feeds.feedburner.com/TechCrunch/'
>>> url = 'http://query.yahooapis.com/v1/public/yql'
>>> query = "select * from feed where url='%s'" % feed
>>> conf = {'query': query, 'url': url, 'debug': False}
>>> objconf = Objectify(conf)
>>> url = get_abspath(get_path('yql.xml'))
>>>
>>> with fetch(url) as f:
... kwargs = {'stream': {}, 'response': f}
... result = parser(None, objconf, **kwargs)
>>>
>>> next(result)['title']
'Bring pizza home'
"""
if skip:
stream = kwargs['stream']
else:
f = kwargs.get('response')
if not f:
params = {'q': objconf.query, 'diagnostics': objconf.debug}
if objconf.memoize and not objconf.cache_type:
objconf.cache_type = 'auto'
f = fetch(params=params, **objconf)
# TODO: consider paging for large result sets
root = xml2etree(f).getroot()
results = root.find('results')
stream = map(etree2dict, results)
return stream
| 7,313 |
def predict_xr(result_ds, regressors):
"""input: results_ds as came out of MLR and saved to file, regressors dataset"""
# if produce_RI isn't called on data then you should explicitely put time info
import xarray as xr
import aux_functions_strat as aux
rds = result_ds
regressors = regressors.sel(time=rds.time) # slice
regressors = regressors.apply(aux.normalize_xr, norm=1, verbose=False) # normalize
reg_dict = dict(zip(rds.regressors.values, regressors.data_vars.values()))
# make sure that all the regressors names are linking to their respective dataarrays
for key, value in reg_dict.items():
# print(key, value)
assert value.name == key
reg_da = xr.concat(reg_dict.values(), dim='regressors')
reg_da['regressors'] = list(reg_dict.keys())
reg_da.name = 'regressors_time_series'
rds['predicted'] = xr.dot(rds.params, reg_da) + rds.intercept
rds = aux.xr_order(rds)
# retures the same dataset but with total predicted reconstructed geo-time-series field
result_ds = rds
return result_ds
| 7,314 |
def _set_chap_security(module, array):
"""Set CHAP usernames and passwords"""
pattern = re.compile("[^ ]{12,255}")
if module.params["host_user"]:
if not pattern.match(module.params["host_password"]):
module.fail_json(
msg="host_password must contain a minimum of 12 and a maximum of 255 characters"
)
try:
array.set_host(
module.params["name"],
host_user=module.params["host_user"],
host_password=module.params["host_password"],
)
except Exception:
module.params(msg="Failed to set CHAP host username and password")
if module.params["target_user"]:
if not pattern.match(module.params["target_password"]):
module.fail_json(
msg="target_password must contain a minimum of 12 and a maximum of 255 characters"
)
try:
array.set_host(
module.params["name"],
target_user=module.params["target_user"],
target_password=module.params["target_password"],
)
except Exception:
module.params(msg="Failed to set CHAP target username and password")
| 7,315 |
async def list_features(location_id):
"""
List features
---
get:
summary: List features
tags:
- features
parameters:
- name: envelope
in: query
required: false
description: If set, the returned list will be wrapped in an envelope with this name.
responses:
200:
description: A list of objects.
content:
application/json:
schema:
type: array
items: Feature
"""
location = g.active_incident.Location.find_by_id(location_id)
if location is None:
raise exceptions.NotFound(description="Location {} was not found".format(location_id))
features = location.Feature.find()
# Wrap the list if the caller requested an envelope.
query = request.args
if "envelope" in query:
result = {query.get("envelope"): features}
else:
result = features
return jsonify(result), HTTPStatus.OK
| 7,316 |
def delete_hosts(ec2_conn, ipa_client, hostnames):
""" Unenrolls hosts from IPA and AWS """
for hostname in hostnames:
try:
ipa_client.unenroll_host(hostname=hostname)
except (KeyError, ipaclient.NotFoundError):
pass
ec2client.delete_instances(ec2_conn, hostnames=hostnames)
| 7,317 |
def shot_start_frame(shot_node):
"""
Returns the start frame of the given shot
:param shot_node: str
:return: int
"""
return sequencer.get_shot_start_frame(shot_node)
| 7,318 |
def word1(x: IntVar) -> UInt8:
"""Implementation for `WORD1`."""
return word_n(x, 1)
| 7,319 |
def _getCols1():
"""
Robs Version 1 CSV files
"""
cols = 'Date,DOY,Time,Location,Satellite,Collection,Longitude,Latitude,SolarZenith,SolarAzimuth,SensorZenith,SensorAzimuth,ScatteringAngle,nval_AOT_1020_l20,mean_AOT_1020_l20,mean_AOT_870_l20,mean_AOT_675_l20,sdev_AOT_675_l20,mean_AOT_500_l20,mean_AOT_440_l20,mean_AOT_380_l20,mean_AOT_340_l20,mean_Water_cm_l20,nval_AOT_1020_l15,mean_AOT_1020_l15,mean_AOT_870_l15,mean_AOT_675_l15,sdev_AOT_675_l15,mean_AOT_500_l15,mean_AOT_440_l15,mean_AOT_380_l15,mean_AOT_340_l15,mean_Water_cm_l15,npix_AOT0550,mean_AOT0550,sdev_AOT0550,mean_rAOTse0550,sdev_rAOTse0550,mean_AOT0470corr_l,npix_AOT0550corr_l,pval_AOT0550corr_l,mean_AOT0550corr_l,sdev_AOT0550corr_l,mean_AOT0660corr_l,mean_AOT2100corr_l,mean_rAOTse0550_l,pval_rAOTse0550_l,mean_AOT0550sm_l,pval_AOT0550sm_l,mean_Aexp0470_0670_l,mean_surfre0470_l,mean_surfre0660_l,mean_surfre2100_l,mean_fiterr_l,mean_atype_l,mean_cfrac_l,mean_mconc_l,QA0470_l,mean_mref0470_l,mean_mref0550_l,mean_mref0660_l,mean_mref0870_l,mean_mref1200_l,mean_mref1600_l,mean_mref2100_l,pval_mref0470_l,pval_mref0550_l,pval_mref0660_l,pval_mref0870_l,pval_mref1200_l,pval_mref1600_l,pval_mref2100_l,mean_AOT0470ea_o,npix_AOT0550ea_o,pval_AOT0550ea_o,mean_AOT0550ea_o,sdev_AOT0550ea_o,mean_AOT0660ea_o,mean_AOT0870ea_o,mean_AOT1200ea_o,mean_AOT1600ea_o,mean_AOT2100ea_o,mean_AOT0470sa_o,npix_AOT0550sa_o,pval_AOT0550sa_o,mean_AOT0550sa_o,sdev_AOT0550sa_o,mean_AOT0660sa_o,mean_AOT0870sa_o,mean_AOT1200sa_o,mean_AOT1600sa_o,mean_AOT2100sa_o,mean_rAOTse0550a_o,mean_effr0550a_o,sdev_effr0550a_o,mean_solindx_sa_o,mean_solindx_la_o,mean_lsqerr_a_o,mean_cfrac_o,sdev_cfrac_o,QAavg_o,mean_mref0470_o,mean_mref0550_o,mean_mref0660_o,mean_mref0870_o,mean_mref1200_o,mean_mref1600_o,mean_mref2100_o,sdev_mref0470_o,sdev_mref0550_o,sdev_mref0660_o,sdev_mref0870_o,sdev_mref1200_o,sdev_mref1600_o,sdev_mref2100_o,mean_wni,mean_wir,pval_wni,pval_wir,mean_pathrad0470_l,mean_pathrad0660_l,mean_critref0470_l,mean_critref0660_l,mean_errprad0470_l,mean_errprad0660_l,mean_errcref0470_l,mean_errcref0660_l,mean_qwtprad0470_l,mean_qwtprad0660_l,mean_qwtcref0470_l,mean_qwtcref0660_l,npix_AOT0550dpbl_l,pval_AOT0550dpbl_l,mean_AOT0550dpbl_l,sdev_AOT0550dpbl_l,mean_AOT0412dpbl_l,mean_AOT0470dpbl_l,mean_AOT0660dpbl_l,mean_Aext0412_0470dpbl_l,mean_SSA0412dpbl_l,mean_SSA0470dpbl_l,mean_SSA0660dpbl_l,mean_surfre0412dpbl_l,mean_surfre0470dpbl_l,mean_surfre0660dpbl_l,tau_550_norm,eta_norm,tau_f,tau_c,alpha_norm,alpha_f,Deta,tau_466,tau_553,tau_644,tau_866,tau_2119,Angs_466_644,exp_errorO_pct,exp_errorL_pct,ncep_pwat,ncep_O3,ncep_pres,ncep_windspd,ncep_winddir'
return cols
| 7,320 |
def extract_tmt_reporters(mzml_files: List[Path], output_path: Path, correction_factor_path: Path, num_threads: int = 1,
extraction_level: int = 3):
"""
Takes about 1.5 minute for a 700MB file with 40k MS2 scans
"""
if not output_path.is_dir():
output_path.mkdir(parents=True)
if num_threads > 1:
from .utils.multiprocessing_pool import JobPool
processing_pool = JobPool(processes=num_threads)
for mzml_file in mzml_files:
if num_threads > 1:
processing_pool.applyAsync(extract_and_correct_reporters,
(mzml_file, output_path, correction_factor_path, extraction_level))
else:
extract_and_correct_reporters(mzml_file, output_path, correction_factor_path, extraction_level)
if num_threads > 1:
processing_pool.checkPool(printProgressEvery=1)
| 7,321 |
def sendMail(sendTo, msg):
"""
To send a mail
Args:
sendTo (list): List of mail targets
msg (str): Message
"""
mail = smtplib.SMTP('smtp.gmail.com', 587) # host and port
# Hostname to send for this command defaults to the FQDN of the local host.
mail.ehlo()
mail.starttls() # security connection
mail.login(EMAIL_ID, PASSWORD) # login part
for person in sendTo:
mail.sendmail(EMAIL_ID, person, msg) # send part
print("Mail sent successfully to " + person)
mail.close()
| 7,322 |
def main():
"""
main
"""
Session = sessionmaker(bind=engine)
session = Session()
NRFBase.metadata.create_all(engine)
sdk_dir = "developer.nordicsemi.com/nRF5_SDK/"
download_sdk(sdk_dir, "http://" + sdk_dir)
sdks = SDKs(sdk_dir)
for sdk_v, zip_path in sdks.dict.items():
sdk = SDK(sdk_v, zip_path)
print("\n ====================")
print(" ", sdk_v, "=>", zip_path)
print(" ====================")
sdk.extract_softdevices()
soft_devices = list(sdk.list_softdevices())
for soft_dvc in soft_devices:
if "nrf" in soft_dvc:
nrf = soft_dvc.split(",")[0]
sdvc = soft_dvc.split(",")[1]
if sdk_v == "4.4.2":
header_dir = nrf + "/Include/"
else:
header_dir = nrf + "/Include/" + sdvc +"/"
linker_dir = nrf + "/Source/templates/gcc/"
hex_dir = None
print("\n=== {0} {1} ===".format(sdvc, nrf))
print("Hex file for {0} not found in archive. Firmware's signature will depend on the strings contained in the given binary".format(sdvc))
else:
nrf = "hex"
sdvc = soft_dvc
header_dir = "components/softdevice/" + sdvc + "/headers/"
linker_dir = "components/softdevice/" + sdvc + "/toolchain/armgcc/"
linkers_path = "./SDKs/" + sdk_v + "/" + linker_dir
if os.path.exists(linkers_path) is False:
linker_dir = "components/toolchain/gcc/"
hex_dir = "components/softdevice/" + sdvc + "/hex/"
print("\n=== {0} {1} ===".format(sdvc, nrf))
sdk.extract_hex(hex_dir)
soft_device = SoftDevice(sdk_v, sdvc, nrf, header_dir, linker_dir, sdk.hex_path, session)
soft_device.signature()
print("SoftDevice Signature: {0}".format(soft_device.sign))
soft_device.set_headers()
# Setting a list of header files for parsing
try:
soft_device.set_linkers()
if soft_device.linkers != []:
soft_device.mem_parser()
except IOError as err:
print("I/O error: {0}".format(err))
soft_device.svc_parser()
print("SVCALLs, functions, structures' parsing completed")
session.add(soft_device)
session.commit()
print("SoftDevice successfully added to database")
| 7,323 |
def run_primer3(sequence, region, primer3_exe: str, settings_dict: dict,
padding=True, thermodynamic_params: Optional[Path] = None):
"""Run primer 3. All other kwargs will be passed on to primer3"""
if padding:
target_start = region.padding_left
target_len = len(sequence) - region.padding_left - region.padding_right
else:
target_start = 1
target_len = len(sequence)
target = ",".join(map(str, [target_start, target_len]))
p3 = Primer3(primer3_exe, sequence, target, target, settings_dict,
thermodynamic_params=thermodynamic_params)
p3_out = p3.run()
primers = parse_primer3_output(p3_out)
return primers
| 7,324 |
def plot_analytic(axespdf, axescdf,
z_cut, beta=2., f=1.,
jet_type='quark',
bin_space='lin', plotnum=0,
label='Analytic, LL'):
"""Plots the analytic groomed GECF cdf on axescdf,
and the groomed GECF pdf on axespdf.
"""
verify_bin_space(bin_space)
if bin_space == 'lin':
angs = np.linspace(0, .5, 1000)
angs_central = (angs[:-1] + angs[1:])/2.
if bin_space == 'log':
angs = np.logspace(-8, np.log10(.5), 1000)
angs_central = np.sqrt(angs[:-1] * angs[1:])
cdf = critSudakov_fc_LL(angs_central, z_cut, beta, f=f,
jet_type=jet_type)
col = compcolors[(plotnum, 'light')]
# Analytic plot:
axescdf[0].plot(angs_central, cdf, **style_dashed,
color=col, zorder=.5, label=label)
if len(axescdf) > 1:
axescdf[1].plot(angs, np.ones(len(angs)),
**style_dashed, color=col,
zorder=.5)
if axespdf is not None:
_, pdf = histDerivative(cdf, angs, giveHist=True,
binInput=bin_space)
if bin_space == 'log':
pdf = angs_central*pdf
# Analytic plot:
axespdf[0].plot(angs_central, pdf, **style_dashed,
color=col, zorder=.5, label=label)
if len(axespdf) > 1:
axespdf[1].plot(angs, np.ones(len(angs)),
**style_dashed, color=col,
zorder=.5)
| 7,325 |
def filter_safe_dict(data, attrs=None, exclude=None):
"""
Returns current names and values for valid writeable attributes. If ``attrs`` is given, the
returned dict will contain only items named in that iterable.
"""
def is_member(cls, k):
v = getattr(cls, k)
checks = [
not k.startswith("_"),
not inspect.ismethod(v) or getattr(v, "im_self", True),
not inspect.isfunction(v),
not isinstance(v, (classmethod, staticmethod, property)),
]
return all(checks)
cls = None
if inspect.isclass(data):
cls = data
data = {k: getattr(cls, k) for k in dir(cls) if is_member(cls, k)}
ret = {}
for k, v in data.items():
checks = [
not k.startswith("_"),
not inspect.ismethod(v) or getattr(v, "im_self", True),
not isinstance(v, (classmethod, staticmethod, property)),
not attrs or (k in attrs),
not exclude or (k not in exclude),
]
if all(checks):
ret[k] = v
return ret
| 7,326 |
def get_member_from_list():
"""
GET /lists/<address>/members/<member_address>
:return:
"""
req = client.lists_members.get(domain=domain, address="everyone@mailgun.zeefarmer.com",
member_address="zerreissen@hotmail.com")
print(req.json())
| 7,327 |
def checkUdimValue(udim):
"""None"""
pass
| 7,328 |
def fixture_loqus_exe():
"""Return the path to a loqus executable"""
return "a/path/to/loqusdb"
| 7,329 |
def setup_nat():
"""
Make sure IP forwarding is enabled
"""
import fabtools
fabtools.require.system.sysctl('net.ipv4.ip_forward', 1)
| 7,330 |
def test_cases():
"""Some sample test cases"""
assert count('aba') == {'a': 2, 'b': 1}
assert count('abcddbacdb') == {'a': 2,'b': 3,'c': 2,'d': 3}
assert count('') == {}
print("Test Success!")
| 7,331 |
def inference(tasks, name, convnet_model, convnet_weight_path, input_patch_size,
output_patch_size, output_patch_overlap, output_crop_margin, patch_num,
num_output_channels, dtype, framework, batch_size, bump, mask_output_chunk,
mask_myelin_threshold, input_chunk_name, output_chunk_name):
"""Perform convolutional network inference for chunks."""
with Inferencer(
convnet_model,
convnet_weight_path,
input_patch_size=input_patch_size,
output_patch_size=output_patch_size,
num_output_channels=num_output_channels,
output_patch_overlap=output_patch_overlap,
output_crop_margin=output_crop_margin,
patch_num=patch_num,
framework=framework,
dtype=dtype,
batch_size=batch_size,
bump=bump,
mask_output_chunk=mask_output_chunk,
mask_myelin_threshold=mask_myelin_threshold,
dry_run=state['dry_run']) as inferencer:
for task in tasks:
if task is not None:
if 'log' not in task:
task['log'] = {'timer': {}}
start = time()
task[output_chunk_name] = inferencer(
task[input_chunk_name])
task['log']['timer'][name] = time() - start
task['log']['compute_device'] = inferencer.compute_device
yield task
| 7,332 |
def set_command_line_flags(flags: List[str]):
"""Set the command line flags."""
sys.argv = flags
FLAGS.unparse_flags()
FLAGS(flags)
| 7,333 |
def get_reads_section(read_length_r1, read_length_r2):
"""
Yield a Reads sample sheet section with the specified R1/R2 length.
:rtype: SampleSheetSection
"""
rows = [[str(read_length_r1)], [str(read_length_r2)]]
return SampleSheetSection(SECTION_NAME_READS, rows)
| 7,334 |
def dummy_user_as_group_manager(logged_in_dummy_user, dummy_group):
"""Make the dummy user a manager of the dummy-group group."""
ipa_admin.group_add_member(a_cn="dummy-group", o_user="dummy")
ipa_admin.group_add_member_manager(a_cn="dummy-group", o_user="dummy")
yield
| 7,335 |
def RegisterCallback(callback, msgtype):
"""Register a callback method for the given message type
@param callback: callable
@param msgtype: message type
"""
if isinstance(msgtype, tuple):
mtype = '.'.join(msgtype)
else:
mtype = msgtype
if mtype not in _CALLBACK_REGISTRY:
_CALLBACK_REGISTRY[mtype] = list()
if callback not in _CALLBACK_REGISTRY[mtype]:
_CALLBACK_REGISTRY[mtype].append(callback)
| 7,336 |
def validate(number):
"""Check if the number is valid. This checks the length, format and check
digit."""
number = compact(number)
if not all(x in _alphabet for x in number):
raise InvalidFormat()
if len(number) != 16:
raise InvalidLength()
if number[-1] == '-':
raise InvalidFormat()
if number[-1] != calc_check_digit(number):
raise InvalidChecksum()
return number
| 7,337 |
def find_atom(i):
"""
Set the anchor to the atom with index `i`.
"""
gcv().find_atom(i)
| 7,338 |
def parse_directory(filename):
""" read html file (nook directory listing),
return users as [{'name':..., 'username':...},...] """
try:
file = open(filename)
html = file.read()
file.close()
except:
return []
users = []
for match in re.finditer(r'<b>([^<]+)</b>.*?mailto:([^@]+)@', html):
groups = match.groups()
users.append({'name':groups[0], 'username':groups[1]})
users.sort(key=lambda x:x['username'])
return users
| 7,339 |
def ShortAge(dt):
"""Returns a short string describing a relative time in the past.
Args:
dt: A datetime.
Returns:
A short string like "5d" (5 days) or "32m" (32 minutes).
"""
# TODO(kpy): This is English-specific and needs localization.
seconds = time.time() - UtcToTimestamp(dt)
minutes = int(seconds / 60 + 0.5)
hours = int(seconds / 3600 + 0.5)
days = int(seconds / 86400 + 0.5)
if seconds < 60:
return 'just now'
if minutes < 100:
return '%dm ago' % minutes
if hours < 48:
return '%dh ago' % hours
return '%dd ago' % days
| 7,340 |
def test_finder_installs_pre_releases_with_version_spec():
"""
Test PackageFinder only accepts stable versioned releases by default.
"""
req = InstallRequirement.from_line("bar>=0.0.dev0", None)
links = ["https://foo/bar-1.0.tar.gz", "https://foo/bar-2.0b1.tar.gz"]
finder = PackageFinder(links, [], session=PipSession())
with patch.object(finder, "_get_pages", lambda x, y: []):
link = finder.find_requirement(req, False)
assert link.url == "https://foo/bar-2.0b1.tar.gz"
links.reverse()
finder = PackageFinder(links, [], session=PipSession())
with patch.object(finder, "_get_pages", lambda x, y: []):
link = finder.find_requirement(req, False)
assert link.url == "https://foo/bar-2.0b1.tar.gz"
| 7,341 |
def _raxml(exe, msa, tree, model, gamma, alpha, freq, outfile):
"""
Reconstruct ancestral sequences using RAxML_.
:param exe: str, path to the executable of an ASR program.
:param msa: str, path to the MSA file (must in FASTA format).
:param tree: str, path to the tree file (must in NEWICK format) or a NEWICK
format tree string (must start with "(" and end with ";").
:param model: namedtuple, substitution model for ASR.
:param gamma: int, The number of categories for the discrete gamma rate
heterogeneity model.
:param freq: str, the equilibrium frequencies of the twenty amino acids.
:param alpha: float, the shape (alpha) for the gamma rate heterogeneity.
:param outfile: str, path to the output file.
:return: tuple, a tree object and a dict for sequences.
.. note::
See doc string of function ``asr()`` for details of all arguments.
.. _RAxML: https://sco.h-its.org/exelixis/web/software/raxml/
"""
if model.type == 'custom':
mf = model.name
name = 'WAG'
info('Use model file {} for ancestral states reconstruction.'.format(mf))
else:
name = model.name
if name.upper() in RAXML_MODELS:
mf = ''
info('Use {} model for ancestral states '
'reconstruction.'.format(name))
else:
error('RAxML does not accept {} model, aborted.'.format(name))
sys.exit(1)
wd, tf = tempfile.mkdtemp(dir=os.path.dirname(msa)), 'raxml.tree.newick'
tf = tree.file(os.path.join(wd, tf), brlen=False)
cmd = [exe, '-f', 'A', '-s', msa, '-t', tf, '-n', 'iMC']
m = 'PROTGAMMA' if (gamma or model.gamma) else 'PROTCAT'
m += name.upper()
freq = 'F' if freq == 'estimate' or model.frequency == 'estimate' else 'X'
if 'AUTO' not in m:
m += freq
cmd.extend(['-m', m])
if mf:
cmd.extend(['-P', mf])
cmd.append('--silent')
try:
info('Reconstructing ancestral states for {} using RAxML.'.format(msa))
process = Popen(cmd, cwd=wd, stdout=PIPE,
stderr=PIPE, universal_newlines=True)
code = process.wait()
msg = process.stdout.read() or process.stderr.read()
# Sometime RAxML does not return a non-zero code when it runs error
if code:
error('Ancestral reconstruction via RAxML failed for {} due to:'
'\n{}'.format(msa, indent(msg, prefix='\t')))
sys.exit(1)
else:
ancestor = os.path.join(wd, 'RAxML_marginalAncestralStates.iMC')
# Check again to see if reconstruction success
if not os.path.isfile(ancestor):
msg = '\n'.join([line for line in msg.splitlines()
if line.strip().startswith('ERROR')])
error('Ancestral reconstruction via RAxML failed for {} due to:'
'\n{}'.format(msa, indent(msg, prefix='\t')))
sys.exit(1)
info('Parsing ancestral sequence reconstruction results.')
with open(ancestor) as handle:
ancestor = dict(line.strip().split() for line in handle)
tree = os.path.join(wd, 'RAxML_nodeLabelledRootedTree.iMC')
tree = Phylo.read(tree, 'newick')
for clade in tree.find_clades():
if clade.confidence and not clade.name:
clade.name = str(clade.confidence)
tree, ancestor = _label(tree, ancestor)
for record in AlignIO.read(msa, 'fasta'):
ancestor[record.id] = record.seq
_write(tree, ancestor, [], {}, outfile)
info('Successfully save ancestral states reconstruction '
'results to {}.'.format(outfile))
return outfile
except OSError as err:
print(err)
error('Invalid RAxML executable {}, running RAxML failed for '
'{}.'.format(exe, msa))
sys.exit(1)
finally:
shutil.rmtree(wd)
| 7,342 |
def dec_multiply(*args) -> Optional[Decimal]:
"""
Multiplication of numbers passed as *args.
Args:
*args: numbers we want to multiply
Returns:
The result of the multiplication as a decimal number
Examples:
>>> dec_multiply(3, 3.5, 4, 2.34)
Decimal('98.280')
>>> dec_multiply() is None
True
"""
if not args:
return
total = Decimal(str(args[0]))
for element in args[1:]:
total *= Decimal(str(element))
return total
| 7,343 |
def get_networks():
"""
Returns a list of all available network names
:return: JSON string, ex. "['bitcoin','bitcoin-cash','dash','litecoin']"
"""
return json.dumps([x[0] for x in db.session.query(Node.network).distinct().all()])
| 7,344 |
def consume(queue):
"""
"""
while True:
data = queue.get()
print(f"consume: {id(data)}")
queue.task_done()
| 7,345 |
def test_no_update_existing(api: KeepApi, config: Config, fsync: FileSync) -> None:
"""Existing note files are not updated if id not in the updated list"""
fsync.start(None)
config.state = State.InitialSync
note = Note()
note.title = "My Note"
note.text = "Initial text"
fname = write_note(api, config, note)
note.text = "Some text"
api.add(note)
nf = NoteFile.from_note(api, config, note)
renames = fsync.finish_startup([])
assert renames == {}
assert os.path.exists(fname), "The note file should still exist"
new_note = Note()
parser.parse(api, config, fname, new_note)
assert new_note.title == "My Note", "Note file title should still match"
assert new_note.text == "Initial text", "Note file text should NOT be updated"
| 7,346 |
def get_cache_key_generator(request=None, generator_cls=None, get_redis=None):
"""Return an instance of ``CacheKeyGenerator`` configured with a redis
client and the right cache duration.
"""
# Compose.
if generator_cls is None:
generator_cls = CacheKeyGenerator
if get_redis is None:
get_redis = get_redis_client
# Instantiate and return the cache key generator.
return generator_cls(get_redis(request))
| 7,347 |
def is_from_derms(output):
"""Given an output, check if it's from DERMS simulation.
Parameters
----------
output: str or pathlib.Path
"""
if not isinstance(output, pathlib.Path):
output = pathlib.Path(output)
derms_info_file = output / DERMS_INFO_FILENAME
if derms_info_file.exists():
return True
return False
| 7,348 |
def create_property():
"""
Check setting some RDF node as an RDF:Property dependent on rdflib.
"""
g = rdflib.Graph()
node = rdflib.BNode()
rdflib_model.type_property(g, node)
assert (
list(g.triples((None, None, None)))[0] ==
node, rdflib.RDF.type, rdflib.RDF.Property
)
| 7,349 |
def js_squeeze(parser, token):
"""
{% js_squeeze "js/dynamic_minifyed.js" "js/script1.js,js/script2.js" %}
will produce STATIC_ROOT/js/dynamic_minifyed.js
"""
bits = token.split_contents()
if len(bits) != 3:
raise template.TemplateSyntaxError, "%r tag requires exactly two arguments" % bits[0]
return SqueezeNode('js', *bits[1:])
| 7,350 |
def view_extracted_data() -> str:
"""
Display Raw extracted data from Documents
"""
extracted_data = read_collection(FIRESTORE_PROJECT_ID, FIRESTORE_COLLECTION)
if not extracted_data:
return render_template("index.html", message_error="No data to display")
return render_template("index.html", extracted_data=extracted_data)
| 7,351 |
def get_lstm_trump_text():
"""Use the LSTM trump tweets model to generate text."""
data = json.loads(request.data)
sl = data["string_length"]
st = data["seed_text"]
gen_text = lstm_trump.generate_text(seed_text=st, pred_len=int(sl))
return json.dumps(gen_text)
| 7,352 |
def calc_and_save_YLMs(measure_obj):
"""
COMPUTE YLMS SEQUENTIALLY AND SAVE.
xmiydivr = e^(-iφ)sin(θ) = (x - iy)/r
zdivr = cos(θ) = z/r
xmidivrsq = e^(-2iφ)sin^2(θ) = [(x - iy)/r]^2
zdivrsq = cos^2(θ) = [z/r]^2
..cu means cubed
..ft means to the fourth power
..fi means to the fifth power
Args:
measure_obj (class: measure): an object that carries the necessary values and data structures to compute 3/4 PCFs
"""
if hasattr(measure_obj, 'X'):
X = measure_obj.X
Y = measure_obj.Y
Z = measure_obj.Z
R = measure_obj.R
else:
raise AssertionError("You need to run create_XYZR() first")
#ell, m = 0,0
y00 =.5*(1./np.pi)**.5*np.ones((measure_obj.ld_one_d,measure_obj.ld_one_d,measure_obj.ld_one_d))
ylm_save(measure_obj,y00, 0, 0)
del y00
#ell, m = 1, -1
xdivr = X/R
del X
ydivr = Y/R #we'll need these as individuals later anyway.
del Y
xmiydivr = xdivr - 1j*ydivr
y1m1 = .5*np.sqrt(3./(2.*np.pi))*xmiydivr
ylm_save(measure_obj,y1m1, 1, 1)
del y1m1
#ell, m = 1, 0
zdivr = Z/R
del Z
y10 = .5*np.sqrt(3./np.pi)*zdivr
ylm_save(measure_obj,y10, 1, 0)
del y10
#ell, m = 2, -2
xmiydivrsq = xmiydivr*xmiydivr
y2m2 = .25*np.sqrt(15./(2.*np.pi))*xmiydivrsq
ylm_save(measure_obj,y2m2, 2, 2)
del y2m2
#ell, m = 2, -1
y2m1 = .5*np.sqrt(15./(2.*np.pi))*xmiydivr*zdivr
ylm_save(measure_obj,y2m1, 2, 1)
del y2m1
#ell, m = 2, 0
xdivrsq = xdivr*xdivr
ydivrsq = ydivr*ydivr
zdivrsq = zdivr*zdivr
y20 = .25*np.sqrt(5./np.pi)*(2.*zdivrsq-xdivrsq-ydivrsq)
ylm_save(measure_obj,y20, 2, 0)
del y20
#ell, m = 3, -3
xmiydivrcu = xmiydivr*xmiydivrsq
y3m3 = .125*np.sqrt(35./np.pi)*xmiydivrcu
ylm_save(measure_obj,y3m3, 3, 3)
del y3m3
#ell, m = 3, -2
y3m2 = .25*np.sqrt(105./(2.*np.pi))*xmiydivrsq*zdivr
ylm_save(measure_obj,y3m2, 3, 2)
del y3m2
#ell, m = 3, -1
y3m1 = .125*np.sqrt(21./np.pi)*(xmiydivr*(4.*zdivrsq-xdivrsq-ydivrsq))
ylm_save(measure_obj,y3m1, 3, 1)
del y3m1
#ell, m = 3, 0
y30 = .25*np.sqrt(7./np.pi)*(zdivr*(2.*zdivrsq-3.*xdivrsq-3.*ydivrsq))
ylm_save(measure_obj,y30, 3, 0)
del y30
#ell, m = 4, -4
xmiydivrft = xmiydivr*xmiydivrcu
y4m4 = .1875*np.sqrt(35./(2.*np.pi))*xmiydivrft
ylm_save(measure_obj,y4m4, 4, 4)
del y4m4
#ell, m = 4, -3
y4m3 = .375*np.sqrt(35./np.pi)*xmiydivrcu*zdivr
ylm_save(measure_obj,y4m3, 4, 3)
del y4m3
#ell, m = 4, -2
y4m2 = .375*np.sqrt(5./(2.*np.pi))*xmiydivrsq*(7.*zdivrsq-1)
ylm_save(measure_obj,y4m2, 4, 2)
del y4m2
#ell, m = 4, -1
y4m1 = .375*np.sqrt(5./np.pi)*xmiydivr*zdivr*(7.*zdivrsq-3.)
ylm_save(measure_obj,y4m1, 4, 1)
del y4m1
#ell, m = 4, 0
zdivrft = zdivrsq*zdivrsq
y40 = .1875*np.sqrt(1./np.pi)*(35.*zdivrft-30.*zdivrsq+3.)
ylm_save(measure_obj,y40, 4, 0)
del y40
#ell, m = 5, -5
xmiydivrfi = xmiydivr*xmiydivrft
y5m5 = (3./32.)*np.sqrt(77./np.pi)*xmiydivrfi
ylm_save(measure_obj,y5m5, 5, 5)
del y5m5
#ell, m = 5, -4
y5m4 = (3./16.)*np.sqrt(385./(2.*np.pi))*xmiydivrft*zdivr
ylm_save(measure_obj,y5m4, 5, 4)
del y5m4
#ell, m = 5, -3
y5m3 = (1./32.)*np.sqrt(385./np.pi)*xmiydivrcu*(9.*zdivrsq-1.)
ylm_save(measure_obj,y5m3, 5, 3)
del y5m3
#ell, m = 5, -2
zdivrcu = zdivr*zdivrsq
y5m2 = (1./8.)*np.sqrt(1155./(2.*np.pi))*xmiydivrsq*(3.*zdivrcu-zdivr)
ylm_save(measure_obj,y5m2, 5, 2)
del y5m2
#ell, m = 5, -1
y5m1 = (1./16.)*np.sqrt(165./(2.*np.pi))*xmiydivr*(21.*zdivrft-14.*zdivrsq+1.)
ylm_save(measure_obj,y5m1, 5, 1)
del y5m1
#ell, m = 5, 0
zdivrfi = zdivr*zdivrft
y50 = (1./16.)*np.sqrt(11./np.pi)*(63.*zdivrfi-70.*zdivrcu+15.*zdivr)
ylm_save(measure_obj,y50, 5, 0)
del y50
| 7,353 |
def collect_bazel_rules(root_path):
"""Collects and returns all bazel rules from root path recursively."""
rules = []
for cur, _, _ in os.walk(root_path):
build_path = os.path.join(cur, "BUILD.bazel")
if os.path.exists(build_path):
rules.extend(read_bazel_build("//" + cur))
return rules
| 7,354 |
def countSort(alist):
"""计数排序"""
if alist == []:
return []
cntLstLen = max(alist) + 1
cntLst = [0] * cntLstLen
for i in range(len(alist)):
cntLst[alist[i]] += 1 #数据alist[i] = k就放在第k位
alist.clear()
for i in range(cntLstLen):
while cntLst[i] > 0: #将每个位置的数据k循环输出多次
alist.append(i)
cntLst[i] -= 1
return alist
| 7,355 |
def _FloatsTraitsBase_read_values_dataset(arg2, arg3, arg4, arg5):
"""_FloatsTraitsBase_read_values_dataset(hid_t arg2, hid_t arg3, hid_t arg4, unsigned int arg5) -> FloatsList"""
return _RMF_HDF5._FloatsTraitsBase_read_values_dataset(arg2, arg3, arg4, arg5)
| 7,356 |
def TRI_Query(state=None, county=None,area_code=None, year=None,chunk_size=100000):
"""Query the EPA Toxic Release Inventory Database
This function constructs a query for the EPA Toxic Release Inventory API, with optional arguments for details such as the two-letter state, county name, area code, and year. More info here: https://www.epa.gov/enviro/envirofacts-data-service-api
"""
base_url='https://data.epa.gov/efservice/'
#Declare the names of the tables that we want to pull
table_name1='TRI_FACILITY'
table_name2='TRI_REPORTING_FORM'
table_name3 = 'TRI_TRANSFER_QTY'
output_format='CSV'
query = base_url
query+=table_name1+'/'
#Add in the state qualifier, if the desired_state variable is named
if state:
query+='state_abbr/=/'+state+'/'
#Add in the county qualifier, if the desired_county variable is named
if county:
query+='county_name/'+county+'/'
#Add in the area code qualifier, if the desired_area_code variable is named
if area_code:
query+='zip_code/'+str(area_code)+'/'
#Add in the next table name and year qualifier, if the desired_year variable is named
query += table_name2+'/'
if year:
if type(year) is list:
query+='reporting_year/'+str(year[0])+'/'+str(year[1])+'/'
else:
query+='reporting_year/'+str(year)+'/'
#add the third table
query += table_name3+'/'
count_query = query+'count/'
count_xml = requests.get(count_query).content
nrows= int(BeautifulSoup(count_xml,features="lxml").find('requestrecordcount').contents[0])
#Add in the desired output format to the query
csv_query = query+ output_format
#Return the completed query
bar = Bar('Downloading Records:',max=nrows,\
suffix='%(index)d/%(max)d %(percent).1f%% - %(eta)ds')
bar.check_tty = False
s=requests.get(csv_query).content
dataframe=pd.read_csv(io.StringIO(s.decode('utf-8')), engine='python',
encoding='utf-8', error_bad_lines=False)
bar.next(n = dataframe.shape[0])
nrows_prev = dataframe.shape[0]
while dataframe.shape[0] < nrows:
new_query = query + 'rows/'+str(dataframe.shape[0])+':'\
+str(dataframe.shape[0]+chunk_size)+'/'
csv_query = new_query+ output_format
s=requests.get(csv_query).content
dataframe = dataframe.append(pd.read_csv(io.StringIO(s.decode('utf-8')),
engine='python',encoding='utf-8',
error_bad_lines=False))
bar.next(n=dataframe.shape[0]-nrows_prev)
nrows_prev = dataframe.shape[0]
bar.finish()
# do the replacement:
if 'TRI_TRANSFER_QTY.TYPE_OF_WASTE_MANAGEMENT' in dataframe.columns:
dataframe.replace({'TRI_TRANSFER_QTY.TYPE_OF_WASTE_MANAGEMENT':wm_dict},inplace=True)
return dataframe
| 7,357 |
def get_monthly_schedule(year, month):
"""
:param year: a string, e.g. 2018
:param month: a string, e.g. january
:return schedule: a pd.DataFrame containing game info for the month
"""
url = f'https://www.basketball-reference.com/leagues/NBA_{year}_games-{month}.html'
page = requests.get(url)
tree = html.fromstring(page.content)
game_date = tree.xpath('//*[@data-stat="date_game"]/a/text()')
road_team = tree.xpath('//*[@data-stat="visitor_team_name"]/a/text()')
road_pts = tree.xpath('//*[@data-stat="visitor_pts"]/text()')
road_pts.pop(0) # Remove column name
home_team = tree.xpath('//*[@data-stat="home_team_name"]/a/text()')
home_pts = tree.xpath('//*[@data-stat="home_pts"]/text()')
home_pts.pop(0) # Remove column name
box_score_url = tree.xpath('//*[@data-stat="box_score_text"]/a/@href')
schedule = {
'DATE': game_date,
'ROAD_TEAM': road_team,
'ROAD_PTS': road_pts,
'HOME_TEAM': home_team,
'HOME_PTS': home_pts,
'BOX_SCORE_URL': box_score_url,
}
# Create a dictionary with different length columns (Series) that is
# suitable for a DataFrame
schedule = dict([ (k, pd.Series(v)) for k, v in schedule.items() ])
schedule = pd.DataFrame(schedule)
schedule.dropna(how='any', inplace=True)
schedule['ROAD_TM'] = schedule['ROAD_TEAM'].map(team_name_abbrev)
schedule['HOME_TM'] = schedule['HOME_TEAM'].map(team_name_abbrev)
schedule = schedule[['DATE', 'ROAD_TEAM', 'ROAD_TM', 'ROAD_PTS',
'HOME_TEAM', 'HOME_TM', 'HOME_PTS', 'BOX_SCORE_URL']]
BBALLREF = 'https://www.basketball-reference.com'
schedule['BOX_SCORE_URL'] = \
schedule['BOX_SCORE_URL'].apply(lambda x: BBALLREF + x)
def format_date(date):
return arrow.get(date, 'ddd, MMM D, YYYY').datetime.strftime('%Y-%m-%d')
schedule['DATE'] = schedule['DATE'].apply(format_date)
return schedule
| 7,358 |
def test_erroring(mock_send_report, handler_that_errors, mock_context):
"""Assert that the agent catches and traces uncaught exceptions"""
iopipe = IOpipeCore()
assert iopipe.report is None
try:
iopipe.error(Exception("Before report is created"))
except Exception:
pass
assert iopipe.report is None
iopipe, handler = handler_that_errors
with pytest.raises(ValueError):
handler(None, mock_context)
assert iopipe.report.report["errors"]["name"] == "ValueError"
assert iopipe.report.report["errors"]["message"] == "Behold, a value error"
assert isinstance(iopipe.report.report["errors"]["stack"], str)
assert "@iopipe/error" in iopipe.report.labels
| 7,359 |
async def test_discovery_update_attr(opp, mqtt_mock, caplog):
"""Test update of discovered MQTTAttributes."""
entry = MockConfigEntry(domain=mqtt.DOMAIN)
await async_start(opp, "openpeerpower", {}, entry)
data1 = (
'{ "name": "Beer",'
' "command_topic": "test_topic",'
' "json_attributes_topic": "attr-topic1" }'
)
data2 = (
'{ "name": "Beer",'
' "command_topic": "test_topic",'
' "json_attributes_topic": "attr-topic2" }'
)
async_fire_mqtt_message(opp, "openpeerpower/lock/bla/config", data1)
await opp.async_block_till_done()
async_fire_mqtt_message(opp, "attr-topic1", '{ "val": "100" }')
state = opp.states.get("lock.beer")
assert state.attributes.get("val") == "100"
# Change json_attributes_topic
async_fire_mqtt_message(opp, "openpeerpower/lock/bla/config", data2)
await opp.async_block_till_done()
# Verify we are no longer subscribing to the old topic
async_fire_mqtt_message(opp, "attr-topic1", '{ "val": "50" }')
state = opp.states.get("lock.beer")
assert state.attributes.get("val") == "100"
# Verify we are subscribing to the new topic
async_fire_mqtt_message(opp, "attr-topic2", '{ "val": "75" }')
state = opp.states.get("lock.beer")
assert state.attributes.get("val") == "75"
| 7,360 |
def get_gzip_guesses(preview, stream, chunk_size, max_lines):
"""
:type preview: str
:param preview: The initial chunk of content read from the s3
file stream.
:type stream: botocore.response.StreamingBody
:param stream: StreamingBody object of the s3 dataset file.
:type chunk_size: int
:param chunk_size: Maximum size of the chunk in bytes peeking.
:type max_lines: int
:param max_lines: Maximum number of lines to peek into.
"""
COMPRESSION_TYPE = 'GZIP'
guesses = dict()
dialect = csv.Sniffer().sniff(zlib.decompressobj(zlib.MAX_WBITS|16).decompress(preview))
has_header = csv.Sniffer().has_header(zlib.decompressobj(zlib.MAX_WBITS|16).decompress(preview))
d = zlib.decompressobj(zlib.MAX_WBITS|16)
lines_read = 0
first_row = True
data = ''
while True:
if first_row:
chunk = preview
else:
chunk = stream.read(chunk_size)
if not chunk:
break
data += d.decompress(chunk)
if '\n' in data:
guesses, data, lines_read = analyze_data(data, lines_read, max_lines, first_row, guesses, dialect, has_header)
first_row = False
if lines_read >= max_lines:
return guesses, has_header, COMPRESSION_TYPE, dialect
return guesses, has_header, COMPRESSION_TYPE, dialect
| 7,361 |
def remove_user(ctx, username, endpoint):
"""Remove a user's access from a server
This command is used to remove a user from the system after they have been removed from the external auth provider.
This step is required because even if a user can no longer log in, the could in theory still exchange a PAT for
valid credentials. Running this command will delete a user's PATs and group memberships.
To run this command, you must set the environment variable `HOSS_PAT` to a valid PAT from a user with the `admin` role.
"""
user.remove_user(username, endpoint)
| 7,362 |
def commit(image):
"""
Commit changes from a poured container to an image
"""
if image != "None":
os.environ["maple_image"] = str(image)
Backend().container.commit()
| 7,363 |
def make_preds_epoch(classifier: nn.Module,
data: List[SentenceEvidence],
batch_size: int,
device: str=None,
criterion: nn.Module=None,
tensorize_model_inputs: bool=True):
"""Predictions for more than one batch.
Args:
classifier: a module that looks like an AttentiveClassifier
data: a list of elements to make predictions over. These must be SentenceEvidence objects.
batch_size: the biggest chunk we can fit in one batch.
device: Optional; what compute device this should run on
criterion: Optional; a loss function
tensorize_model_inputs: should we convert our data to tensors before passing it to the model? Useful if we have a model that performs its own tokenization
"""
epoch_loss = 0
epoch_soft_pred = []
epoch_hard_pred = []
epoch_truth = []
batches = _grouper(data, batch_size)
classifier.eval()
for batch in batches:
loss, soft_preds, hard_preds, targets = make_preds_batch(classifier, batch, device, criterion=criterion, tensorize_model_inputs=tensorize_model_inputs)
if loss is not None:
epoch_loss += loss.sum().item()
epoch_hard_pred.extend(hard_preds)
epoch_soft_pred.extend(soft_preds.cpu())
epoch_truth.extend(targets)
epoch_loss /= len(data)
epoch_hard_pred = [x.item() for x in epoch_hard_pred]
epoch_truth = [x.item() for x in epoch_truth]
return epoch_loss, epoch_soft_pred, epoch_hard_pred, epoch_truth
| 7,364 |
def array_3_1(data):
"""
功能:将3维数组转换成1维数组 \n
参数: \n
data:图像数据,3维数组 \n
返回值:图像数据,1维数组 \n
"""
# 受不了了,不判断那么多了
shape = data.shape
width = shape[0]
height = shape[1]
# z = list()
z = np.zeros([width * height, 1])
for i in range(0, width):
for j in range(0, height):
index = i * width + j
z[index][0] = data[i, j, 0]
# z.append(data[i, j, 0])
return z
| 7,365 |
def UpdateString(update_intervals):
"""Calculates a short and long message to represent frequency of updates.
Args:
update_intervals: A list of interval numbers (between 0 and 55) that
represent the times an update will occur
Returns:
A two-tuple of the long and short message (respectively) corresponding to
the frequency. This is intended to be sent via AJAX and hence the
tuple is turned into json before being returned.
Raises:
BadInterval in the case that the length of update_intervals is not
a key in the constant RESPONSES
"""
length = len(update_intervals)
if length not in RESPONSES:
raise BadInterval(length)
else:
return json.dumps(RESPONSES[length])
| 7,366 |
def coalesce(*xs: Optional[T]) -> T:
"""Return the first non-None value from the list; there must be at least one"""
for x in xs:
if x is not None:
return x
assert False, "Expected at least one element to be non-None"
| 7,367 |
def deleteqospolicy(ctx,
# Mandatory main parameter
qospolicyid):
"""You can use the DeleteQoSPolicy method to delete a QoS policy from the system."""
"""The QoS settings for all volumes created of modified with this policy are unaffected."""
cli_utils.establish_connection(ctx)
ctx.logger.info(""": """"""qospolicyid = """ + str(qospolicyid)+""";"""+"")
try:
_DeleteQoSPolicyResult = ctx.element.delete_qos_policy(qos_policy_id=qospolicyid)
except common.ApiServerError as e:
ctx.logger.error(e.message)
exit()
except BaseException as e:
ctx.logger.error(e.__str__())
exit()
if ctx.json:
print(simplejson.dumps(simplejson.loads(_DeleteQoSPolicyResult), indent=4))
return
else:
cli_utils.print_result(_DeleteQoSPolicyResult, ctx.logger, as_json=ctx.json, as_pickle=ctx.pickle, depth=ctx.depth, filter_tree=ctx.filter_tree)
| 7,368 |
def test_upgrade_db_2_to_3(data_dir, username):
"""Test upgrading the DB from version 2 to version 3, rename BCHSV to BSV"""
msg_aggregator = MessagesAggregator()
data = DataHandler(data_dir, msg_aggregator)
with creation_patch:
data.unlock(username, '123', create_new=True)
# Manually set version (Both here and in 4 -> 5 it needs to be done like this and
# target patch can't be used for some reason. Still have not debugged what fails
cursor = data.db.conn.cursor()
cursor.execute(
'INSERT OR REPLACE INTO settings(name, value) VALUES(?, ?)',
('version', str(2)),
)
data.db.conn.commit()
populate_db_and_check_for_asset_renaming(
cursor=cursor,
data=data,
data_dir=data_dir,
msg_aggregator=msg_aggregator,
username=username,
to_rename_asset='BCHSV',
renamed_asset=A_BSV,
target_version=3,
)
version = data.db.get_version()
# Also make sure that we have updated to the target_version
assert version == 3
| 7,369 |
def check_phil(phil, scope=True, definition=True, raise_error=True):
"""
Convenience function for checking if the input is a libtbx.phil.scope
only or a libtbx.phil.definition only or either.
Parameters
----------
phil: object
The object to be tested
scope: bool
Flag to check if phil is a libtbx.phil.scope
definition: bool
Flag to check if phil is a libtbx.phil.definition
raise_error: bool
If true, a RuntimeError is raised if the check(s) fail
Returns
-------
value: bool
"""
value = False
if scope: # check for only libtbx.phil.scope
value = isinstance(phil, libtbx.phil.scope)
if definition: # check for only libtbx.phil.definition
value = isinstance(phil, libtbx.phil.definition)
if scope and definition: # check for either
value = isinstance(phil, libtbx.phil.scope) or isinstance(phil, libtbx.phil.definition)
if (scope and definition) and not value and raise_error:
raise RuntimeError('A libtbx.phil.scope or libtbx.phil.definition is expected.')
elif scope and not value and raise_error:
raise RuntimeError('A libtbx.phil.scope is expected.')
elif definition and not value and raise_error:
raise RuntimeError('A libtbx.phil.definition is expected.')
return value
| 7,370 |
def get_ssm_environment() -> dict:
"""Get the value of environment variables stored in the SSM param store under $DSS_DEPLOYMENT_STAGE/environment"""
p = ssm_client.get_parameter(Name=fix_ssm_variable_prefix("environment"))
parms = p["Parameter"]["Value"] # this is a string, so convert to dict
return json.loads(parms)
| 7,371 |
def remove_tags(modeladmin, request, queryset):
"""Remove tags."""
logger.debug('MA: %s, request: %s', modeladmin, request)
for obj in queryset:
obj.tags.clear()
| 7,372 |
def test_failure(database):
""" Test that its fails when cfda_number does not exists. """
# test for cfda_number that doesn't exist in the table
cfda = CFDAProgram(program_number=12.340)
det_award_1 = DetachedAwardFinancialAssistanceFactory(cfda_number="54.321")
det_award_2 = DetachedAwardFinancialAssistanceFactory(cfda_number="AB.CDE")
det_award_3 = DetachedAwardFinancialAssistanceFactory(cfda_number="11.111")
errors = number_of_errors(_FILE, database, models=[det_award_1, det_award_2, det_award_3, cfda])
assert errors == 3
| 7,373 |
def get_default_date_stamp():
"""
Returns the default date stamp as 'now', as an ISO Format string 'YYYY-MM-DD'
:return:
"""
return datetime.now().strftime('%Y-%m-%d')
| 7,374 |
def prepifg_handler(config_file):
"""
Perform multilooking and cropping on geotiffs.
"""
config_file = os.path.abspath(config_file)
params = cf.get_config_params(config_file, step=PREPIFG)
prepifg.main(params)
| 7,375 |
def check_for_launchpad(old_vendor, name, urls):
"""Check if the project is hosted on launchpad.
:param name: str, name of the project
:param urls: set, urls to check.
:return: the name of the project on launchpad, or an empty string.
"""
if old_vendor != "pypi":
# XXX This might work for other starting vendors
# XXX but I didn't check. For now only allow
# XXX pypi -> launchpad.
return ''
for url in urls:
try:
return re.match(r"https?://launchpad.net/([\w.\-]+)",
url).groups()[0]
except AttributeError:
continue
return ''
| 7,376 |
def hook_mem_write(uc, access, address, size, value, data_entries):
"""Callback for memory write."""
is_64bit = (uc._mode == UC_MODE_64)
eip = uc.reg_read(UC_X86_REG_RIP if is_64bit else UC_X86_REG_EIP)
do_skip = False
# Decode instruction
insn = ida_ua.insn_t()
inslen = ida_ua.decode_insn(insn, eip)
if (inslen > 0):
# Skip instruction?
if (insn.itype in SKIP_WRITE_MEM_INSTRUCTIONS):
do_skip = True
if DEBUG:
# Debug: trace log
disasm_text = ida_lines.generate_disasm_line(eip, 0)
if disasm_text:
disasm_text = ida_lines.tag_remove(disasm_text)
addr_fmt_str = '%016X' if is_64bit else '%08X'
val_fmt_str = '%0' + str(2 * size) + 'X'
log_fmt_str = addr_fmt_str + '\t%s\t' + \
val_fmt_str + ' (%d) -> ' + addr_fmt_str
log_str = log_fmt_str % (eip, disasm_text, value, size, address)
log_str += '\t' + ('Skipped' if do_skip else 'Processed')
trace_log(log_str)
if do_skip:
return
start = address
end = start + size
for i, data_entry in reversed(list(enumerate(data_entries))):
data_start = data_entry[0]
data_end = data_start + data_entry[1]
if ((data_start <= start <= data_end) or
(data_start <= end <= data_end)):
start = min(data_start, start)
end = max(data_end, end)
new_entry = (start, end - start)
if (i < len(data_entries) - 1):
del data_entries[i]
data_entries.append(new_entry)
else:
data_entries[i] = new_entry
break
else:
data_entries.append((address, size))
| 7,377 |
def apply_file_collation_and_strip(args, fname):
"""Apply collation path or component strip to a remote filename
Parameters:
args - arguments
fname - file name
Returns:
remote filename
Raises:
No special exception handling
"""
remotefname = fname.replace(os.path.sep,"/").strip("/") # replace os.path.sep with python's universal sep
if args.collate is not None:
remotefname = remotefname.split("/")[-1]
if args.collate != '.':
remotefname = "/".join((args.collate, remotefname))
elif args.stripcomponents > 0:
rtmp = remotefname.split("/")
nsc = min((len(rtmp) - 1, args.stripcomponents))
if nsc > 0:
remotefname = "/".join(rtmp[nsc:])
return remotefname
| 7,378 |
def constructRBFStates(L1, L2, W1, W2, sigma):
"""
Constructs a dictionary dict[tuple] -> torch.tensor that converts
tuples (x,y) representing positions to torch tensors used as input to the
neural network. The tensors have an entry for each valid position on the
race track. For each position (x,y), the tensor is constructed using the gaussian
radial basis function with standard deviation sigma. In other words, if entry i corresponds
to the position p2 = (x2, y2), then the tensor for a point p1 = (x1,y1) will have
tensor[i] = Gaussian_RBF(p1, p2).
@type L1: int
See description in the @RaceCar class.
@type L2: int
See description in the @RaceCar class.
@type W1: int
See description in the @RaceCar class.
@type W2: int
See description in the @RaceCar class.
@type sigma: float
The standard deviation of the gaussian radial basis function.
"""
N_states = (L1+1)*(W1+W2+1)+L2*(W2+1)
x_coords = torch.zeros(N_states, dtype=torch.float32)
y_coords = torch.zeros(N_states, dtype=torch.float32)
state_to_basis = {}
ind = 0
for x in range(L1+L2+1):
for y in range(W1+W2+1):
if (0<=x<=L1 and 0<=y<=W1+W2) or (0<=x<=L1+L2 and W1<=y<=W1+W2):
x_coords[ind] = x
y_coords[ind] = y
ind += 1
for x in range(L1 + L2 + 1):
for y in range(W1 + W2 + 1):
if (0 <= x <= L1 and 0 <= y <= W1 + W2) or (0 <= x <= L1 + L2 and W1 <= y <= W1 + W2):
basis = torch.exp(-((x_coords-x)**2 + (y_coords-y)**2)/(2*sigma**2))
state_to_basis[(x,y)] = basis.view(1, -1).to(device)
return state_to_basis
| 7,379 |
def gather_data(path, save_file=None, path_json='src/python_code/settings.json'):
"""
Gather data from different experiments
:param path: path of the experiments
:param save_file: path if you want to save data as csv (Default None)
:param path_json: setting file
:return: dataframe
"""
experiments = next(os.walk(path))[1]
settings = json.load(open(path_json))["OOD"]["Gather_Data"]
methods = settings["Feature_methods"]
for j, experiment in enumerate(tqdm(experiments)):
df = get_data(path + experiment + '/logs')
df = process_RandNet(df)
df = separate_ood(df, path_json=path_json)
df2 = remove_latent(df)
df2['auc'] = df2.apply(lambda x: auc(x, df2) if x.ood == 1 else None, axis=1)
print("methods ", methods)
for method in methods:
methods2 = methods.copy()
methods2.remove(method)
print("methods ", method, methods2)
df3 = keep_feature(df, methods2, path_json=path_json)
df3['auc'] = df3.apply(lambda x: auc(x, df3) if x.ood == 1 else None, axis=1)
df2 = pd.concat([df2, df3])
df = df2
"""
df3 = keep_latent(df)
df3['auc'] = df3.apply(lambda x: auc(x, df3) if x.ood == 1 else None, axis=1)
df4 = keep_like(df)
df4['auc'] = df4.apply(lambda x: auc(x, df4) if x.ood == 1 else None, axis=1)
df = pd.concat([df2, df3, df4])
"""
#df['Metric use'] = df['Values'].apply(lambda x: np.mean(np.array(x).reshape(-1)))
df['Epoch'] = df['Epoch'].apply(lambda x: int(x))
df = df[['Model', 'Latent Space', 'Hidden Space', 'DataSet', 'Epoch', 'ood', 'auc']]
if j == 0:
final_df = df.copy()
else:
final_df = pd.concat([final_df, df])
if save_file is not None:
final_df.to_csv(save_file)
return final_df
| 7,380 |
def tile_grid_intersection(
src0: DatasetReader,
src1: DatasetReader,
blockxsize: Union[None, int] = None,
blockysize: Union[None, int] = None
) -> tuple[Iterator[Window], Iterator[Window], Iterator[Window], Affine, int, int]:
"""Generate tiled windows for the intersection between two grids.
Given two rasters having different dimensions calculate read-window generators for each
and a write-window generator for the intersecion.
Parameters:
src0: rasterio read source
src1: rasterio read source
blockxsize: write-window width
blockysize: write-window height
Returns:
read windows for src0,
read windows for src1,
write windows for the intersection,
write raster Affine,
write raster width in columns
write raster height in rows
"""
bbox0 = window_bounds(((0, 0), src0.shape), src0.transform, offset='ul')
bbox1 = window_bounds(((0, 0), src1.shape), src1.transform, offset='ul')
bounds = intersect_bounds(bbox0, bbox1)
(row_start0, row_stop0), (col_start0, col_stop0) = bounds_window(
bounds, src0.transform
)
(row_start1, row_stop1), (col_start1, col_stop1) = bounds_window(
bounds, src1.transform
)
ncols = col_stop0 - col_start0
nrows = row_stop0 - row_start0
affine = from_bounds(bounds[0], bounds[1], bounds[2], bounds[3], ncols, nrows)
if blockxsize is None:
blockxsize = ncols
if blockysize is None:
blockysize = nrows
windows0 = tile_grid(
ncols,
nrows,
blockxsize,
blockysize,
col_offset=col_start0,
row_offset=row_start0,
)
windows1 = tile_grid(
ncols,
nrows,
blockxsize,
blockysize,
col_offset=col_start1,
row_offset=row_start1,
)
write_windows = tile_grid(ncols, nrows, blockxsize, blockysize)
return (windows0, windows1, write_windows, affine, nrows, ncols)
| 7,381 |
def etapes_index_view(request):
"""
GET etapes index
"""
# Check connected
if not check_connected(request):
raise exc.HTTPForbidden()
records = request.dbsession.query(AffaireEtapeIndex).filter(
AffaireEtapeIndex.ordre != None
).order_by(AffaireEtapeIndex.ordre.asc()).all()
return Utils.serialize_many(records)
| 7,382 |
def brute_force(ciphered_text: str, charset: str = DEFAULT_CHARSET, _database_path: Optional[str] = None) -> int:
""" Get Caesar ciphered text key.
Uses a brute force technique trying the entire key space until finding a text
that can be identified with any of our languages.
**You should not use this function. Use *brute_force_mp* instead.** This
function is slower than *mp* one because is sequential while the other uses a
multiprocessing approach. This function only stay here to allow comparisons
between sequential and multiprocessing approaches.
:param ciphered_text: Text to be deciphered.
:param charset: Charset used for Caesar method substitution. Both ends, ciphering
and deciphering, should use the same charset or original text won't be properly
recovered.
:param _database_path: Absolute pathname to database file. Usually you don't
set this parameter, but it is useful for tests.
:return: Caesar key found.
"""
key_space_length = len(charset)
return simple_brute_force(key_generator=integer_key_generator(key_space_length),
assess_function=_assess_caesar_key,
# key_space_length=key_space_length,
ciphered_text=ciphered_text,
charset=charset,
_database_path=_database_path)
| 7,383 |
def mk_data(yml,
sep_ext_kwargs=';', sep_key_val='='):
"""Generate data files from a YAML file.
Arguments
---------
yml : dict
YAML-generated dict containing data specifications.
sep_ext_kwargs : str
Separator for a file extension and pandas keyword args. (default ';')
sep_key_val : str
Separator for pandas keyword args. (default '=')
"""
for active in yml['run']['active_ids']:
if active not in yml:
continue
# Copy the contents of "run" keys to each activate ID.
for run_keys in yml['run']:
if run_keys == 'active_ids':
continue
# e.g. run_keys == out_path, out_fmts, header, ...
if run_keys not in yml[active]: # Enables ID-wise overriding
yml[active][run_keys] = yml['run'][run_keys]
# Initialization
list_of_lists = [[] for _ in yml[active]['header']]
dict_of_lists = {} # DataFrame input
num_header = len(yml[active]['header'])
# Process the data.
for line in yml[active]['data']:
spl = re.split(r'\s*[{}]\s*'.format(yml[active]['sep']), line)
if len(spl) < num_header:
num_insufficient = num_header - len(spl)
spl += [None] * num_insufficient
for i in range(num_header):
list_of_lists[i].append(spl[i])
for i, s in enumerate(yml[active]['header']):
# e.g. (0, 'Name'), (1, 'Nawabari'), (2, 'Age (year)'), ...
dict_of_lists[s] = list_of_lists[i]
# DF construction
df = pd.DataFrame(dict_of_lists)
# File generation
if not os.path.exists(yml[active]['out_path']):
os.makedirs(yml[active]['out_path'])
rpt_gen(yml[active]['out_path'])
out_bname_w_path = '{}/{}'.format(yml[active]['out_path'],
yml[active]['out_bname'])
for fmt, ext_kwargs in yml[active]['out_fmts'].items():
# spl[0]: File extension
# spl[1:]: pandas keyword arguments (optional)
spl = re.split(r'\s*[{}]\s*'.format(sep_ext_kwargs), ext_kwargs)
out_fname = '{}.{}'.format(out_bname_w_path, spl[0])
args_dct = {}
if len(spl) >= 2:
args = []
for arg in spl[1:]:
args += re.split(r'\s*[{}]\s*'.format(sep_key_val), arg)
args_dct = {args[i]: args[i+1] for i in range(0, len(args), 2)}
meth_to_call = getattr(df, 'to_{}'.format(fmt))
meth_to_call(out_fname, **args_dct)
rpt_gen(out_fname)
| 7,384 |
def SqZerniketoOPD(x,y,coef,N,xwidth=1.,ywidth=1.):
"""
Return an OPD vector based on a set of square Zernike coefficients
"""
stcoef = np.dot(zern.sqtost[:N,:N],coef)
x = x/xwidth
y = y/ywidth
zm = zern.zmatrix(np.sqrt(x**2+y**2),np.arctan2(y,x),N)
opd = np.dot(zm,stcoef)
return opd
| 7,385 |
def build_voterinfo(campaign, state):
"""Render a tweet of voting info for a state"""
state_info = campaign.info_by_state[state]
num_cities = len(state_info[CITIES])
assert num_cities == len(set(state_info[CITIES])), f"Duplicate entries in CITIES for {state}."
city_ct = num_cities
effective_length = 0
tweet_text = ""
while city_ct > 0:
# Iterate on building a tweet until it fits within the limit.
# Return none if unsuccessful
city_set = set(state_info[CITIES])
try:
# Select up to city_ct cities
cities = []
cities_found = 0
while cities_found < city_ct:
city_idx = random.randint(0, num_cities - 1)
city = state_info[CITIES][city_idx]
if city in city_set:
cities.append(hashtag(city))
city_set.remove(city)
cities_found += 1
effective_length, tweet_text = render_voterinfo(campaign, state, cities)
break
except AssertionError:
tweet_text = ""
city_ct -= 1
return effective_length, tweet_text
| 7,386 |
def test_check_badusernames(state: State):
"""Verify logged-in base_admin can test usernames, gets correct result - nonexistant user """
# Build auth string value including token from state
b_string = 'Bearer ' + state.state['base_admin']
assert len(b_string) > 24
auth_hdr = {'Authorization' : b_string}
data = {"username":"got_no_username_like_this"}
response = requests.post(SERVER_URL + "/api/admin/user/check_name", headers=auth_hdr, json=data)
assert response.status_code == 200
is_user = response.json()
assert is_user == 0
| 7,387 |
def blync_callback(
ctx: typer.Context,
light_id: int = typer.Option(
0,
"--light-id",
"-l",
show_default=True,
help="Light identifier",
),
red: int = typer.Option(
0,
"--red",
"-r",
is_flag=True,
show_default=True,
help="Red color value range: 0 - 255",
),
blue: int = typer.Option(
0,
"--blue",
"-b",
is_flag=True,
show_default=True,
help="Blue color value range: 0 - 255",
),
green: int = typer.Option(
0,
"--green",
"-g",
is_flag=True,
help="Green color value range: 0 - 255",
show_default=True,
),
red_b: bool = typer.Option(
False, "--RED", "-R", is_flag=True, help="Full value red [255]"
),
blue_b: bool = typer.Option(
False, "--BLUE", "-B", is_flag=True, help="Full value blue [255]"
),
green_b: bool = typer.Option(
False, "--GREEN", "-G", is_flag=True, help="Full value green [255]"
),
off: bool = typer.Option(
False, "--off/--on", "-o/-n", show_default=True, help="Turn the light off/on."
),
dim: bool = typer.Option(
False,
"--dim",
"-d",
is_flag=True,
help="Toggle bright/dim mode.",
show_default=True,
),
flash: int = typer.Option(
0,
"--flash",
"-f",
count=True,
is_flag=True,
help="Enable flash mode.",
),
play: int = typer.Option(0, "--play", "-p", help="Select song: 1-15"),
repeat: bool = typer.Option(
False,
"--repeat",
is_flag=True,
show_default=True,
help="Repeat the selected song.",
),
volume: int = typer.Option(
5, "--volume", show_default=True, help="Set the volume: 1-10"
),
available: bool = typer.Option(
False,
"--list-available",
"-a",
is_flag=True,
is_eager=True,
callback=list_lights,
),
verbose: int = typer.Option(0, "--verbose", "-v", count=True, callback=verbosity),
version: bool = typer.Option(
False, "--version", "-V", is_flag=True, is_eager=True, callback=report_version
),
):
"""Control your Embrava BlyncLight from the command-line!
## Usage
Use the `blync` utility to directly control your Embrava BlyncLight:
\b
```console
$ blync -R # turn the light on with red color and leave it on
$ blync --off # turn the light off
$ blync -RG --dim # turn the light on with yellow color and dim
$ blync -RBG # turn the light on with white color
```
Colors can be specified by values between 0 and 255 using the lower-case
color options or using the upper-case full value options.
\b
```console
$ blync -r 127 # half intensity red
$ blync -r 255 # full intensity red
$ blync -R # also full intensity red
$ blync -r 255 -b 255 -g 255 # full intensity white
$ blync -RBG # full intensity white
```
If that's not enough fun, there are three builtin color modes:
`fli`, `throbber`, and `rainbow`. All modes continue until the
user terminates with a Control-C or platform equivalent.
\b
```console
$ blync fli
$ blync throbber
$ blync rainbow
```
## Installation
\b
```console
$ python3 -m pip install blynclight
$ python3 -m pip install git+https://github.com/JnyJny/blynclight.git # latest
```
This module depends on
[hidapi](https://github.com/trezor/cython-hidapi), which supports
Windows, Linux, FreeBSD and MacOS via a Cython module.
"""
if ctx.invoked_subcommand == "udev-rules":
return
try:
light = BlyncLight.get_light(light_id, immediate=False)
except BlyncLightNotFound as error:
typer.secho(str(error), fg="red")
raise typer.Exit(-1) from None
assert not light.immediate
light.red = red if not red_b else 255
light.blue = blue if not blue_b else 255
light.green = green if not green_b else 255
light.off = 1 if off else 0
light.dim = 1 if dim else 0
light.flash = 1 if flash > 0 else 0
light.speed = flash
light.mute = 0 if play else 1
light.music = play
light.play = 1 if play else 0
light.volume = volume
light.repeat = 1 if repeat else 0
if not ctx.invoked_subcommand:
if light.on and light.color == (0, 0, 0):
light.color = DEFAULT_COLOR
try:
light.immediate = True
for line in str(light).splitlines():
logger.info(line)
except Exception as error:
typer.secho(str(error), fg="red")
raise typer.Exit(-1) from None
raise typer.Exit()
# Disable flashing for subcommands.
light.flash = 0
ctx.obj = light
| 7,388 |
def train_model(training_df, stock):
"""
Summary: Trains XGBoost model on stock prices
Inputs: stock_df - Pandas DataFrame containing data about stock price, date, and daily tweet sentiment regarding that stock
stock - String representing stock symbol to be used in training
Return value: Trained XGBoost model
"""
print("Beginning training model for ", stock)
X_train, X_test, y_train, y_test = create_train_data(training_df)
print("Created data")
xgb = XGBRegressor(objective="reg:squarederror", random_state=42)
parameters = {
'n_estimators': [100, 200, 300, 400],
'learning_rate': [0.001, 0.005, 0.01, 0.05],
'max_depth': [8, 10, 12, 15],
'gamma': [0.001, 0.005, 0.01, 0.02],
}
print("Performing Grid Search")
gs = GridSearchCV(xgb, parameters)
gs.fit(X_train, y_train, verbose=2)
print("Grid Search Done")
model = XGBRegressor(**gs.best_params_, objective="reg:squarederror")
model.fit(X_train, y_train)
print("Model fit")
y_pred = model.predict(X_test)
print(stock)
print(f'y_true = {np.array(y_test)[:5]}')
print(f'y_pred = {y_pred[:5]}')
print(f'mean_squared_error = {mean_squared_error(y_test, y_pred)}')
print("----------------")
return model
| 7,389 |
def find_ext(files, ext):
"""
Finds all files with extension `ext` in `files`.
Parameters
----------
files : list
List of files to search in
ext : str
File extension
Returns
-------
dict
A dictionary of pairs (filename, full_filename)
"""
dic = defaultdict(lambda: None)
for full_filename in files:
filename, fext = os.path.splitext(full_filename)
if fext.lower() == ext:
dic[filename] = full_filename
return dic
| 7,390 |
def create_test_node(context, **kw):
"""Create and return a test Node object.
Create a node in the DB and return a Node object with appropriate
attributes.
"""
node = get_test_node(context, **kw)
node.create()
return node
| 7,391 |
def get_physical_id(r_properties):
""" Generated resource id """
bucket = r_properties['Bucket']
key = r_properties['Key']
return f's3://{bucket}/{key}'
| 7,392 |
def entity_test_models(translation0, locale1):
"""This fixture provides:
- 2 translations of a plural entity
- 1 translation of a non-plural entity
- A subpage that contains the plural entity
"""
entity0 = translation0.entity
locale0 = translation0.locale
project0 = entity0.resource.project
locale0.cldr_plurals = "0,1"
locale0.save()
translation0.plural_form = 0
translation0.save()
resourceX = Resource.objects.create(
project=project0, path="resourceX.po")
entity0.string = "Entity zero"
entity0.key = entity0.string
entity0.string_plural = "Plural %s" % entity0.string
entity0.save()
entityX = Entity.objects.create(
resource=resourceX,
string="entityX",
key='Key%sentityX' % KEY_SEPARATOR)
translation0pl = Translation.objects.create(
entity=entity0,
locale=locale0,
plural_form=1,
string="Plural %s" % translation0.string)
translationX = Translation.objects.create(
entity=entityX,
locale=locale0,
string="Translation %s" % entityX.string)
subpageX = Subpage.objects.create(
project=project0, name="Subpage")
subpageX.resources.add(entity0.resource)
return translation0, translation0pl, translationX, subpageX
| 7,393 |
def process_block( cond, loglines, logname ):
"""Apply a block condition to lines of text
Parameters:
cond (a YAML thing): a condition
loglines (string): the contents of the log file
Raises:
LogCheckFail: if the block does not satisfy the condition
"""
err_return =''
diffcount = 0
pluscount = 0
firstlinedetected = False
maxplusinst = 0
instcount = 0
errorcount = 0
firstline = ''
lastline = ''
contigcount = 0
msg = ""
condname = cond["name"]
blockinstcount = cond["inst"]
blocklinecount = cond["linecount"]
iscontig = False
if cond.get('contiglines'):
# get block lines
lines = split_multiline(cond["contiglines"])
firstline = lines[0].strip()
lastline = lines[len(lines) - 1].strip()
iscontig = True
else:
# get first/last lines
firstline = cond["firstline"]
lastline = cond["lastline"]
threshold = int(cond["threshold"])
if cond["pluslines"] != "none":
pluslines = cond["pluslines"]
else:
pluslines = ""
# get 'white list'
# if a block contains one of these lines, then it is ignored
ignorelines = None
if cond.get('ignorelines'):
ignorelines = split_multiline(cond["ignorelines"])
for line in loglines:
# this strips leading/trailing space and newlines
logline = line.strip()
# look for pattern
ignored = False
if ignorelines:
for s in ignorelines:
if contains(s, logline):
ignored = True
if not ignored:
if contains(firstline, logline) and not firstlinedetected:
blockline = ""
fline = diffcount
firstlinedetected = True
pluscount = 0
contigcount = 0
# single plusline at present
if not ignored and firstlinedetected:
blockline = "{}\n{}".format(blockline, logline)
if iscontig:
# so far no pluslines for blocklines
# check rest of lines[]
if diffcount > fline:
if logline.startswith(lines[contigcount + 1]):
contigcount += 1
else:
for plusline in pluslines:
maxplusinst = int(plusline["maxinst"])
if logline == plusline["line"]:
pluscount += 1
if not ignored and contains(lastline, logline) and firstlinedetected:
firstlinedetected = False
lline = diffcount
diff = (lline - fline) + 1
diffcount = 0
# check if this text block should be ignored
#ignored = False
#if ignorelines:
#for s in ignorelines:
# if contains(s, blockline):
# ignored = True
#if not ignored:
if iscontig:
contigcount += 1
if contigcount == blocklinecount:
instcount += 1
if diff > blocklinecount:
msg = "condition failed: exceeded Max Block Contiguous Line Count \ "
errorcount += 1
elif diff < blocklinecount:
msg = "condition failed: did not acquire complete block \ "
errorcount += 1
else:
if pluscount > maxplusinst: # independent of block length
errorcount += 1
msg = "condition failed: too many pluslines \ "
else:
# may encounter block with same first last lines
# so discriminate using threshold
if (threshold == 0 or
(threshold < 0 and diff < int(math.fabs(threshold)))
or (threshold > 0 and
diff > int(math.fabs(threshold)))):
if diff > (blocklinecount + pluscount):
errorcount += 1
msg = "condition failed: block too large \ "
else:
# perfect or almost perfect
instcount += 1
# end if logline == lastline
diffcount += 1
# end for line
if (instcount != blockinstcount):
errorcount += 1
msg = msg + "condition failed: wrong number of blocks: expected " + str(blockinstcount) + " found " + str(instcount)
if errorcount > 0:
err_return = 'Block condition \"' +\
condname +\
'\" error in ' +\
logname +\
', causes: ' +\
msg +\
'.'
if err_return != '' :
#logger.info( 'condition failed: %s', cond['name'] )
raise LogCheckFail( err_return )
# end process_block
| 7,394 |
def paris_topology(self, input_path):
"""Generation of the Paris metro network topology
Parameters:
input_path: string, input folder path
Returns:
self.g: nx.Graph(), Waxman graph topology
self.length: np.array, lengths of edges
"""
adj_file = open(input_path + "adj.dat", "r")
lines = adj_file.readlines()
# graph adjacency list
topol = np.zeros([len(lines), 2], dtype=int)
for iedge, line in enumerate(lines):
topol[iedge][:] = [int(w) for w in line.split()[0:2]]
self.g.add_edges_from(topol)
# coordinate of nodes
coord_file = open(input_path + "coord.dat", "r")
lines = coord_file.readlines()
for inode, line in enumerate(lines):
self.g.nodes[inode]["pos"] = tuple([float(w) for w in line.split()[0:2]])
# length of edges
self.length = np.zeros(self.g.number_of_edges())
for i, edge in enumerate(self.g.edges()):
self.length[i] = distance.euclidean(self.g.nodes[edge[0]]["pos"], self.g.nodes[edge[1]]["pos"])
# right hand side construction
forcing_path = input_path + "rhs.dat"
self.forcing = forcing_generation(self, forcing_path)
return self.g, self.length, self.forcing
| 7,395 |
def show_layouts(kb_info_json, title_caps=True):
"""Render the layouts with info.json labels.
"""
for layout_name, layout_art in render_layouts(kb_info_json).items():
title = layout_name.title() if title_caps else layout_name
cli.echo('{fg_cyan}%s{fg_reset}:', title)
print(layout_art)
| 7,396 |
def _rescale(vector):
"""Scale values in vector to the range [0, 1].
Args:
vector: A list of real values.
"""
# Subtract min, making smallest value 0
min_val = min(vector)
vector = [v - min_val for v in vector]
# Divide by max, making largest value 1
max_val = float(max(vector))
try:
return [v / max_val for v in vector]
except ZeroDivisionError: # All values are the same
return [1.0] * len(vector)
| 7,397 |
def censor_contig(contig_end, u_contigs, o_dict):
"""
removes the entries for both ends of a contig in a contig list and overlap dict
"""
for c_e in [contig_end, other_end(contig_end)]:
if c_e in u_contigs:
u_contigs.remove(c_e)
if c_e in o_dict:
o_dic = o_dict[c_e]
if o_dic != {}:
overlapped_contig = list(o_dic.keys())[0]
if overlapped_contig in o_dict: del o_dict[overlapped_contig][c_e]
del o_dict[c_e]
return
| 7,398 |
def validate_travel_dates(departure, arrival):
"""It validates arrival and departure dates
:param departure: departure date
:param arrival: arrival date
:returns: error message or Boolean status
"""
date_format = "%Y-%m-%dT%H:%M:%SZ"
status = True
error_message = ""
if datetime.strptime(departure, date_format) < datetime.now():
status = False
error_message = Response(
{"message": "Departure time cannot be in the past"},
status=HTTP_400_BAD_REQUEST,
)
elif datetime.strptime(arrival, date_format) < datetime.now():
status = False
error_message = Response(
{"message": "Arrival time cannot be in the past"},
status=HTTP_400_BAD_REQUEST,
)
elif datetime.strptime(departure, date_format) > datetime.strptime(
arrival, date_format
):
status = False
error_message = Response(
{"message": "Departure time cannot be greater than arrival time"},
status=HTTP_400_BAD_REQUEST,
)
return status, error_message
| 7,399 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.