content
stringlengths
22
815k
id
int64
0
4.91M
def test_ExtremelyRandomizedTreesRegressionSklearn_5(): """Non-trivial test case, including standard deviation.""" n, m, xlen = 150, 600, 10 train_inputs = np.reshape(np.linspace(-xlen / 2, +xlen / 2, n), (n, 1)) train_labels = (train_inputs * 2 + 1).flatten() train_data = smlb.TabularData(data=train_inputs, labels=train_labels) train_data = smlb.LabelNoise(noise=smlb.NormalNoise(rng=0)).fit(train_data).apply(train_data) valid_inputs = np.reshape(np.linspace(-xlen / 2, +xlen / 2, m), (m, 1)) valid_labels = (valid_inputs * 2 + 1).flatten() valid_data = smlb.TabularData(data=valid_inputs, labels=valid_labels) valid_data = smlb.LabelNoise(noise=smlb.NormalNoise(rng=1)).fit(valid_data).apply(valid_data) # 12 trees meets minimal requirements for jackknife estimates rf = ExtremelyRandomizedTreesRegressionSklearn(random_state=0, uncertainties="naive") preds = rf.fit(train_data).apply(valid_data) mae = smlb.MeanAbsoluteError().evaluate(valid_data.labels(), preds) # for perfect predictions, expect MAE of 1.12943 # (absolute difference between draws from two unit normal distributions) assert np.allclose(mae, 1.13, atol=0.25) assert np.allclose(np.mean(preds.stddev), 1, atol=0.25)
6,900
def confirm_channel(bitcoind, n1, n2): """ Confirm that a channel is open between two nodes """ assert n1.id() in [p.pub_key for p in n2.list_peers()] assert n2.id() in [p.pub_key for p in n1.list_peers()] for i in range(10): time.sleep(0.5) if n1.check_channel(n2) and n2.check_channel(n1): return True addr = bitcoind.rpc.getnewaddress("", "bech32") bhash = bitcoind.rpc.generatetoaddress(1, addr)[0] n1.block_sync(bhash) n2.block_sync(bhash) # Last ditch attempt return n1.check_channel(n2) and n2.check_channel(n1)
6,901
def has_permissions(**perms): """A :func:`check` that is added that checks if the member has any of the permissions necessary. The permissions passed in must be exactly like the properties shown under :class:`discord.Permissions`. Parameters ------------ perms An argument list of permissions to check for. Example --------- .. code-block:: python @bot.command() @commands.has_permissions(manage_messages=True) async def test(): await bot.say('You can manage messages.') """ def predicate(ctx): msg = ctx.message ch = msg.channel permissions = ch.permissions_for(msg.author) return all(getattr(permissions, perm, None) == value for perm, value in perms.items()) return check(predicate)
6,902
def reload_configs(): """ Reloads configuration parameters in stackstorm database from configuration files. """ os.system("st2ctl reload --register-configs")
6,903
def extend_params(params, more_params): """Extends dictionary with new values. Args: params: A dictionary more_params: A dictionary Returns: A dictionary which combines keys from both dictionaries. Raises: ValueError: if dicts have the same key. """ for yak in more_params: if yak in params: raise ValueError('Key "%s" is already in dict' % yak) params.update(more_params) return params
6,904
def __compute_libdeps(node): """ Computes the direct library dependencies for a given SCons library node. the attribute that it uses is populated by the Libdeps.py script """ if getattr(node.attributes, 'libdeps_exploring', False): raise DependencyCycleError(node) env = node.get_env() deps = set() node.attributes.libdeps_exploring = True try: try: for child in env.Flatten(getattr(node.attributes, 'libdeps_direct', [])): if not child: continue deps.add(child) except DependencyCycleError as e: if len(e.cycle_nodes) == 1 or e.cycle_nodes[0] != e.cycle_nodes[ -1]: e.cycle_nodes.insert(0, node) logging.error("Found a dependency cycle" + str(e.cycle_nodes)) finally: node.attributes.libdeps_exploring = False return deps
6,905
def image2pptx(argv=sys.argv[1:]): """Paste images to PowerPoint. Args: --image-path (Path, optional) : Paths to image files. Defaults to ``()``. --image-dir (Path, optional) : Path to the directory where images are. Defaults to ``None``. -W/--slide-width (int, optional) : The width of PowerPoint slide. Defaults to ``9144000``. -H/--slide-height (int, optional) : The height of PowerPoint slide. Defaults to ``6858000``. --slide-size (str, optional) : The size of PowerPoint slide. Please chose from ``["4:3", "16:9"]``. Defaults to ``"4:3"``. -O/--outpptx (Path, optional) : The path to the created PowerPoint. Defaults to ``Path("test.pptx")``. Note: When you run from the command line, execute as follows:: $ image2pptx --image-path /path/to/image1.png \\ /path/to/image2.jpg \\ /path/to/image3.jpeg \\ --image_dir /path/to/image_dir \\ --slide-size "16:9" \\ --outpptx "image.pptx" """ parser = argparse.ArgumentParser(prog="image2pptx", description="Paste images to PowerPoint", add_help=True) parser.add_argument("--image-path", type=Path, nargs="*", help="Paths to image files.") parser.add_argument("--image-dir", type=Path, help="Path to the directory where images are.") parser.add_argument("-W", "--slide-width", type=int, default=9144000, help="The width of PowerPoint slide.") parser.add_argument("-H", "--slide-height", type=int, default=6858000, help="The height of PowerPoint slide.") parser.add_argument("--slide-size", type=str, default=None, choices=["4:3", "16:9"], help="The size of PowerPoint slide.") parser.add_argument("-O", "--outpptx", type=Path, default=Path("test.pptx"), help="The path to the created PowerPoint.") args = parser.parse_args() image_paths = list(args.image_path) if args.image_dir is not None: image_paths += sorted( [ path for path in args.image_dir.rglob("*") if path.suffix.lower() in IMAGE_EXTENSIONS ] ) slide_size = args.slide_size if slide_size is not None: slide_width, slide_height = { "4:3": (9144000, 6858000), "16:9": (12193200, 6858000), }[slide_size] else: slide_width = args.slide_width slide_height = args.slide_height prs = Presentation() prs.slide_width = slide_width prs.slide_height = slide_height blank_slide_layout = prs.slide_layouts[6] slide = prs.slides.add_slide(blank_slide_layout) left = top = 0 for image_path in image_paths: img = Image.open(image_path) slide.shapes.add_picture( image_file=str(image_path), left=left, top=top, ) left += img.width * 1e4 if left >= slide_width: top += img.height * 1e4 left = 0 prs.save(file=args.outpptx)
6,906
def _AccumulatorResultToDict(partition, feature, grads, hessians): """Converts the inputs to a dictionary since the ordering changes.""" return {(partition[i], feature[i, 0], feature[i, 1]): (grads[i], hessians[i]) for i in range(len(partition))}
6,907
def scale_rotor_pots(rotors, scale_factor=((), None)): """ scale the pots """ # Count numbers numtors = 0 for rotor in rotors: numtors += len(rotor) # Calculate the scaling factors scale_indcs, factor = scale_factor nscale = numtors - len(scale_indcs) if nscale > 0: sfactor = factor**(2.0/nscale) ioprinter.debug_message( 'scale_coeff test:', factor, nscale, sfactor) for rotor in rotors: for tidx, torsion in enumerate(rotor): if tidx not in scale_indcs and factor is not None: torsion.pot = automol.pot.scale(torsion.pot, sfactor) # following is being used in a test to see how effective # a scaling of fixed scan torsional pots can be torsion.pot = automol.pot.relax_scale(torsion.pot) return rotors
6,908
async def countdown_minutes(channel, minutes): """Send a countdown message (updated each minute) and another one when the countdown finishes.""" countdown = await channel.send("Time left: %d minutes" % minutes) edit = asyncio.sleep(0) while minutes > 0: sleep = asyncio.sleep(60) await asyncio.gather(sleep, edit) minutes -= 1 edit = countdown.edit(content="Time left: %d minutes" % minutes) await edit await countdown.edit(content="Time’s up!") await channel.send("Time’s up!")
6,909
def twitter_retrieve_data_streaming_api(ctx, consumer_key, consumer_secret, access_token, access_secret, save_data_mode, tweets_output_folder, area_name, x_min, y_min, x_max, y_max, languages, max_num_tweets, only_geotagged, db_username, db_password, db_hostname, db_port, db_database, db_schema): """Retrieve data from Twitter Streaming API """ if ctx.obj['verbose']: click.echo('Executing ...') geoso.twitter_retrieve_data_streaming_api(consumer_key, consumer_secret, access_token, access_secret, str(save_data_mode).upper(), tweets_output_folder, area_name, float(x_min), float(x_max), float( y_min), float(y_max), languages, int(max_num_tweets), only_geotagged, db_hostname, db_port, db_database, db_schema, db_username, db_password) if ctx.obj['verbose']: click.echo('Execution finished successfully.')
6,910
async def create(payload: ProductIn): """Create new product from sent data.""" product_id = await db.add_product(payload) apm.capture_message(param_message={'message': 'Product with %s id created.', 'params': product_id}) return ProductOut(**payload.dict(), product_id=product_id)
6,911
def get_glove_info(glove_file_name): """Return the number of vectors and dimensions in a file in GloVe format.""" with smart_open(glove_file_name) as f: num_lines = sum(1 for line in f) with smart_open(glove_file_name) as f: num_dims = len(f.readline().split()) - 1 return num_lines, num_dims
6,912
def retrieve_database_inputs(db_session: Session) -> ( Dict[str, List[RevenueRate]], Dict[str, MergeAddress], List[Driver]): """ Retrieve the static inputs of the model from the database :param db_session: SQLAlchemy Database connection session :return: level of service mapped to List of RevenueRate objects, merge addresses mapped to MergeAddress objects, List of driver objects """ revenue_table = load_revenue_table_from_db(db_session) merge_details = load_merge_details_from_db(db_session) drivers_table = load_drivers_from_db(db_session) return revenue_table, merge_details, drivers_table
6,913
def _evolve_cx(base_pauli, qctrl, qtrgt): """Update P -> CX.P.CX""" base_pauli._x[:, qtrgt] ^= base_pauli._x[:, qctrl] base_pauli._z[:, qctrl] ^= base_pauli._z[:, qtrgt] return base_pauli
6,914
def tp_pixel_num_cal(im, gt): """ im is the prediction result; gt is the ground truth labelled by biologists;""" tp = np.logical_and(im, gt) tp_pixel_num = tp.sum() return tp_pixel_num
6,915
def xsg_data(year=None, month=None, retry_count=3, pause=0.001): """ 获取限售股解禁数据 Parameters -------- year:年份,默认为当前年 month:解禁月份,默认为当前月 retry_count : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 Return ------ DataFrame code:股票代码 name:名称 date:解禁日期 count:解禁数量(万股) ratio:占总盘比率 """ year = du.get_year() if year is None else year month = du.get_month() if month is None else month for _ in range(retry_count): time.sleep(pause) try: request = Request(rv.XSG_URL%(ct.P_TYPE['http'], ct.DOMAINS['em'], ct.PAGES['emxsg'], year, month)) lines = urlopen(request, timeout = 10).read() lines = lines.decode('utf-8') if ct.PY3 else lines except Exception as e: print(e) else: da = lines[3:len(lines)-3] list = [] for row in da.split('","'): list.append([data for data in row.split(',')]) df = pd.DataFrame(list) df = df[[1, 3, 4, 5, 6]] for col in [5, 6]: df[col] = df[col].astype(float) df[5] = df[5]/10000 df[6] = df[6]*100 df[5] = df[5].map(ct.FORMAT) df[6] = df[6].map(ct.FORMAT) df.columns = rv.XSG_COLS return df raise IOError(ct.NETWORK_URL_ERROR_MSG)
6,916
def crm_ybquery_v2(): """ crm根据用户手机号查询subId :return: """ resp = getJsonResponse() try: jsonStr = request.data # 调用业务逻辑 resp = {"message":"","status":200,"timestamp":1534844188679,"body":{"password":"21232f297a57a5a743894a0e4a801fc3","username":"admin"},"result":{"id":"4291d7da9005377ec9aec4a71ea837f","name":"Ronald Thompson","username":"admin","password":"","avatar":"https://gw.alipayobjects.com/zos/rmsportal/jZUIxmJycoymBprLOUbT.png","status":1,"telephone":"","lastLoginIp":"127.0.0.1","lastLoginTime":1534837621348,"creatorId":"admin","createTime":1497160610259,"deleted":0,"roleId":"admin","token":"4291d7da9005377ec9aec4a71ea837f"}} except BaseException as e: current_app.logger.error("=========异常============") current_app.logger.error(e) current_app.logger.error("=========异常============") resp = getJsonResponse(code="101", msg="系统异常" + str(e)) return jsonify(resp)
6,917
def get_split_file_ids_and_pieces( data_dfs: Dict[str, pd.DataFrame] = None, xml_and_csv_paths: Dict[str, List[Union[str, Path]]] = None, splits: Iterable[float] = (0.8, 0.1, 0.1), seed: int = None, ) -> Tuple[Iterable[Iterable[int]], Iterable[Piece]]: """ Get the file_ids that should go in each split of a split dataset. Parameters ---------- data_dfs : Dict[str, pd.DataFrame] If using dataframes, a mapping of 'files', 'measures', 'chords', and 'notes' dfs. xml_and_csv_paths : Dict[str, List[Union[str, Path]]] If using the MusicXML ('xmls') and label csvs ('csvs'), a list of paths of the matching xml and csv files. splits : Iterable[float] An Iterable of floats representing the proportion of pieces which will go into each split. This will be normalized to sum to 1. seed : int A numpy random seed, if given. Returns ------- split_ids : Iterable[Iterable[int]] An iterable, the length of `splits` containing the file_ids for each data point in each split. pieces : Iterable[Iterable[Piece]] The loaded Pieces of each split. """ assert sum(splits) != 0 splits = np.array(splits) / sum(splits) if seed is not None: np.random.seed(seed) indexes = [] pieces = [] if data_dfs is not None: for i in tqdm(data_dfs["files"].index): file_name = ( f"{data_dfs['files'].loc[i].corpus_name}/{data_dfs['files'].loc[i].file_name}" ) logging.info("Parsing %s (id %s)", file_name, i) dfs = [data_dfs["chords"], data_dfs["measures"], data_dfs["notes"]] names = ["chords", "measures", "notes"] exists = [i in df.index.get_level_values(0) for df in dfs] if not all(exists): for exist, name in zip(exists, names): if not exist: logging.warning( "%s_df does not contain %s data (id %s).", name, file_name, i ) continue try: piece = get_score_piece_from_data_frames( data_dfs["notes"].loc[i], data_dfs["chords"].loc[i], data_dfs["measures"].loc[i] ) pieces.append(piece) indexes.append(i) except Exception: logging.exception("Error parsing index %s", i) continue elif xml_and_csv_paths is not None: for i, (xml_path, csv_path) in tqdm( enumerate(zip(xml_and_csv_paths["xmls"], xml_and_csv_paths["csvs"])), desc="Parsing MusicXML files", total=len(xml_and_csv_paths["xmls"]), ): piece = get_score_piece_from_music_xml(xml_path, csv_path) pieces.append(piece) indexes.append(i) # Shuffle the pieces and the df_indexes the same way shuffled_indexes = np.arange(len(indexes)) np.random.shuffle(shuffled_indexes) pieces = np.array(pieces)[shuffled_indexes] indexes = np.array(indexes)[shuffled_indexes] split_pieces = [] split_indexes = [] prop = 0 for split_prop in splits: start = int(round(prop * len(pieces))) prop += split_prop end = int(round(prop * len(pieces))) length = end - start if length == 0: split_pieces.append([]) split_indexes.append([]) elif length == 1: split_pieces.append([pieces[start]]) split_indexes.append([indexes[start]]) else: split_pieces.append(pieces[start:end]) split_indexes.append(indexes[start:end]) return split_indexes, split_pieces
6,918
def calc_full_dist(row, vert, hor, N, site_collection_SM): """ Calculates full distance matrix. Called once per row. INPUTS: :param vert: integer, number of included rows :param hor: integer, number of columns within radius :param N: integer, number of points in row :param site_collection_SM: site collection object, for ShakeMap data :returns: dict, with following keys grid_indices- indices of points included in distance matrix distance_matrix- full distance matrix """ # gathers indices for full distance matrix for each row grid_indices = [None]*(vert*(2*hor+1)) n_grid_indices = 0 for k in range(row-vert+1, row+1): if k == row: for j in range(0,hor+1): grid_indices[n_grid_indices] = j + N*k n_grid_indices += 1 else: for j in range(0,2*hor+1): grid_indices[n_grid_indices] = j + N*k n_grid_indices += 1 del grid_indices[n_grid_indices:] distance_matrix = np.zeros([np.size(grid_indices), np.size(grid_indices)]) # Create full distance matrix for row for k in range(0, np.size(grid_indices)): distance_matrix[k, k:] = geodetic_distance( site_collection_SM.lons[grid_indices[k ]], site_collection_SM.lats[grid_indices[k]], site_collection_SM.lons[grid_indices[k:]], site_collection_SM.lats[grid_indices[k:]]).flatten() distance_matrix = distance_matrix + distance_matrix.T return {'grid_indices':grid_indices, 'distance_matrix':distance_matrix}
6,919
def traffic_flow_color_scheme(): """ maybe not needed """ pass
6,920
def main(example="A"): """ Arguments of this example: :param str example: Whether to use example A (requires windows) or B """ # Parameters for sen-analysis: sim_api = setup_fmu(example=example) calibration_classes, validation_class = setup_calibration_classes( example=example, multiple_classes=True ) # Sensitivity analysis: calibration_classes = run_sensitivity_analysis(sim_api=sim_api, cal_classes=calibration_classes) # Calibration run_calibration(sim_api=sim_api, cal_classes=calibration_classes, validation_class=validation_class)
6,921
def background_upload_do(): """Handle the upload of a file.""" form = request.form # Is the upload using Ajax, or a direct POST by the form? is_ajax = False if form.get("__ajax", None) == "true": is_ajax = True print form.items() # Target folder for these uploads. # target = os.sep.join(['app', 'static', 'photo_albums', 'Test', 'Dave']) script_dir = os.path.dirname(os.path.abspath(__file__)) target = os.sep.join([script_dir, 'static', 'photo_albums', form.items()[0][1], form.items()[1][1]]) for upload in request.files.getlist("file"): filename = upload.filename.rsplit(os.sep)[0] if not os.path.exists(target): print "Creating directory:", target os.makedirs(target) destination = os.sep.join([target, filename]) print "Accept incoming file:", filename print "Save it to:", destination upload.save(destination) # if is_ajax: return ajax_response(True, msg="DONE!") # else: # return redirect(url_for('upload'))
6,922
def write_yml(yml_file, host="127.0.0.1", port=2379): """Write a yml file to etcd. Args: yml_file (str): Path to the yml file. host (str): Etcd host. port (int): Etcd port. """ print(f"Writing the yml file {yml_file} in ETCD. Host: {host}. Port: {port}.") etcd_tool = EtcdTool(host=host, port=port) etcd_tool.load(yml_file) print("Write finished correctly.")
6,923
def catch_list(in_dict, in_key, default, len_highest=1): """Handle list and list of list dictionary entries from parameter input files. Casts list entries of input as same type as default_val. Assign default values if user does not provide a given input parameter. Args: in_dict: Dictionary in input parameters, within which in_key is a key. in_key: Key of parameter to retrieve from in_dict. default: Default list to assign at output if in_key does not exist in in_dict. The type of the list entries in default implicitly defines the type which the parameter is cast to, if it exists in in_dict. len_highest: Expected length of topmost list. Returns: Input parameter list retrieved from in_dict, or default if not provided. """ # TODO: needs to throw an error if input list of lists is longer than len_highest # TODO: could make a recursive function probably, just hard to define appropriate list lengths at each level list_of_lists_flag = type(default[0]) == list try: inList = in_dict[in_key] if len(inList) == 0: raise ValueError # List of lists if list_of_lists_flag: val_list = [] for list_idx in range(len_highest): # If default value is None, trust user if default[0][0] is None: val_list.append(inList[list_idx]) else: type_default = type(default[0][0]) cast_in_list = [type_default(inVal) for inVal in inList[list_idx]] val_list.append(cast_in_list) # Normal list else: # If default value is None, trust user if default[0] is None: val_list = inList else: type_default = type(default[0]) val_list = [type_default(inVal) for inVal in inList] except: if list_of_lists_flag: val_list = [] for list_idx in range(len_highest): val_list.append(default[0]) else: val_list = default return val_list
6,924
def _load_candidate_scorings (spec, input_dir_candidates, predictor): """ Load the msms-based scores for the candidates of the specified msms-spectra. :param spec: string, identifier of the spectra and candidate list. Currently we use the inchikey of the structure represented by the spectra. :param input_dir_candidates: string, directory containing the scoring and fingerprints of the candidates (compare also 'build_candidate_structure'). :param predictor: list of strings, containing the predictors used to train the model. Currently only 'maccs' and 'maccsCount_f2dcf0b3' are supported. :return: pandas.DataFrame, {"id1": [...], "score": [...]} E.g.: id1,score "InChI=1S/C10H10N4O2S/c11-8-1-3-9(4-2-8)17...",0.601026809509167 "InChI=1S/C10H10N4O2S/c11-8-2-4-9(5-3-8)17...",0.59559886408 ... NOTE: 'id1' here to the InChI, this can be changed, but we also need to modify '_process_single_candidate_list'. """ if predictor[0] == "maccs": fps_fn = "maccs_binary" elif predictor[0] == "maccsCount_f2dcf0b3": fps_fn = "maccs_count" else: raise ValueError ("Unsupported predictor for candidates: %s" % predictor[0]) l_scoring_files = os.listdir (input_dir_candidates + "/scorings/" + fps_fn + "/") scores_fn = list (filter (re.compile ("scoring_list.*=%s.csv" % spec).match, l_scoring_files)) assert (len (scores_fn) == 1) scores_fn = input_dir_candidates + "/scorings/" + fps_fn + "/" + scores_fn[0] # Return scores in descending order return DataFrame.from_csv (scores_fn, index_col = None).sort_values ("score", ascending = False)
6,925
def load_dict_data(selected_entities=None, path_to_data_folder=None): """Loads up data from .pickle file for the selected entities. Based on the selected entities, loads data from storage, into memory, if respective files exists. Args: selected_entities: A list of string entity names to be loaded. Default is load all available entitites. path_to_data_folder: A string specifying the absolute path to the data folder that contains the entity dataset files. By default, uses the built-in entity datasets. Returns: A dictionary mapping entity type (key) to all entity values of that type. Values are dictionary of dictionaries. { 'genre': { 'comedy': { 'action': {1:1}, 'drama': {1:1} }, 'action': { 'thriller': {1:1} } } } Always returns a dictionary. If .pickle files of selected entitites are not found, or if no .pickle files are found, returns an empty dictionary. """ return load_entities( selected_entities=selected_entities, from_pickle=True, path_to_data_folder=path_to_data_folder )
6,926
def p_mtp3field(p): """mtp3field : SIO | OPC | DPC | SLS | HSIO | HOPC | HDPC | HSLS"""
6,927
def cart_del(request, pk): """ remove an experiment from the analysis cart and return""" pk=int(pk) # make integer for lookup within template analyze_list = request.session.get('analyze_list', []) if pk in analyze_list: analyze_list.remove(pk) request.session['analyze_list'] = analyze_list return HttpResponseRedirect(request.META.get('HTTP_REFERER'))
6,928
def get_block_devices(bdms=None): """ @type bdms: list """ ret = "" if bdms: for bdm in bdms: ret += "{0}\n".format(bdm.get('DeviceName', '-')) ebs = bdm.get('Ebs') if ebs: ret += " Status: {0}\n".format(ebs.get('Status', '-')) ret += " Snapshot Id: {0}\n".format(ebs.get('SnapshotId', '-')) ret += " Volume Size: {0}\n".format(ebs.get('VolumeSize', '-')) ret += " Volume Type: {0}\n".format(ebs.get('VolumeType', '-')) ret += " Encrypted: {0}\n".format(str(ebs.get('Encrypted', '-'))) ret += " Delete on Termination: {0}\n".format(ebs.get('DeleteOnTermination', '-')) ret += " Attach Time: {0}\n".format(str(ebs.get('AttachTime', '-'))) return ret.rstrip() else: return ret
6,929
def outlier_test(model_results, method='bonf', alpha=.05, labels=None, order=False, cutoff=None): """ Outlier Tests for RegressionResults instances. Parameters ---------- model_results : RegressionResults instance Linear model results method : str - `bonferroni` : one-step correction - `sidak` : one-step correction - `holm-sidak` : - `holm` : - `simes-hochberg` : - `hommel` : - `fdr_bh` : Benjamini/Hochberg - `fdr_by` : Benjamini/Yekutieli See `statsmodels.stats.multitest.multipletests` for details. alpha : float familywise error rate labels : None or array_like If `labels` is not None, then it will be used as index to the returned pandas DataFrame. See also Returns below order : bool Whether or not to order the results by the absolute value of the studentized residuals. If labels are provided they will also be sorted. cutoff : None or float in [0, 1] If cutoff is not None, then the return only includes observations with multiple testing corrected p-values strictly below the cutoff. The returned array or dataframe can be empty if there are no outlier candidates at the specified cutoff. Returns ------- table : ndarray or DataFrame Returns either an ndarray or a DataFrame if labels is not None. Will attempt to get labels from model_results if available. The columns are the Studentized residuals, the unadjusted p-value, and the corrected p-value according to method. Notes ----- The unadjusted p-value is stats.t.sf(abs(resid), df) where df = df_resid - 1. """ from scipy import stats # lazy import if labels is None: labels = getattr(model_results.model.data, 'row_labels', None) infl = getattr(model_results, 'get_influence', None) if infl is None: results = maybe_unwrap_results(model_results) raise AttributeError("model_results object %s does not have a " "get_influence method." % results.__class__.__name__) resid = infl().resid_studentized_external if order: idx = np.abs(resid).argsort()[::-1] resid = resid[idx] if labels is not None: labels = np.asarray(labels)[idx] df = model_results.df_resid - 1 unadj_p = stats.t.sf(np.abs(resid), df) * 2 adj_p = multipletests(unadj_p, alpha=alpha, method=method) data = np.c_[resid, unadj_p, adj_p[1]] if cutoff is not None: mask = data[:, -1] < cutoff data = data[mask] else: mask = slice(None) if labels is not None: from pandas import DataFrame return DataFrame(data, columns=['student_resid', 'unadj_p', method+"(p)"], index=np.asarray(labels)[mask]) return data
6,930
def imgcat(data, width='auto', height='auto', preserveAspectRatio=False, inline=True, filename=''): """ The width and height are given as a number followed by a unit, or the word "auto". N: N character cells. Npx: N pixels. N%: N percent of the session's width or height. auto: The image's inherent size will be used to determine an appropriate dimension. """ buf = bytes() enc = 'utf-8' is_tmux = os.environ['TERM'].startswith('screen') # OSC buf += b'\033' if is_tmux: buf += b'Ptmux;\033\033' buf += b']' buf += b'1337;File=' if filename: buf += b'name=' buf += b64encode(filename.encode(enc)) buf += b';size=%d' % len(data) buf += b';inline=%d' % int(inline) buf += b';width=%s' % width.encode(enc) buf += b';height=%s' % height.encode(enc) buf += b';preserveAspectRatio=%d' % int(preserveAspectRatio) buf += b':' buf += b64encode(data) # ST buf += b'\a' if is_tmux: buf += b'\033\\' buf += b'\n' stdout.buffer.write(buf) stdout.flush()
6,931
def align_reconstruction(reconstruction, gcp, config): """Align a reconstruction with GPS and GCP data.""" res = align_reconstruction_similarity(reconstruction, gcp, config) if res: s, A, b = res apply_similarity(reconstruction, s, A, b)
6,932
def OpenTrade(request, callback, customData = None, extraHeaders = None): """ Opens a new outstanding trade. Note that a given item instance may only be in one open trade at a time. https://docs.microsoft.com/rest/api/playfab/client/trading/opentrade """ if not PlayFabSettings._internalSettings.ClientSessionTicket: raise PlayFabErrors.PlayFabException("Must be logged in to call this method") def wrappedCallback(playFabResult, error): if callback: callback(playFabResult, error) PlayFabHTTP.DoPost("/Client/OpenTrade", request, "X-Authorization", PlayFabSettings._internalSettings.ClientSessionTicket, wrappedCallback, customData, extraHeaders)
6,933
def move(request, content_type_id, obj_id, rank): """View to be used in the django admin for changing a :class:`RankedModel` object's rank. See :func:`admin_link_move_up` and :func:`admin_link_move_down` for helper functions to incoroprate in your admin models. Upon completion this view sends the caller back to the referring page. :param content_type_id: ``ContentType`` id of object being moved :param obj_id: ID of object being moved :param rank: New rank of the object """ content_type = ContentType.objects.get_for_id(content_type_id) obj = get_object_or_404(content_type.model_class(), id=obj_id) obj.rank = int(rank) obj.save() return HttpResponseRedirect(request.META['HTTP_REFERER'])
6,934
def test_second_playback_enforcement(mocker, tmp_path): """ Given: - A mockable test When: - The mockable test fails on the second playback Then: - Ensure that it exists in the failed_playbooks set - Ensure that it does not exists in the succeeded_playbooks list """ class RunIncidentTestMock: call_count = 0 count_response_mapping = { 1: PB_Status.FAILED, # The first playback run 2: PB_Status.COMPLETED, # The record run 3: PB_Status.FAILED # The second playback run } @staticmethod def run_incident_test(*_): # First playback run RunIncidentTestMock.call_count += 1 return RunIncidentTestMock.count_response_mapping[RunIncidentTestMock.call_count] filtered_tests = ['mocked_playbook'] tests = [generate_test_configuration(playbook_id='mocked_playbook', integrations=['mocked_integration'])] integrations_configurations = [generate_integration_configuration('mocked_integration')] secret_test_conf = generate_secret_conf_json(integrations_configurations) content_conf_json = generate_content_conf_json(tests=tests) build_context = get_mocked_build_context(mocker, tmp_path, secret_conf_json=secret_test_conf, content_conf_json=content_conf_json, filtered_tests_content=filtered_tests) mocked_demisto_client = DemistoClientMock(integrations=['mocked_integration']) server_context = generate_mocked_server_context(build_context, mocked_demisto_client, mocker) mocker.patch('demisto_sdk.commands.test_content.TestContentClasses.TestContext._run_incident_test', RunIncidentTestMock.run_incident_test) server_context.execute_tests() assert 'mocked_playbook (Second Playback)' in build_context.tests_data_keeper.failed_playbooks assert 'mocked_playbook' not in build_context.tests_data_keeper.succeeded_playbooks
6,935
def decode_textfield_ncr(content): """ Decodes the contents for CIF textfield from Numeric Character Reference. :param content: a string with contents :return: decoded string """ import re def match2str(m): return chr(int(m.group(1))) return re.sub('&#(\d+);', match2str, content)
6,936
def reflect_or_create_tables(options): """ returns a dict of classes make 'em if they don't exist "tables" is {'wfdisc': mapped table class, ...} """ tables = {} # this list should mirror the command line table options for table in list(mapfns.keys()) + ['lastid']: # if options.all_tables: fulltabnm = getattr(options, table, None) if fulltabnm: try: tables[table] = ps.get_tables(session.bind, [fulltabnm])[0] except NoSuchTableError: print("{0} doesn't exist. Adding it.".format(fulltabnm)) tables[table] = ps.make_table(fulltabnm, PROTOTYPES[table]) tables[table].__table__.create(session.bind, checkfirst=True) return tables
6,937
def config_section_data(): """Produce the default configuration section for app.config, when called by `resilient-circuits config [-c|-u]` """ config_data = u"""[fn_grpc_interface] interface_dir=<<path to the parent directory of your Protocol Buffer (pb2) files>> #<<package_name>>=<<communication_type>>, <<secure connection type>>, <<certificate_path or google API token>> # 'package_name' is a CSV list of length 3, where each possible value is described in the documentation # Note: to setup, in your interface_dir, create a sub-directory that has # the same name as your package, and copy the Protocol Buffer pb2 files # into that directory. # # If the package_name was 'helloworld', your app.config would look like: # [fn_grpc_interface] # interface_dir=/home/admin/integrations/grpc_interface_files # helloworld=unary, None, None""" return config_data
6,938
def show_server(data): """Show server."""
6,939
def get_workers_count_based_on_cpu_count(): """ Returns the number of workers based available virtual or physical CPUs on this system. """ # Python 2.6+ try: import multiprocessing return multiprocessing.cpu_count() * 2 + 1 except (ImportError, NotImplementedError): pass try: res = int(os.sysconf('SC_NPROCESSORS_ONLN')) if res > 0: return res * 2 + 1 except (AttributeError, ValueError): pass raise Exception('Can not determine number of CPUs on this system')
6,940
def addAttributeToChannelList(channellist, channelType, channelName, attributename, attributevalue): """Adds channel attributes to the supplied list. Note: This method only changes the supplied list. It does not communicate with a dmgr. For example, it creates the following: 'channel_attributes': [{ 'channelType': 'HTTPInboundChannel', 'channelName': 'HTTP_2', 'attributename': 'persistentTimeout', 'attributevalue': '15' }, ] """ m = "addAttributeToChannelList: " # sop(m,"Entry. channelType=%s channelName=%s attributename=%s attributevalue=%s" % ( channelType, channelName, attributename, attributevalue, )) # Create a new dictionary object to specify the attribute. new_attribute_dict = { 'channelType': channelType, 'channelName': channelName, 'attributename': attributename, 'attributevalue': attributevalue, } # sop(m,"new_attribute_dict=%s" % ( new_attribute_dict )) # Find and remove any existing instances of the specified attribute from the list. for old_attribute_dict in channellist: # sop(m,"old_attribute_dict=%s" % ( old_attribute_dict )) if 'channelType' in old_attribute_dict.keys() and 'channelName' in old_attribute_dict.keys()and 'attributename' in old_attribute_dict.keys(): # sop(m,"old attribute contains key 'channelType', 'channelName', and 'attributename'") if channelType == old_attribute_dict['channelType'] and channelName == old_attribute_dict['channelName'] and attributename == old_attribute_dict['attributename']: sop(m,"Found old attribute matchine specified new attribute. Removing old attribute from list. channelType=%s channelName=%s attributename=%s attributevalue=%s" % ( channelType, channelName, attributename, attributevalue, )) channellist.remove(old_attribute_dict) # else: # sop(m,"Leaving old attribute intact in list.") # Add the new attribute to the list. sop(m,"Adding the new attribute to the list. channelType=%s channelName=%s attributename=%s attributevalue=%s" % ( channelType, channelName, attributename, attributevalue, )) channellist.append(new_attribute_dict) # sop(m,"Exit. channellist=%s" % ( repr(channellist) ))
6,941
def test_file_contents( downloader, filing_type, ticker, before_date, downloaded_filename ): """Only run this test when the sample filings folder exists. This check is required since the distributed python package will not contain the sample filings test data due to size constraints. """ dl, dl_path = downloader downloaded_filename = Path(downloaded_filename) extension = downloaded_filename.suffix num_downloaded = dl.get( filing_type, ticker, amount=1, before=before_date, download_details=True ) assert num_downloaded == 1 downloaded_file_path = dl_path / ROOT_SAVE_FOLDER_NAME / ticker / filing_type assert len(list(downloaded_file_path.glob("*"))) == 1 accession_number = list(downloaded_file_path.glob("*"))[0] downloaded_file_path /= accession_number downloaded_filings = list(downloaded_file_path.glob("*")) assert len(downloaded_filings) == 2 sample_filings = Path("tests/sample-filings") filename_parts = [ ticker, filing_type.replace("-", ""), f"{before_date.replace('-', '')}{extension}", ] filename = "-".join(filename_parts).lower() expected = sample_filings / filename downloaded = downloaded_file_path / downloaded_filename with expected.open() as expected_file: with downloaded.open() as downloaded_file: assert expected_file.readlines() == downloaded_file.readlines()
6,942
def color_print(path: str, color = "white", attrs = []) -> None: """Prints colorized text on terminal""" colored_text = colored( text = read_warfle_text(path), color = color, attrs = attrs ) print(colored_text) return None
6,943
def generate_chords(midi_path=None): """Generates harmonizing chords and saves them as MIDI. Input parameters : Midi to harmonize to (Primer Midi), automatically set to Midi from transcription.py Output = Midifile named "Midifile.chords.midi" in same location """ tf.logging.set_verbosity('INFO') bundle = get_bundle() if bundle: config_id = bundle.generator_details.id config = improv_rnn_model.default_configs[config_id] config.hparams.parse(cfg['hparams']) generator = improv_rnn_sequence_generator.ImprovRnnSequenceGenerator( model=improv_rnn_model.ImprovRnnModel(config), details=config.details, steps_per_quarter=config.steps_per_quarter, checkpoint=None, bundle=bundle) output_dir = os.path.expanduser(cfg['output_dir']) primer_midi = os.path.expanduser(midi_path) if not tf.gfile.Exists(output_dir): tf.gfile.MakeDirs(output_dir) qpm = magenta.music.DEFAULT_QUARTERS_PER_MINUTE primer_sequence = magenta.music.midi_file_to_sequence_proto(primer_midi) qpm = primer_sequence.tempos[0].qpm # Create backing chord progression from flags. backing_chords = 'C G Am F C G F C' raw_chords = backing_chords.split() repeated_chords = [chord for chord in raw_chords for _ in range(16)] backing_chords = magenta.music.ChordProgression(repeated_chords) # Derive the total number of seconds to generate based on the QPM of the # priming sequence and the length of the backing chord progression. seconds_per_step = 60.0 / qpm / generator.steps_per_quarter total_seconds = len(backing_chords) * seconds_per_step # Specify start/stop time for generation based on starting generation at the # end of the priming sequence and continuing until the sequence is num_steps # long. generator_options = generator_pb2.GeneratorOptions() if primer_sequence: input_sequence = primer_sequence # Set the start time to begin on the next step after the last note ends. if primer_sequence.notes: last_end_time = max(n.end_time for n in primer_sequence.notes) else: last_end_time = 0 generate_section = generator_options.generate_sections.add( start_time=last_end_time + seconds_per_step, end_time=total_seconds) if generate_section.start_time >= generate_section.end_time: tf.logging.fatal( 'Priming sequence is longer than the total number of steps ' 'requested: Priming sequence length: %s, Generation length ' 'requested: %s', generate_section.start_time, total_seconds) return else: input_sequence = music_pb2.NoteSequence() input_sequence.tempos.add().qpm = qpm generate_section = generator_options.generate_sections.add( start_time=0, end_time=total_seconds) # Add the backing chords to the input sequence. chord_sequence = backing_chords.to_sequence(sequence_start_time=0.0, qpm=qpm) for text_annotation in chord_sequence.text_annotations: if text_annotation.annotation_type == CHORD_SYMBOL: chord = input_sequence.text_annotations.add() chord.CopyFrom(text_annotation) input_sequence.total_time = len(backing_chords) * seconds_per_step generator_options.args['temperature'].float_value = 1.0 generator_options.args['beam_size'].int_value = 1 generator_options.args['branch_factor'].int_value = 1 generator_options.args[ 'steps_per_iteration'].int_value = 1 tf.logging.debug('input_sequence: %s', input_sequence) tf.logging.debug('generator_options: %s', generator_options) # Make the generate request num_outputs times and save the output as midi # files. date_and_time = time.strftime('%Y-%m-%d_%H%M%S') digits = len(str(1)) for i in range(1): generated_sequence = generator.generate(input_sequence, generator_options) renderer = magenta.music.BasicChordRenderer(velocity=CHORD_VELOCITY) renderer.render(generated_sequence) midi_filename = primer_midi.replace('midi', 'chords.midi') midi_path = os.path.join(cfg['output_dir'], midi_filename) magenta.music.sequence_proto_to_midi_file(generated_sequence, midi_path) tf.logging.info('Wrote %d MIDI files to %s', 1, cfg['output_dir'])
6,944
def main(debug): """ \b fetchmesh is a Python library and a command line utility to facilitate the use of the RIPE Atlas anchoring mesh measurements. \b The documentation and the source code are available at https://github.com/maxmouchet/fetchmesh. """ if debug: logging.basicConfig( level=logging.DEBUG, datefmt="%Y/%m/%d %H:%M:%S", format="%(asctime)s %(levelname)s %(process)d %(name)s %(message)s", )
6,945
def _handle_sync_response(response_packet, commands_waiting_for_response): """ """ # for ACK/synchronous responses we only need to call the registered # callback. sequence_number = response_packet.sequence_number if sequence_number in commands_waiting_for_response: # TODO: check to make sure handler is callable before invoking. commands_waiting_for_response[sequence_number](response_packet) # NOTE: it is up to the callback/waiting function to remove the # handler.
6,946
def create_cluster_spec(parameters_server: str, workers: str) -> tf.train.ClusterSpec: """ Creates a ClusterSpec object representing the cluster. :param parameters_server: comma-separated list of hostname:port pairs to which the parameter servers are assigned :param workers: comma-separated list of hostname:port pairs to which the workers are assigned :return: a ClusterSpec object representing the cluster """ # extract the parameter servers and workers from the given strings ps_hosts = parameters_server.split(",") worker_hosts = workers.split(",") # Create a cluster spec from the parameter server and worker hosts cluster_spec = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts}) return cluster_spec
6,947
def save_books_readers( book: Books, reader: Readers): """Reader's books control and save in data base.""" flag = False if book.readers is not None: for i in range(len(book.readers)): if book.readers[i].id is reader.id: flag = True if flag is False: book.readers.append(reader) session.add(book) session.commit()
6,948
def ranger_daemon_trigger(raw_args=None): """ Pass in raw_args if you wana trigger via this method eg: ['-zk', 'localhost:2181', '-s', 'myapp', '-host', 'localhost', '-p', '9090', '-e', 'stage', '-hcu', 'http://localhost:9091/healthcheck?pretty=true'] :param raw_args: sys.argv (arguments to the script) """ ranger_service_provider = initial_program_setup(raw_args) ranger_service_provider.start(True)
6,949
def bq_client(context): """ Initialize and return BigQueryClient() """ return BigQueryClient( context.resource_config["dataset"], )
6,950
def longascnode(x, y, z, u, v, w): """Compute value of longitude of ascending node, computed as the angle between x-axis and the vector n = (-hy,hx,0), where hx, hy, are respectively, the x and y components of specific angular momentum vector, h. Args: x (float): x-component of position y (float): y-component of position z (float): z-component of position u (float): x-component of velocity v (float): y-component of velocity w (float): z-component of velocity Returns: float: longitude of ascending node """ res = np.arctan2(y*w-z*v, x*w-z*u) # remember atan2 is atan2(y/x) if res >= 0.0: return res else: return res+2.0*np.pi
6,951
def volumetric_roi_info(atlas_spec): """Returns a list of unique ROIs, their labels and centroids""" if is_image(atlas_spec) and is_image_3D(atlas_spec): if atlas_spec.__class__ in nibabel.all_image_classes: atlas_labels = atlas_spec.get_fdata() else: atlas_labels = np.array(atlas_spec) elif isinstance(atlas_spec, str): atlas_path, atlas_name = get_atlas_path(atlas_spec) atlas_labels = nibabel.load(atlas_path).get_fdata() else: raise ValueError('Unrecognized atlas specification!' 'Must be a predefined name, or' 'a preloaded image!') # TODO names for ROIs are not read and used! uniq_rois, roi_size, num_nodes = roi_info(atlas_labels, freesurfer_annot=False) centroids = dict() for roi in uniq_rois: centroids[roi] = np.median(np.nonzero(atlas_labels==roi), axis=1) return uniq_rois, centroids, atlas_labels
6,952
def predictFuture(bo:board, sn:snake, snakes:list, foods:list): """ Play forward (futuremoves) turns Check for enemy moves before calculating route boards == bo: boardClass as board sn: snakeClass as snake snakes: list[] of snakes == return: none (set board routing) board.updateCell() """ # Update / modify routes # Enemy kills us -- playing forward X turns numfuture = CONST.lookAheadPredictFuture # Update enemy future paths to depth of N = numfuture bo.getEnemyFuture(snakes, numfuture) # Check for any possible futures where we die (rr, avoid) = checkFutureDeath(bo, sn, snakes, numfuture=numfuture) # Update board to avoid these cells them = [] for sid in snakes: enemy = snakes[sid] if (enemy.getType() == 'enemy'): enemy_head = enemy.getHead() them.append(enemy_head) else: head = enemy.getHead() # TODO: Further modify this to capture closer & larger same = True # include squares where we get there same time closest = bo.closestDist(head, them, same=same) # Update squares to avoid because of head on collisions # Update squares to avoid because of head on deadend(deprecate) if (len(avoid)): # If enemy can get to location before us # If enemy kill path found # print(avoid) for path in avoid: # Set future markov board, where # * length of steps reflects turn, and # * routing logic looks at next markov board for step in path: # print("PREDICT FUTURE DEATH", step) for i in range(0, len(path)): bo.updateCell(path[i], CONST.routeSolid/2, i, replace=True) bo.updateCell(path[i], CONST.routeSolid/2, i+1, replace=True) # bo.updateCell(step, CONST.routeSolid/4, len(path)+1, replace=True) # Update eating for snakes based on path # Update cells that enemy snakes can get to before us for sid in snakes: # Ignore us -- we have better calculation because we know our route if (snakes[sid].getType() != "us"): # Uses every possible path based on self.predictEnemyMoves paths = snakes[sid].getNextSteps() length = snakes[sid].getLength() # threat = CONST.routeSolid/2 for path in paths: # Todo: only paint squares in each path based on turn for pt in path: # Print out hazard for N = enemy length or width of board for turn in range(0, min(length, bo.width)): if not closest[pt[0], pt[1]]: bo.updateCell(pt, threat, turn) # bo.updateCell(pt, CONST.routeSolid/(turn+1), turn) # threat = int(threat / 5) food_in_route = 0 # Check if there is food one square from them .. try: food_path = 0 # Check if food is in future moves for path in paths: pt = path[0] # truncate to first point only for now if pt in foods: food_in_route = 1 # print("DEBUG ENEMY PATH", sid, pt, path, food_path) # lookAheadPredictFuture except: pass # Check if snake ate this turn (don't we already accommodate?) snakes[sid].setEatingFuture(food_in_route) # print(sid, food_in_route) # Performance monitoring return rr
6,953
def test_return_complex_ref(namespace: TestNamespace) -> None: """Test returning a non-trivial reference.""" refH = namespace.addRegister("h") refL = namespace.addRegister("l") bitsHL = ConcatenatedBits(refL.bits, refH.bits) slicedBits = SlicedBits(bitsHL, IntLiteral(0), 8) namespace.addRetReference(Reference(slicedBits, IntType.u(8))) code = createSimplifiedCode(namespace) assertNodes(code.nodes, ()) assert len(code.returned) == 1 (retBits,) = code.returned assert retBits.width == 8 # Note that we only simplify expressions, not references, so the # reference itself is still complex. All we really check here is # that code block creation doesn't break, but that is worthwhile # in itself.
6,954
def convert_to_distance(primer_df, tm_opt, gc_opt, gc_clamp_opt=2): """ Convert tm, gc%, and gc_clamp to an absolute distance (tm_dist, gc_dist, gc_clamp_dist) away from optimum range. This makes it so that all features will need to be minimized. """ primer_df['tm_dist'] = get_distance( primer_df.tm.values, tm_opt, tm_opt) primer_df['gc_dist'] = get_distance( primer_df.gc.values, gc_opt['min'], gc_opt['max']) primer_df['gc_clamp_dist'] = get_distance( primer_df.gc_clamp.values, gc_clamp_opt, gc_clamp_opt) # primer_df.drop(['tm', 'gc', 'gc_clamp'], axis=1, inplace=True) return primer_df
6,955
def _tmap_error_detect(tmap: TensorMap) -> TensorMap: """Modifies tm so it returns it's mean unless previous tensor from file fails""" new_tm = copy.deepcopy(tmap) new_tm.shape = (1,) new_tm.interpretation = Interpretation.CONTINUOUS new_tm.channel_map = None def tff(_: TensorMap, hd5: h5py.File, dependents=None): return tmap.tensor_from_file(tmap, hd5, dependents).mean() new_tm.tensor_from_file = tff return new_tm
6,956
def get_filter(DetectorId=None, FilterName=None): """ Returns the details of the filter specified by the filter name. See also: AWS API Documentation Exceptions :example: response = client.get_filter( DetectorId='string', FilterName='string' ) :type DetectorId: string :param DetectorId: [REQUIRED]\nThe unique ID of the detector that the filter is associated with.\n :type FilterName: string :param FilterName: [REQUIRED]\nThe name of the filter you want to get.\n :rtype: dict ReturnsResponse Syntax { 'Name': 'string', 'Description': 'string', 'Action': 'NOOP'|'ARCHIVE', 'Rank': 123, 'FindingCriteria': { 'Criterion': { 'string': { 'Eq': [ 'string', ], 'Neq': [ 'string', ], 'Gt': 123, 'Gte': 123, 'Lt': 123, 'Lte': 123, 'Equals': [ 'string', ], 'NotEquals': [ 'string', ], 'GreaterThan': 123, 'GreaterThanOrEqual': 123, 'LessThan': 123, 'LessThanOrEqual': 123 } } }, 'Tags': { 'string': 'string' } } Response Structure (dict) -- Name (string) -- The name of the filter. Description (string) -- The description of the filter. Action (string) -- Specifies the action that is to be applied to the findings that match the filter. Rank (integer) -- Specifies the position of the filter in the list of current filters. Also specifies the order in which this filter is applied to the findings. FindingCriteria (dict) -- Represents the criteria to be used in the filter for querying findings. Criterion (dict) -- Represents a map of finding properties that match specified conditions and values when querying findings. (string) -- (dict) -- Contains information about the condition. Eq (list) -- Represents the equal condition to be applied to a single field when querying for findings. (string) -- Neq (list) -- Represents the not equal condition to be applied to a single field when querying for findings. (string) -- Gt (integer) -- Represents a greater than condition to be applied to a single field when querying for findings. Gte (integer) -- Represents a greater than or equal condition to be applied to a single field when querying for findings. Lt (integer) -- Represents a less than condition to be applied to a single field when querying for findings. Lte (integer) -- Represents a less than or equal condition to be applied to a single field when querying for findings. Equals (list) -- Represents an equal condition to be applied to a single field when querying for findings. (string) -- NotEquals (list) -- Represents a not equal condition to be applied to a single field when querying for findings. (string) -- GreaterThan (integer) -- Represents a greater than condition to be applied to a single field when querying for findings. GreaterThanOrEqual (integer) -- Represents a greater than or equal condition to be applied to a single field when querying for findings. LessThan (integer) -- Represents a less than condition to be applied to a single field when querying for findings. LessThanOrEqual (integer) -- Represents a less than or equal condition to be applied to a single field when querying for findings. Tags (dict) -- The tags of the filter resource. (string) -- (string) -- Exceptions GuardDuty.Client.exceptions.BadRequestException GuardDuty.Client.exceptions.InternalServerErrorException :return: { 'Name': 'string', 'Description': 'string', 'Action': 'NOOP'|'ARCHIVE', 'Rank': 123, 'FindingCriteria': { 'Criterion': { 'string': { 'Eq': [ 'string', ], 'Neq': [ 'string', ], 'Gt': 123, 'Gte': 123, 'Lt': 123, 'Lte': 123, 'Equals': [ 'string', ], 'NotEquals': [ 'string', ], 'GreaterThan': 123, 'GreaterThanOrEqual': 123, 'LessThan': 123, 'LessThanOrEqual': 123 } } }, 'Tags': { 'string': 'string' } } :returns: (string) -- """ pass
6,957
def generate_dataset(config, ahead=1, data_path=None): """ Generates the dataset for training, test and validation :param ahead: number of steps ahead for prediction :return: """ dataset = config['dataset'] datanames = config['datanames'] datasize = config['datasize'] testsize = config['testsize'] vars = config['vars'] lag = config['lag'] btc = {} # Reads numpy arrays for all sites and keep only selected columns btcdata = np.load(data_path + 'bitcoin_price_history.npz') for d in datanames: btc[d] = btcdata[d] if vars is not None: btc[d] = btc[d][:, vars] if dataset == 0: return _generate_dataset_one_var(btc[datanames[0]][:, WEIGHTED_PRICE_INDEX].reshape(-1, 1), datasize, testsize, lag=lag, ahead=ahead) # Just add more options to generate datasets with more than one variable for predicting one value # or a sequence of values raise NameError('ERROR: No such dataset type')
6,958
def search(isamAppliance, name, check_mode=False, force=False): """ Search UUID for named Web Service connection """ ret_obj = get_all(isamAppliance) return_obj = isamAppliance.create_return_object() return_obj["warnings"] = ret_obj["warnings"] for obj in ret_obj['data']: if obj['name'] == name: logger.info("Found Web Service connection {0} id: {1}".format(name, obj['uuid'])) return_obj['data'] = obj['uuid'] return_obj['rc'] = 0 return return_obj
6,959
def flask_app(initialize_configuration) -> Flask: """ Fixture for making a Flask instance, to be able to access application context manager. This is not possible with a FlaskClient, and we need the context manager for creating JWT tokens when is required. @return: A Flask instance. """ flask_application = vcf_handler_api('TESTING') flask_application.config['TESTING'] = True flask_application.config['PROPAGATE_EXCEPTIONS'] = False return flask_application
6,960
def test_customize_tag(): """ >>> d = {'name':'uliweb'} >>> dirs = [os.path.join(path, 'templates', x) for x in ['a']] >>> print (template_file('new_tag.html', d, dirs=dirs)) <BLANKLINE> uliweb """
6,961
def http_request(method, url_suffix, params=None, data=None, headers=HEADERS, safe=False): """ A wrapper for requests lib to send our requests and handle requests and responses better. :type method: ``str`` :param method: HTTP method for the request. :type url_suffix: ``str`` :param url_suffix: The suffix of the URL (endpoint) :type params: ``dict`` :param params: The URL params to be passed. :type data: ``str`` :param data: The body data of the request. :type headers: ``dict`` :param headers: Request headers :type safe: ``bool`` :param safe: If set to true will return None in case of http error :return: Returns the http request response json :rtype: ``dict`` """ headers['Authorization'] = get_token() url = BASE_URL + url_suffix try: res = requests.request(method, url, verify=USE_SSL, params=params, data=data, headers=headers) # Try to create a new token if res.status_code == 401: headers['Authorization'] = get_token(new_token=True) res = requests.request(method, url, verify=USE_SSL, params=params, data=data, headers=headers) except requests.exceptions.RequestException: return_error('Error in connection to the server. Please make sure you entered the URL correctly.') # Handle error responses gracefully if res.status_code not in {200, 201, 202}: try: result_msg = res.json() finally: reason = result_msg if result_msg else res.reason err_msg = f'Error in API call. code:{res.status_code}; reason: {reason}' if safe: return None return_error(err_msg) return res.json()
6,962
def train(train_loader, model, criterion, average, optimizer, epoch, opt): """one epoch training""" model.train() batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() end = time.time() for i, (images, labels, _) in enumerate(train_loader): data_time.update(time.time() - end) # modify labels with their new indexes - we are not using all the labels anymore at the training for ind, label in enumerate(labels): labels[ind] = opt.original_index.index(label) # images = torch.cat([images[0], images[1]], dim=0) if torch.cuda.is_available(): images = images.cuda(non_blocking=True) labels = labels.cuda(non_blocking=True) #idxs = idxs.cuda(non_blocking=True) bsz = labels.shape[0] # warm-up learning rate warmup_learning_rate(opt, epoch, i, len(train_loader), optimizer) # compute loss features, _ = model(images) bs = features.size(0) outs, prob = average(features, i) loss = criterion(outs) # update metric losses.update(loss.item(), bsz) # SGD optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() # print info if (i + 1) % opt.print_freq == 0: print('Train: [{0}][{1}/{2}]\t' 'BT {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'DT {data_time.val:.3f} ({data_time.avg:.3f})\t' 'loss {loss.val:.3f} ({loss.avg:.3f})'.format( epoch, i + 1, len(train_loader), batch_time=batch_time, data_time=data_time, loss=losses)) sys.stdout.flush() return losses.avg
6,963
def FP(target, prediction): """ False positives. :param target: target value :param prediction: prediction value :return: """ return ((target == 0).float() * prediction.float().round()).sum()
6,964
def RunJ2ObjC(java, jvm_flags, j2objc, main_class, output_file_path, j2objc_args, source_paths, files_to_translate): """Runs J2ObjC transpiler to translate Java source files to ObjC. Args: java: The path of the Java executable. jvm_flags: A comma-separated list of flags to pass to JVM. j2objc: The deploy jar of J2ObjC. main_class: The J2ObjC main class to invoke. output_file_path: The output file directory. j2objc_args: A list of args to pass to J2ObjC transpiler. source_paths: A list of directories that contain sources to translate. files_to_translate: A list of relative paths (relative to source_paths) that point to sources to translate. Returns: None. """ j2objc_args.extend(['-sourcepath', ':'.join(source_paths)]) j2objc_args.extend(['-d', output_file_path]) j2objc_args.extend(files_to_translate) param_file_content = ' '.join(j2objc_args).encode('utf-8') fd = None param_filename = None try: fd, param_filename = tempfile.mkstemp(text=True) os.write(fd, param_file_content) finally: if fd: os.close(fd) try: j2objc_cmd = [java] j2objc_cmd.extend([f_ for f_ in jvm_flags.split(',') if f_]) j2objc_cmd.extend(_ADD_EXPORTS) j2objc_cmd.extend(['-cp', j2objc, main_class]) j2objc_cmd.append('@%s' % param_filename) subprocess.check_call(j2objc_cmd, stderr=subprocess.STDOUT) finally: if param_filename: os.remove(param_filename)
6,965
def get_angle(A, B, C): """ Return the angle at C (in radians) for the triangle formed by A, B, C a, b, c are lengths C / \ b / \a / \ A-------B c """ (col_A, row_A) = A (col_B, row_B) = B (col_C, row_C) = C a = pixel_distance(C, B) b = pixel_distance(A, C) c = pixel_distance(A, B) try: cos_angle = (math.pow(a, 2) + math.pow(b, 2) - math.pow(c, 2)) / (2 * a * b) except ZeroDivisionError as e: log.warning( "get_angle: A %s, B %s, C %s, a %.3f, b %.3f, c %.3f" % (A, B, C, a, b, c) ) raise e # If CA and CB are very long and the angle at C very narrow we can get an # invalid cos_angle which will cause math.acos() to raise a ValueError exception if cos_angle > 1: cos_angle = 1 elif cos_angle < -1: cos_angle = -1 angle_ACB = math.acos(cos_angle) # log.info("get_angle: A %s, B %s, C %s, a %.3f, b %.3f, c %.3f, cos_angle %s, angle_ACB %s" % # (A, B, C, a, b, c, pformat(cos_angle), int(math.degrees(angle_ACB)))) return angle_ACB
6,966
def single_labels(interesting_class_id): """ :param interesting_class_id: integer in range [0,2] to specify class :return: number of labels for the "interesting_class" """ def s_l(y_true, y_pred): class_id_true = K.argmax(y_true, axis=-1) accuracy_mask = K.cast(K.equal(class_id_true, interesting_class_id), 'int32') return K.cast(K.maximum(K.sum(accuracy_mask), 1), 'int32') return s_l
6,967
def get_iam_policy(client=None, **kwargs): """ service_account='string' """ service_account=kwargs.pop('service_account') resp = client.projects().serviceAccounts().getIamPolicy( resource=service_account).execute() # TODO(supertom): err handling, check if 'bindings' is correct if 'bindings' in resp: return resp['bindings'] else: return None
6,968
def get_rdf_lables(obj_list): """Get rdf:labels from a given list of objects.""" rdf_labels = [] for obj in obj_list: rdf_labels.append(obj['rdf:label']) return rdf_labels
6,969
def _create_model_fn(pipeline_proto, is_chief=True): """Creates a callable that build the model. Args: pipeline_proto: an instance of pipeline_pb2.Pipeline. Returns: model_fn: a callable that takes [features, labels, mode, params] as inputs. """ if not isinstance(pipeline_proto, pipeline_pb2.Pipeline): raise ValueError('pipeline_proto has to be an instance of Pipeline.') def _model_fn(features, labels, mode, params): """ Args: features: a dict mapping from names to tensors, denoting the features. labels: a dict mapping from names to tensors, denoting the labels. mode: mode parameter required by the estimator. params: additional parameters used for creating the model. Returns: an instance of EstimatorSpec. """ is_training = (tf.estimator.ModeKeys.TRAIN == mode) tf.logging.info("Current mode is %s, is_training=%s", mode, is_training) model = builder.build(pipeline_proto.model, is_training) predictions = model.build_prediction(features) # Get scaffold and variables_to_train. scaffold = model.get_scaffold() variables_to_train = model.get_variables_to_train() # Compute losses. Note: variables created in build_loss are not trainable. losses = model.build_loss(predictions, examples=features) for name, loss in losses.items(): tf.losses.add_loss(loss) tf.summary.scalar('loss/' + name, loss) for loss in tf.losses.get_regularization_losses(): tf.summary.scalar( "loss/regularization/" + '/'.join(loss.op.name.split('/')[:2]), loss) total_loss = tf.losses.get_total_loss(add_regularization_losses=True) train_op = None eval_metric_ops = None training_hooks = [] if tf.estimator.ModeKeys.TRAIN == mode: train_config = pipeline_proto.train_config # Create the optimizer. learning_rate = train_config.learning_rate global_step = tf.train.get_or_create_global_step() if train_config.HasField('learning_rate_decay'): learning_rate = tf.train.exponential_decay( learning_rate, global_step, train_config.learning_rate_decay.decay_steps, train_config.learning_rate_decay.decay_rate, staircase=train_config.learning_rate_decay.staircase) tf.summary.scalar('loss/learning_rate', learning_rate) optimizer = training_utils.build_optimizer( train_config.optimizer, learning_rate=learning_rate) # Setup the replicas_hook for the SyncReplicasOptimizer. if train_config.sync_replicas: optimizer = tf.train.SyncReplicasOptimizer( optimizer, replicas_to_aggregate=4) sync_replicas_hook = optimizer.make_session_run_hook(is_chief) training_hooks.append(sync_replicas_hook) # Enable MovingAverageOptimizer if specified. if train_config.HasField('moving_average_decay'): optimizer = tf.contrib.opt.MovingAverageOptimizer( optimizer, average_decay=train_config.moving_average_decay) # Apply gradient multipliers. trainable_variables = [] gradient_multipliers = {} for var in variables_to_train: add_to_trainable_variables = True for multiplier in train_config.gradient_multiplier: if var.op.name.startswith(multiplier.scope): if var.op.name in gradient_multipliers: tf.logging.warn('Override gradient multiplier: %s', var.op.name) gradient_multipliers[var.op.name] = multiplier.multiplier if multiplier.multiplier > 0: add_to_trainable_variables = True else: add_to_trainable_variables = False # Add to trainable variables. if add_to_trainable_variables: trainable_variables.append(var) tf.logging.info('Variable to train: %s, %s', var.op.name, var.get_shape()) elif var.op.name in gradient_multipliers: del gradient_multipliers[var.op.name] tf.logging.info('Apply gradient multipliers: \n%s', json.dumps(gradient_multipliers, indent=2)) def transform_grads_fn(grads): if gradient_multipliers: grads = tf.contrib.training.multiply_gradients( grads, gradient_multipliers) if train_config.HasField('max_gradient_norm'): grads = tf.contrib.training.clip_gradient_norms( grads, max_norm=train_config.max_gradient_norm) return grads # The train_op is required for mode `TRAIN`. train_op = tf.contrib.training.create_train_op( total_loss, optimizer, variables_to_train=trainable_variables, transform_grads_fn=transform_grads_fn, summarize_gradients=True) if train_config.HasField('moving_average_decay'): scaffold = tf.train.Scaffold( saver=optimizer.swapping_saver(), copy_from_scaffold=scaffold) elif tf.estimator.ModeKeys.EVAL == mode: # The eval_metric_ops is optional for mode `EVAL`. eval_metric_ops = model.build_evaluation(predictions, examples=features) elif tf.estimator.ModeKeys.PREDICT == mode: # The predictions is required for mode `PREDICT`. predictions.update(features) predictions.update({'summary': tf.summary.merge_all()}) return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, loss=total_loss, train_op=train_op, training_hooks=training_hooks, eval_metric_ops=eval_metric_ops, scaffold=scaffold) return _model_fn
6,970
def boolean_automatic(meshes, operation, **kwargs): """ Automatically pick an engine for booleans based on availability. Parameters -------------- meshes : list of Trimesh Meshes to be booleaned operation : str Type of boolean, i.e. 'union', 'intersection', 'difference' Returns --------------- result : trimesh.Trimesh Result of boolean operation """ if interfaces.blender.exists: result = interfaces.blender.boolean(meshes, operation, **kwargs) elif interfaces.scad.exists: result = interfaces.scad.boolean(meshes, operation, **kwargs) else: raise ValueError('No backends available for boolean operations!') return result
6,971
def get_context(work=None): """Get a concrete Context object. Args: work (gmx.workflow.WorkSpec): runnable work as a valid gmx.workflow.WorkSpec object Returns: An object implementing the :py:class:`gmx.context.Context` interface, if possible. Raises: gmx.exceptions.ValueError if an appropriate context for ``work`` could not be loaded. If work is provided, return a Context object capable of running the provided work or produce an error. The semantics for finding Context implementations needs more consideration, and a more informative exception is likely possible. A Context can run the provided work if * the Context supports can resolve all operations specified in the elements * the Context supports DAG topologies implied by the network of dependencies * the Context supports features required by the elements with the specified parameters, such as synchronous array jobs. """ # We need to define an interface for WorkSpec objects so that we don't need # to rely on typing and inter-module dependencies. from .workflow import WorkSpec workspec = None if work is not None: if isinstance(work, WorkSpec): workspec = work elif hasattr(work, 'workspec') and isinstance(work.workspec, WorkSpec): workspec = work.workspec else: raise exceptions.ValueError('work argument must provide a gmx.workflow.WorkSpec.') if workspec is not None and \ hasattr(workspec, '_context') and \ workspec._context is not None: context = workspec._context else: context = Context(work=workspec) return context
6,972
def test_data(): """Get the `CIFAR-10` test data.""" global _MEAN # pylint: disable=global-statement _np.random.seed(1) view = _skdc10.view.OfficialImageClassificationTask() permutation = _np.random.permutation(range(10000)) if _MEAN is None: _MEAN = view.train.x.reshape((50000 * 32 * 32, 3)).mean(axis=0) return ((view.test.x[:10000, :][permutation, :] - _MEAN). transpose((0, 3, 1, 2)).astype('float32'), view.test.y[:10000][permutation].reshape((10000, 1)).astype('float32'))
6,973
def plotHistogram(dataframe,label): """ :param dataframe: dataframe object of data :param label: name of continous target variable :return: None """ plt.hist(dataframe[label], bins=10) plt.show()
6,974
def normalize_key_combo(key_combo): """Normalize key combination to make it easily comparable. All aliases are converted and modifier orders are fixed to: Control, Alt, Shift, Meta Letters will always be read as upper-case. Due to the native implementation of the key system, Shift pressed in certain key combinations may yield inconsistent or unexpected results. Therefore, it is not recommended to use Shift with non-letter keys. On OSX, Control is swapped with Meta such that pressing Command reads as Control. Parameters ---------- key_combo : str Key combination. Returns ------- normalized_key_combo : str Normalized key combination. """ key, modifiers = parse_key_combo(key_combo) if len(key) != 1 and key not in SPECIAL_KEYS: raise TypeError(f'invalid key {key}') for modifier in modifiers: if modifier not in MODIFIER_KEYS: raise TypeError(f'invalid modifier key {modifier}') return components_to_key_combo(key, modifiers)
6,975
def set_device_parameters(request): """Set up the class.""" if NAPALM_TEST_MOCK: driver = request.cls.patched_driver else: driver = request.cls.driver request.cls.device = driver( NAPALM_HOSTNAME, NAPALM_USERNAME, NAPALM_PASSWORD, timeout=60, optional_args=NAPALM_OPTIONAL_ARGS, ) request.cls.device.open()
6,976
def save_esco(G, features: bool): """ Saving the graph, wither with or without features """ if features: out_file = esco_out_file_features enrich_esco_graph_with_features(G) else: out_file = esco_out_file # no idea which labels to use and why... DGL doc could be a bit more explicit here! graph_labels = {"glabel": torch.tensor([0])} save_graphs(str(out_file), [G], graph_labels)
6,977
def shape_to_np(shape, dtype="int"): """ Used to convert from a shape object returned by dlib to an np array """ return np.array([[shape.part(i).x, shape.part(i).y] for i in range(68)], dtype=dtype)
6,978
def inet_pton(space, address): """ Converts a human readable IP address to its packed in_addr representation""" n = rsocket.inet_pton(rsocket.AF_INET, address) return space.newstr(n)
6,979
def delete_routing_segmentation_maps_from_source_segment( self, segment_id: int, ) -> bool: """Delete D-NAT policies for specific source segment .. list-table:: :header-rows: 1 * - Swagger Section - Method - Endpoint * - vrf - DELETE - /vrf/config/maps/{srcSegmentId} :param segment_id: Numeric id of routing segment :type segment_id: int :return: Returns True/False based on successful call :rtype: bool """ return self._delete( "/vrf/config/maps/{}".format(segment_id), expected_status=[204], return_type="bool", )
6,980
def load_bounding_boxes(dataset_dir): """ Load bounding boxes and return a dictionary of file names and corresponding bounding boxes """ # Paths bounding_boxes_path = os.path.join(dataset_dir, 'bounding_boxes.txt') file_paths_path = os.path.join(dataset_dir, 'images.txt') # Read bounding_boxes.txt and images.txt file df_bounding_boxes = pd.read_csv(bounding_boxes_path, delim_whitespace=True, header=None).astype(int) df_file_names = pd.read_csv(file_paths_path, delim_whitespace=True, header=None) # Create a list of file names file_names = df_file_names[1].tolist() # Create a dictionary of file_names and bounding boxes filename_boundingbox_dict = {img_file[:-4]: [] for img_file in file_names[:2]} # Assign a bounding box to the corresponding image for i in range(0, len(file_names)): # Get the bounding box bounding_box = df_bounding_boxes.iloc[i][1:].tolist() key = file_names[i][:-4] filename_boundingbox_dict[key] = bounding_box return filename_boundingbox_dict
6,981
def _replace_generator_docstring(package_path: Path, replacement: str) -> None: """ Replace the generator docstring in the __init__.py module. (see _parse_generator_docstring for more details). :param package_path: path to the :param replacement: the replacement to use. """ protocol_name = package_path.name init_module = Path(PROTOCOLS) / protocol_name / "__init__.py" content = init_module.read_text() content = re.sub(PROTOCOL_GENERATOR_DOCSTRING_REGEX, replacement, content) init_module.write_text(content)
6,982
def _identifier(name): """ :param name: string :return: name in lower case and with '_' instead of '-' :rtype: string """ if name.isidentifier(): return name return name.lower().lstrip('0123456789. ').replace('-', '_')
6,983
def roots(p): """ Return the roots of a polynomial with coefficients given in p. The values in the rank-1 array `p` are coefficients of a polynomial. If the length of `p` is n+1 then the polynomial is described by p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n] Parameters ---------- p : array_like of shape(M,) Rank-1 array of polynomial co-efficients. Returns ------- out : ndarray An array containing the complex roots of the polynomial. Raises ------ ValueError: When `p` cannot be converted to a rank-1 array. Examples -------- >>> coeff = [3.2, 2, 1] >>> print np.roots(coeff) [-0.3125+0.46351241j -0.3125-0.46351241j] """ # If input is scalar, this makes it an array p = atleast_1d(p) if len(p.shape) != 1: raise ValueError,"Input must be a rank-1 array." # find non-zero array entries non_zero = NX.nonzero(NX.ravel(p))[0] # Return an empty array if polynomial is all zeros if len(non_zero) == 0: return NX.array([]) # find the number of trailing zeros -- this is the number of roots at 0. trailing_zeros = len(p) - non_zero[-1] - 1 # strip leading and trailing zeros p = p[int(non_zero[0]):int(non_zero[-1])+1] # casting: if incoming array isn't floating point, make it floating point. if not issubclass(p.dtype.type, (NX.floating, NX.complexfloating)): p = p.astype(float) N = len(p) if N > 1: # build companion matrix and find its eigenvalues (the roots) A = diag(NX.ones((N-2,), p.dtype), -1) A[0, :] = -p[1:] / p[0] roots = eigvals(A) else: roots = NX.array([]) # tack any zeros onto the back of the array roots = hstack((roots, NX.zeros(trailing_zeros, roots.dtype))) return roots
6,984
def test_empty_jailer_id(test_microvm_with_ssh): """Test that the jailer ID cannot be empty.""" test_microvm = test_microvm_with_ssh # Set the jailer ID to None. test_microvm.jailer.jailer_id = "" # pylint: disable=W0703 try: test_microvm.spawn() # If the exception is not thrown, it means that Firecracker was # started successfully, hence there's a bug in the code due to which # we can set an empty ID. assert False except Exception as err: expected_err = "Jailer error: Invalid instance ID: invalid len (0);" \ " the length must be between 1 and 64" assert expected_err in str(err)
6,985
def download_object_file(bucket_name, source_filename=DEFAULT_MODEL_FILE, dest_filename=DEFAULT_MODEL_FILE): """Downloads file from bucket and saves in /tmp dir. Args: bucket_name (string): Bucket name. source_filename (string): Name of file stored in bucket. [default: model.joblib] dest_filename (string): Name of file stored in /tmp dir. [default: model.joblib] """ print(f"Downloading {bucket_name}/{source_filename} to /tmp/{dest_filename}") download_start = time.process_time() bucket = storage_client.bucket(bucket_name) blob = bucket.blob(source_filename) blob.download_to_filename(f"/tmp/{dest_filename}") download_stop = time.process_time() print(f"{'Model download took':25}: {download_stop-download_start}")
6,986
def test_unsilence_errors(tmp_path, capfd): """Check that HDF5 errors can be muted/unmuted from h5py""" filename = tmp_path / 'test.h5' # Unmute HDF5 errors try: h5py._errors.unsilence_errors() _access_not_existing_object(filename) captured = capfd.readouterr() assert captured.err != '' assert captured.out == '' # Mute HDF5 errors finally: h5py._errors.silence_errors() _access_not_existing_object(filename) captured = capfd.readouterr() assert captured.err == '' assert captured.out == ''
6,987
def calculate_trade_from_swaps( swaps: List[AMMSwap], trade_index: int = 0, ) -> AMMTrade: """Given a list of 1 or more AMMSwap (swap) return an AMMTrade (trade). The trade is calculated using the first swap token (QUOTE) and last swap token (BASE). Be aware that any token data in between will be ignored for calculating the trade. Examples: [USDC -> AMPL] BASE_QUOTE pair is AMPL_USDC. [USDC -> AMPL, AMPL -> WETH] BASE_QUOTE pair is WETH_USDC. [USDC -> AMPL, AMPL -> WETH, WETH -> USDC] BASE_QUOTE pair is USDC_USDC. May raise DeserializationError """ assert len(swaps) != 0, "Swaps can't be an empty list here" if swaps[0].amount0_in == ZERO: # Prevent a division by zero error when creating the trade. # Swaps with `tokenIn` amount (<AMMSwap>.amount0_in) equals to zero are # not expected nor supported. The function `deserialize_swap` will raise # a DeserializationError, preventing to store them in the DB. In case # of having a zero amount it means the db data was corrupted. log.error( 'Failed to deserialize swap from db. First swap amount0_in is zero', swaps=swaps, ) raise DeserializationError('First swap amount0_in is zero.') amm_trade = AMMTrade( trade_type=TradeType.BUY, # AMMTrade is always a buy base_asset=swaps[-1].token1, quote_asset=swaps[0].token0, amount=swaps[-1].amount1_out, rate=Price(swaps[0].amount0_in / swaps[-1].amount1_out), swaps=swaps, trade_index=trade_index, ) return amm_trade
6,988
def _show_scheduled_roles(account_number: str) -> None: """ Show scheduled repos for a given account. For each scheduled show whether scheduled time is elapsed or not. """ role_ids = get_all_role_ids_for_account(account_number) roles = RoleList.from_ids(role_ids) # filter to show only roles that are scheduled roles = roles.get_active().get_scheduled() header = ["Role name", "Scheduled", "Scheduled Time Elapsed?"] rows = [] curtime = int(time.time()) for role in roles: rows.append( [ role.role_name, dt.fromtimestamp(role.repo_scheduled).strftime("%Y-%m-%d %H:%M"), role.repo_scheduled < curtime, ] ) print(tabulate(rows, headers=header))
6,989
def tokenize(s): """ Tokenize a string. Args: s: String to be tokenized. Returns: A list of words as the result of tokenization. """ #return s.split(" ") return nltk.word_tokenize(s)
6,990
def evaluate(request): """Eval view that shows how many times each entry was tracked""" # default filter end_date = datetime.date.today() start_date = datetime.date(year=end_date.year, month=end_date.month - 1, day=end_date.day) num_entries = 5 # get custom filter values from form if request.method == 'POST': form = PlotForm(request.POST) if form.is_valid(): start_date = form.cleaned_data['start_date'] end_date = form.cleaned_data['end_date'] num_entries = form.cleaned_data['num_entries'] # or load empty form else: form = PlotForm(initial={'start_date': start_date, 'end_date': end_date, 'num_entries': num_entries}) # prepare chart data labels = [] chart_data = [] entry_counts = most_frequent_entries(request.user, start_date, end_date, number=num_entries) for entry, count in entry_counts.items(): labels.append(entry) chart_data.append(count) context = { 'form': form, # for chart.js 'labels': labels, 'chart_label': 'Num. Entries', 'chart_data': chart_data, 'chart_title': f'Top {num_entries} Most Common Entries', } return render(request, 'app/eval.html', context)
6,991
def plot_af_correlation(vf1, vf2, ax=None, figsize=None): """ Create a scatter plot showing the correlation of allele frequency between two VCF files. This method will exclude the following sites: - non-onverlapping sites - multiallelic sites - sites with one or more missing genotypes Parameters ---------- vf1, vf2 : VcfFrame VcfFrame objects to be compared. ax : matplotlib.axes.Axes, optional Pre-existing axes for the plot. Otherwise, crete a new one. figsize : tuple, optional Width, height in inches. Format: (float, float). Returns ------- matplotlib.axes.Axes The matplotlib axes containing the plot. Examples -------- .. plot:: :context: close-figs >>> from fuc import pyvcf, common >>> import matplotlib.pyplot as plt >>> data1 = { ... 'CHROM': ['chr1', 'chr1', 'chr1', 'chr1', 'chr1', 'chr1'], ... 'POS': [100, 101, 102, 103, 104, 105], ... 'ID': ['.', '.', '.', '.', '.', '.'], ... 'REF': ['G', 'T', 'G', 'T', 'A', 'C'], ... 'ALT': ['A', 'C', 'C', 'G,A', 'C', 'T'], ... 'QUAL': ['.', '.', '.', '.', '.', '.'], ... 'FILTER': ['.', '.', '.', '.', '.', '.'], ... 'INFO': ['.', '.', '.', '.', '.', '.'], ... 'FORMAT': ['GT:DP', 'GT', 'GT', 'GT', 'GT', 'GT'], ... 'A': ['0/1:30', '0/0', '1/1', '0/1', '1/1', '0/1'], ... 'B': ['0/0:30', '0/0', '0/1', '0/1', '1/1', '0/1'], ... 'C': ['1/1:30', '0/0', '1/1', '0/1', '1/1', '0/1'], ... 'D': ['0/0:30', '0/0', '0/0', '0/0', '1/1', '0/1'], ... 'E': ['0/0:30', '0/0', '0/0', '1/2', '1/1', '0/1'], ... } >>> vf1 = pyvcf.VcfFrame.from_dict([], data1) >>> data2 = { ... 'CHROM': ['chr1', 'chr1', 'chr1', 'chr1', 'chr1'], ... 'POS': [101, 102, 103, 104, 105], ... 'ID': ['.', '.', '.', '.', '.'], ... 'REF': ['T', 'G', 'T', 'A', 'C'], ... 'ALT': ['C', 'C', 'G,A', 'C', 'T'], ... 'QUAL': ['.', '.', '.', '.', '.'], ... 'FILTER': ['.', '.', '.', '.', '.'], ... 'INFO': ['.', '.', '.', '.', '.'], ... 'FORMAT': ['GT', 'GT', 'GT', 'GT', 'GT'], ... 'F': ['0/0', '0/1', '0/1', '1/1', '0/0'], ... 'G': ['0/0', '0/1', '0/1', '1/1', './.'], ... 'H': ['0/0', '0/1', '0/1', '1/1', '1/1'], ... 'I': ['0/0', '0/1', '0/0', '1/1', '1/1'], ... 'J': ['0/0', '0/1', '1/2', '1/1', '0/1'], ... } >>> vf2 = pyvcf.VcfFrame.from_dict([], data2) >>> pyvcf.plot_af_correlation(vf1, vf2) >>> plt.tight_layout() """ def one_gt(g): alleles = g.split(':')[0].split('/') alleles = [x for x in alleles if x != '0'] return len(alleles) def one_row(r): locus = f'{r.CHROM}-{r.POS}-{r.REF}-{r.ALT}' ac = r[9:].apply(one_gt).sum() if 'X' in r.CHROM or 'Y' in r.CHROM: total = len(r[9:]) else: total = len(r[9:]) * 2 af = ac / total return pd.Series([locus, af]) s1 = vf1.filter_multialt().filter_empty(threshold=1).df.apply(one_row, axis=1) s2 = vf2.filter_multialt().filter_empty(threshold=1).df.apply(one_row, axis=1) s1.columns = ['Locus', 'First'] s2.columns = ['Locus', 'Second'] s1 = s1.set_index('Locus') s2 = s2.set_index('Locus') df = pd.concat([s1, s2], axis=1).dropna() if ax is None: fig, ax = plt.subplots(figsize=figsize) sns.scatterplot(data=df, x='First', y='Second', ax=ax) return ax
6,992
def significant_pc_test(adata, p_cutoff=0.1, update=True, obsm='X_pca', downsample=50000): """ Parameters ---------- adata p_cutoff update obsm downsample Returns ------- """ pcs = adata.obsm[obsm] if pcs.shape[0] > downsample: print(f'Downsample PC matrix to {downsample} cells to calculate significant PC components') use_pcs = pd.DataFrame(pcs).sample(downsample).values else: use_pcs = pcs i = 0 for i in range(use_pcs.shape[1] - 1): cur_pc = use_pcs[:, i] next_pc = use_pcs[:, i + 1] p = ks_2samp(cur_pc, next_pc).pvalue if p > p_cutoff: break n_components = min(i + 1, use_pcs.shape[1]) print(f'{n_components} components passed P cutoff of {p_cutoff}.') if update: adata.obsm[obsm] = pcs[:, :n_components] print(f"Changing adata.obsm['X_pca'] from shape {pcs.shape} to {adata.obsm[obsm].shape}") return n_components
6,993
def files_from_output(folder): """Get list of result files from output log.""" files = [] with open(path.join(folder, "OUTPUT.out")) as out_file: for line in tqdm(out_file.readlines(), desc="Read files from output"): if line.find("+ -o") != -1: files.append(line.replace( "+ -o\t", "").replace("results/", "").strip()) elif line.find("+++ TASK ->") != -1 and line.find("output=") != -1: chunks = line.split("\t") for chunk in chunks: if chunk.find("output=") != -1: files.append(chunk.replace("output=", "").strip()) return files
6,994
def act_tags_and_rootlabels(): """ Create a CSV file named swda-actags-and-rootlabels.csv in which each utterance utt has its own row consisting of just utt.act_tag, utt.damsl_act_tag(), and utt.trees[0].node restricting attention to cases in which utt has a single, perfectly matching tree associated with it. """ csvwriter = csv.writer(open('swda-actags-and-rootlabels.csv', 'wt')) csvwriter.writerow(['ActTag', 'DamslActTag', 'RootNode']) corpus = CorpusReader('swda') for utt in corpus.iter_utterances(display_progress=True): if utt.tree_is_perfect_match(): csvwriter.writerow([utt.act_tag, utt.damsl_act_tag(), utt.trees[0].node])
6,995
def validate_file_name(file_name): """Validate file name.""" if not file_name: raise TypeError("Invalid filename!") if not isinstance(file_name, unicode): raise ValueError("Invalid filename!") if not os.path.isfile(file_name): raise IOError("File not exist: " + file_name)
6,996
def unique_hurricanes(hurdat): """ Returns header info for each unique hurricanes in HURDAT2-formatted text file hurdat. """ #split on returns if hurdat is not a list if not isinstance(hurdat, list): hurdat = hurdat.split('\n') header_rows = [parse_header( line, line_num ) for line_num, line in enumerate(hurdat) if parse_header( line, line_num )] keys = [h.keys()[0] for h in header_rows] values = [h.values()[0] for h in header_rows] return {k: v for k, v in zip(keys, values)}
6,997
def find_package_data(): """ Find package_data. """ theme_dirs = [] for dir, subdirs, files in os.walk(pjoin('jupyterlab', 'themes')): slice_len = len('jupyterlab' + os.sep) theme_dirs.append(pjoin(dir[slice_len:], '*')) schema_dirs = [] for dir, subdirs, files in os.walk(pjoin('jupyterlab', 'schemas')): slice_len = len('jupyterlab' + os.sep) schema_dirs.append(pjoin(dir[slice_len:], '*')) return { 'jupyterlab': ['build/*', '*.js', 'package.app.json', 'yarn.lock', 'yarn.app.lock', '.yarnrc' ] + theme_dirs + schema_dirs }
6,998
def EnableBE(): """ enables BE workloads, locally """ if st.k8sOn: command = 'kubectl label --overwrite nodes ' + st.node.name + ' hyperpilot.io/be-enabled=true' process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, \ stderr=subprocess.PIPE) _, stderr = process.communicate() if process.returncode != 0: print "Main:ERROR: Failed to enable BE on k8s: %s" % stderr
6,999