content
stringlengths 22
815k
| id
int64 0
4.91M
|
---|---|
def kdump(self_update=False, snapshot=None):
"""Regenerate kdump initrd
A new initrd for kdump is created in a snapshot.
self_update
Check for newer transactional-update versions.
snapshot
Use the given snapshot or, if no number is given, the current
default snapshot as a base for the next snapshot. Use
"continue" to indicate the last snapshot done.
CLI Example:
.. code-block:: bash
salt microos transactional_update kdump snapshot="continue"
"""
cmd = ["transactional-update"]
cmd.extend(_global_params(self_update=self_update, snapshot=snapshot))
cmd.append("kdump")
return _cmd(cmd)
| 7,100 |
def register_keywords_user(email, keywords, price):
"""Register users then keywords and creates/updates doc
Keyword arguments:
email - email for user
keywords - string of keywords
price -- (optional) max price can be set to None
"""
logging.info('[INFO] Registering user email \'{}\' '.format(email))
# create user doc if doesn't exist
db = utils.get_db_handle('users')
doc = db.find_one({ 'email': email })
# metadata
keywords_id = keywords.replace(" ", "_")
date = str(datetime.datetime.now()).split('.')[0]
num_keywords = 0
list_keywords = []
if doc == None:
doc = db.insert_one({
'email': email,
'dateCreated': date,
'numKeywords': num_keywords,
'keywords': []
})
logging.info('[INFO] Creating new user doc {} with _id: {}'.format(email, doc.inserted_id))
else:
num_keywords = doc['numKeywords']
list_keywords = doc['keywords']
logging.info('[INFO] Found user doc \'{}\' with {} keywords'.format(email, num_keywords))
# insert keywords info along in user doc
max_keywords = 5
if not utils.check_key_exists(list_keywords, keywords_id):
if num_keywords < max_keywords:
update = utils.update_users_doc(db, email, keywords_id, price, date)
if update:
logging.info('[INFO] Successfully created or updated doc for \'{}\''.format(email))
else:
logging.info('[INFO] Error creating or updating doc for \'{}\''.format(email))
return False, 'ERROR_CREATE_DOC'
else:
logging.info('[INFO] Unable to create doc for \'{}\''.format(email))
logging.info('[INFO] Number of keywords exceed maximum of {}'.format(max_keywords))
return False, 'MAX_KEYWORDS_LIMIT'
else:
logging.info('[INFO] Unable to create doc for \'{}\''.format(email))
logging.info('[INFO] Duplicate key {} for user {}'.format(max_keywords, email))
return False, 'ERROR_DUPE_KEY'
logging.info('[INFO] Registering keywords \'{}\' for email \'{}\' with price \'{}\''.format(keywords, email, price))
# create keywords doc if doesn't exist
db = utils.get_db_handle('keywords')
doc = db.find_one({ 'keyword': keywords_id })
# keywords metadata
date = str(datetime.datetime.now()).split('.')[0]
if doc == None:
doc = db.insert_one({
'keyword': keywords_id,
'subreddit': 'frugalmalefashion',
'dateCreated': date,
'users': []
})
logging.info('[INFO] Creating new keywords doc {} with _id: {}'.format(keywords_id, doc.inserted_id))
else:
logging.info('[INFO] Found keywords doc \'{}\''.format(keywords_id))
# insert user info along in keyword doc
update = utils.update_keywords_doc(db, keywords_id, email, price, date)
if update:
logging.info('[INFO] Successfully created or updated doc for \'{}\''.format(keywords_id))
else:
logging.error('[ERROR] Error creating or updating doc for \'{}\''.format(keywords_id))
return False, 'ERROR_CREATE_DOC'
return True, None
| 7,101 |
def domain_spec_colpair(data, i, j, rel2sub2obj, col_2_errors_repair, pair_coverage, ignore_null):
"""
Checks two columns i and j against a relation. Checks if i is the subject and j is the object or the other way
around. If a match is found, objects that violate the matched relation are marked as errors.
Parameters
----------
data
i
j
rel2sub2obj
col_2_errors_repair
pair_coverage
ignore_null
"""
for rel in rel2sub2obj:
count = 0 # counts i to j relation
back_count = 0 # counts j to i relation
tempdict = {}
backdict = {}
for index, row in enumerate(data):
coli = row[i]
colj = row[j]
if coli in rel2sub2obj[rel]:
if colj == rel2sub2obj[rel][coli]:
if ignore_null or coli != '':
count += 1
else:
repair_value = rel2sub2obj[rel][coli]
tempdict[(index, j)] = repair_value
if colj in rel2sub2obj[rel]:
if coli == rel2sub2obj[rel][colj]:
if ignore_null or colj != '':
back_count += 1
else:
repair_value = rel2sub2obj[rel][colj]
backdict[(index, i)] = repair_value
coverage = count/ len(data)
backcoverage = back_count / len(data)
if coverage >= pair_coverage:
col_2_errors_repair.update(tempdict) # adds the errors found to the final output
if backcoverage >= pair_coverage:
col_2_errors_repair.update(backdict)
| 7,102 |
def test_Highest_Score__Two_Disks_Exploding_At_Last_Drop(score, max_score):
"""Function highest_score: Two disks, highest score when exploding at last drop."""
max_score.value += 12
try:
set_up()
test_board = Board.init_board \
(dimension=4, given_disks= \
([wrapped_disk_value_1, ],
[wrapped_disk_value_4, cracked_disk_value_2, cracked_disk_value_3],
[cracked_disk_value_3_B],
[wrapped_disk_value_4_B]))
test_board_alias = Board.init_board \
(dimension=4, given_disks= \
([wrapped_disk_value_1, ],
[wrapped_disk_value_4, cracked_disk_value_2, cracked_disk_value_3],
[cracked_disk_value_3_B],
[wrapped_disk_value_4_B]))
test_board_copy = Board.get_board_copy(test_board)
highest_score, columns = Drop7.highest_score(test_board, [wrapped_disk_value_3_B, visible_disk_value_3])
assert highest_score == 14
assert columns == [1, 1]
assert are_identical_boards(test_board, test_board_alias)
assert are_equal_boards(test_board,test_board_copy)
score.value += 12
except:
pass
| 7,103 |
def plot_distribution(df, inv, ax=None, distribution=None, tau_plot=None, plot_bounds=True, plot_ci=True,
label='', ci_label='', unit_scale='auto', freq_axis=True, area=None, normalize=False,
predict_kw={}, **kw):
"""
Plot the specified distribution as a function of tau.
Parameters
----------
df : pandas DataFrame
DataFrame containing experimental EIS data. Used only for scaling and frequency bounds
If None is passed, scaling will not be performed and frequency bounds will not be drawn
inv : Inverter instance
Fitted Inverter instance
ax : matplotlib axis
Axis on which to plot
distribution : str, optional (default: None)
Name of distribution to plot. If None, first distribution in inv.distributions will be used
tau_plot : array, optonal (default: None)
Time constant grid over which to evaluate the distribution.
If None, a grid extending one decade beyond the basis time constants in each direction will be used.
plot_bounds : bool, optional (default: True)
If True, indicate frequency bounds of experimental data with vertical lines.
Requires that DataFrame of experimental data be passed for df argument
plot_ci : bool, optional (default: True)
If True, plot the 95% credible interval of the distribution (if available).
label : str, optional (default: '')
Label for matplotlib
unit_scale : str, optional (default: 'auto')
Scaling unit prefix. If 'auto', determine from data.
Options are 'mu', 'm', '', 'k', 'M', 'G'
freq_axis : bool, optional (default: True)
If True, add a secondary x-axis to display frequency
area : float, optional (default: None)
Active area. If provided, plot the area-normalized distribution
normalize : bool, optional (default: False)
If True, normalize the distribution such that the polarization resistance is 1
predict_kw : dict, optional (default: {})
Keyword args to pass to Inverter predict_distribution() method
kw : keyword args, optional
Keyword args to pass to maplotlib.pyplot.plot
Returns
-------
ax : matplotlib axis
Axis on which distribution is plotted
"""
if ax is None:
fig, ax = plt.subplots(figsize=(3.5, 2.75))
# If no distribution specified, use first distribution
if distribution is None:
distribution = list(inv.distributions.keys())[0]
# If tau_plot not given, go one decade beyond basis tau in each direction
if tau_plot is None:
basis_tau = inv.distributions[distribution]['tau']
tmin = np.log10(np.min(basis_tau)) - 1
tmax = np.log10(np.max(basis_tau)) + 1
num_decades = tmax - tmin
tau_plot = np.logspace(tmin, tmax, int(20 * num_decades + 1))
F_pred = inv.predict_distribution(distribution, tau_plot, **predict_kw)
if normalize and area is not None:
raise ValueError('If normalize=True, area cannot be specified.')
if area is not None:
if df is not None:
for col in ['Zmod', 'Zreal', 'Zimag']:
df[col] *= area
F_pred *= area
if normalize:
Rp_kw = predict_kw.copy()
# if time given, calculate Rp at given time
if 'time' in predict_kw.keys():
Rp_kw['times'] = [predict_kw['time'], predict_kw['time']]
del Rp_kw['time']
Rp = inv.predict_Rp(**Rp_kw)
F_pred /= Rp
if unit_scale == 'auto':
if normalize:
unit_scale = ''
elif df is not None:
unit_scale = get_unit_scale(df, area)
else:
unit_map = {-2: '$\mu$', -1: 'm', 0: '', 1: 'k', 2: 'M', 3: 'G'}
F_max = np.max(F_pred)
F_ord = np.floor(np.log10(F_max) / 3)
unit_scale = unit_map.get(F_ord, '')
scale_factor = get_factor_from_unit(unit_scale)
ax.plot(tau_plot, F_pred / scale_factor, label=label, **kw)
if plot_ci:
if inv.fit_type.find('bayes') >= 0:
F_lo = inv.predict_distribution(distribution, tau_plot, percentile=2.5, **predict_kw)
F_hi = inv.predict_distribution(distribution, tau_plot, percentile=97.5, **predict_kw)
if area is not None:
F_lo *= area
F_hi *= area
if normalize:
F_lo /= Rp
F_hi /= Rp
ax.fill_between(tau_plot, F_lo / scale_factor, F_hi / scale_factor, color='k', alpha=0.2, label=ci_label)
ax.set_xscale('log')
ax.set_xlabel(r'$\tau$ / s')
if plot_bounds:
if df is not None:
ax.axvline(1 / (2 * np.pi * df['Freq'].max()), c='k', ls=':', alpha=0.6, zorder=-10)
ax.axvline(1 / (2 * np.pi * df['Freq'].min()), c='k', ls=':', alpha=0.6, zorder=-10)
if area is not None:
ax.set_ylabel(fr'$\gamma \, (\ln{{\tau}})$ / {unit_scale}$\Omega\cdot\mathrm{{cm}}^2$')
elif normalize:
ax.set_ylabel(fr'$\gamma \, (\ln{{\tau}}) / R_p$')
else:
ax.set_ylabel(fr'$\gamma \, (\ln{{\tau}})$ / {unit_scale}$\Omega$')
# add freq axis to DRT plot
if freq_axis:
# check for existing twin axis
all_axes = ax.figure.axes
ax2 = None
for other_ax in all_axes:
if other_ax.bbox.bounds == ax.bbox.bounds and other_ax is not ax:
ax2 = other_ax
break
else:
continue
if ax2 is None:
ax2 = ax.twiny()
ax2.set_xscale('log')
ax2.set_xlim(ax.get_xlim())
f_powers = np.arange(7, -4.1, -2)
f_ticks = 10 ** f_powers
ax2.set_xticks(1 / (2 * np.pi * f_ticks))
ax2.set_xticklabels(['$10^{{{}}}$'.format(int(p)) for p in f_powers])
ax2.set_xlabel('$f$ / Hz')
# Indicate zero if necessary
if np.min(F_pred) >= 0:
ax.set_ylim(0, ax.get_ylim()[1])
else:
ax.axhline(0, c='k', lw=0.5)
return ax
| 7,104 |
def hilbert( turtle, length, depth ):
"""
Draw the U shape of iteration depth 1
"""
turtle.left(90)
turtle.forward(length)
turtle.right(90)
turtle.forward(length)
turtle.right(90)
turtle.forward(length)
"""
Finally turn into same direction we started with
"""
turtle.left(90)
| 7,105 |
def test_pokemon_color_read(client: TestClient):
"""Test case for pokemon_color_read
"""
headers = {
}
response = client.request(
"GET",
"/api/v2/pokemon-color/{id}/".format(id=56),
headers=headers,
)
# uncomment below to assert the status code of the HTTP response
#assert response.status_code == 200
| 7,106 |
def dispatch(hostlist, commands, required_gpus=1, required_gpu_mem=8, required_cpu_mem=0, log_target='file'):
"""Main dispatcher method.
Arguments
----------
hostlist : list
List of hostnames or addresses
commands : list
List of command strings, as would be written in shell. Ensure the correct working directory by prepending a `cd ~/workdir/...;` if necessary.
required_gpus : int
Integer or list of integers defining the minimum number of required gpus on a single host. If list, len(required_gpus) must be equal to len(commands)
required_gpu_mem : int
In GB. Integer or list of integers, defining the minimum amount of free memory required per gpu on a single host.
required_cpu_mem : int
In GB. Integer or list of integers, defining the mimimum amount of available cpu memory on a single host.
log_target : str
One of the keys in LOG_TARGETS
"""
if type(required_gpus) is list and len(required_gpus) != len(commands):
raise RuntimeError('Entries in required_gpus list must be equal to entries in commands.')
if type(required_gpu_mem) is list and len(required_gpu_mem) != len(commands):
raise RuntimeError('Entries in required_gpu_mem list must be equal to entries in commands.')
if type(required_cpu_mem) is list and len(required_cpu_mem) != len(commands):
raise RuntimeError('Entries in required_cpu_mem list must be equal to entries in commands.')
# if type(required_gpus) is int:
# required_gpus = [required_gpus]*len(commands)
# if type(required_gpu_mem) is int:
# required_gpu_mem = [required_gpu_mem]*len(commands)
pool = mp.Pool(processes=MAX_PARALLEL_JOBS)
m = mp.Manager()
# fill queue
queue_pending = m.Queue(len(hostlist)+1)
queue_ready = m.Queue(len(hostlist)+1)
shuffle(hostlist)
for host in hostlist:
queue_pending.put((host, 0))
numhosts = len(hostlist)
# start enqueuer
enqueuer = mp.Process(target=_utilization_enqueuer, args=(numhosts, queue_ready, queue_pending, required_gpus, required_gpu_mem, required_cpu_mem))
enqueuer.start()
cmdinds = range(len(commands))
pool.map_async(
partial(_async_dispatch, queue_pending=queue_pending, queue_ready=queue_ready, log_target=log_target),
zip(cmdinds, commands)
).get(9999999)
print('Please wait for processes to finish...')
pool.close()
queue_pending.put(('', 0))
pool.join()
enqueuer.join()
| 7,107 |
def profitsharing_order(self, transaction_id, out_order_no, receivers, unfreeze_unsplit,
appid=None, sub_appid=None, sub_mchid=None):
"""请求分账
:param transaction_id: 微信支付订单号,示例值:'4208450740201411110007820472'
:param out_order_no: 商户分账单号,只能是数字、大小写字母_-|*@,示例值:'P20150806125346'
:param receivers: 分账接收方列表,最多可有50个分账接收方,示例值:[{'type':'MERCHANT_ID', 'account':'86693852', 'amount':888, 'description':'分给商户A'}]
:param unfreeze_unsplit: 是否解冻剩余未分资金,示例值:True, False
:param appid: 应用ID,可不填,默认传入初始化时的appid,示例值:'wx1234567890abcdef'
:param sub_appid: (服务商模式)子商户应用ID,示例值:'wxd678efh567hg6999'
:param sub_mchid: (服务商模式)子商户的商户号,由微信支付生成并下发。示例值:'1900000109'
"""
params = {}
if transaction_id:
params.update({'transaction_id': transaction_id})
else:
raise Exception('transaction_id is not assigned')
if out_order_no:
params.update({'out_order_no': out_order_no})
else:
raise Exception('out_order_no is not assigned')
if isinstance(unfreeze_unsplit, bool):
params.update({'unfreeze_unsplit': unfreeze_unsplit})
else:
raise Exception('unfreeze_unsplit is not assigned')
if isinstance(receivers, list):
params.update({'receivers': receivers})
else:
raise Exception('receivers is not assigned')
for receiver in params.get('receivers'):
if receiver.get('name'):
receiver['name'] = self._core.encrypt(receiver.get('name'))
params.update({'appid': appid or self._appid})
if self._partner_mode:
if sub_appid:
params.update({'sub_appid': sub_appid})
if sub_mchid:
params.update({'sub_mchid': sub_mchid})
else:
raise Exception('sub_mchid is not assigned.')
path = '/v3/profitsharing/orders'
return self._core.request(path, method=RequestType.POST, data=params)
| 7,108 |
def merge_time_batch_dims(x: Tensor) -> Tensor:
"""
Pack the time dimension into the batch dimension.
Args:
x: input tensor
Returns:
output tensor
"""
if xnmt.backend_dynet:
((hidden_dim, seq_len), batch_size_) = x.dim()
return dy.reshape(x, (hidden_dim,), batch_size=batch_size_ * seq_len)
else:
batch_size_, seq_len, hidden_dim = x.size()
return x.view((batch_size_ * seq_len, hidden_dim))
| 7,109 |
def test_read_fhd_write_read_uvfits_no_layout():
"""
Test errors/warnings with with no layout file.
"""
fhd_uv = UVData()
files_use = testfiles[:-3] + [testfiles[-2]]
# check warning raised
with uvtest.check_warnings(UserWarning, "No layout file"):
fhd_uv.read(files_use, run_check=False)
with pytest.raises(
ValueError, match="Required UVParameter _antenna_positions has not been set"
):
with uvtest.check_warnings(UserWarning, "No layout file"):
fhd_uv.read(files_use)
| 7,110 |
def get_log_likelihood(P, v, subs_counts):
"""
The stationary distribution of P is empirically derived.
It is proportional to the codon counts by construction.
@param P: a transition matrix using codon counts and free parameters
@param v: stationary distribution proportional to observed codon counts
@param subs_counts: observed substitution counts
"""
A = subs_counts
B = algopy.log(P.T * v)
log_likelihoods = slow_part(A, B)
return algopy.sum(log_likelihoods)
| 7,111 |
def create_identity_model(
model_dir,
signature_name=(
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY),
tags=(tf.saved_model.tag_constants.SERVING,)):
"""Create a model and saved it in SavedModel format."""
g, signature_def_map = _identity_string_graph(signature_name)
_write_graph(g, signature_def_map, list(tags), model_dir)
| 7,112 |
def allChampMast(_reg, _summonerId, _apiKey):
"""Get all champion mastery entries sorted by number of champion points descending"""
response = requests.get("https://" + _reg + ".api.riotgames.com/lol/champion-mastery/v4/champion-masteries/by-summoner/" + _summonerId +"?api_key=" + _apiKey)
data = json.loads(response.text)
print(json.dumps(data, indent=4))
| 7,113 |
def union(l1, l2):
""" return the union of two lists """
return list(set(l1) | set(l2))
| 7,114 |
def actual_kwargs():
"""
Decorator that provides the wrapped function with an attribute 'actual_kwargs' containing just those keyword
arguments actually passed in to the function.
Based on code from http://stackoverflow.com/a/1409284/127480
"""
def decorator(function):
def inner(*args, **kwargs):
inner.actual_kwargs = kwargs
inner.actual_kwargs_except = \
lambda keys: {key: value for key, value in kwargs.iteritems() if key not in keys}
return function(*args, **kwargs)
return inner
return decorator
| 7,115 |
def k1(f, t, y, paso):
"""
f : funcion a integrar. Retorna un np.ndarray
t : tiempo en el cual evaluar la funcion f
y : para evaluar la funcion f
paso : tamano del paso a usar.
"""
output = paso * f(t, y)
return output
| 7,116 |
def script_from_json_string(json_string, base_dir=None):
"""Returns a Script instance parsed from the given string containing JSON.
"""
raw_json = json.loads(json_string)
if not raw_json:
raw_json = []
return script_from_data(raw_json, base_dir)
| 7,117 |
def write_version_file(version):
"""Writes a file with version information to be used at run time
Parameters
----------
version: str
A string containing the current version information
Returns
-------
version_file: str
A path to the version file
"""
try:
git_log = subprocess.check_output(
["git", "log", "-1", "--pretty=%h %ai"]
).decode("utf-8")
git_diff = (
subprocess.check_output(["git", "diff", "."])
+ subprocess.check_output(["git", "diff", "--cached", "."])
).decode("utf-8")
if git_diff == "":
git_status = "(CLEAN) " + git_log
else:
git_status = "(UNCLEAN) " + git_log
except Exception as e:
print(f"Unable to obtain git version information, exception: {e}")
git_status = "release"
version_file = ".version"
long_version_file = f"cached_interpolate/{version_file}"
if os.path.isfile(long_version_file) is False:
with open(long_version_file, "w+") as f:
f.write(f"{version}: {git_status}")
return version_file
| 7,118 |
def check_api_key(key: str, hashed: str) -> bool:
"""
Check a API key string against a hashed one from the user database.
:param key: the API key to check
:type key: str
:param hashed: the hashed key to check against
:type hashed: str
"""
return hash_api_key(key) == hashed
| 7,119 |
def travel_chart(user_list, guild):
"""
Builds the chart to display travel data for Animal Crossing
:param user_list:
:param guild:
:return:
"""
out_table = []
fruit_lookup = {'apple': '🍎', 'pear': '🍐', 'cherry': '🍒', 'peach': '🍑', 'orange': '🍊'}
for user in user_list:
discord_user = guild.get_member(user.discord_id)
if discord_user:
discord_name = clean_string(discord_user.display_name, max_length=DISPLAY_CHAR_LIMIT)
else:
discord_name = user.discord_id
island_open = '✈️' if user.island_open else '⛔'
fruit = fruit_lookup[user.fruit] if user.fruit != '' else ''
dodo_code = clean_string(user.dodo_code, max_length=8)
out_table.append([discord_name, dodo_code, island_open + fruit])
return tabulate(out_table, headers=['User', 'Dodo', '🏝️ '], disable_numparse=True)
| 7,120 |
def evaluate_hyperparameters(parameterization):
""" Train and evaluate the network to find the best parameters
Args:
parameterization: The hyperparameters that should be evaluated
Returns:
float: classification accuracy """
net = Net()
net, _, _ = train_bayesian_optimization(net=net, input_picture=DATA['x_train'],\
label_picture=DATA['y_train'], parameters=parameterization,)
return eval_bayesian_optimization(net=net, input_picture=DATA['x_valid'],\
label_picture=DATA['y_valid'],)
| 7,121 |
def get_post_type(h_entry, custom_properties=[]):
"""
Return the type of a h-entry per the Post Type Discovery algorithm.
:param h_entry: The h-entry whose type to retrieve.
:type h_entry: dict
:param custom_properties: The optional custom properties to use for the Post Type Discovery algorithm.
:type custom_properties: list[tuple[str, str]]
:return: The type of the h-entry.
:rtype: str
"""
post = h_entry.get("properties")
if post is None:
return "unknown"
values_to_check = [
("rsvp", "rsvp"),
("in-reply-to", "reply"),
("repost-of", "repost"),
("like-of", "like"),
("video", "video"),
("photo", "photo"),
("summary", "summary"),
]
for prop in custom_properties:
if len(prop) == 2 and type(prop) == tuple:
values_to_check.append(prop)
else:
raise Exception("custom_properties must be a list of tuples")
for item in values_to_check:
if post.get(item[0]):
return item[1]
post_type = "note"
if post.get("name") is None or post.get("name")[0] == "":
return post_type
title = post.get("name")[0].strip().replace("\n", " ").replace("\r", " ")
content = post.get("content")
if content and content[0].get("text") and content[0].get("text")[0] != "":
content = BeautifulSoup(content[0].get("text"), "lxml").get_text()
if content and content[0].get("html") and content[0].get("html")[0] != "":
content = BeautifulSoup(content[0].get("html"), "lxml").get_text()
if not content.startswith(title):
return "article"
return "note"
| 7,122 |
def get_start_end(sequence, skiplist=['-','?']):
"""Return position of first and last character which is not in skiplist.
Skiplist defaults to ['-','?'])."""
length=len(sequence)
if length==0:
return None,None
end=length-1
while end>=0 and (sequence[end] in skiplist):
end-=1
start=0
while start<length and (sequence[start] in skiplist):
start+=1
if start==length and end==-1: # empty sequence
return -1,-1
else:
return start,end
| 7,123 |
def view_event(request, eventid):
"""
View an Event.
:param request: Django request object (Required)
:type request: :class:`django.http.HttpRequest`
:param eventid: The ObjectId of the event to get details for.
:type eventid: str
:returns: :class:`django.http.HttpResponse`
"""
analyst = request.user.username
template = 'event_detail.html'
(new_template, args) = get_event_details(eventid, analyst)
if new_template:
template = new_template
return render_to_response(template,
args,
RequestContext(request))
| 7,124 |
def main():
"""Main script."""
(opts, args) = parser.parse_args()
if opts.howto:
print HOWTO
return 1
if not args:
print "No sensor expression given."
parser.print_usage()
return 1
if opts.cm_url in CM_URLS:
cm = CentralStore(CM_URLS[opts.cm_url], opts.sensor_cache)
else:
cm = CentralStore(opts.cm_url, opts.sensor_cache)
print "Using central monitor %s" % (cm.url,)
print "Using sensor cache %s" % (cm.cache,)
if opts.start_time is None:
start = None
start_s = 0
else:
start = parse_date(opts.start_time)
start_s = calendar.timegm(start.timetuple())
print "Start of date range:", start.strftime(DEFAULT_FORMATS[0])
if opts.end_time is None:
end = None
end_s = 0
else:
end = parse_date(opts.end_time)
end_s = calendar.timegm(end.timetuple())
print "End of date range:", end.strftime(DEFAULT_FORMATS[0])
if opts.title is None:
title = "Sensor data from %s" % (opts.cm_url)
else:
title = opts.title
sensor_names = cm.sensor_names()
matching_names = set()
for regex in [re.compile(arg) for arg in args]:
matching_names.update(name for name in sensor_names if regex.search(name))
matching_names = list(sorted(matching_names))
sensors = []
for name in matching_names:
sensor = cm.sensor(name)
if sensor is None:
print "Omitting sensor %s (no data found)." % (name,)
sensors.append(sensor)
if opts.list_sensors:
print "Matching sensors"
print "----------------"
for sensor in sensors:
print ", ".join(["%s.%s" % (sensor.parent_name, sensor.name), sensor.type, sensor.units, sensor.description])
return
if opts.list_dates:
for sensor in sensors:
fullname = "%s.%s" % (sensor.parent_name, sensor.name)
history = sensor.list_stored_history(start_time=start_s, end_time=end_s, return_array=True)
if history is None:
history = []
history = [(entry[0], entry[1]) for entry in history]
history.sort()
compacted = []
current_start, current_end = 0, 0
allowed_gap = 60*5
for start, end in history:
if start > current_end + allowed_gap:
if current_start:
compacted.append((current_start, current_end))
current_start, current_end = start, end
else:
current_end = end
if current_start:
compacted.append((current_start, current_end))
print
print "Available data for", fullname
print "-------------------" + "-"*len(fullname)
if not compacted:
print "No data in range."
for start, end in compacted:
start = datetime.datetime.fromtimestamp(start)
end = datetime.datetime.fromtimestamp(end)
format = DEFAULT_FORMATS[0]
print start.strftime(format), " -> ", end.strftime(format)
return
if opts.plot_graph:
import matplotlib.pyplot as plt
ap = AnimatableSensorPlot(title=title, source="stored", start_time=start_s, end_time=end_s, legend_loc=opts.legend_loc)
for sensor in sensors:
ap.add_sensor(sensor)
ap.show()
plt.show()
return
if True:
for sensor in sensors:
dump_file = "%s.%s.csv" % (sensor.parent_name, sensor.name)
sensor.get_stored_history(start_time=start_s, end_time=end_s, dump_file=dump_file, select=False)
return
| 7,125 |
def archiveOpen(self, file, path):
"""
This gets added to the File model to open a path within an archive file.
:param file: the file document.
:param path: the path within the archive file.
:returns: a file-like object that can be used as a context or handle.
"""
return ArchiveFileHandle(self, file, path)
| 7,126 |
def get_masked_bin(args, key: int) -> str:
"""Given an input, output, and mask type: read the bytes, identify the factory, mask the bytes, write them to disk."""
if args.bin == None or args.mask == None:
logger.bad("Please specify -b AND -m (bin file and mask)")
return None
# get the bytes of the input bin
blob: bytes = helpers.get_bytes_from_file(args.bin)
# if that isnt possible, return.
if blob == None:
return None
logger.info(f"Loaded {args.bin} ({len(blob)} bytes)")
# get the correct factory
factory = get_mask_factory(args.mask)
# if that fails, return.
if factory == None:
return None
# if the factory is obtained, grab the class for the mask
mask = factory.get_mask_type()
logger.info(f"Masking shellcode with: {factory.name}")
# XOR
if (key != 0):
# python 3 should ~~~ theoretically ~~~ handle a list of integers by auto converting to bytes blob
blob: bytes = bytes([x ^ key for x in blob])
# give the blob to the class and perform whatever transformations... This should then return a multiline string containing the transformed data
return mask.mask(blob, args.payload_preview)
| 7,127 |
def count_entries(df, col_name = 'lang'):
"""Return a dictionary with counts of
occurrences as value for each key."""
# Initialize an empty dictionary: cols_count
cols_count = {}
# Extract column from DataFrame: col
col = df[col_name]
# Iterate over the column in DataFrame
for entry in col:
# If entry is in cols_count, add 1
if entry in cols_count.keys():
cols_count[entry] += 1
# Else add the entry to cols_count, set the value to 1
else:
cols_count[entry] = 1
# Return the cols_count dictionary
return cols_count
| 7,128 |
def print_header(size: int, name: str):
"""
Print a header looking like this :
------
NAME
------
:param size: width of the header in characters
:type size: int
:param name: name displayed by the header
:type name: str
"""
templateBar = "{:-^" + str(size) + "s}"
templateName = "{:^" + str(size) + "s}"
print(bcolors.HEADER, flush=True)
print(templateBar.format(""), flush=True)
print(templateName.format(name.upper()), flush=True)
print(templateBar.format(""), flush=True)
print(bcolors.ENDC, flush=True)
| 7,129 |
def bo_run_7():
"""
Run the bayesian optimization experiemnt 7.
Same as experiment 6, but with ARD kernel, different tolerance
and different max_iter.
"""
import GPyOpt
import pickle
exper = IE5_experiment_6(0,2)
domain =[{'name': 'init_runs', 'type': 'discrete', 'domain': np.arange(200,501,30) },
#{'name': 'hidden_dims', 'type': 'discrete', 'domain': (1,2,3,4)},
{'name': 'Q', 'type': 'discrete', 'domain': np.arange(60,201,10) } ]
kernel = GPy.kern.RBF(len(domain),ARD=True)
Bopt = GPyOpt.methods.BayesianOptimization(f=exper, # function to optimize
domain=domain, # box-constrains of the problem
model_type = 'GP_MCMC',
kernel=kernel,
initial_design_numdata = 3,# number data initial design
acquisition_type='EI_MCMC', # Expected Improvement
exact_feval = False)
#import pdb; pdb.set_trace()
# --- Stop conditions
max_time = None
max_iter = 7
tolerance = 1e-2 # distance between two consecutive observations
# Run the optimization
report_file = 'report_IE5_experiment_7(0,2)'
evaluations_file = 'eval_IE5_experiment_7(0,2)'
models_file = 'model_IE5_experiment_7(0,2)'
Bopt.run_optimization(max_iter = max_iter, max_time = max_time, eps = tolerance, verbosity=True,
report_file = report_file, evaluations_file= evaluations_file, models_file=models_file, acquisition_par=3) # acquisition_par is
# used to make it more explorative. It seems it did not help.
#acquisition_type ='LCB', # LCB acquisition
#acquisition_weight = 0.1)
ff = open('IE5_experiment_7(0,2)','w')
pickle.dump(Bopt,ff)
ff.close()
| 7,130 |
def polyPoke(*args, **kwargs):
"""
Introduces a new vertex in the middle of the selected face, and connects it to the rest of the vertices of the face.
Returns: `string` The node name
"""
pass
| 7,131 |
def workerfunc(prob, *args, **kwargs):
""" Helper function for wrapping class methods to allow for use
of the multiprocessing package """
return prob.run_simulation(*args, **kwargs)
| 7,132 |
def ensure_pytest_builtin_helpers(helpers='skip raises'.split()):
""" hack (py.test.) raises and skip into builtins, needed
for applevel tests to run directly on cpython but
apparently earlier on "raises" was already added
to module's globals.
"""
import __builtin__
for helper in helpers:
if not hasattr(__builtin__, helper):
setattr(__builtin__, helper, getattr(py.test, helper))
| 7,133 |
async def client(hass, hass_ws_client):
"""Fixture that can interact with the config manager API."""
with patch.object(config, "SECTIONS", ["core"]):
assert await async_setup_component(hass, "config", {})
return await hass_ws_client(hass)
| 7,134 |
def test_curve_plot(curve):
"""
Tests mpl image of curve.
"""
fig = curve.plot().get_figure()
return fig
| 7,135 |
async def _app_parser_stats():
"""Retrieve / update cached parser stat information.
Fields:
id: identifier of parser
size_doc: approximate size (bytes) per document or null
"""
parser_cfg = faw_analysis_set_util.lookup_all_parsers(
app_mongodb_conn.delegate, app_config)
parsers = []
promises = []
for k, v in parser_cfg.items():
if v.get('disabled'):
continue
parser = {
'id': k,
'size_doc': None,
'pipeline': True if v.get('pipeline') else False,
}
parsers.append(parser)
r = _app_parser_sizetable.get(k)
if r is not None and r[1] > time.monotonic():
parser['size_doc'] = r[0]
else:
async def stat_pop(k, parser):
ndocs = 5
# Only include successful runs
docs = await app_mongodb_conn['invocationsparsed'].find({
'parser': k,
'exitcode': 0}).limit(ndocs).to_list(None)
size = None
if len(docs) > 1:
# Size is actually a differential. Indicates information
# added per additional document due to unique features.
size = 0
fts_size = set([dr['k'] for dr in docs[0]['result']])
for d in docs[1:]:
fts_new = set([dr['k'] for dr in d['result']])
fts_new.difference_update(fts_size)
size += len(pickle.dumps(fts_new))
fts_size.update(fts_new)
size /= len(docs) - 1
if len(docs) == ndocs:
# Keep result for a long time
r = [size, time.monotonic() + 600]
else:
# Let it load, don't hammer the DB
r = [size, time.monotonic() + 30]
_app_parser_sizetable[k] = r
parser['size_doc'] = r[0]
promises.append(asyncio.create_task(stat_pop(k, parser)))
if promises:
await asyncio.wait(promises)
return parsers
| 7,136 |
async def test_publishing_with_custom_encoding(
hass,
mqtt_mock_entry_with_yaml_config,
caplog,
service,
topic,
parameters,
payload,
template,
):
"""Test publishing MQTT payload with command templates and different encoding."""
domain = siren.DOMAIN
config = copy.deepcopy(DEFAULT_CONFIG[domain])
config[siren.ATTR_AVAILABLE_TONES] = ["siren", "xylophone"]
await help_test_publishing_with_custom_encoding(
hass,
mqtt_mock_entry_with_yaml_config,
caplog,
domain,
config,
service,
topic,
parameters,
payload,
template,
)
| 7,137 |
def test_announcement_get_price_result():
"""Testing the announcement get_price_result function."""
# TODO
assert False
| 7,138 |
def update_wishlists(wishlist_id):
"""
Update a Wishlist
This endpoint will update a Wishlist based the body that is posted
"""
app.logger.info('Request to Update a wishlist with id [%s]', wishlist_id)
check_content_type('application/json')
wishlist = Wishlist.find(wishlist_id)
if not wishlist:
raise NotFound("Wishlist with id '{}' was not found.".format(wishlist_id))
data = request.get_json()
app.logger.info(data)
wishlist.deserialize(data)
wishlist.id = wishlist_id
wishlist.save()
return make_response(jsonify(wishlist.serialize()), status.HTTP_200_OK)
| 7,139 |
def simplifiedview(av_data: dict, filehash: str) -> str:
"""Builds and returns a simplified string containing basic information about the analysis"""
neg_detections = 0
pos_detections = 0
error_detections = 0
for engine in av_data:
if av_data[engine]['category'] == 'malicious' or av_data[engine]['category'] == 'suspicious':
neg_detections += 1
elif av_data[engine]['category'] == 'undetected':
pos_detections += 1
elif av_data[engine]['category'] == 'timeout' or av_data[engine]['category'] == 'type-unsupported' \
or av_data[engine]['category'] == 'failure':
error_detections += 1
vt_url = f'https://www.virustotal.com/gui/file/{filehash}'
response = f"__VirusTotal Analysis Summary__:\n\nHash: `{filehash}`\n\nLink: [Click Here]({vt_url})\n\n❌" \
f" **Negative: {neg_detections}**\n\n✅ Positive: {pos_detections}\n\n⚠ " \
f"Error/Unsupported File: {error_detections}"
return response
| 7,140 |
def decompress_hyper(y_strings, y_min_vs, y_max_vs, y_shape, z_strings, z_min_v, z_max_v, z_shape, model, ckpt_dir):
"""Decompress bitstream to cubes.
Input: compressed bitstream. latent representations (y) and hyper prior (z).
Output: cubes with shape [batch size, length, width, height, channel(1)]
"""
print('===== Decompress =====')
# load model.
#model = importlib.import_module(model)
synthesis_transform = model.SynthesisTransform()
hyper_encoder = model.HyperEncoder()
hyper_decoder = model.HyperDecoder()
entropy_bottleneck = EntropyBottleneck()
conditional_entropy_model = SymmetricConditional()
checkpoint = tf.train.Checkpoint(synthesis_transform=synthesis_transform,
hyper_encoder=hyper_encoder,
hyper_decoder=hyper_decoder,
estimator=entropy_bottleneck)
status = checkpoint.restore(tf.train.latest_checkpoint(ckpt_dir))
start = time.time()
zs = entropy_bottleneck.decompress(z_strings, z_min_v, z_max_v, z_shape, z_shape[-1])
print("Entropy Decoder (Hyper): {}s".format(round(time.time()-start, 4)))
def loop_hyper_deocder(z):
z = tf.expand_dims(z, 0)
loc, scale = hyper_decoder(z)
return tf.squeeze(loc, [0]), tf.squeeze(scale, [0])
start = time.time()
locs, scales = tf.map_fn(loop_hyper_deocder, zs, dtype=(tf.float32, tf.float32),
parallel_iterations=1, back_prop=False)
lower_bound = 1e-9# TODO
scales = tf.maximum(scales, lower_bound)
print("Hyper Decoder: {}s".format(round(time.time()-start, 4)))
start = time.time()
# ys = conditional_entropy_model.decompress(y_strings, locs, scales, y_min_v, y_max_v, y_shape)
def loop_range_decode(args):
y_string, loc, scale, y_min_v, y_max_v = args
loc = tf.expand_dims(loc, 0)
scale = tf.expand_dims(scale, 0)
y_decoded = conditional_entropy_model.decompress(y_string, loc, scale, y_min_v, y_max_v, y_shape)
return tf.squeeze(y_decoded, 0)
args = (y_strings, locs, scales, y_min_vs, y_max_vs)
ys = tf.map_fn(loop_range_decode, args, dtype=tf.float32, parallel_iterations=1, back_prop=False)
print("Entropy Decoder: {}s".format(round(time.time()-start, 4)))
def loop_synthesis(y):
y = tf.expand_dims(y, 0)
x = synthesis_transform(y)
return tf.squeeze(x, [0])
start = time.time()
xs = tf.map_fn(loop_synthesis, ys, dtype=tf.float32, parallel_iterations=1, back_prop=False)
print("Synthesis Transform: {}s".format(round(time.time()-start, 4)))
return xs
| 7,141 |
def GetManualInsn(ea):
"""
Get manual representation of instruction
@param ea: linear address
@note: This function returns value set by SetManualInsn earlier.
"""
return idaapi.get_manual_insn(ea)
| 7,142 |
def test_regular_expression(exp=".*", text="", fLOG=fLOG):
"""
Tests a regular expression.
@param exp regular expression
@param text text to check
@param fLOG logging function
"""
fLOG("regex", exp)
fLOG("text", text)
ex = re.compile(exp)
ma = ex.search(text)
if ma is None:
fLOG("no result")
else:
fLOG(ma.groups())
| 7,143 |
def feature_time(data: pd.DataFrame) -> pd.DataFrame:
"""
Time Feature Engineering.
"""
# print(data)
# print(data.info())
day = 24*60*60
year = (365.2425)*day
time_stp = data['time'].apply(
lambda x: datetime.strptime(x, "%Y-%m-%d %H:%M:00") if isinstance(x, str) else x
).map(datetime.timestamp)
data['day_sin'] = np.sin(time_stp * (2*np.pi / day))
data['day_cos'] = np.cos(time_stp * (2*np.pi / day))
data['year_sin'] = np.sin(time_stp * (2*np.pi / year))
data['year_cos'] = np.cos(time_stp * (2*np.pi / year))
return data
| 7,144 |
def _transform(mock_file) -> Tuple[List[Page], SaneJson]:
""" Prepare the data as sections before calling report """
transformer = Transform(get_mock(mock_file, ret_dict=False))
sane_json = transformer.get_sane_json()
pages = transformer.get_pages()
return pages, sane_json
| 7,145 |
def ProcessOptions():
"""Process and validate command line arguments and options"""
MiscUtil.PrintInfo("Processing options...")
# Validate options...
ValidateOptions()
AllowParamFailure = True
if re.match("^No", Options["--allowParamFailure"], re.I):
AllowParamFailure = False
OptionsInfo["AllowParamFailure"] = AllowParamFailure
AtomAliasesFormatMode = True
if re.match("^DataField", Options["--chargesSDFormat"], re.I):
AtomAliasesFormatMode = False
OptionsInfo["AtomAliasesFormatMode"] = AtomAliasesFormatMode
OptionsInfo["DataFieldLabel"] = Options["--dataFieldLabel"]
MMFFChargesMode = False
if re.match("^MMFF", Options["--mode"], re.I):
MMFFChargesMode = True
OptionsInfo["Mode"] = Options["--mode"]
OptionsInfo["MMFFChargesMode"] = MMFFChargesMode
OptionsInfo["MPMode"] = True if re.match("^yes$", Options["--mp"], re.I) else False
OptionsInfo["MPParams"] = MiscUtil.ProcessOptionMultiprocessingParameters("--mpParams", Options["--mpParams"])
OptionsInfo["Infile"] = Options["--infile"]
OptionsInfo["InfileParams"] = MiscUtil.ProcessOptionInfileParameters("--infileParams", Options["--infileParams"], Options["--infile"])
OptionsInfo["Outfile"] = Options["--outfile"]
OptionsInfo["OutfileParams"] = MiscUtil.ProcessOptionOutfileParameters("--outfileParams", Options["--outfileParams"], Options["--infile"], Options["--outfile"])
OptionsInfo["Overwrite"] = Options["--overwrite"]
OptionsInfo["NumIters"] = int(Options["--numIters"])
OptionsInfo["Precision"] = int(Options["--precision"])
| 7,146 |
def make_table(rows: List[List[Any]], labels: Optional[List[Any]] = None, centered: bool = False) -> str:
"""
:param rows: 2D array containing object that can be converted to string using `str(obj)`.
:param labels: Array containing the column labels, the length must equal that of rows.
:param centered: If the items should be aligned to the center, else they are left aligned.
:return: A table representing the rows passed in.
"""
# Transpose into columns
columns = list(transpose(labels, *rows) if labels else transpose(*rows))
# Padding
for column in columns:
# Find the required column width
column_width = max(map(len, map(str, column)))
# Add and record padding
for i, item in enumerate(column):
column[i] = f' {str(item):^{column_width}} ' if centered else f' {str(item):<{column_width}} '
# Border Widths
horizontal_lines = tuple('─' * len(column[0]) for column in columns)
# Create a list of rows with the row separators
rows = [row_with_separators(('│', '│', '│'), row) for row in transpose(*columns)]
# Create a separator between the labels and the values if needed
if labels:
label_border_bottom = row_with_separators(('├', '┼', '┤'), horizontal_lines)
rows.insert(1, label_border_bottom)
# Create the top and bottom border of the table
top_border = row_with_separators(('┌', '┬', '┐'), horizontal_lines)
rows.insert(0, top_border)
bottom_border = row_with_separators(('└', '┴', '┘'), horizontal_lines)
rows.append(bottom_border)
# Join all the components
return '\n'.join(rows)
| 7,147 |
def quantify_leakage(align_net_file, train_contigs, valid_contigs, test_contigs, out_dir):
"""Quanitfy the leakage across sequence sets."""
def split_genome(contigs):
genome_contigs = []
for ctg in contigs:
while len(genome_contigs) <= ctg.genome:
genome_contigs.append([])
genome_contigs[ctg.genome].append((ctg.chr,ctg.start,ctg.end))
genome_bedtools = [pybedtools.BedTool(ctgs) for ctgs in genome_contigs]
return genome_bedtools
def bed_sum(overlaps):
osum = 0
for overlap in overlaps:
osum += int(overlap[2]) - int(overlap[1])
return osum
train0_bt, train1_bt = split_genome(train_contigs)
valid0_bt, valid1_bt = split_genome(valid_contigs)
test0_bt, test1_bt = split_genome(test_contigs)
assign0_sums = {}
assign1_sums = {}
if os.path.splitext(align_net_file)[-1] == '.gz':
align_net_open = gzip.open(align_net_file, 'rt')
else:
align_net_open = open(align_net_file, 'r')
for net_line in align_net_open:
if net_line.startswith('net'):
net_a = net_line.split()
chrom0 = net_a[1]
elif net_line.startswith(' fill'):
net_a = net_line.split()
# extract genome1 interval
start0 = int(net_a[1])
size0 = int(net_a[2])
end0 = start0+size0
align0_bt = pybedtools.BedTool([(chrom0,start0,end0)])
# extract genome2 interval
chrom1 = net_a[3]
start1 = int(net_a[5])
size1 = int(net_a[6])
end1 = start1+size1
align1_bt = pybedtools.BedTool([(chrom1,start1,end1)])
# count interval overlap
align0_train_bp = bed_sum(align0_bt.intersect(train0_bt))
align0_valid_bp = bed_sum(align0_bt.intersect(valid0_bt))
align0_test_bp = bed_sum(align0_bt.intersect(test0_bt))
align0_max_bp = max(align0_train_bp, align0_valid_bp, align0_test_bp)
align1_train_bp = bed_sum(align1_bt.intersect(train1_bt))
align1_valid_bp = bed_sum(align1_bt.intersect(valid1_bt))
align1_test_bp = bed_sum(align1_bt.intersect(test1_bt))
align1_max_bp = max(align1_train_bp, align1_valid_bp, align1_test_bp)
# assign to class
if align0_max_bp == 0:
assign0 = None
elif align0_train_bp == align0_max_bp:
assign0 = 'train'
elif align0_valid_bp == align0_max_bp:
assign0 = 'valid'
elif align0_test_bp == align0_max_bp:
assign0 = 'test'
else:
print('Bad logic')
exit(1)
if align1_max_bp == 0:
assign1 = None
elif align1_train_bp == align1_max_bp:
assign1 = 'train'
elif align1_valid_bp == align1_max_bp:
assign1 = 'valid'
elif align1_test_bp == align1_max_bp:
assign1 = 'test'
else:
print('Bad logic')
exit(1)
# increment
assign0_sums[(assign0,assign1)] = assign0_sums.get((assign0,assign1),0) + align0_max_bp
assign1_sums[(assign0,assign1)] = assign1_sums.get((assign0,assign1),0) + align1_max_bp
# sum contigs
splits0_bp = {}
splits0_bp['train'] = bed_sum(train0_bt)
splits0_bp['valid'] = bed_sum(valid0_bt)
splits0_bp['test'] = bed_sum(test0_bt)
splits1_bp = {}
splits1_bp['train'] = bed_sum(train1_bt)
splits1_bp['valid'] = bed_sum(valid1_bt)
splits1_bp['test'] = bed_sum(test1_bt)
leakage_out = open('%s/leakage.txt' % out_dir, 'w')
print('Genome0', file=leakage_out)
for split0 in ['train','valid','test']:
print(' %5s: %10d nt' % (split0, splits0_bp[split0]), file=leakage_out)
for split1 in ['train','valid','test',None]:
ss_bp = assign0_sums.get((split0,split1),0)
print(' %5s: %10d (%.5f)' % (split1, ss_bp, ss_bp/splits0_bp[split0]), file=leakage_out)
print('\nGenome1', file=leakage_out)
for split1 in ['train','valid','test']:
print(' %5s: %10d nt' % (split1, splits1_bp[split1]), file=leakage_out)
for split0 in ['train','valid','test',None]:
ss_bp = assign1_sums.get((split0,split1),0)
print(' %5s: %10d (%.5f)' % (split0, ss_bp, ss_bp/splits1_bp[split1]), file=leakage_out)
leakage_out.close()
| 7,148 |
def coef_determ(y_sim, y_obs):
"""
calculate the coefficient of determination
:param y_sim: series of simulated values
:param y_obs: series of observed values
:return:
"""
assert y_sim.ndim == 1 and y_obs.ndim == 1 and len(y_sim) == len(y_obs)
r = np.corrcoef(y_sim, y_obs)
r2 = r[0, 1] ** 2
return r2
| 7,149 |
async def generate_latest_metrics(client):
"""Generate the latest metrics and transform the body."""
resp = await client.get(prometheus.API_ENDPOINT)
assert resp.status == HTTPStatus.OK
assert resp.headers["content-type"] == CONTENT_TYPE_TEXT_PLAIN
body = await resp.text()
body = body.split("\n")
assert len(body) > 3
return body
| 7,150 |
def vsphere(r):
"""volume sphere"""
print(4 / 3 * math.pi * r ** 3)
| 7,151 |
def carrierchecker_bundles(mcc, mnc, hwid):
"""
:param mcc: Country code.
:type mcc: int
:param mnc: Network code.
:type mnc: int
:param hwid: Device hardware ID.
:type hwid: str
"""
releases = networkutils.available_bundle_lookup(mcc, mnc, hwid)
print("\nAVAILABLE BUNDLES:")
utilities.lprint(releases)
| 7,152 |
def cmd_tags(request):
"""Список тегов
Вывод топа клубов с количеством сообщений для каждого
redeye: tags
"""
tags = list(x.doc for x in (yield objs.Tag.find_sort({'_id': {'$ne': ''}}, [('value', -1)], limit=20)))
defer.returnValue(dict(ok=True, format='tags', tags=tags,
cache=3600, cache_public=True))
| 7,153 |
def test_constructor_loads_info_from_constant():
"""Test non-dev mode loads info from SERVERS constant."""
hass = MagicMock(data={})
with patch.dict(cloud.SERVERS, {
'beer': {
'cognito_client_id': 'test-cognito_client_id',
'user_pool_id': 'test-user_pool_id',
'region': 'test-region',
'relayer': 'test-relayer',
'google_actions_sync_url': 'test-google_actions_sync_url',
'subscription_info_url': 'test-subscription-info-url'
}
}), patch('homeassistant.components.cloud.Cloud._fetch_jwt_keyset',
return_value=mock_coro(True)):
result = yield from cloud.async_setup(hass, {
'cloud': {cloud.CONF_MODE: 'beer'}
})
assert result
cl = hass.data['cloud']
assert cl.mode == 'beer'
assert cl.cognito_client_id == 'test-cognito_client_id'
assert cl.user_pool_id == 'test-user_pool_id'
assert cl.region == 'test-region'
assert cl.relayer == 'test-relayer'
assert cl.google_actions_sync_url == 'test-google_actions_sync_url'
assert cl.subscription_info_url == 'test-subscription-info-url'
| 7,154 |
def simulate(population: int, n: int, timer: int) -> int:
"""
Recursively simulate population growth of the fish.
Args:
population (int): Starting population
n (int): Number of days to simulate.
timer (int): The reset timer of the fish
initialised at 6 or 8 depending on whether
it's newborn, and decremented on each round.
Returns:
int: The population of fish after `n` days
"""
if n == 0:
# It's the start
return population
if timer == 0:
# A fish's timer has reached 0
# create required new fish
newborns = simulate(population, n - 1, NEW_FISH_TIMER)
current = simulate(population, n - 1, TIMER_START)
return current + newborns
return simulate(population, n - 1, timer - 1)
| 7,155 |
def execute_deeper(source, table1, table2, number_of_pairs, destination, predictionsFileName):
"""
This method runs deeper on a dataset.
"""
table1_path = ""
table2_path = ""
predictions_file_path = ""
pred_pairs_path = ""
threshold_path = ""
if source.endswith("/"):
table1_path = source + table1
table2_path = source + table2
threshold_path = source + "threshold.txt"
else:
table1_path = source + "/" + table1
table2_path = source + "/" + table2
threshold_path = source + "/" + "threshold.txt"
if destination.endswith("/"):
predictions_file_path = destination + predictionsFileName
pred_pairs_path = destination + "pred_pairs_" + number_of_pairs + ".csv"
else:
predictions_file_path = destination + "/" + predictionsFileName
pred_pairs_path = destination + "/" + "pred_pairs_" + number_of_pairs + ".csv"
params=[source,
table1_path,
table2_path,
"6",
pred_pairs_path,
number_of_pairs,
predictions_file_path,
threshold_path,
"1",
destination
]
print("number of pairs is " + number_of_pairs)
print("threshold file is " + threshold_path)
# params=["/Users/emansour/elab/DAGroup/DataCivilizer/github/data_civilizer_system/storage/data_sets/deeper/Amazon-GoogleProducts",
# "/Users/emansour/elab/DAGroup/DataCivilizer/github/data_civilizer_system/storage/data_sets/deeper/Amazon_full.csv",
# "/Users/emansour/elab/DAGroup/DataCivilizer/github/data_civilizer_system/storage/data_sets/deeper/GoogleProducts_full.csv",
# "/Users/emansour/elab/DAGroup/DataCivilizer/github/data_civilizer_system/storage/data_sets/deeper/pred_pairs_No.csv",
# "10000",
# "/Users/emansour/elab/DAGroup/DataCivilizer/github/data_civilizer_system/storage/data_sets/deeper/output/matches.csv",
# "/Users/emansour/elab/DAGroup/DataCivilizer/github/data_civilizer_system/storage/data_sets/deeper/threshold.txt",
# "/Users/emansour/elab/DAGroup/DataCivilizer/github/data_civilizer_system/storage/data_sets/deeper/output"
# ]
# tool_path="/Users/emansour/elab/DAGroup/DataCivilizer/github/data_civilizer_system/civilizer_services/deeper_service/DeepER-Lite/"
tool_path = "/app/rest/services/deeper_service/DeepER-Lite/"
# tool_path = "/app/DeepER-Lite/"
# command = [tool_path + "{}/dBoost/dboost/dboost-stdin.py".format(TOOLS_FOLDER), "-F", ",",dataset_path] + dboost_parameters
# p = subprocess.Popen(command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
# p.communicate()
command = [tool_path+"run-2.sh"]
command.extend(params)
print(command)
# p = subprocess.Popen(command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
# p = subprocess.Popen(command, stdout=subprocess.PIPE).communicate()[0]
# p.communicate()
# print(p)
p = subprocess.Popen(command, stdout=subprocess.PIPE)
out, err = p.communicate()
# print("out\n" + out)
# print("err\n" + err)
print("create Clusters")
prediction_file = predictions_file_path.replace(".csv", "_0.csv")
createClusters(table1_path, table2_path, prediction_file, predictions_file_path)
| 7,156 |
def normalize_valign(valign, err):
"""
Split align into (valign_type, valign_amount). Raise exception err
if align doesn't match a valid alignment.
"""
if valign in (TOP, MIDDLE, BOTTOM):
return (valign, None)
elif (isinstance(valign, tuple) and len(valign) == 2 and
valign[0] == RELATIVE):
return valign
raise err("valign value %r is not one of 'top', 'middle', "
"'bottom', ('relative', percentage 0=left 100=right)"
% (valign,))
| 7,157 |
def svn_auth_open(*args):
"""
svn_auth_open(svn_auth_baton_t auth_baton, apr_array_header_t providers,
apr_pool_t pool)
"""
return apply(_core.svn_auth_open, args)
| 7,158 |
def create_repository(git):
"""Create repository"""
raise click.ClickException("Not implemented")
| 7,159 |
def quote_key(key):
"""特殊字符'/'转义处理
"""
return key.replace('/', '%2F')
| 7,160 |
def test_extras_import_mode_strange(new_archive):
"""Check a mode that probably does not make much sense but is still available
(keep original, create new, delete)"""
imported_node = import_extras(new_archive)
imported_node = modify_extras(new_archive, imported_node, mode_existing=('k', 'c', 'd'))
# Check if extras are imported correctly
assert imported_node.get_extra('a') == 1
assert imported_node.get_extra('c') == 3
with pytest.raises(AttributeError): # the extra
# 'b' should not exist, as the collided extras are deleted
imported_node.get_extra('b')
| 7,161 |
def download_knbc(target_dir: str):
"""Downloads the KNBC corpus and extracts files.
Args:
target_dir: A path to the directory to expand files.
"""
os.makedirs(target_dir, exist_ok=True)
download_file_path = os.path.join(target_dir, 'knbc.tar.bz2')
try:
urllib.request.urlretrieve(RESOURCE_URL, download_file_path)
except urllib.error.HTTPError:
print(f'\033[91mResource unavailable: {RESOURCE_URL}\033[0m')
raise
with tarfile.open(download_file_path, 'r:bz2') as t:
t.extractall(path=target_dir)
| 7,162 |
def middle(word):
"""Returns all but the first and last characters of a string."""
return word[1:-1]
| 7,163 |
def test_recordmodel(mock_program_dao):
"""Get a record model instance for each test function."""
dut = mock_program_dao.do_select_all(RAMSTKMissionRecord, _all=False)
yield dut
# Delete the device under test.
del dut
| 7,164 |
def surprise_communities(g_original, initial_membership=None, weights=None, node_sizes=None):
"""
Surprise_communities is a model where the quality function to optimize is:
.. math:: Q = m D(q \\parallel \\langle q \\rangle)
where :math:`m` is the number of edges, :math:`q = \\frac{\\sum_c m_c}{m}`, is the fraction of internal edges, :math:`\\langle q \\rangle = \\frac{\\sum_c \\binom{n_c}{2}}{\\binom{n}{2}}` is the expected fraction of internal edges, and finally
:math:`D(x \\parallel y) = x \\ln \\frac{x}{y} + (1 - x) \\ln \\frac{1 - x}{1 - y}` is the binary Kullback-Leibler divergence.
For directed graphs we can multiplying the binomials by 2, and this leaves :math:`\\langle q \\rangle` unchanged, so that we can simply use the same
formulation. For weighted graphs we can simply count the total internal weight instead of the total number of edges for :math:`q` , while :math:`\\langle q \\rangle` remains unchanged.
:param g_original: a networkx/igraph object
:param initial_membership: list of int Initial membership for the partition. If :obj:`None` then defaults to a singleton partition. Deafault None
:param weights: list of double, or edge attribute Weights of edges. Can be either an iterable or an edge attribute. Deafault None
:param node_sizes: list of int, or vertex attribute Sizes of nodes are necessary to know the size of communities in aggregate graphs. Usually this is set to 1 for all nodes, but in specific cases this could be changed. Deafault None
:return: NodeClustering object
:Example:
>>> from cdlib import algorithms
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> coms = algorithms.surprise_communities(G)
:References:
Traag, V. A., Aldecoa, R., & Delvenne, J.-C. (2015). `Detecting communities using asymptotical surprise. <https://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.022816/>`_ Physical Review E, 92(2), 022816. 10.1103/PhysRevE.92.022816
.. note:: Reference implementation: https://github.com/vtraag/leidenalg
"""
if ig is None:
raise ModuleNotFoundError("Optional dependency not satisfied: install igraph to use the selected feature.")
g = convert_graph_formats(g_original, ig.Graph)
part = leidenalg.find_partition(g, leidenalg.SurpriseVertexPartition, initial_membership=initial_membership,
weights=weights, node_sizes=node_sizes)
coms = [g.vs[x]['name'] for x in part]
return NodeClustering(coms, g_original, "Surprise", method_parameters={"initial_membership": initial_membership,
"weights": weights, "node_sizes": node_sizes})
| 7,165 |
def advisory_factory(adv_data, adv_format, logger):
"""Converts json into a list of advisory objects.
:param adv_data: A dictionary describing an advisory.
:param adv_format: The target format in ('default', 'ios')
:param logger: A logger (for now expecting to be ready to log)
:returns advisory instance according to adv_format
"""
adv_map = {} # Initial fill from shared common model key map:
for k, v in ADVISORIES_COMMONS_MAP.items():
adv_map[k] = adv_data[v]
if adv_format == constants.DEFAULT_ADVISORY_FORMAT_TOKEN:
for k, v in IPS_SIG_MAP.items():
adv_map[k] = adv_data[v]
else: # IOS advisory format targeted:
for k, v in IOS_ADD_ONS_MAP.items():
if v in adv_data:
adv_map[k] = adv_data[v]
an_adv = advisory_format_factory_map()[adv_format](**adv_map)
logger.debug(
"{} Advisory {} Created".format(adv_format, an_adv.advisory_id))
return an_adv
| 7,166 |
def _validate_int(value, min, max, type):
"""Validates a constrained integer value.
"""
try:
ivalue = int(value)
if min and max:
if ivalue < min or ivalue > max:
raise ValueError()
except ValueError:
err = f"{type} index must be an integer"
if min and max:
err += f" between {min} and {max}"
raise argparse.ArgumentTypeError(err)
return ivalue
| 7,167 |
def validate_broker(broker_definition):
# type: (list)
"""Validate broker-definition.
Set broker-list as a string for admin-conf: 'host:port,host:port'.
Keyword arguments:
broker_definition -- list containing broker. Pattern per broker: 'host:port'.
"""
broker_def_list = []
for broker in broker_definition:
broker_parts = broker.split(":")
if len(broker_parts) == 2:
validate_ipv4(broker_parts)
if len(broker_parts) > 2:
validate_ipv6(broker)
if len(broker_parts) < 2:
msg = ("Broker-Definition does not seem to be valid: %s" \
" Use following pattern per broker: host:port." \
%(broker)
)
fail_module(msg)
broker_def_list.append(broker)
final_broker_definition = ",".join(broker_def_list)
module.params['bootstrap_server'] = final_broker_definition
| 7,168 |
def get_azpl(cdec, cinc, gdec, ginc):
"""
gets azimuth and pl from specimen dec inc (cdec,cinc) and gdec,ginc (geographic) coordinates
"""
TOL = 1e-4
Xp = dir2cart([gdec, ginc, 1.])
X = dir2cart([cdec, cinc, 1.])
# find plunge first
az, pl, zdif, ang = 0., -90., 1., 360.
while zdif > TOL and pl < 180.:
znew = X[0] * np.sin(np.radians(pl)) + X[2] * np.cos(np.radians(pl))
zdif = abs(Xp[2] - znew)
pl += .01
while ang > 0.1 and az < 360.:
d, i = dogeo(cdec, cinc, az, pl)
ang = angle([gdec, ginc], [d, i])
az += .01
return az - .01, pl - .01
| 7,169 |
def read_embroidery(reader, f, settings=None, pattern=None):
"""Reads fileobject or filename with reader."""
if reader == None:
return None
if pattern == None:
pattern = EmbPattern()
if is_str(f):
text_mode = False
try:
text_mode = reader.READ_FILE_IN_TEXT_MODE
except AttributeError:
pass
if text_mode:
try:
with open(f, "r") as stream:
reader.read(stream, pattern, settings)
stream.close()
except IOError:
pass
else:
try:
with open(f, "rb") as stream:
reader.read(stream, pattern, settings)
stream.close()
except IOError:
pass
else:
reader.read(f, pattern, settings)
return pattern
| 7,170 |
def test_load_configuration():
"""
loads the configuration store from it's relevant file.
the store has not been loaded yet.
"""
try:
create_config_file('new_settings_load.ini')
config_services.load_configuration('new_settings_load')
sections = config_services.get_section_names('new_settings_load')
assert sections is not None
finally:
delete_config_file('new_settings_load.ini')
| 7,171 |
def load_stdlib_public_names(version: str) -> dict[str, frozenset[str]]:
"""Load stdlib public names data from JSON file"""
if not re.fullmatch(r"\d+\.\d+", version):
raise ValueError(f"{version} is not a valid version")
try:
json_file = Path(__file__).with_name("stdlib_public_names") / (
version + ".json"
)
json_text = json_file.read_text(encoding="utf-8")
json_obj = json.loads(json_text)
return {module: frozenset(names) for module, names in json_obj.items()}
except FileNotFoundError:
raise ValueError(
f"there is no data of stdlib public names for Python version {version}"
) from None
| 7,172 |
def deep_q_learning(sess,
env,
q_estimator,
target_estimator,
state_processor,
num_episodes,
experiment_dir,
replay_memory_size=500000,
replay_memory_init_size=50000,
update_target_estimator_every=10000,
discount_factor=0.99,
epsilon_start=1.0,
epsilon_end=0.1,
epsilon_decay_steps=500000,
batch_size=32,
record_video_every=50):
"""
Q-Learning algorithm for off-policy TD control using Function Approximation.
Finds the optimal greedy policy while following an epsilon-greedy policy.
Args:
sess: Tensorflow Session object
env: OpenAI environment
q_estimator: Estimator object used for the q values
target_estimator: Estimator object used for the targets
state_processor: A StateProcessor object
num_episodes: Number of episodes to run for
experiment_dir: Directory to save Tensorflow summaries in
replay_memory_size: Size of the replay memory
replay_memory_init_size: Number of random experiences to sampel when initializing
the reply memory.
update_target_estimator_every: Copy parameters from the Q estimator to the
target estimator every N steps
discount_factor: Gamma discount factor
epsilon_start: Chance to sample a random action when taking an action.
Epsilon is decayed over time and this is the start value
epsilon_end: The final minimum value of epsilon after decaying is done
epsilon_decay_steps: Number of steps to decay epsilon over
batch_size: Size of batches to sample from the replay memory
record_video_every: Record a video every N episodes
Returns:
An EpisodeStats object with two numpy arrays for episode_lengths and episode_rewards.
"""
Transition = namedtuple("Transition", ["state", "action", "reward", "next_state", "done"])
# The replay memory
replay_memory = []
# Make model copier object
estimator_copy = ModelParametersCopier(q_estimator, target_estimator)
# Keeps track of useful statistics
stats = plotting.EpisodeStats(
episode_lengths=np.zeros(num_episodes),
episode_rewards=np.zeros(num_episodes))
# For 'system/' summaries, usefull to check if currrent process looks healthy
current_process = psutil.Process()
# Create directories for checkpoints and summaries
checkpoint_dir = os.path.join(experiment_dir, "checkpoints")
checkpoint_path = os.path.join(checkpoint_dir, "model")
monitor_path = os.path.join(experiment_dir, "monitor")
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
if not os.path.exists(monitor_path):
os.makedirs(monitor_path)
saver = tf.train.Saver()
# Load a previous checkpoint if we find one
latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir)
if latest_checkpoint:
print("Loading model checkpoint {}...\n".format(latest_checkpoint))
saver.restore(sess, latest_checkpoint)
# Get the current time step
total_t = sess.run(tf.contrib.framework.get_global_step())
# The epsilon decay schedule
epsilons = np.linspace(epsilon_start, epsilon_end, epsilon_decay_steps)
# The policy we're following
policy = make_epsilon_greedy_policy(
q_estimator,
len(VALID_ACTIONS))
# Populate the replay memory with initial experience
print("Populating replay memory...")
state = env.reset()
state = state_processor.process(sess, state)
state = np.stack([state] * 4, axis=2)
for i in range(replay_memory_init_size):
action_probs = policy(sess, state, epsilons[min(total_t, epsilon_decay_steps-1)])
action = np.random.choice(np.arange(len(action_probs)), p=action_probs)
next_state, reward, done, _ = env.step(VALID_ACTIONS[action])
next_state = state_processor.process(sess, next_state)
next_state = np.append(state[:,:,1:], np.expand_dims(next_state, 2), axis=2)
replay_memory.append(Transition(state, action, reward, next_state, done))
if done:
state = env.reset()
state = state_processor.process(sess, state)
state = np.stack([state] * 4, axis=2)
else:
state = next_state
# Record videos
# Add env Monitor wrapper
env = Monitor(env, directory=monitor_path, video_callable=lambda count: count % record_video_every == 0, resume=True)
for i_episode in range(num_episodes):
# Save the current checkpoint
saver.save(tf.get_default_session(), checkpoint_path)
# Reset the environment
state = env.reset()
state = state_processor.process(sess, state)
state = np.stack([state] * 4, axis=2)
loss = None
# One step in the environment
for t in itertools.count():
# Epsilon for this time step
epsilon = epsilons[min(total_t, epsilon_decay_steps-1)]
# Maybe update the target estimator
if total_t % update_target_estimator_every == 0:
estimator_copy.make(sess)
print("\nCopied model parameters to target network.")
# Print out which step we're on, useful for debugging.
print("\rStep {} ({}) @ Episode {}/{}, loss: {}".format(
t, total_t, i_episode + 1, num_episodes, loss), end="")
sys.stdout.flush()
# Take a step
action_probs = policy(sess, state, epsilon)
action = np.random.choice(np.arange(len(action_probs)), p=action_probs)
next_state, reward, done, _ = env.step(VALID_ACTIONS[action])
next_state = state_processor.process(sess, next_state)
next_state = np.append(state[:,:,1:], np.expand_dims(next_state, 2), axis=2)
# If our replay memory is full, pop the first element
if len(replay_memory) == replay_memory_size:
replay_memory.pop(0)
# Save transition to replay memory
replay_memory.append(Transition(state, action, reward, next_state, done))
# Update statistics
stats.episode_rewards[i_episode] += reward
stats.episode_lengths[i_episode] = t
# Sample a minibatch from the replay memory
samples = random.sample(replay_memory, batch_size)
states_batch, action_batch, reward_batch, next_states_batch, done_batch = map(np.array, zip(*samples))
# Calculate q values and targets
q_values_next = target_estimator.predict(sess, next_states_batch)
targets_batch = reward_batch + np.invert(done_batch).astype(np.float32) * discount_factor * np.amax(q_values_next, axis=1)
# Perform gradient descent update
states_batch = np.array(states_batch)
loss = q_estimator.update(sess, states_batch, action_batch, targets_batch)
if done:
break
state = next_state
total_t += 1
# Add summaries to tensorboard
episode_summary = tf.Summary()
episode_summary.value.add(simple_value=epsilon, tag="episode/epsilon")
episode_summary.value.add(simple_value=stats.episode_rewards[i_episode], tag="episode/reward")
episode_summary.value.add(simple_value=stats.episode_lengths[i_episode], tag="episode/length")
episode_summary.value.add(simple_value=current_process.cpu_percent(), tag="system/cpu_usage_percent")
episode_summary.value.add(simple_value=current_process.memory_percent(memtype="vms"), tag="system/v_memeory_usage_percent")
q_estimator.summary_writer.add_summary(episode_summary, i_episode)
q_estimator.summary_writer.flush()
yield total_t, plotting.EpisodeStats(
episode_lengths=stats.episode_lengths[:i_episode+1],
episode_rewards=stats.episode_rewards[:i_episode+1])
return stats
| 7,173 |
def obs_cb(store):
"""
callback for observe thread.
"""
if not store:
log.error("obs_cb is broken")
return
log.info("obs_cb: clear obs_key_cas %s" % store.obs_key_cas)
store.obs_key_cas.clear()
| 7,174 |
def mask_inside_range(cube, minimum, maximum):
"""
Mask inside a specific threshold range.
Takes a MINIMUM and a MAXIMUM value for the range, and masks off anything
that's between the two in the cube data.
"""
cube.data = np.ma.masked_inside(cube.data, minimum, maximum)
return cube
| 7,175 |
def s3_client() -> client:
"""
Returns a boto3 s3 client - configured to point at a specfic endpoint url if provided
"""
if AWS_RESOURCES_ENDPOINT:
return client("s3", endpoint_url=AWS_RESOURCES_ENDPOINT)
return client("s3")
| 7,176 |
def ts_ac_plot(ts_arr, t_d, dt, p=2):
"""
Plot autocorrelations, mean += std dev at each lag over a list of time series arrays.
Plot in reference to scintillation timescale and time resolution, up to lag p.
"""
ac_dict = {'lag': [], 'ac': [], 'type': []}
p = min(p+1, len(ts_arr[0])) - 1
for i in np.arange(0, p+1):
ac_dict['lag'].append(i)
ac_dict['ac'].append(stg.func_utils.gaussian(i,
0,
t_d / dt / factors.hwem_m))
ac_dict['type'].append('target')
j = 0
for ts in ts_arr:
ac = autocorr(ts)
if j==0:
print(ac.shape)
j=1
for i in range(0, p+1):
ac_dict['lag'].append(i)
ac_dict['ac'].append(ac[i])
ac_dict['type'].append('sim')
data = pd.DataFrame(ac_dict)
# sns.catplot(data=pd.DataFrame(ac_dict), x='lag', y='ac', kind='box',hue='type')
ax = sns.lineplot(data=data,
x='lag',
y='ac',
style='type',
hue='type',
markers=True,
dashes=False,
ci='sd')
# ax.set_xticks(np.arange(0, p+1))
ax.grid()
plt.show()
| 7,177 |
def tokenize_with_new_mask(orig_text, max_length, tokenizer, orig_labels, orig_re_labels, label_map, re_label_map):
"""
tokenize a array of raw text and generate corresponding
attention labels array and attention masks array
"""
pad_token_label_id = -100
simple_tokenize_results = [list(tt) for tt in zip(
*[simple_tokenize(orig_text[i], tokenizer, orig_labels[i], orig_re_labels[i], label_map, re_label_map,
max_length) for i in
range(len(orig_text))])]
bert_tokens, label_ids, re_label_ids = simple_tokenize_results[0], simple_tokenize_results[1], \
simple_tokenize_results[2]
input_ids = [tokenizer.convert_tokens_to_ids(x) for x in bert_tokens]
input_ids = pad_sequences(input_ids, maxlen=max_length, dtype="long", truncating="post", padding="post")
label_ids = pad_sequences(label_ids, maxlen=max_length, dtype="long", truncating="post", padding="post",
value=pad_token_label_id)
re_label_ids = pad_sequences(re_label_ids, maxlen=max_length, dtype="long", truncating="post", padding="post",
value=pad_token_label_id)
attention_masks = []
for seq in input_ids:
seq_mask = [float(i > 0) for i in seq]
attention_masks.append(seq_mask)
attention_masks = np.array(attention_masks)
return input_ids, attention_masks, label_ids, re_label_ids
| 7,178 |
def zonal_stats_from_raster(vector, raster, bands=None, all_touched=False, custom=None):
"""
Compute zonal statistics for each input feature across all bands of an input
raster. God help ye who supply large non-block encoded rasters or large
polygons...
By default min, max, mean, standard deviation and sum are computed but the
user can also create their own functions to compute custom metrics across
the intersecting area for every feature and every band. Functions must
accept a 2D masked array extracted from a single band. Should probably
be changed to allow the user to compute statistics across all bands.
Use `custom={'my_metric': my_metric_func}` to call `my_metric_func` on the
intersecting pixels. A key named `my_metric` will be added alongside `min`,
`max`, etc. Metrics can also be disabled by doing `custom={'min': None}`
to turn off the call to `min`. The `min` key will still be included in the
output but will have a value of `None`.
While this function will work with any geometry type the input is intended
to be polygons. The goal of this function is to be able to take large
rasters and a large number of not too giant polygons and be pretty confident
that nothing is going to break. There are better methods for collecting
statistics if the goal is speed or by optimizing for each datatype. Point
layers will work but are not as efficient and should be used with rasterio's
`sample()` method, and an initial pass to index points against the raster's
blocks.
Further optimization could be performed to limit raster I/O for really
really large numbers of overlapping polygons but that is outside the
intended scope.
In order to handle raster larger than available memory and vector datasets
containing a large number of features, the minimum bounding box for each
feature's geometry is computed and all intersecting raster windows are read.
The inverse of the geometry is burned into this subset's mask yielding only
the values that intersect the feature. Metrics are then computed against
this masked array.
Example output:
The outer keys are feature ID's
{
'0': {
'bands': {
1: {
'max': 244,
'mean': 97.771298771710065,
'min': 15,
'std': 44.252917708519028,
'sum': 15689067
}
},
},
'1': {
'bands': {
1: {
'max': 240,
'mean': 102.17252754327959,
'min': 14,
'std': 43.650764099201055,
'sum': 26977532
}
},
}
}
Parameters
----------
vector : <fiona feature collection>
Vector datasource.
raster : <rasterio RasterReader>
Raster datasource.
window_band : int, optional
Specify which band should supply the read windows are extracted from.
Ideally the windows are identical across all bands.
custom : dict or None,
Supply custom functions as `{'name': func}`.
bands : int or list or None, optional
Bands to compute stats against. Default is all.
Returns
-------
dict
See 'Example output' above.
"""
if bands is None:
bands = list(range(1, raster.count + 1))
elif isinstance(bands, int):
bands = [bands]
else:
bands = sorted(bands)
metrics = {
'min': lambda x: x.min(),
'max': lambda x: x.max(),
'mean': lambda x: x.mean(),
'std': lambda x: x.std(),
'sum': lambda x: x.sum()
}
if custom is not None:
metrics.update(**custom)
# Make sure the user gave all callable objects or None
for name, func in metrics.items():
if func is not None and not hasattr(func, '__call__'):
raise click.ClickException(
"Custom function `%s' is not callable: %s" % (name, func))
r_x_min, r_y_min, r_x_max, r_y_max = raster.bounds
feature_stats = {}
for feature in vector:
"""
rasterize(
shapes,
out_shape=None,
fill=0,
out=None,
output=None,
transform=Affine(1.0, 0.0, 0.0, 0.0, 1.0, 0.0),
all_touched=False,
default_value=1,
dtype=None
)
"""
stats = {'bands': {}}
reproj_geom = asShape(transform_geom(
vector.crs, raster.crs, feature['geometry'], antimeridian_cutting=True))
x_min, y_min, x_max, y_max = reproj_geom.bounds
if (r_x_min <= x_min <= x_max <= r_x_max) and (r_y_min <= y_min <= y_max <= r_y_max):
stats['contained'] = True
else:
stats['contained'] = False
col_min, row_max = ~raster.affine * (x_min, y_min)
col_max, row_min = ~raster.affine * (x_max, y_max)
window = ((row_min, row_max), (col_min, col_max))
rasterized = rasterize(
shapes=[reproj_geom],
out_shape=(row_max - row_min, col_max - col_min),
fill=1,
transform=raster.window_transform(window),
all_touched=all_touched,
default_value=0,
dtype=rio.ubyte
).astype(np.bool)
for bidx in bands:
stats['bands'][bidx] = {}
data = raster.read(indexes=bidx, window=window, boundless=True, masked=True)
# This should be a masked array, but a bug requires us to build our own:
# https://github.com/mapbox/rasterio/issues/338
if not isinstance(data, np.ma.MaskedArray):
data = np.ma.array(data, mask=data == raster.nodata)
data.mask += rasterized
for name, func in metrics.items():
if func is not None:
stats['bands'][bidx][name] = func(data)
feature_stats[feature['id']] = stats
return feature_stats
| 7,179 |
async def test_flow_all_discovered_bridges_exist(hass, aioclient_mock):
"""Test config flow discovers only already configured bridges."""
aioclient_mock.get(const.API_NUPNP, json=[
{'internalipaddress': '1.2.3.4', 'id': 'bla'}
])
MockConfigEntry(domain='hue', data={
'host': '1.2.3.4'
}).add_to_hass(hass)
flow = config_flow.HueFlowHandler()
flow.hass = hass
result = await flow.async_step_init()
assert result['type'] == 'abort'
| 7,180 |
def plot_rna(data_merged, id_cell, framesize=(7, 7), path_output=None,
ext="png"):
"""Plot cytoplasm border and RNA spots.
Parameters
----------
data_merged : pandas.DataFrame
Dataframe with the coordinate of the cell and those of the RNA.
id_cell : int
ID of the cell to plot.
framesize : tuple
Size of the frame used to plot with 'plt.figure(figsize=framesize)'.
path_output : str
Path to save the image (without extension).
ext : str or List[str]
Extension used to save the plot. If it is a list of strings, the plot
will be saved several times.
Returns
-------
"""
# TODO Sanity check of the dataframe
# get cloud points
cyto = data_merged.loc[id_cell, "pos_cell"]
cyto = np.array(cyto)
rna = data_merged.loc[id_cell, "RNA_pos"]
rna = np.array(rna)
# plot
plt.figure(figsize=framesize)
plt.plot(cyto[:, 1], cyto[:, 0], c="black", linewidth=2)
plt.scatter(rna[:, 1], rna[:, 0], c="firebrick", s=50, marker="x")
plt.title("Cell id: {}".format(id_cell), fontweight="bold", fontsize=15)
plt.tight_layout()
save_plot(path_output, ext)
plt.show()
return
| 7,181 |
def RMSE(stf_mat, stf_mat_max):
"""error defined as RMSE"""
size = stf_mat.shape
err = np.power(np.sum(np.power(stf_mat - stf_mat_max, 2.0))/(size[0]*size[1]), 0.5)
return err
| 7,182 |
def update_efo():
"""Update experimental factor ontology."""
url = 'https://www.ebi.ac.uk/efo/efo.obo'
OboClient.update_resource(path, url, 'efo', remove_prefix=True,
allowed_external_ns={'BFO'})
| 7,183 |
def get_read_only_permission_codename(model: str) -> str:
"""
Create read only permission code name.
:param model: model name
:type model: str
:return: read only permission code name
:rtype: str
"""
return f"{settings.READ_ONLY_ADMIN_PERMISSION_PREFIX}_{model}"
| 7,184 |
def hours_to_minutes( hours: str ) -> int:
"""Converts hours to minutes"""
return int(hours)*60
| 7,185 |
def RenameNotes(windowID):
"""
Rename selected notetrack.
"""
slotIndex = cmds.optionMenu(OBJECT_NAMES[windowID][0]+"_SlotDropDown", query=True, select=True)
currentIndex = cmds.textScrollList(OBJECT_NAMES[windowID][0]+"_NoteList", query=True, selectIndexedItem=True)
if currentIndex != None and len(currentIndex) > 0 and currentIndex[0] >= 1:
if cmds.promptDialog(title="Rename NoteTrack in slot", message="Enter new notetrack name:\t\t ") != "Confirm":
return
userInput = cmds.promptDialog(query=True, text=True)
noteName = "".join([c for c in userInput if c.isalnum() or c=="_"]).replace("sndnt", "sndnt#").replace("rmbnt", "rmbnt#") # Remove all non-alphanumeric characters
if noteName == "":
MessageBox("Invalid note name")
return
currentIndex = currentIndex[0]
noteList = cmds.getAttr(OBJECT_NAMES[windowID][2]+(".notetracks[%i]" % slotIndex)) or ""
notes = noteList.split(",")
noteInfo = notes[currentIndex-1].split(":")
note = int(noteInfo[1])
NoteTrack = userInput
# REMOVE NOTE
cmds.textScrollList(OBJECT_NAMES[windowID][0]+"_NoteList", edit=True, removeIndexedItem=currentIndex)
noteList = cmds.getAttr(OBJECT_NAMES[windowID][2]+(".notetracks[%i]" % slotIndex)) or ""
notes = noteList.split(",")
del notes[currentIndex-1]
noteList = ",".join(notes)
cmds.setAttr(OBJECT_NAMES[windowID][2]+(".notetracks[%i]" % slotIndex), noteList, type='string')
# REMOVE NOTE
noteList = cmds.getAttr(OBJECT_NAMES[windowID][2]+(".notetracks[%i]" % slotIndex)) or ""
noteList += "%s:%i," % (NoteTrack, note) # Add Notes to Aidan's list.
cmds.setAttr(OBJECT_NAMES[windowID][2]+(".notetracks[%i]" % slotIndex), noteList, type='string')
cmds.textScrollList(OBJECT_NAMES[windowID][0]+"_NoteList", edit=True, append=NoteTrack, selectIndexedItem=currentIndex)
SelectNote(windowID)
| 7,186 |
def core_profiles_summary(ods, time_index=None, fig=None, combine_dens_temps=True, show_thermal_fast_breakdown=True, show_total_density=True, **kw):
"""
Plot densities and temperature profiles for electrons and all ion species
as per `ods['core_profiles']['profiles_1d'][time_index]`
:param ods: input ods
:param time_index: time slice to plot
:param fig: figure to plot in (a new figure is generated if `fig is None`)
:param combine_dens_temps: combine species plot of density and temperatures
:param show_thermal_fast_breakdown: bool
Show thermal and fast components of density in addition to total if available
:param show_total_density: bool
Show total thermal+fast in addition to thermal/fast breakdown if available
:param kw: arguments passed to matplotlib plot statements
:return: figure handler
"""
from matplotlib import pyplot
if fig is None:
fig = pyplot.figure()
if time_index is None:
time_index = numpy.arange(len(ods['core_profiles'].time()))
if isinstance(time_index, (list, numpy.ndarray)):
time = ods['core_profiles'].time()
if len(time) == 1:
time_index = time_index[0]
else:
return ods_time_plot(core_profiles_summary, time, ods, time_index, fig=fig, ax={}, combine_dens_temps=combine_dens_temps, show_thermal_fast_breakdown=show_thermal_fast_breakdown, show_total_density=show_total_density, **kw)
axs = kw.pop('ax', {})
prof1d = ods['core_profiles']['profiles_1d'][time_index]
x = prof1d['grid.rho_tor_norm']
what = ['electrons'] + ['ion[%d]' % k for k in range(len(prof1d['ion']))]
names = ['Electrons'] + [prof1d['ion[%d].label' % k] + ' ion' for k in range(len(prof1d['ion']))]
r = len(prof1d['ion']) + 1
ax = ax0 = ax1 = None
for k, item in enumerate(what):
# densities (thermal and fast)
for therm_fast in ['', '_thermal', '_fast']:
if (not show_thermal_fast_breakdown) and len(therm_fast):
continue # Skip _thermal and _fast because the flag turned these details off
if (not show_total_density) and (len(therm_fast) == 0):
continue # Skip total thermal+fast because the flag turned it off
therm_fast_name = {
'': ' (thermal+fast)',
'_thermal': ' (thermal)' if show_total_density else '',
'_fast': ' (fast)',
}[therm_fast]
density = item + '.density' + therm_fast
# generate axes
if combine_dens_temps:
if ax0 is None:
ax = ax0 = cached_add_subplot(fig, axs, 1, 2, 1)
else:
ax = ax0 = cached_add_subplot(fig, axs, r, 2, (2 * k) + 1, sharex=ax, sharey=ax0)
# plot if data is present
if item + '.density' + therm_fast in prof1d:
uband(x, prof1d[density], label=names[k] + therm_fast_name, ax=ax0, **kw)
if k == len(prof1d['ion']):
ax0.set_xlabel('$\\rho$')
if k == 0:
ax0.set_title('Density [m$^{-3}$]')
if not combine_dens_temps:
ax0.set_ylabel(names[k])
# add plot of measurements
if density + '_fit.measured' in prof1d and density + '_fit.rho_tor_norm' in prof1d:
uerrorbar(prof1d[density + '_fit.rho_tor_norm'], prof1d[density + '_fit.measured'], ax=ax)
# temperatures
if combine_dens_temps:
if ax1 is None:
ax = ax1 = cached_add_subplot(fig, axs, 1, 2, 2, sharex=ax)
else:
ax = ax1 = cached_add_subplot(fig, axs, r, 2, (2 * k) + 2, sharex=ax, sharey=ax1)
# plot if data is present
if item + '.temperature' in prof1d:
uband(x, prof1d[item + '.temperature'], label=names[k], ax=ax1, **kw)
if k == len(prof1d['ion']):
ax1.set_xlabel('$\\rho$')
if k == 0:
ax1.set_title('Temperature [eV]')
# add plot of measurements
if item + '.temperature_fit.measured' in prof1d and item + '.temperature_fit.rho_tor_norm' in prof1d:
uerrorbar(prof1d[item + '.temperature_fit.rho_tor_norm'], prof1d[item + '.temperature_fit.measured'], ax=ax)
ax.set_xlim([0, 1])
if ax0 is not None:
ax0.set_ylim([0, ax0.get_ylim()[1]])
if ax1 is not None:
ax1.set_ylim([0, ax1.get_ylim()[1]])
return axs
| 7,187 |
def migrate_source_attribute(attr, to_this, target_file, regex):
"""Updates __magic__ attributes in the source file"""
change_this = re.compile(regex, re.S)
new_file = []
found = False
with open(target_file, "r") as fp:
lines = fp.readlines()
for line in lines:
if line.startswith(attr):
found = True
line = re.sub(change_this, to_this, line)
new_file.append(line)
if found:
with open(target_file, "w") as fp:
fp.writelines(new_file)
| 7,188 |
def sir_model():
"""
this returns a density dependent population process of an SIR model
"""
ddpp = rmf.DDPP()
ddpp.add_transition([-1, 1, 0], lambda x: x[0]+2*x[0]*x[1])
ddpp.add_transition([0, -1, +1], lambda x: x[1])
ddpp.add_transition([1, 0, -1], lambda x: 3*x[2]**3)
return ddpp
| 7,189 |
def read_cmupd(strip_stress=False, apostrophe="'"):
"""Read the CMU-Pronunciation Dictionary
Parameters
----------
strip_stress : bool
Remove stress from pronunciations (default ``False``).
apostrophe : str | bool
Character to replace apostrophe with in keys (e.g., "COULDN'T"; default
is to keep apostrophe; set to ``False`` to split entries with
apostrophes into pre- and post-apostrophy components).
Returns
-------
cmu : dict {str: list of str}
Dictionary mapping words (all caps) to lists of pronunciations.
"""
path = download('http://svn.code.sf.net/p/cmusphinx/code/trunk/cmudict/cmudict-0.7b', 'cmudict-0.7b.txt')
out = defaultdict(set)
for line in path.open('rb'):
m = re.match(rb"^([\w']+)(?:\(\d\))? ([\w ]+)$", line)
if m:
k, v = m.groups()
out[k.decode()].add(v.decode())
# remove apostrophes from keys
if apostrophe != "'":
keys = [key for key in out if "'" in key]
if apostrophe is False:
for key in keys:
values = out.pop(key)
# hard-coded exceptions
if key in IGNORE:
continue
elif key.count("'") > 1:
continue
elif key in PUNC_WORD_SUB:
out[PUNC_WORD_SUB[key]].update(values)
continue
a_index = key.index("'")
# word-initial or -final apostrophy
if a_index == 0 or a_index == len(key) - 1:
if a_index == 0:
key_a = key[1:]
else:
key_a = key[:-1]
out[key_a].update(values)
continue
# word-medial apostrophy
key_a, key_b = key.split("'")
for value in values:
if key_b in POST_FIXES:
if key.endswith("N'T") and value.endswith("N"):
value_a = value
value_b = None
else:
value_a, value_b = value.rsplit(' ', 1)
assert value_b in POST_FIXES[key_b]
elif key_a in PRE_FIXES:
value_a, value_b = value.split(' ', 1)
assert value_a in PRE_FIXES[key_a]
else:
raise RuntimeError(" %r," % key)
for k, v in ((key_a, value_a), (key_b, value_b)):
if v is not None:
out[k].add(v)
elif isinstance(apostrophe, str):
for key in keys:
out[key.replace("'", apostrophe)].update(out.pop(key))
else:
raise TypeError(f"apostrophe={apostrophe!r}")
# remove stress from pronunciations
if strip_stress:
out = {word: {' '.join(STRIP_STRESS_MAP[p] for p in pronunciation.split())
for pronunciation in pronunciations}
for word, pronunciations in out.items()}
return out
| 7,190 |
def validate(loader, model, logger_test, samples_idx_list, evals_dir):
"""
Evaluate the model on dataset of the loader
"""
softmax = torch.nn.Softmax(dim=1)
model.eval() # put model to evaluation mode
confusion_mtrx_df_val_dmg = pd.DataFrame(columns=['img_idx', 'class', 'true_pos', 'true_neg', 'false_pos', 'false_neg', 'total'])
confusion_mtrx_df_val_bld = pd.DataFrame(columns=['img_idx', 'class', 'true_pos', 'true_neg', 'false_pos', 'false_neg', 'total'])
confusion_mtrx_df_val_dmg_building_level = pd.DataFrame(columns=['img_idx', 'class', 'true_pos', 'true_neg', 'false_pos', 'false_neg', 'total'])
with torch.no_grad():
for img_idx, data in enumerate(tqdm(loader)): # assume batch size is 1
c = data['pre_image'].size()[0]
h = data['pre_image'].size()[1]
w = data['pre_image'].size()[2]
x_pre = data['pre_image'].reshape(1, c, h, w).to(device=device)
x_post = data['post_image'].reshape(1, c, h, w).to(device=device)
y_seg = data['building_mask'].to(device=device)
y_cls = data['damage_mask'].to(device=device)
scores = model(x_pre, x_post)
# compute accuracy for segmenation model on pre_ images
preds_seg_pre = torch.argmax(softmax(scores[0]), dim=1)
# modify damage prediction based on UNet arm predictions
for c in range(0,scores[2].shape[1]):
scores[2][:,c,:,:] = torch.mul(scores[2][:,c,:,:], preds_seg_pre)
preds_cls = torch.argmax(softmax(scores[2]), dim=1)
path_pred_mask = data['preds_img_dir'] +'.png'
logging.info('save png image for damage level predictions: ' + path_pred_mask)
im = Image.fromarray(preds_cls.cpu().numpy()[0,:,:].astype(np.uint8))
if not os.path.exists(os.path.split(data['preds_img_dir'])[0]):
os.makedirs(os.path.split(data['preds_img_dir'])[0])
im.save(path_pred_mask)
logging.info(f'saved image size: {preds_cls.size()}')
# compute building-level confusion metrics
pred_polygons_and_class, label_polygons_and_class = get_label_and_pred_polygons_for_tile_mask_input(y_cls.cpu().numpy().astype(np.uint8), path_pred_mask)
results, list_preds, list_labels = _evaluate_tile(pred_polygons_and_class, label_polygons_and_class, allowed_classes, 0.1)
total_objects = results[-1]
for label_class in results:
if label_class != -1:
true_pos_cls = results[label_class]['tp'] if 'tp' in results[label_class].keys() else 0
true_neg_cls = results[label_class]['tn'] if 'tn' in results[label_class].keys() else 0
false_pos_cls = results[label_class]['fp'] if 'fp' in results[label_class].keys() else 0
false_neg_cls = results[label_class]['fn'] if 'fn' in results[label_class].keys() else 0
confusion_mtrx_df_val_dmg_building_level = confusion_mtrx_df_val_dmg_building_level.append({'img_idx':img_idx, 'class':label_class, 'true_pos':true_pos_cls, 'true_neg':true_neg_cls, 'false_pos':false_pos_cls, 'false_neg':false_neg_cls, 'total':total_objects}, ignore_index=True)
# compute comprehensive pixel-level comfusion metrics
confusion_mtrx_df_val_dmg = compute_confusion_mtrx(confusion_mtrx_df_val_dmg, img_idx, labels_set_dmg, preds_cls, y_cls, y_seg)
confusion_mtrx_df_val_bld = compute_confusion_mtrx(confusion_mtrx_df_val_bld, img_idx, labels_set_bld, preds_seg_pre, y_seg, [])
# add viz results to logger
if img_idx in samples_idx_list:
prepare_for_vis(img_idx, logger_test, model, device, softmax)
return confusion_mtrx_df_val_dmg, confusion_mtrx_df_val_bld, confusion_mtrx_df_val_dmg_building_level
| 7,191 |
def my_eval(inputstring, seq, xvalues=None, yvalues=None):
"""
Evaluate a string as an expression to make a data set.
This routine attempts to evaluate a string as an expression.
It uses the python "eval" function. To guard against bad inputs,
only numpy, math and builtin functions can be used in the
transformation.
Parameters
----------
inputstring a string that defines the new data set
seq : a numpy vector of floating point or integer values,
nominally a sequence of values when the data creation
option is used, which could be another numpy array in
the transformation case
xvalues : optionally, the x data values in a set, a numpy
floating point vector
yvalues : optionally, the y data values in a set, a numpy
floating point vector
Returns
-------
values : a new numpy vector of floating point values calculated
from the input numpy arrays and the string defining the
function; or None if there is an issue
Note: the three numpy arrays "seq", "xvalues", and "yvalues" need
to be one dimensional and of the same lengths
The python "eval" command is used here. To avoid issues with this
being used to run arbitrary commands, only the __builtin__, math,
and numpy packages are available to the eval command upon execution.
The assumption is that math and numpy have been imported in the main
code (and that numpy is not abbreviated as "np" at import).
"""
sh1 = seq.shape
try:
sh2 = xvalues.shape
except AttributeError:
sh2 = seq.shape
try:
sh3 = yvalues.shape
except AttributeError:
sh3 = seq.shape
if (sh1 != sh2) or (sh2 != sh3) or (len(sh1) > 1):
return None
# check the input string for command elements that could cause issues
if ('import' in inputstring) or ('os.' in inputstring) or \
('eval' in inputstring) or ('exec' in inputstring) or \
('shutil' in inputstring):
return None
str1 = inputstring.replace('np.', 'numpy.')
try:
# get the global environment, extract the three items allowed here
global1 = globals()
global2 = {}
global2['__builtins__'] = global1['__builtins__']
global2['math'] = global1['math']
global2['numpy'] = global1['numpy']
# define local variables, s, x, and y; only these will be
# available in eval if they are actually defined in the call....
local1 = {}
s = numpy.copy(seq)
local1['seq'] = s
if xvalues is not None:
x = numpy.copy(xvalues)
local1['x'] = x
if yvalues is not None:
y = numpy.copy(yvalues)
local1['y'] = y
values = eval(str1, global2, local1)
return values
except Exception:
return None
| 7,192 |
def readlines(filepath):
"""
read lines from a textfile
:param filepath:
:return: list[line]
"""
with open(filepath, 'rt') as f:
lines = f.readlines()
lines = map(str.strip, lines)
lines = [l for l in lines if l]
return lines
| 7,193 |
def process_images():
""" TODO """
return downloader(request.args.get('img_url'))
| 7,194 |
def batch_lambda_handler(event, lambda_context):
"""Entry point for the batch Lambda function.
Args:
event: [dict] Invocation event. If 'S3ContinuationToken' is one of the keys, the S3 bucket
will be enumerated beginning with that continuation token.
lambda_context: [LambdaContext] object with .get_remaining_time_in_millis().
Returns:
[int] The number of enumerated S3 keys.
"""
LOGGER.info('Invoked with event %s', json.dumps(event))
s3_enumerator = S3BucketEnumerator(
os.environ['S3_BUCKET_NAME'], event.get('S3ContinuationToken'))
sqs_batcher = SQSBatcher(os.environ['SQS_QUEUE_URL'], int(os.environ['OBJECTS_PER_MESSAGE']))
# As long as there are at least 10 seconds remaining, enumerate S3 objects into SQS.
num_keys = 0
while lambda_context.get_remaining_time_in_millis() > 10000 and not s3_enumerator.finished:
keys = s3_enumerator.next_page()
num_keys += len(keys)
for key in keys:
sqs_batcher.add_key(key)
# Send the last batch of keys.
sqs_batcher.finalize()
# If the enumerator has not yet finished but we're low on time, invoke this function again.
if not s3_enumerator.finished:
LOGGER.info('Invoking another batcher')
LAMBDA_CLIENT.invoke(
FunctionName=os.environ['BATCH_LAMBDA_NAME'],
InvocationType='Event', # Asynchronous invocation.
Payload=json.dumps({'S3ContinuationToken': s3_enumerator.continuation_token}),
Qualifier=os.environ['BATCH_LAMBDA_QUALIFIER']
)
return num_keys
| 7,195 |
def get_gpu_memory_map():
"""Get the current gpu usage.
Returns
-------
usage: dict
Keys are device ids as integers.
Values are memory usage as integers in MB.
"""
result = subprocess.check_output(
[
'nvidia-smi', '--query-gpu=memory.free',
'--format=csv,nounits,noheader'
])
# Convert lines into a dictionary
gpu_memory = [int(x) for x in result.strip().split(b'\n')]
gpu_memory_map = dict(zip(range(len(gpu_memory)), gpu_memory))
return gpu_memory_map
| 7,196 |
def n_tuple(n):
"""Factory for n-tuples."""
def custom_tuple(data):
if len(data) != n:
raise TypeError(
f'{n}-tuple requires exactly {n} items '
f'({len(data)} received).'
)
return tuple(data)
return custom_tuple
| 7,197 |
def test_silhouette():
"""
Testing silhouette score, using make_clusters
and corresponding labels to test error
bounds.
"""
clusters, labels = make_clusters(scale=0.2, n=500)
# start
ss = Silhouette()
# get scores for each clabel in clusters
get_scores =ss.score(clusters, labels)
# check bounds
assert get_scores.all() >= -1 and get_scores.all() <= 1
| 7,198 |
def novel_normalization(data, base):
"""Initial data preparation of CLASSIX."""
if base == "norm-mean":
# self._mu, self._std = data.mean(axis=0), data.std()
_mu = data.mean(axis=0)
ndata = data - _mu
_scl = ndata.std()
ndata = ndata / _scl
elif base == "pca":
_mu = data.mean(axis=0)
ndata = data - _mu # mean center
rds = norm(ndata, axis=1) # distance of each data point from 0
_scl = np.median(rds) # 50% of data points are within that radius
ndata = ndata / _scl # now 50% of data are in unit ball
elif base == "norm-orthant":
# self._mu, self._std = data.min(axis=0), data.std()
_mu = data.min(axis=0)
ndata = data - _mu
_scl = ndata.std()
ndata = ndata / _scl
else:
# self._mu, self._std = data.mean(axis=0), data.std(axis=0) # z-score
_mu, _scl = 0, 1 # no normalization
ndata = (data - _mu) / _scl
return ndata, (_mu, _scl)
| 7,199 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.