content
stringlengths 22
815k
| id
int64 0
4.91M
|
---|---|
def arraySeries(dates, values, observedproperty, unit):
"""
Display time series in tabular format.
arguments:
>>> dates:
list of 'datetime.datetime' objects containing entries of
time series date and time column.
>>> values:
list of float objects containing entries of time series value
column.
>>> observedproperty:
(string).
>>> unit:
unit of measured observed property (string).
"""
if dates == [] or values == []:
pass
else:
global view
view = QtGui.QTableView()
model = QtGui.QStandardItemModel(len(values), 2)
model.setHorizontalHeaderItem(0, QtGui.QStandardItem("Date"))
model.setHorizontalHeaderItem(
1, QtGui.QStandardItem(observedproperty + "(" + unit +")"))
for i in range(len(values)):
model.setItem(i, 0, QtGui.QStandardItem(str(dates[i])))
model.setItem(i, 1, QtGui.QStandardItem(str(values[i])))
view.setModel(model)
view.setWindowTitle('Time series table view')
view.show()
| 6,800 |
def download(auth, url, headers, output_path, size, overwrite,
f_name=None,
ext=None,
block_size=4096,
callback=None):
"""
Call GET for a file stream.
:Args:
- auth (:class:`.Credentials`): The session credentials object.
- url (str): The complete endpoint URL.
- headers (dict): The headers to be used in the request.
- output_path (str): Full file path to download the data to.
- size (int): File size of the file to be downloaded as retrieved
by a HEAD request.
- overwrite (bool): If ``True``, download the new data over an
existing file.
:Kwargs:
- f_name (str): Used to specify a filename if one is not already
included in the URL. The default is ``None``.
- ext (str): Used to specify a file extension if one is not already
included in the URL. The default is ``None``.
- block_size (int): Used to vary the upload chunk size.
The default is 4096 bytes. Determines the frequency with which the
callback is called.
- callback (func): A function to be called to report download progress.
The function must take three arguments: the percent downloaded (float), the
bytes downloaded (float), and the total bytes to be downloaded (float).
:Returns:
- The raw server response.
:Raises:
- :exc:`.RestCallException` is the call failed, a file operation
failed, or returned a non-200 status.
"""
filename = filename_from_url(url, ext) if not f_name else f_name
downloadfile = os.path.join(output_path, filename)
if os.path.exists(downloadfile) and not overwrite:
LOG.warning(
"File {0} already exists. Not overwriting.".format(downloadfile))
return True
LOG.debug("GET call URL: {0}, callback: {1}, file: "
"{2}, size: {3}, overwrite: {4}, block_size: {5}".format(url,
callback,
downloadfile,
size,
overwrite,
block_size))
LOG.info("Starting download to {0}".format(downloadfile))
if size > 0:
data_downloaded = float(0)
use_callback = hasattr(callback, "__call__")
try:
with open(downloadfile, "wb") as handle:
response = _call(auth, 'GET', url, headers=headers, stream=True)
for block in response.iter_content(block_size):
if not block:
LOG.info("Download complete")
break
handle.write(block)
if size > 0 and use_callback:
data_downloaded += len(block)
callback(float(data_downloaded/size*100), data_downloaded, float(size))
return response
except RestCallException:
try:
os.remove(downloadfile)
except:
pass
raise
except EnvironmentError as exp:
try:
os.remove(downloadfile)
except:
pass
raise RestCallException(type(exp), str(exp), exp)
| 6,801 |
def to_int(matrix):
"""
Funciton to convert the eact element of the matrix to int
"""
for row in range(rows(matrix)):
for col in range(cols(matrix)):
for j in range(3):
matrix[row][col][j] = int(matrix[row][col][j])
return matrix
| 6,802 |
def create_tastypie_resource(class_inst):
"""
Usage: url(r'^api/', include(create_tastypie_resource(UfsObjFileMapping).urls)),
Access url: api/ufs_obj_file_mapping/?format=json
:param class_inst:
:return:
"""
return create_tastypie_resource_class(class_inst)()
| 6,803 |
def make_collector(entries):
""" Creates a function that collects the location data from openLCA. """
def fn(loc):
entry = [loc.getCode(), loc.getName(), loc.getRefId()]
entries.append(entry)
return fn
| 6,804 |
def apiname(funcname):
""" Define what name the API uses, the short or the gl version.
"""
if funcname.startswith('gl'):
return funcname
else:
if funcname.startswith('_'):
return '_gl' + funcname[1].upper() + funcname[2:]
else:
return 'gl' + funcname[0].upper() + funcname[1:]
| 6,805 |
def add_numeric_gene_pos(gene_info):
"""
Add numeric gene (start) genomic position to a gene_info dataframe
"""
gene_chr_numeric = gene_info['chr']
gene_chr_numeric = ['23' if x == 'X' else x for x in gene_chr_numeric]
gene_chr_numeric = ['24' if x == 'Y' else x for x in gene_chr_numeric]
gene_start_vec = gene_info['start']
gene_start_vec = [str(x).zfill(10) for x in gene_start_vec]
gene_pos_numeric = [x + '.' + y for x, y in zip(gene_chr_numeric, gene_start_vec)]
gene_pos_numeric = np.array([float(x) for x in gene_pos_numeric])
gene_info['genome_pos_numeric'] = gene_pos_numeric
return gene_info
| 6,806 |
def read_list_from_file(filename: str) -> set:
"""Build a set from a simple multiline text file.
Args:
filename: name of the text file
Returns:
a set of the unique lines from the file
"""
filepath = pathlib.Path(__file__).parent.joinpath(filename)
lines = filepath.read_text().splitlines()
return set(lines)
| 6,807 |
def test_machine_status(
requests_mock: Mocker,
mock_hqs_api_handler: HoneywellQAPI,
) -> None:
"""Test that we can retrieve the machine state via Honeywell endpoint."""
machine_name = "HQS-LT-S1-APIVAL"
mock_machine_state = "online"
mock_url = f"https://qapi.honeywell.com/v1/machine/{machine_name}"
requests_mock.register_uri(
"GET",
mock_url,
json={"state": mock_machine_state},
headers={"Content-Type": "application/json"},
)
assert mock_hqs_api_handler.status(machine_name) == mock_machine_state
# Delete authentication tokens to clean them from the keyring
mock_hqs_api_handler.delete_authentication()
| 6,808 |
def process_poc_output(poc_list, target, verbose, quiet):
"""Write the finalized netblocks to a CSV file.
Args:
poc_list: A list of point of contact information from ARIN.
target: The company the PoC information was gathered for.
verbose: A boolean that indicates whether verbose status messages
should be printed.
quiet: A boolean that indicates that all status messages should be
disabled.
"""
poc_list_unique = []
poc_list = sorted(set(tuple(item) for item in poc_list))
for contact in poc_list:
poc_list_unique.append(list(contact))
if poc_list_unique:
try:
with open(process_output_name(target)+'_contacts.csv', 'w') as output_file:
writer = csv.writer(output_file, delimiter=',', lineterminator='\n')
writer.writerow(['Name', 'Company', 'Address', 'Emails', 'Phone Numbers'])
for contact in poc_list_unique:
writer.writerow(contact)
print('\n[*] Point of contact data written to',
process_output_name(target)+'_contacts.csv')
except IOError:
print('\n[!] WARNING: Error with filename',
process_output_name(target)+'_contacts.csv')
## TODO: replace input() so that no user input is ever required
output = str(input('[+] Please enter a new filename (no extension): '))
if output:
output = 'retrieved_contacts'
output = process_output_name(output)
output += '.csv'
with open(output, 'w', newline='') as output_file:
writer = csv.writer(output_file, delimiter=',', lineterminator='\n')
writer.writerow(['Name', 'Company', 'Address', 'Emails', 'Phone Numbers'])
for contact in poc_list_unique:
writer.writerow(contact)
print('\n[*] Point of contact data written to', output)
| 6,809 |
def parseAnswerA(answer, index, data):
"""
parseAnswerA(data): Grab our IP address from an answer to an A query
"""
retval = {}
text = (str(answer[0]) + "." + str(answer[1])
+ "." + str(answer[2]) + "." + str(answer[3]))
retval["ip"] = text
#
# TODO: There may be pointers even for A responses. Will have to check into this later.
#
retval["sanity"] = []
return(retval, text)
| 6,810 |
def calc_initial_conditions(state):
"""
calculate dyn. enthalp, etc
"""
vs = state.variables
if npx.any(vs.salt < 0.0):
raise RuntimeError("encountered negative salinity")
vs.update(calc_initial_conditions_kernel(state))
| 6,811 |
def qlCleanCache(cloth):
"""Clean layback cache for given cloth. Accepts qlCloth object"""
cmds.select(cloth)
mel.eval('qlClearCache()')
| 6,812 |
def test_toggle_off_show_all_files(editorstack, outlineexplorer, test_files):
"""
Test that toggling off the option to show all files in the Outline Explorer
hide all root file items but the one corresponding to the currently
selected Editor and assert that the remaning root file item is
expanded correctly.
"""
editorstack = editorstack(test_files)
treewidget = outlineexplorer.treewidget
assert editorstack.get_stack_index() == 0
# Untoggle show all files option.
treewidget.toggle_show_all_files(False)
results = [item.text(0) for item in treewidget.get_visible_items()]
assert results == ['foo1.py', 'foo']
| 6,813 |
def _get_files(data_path, modality, img_or_label):
"""Gets files for the specified data type and dataset split.
Args:
data: String, desired data ('image' or 'label').
dataset_split: String, dataset split ('train', 'val', 'test')
Returns:
A list of sorted file names or None when getting label for
test set.
"""
if "CT" in modality:
subject_path = os.path.join(data_path, _FOLDERS_MAP[img_or_label])
elif "MR" in modality:
subject_path = os.path.join(data_path, _MODALITY_MAP[modality][1], _FOLDERS_MAP[img_or_label])
if "MR_T1" in modality and _FOLDERS_MAP[img_or_label]==_FOLDERS_MAP["image"]:
subject_path = os.path.join(subject_path, _MODALITY_MAP[modality][2])
else:
raise ValueError("Unknown data modality")
filenames = file_utils.get_file_list(subject_path,
fileStr=_POSTFIX_MAP[modality][img_or_label],
fileExt=[_DATA_FORMAT_MAP[img_or_label]],
sort_files=True)
return filenames
| 6,814 |
def _parse_args() -> argparse.Namespace:
"""Registers the script's arguments on an argument parser."""
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('--source-root',
type=Path,
required=True,
help='Prefix to strip from the source files')
parser.add_argument('sources',
type=Path,
nargs='*',
help='Files to mirror to the directory')
parser.add_argument('--directory',
type=Path,
required=True,
help='Directory to which to mirror the sources')
parser.add_argument('--path-file',
type=Path,
help='File with paths to files to mirror')
return parser.parse_args()
| 6,815 |
def stderr(string):
"""
Print the given ``string`` to stderr. This is equivalent to ``print >>
sys.stderr, string``
"""
print >> sys.stderr, string
| 6,816 |
def qlist(q):
"""Convenience function that converts asyncio.Queues into lists.
This is inefficient and should not be used in real code.
"""
l = []
# get the messages out
while not q.empty():
l.append(q.get_nowait())
# now put the messages back (since we popped them out)
for i in l[::-1]:
q.put_nowait(item)
return l
| 6,817 |
def is_stdin(name):
"""Tell whether or not the given name represents stdin."""
return name in STDINS
| 6,818 |
def filter_marker_y_padding(markers_y_indexes, padding_y_top, padding_y_bottom):
"""
Filter the markers indexes for padding space in the top and bottom of answer sheet
:param markers_y_indexes:
:param padding_y_top:
:param padding_y_bottom:
:return:
"""
return markers_y_indexes[(markers_y_indexes > padding_y_top)
& (markers_y_indexes < padding_y_bottom)]
| 6,819 |
def budget_italy(path):
"""Budget Shares for Italian Households
a cross-section from 1973 to 1992
*number of observations* : 1729
*observation* : households
*country* : Italy
A dataframe containing :
wfood
food share
whouse
housing and fuels share
wmisc
miscellaneous share
pfood
food price
phouse
housing and fuels price
pmisc
miscellaneous price
totexp
total expenditure
year
year
income
income
size
household size
pct
cellule weight
Bollino, Carlo Andrea, Frederico Perali and Nicola Rossi (2000) “Linear
household technologies”, *Journal of Applied Econometrics*, **15(3)**,
253–274.
Args:
path: str.
Path to directory which either stores file or otherwise file will
be downloaded and extracted there.
Filename is `budget_italy.csv`.
Returns:
Tuple of np.ndarray `x_train` with 1729 rows and 11 columns and
dictionary `metadata` of column headers (feature names).
"""
import pandas as pd
path = os.path.expanduser(path)
filename = 'budget_italy.csv'
if not os.path.exists(os.path.join(path, filename)):
url = 'http://dustintran.com/data/r/Ecdat/BudgetItaly.csv'
maybe_download_and_extract(path, url,
save_file_name='budget_italy.csv',
resume=False)
data = pd.read_csv(os.path.join(path, filename), index_col=0,
parse_dates=True)
x_train = data.values
metadata = {'columns': data.columns}
return x_train, metadata
| 6,820 |
def hr_admin(request):
""" Views for HR2 Admin page """
template = 'hr2Module/hradmin.html'
# searched employee
query = request.GET.get('search')
if(request.method == "GET"):
if(query != None):
emp = ExtraInfo.objects.filter(
Q(user__first_name__icontains=query) |
Q(user__last_name__icontains=query)
).distinct()
emp = emp.filter(user_type="faculty")
else:
emp = ExtraInfo.objects.all()
emp = emp.filter(user_type="faculty")
else:
emp = ExtraInfo.objects.all()
emp = emp.filter(user_type="faculty")
context = {'emps': emp}
return render(request, template, context)
| 6,821 |
def create_aws_clients(region='us-east-1'):
"""Creates an S3, IAM, and Redshift client to interact with.
Parameters
----------
region : str
The aws region to create each client (default 'us-east-1').
Returns
-------
ec3
A boto3 ec2 resource.
s3
A boto3 s3 resource.
iam
A boto3 iam client.
redshift
A boto3 redshift client.
"""
ec2 = boto3.resource(
'ec2',
region_name=region,
aws_access_key_id=KEY,
aws_secret_access_key=SECRET
)
s3 = boto3.resource(
's3',
region_name=region,
aws_access_key_id=KEY,
aws_secret_access_key=SECRET
)
iam = boto3.client(
'iam',
region_name=region,
aws_access_key_id=KEY,
aws_secret_access_key=SECRET
)
redshift = boto3.client(
'redshift',
region_name=region,
aws_access_key_id=KEY,
aws_secret_access_key=SECRET
)
return ec2, s3, iam, redshift
| 6,822 |
def apply_function(f, *args, **kwargs):
""" Apply a function or staticmethod/classmethod to the given arguments.
"""
if callable(f):
return f(*args, **kwargs)
elif len(args) and hasattr(f, '__get__'):
# support staticmethod/classmethod
return f.__get__(None, args[0])(*args, **kwargs)
else:
assert False, "expected a function or staticmethod/classmethod"
| 6,823 |
def test_precursormz_match_tolerance2_array_ppm():
"""Test with array and tolerance=2 and type=ppm."""
spectrum_1 = Spectrum(mz=numpy.array([], dtype="float"),
intensities=numpy.array([], dtype="float"),
metadata={"precursor_mz": 100.0})
spectrum_2 = Spectrum(mz=numpy.array([], dtype="float"),
intensities=numpy.array([], dtype="float"),
metadata={"precursor_mz": 101.0})
spectrum_a = Spectrum(mz=numpy.array([], dtype="float"),
intensities=numpy.array([], dtype="float"),
metadata={"precursor_mz": 99.99})
spectrum_b = Spectrum(mz=numpy.array([], dtype="float"),
intensities=numpy.array([], dtype="float"),
metadata={"precursor_mz": 98.0})
similarity_score = PrecursorMzMatch(tolerance=101.0, tolerance_type="ppm")
scores = similarity_score.matrix([spectrum_1, spectrum_2],
[spectrum_a, spectrum_b])
assert numpy.all(scores == numpy.array([[True, False],
[False, False]])), "Expected different scores."
| 6,824 |
def join_data(ycom_county, census, land_area_data):
"""
Getting one dataframe from the three datasets
"""
census['LogPopDensity'] = np.log10(census['TotalPop']/land_area_data['LND110200D'])
data = pd.concat(([ycom_county, census]), axis=1)
return data
| 6,825 |
def _createController(config):
"""
Creates the appropriate (hypervisor) controller based on the
given configuration.
This is the place where to perform particular initialization tasks for
the particular hypervisor controller implementations.
@param config: an instance of L{ConfigParser}
"""
hv = config.get('hypervisor', 'name')
hvMod = None
logger.debug("Hypervisor specified in config: '%s'" % hv)
fqHvName = "%s.%s" % (CONTROLLERS_PATH, hv)
try:
hvPkg = __import__(fqHvName, globals=globals(), level=-1)
hvMod = getattr(hvPkg, hv)
except ImportError, e:
msg = "Hypervisor '%s' is not supported. Error: %s" % (hv, e)
logger.fatal(msg)
raise exceptions.ConfigError(msg)
logger.info("Using %s as the HyperVisor" % hvMod.__name__)
return hvMod
| 6,826 |
def main():
"""
Paths from phone and bounder for Skyfall data set
"""
is_export_bounder_csv: bool = False # If true, save only episode start to end as csv
# Concentrate on single station
phone_id = "1637610021"
# Load for all stations
loc_fields = ['station_id',
'location_epoch_s',
'location_latitude',
'location_longitude',
'location_altitude',
'location_speed',
'location_horizontal_accuracy',
'barometer_epoch_s',
'barometer_wf_raw']
df_loc = sf_dw.dw_main(skyfall_config.tdr_load_method)[loc_fields]
print(f'Dimensions (# of rows, # of columns): {df_loc.shape}')
# Pick only the balloon station
m_list = df_loc.index[df_loc['station_id'] == phone_id]
m = m_list[0]
phone_loc = df_loc.iloc[m]
# Verify
if phone_loc.size != df_loc.shape[1]:
print(f"Error: Station selected does not match # of bounder columns; "
f"station({phone_loc.size}) != bounder({df_loc.shape[1]})")
raise ValueError("Station # columns does not match bounder # columns")
# print(f'Verify that balloon station selected matches # of columns: {phone_loc.shape}')
# Bounder data is a standard rectangular matrix
if not os.path.exists(BOUNDER_PATH):
print("Bounder input directory does not exist, check path:")
print(BOUNDER_PATH)
exit()
if skyfall_config.is_rerun_bounder:
bounder_data(BOUNDER_PATH, BOUNDER_FILE, BOUNDER_PQT_FILE)
print('Constructing bounder.parquet file')
# Load parquet with bounder data fields
print('Load Bounder parquet:')
bounder_loc = pd.read_parquet(os.path.join(BOUNDER_PATH, BOUNDER_PQT_FILE))
print(f'Dimensions (# of rows, # of columns): {bounder_loc.shape}')
print(f'Available columns: {bounder_loc.columns}')
# Remove bounder repeated values and NaNs
# DataWindow should be cleared of nans
# phone_loc = phone_loc[~phone_loc['location_epoch_s'].duplicated(keep='first')].dropna()
bounder_loc = bounder_loc[~bounder_loc['Epoch_s'].duplicated(keep='first')].dropna()
# Bounder clock, initial, and final conditions
print('\nBounder Start Time:', bounder_loc['Datetime'].iloc[0])
print('Bounder Start Epoch s:', bounder_loc['Epoch_s'].iloc[0])
print('Bounder Start Lat:', bounder_loc['Lat_deg'].iloc[0])
print('Bounder Start Lon:', bounder_loc['Lon_deg'].iloc[0])
print('Bounder Start Alt:', bounder_loc['Alt_m'].iloc[0])
print('\nBounder End Time:', bounder_loc['Datetime'].iloc[-1])
print('Bounder Terminus Parameters (Ref):')
print('Bounder Ref Epoch s:', bounder_loc['Epoch_s'].iloc[-1])
print('Bounder Ref Lat:', bounder_loc['Lat_deg'].iloc[-1])
print('Bounder Ref Lon:', bounder_loc['Lon_deg'].iloc[-1])
print('Bounder Ref Alt:', bounder_loc['Alt_m'].iloc[-1])
# Bounder sample interval and standard deviation
bounder_sample_interval_s = np.mean(np.diff(bounder_loc['Epoch_s']))
bounder_interval_std_s = np.std(np.diff(bounder_loc['Epoch_s']))
print('Bounder sample interval, s:', bounder_sample_interval_s)
print('Bounder standard dev, s:', bounder_interval_std_s)
if is_export_bounder_csv:
# Export Initial and Final states to CSV
print(f"Export Bounder initial and final states to CSV. Path: "
f"{os.path.join(BOUNDER_PATH, skyfall_config.event_name + '_bounder_start_end.csv')}")
file_bounder_start_end_csv = os.path.join(BOUNDER_PATH, skyfall_config.event_name
+ '_bounder_start_end.csv')
bounder_specs_to_csv(df=bounder_loc, csv_export_file=file_bounder_start_end_csv)
# Compare to phone
phone_datetime_start = dt.datetime_from_epoch_seconds_utc(phone_loc['location_epoch_s'][0])
phone_datetime_end = dt.datetime_from_epoch_seconds_utc(phone_loc['location_epoch_s'][-1])
print('Phone loc start:', phone_datetime_start)
print('Phone loc end:', phone_datetime_end)
# Use atmospheric pressure to construct an elevation model
elevation_model = rpd_geo.bounder_model_height_from_pressure(pressure_kPa=bounder_loc['Pres_kPa'])
plt.figure()
plt.semilogx(bounder_loc['Pres_kPa'], bounder_loc['Alt_m']*METERS_TO_KM, label='data')
plt.semilogx(bounder_loc['Pres_kPa'], elevation_model*METERS_TO_KM, '-.', label='polynomial')
plt.legend()
plt.ylabel('Height, km')
plt.xlabel('Pressure, kPa')
# plt.title('Bounder Pressure vs Height')
# Compute ENU projections
txyzuvw_phone = \
rpd_geo.compute_t_xyz_uvw(unix_s=phone_loc['location_epoch_s'],
lat_deg=phone_loc['location_latitude'],
lon_deg=phone_loc['location_longitude'],
alt_m=phone_loc['location_altitude'],
ref_unix_s=ref_epoch_s,
ref_lat_deg=ref_latitude_deg,
ref_lon_deg=ref_longitude_deg,
ref_alt_m=ref_altitude_m)
txyzuvw_bounder = \
rpd_geo.compute_t_xyz_uvw(unix_s=bounder_loc['Epoch_s'],
lat_deg=bounder_loc['Lat_deg'],
lon_deg=bounder_loc['Lon_deg'],
alt_m=bounder_loc['Alt_m'],
ref_unix_s=ref_epoch_s,
ref_lat_deg=ref_latitude_deg,
ref_lon_deg=ref_longitude_deg,
ref_alt_m=ref_altitude_m)
# Internal Bounder temperature is coarse, 1C steps
plt.figure()
plt.plot(txyzuvw_bounder['T_s']*SECONDS_TO_MINUTES, bounder_loc['Temp_C'])
plt.title("Skyfall Bounder, Temperature vs Elapsed Time")
plt.xlabel('Elapsed Time, minutes')
plt.ylabel('Temp, C')
# Scatter plots are cool
scatter_dot_size = 24
scatter_colormap = 'inferno'
# Phone plots
# 3D scatter plot, LAT LON
# title_str = "Skyfall Path, Phone"
title_str = ""
geo_scatter.location_3d(x=phone_loc['location_longitude'],
y=phone_loc['location_latitude'],
z=phone_loc['location_altitude']*METERS_TO_KM,
color_guide=txyzuvw_phone['T_s']*SECONDS_TO_MINUTES,
fig_title=title_str,
x_label='Lat', y_label='Lon', z_label='Z, km',
color_label='Elapsed time, minutes',
dot_size=scatter_dot_size, color_map=scatter_colormap,
azimuth_degrees=-134, elevation_degrees=30)
# 3D speed quiver plot, velocity
geo_scatter.loc_quiver_3d(x=txyzuvw_phone['X_m']*METERS_TO_KM,
y=txyzuvw_phone['Y_m']*METERS_TO_KM,
z=txyzuvw_phone['Z_m']*METERS_TO_KM,
u=txyzuvw_phone['U_mps'],
v=txyzuvw_phone['V_mps'],
w=txyzuvw_phone['W_mps'],
color_guide=txyzuvw_phone['T_s']*SECONDS_TO_MINUTES,
fig_title=title_str,
x_label='X, km', y_label='Y, km', z_label='Z, km',
color_label='Elapsed time, minutes',
dot_size=scatter_dot_size, color_map=scatter_colormap,
azimuth_degrees=-134, elevation_degrees=30,
arrow_length=0.05)
# XYZ-T
geo_scatter.location_3d(x=txyzuvw_bounder['X_m']*METERS_TO_KM,
y=txyzuvw_bounder['Y_m']*METERS_TO_KM,
z=txyzuvw_bounder['Z_m']*METERS_TO_KM,
color_guide=txyzuvw_bounder['T_s']*SECONDS_TO_MINUTES,
fig_title=title_str,
x_label='X, km', y_label='Y, km', z_label='Z, km',
color_label='Elapsed time, minutes',
dot_size=scatter_dot_size, color_map=scatter_colormap,
azimuth_degrees=-80, elevation_degrees=25)
#
# XYZ-P
# title_str = "Skyfall, Bounder"
title_str = ""
geo_scatter.location_3d(x=txyzuvw_bounder['X_m']*METERS_TO_KM,
y=txyzuvw_bounder['Y_m']*METERS_TO_KM,
z=txyzuvw_bounder['Z_m']*METERS_TO_KM,
color_guide=bounder_loc['Pres_kPa'],
fig_title=title_str,
x_label='X, km', y_label='Y, km', z_label='Z, km',
color_label='Pressure, kPa',
dot_size=scatter_dot_size, color_map=scatter_colormap,
azimuth_degrees=-80, elevation_degrees=25)
# XYZ-Speed
geo_scatter.location_3d(x=txyzuvw_bounder['X_m']*METERS_TO_KM,
y=txyzuvw_bounder['Y_m']*METERS_TO_KM,
z=txyzuvw_bounder['Z_m']*METERS_TO_KM,
color_guide=txyzuvw_bounder['Speed_mps'],
fig_title=title_str,
x_label='X, km', y_label='Y, km', z_label='Z, km',
color_label='Speed, m/s',
dot_size=scatter_dot_size, color_map=scatter_colormap,
azimuth_degrees=-80, elevation_degrees=25)
# Overlay
# title_str = "Skyfall Path, Phone and Bounder"
title_str = ""
geo_scatter.loc_overlay_3d(x1=bounder_loc['Lon_deg'],
y1=bounder_loc['Lat_deg'],
z1=bounder_loc['Alt_m']*METERS_TO_KM,
dot_size1=9,
color1='grey',
legend1='Bounder',
alpha1=1,
x2=phone_loc['location_longitude'],
y2=phone_loc['location_latitude'],
z2=phone_loc['location_altitude']*METERS_TO_KM,
dot_size2=6,
color2='b',
legend2='Phone',
alpha2=0.6,
fig_title=title_str,
x_label='Lat', y_label='Lon', z_label='Z, km',
azimuth_degrees=-134, elevation_degrees=30)
plt.show()
| 6,827 |
def path_graph():
"""Return a path graph of length three."""
G = nx.path_graph(3, create_using=nx.DiGraph)
G.graph["name"] = "path"
nx.freeze(G)
return G
| 6,828 |
def dataset_to_cfl(dir_out, file_name, suffix="", file_png=None, verbose=False):
"""
Convert ISMRMRD to CFL files in specified directory.
Parameters
----------
dir_out : str
Output directory to write CFL files
file_name : str
Name of ISMRMRD file
suffix : str, optional
Suffix to attach to output file names
file_png : str, optional
If not None, a png file will be written out
verbose : bool, optional
Turn on/off verbose print outs
"""
kspace, header = load_ismrmrd_to_np(file_name, verbose=verbose)
if verbose:
print("Transforming k-space data to image domain...")
image = transform(kspace, header, verbose=verbose)
num_phases = kspace.shape[0]
num_echoes = kspace.shape[1]
if verbose:
print("Writing files...")
for i_phase in range(num_phases):
for i_echo in range(num_echoes):
suffix_i = suffix
if num_echoes > 1:
suffix_i = "_" + ("echo%02d" % i_echo) + suffix_i
if num_phases > 1:
suffix_i = "_" + ("phase%02d" % i_phase) + suffix_i
cfl.write(os.path.join(dir_out, "kspace" + suffix_i),
kspace[i_phase, i_echo, :, :, :, :, :])
cfl.write(os.path.join(dir_out, "image" + suffix_i),
image[i_phase, i_echo, :, :, :, :, :])
if file_png is not None:
if os.path.splitext(file_png)[1] != ".png":
file_png += ".png"
if verbose:
print("Writing example png ({})...".format(file_png))
energy = np.sum(np.abs(kspace) ** 2, axis=(-1, -2, -4))
i_phase, i_echo, i_slice, i_z = np.where(energy == energy.max())
image_out = image[i_phase[0], i_echo[0], i_slice[0], :, i_z[0], :, :]
image_out = np.sqrt(np.sum(np.abs(image_out) ** 2, axis=0))
image_out = image_out / np.max(image_out) * np.iinfo(np.uint8).max
imageio.imwrite(file_png, image_out.astype(np.uint8))
| 6,829 |
def dropStudentsWithEvents(df, events,
saveDroppedAs=None,
studentId='BookletNumber',
eventId='Label',
verbose=True):
"""
Drop students with certain events.
It finds students with the events, and use dropStudents() to drop them.
:param df: input data frame with data from multiple students
:param events: a list of events. Each event is a string of event name
:param saveDroppedAs: optionally saving the dropped data to a csv or pickle file. Remember to specify .csv or .pickle
:param studentId: name of the column containing the student ID info; default ot "BookletNumber"
:param eventId: name of the column containing the event name; default to "Label"
:param verbose: default to True
:return: a data frame with students having any of these events dropped.
"""
# error checks
assert (isinstance(df, pd.DataFrame))
for v in [studentId, eventId]:
assert (v in df.columns)
studentsToDrop = df.loc[df[eventId].isin(events), studentId].unique()
if verbose:
print("\ndropStudentsWithEvents:")
print(events)
return dropStudents(df, studentsToDrop, saveDroppedAs, studentId, verbose)
| 6,830 |
def get_html_app_files_dirs(output_file):
"""
Return a tuple of (parent_dir, dir_name) directory named after the
`output_file` file object file_base_name (stripped from extension) and a
`_files` suffix Return empty strings if output is to stdout.
"""
if is_stdout(output_file):
return '', ''
file_name = output_file.name
parent_dir = os.path.dirname(file_name)
dir_name = fileutils.file_base_name(file_name) + '_files'
return parent_dir, dir_name
| 6,831 |
def create_slides(user, node, slideshow_data):
""" Generate SlideshowSlides from data """
""" Returns a collection of SlideshowSlide objects """
slides = []
with transaction.atomic():
for slide in slideshow_data:
slide_obj = SlideshowSlide(
contentnode=node,
sort_order=slide.get("sort_order"),
metadata={
"caption": slide.get('caption'),
"descriptive_text": slide.get('descriptive_text'),
"checksum": slide.get('checksum'),
"extension": slide.get('extension')
}
)
slide_obj.save()
slides.append(slide_obj)
return slides
| 6,832 |
def is_valid(sequence):
"""
A string is not valid if the knight moves onto a blank square
and the string cannot contain more than two vowels.
"""
if any(letter == "_" for letter in sequence):
return False
# Check for vowels
# Strings shorter than 3 letters are always ok, as they
# can't contain more than two vowels
if len(sequence) < 3:
return True
# Check longer sequences for number of vowels
vowels="AEIUO"
num_vowels = len([v for v in sequence if v in vowels])
if num_vowels > 2:
return False
# Check for duplicate characters.
# The original question did not say anything about
# repeated characters, but ignoring them would lead to infinite
# sequences, such as AMAMAMA..., where the knight makes the same sequence
# of moves over and over again
if duplicate_characters(sequence):
return False
return True
| 6,833 |
def batch_dl1_to_dl2(
dict_paths,
config_file,
jobid_from_training,
batch_config,
logs,
):
"""
Function to batch the dl1_to_dl2 stage once the lstchain train_pipe batched jobs have finished.
Parameters
----------
dict_paths : dict
Core dictionary with {stage: PATHS} information
config_file : str
Path to a configuration file. If none is given, a standard configuration is applied
jobid_from_training : str
string containing the jobid from the jobs batched in the train_pipe stage, to be passed to the
dl1_to_dl2 function (as a slurm dependency)
batch_config : dict
Dictionary containing the (full) source_environment and the slurm_account strings to be passed to
dl1_dl2 function
logs: dict
Dictionary with logs files
Returns
-------
jobid_for_dl2_to_dl3 : str
string containing the jobids to be passed to the next stage of the workflow (as a slurm dependency)
"""
log_dl1_to_dl2 = {}
jobid_for_dl2_to_dl3 = []
debug_log = {}
log.info("==== START {} ==== \n".format("batch dl1_to_dl2_workflow"))
for paths in dict_paths:
job_logs, jobid = dl1_to_dl2(
paths["input"],
paths["output"],
path_models=paths["path_model"],
config_file=config_file,
wait_jobid_train_pipe=jobid_from_training,
batch_configuration=batch_config,
slurm_options=paths.get("slurm_options", None),
)
log_dl1_to_dl2.update(job_logs)
# Single particle dl1_dl2 jobid to be appended
jobid_for_dl2_to_dl3.append(jobid)
debug_log[jobid] = f"dl1_to_dl2 jobid that depends on : {jobid_from_training} training job"
jobid_for_dl2_to_dl3 = ",".join(jobid_for_dl2_to_dl3)
save_log_to_file(log_dl1_to_dl2, logs["log_file"], workflow_step="dl1_to_dl2")
save_log_to_file(debug_log, logs["debug_file"], workflow_step="dl1_to_dl2")
log.info("==== END {} ====".format("batch dl1_to_dl2_workflow"))
return jobid_for_dl2_to_dl3
| 6,834 |
def runCommands(cmds, localTempDir, inPipes=None, outPipes=None, errPipes=None):
""" Run commands from CMDS list.
"""
if inPipes is None:
inPipes = [None] * len(cmds)
if outPipes is None:
outPipes = [None] * len(cmds)
if errPipes is None:
errPipes = [None] * len(cmds)
for i, c in enumerate(cmds, 0):
if inPipes[i] is None:
sin = None
else:
sin = subprocess.PIPE
if outPipes[i] is None:
sout = None
else:
sout = subprocess.PIPE
if errPipes[i] is None:
serr = None
else:
serr = subprocess.PIPE
p = subprocess.Popen(c, cwd=localTempDir, stdin=sin,
stdout=sout, stderr=serr)
if inPipes[i] is None:
sin = None
else:
if not os.path.exists(inPipes[i]):
raise IOError('Unable to locate inPipe file: %s for command %s'
% (inPipes[i], ' '.join(c)))
sin = open(inPipes[i], 'r').read()
if outPipes[i] is None:
pout, perr = p.communicate(sin)
handleReturnCode(p.returncode, cmds[i])
else:
with open(outPipes[i], 'w') as f:
f.write(p.communicate(sin)[0])
handleReturnCode(p.returncode, cmds[i])
| 6,835 |
def podmanOcpRegistryLogin(ctx):
""" Log into the default registry of an OpenShift cluster """
ocLogin(ctx, ctx.cr.ocp.user)
cmd = 'podman login'
cmd += ' --tls-verify=false'
cmd += ' -u $(oc whoami) -p $(oc whoami --show-token)'
cmd += f' default-route-openshift-image-registry.apps.{ctx.cf.ocp.domain}'
out = CmdShell().run(cmd).out
if not out.startswith('Login Succeeded!'):
fail('podman login failed')
| 6,836 |
def browse():
"""
A browser for the bibmanager database.
"""
# Content of the text buffer:
bibs = bm.load()
keys = [bib.key for bib in bibs]
compact_text = "\n".join(keys)
expanded_text = "\n\n".join(bib.content for bib in bibs)
# A list object, since I want this to be a global variable
selected_content = [None]
lex_style = style_from_pygments_cls(
pygments.styles.get_style_by_name(cm.get('style')))
custom_style = Style.from_dict({
"status": "reverse",
"status.position": "#aaaa00",
"status.key": "#ffaa00",
"shadow": "bg:#440044",
"not-searching": "#888888",
})
style = merge_styles([lex_style, custom_style])
def get_menubar_text():
return [
("class:status", " ("),
("class:status.key", "enter"),
("class:status", ")select entry ("),
("class:status.key", "e"),
("class:status", ")xpand entry ("),
("class:status.key", "f"),
("class:status", ")ind ("),
("class:status.key", "s"),
("class:status", ")ave ("),
("class:status.key", "h"),
("class:status", ")elp ("),
("class:status.key", "q"),
("class:status", ")uit"),
]
def get_menubar_right_text():
"""Get index of entry under cursor."""
key = get_current_key(text_field.buffer.document, keys)
return f" {keys.index(key) + 1} "
def get_infobar_text():
"""Get author-year-title of entry under cursor."""
key = get_current_key(text_field.buffer.document, keys)
bib = bibs[keys.index(key)]
year = '' if bib.year is None else bib.year
title = 'NO_TITLE' if bib.title is None else bib.title
return f"{bib.get_authors('ushort')}{year}: {title}"
search_buffer = Buffer(
completer=WordCompleter(keys),
complete_while_typing=False,
multiline=False)
search_field = SearchToolbar(
search_buffer=search_buffer,
forward_search_prompt = "Search: ",
backward_search_prompt = "Search backward: ",
ignore_case=False)
text_field = TextArea(
text=compact_text,
lexer=PygmentsLexer(BibTeXLexer),
scrollbar=True,
line_numbers=False,
read_only=True,
search_field=search_field,
input_processors=[HighlightEntryProcessor()],
)
text_field.buffer.name = 'text_area_buffer'
text_field.is_expanded = False
# Shortcut to HighlightEntryProcessor:
for processor in text_field.control.input_processors:
if processor.__class__.__name__ == 'HighlightEntryProcessor':
text_field.bm_processor = processor
# Do not highlight searched text:
sp = text_field.control.default_input_processors[0]
sp._classname = ' '
sp._classname_current = ' '
menu_bar = VSplit([
Window(
FormattedTextControl(get_menubar_text),
style="class:status"),
Window(
FormattedTextControl(get_menubar_right_text),
style="class:status.right",
width=9,
align=WindowAlign.RIGHT),
],
height=1,
)
info_bar = Window(
content=FormattedTextControl(get_infobar_text),
height=D.exact(1),
style="class:status",
)
body = HSplit([
menu_bar,
text_field,
search_field,
info_bar,
])
root_container = FloatContainer(
content=body,
floats=[
Float(
xcursor=True,
ycursor=True,
content=CompletionsMenu(max_height=16, scroll_offset=1),
),
],
)
# Key bindings:
bindings = KeyBindings()
text_focus = Condition(
lambda: get_app().layout.current_window == text_field.window)
dialog_focus = Condition(
lambda: hasattr(get_app().layout.current_window, 'dialog'))
@bindings.add("q", filter=text_focus)
def _quit(event):
event.app.exit()
# Navigation:
@bindings.add("g", filter=text_focus)
def _go_to_first_line(event):
event.current_buffer.cursor_position = 0
@bindings.add("G", filter=text_focus)
def _go_to_last_line(event) -> None:
event.current_buffer.cursor_position = len(event.current_buffer.text)
@bindings.add("d", filter=text_focus)
def _scroll_down(event):
scroll_half_page_down(event)
@bindings.add("u", filter=text_focus)
def _scroll_up(event):
scroll_half_page_up(event)
@bindings.add("n", filter=text_focus)
def _find_next(event):
search_state = event.app.current_search_state
event.current_buffer.apply_search(
search_state, include_current_position=False, count=event.arg)
@bindings.add("N", filter=text_focus)
def _find_previous(event):
search_state = event.app.current_search_state
event.current_buffer.apply_search(
~search_state, include_current_position=False, count=event.arg)
@bindings.add("h", filter=text_focus)
def _show_help(event):
show_message("Shortcuts", help_message)
@bindings.add("f", filter=text_focus)
def _start_search(event):
search.start_search(direction=search.SearchDirection.FORWARD)
@bindings.add("b", filter=text_focus)
def _open_in_browser(event):
key = get_current_key(event.current_buffer.document, keys)
bib = bm.find(key=key, bibs=bibs)
if bib.adsurl is not None:
webbrowser.open(bib.adsurl, new=2)
else:
show_message("Message", f"Entry '{key}' does not have an ADS url.")
@bindings.add("c-c", filter=dialog_focus)
def _close_dialog(event):
get_app().layout.current_window.dialog.future.set_result(None)
@bindings.add("s", filter=text_focus)
def _save_selected_to_file(event):
selected = text_field.bm_processor.selected_entries
if len(selected) == 0:
show_message("Message", "Nothing to save.")
return
async def coroutine():
dialog = TextInputDialog(
title="Save to File",
label_text="\nEnter a file path or leave blank to quit "
"and print to screen:\n(press Control-c to cancel)\n",
completer=PathCompleter(),
)
path = await show_dialog_as_float(dialog)
content = '\n\n'.join(
bibs[keys.index(key)].content for key in selected)
if path == "":
selected_content[0] = content
# The program termination is in TextInputDialog() since I
# need to close this coroutine first.
return
if path is not None:
try:
with open(path, "w") as f:
f.write(content)
except IOError as e:
show_message("Error", str(e))
ensure_future(coroutine())
@bindings.add("enter", filter=text_focus)
def _toggle_selected_entry(event):
"Select/deselect entry pointed by the cursor."
key = get_current_key(event.current_buffer.document, keys)
text_field.bm_processor.toggle_selected_entry(key)
@bindings.add("e", filter=text_focus)
def _expand_collapse_entry(event):
"Expand/collapse current entry."
key, start_end, is_expanded = get_current_key(
event.current_buffer.document, keys,
get_start_end=True, get_expanded=True)
bib = bm.find(key=key, bibs=bibs)
if is_expanded:
event.app.clipboard.set_text(bib.key)
else:
event.app.clipboard.set_text(bib.content + '\n')
text_field.read_only = False
event.current_buffer.cursor_position = start_end[0]
event.current_buffer.delete(count=start_end[1] - start_end[0])
event.current_buffer.paste_clipboard_data(
event.app.clipboard.get_data(), count=event.arg,
paste_mode=PasteMode.VI_BEFORE)
text_field.read_only = True
if is_expanded:
event.current_buffer.cursor_position = start_end[0]
@bindings.add("E", filter=text_focus)
def _expand_collapse_all(event):
"Expand/collapse all entries."
buffer = event.current_buffer
key = get_current_key(buffer.document, keys)
if text_field.is_expanded:
text_field.text = compact_text
else:
text_field.text = expanded_text
buffer.cursor_position = buffer.text.index(key)
text_field.is_expanded = not text_field.is_expanded
@bindings.add("o", filter=text_focus)
def _open_pdf(event):
buffer = event.current_buffer
key = get_current_key(buffer.document, keys)
bib = bm.find(key=key, bibs=bibs)
has_pdf = bib.pdf is not None
has_bibcode = bib.bibcode is not None
is_missing = has_pdf and not os.path.exists(f'{u.BM_PDF()}{bib.pdf}')
if not has_pdf and not has_bibcode:
show_message("Message",
f"BibTeX entry '{key}' does not have a PDF.")
return
if has_pdf and not is_missing:
pm.open(key=key)
#except Exception as e:
# show_message("Message", textwrap.fill(str(e), width=70))
return
if has_pdf and is_missing and not has_bibcode:
show_message("Message",
f"BibTeX entry has a PDF file: {bib.pdf}, but the file "
"could not be found.")
return
# Need to fetch before opening:
async def coroutine():
dialog = MessageDialog(
"PDF file not found",
"Fetch from ADS?\n(might take a few seconds ...)",
asking=True)
fetch = await show_dialog_as_float(dialog)
if fetch:
with io.StringIO() as buf, redirect_stdout(buf):
fetched = pm.fetch(bib.bibcode, replace=True)
fetch_output = buf.getvalue()
if fetched is None:
show_message("PDF fetch failed", fetch_output)
else:
show_message("PDF fetch succeeded.", fetch_output)
pm.open(key=key)
ensure_future(coroutine())
application = Application(
layout=Layout(root_container, focused_element=text_field),
key_bindings=bindings,
enable_page_navigation_bindings=True,
style=style,
full_screen=True,
)
application.run()
if selected_content[0] is not None:
tokens = list(pygments.lex(selected_content[0], lexer=BibTeXLexer()))
print_formatted_text(
PygmentsTokens(tokens),
end="",
style=lex_style,
#output=create_output(sys.stdout),
)
| 6,837 |
def read_lines_from_input(file):
"""
Reads the provided file line by line to provide a list representation of the contained names.
:param file: A text file containing one name per line. If it's None, the input is read from the standard input.
:return: A list of the names contained in the provided text file
"""
if file is None:
file = sys.stdin
return map(lambda l: l.strip(), file.readlines())
| 6,838 |
def diag(input_, k=0):
"""Wrapper of `numpy.diag`.
Parameters
----------
input_ : DTensor
Input dense tensor.
k : int, optional
Offset to main diagonal, by default 0
"""
pass
| 6,839 |
def is_dataproc_VM():
"""Check if this installation is being executed on a Google Compute Engine dataproc VM"""
try:
dataproc_metadata = urllib.request.urlopen("http://metadata.google.internal/0.1/meta-data/attributes/dataproc-bucket").read()
if dataproc_metadata.decode("UTF-8").startswith("dataproc"):
return True
except:
pass
return False
| 6,840 |
def restore_tmux(tmux_id):
"""
retore tmux sessions by given backuped Tmux id
- check if there is tmux running and with same session name
- handle windows, panes ..
"""
#validate given tmux_id
LOG.info('loading backuped tmux sessions')
jsonfile = os.path.join(config.BACKUP_PATH,tmux_id,tmux_id+'.json')
LOG.debug('load json file:%s'% jsonfile )
tmux = util.json_to_obj(jsonfile)
LOG.debug('converted json file to Tmux object')
LOG.info('backuped tmux sessions loaded')
for sess in tmux.sessions:
LOG.debug('processing session name %s'%sess.name)
#check if session exists
if cmd.has_tmux_server() and cmd.has_session(sess.name):
LOG.warning('found session with same name in current tmux, \
skip restoring the session:%s.' % sess.name)
continue
restore_session(sess, tmux_id)
LOG.debug('check and kill dummy session')
if DUMMY_SESSION:
cmd.kill_session(DUMMY_SESSION)
LOG.info('Backup %s is restored! run "tmux list-sessions" to see sessions and attach'% tmux_id)
| 6,841 |
def lookup_all(base):
"""Looks up a subclass of a base class from the registry.
Looks up a subclass of a base class with name provided from the
registry. Returns a list of registered subclass if found, None otherwise.
Args:
base: The base class of the subclass to be found.
Returns:
A list of subclass of the name if found, None otherwise.
"""
basename = base.__name__
if basename not in _registries:
return None
registry = _registries[basename]
output = []
for name in registry.keys():
init_args = registry[name][_INIT_ARGS]
if init_args is not None:
output.append(registry[name][_TYPE_TAG](**init_args))
else:
output.append(registry[name][_TYPE_TAG])
return output
| 6,842 |
def makepyfile(testdir):
"""Fixture for making python files with single function and docstring."""
def make(*args, **kwargs):
func_name = kwargs.pop('func_name', 'f')
# content in args and kwargs is treated as docstring
wrap = partial(_wrap_docstring_in_func, func_name)
args = map(wrap, args)
kwargs = dict(zip(kwargs.keys(), map(wrap, kwargs.values())))
return testdir.makepyfile(*args, **kwargs)
return make
| 6,843 |
def _clean_environment(env_dir):
"""Remove problem elements in environmental directories.
- Get rid of old history comment lines that cause parsing failures:
https://github.com/bcbio/bcbio-nextgen/issues/2431
"""
history_file = os.path.join(env_dir, "conda-meta", "history")
if os.path.exists(history_file):
has_problem = False
cleaned_lines = []
with open(history_file) as in_handle:
for line in in_handle:
# Remove lines like `# create specs:` which have no information after colon
if line.startswith("#") and len([x for x in line.strip().split(":") if x]) == 1:
has_problem = True
else:
cleaned_lines.append(line)
if has_problem:
shutil.copy(history_file, history_file + ".orig")
with open(history_file, "w") as out_handle:
for line in cleaned_lines:
out_handle.write(line)
| 6,844 |
def test_good_input3():
"""runs on good input"""
run(rna, 'codons.dna', '-P-RPE-R---P--T-E')
| 6,845 |
def createTextWatermark(msg, size, loc, fontcolor='white', fontpath='arial.ttf', fontsize=18):
"""Creates a watermark image of the given text.
Puts it at the given location in an RGBA image of the given size.
Location should be a 2-tuple denoting the center location of the text."""
from PIL import Image, ImageDraw, ImageFont
im = Image.new('RGBA', size, (0,0,0,0))
draw = ImageDraw.Draw(im)
font = ImageFont.truetype(fontpath, fontsize)
tw, th = draw.textsize(msg, font=font)
loc = (loc[0] - tw//2, loc[1] - th//2)
draw.text(loc, msg, font=font, fill=fontcolor)
return im
| 6,846 |
def generate_bookmarks(inputfile, sections, outputfile):
"""Operate on INPUTFILE, optionally filtering for WORKSPACES."""
with open(inputfile, 'rb') as fh:
rawdata = fh.read()
if inputfile.endswith('.json'):
data = json.loads(rawdata)
elif inputfile.endswith('.txt'):
data = yaml_load(rawdata)
else:
raise Exception("Expecting yaml or json Workona export files")
output = make_bookmarks(data, filter_sections=sections)
with open(outputfile, 'w') as fh:
fh.write(output)
| 6,847 |
def _discover_on_demand():
"""
Attempts to discover operator modules, if not already discovered
"""
global _DISCOVERED
if not _DISCOVERED:
_DISCOVERED = True
discover_local_chemistry_operators()
discover_preferences_chemistry_operators()
if logger.isEnabledFor(logging.DEBUG):
logger.debug("Found: chemistry operators {} ".format(local_chemistry_operators()))
| 6,848 |
def get_server_pull_config(config:dict):
"""
takes a config dictionary and returns the variables related to server deployment (pull from intersections).
If there is any error in the configuration, returns a quadruple of -1 with a console output of the exception
"""
try:
server = config["DataTransfer"]["server"]
intersection = config["DataTransfer"]["intersection"]
startHour = config["DataTransfer"]["StartTime_PullFromIntersections"]["hour"]
startMinute = config["DataTransfer"]["StartTime_PullFromIntersections"]["minute"]
return server, intersection, startHour, startMinute
except Exception as e:
print(e)
return -1, -1, -1, -1
| 6,849 |
def buff_push(item: BufferItem):
"""
Add BufferItem to the buffer and execute if the buffer is full
"""
q.put(item)
make_dependencies(item)
if q.full():
return buff_empty_partial(q.maxsize - 1)
return None
| 6,850 |
def installDirectory():
"""
Return the software installation directory, by looking at location of this
method.
"""
#path = os.path.abspath(os.path.join(os.path.realpath(__file__), os.pardir))
path = os.path.abspath(os.path.realpath(__file__))
path = os.path.abspath(os.path.join(path, '../..'))
#path = path.replace("EGG-INFO/scripts/smodels-config", "")
#path = path.replace("installation.py", "")
return path + "/"
| 6,851 |
def test_post_requests_fails_with_invalid_invalid_target_date_in_body(
invalid_request_body_with_invalid_date, client, request_headers
):
"""
Tests that response shows failure when request body has invalid
target date.
Args:
invalid_request_body_with_invalid_string_length (dict): a request body
with invalid string length
client (FlaskClient): a test client created by a fixture.
request_headers (dict): a header created by a fixture.
"""
res = client.post(
requests_url(),
headers=request_headers,
json=invalid_request_body_with_invalid_date
)
response = res.get_json()
assert not response['success']
assert response['message'] == {
'target_date': ['date can only be a later time in the future']
}
assert res.status_code == 400
| 6,852 |
def take(count: int) -> Callable[[Observable], Observable]:
"""Returns a specified number of contiguous elements from the start
of an observable sequence.
.. marble::
:alt: take
-----1--2--3--4----|
[ take(2) ]
-----1--2-|
Example:
>>> op = take(5)
Args:
count: The number of elements to return.
Returns:
An operator function that takes an observable source and
returns an observable sequence that contains the specified
number of elements from the start of the input sequence.
"""
from rx.core.operators.take import _take
return _take(count)
| 6,853 |
def stock(self):
"""Market search google"""
search_term = self.query.split("for")[-1]
url = "https://google.com/search?q=" + search_term
webbrowser.get().open(url)
speak("Here is what I found for " + search_term + " on google")
| 6,854 |
def test_getitem(seas_metadict):
"""
Test `MetaDict.__getitem__(...)`
"""
assert seas_metadict['Norwegian'] == 'Europe'
assert seas_metadict['BALTIC'] != 'arctic'
with pytest.raises(KeyError):
seas_metadict['key-not-exists']
| 6,855 |
def _Net_batch(self, blobs):
"""
Batch blob lists according to net's batch size.
Take
blobs: Keys blob names and values are lists of blobs (of any length).
Naturally, all the lists should have the same length.
Give (yield)
batch: {blob name: list of blobs} dict for a single batch.
"""
num = len(next(iter(blobs.values())))
batch_size = iter(self.blobs.values()).next().num
remainder = num % batch_size
num_batches = num / batch_size
# Yield full batches.
for b in range(num_batches):
i = b * batch_size
yield {name: blobs[name][i:i + batch_size] for name in blobs}
# Yield last padded batch, if any.
if remainder > 0:
padded_batch = {}
for name in blobs:
padding = np.zeros((batch_size - remainder,)
+ blobs[name].shape[1:])
padded_batch[name] = np.concatenate([blobs[name][-remainder:],
padding])
yield padded_batch
| 6,856 |
def format_fields_for_join(
fields: List[Union[Field, DrivingKeyField]],
table_1_alias: str,
table_2_alias: str,
) -> List[str]:
"""Get formatted list of field names for SQL JOIN condition.
Args:
fields: Fields to be formatted.
table_1_alias: Alias that should be used in the field on the left side of the
equality sign.
table_2_alias: alias that should be used in the field on the right side of the
equality sign.
Returns:
Fields list formatted for an SQL JOIN condition.
"""
return [
JOIN_CONDITION_SQL_TEMPLATE.format(
field_name=field.name,
table_1_alias=table_1_alias,
table_2_alias=table_2_alias,
)
for field in fields
]
| 6,857 |
def get_payment_balance(currency):
"""
Returns available balance for selected currency
This method requires authorization.
"""
result = get_data("/payment/balances", ("currency", currency))
payment_balance = namedtuple("Payment_balance", get_namedtuple(result[0]))
return [payment_balance(**element) for element in result]
| 6,858 |
def build_scheduler(optimizer, config):
"""
"""
scheduler = None
config = config.__dict__
sch_type = config.pop('type')
if sch_type == 'LambdaLR':
burn_in, steps = config['burn_in'], config['steps']
# Learning rate setup
def burnin_schedule(i):
if i < burn_in:
factor = pow(i / burn_in, 4)
elif i < steps[0]:
factor = 1.0
elif i < steps[1]:
factor = 0.1
else:
factor = 0.01
return factor
scheduler = optim.lr_scheduler.LambdaLR(optimizer, burnin_schedule)
elif sch_type == 'StepLR':
# 等间隔调整学习率, 调整倍数为gamma倍,调整间隔为step_size,间隔单位是step,step通常是指epoch。
step_size, gamma = config['step_size'], config['gamma']
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma)
elif sch_type == 'ReduceLROnPlateau':
# 当某指标不再变化(下降或升高),调整学习率,这是非常实用的学习率调整策略。例如,当验证集的loss不再下降时,进行学习率调整;或者监测验证集的accuracy,当accuracy不再上升时,则调整学习率。
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.1,
patience=3, verbose=True, threshold=1e-4)
return scheduler
| 6,859 |
def calculate_z_caller(r, p, inv_t, actual):
"""
This calls the CUDA function and fills out
the array
"""
x = cuda.grid(1)
actual[x] = formal_integral_cuda.calculate_z_cuda(r, p, inv_t)
| 6,860 |
def rpca_alm(X, lmbda=None, tol=1e-7, max_iters=1000, verbose=True,
inexact=True):
"""
Augmented Lagrange Multiplier
"""
if lmbda is None:
lmbda = 1.0 / np.sqrt(X.shape[0])
Y = np.sign(X)
norm_two = svd(Y, 1)[1]
norm_inf = np.abs(Y).max() / lmbda
dual_norm = np.max([norm_two, norm_inf])
Y = Y / dual_norm
A = np.zeros(Y.shape)
E = np.zeros(Y.shape)
dnorm = la.norm(X, ord='fro')
tol_primal = 1e-6 * dnorm
total_svd = 0
mu = 0.5 / norm_two
rho = 6
sv = 5
n = Y.shape[0]
for iter1 in xrange(max_iters):
primal_converged = False
sv = sv + np.round(n * 0.1)
primal_iter = 0
while not primal_converged:
Eraw = X - A + (1/mu) * Y
Eupdate = np.maximum(
Eraw - lmbda/mu, 0) + np.minimum(Eraw + lmbda / mu, 0)
U, S, V = svd(X - Eupdate + (1 / mu) * Y, sv)
svp = (S > 1/mu).sum()
if svp < sv:
sv = np.min([svp + 1, n])
else:
sv = np.min([svp + round(.05 * n), n])
Aupdate = np.dot(
np.dot(U[:, :svp], np.diag(S[:svp] - 1/mu)), V[:svp, :])
if primal_iter % 10 == 0 and verbose >= 2:
print(la.norm(A - Aupdate, ord='fro'))
if ((la.norm(A - Aupdate, ord='fro') < tol_primal and
la.norm(E - Eupdate, ord='fro') < tol_primal) or
(inexact and primal_iter > 5)):
primal_converged = True
A = Aupdate
E = Eupdate
primal_iter += 1
total_svd += 1
Z = X - A - E
Y = Y + mu * Z
mu *= rho
if la.norm(Z, ord='fro') / dnorm < tol:
if verbose:
print('\nConverged at iteration {}'.format(iter1))
break
if verbose:
_verbose(A, E, X)
return A, E
| 6,861 |
def dwt_embed(wmImage, hostImage, alpha, beta):
"""Embeds a watermark image into a host image, using the First Level
Discrete Wavelet Transform and Alpha Blending.\n
The formula used for the alpha blending is:
resultLL = alpha * hostLL + beta * watermarkLL
Arguments:
wmImage (NumPy array) -- the image to be embedded
hostImage (NumPy array) -- the image to be watermarked
alpha (float) -- the first embedding strength factor
beta (float) -- the second embedding strength factor
Returns:
NumPy array type -- the watermarked image, in float64 format
"""
# Take the dimensions of the host and watermark images
wmHeight, wmWidth = wmImage.shape[:2]
hostHeight, hostWidth = hostImage.shape[:2]
# Resize the watermark image so that it is the same size as the host image
if wmHeight > hostHeight or wmWidth > hostWidth:
# Scale down the watermark image
wmImage = cv2.resize(wmImage, (hostWidth, hostHeight), interpolation = cv2.INTER_AREA)
elif wmHeight < hostHeight or wmWidth < hostWidth:
# Scale up the watermark image
wmImage = cv2.resize(wmImage, (hostWidth, hostHeight), interpolation = cv2.INTER_LINEAR)
# Take the new dimensions of the watermark image
wmHeight, wmWidth = wmImage.shape[:2]
# Split both images into channels
hostB, hostG, hostR = cv2.split(hostImage)
wmB, wmG, wmR = cv2.split(wmImage)
# Compute the first level bidimensional DWT for each channel of both images
# (LL, (HL, LH, HH))
cAhostB, (cHhostB, cVhostB, cDhostB) = pywt.dwt2(hostB, 'db2')
cAhostG, (cHhostG, cVhostG, cDhostG) = pywt.dwt2(hostG, 'db2')
cAhostR, (cHhostR, cVhostR, cDhostR) = pywt.dwt2(hostR, 'db2')
cAhostHeight, cAhostWidth = cAhostB.shape
cAwmB, (cHwmB, cVwmB, cDwmB) = pywt.dwt2(wmB, 'db2')
cAwmG, (cHwmG, cVwmG, cDwmG) = pywt.dwt2(wmG, 'db2')
cAwmR, (cHwmR, cVwmR, cDwmR) = pywt.dwt2(wmR, 'db2')
cAwmHeight, cAwmWidth = cAwmB.shape
# Generate image matrix for containing all four host coefficients images
coeffsHost = np.zeros((cAhostHeight * 2, cAhostWidth * 2, 3), dtype = 'float64')
# Merge channels for each of A, H, V and D and build the host coefficients image
cAhost = cv2.merge([cAhostB, cAhostG, cAhostR])
coeffsHost[0:cAhostHeight, 0:cAhostWidth] = cAhost
cHhost = cv2.merge([cHhostB, cHhostG, cHhostR])
coeffsHost[0:cAhostHeight, cAhostWidth:cAhostWidth * 2] = cHhost
cVhost = cv2.merge([cVhostB, cVhostG, cVhostR])
coeffsHost[cAhostHeight:cAhostHeight * 2, 0:cAhostWidth] = cVhost
cDhost = cv2.merge([cDhostB, cDhostG, cDhostR])
coeffsHost[cAhostHeight:cAhostHeight * 2, cAhostWidth:cAhostWidth * 2] = cDhost
# Display the host coefficients image
temp = np.uint8(np.rint(coeffsHost))
cv2.imshow('Host DWT', temp)
# Generate image matrix for containing all four watermark coefficients images
coeffsWm = np.zeros((cAwmHeight * 2, cAwmWidth * 2, 3), dtype = 'float64')
# Merge channels for each of A, H, V and D and build the wm coefficients image
cAwm = cv2.merge([cAwmB, cAwmG, cAwmR])
coeffsWm[0:cAwmHeight, 0:cAwmWidth] = cAwm
cHwm = cv2.merge([cHwmB, cHwmG, cHwmR])
coeffsWm[0:cAwmHeight, cAwmWidth:cAwmWidth * 2] = cHwm
cVwm = cv2.merge([cVwmB, cVwmG, cVwmR])
coeffsWm[cAwmHeight:cAwmHeight * 2, 0:cAwmWidth] = cVwm
cDwm = cv2.merge([cDwmB, cDwmG, cDwmR])
coeffsWm[cAwmHeight:cAwmHeight * 2, cAwmWidth:cAwmWidth * 2] = cDwm
# Display the watermark coefficients image
temp = np.uint8(np.rint(coeffsWm))
cv2.imshow('Watermark DWT', temp)
# Apply the Alpha Blending Technique
# wmImageLL = alpha * hostLL + beta * wmLL
cAresult = alpha * cAhost + beta * cAwm
cAresultB, cAresultG, cAresultR = cv2.split(cAresult)
# Compute the channels of the watermarked image by applying the inverse DWT
resultB = pywt.idwt2((cAresultB, (cHhostB, cVhostB, cDhostB)), 'db2')
resultG = pywt.idwt2((cAresultG, (cHhostG, cVhostG, cDhostG)), 'db2')
resultR = pywt.idwt2((cAresultR, (cHhostR, cVhostR, cDhostR)), 'db2')
# Merge the channels and obtain the final watermarked image
resultImage = cv2.merge([resultB, resultG, resultR])
return resultImage
| 6,862 |
def process_file(file_path: str):
"""Reads a file and prints its C++ tokenization with nesting of groups."""
print()
print('#' * 80)
print('Finding nested C++ tokens in file', file_path, flush=True)
cpp_source = CppSource(file_path=file_path)
dump_grouped_tokens(cpp_source.grouped_cpp_tokens)
| 6,863 |
def make_file_iterator(filename):
"""Return an iterator over the contents of the given file name."""
# pylint: disable=C0103
with open(filename) as f:
contents = f.read()
return iter(contents.splitlines())
| 6,864 |
def pull_partner_statistics(partner_id):
"""
This method pulls partner statistics.
Parameters:
- partner_id : the partner ID
Returns:
None
"""
signature = "pull_partner_statistics(partner_id)"
logginghelper.method_enter(logger, signature, partner_id)
# Send request to HFPP network node
request_to_node = urllib.request.Request(HFPP_NODE_HTTP_SERVICE_BASE_URL + '/general_service')
request_to_node.add_header('Content-Type','application/xml;charset=utf-8')
request_to_node.add_header('x-hfpp-username', HFPP_PARTNER_USERNAME)
request_to_node.add_header('x-hfpp-password', HFPP_PARTNER_PASSWORD)
request_xml = '<?xml version="1.0" encoding="utf-8"?>' \
'<PartnerStatisticsRequest>' \
'<PartnerID>{partner_id}</PartnerID>' \
'</PartnerStatisticsRequest>'.format(partner_id=partner_id)
try:
response_from_node = urllib.request.urlopen(request_to_node, request_xml.encode(), timeout=PARTNER_REQUEST_TIMEOUT, cafile=CA_CERTIFICATE_FILE, cadefault=CA_DEFAULT)
resp_content = response_from_node.read().decode('utf-8')
logger.debug('response:%s',resp_content)
root = ElementTree.fromstring(resp_content)
count_of_data_requests_received = int(root.findtext('./NumberOfDataRequestsReceived'))
count_of_data_requests_sent = int(root.findtext('./NumberOfDataRequestsInitiated'))
count_of_data_requests_responded = int(root.findtext('./NumberOfDataRequestsResponded')) - INITIAL_RESPONDED_REQUESTS_VALUE
count_of_data_requests_declined = int(root.findtext('./NumberOfDataRequestsDeclined'))
count_of_data_requests_pending = count_of_data_requests_received - count_of_data_requests_responded - count_of_data_requests_declined
reciprocity = count_of_data_requests_responded * 1.0 / count_of_data_requests_received if count_of_data_requests_received > 0 else 0
Partner.objects.filter(hfpp_network_id=partner_id).update(
count_of_data_requests_received=count_of_data_requests_received,
count_of_data_requests_sent=count_of_data_requests_sent,
count_of_data_requests_responded=count_of_data_requests_responded,
count_of_data_requests_declined=count_of_data_requests_declined,
count_of_data_requests_pending=count_of_data_requests_pending,
reciprocity=reciprocity
)
except urllib.error.HTTPError as e:
# Parse response XML
resp_content = e.read().decode('utf-8')
logger.debug('response:%s',resp_content)
try:
root = ElementTree.fromstring(resp_content)
# Not succeeded
# 400, 401, 403 or 500
error_code = root.findtext('./ErrorCode')
error_message = root.findtext('./ErrorMessage')
# Log error code and error message
logging.error('error code:%s',error_code)
logging.error('error message:%s',error_message)
except Exception as e:
logging.exception("")
logginghelper.method_exit(logger, signature)
| 6,865 |
def build_summary(resource, children, attribute, summarizer, keep_details=False):
"""
Update the `resource` Resource with a summary of itself and its `children`
Resources and this for the `attribute` key (such as copyrights, etc).
- `attribute` is the name of the attribute ('copyrights', 'holders' etc.)
- `summarizer` is a function that takes a list of texts and returns
summarized texts with counts
"""
# Collect current data
values = getattr(resource, attribute, [])
no_detection_counter = 0
if values:
# keep current data as plain strings
candidate_texts = [entry.get('value') for entry in values]
else:
candidate_texts = []
if resource.is_file:
no_detection_counter += 1
# Collect direct children existing summaries
for child in children:
child_summaries = get_resource_summary(child, key=attribute, as_attribute=keep_details) or []
for child_summary in child_summaries:
count = child_summary['count']
value = child_summary['value']
if value:
candidate_texts.append(Text(value, value, count))
else:
no_detection_counter += count
# summarize proper using the provided function
summarized = summarizer(candidate_texts)
# add back the counter of things without detection
if no_detection_counter:
summarized.update({None: no_detection_counter})
summarized = sorted_counter(summarized)
if TRACE:
logger_debug('COPYRIGHT summarized:', summarized)
set_resource_summary(resource, key=attribute, value=summarized, as_attribute=keep_details)
return summarized
| 6,866 |
def test_write_process_button(handler):
""" Test the _write_process_button method. """
# patch the view context
handler.view_ctx = Mock(**{'format_url.return_value': 'an url'})
# patch the meld elements
cell_elt = Mock(attrib={'class': ''})
tr_elt = Mock(**{'findmeld.return_value': cell_elt})
# test with process state not in expected list
handler._write_process_button(tr_elt, 'meld_id', '10.0.0.1', 'index.html', 'action', 'dummy_proc',
'running', ['stopped', 'stopping'])
assert tr_elt.findmeld.call_args_list == [call('meld_id')]
assert cell_elt.attrib['class'] == 'button off'
assert not cell_elt.attributes.called
assert not cell_elt.content.called
tr_elt.findmeld.reset_mock()
del cell_elt.attrib['class']
# test with filled stats on selected process
handler._write_process_button(tr_elt, 'meld_id', '10.0.0.1', 'index.html', 'action', 'dummy_proc',
'running', ['running', 'starting'])
assert tr_elt.findmeld.call_args_list == [call('meld_id')]
assert cell_elt.attrib['class'] == 'button on'
assert handler.view_ctx.format_url.call_args_list == [call('10.0.0.1', 'index.html', action='action',
namespec='dummy_proc')]
assert cell_elt.attributes.call_args_list == [call(href='an url')]
assert not cell_elt.content.called
tr_elt.findmeld.reset_mock()
handler.view_ctx.format_url.reset_mock()
cell_elt.attributes.reset_mock()
del cell_elt.attrib['class']
# test with unset namespec
handler._write_process_button(tr_elt, 'meld_id', '10.0.0.1', 'index.html', 'action', '',
'running', ['running', 'starting'])
assert tr_elt.findmeld.call_args_list == [call('meld_id')]
assert 'class' not in cell_elt.attrib
assert not handler.view_ctx.format_url.called
assert not cell_elt.attributes.called
assert cell_elt.content.call_args_list == [call('')]
| 6,867 |
def little_endian_bytes_to_int(little_endian_byte_seq):
"""Converts a pair of bytes into an integer.
The `little_endian_byte_seq` input must be a 2 bytes sequence defined
according to the little-endian notation (i.e. the less significant byte
first).
For instance, if the `little_endian_byte_seq` input is equals to
``(0xbc, 0x02)`` this function returns the decimal value ``700`` (0x02bc in
hexadecimal notation).
:param bytes little_endian_byte_seq: the 2 bytes sequence to be converted.
It must be compatible with the "bytes" type and defined according to the
little-endian notation.
"""
# Check the argument and convert it to "bytes" if necessary.
# Assert "little_endian_byte_seq" items are in range (0, 0xff).
# "TypeError" and "ValueError" are sent by the "bytes" constructor if
# necessary.
# The statement "tuple(little_endian_byte_seq)" implicitely rejects
# integers (and all non-iterable objects) to compensate the fact that the
# bytes constructor doesn't reject them: bytes(2) is valid and returns
# b'\x00\x00'
little_endian_byte_seq = bytes(tuple(little_endian_byte_seq))
# Check that the argument is a sequence of two items
if len(little_endian_byte_seq) != 2:
raise ValueError("A sequence of two bytes is required.")
integer = little_endian_byte_seq[1] * 0x100 + little_endian_byte_seq[0]
return integer
| 6,868 |
def higher_follower_count(A, B):
""" Compares follower count key between two dictionaries"""
if A['follower_count'] >= B['follower_count']: return "A"
return "B"
| 6,869 |
def _element_or_none(germanium, selector, point):
"""
Function to check if the given selector is only a regular
element without offset clicking. If that is the case, then we
enable the double hovering in the mouse actions, to solve a
host of issues with hovering and scrolling, such as elements
appearing on mouse in, or edge not hovering correctly.
:param germanium:
:param selector:
:param point:
:return:
"""
if isinstance(selector, Point):
return None
if point:
return None
return _element(germanium, selector)
| 6,870 |
def ENDLEMuEpP_TransferMatrix( style, tempInfo, crossSection, productFrame, angularData, EMuEpPData, multiplicity, comment = None ) :
"""This is LLNL I = 1, 3 type data."""
logFile = tempInfo['logFile']
workDir = tempInfo['workDir']
s = versionStr + '\n'
s += "Process: 'Double differential EMuEpP data transfer matrix'\n"
s += commonDataToString( comment, style, tempInfo, crossSection, productFrame, multiplicity = multiplicity )
s += angularToString( angularData, crossSection )
s += EMuEpPDataToString( EMuEpPData )
return( executeCommand( logFile, transferMatrixExecute, s, workDir, tempInfo['workFile'], tempInfo['restart'] ) )
| 6,871 |
def _fit_gaussian(f, grid, image_spot, p0, lower_bound=None, upper_bound=None):
"""Fit a gaussian function to a 3-d or 2-d image.
# TODO add equations and algorithm
Parameters
----------
f : func
A 3-d or 2-d gaussian function with some parameters fixed.
grid : np.ndarray, np.float
Grid data to compute the gaussian function for different voxel within
a volume V or surface S. In nanometer, with shape (3, V_z * V_y * V_x),
or (2, S_y * S_x).
image_spot : np.ndarray, np.uint
A 3-d or 2-d image with detected spot and shape (z, y, x) or (y, x).
p0 : List
List of parameters to estimate.
lower_bound : List
List of lower bound values for the different parameters.
upper_bound : List
List of upper bound values for the different parameters.
Returns
-------
popt : np.ndarray
Fitted parameters.
pcov : np.ndarray
Estimated covariance of 'popt'.
"""
# TODO check that we do not fit a 2-d gaussian function to a 3-d image or
# the opposite
# compute lower bound and upper bound
if lower_bound is None:
lower_bound = [-np.inf for _ in p0]
if upper_bound is None:
upper_bound = [np.inf for _ in p0]
bounds = (lower_bound, upper_bound)
# Apply non-linear least squares to fit a gaussian function to a 3-d image
y = np.reshape(image_spot, (image_spot.size,)).astype(np.float32)
popt, pcov = curve_fit(f=f, xdata=grid, ydata=y, p0=p0, bounds=bounds)
return popt, pcov
| 6,872 |
def createfourierdesignmatrix_chromatic(toas, freqs, nmodes=30, Tspan=None,
logf=False, fmin=None, fmax=None,
idx=4):
"""
Construct Scattering-variation fourier design matrix.
:param toas: vector of time series in seconds
:param freqs: radio frequencies of observations [MHz]
:param nmodes: number of fourier coefficients to use
:param freq: option to output frequencies
:param Tspan: option to some other Tspan
:param logf: use log frequency spacing
:param fmin: lower sampling frequency
:param fmax: upper sampling frequency
:param idx: Index of chromatic effects
:return: F: Chromatic-variation fourier design matrix
:return: f: Sampling frequencies
"""
# get base fourier design matrix and frequencies
F, Ffreqs = utils.createfourierdesignmatrix_red(
toas, nmodes=nmodes, Tspan=Tspan, logf=logf,
fmin=fmin, fmax=fmax)
# compute the DM-variation vectors
Dm = (1400/freqs) ** idx
return F * Dm[:, None], Ffreqs
| 6,873 |
def get_word_data(char_data):
"""
获取分词的结果
:param char_data:
:return:
"""
seq_data = [''.join(l) for l in char_data]
word_data = []
# stop_words = [line.strip() for line in open(stop_word_file, 'r', encoding='utf-8')]
for seq in seq_data:
seq_cut = jieba.cut(seq, cut_all=False)
word_data.append([w for w in seq_cut ])
return word_data
| 6,874 |
def make_non_absolute(path):
"""
Make a path non-absolute (so it can be joined to a base directory)
@param path: The file path
"""
drive, path = os.path.splitdrive(path)
index = 0
while os.path.isabs(path[index:]):
index = index + 1
return path[index:]
| 6,875 |
def assert_allclose(actual: numpy.float64, desired: int):
"""
usage.matplotlib: 1
usage.networkx: 4
usage.scipy: 20
usage.skimage: 1
usage.sklearn: 1
usage.statsmodels: 31
"""
...
| 6,876 |
def test_bbox(tiler):
"""Bounding boxes of tiles."""
assert tiler.bbox(1, 5, 3) == (-15028131.257091932, -10018754.17139462, -10018754.171394622, -5009377.085697312)
assert tiler.bbox(77, 93, 8) == (-7983694.730330089, 5322463.153553393, -7827151.696402049, 5479006.187481433)
assert tiler.bbox(27685, 19041, 15) == (13821037.70641243, -3250713.9389119744, 13822260.698864993, -3249490.9464594126)
| 6,877 |
def get_output_stream(items: List[Dict[str, Any]]) -> List[OutputObject]:
"""Convert a list of items in an output stream into a list of output
objects. The element in list items are expected to be in default
serialization format for output objects.
Paramaters
----------
items: list(dict)
Items in the output stream in default serialization format
Returns
-------
list(vizier.viztrail.module.OutputObject)
"""
result = list()
for item in items:
result.append(
OutputObject(
type=item[KEY_OUTPUT_TYPE],
value=item[KEY_OUTPUT_VALUE]
)
)
return result
| 6,878 |
def lvnf_stats(**kwargs):
"""Create a new module."""
return RUNTIME.components[LVNFStatsWorker.__module__].add_module(**kwargs)
| 6,879 |
def parse_float(string):
"""
Finds the first float in a string without casting it.
:param string:
:return:
"""
matches = re.findall(r'(\d+\.\d+)', string)
if matches:
return matches[0]
else:
return None
| 6,880 |
def _flush_temp_file():
"""
Clear directory where blob files are downloaded to if exists.
"""
global BLOB_DOWNLOAD_PATH
try:
dirPath = os.path.join(os.getcwd(), BLOB_DOWNLOAD_PATH)
print("PTH", os.getcwd())
print("DIR", dirPath)
if os.path.isdir(dirPath):
print("CLEAR PATH")
files = glob.glob(dirPath)
for f in files:
os.remove(f)
except Exception as ex:
print(str(ex))
| 6,881 |
def objectproxy_realaddress(obj):
"""
Obtain a real address as an integer from an objectproxy.
"""
voidp = QROOT.TPython.ObjectProxy_AsVoidPtr(obj)
return C.addressof(C.c_char.from_buffer(voidp))
| 6,882 |
def CollateRevisionHistory(builds, repo):
"""Sorts builds and revisions in repository order.
Args:
builds: a dict of the form:
```
builds := {
master: {
builder: [Build, ...],
...,
},
...
}
```
repo (GitWrapper): repository in which the revision occurs.
Returns:
A 2-tuple of (build_history, revisions), where:
```
build_history := {
master: {
builder: [Build, ...],
...,
},
...
}
```
and
```
revisions := [revision, ...]
```
"""
build_history = {}
revisions = set()
for master, master_data in builds.iteritems():
LOGGER.debug('Collating master %s', master)
master_history = build_history.setdefault(master, {})
for builder, builder_data in master_data.iteritems():
LOGGER.debug('Collating builder %s', builder)
for build in builder_data:
revisions.add(str(build.revision))
master_history[builder] = repo.sort(
builder_data, keyfunc=lambda b: b.revision)
revisions = repo.sort(revisions)
return (build_history, revisions)
| 6,883 |
def delta_shear(observed_gal, psf_deconvolve, psf_reconvolve, delta_g1, delta_g2):
"""
Takes in an observed galaxy object, two PSFs for metacal (deconvolving
and re-convolving), and the amount by which to shift g1 and g2, and returns
a tuple of tuples of modified galaxy objects.
((g1plus, g1minus), (g2plus, g2minus))
"""
# Deconvolving by psf_deconvolve
inv_psf = galsim.Deconvolve(psf_deconvolve)
deconvolved = galsim.Convolve(observed_gal, inv_psf)
# Applying second shear in g1
sheared_plus_g1 = deconvolved.shear(g1=delta_g1, g2=0)
sheared_minus_g1 = deconvolved.shear(g1=-delta_g1, g2=0)
# Applying second shear in g2
sheared_plus_g2 = deconvolved.shear(g1=0, g2=delta_g2)
sheared_minus_g2 = deconvolved.shear(g1=0, g2=-delta_g2)
# Reconvolving by psf_reconvolve for g1
reconvolved_plus_g1 = galsim.Convolve(sheared_plus_g1, psf_reconvolve)
reconvolved_minus_g1 = galsim.Convolve(sheared_minus_g1, psf_reconvolve)
g1_plus_minus = (reconvolved_plus_g1, reconvolved_minus_g1)
# Reconvolving by psf_reconvolve for g2
reconvolved_plus_g2 = galsim.Convolve(sheared_plus_g2, psf_reconvolve)
reconvolved_minus_g2 = galsim.Convolve(sheared_minus_g2, psf_reconvolve)
g2_plus_minus = (reconvolved_plus_g2, reconvolved_minus_g2)
# g1_plus_minus = (sheared_plus_g1, sheared_minus_g1)
# g2_plus_minus = (sheared_plus_g2, sheared_minus_g2)
# adding noshear reconvolved for testing
reconvolved_noshear = galsim.Convolve(deconvolved, psf_reconvolve)
return g1_plus_minus, g2_plus_minus, reconvolved_noshear
| 6,884 |
def estimateModifiedPiSquared(n):
"""
Estimates that value of Pi^2 through a formula involving partial sums.
n is the number of terms to be summed; the larger the more accurate the
estimation of Pi^2 tends to be (but not always).
The modification relative to estimatePiSquared() is that the n terms are
added in reverse order (i.e. the smallest values are added first).
"""
partialSum = 0 # Initializing
# Implementation of the mathematical formula involving summing
for k in range(n, 0, -1): # Order reversed
partialSum += 1 / (k ** 2)
estimate = 6*partialSum
return estimate
| 6,885 |
def pattern_match(template, image, upsampling=16, metric=cv2.TM_CCOEFF_NORMED, error_check=False):
"""
Call an arbitrary pattern matcher using a subpixel approach where the template and image
are upsampled using a third order polynomial.
Parameters
----------
template : ndarray
The input search template used to 'query' the destination
image
image : ndarray
The image or sub-image to be searched
upsampling : int
The multiplier to upsample the template and image.
func : object
The function to be used to perform the template based matching
Options: {cv2.TM_CCORR_NORMED, cv2.TM_CCOEFF_NORMED, cv2.TM_SQDIFF_NORMED}
In testing the first two options perform significantly better with Apollo data.
error_check : bool
If True, also apply a different matcher and test that the values
are not too divergent. Default, False.
Returns
-------
x : float
The x offset
y : float
The y offset
strength : float
The strength of the correlation in the range [-1, 1].
"""
if upsampling < 1:
raise ValueError
# Fit a 3rd order polynomial to upsample the images
if upsampling != 1:
u_template = zoom(template, upsampling, order=3)
u_image = zoom(image, upsampling, order=3)
else:
u_template = template
u_image = image
result = cv2.matchTemplate(u_image, u_template, method=metric)
_, max_corr, min_loc, max_loc = cv2.minMaxLoc(result)
if metric == cv2.TM_SQDIFF or metric == cv2.TM_SQDIFF_NORMED:
x, y = (min_loc[0], min_loc[1])
else:
x, y = (max_loc[0], max_loc[1])
# Compute the idealized shift (image center)
ideal_y = u_image.shape[0] / 2
ideal_x = u_image.shape[1] / 2
# Compute the shift from template upper left to template center
y += (u_template.shape[0] / 2)
x += (u_template.shape[1] / 2)
x = (x - ideal_x) / upsampling
y = (y - ideal_y) / upsampling
return x, y, max_corr, result
| 6,886 |
def test_run_high_cardinality_forever(high_cardinality_instance):
"""
This test is a utility and is useful in situations where you want to connect to the database instance
and have queries executing against it. Note, you must kill the test execution to stop this test.
In order to run this test, you must pass the `--run_high_cardinality_forever` flag.
e.g. `ddev ... -pa --run_high_cardinality_forever`
TIP: It's easier to utilize this by running it as a standalone test operation.
e.g. in conjunction with the required flag
`ddev ... -pa --run_high_cardinality_forever -k test_run_high_cardinality_forever`
"""
queries = HighCardinalityQueries(high_cardinality_instance)
_check_queries_is_ready(queries)
queries.start_background(config={'hc_threads': 20, 'slow_threads': 5, 'complex_threads': 10})
| 6,887 |
def main(argv=[__name__]):
"""Raspi_x10 command line interface.
"""
try:
try:
devices_file, rules_file, special_days_file = argv[1:]
except ValueError:
raise Usage('Wrong number of arguments')
sched = Schedule()
try:
sched.load_conf(devices_file, 'x10_devices', 'devices')
sched.load_conf(rules_file, 'x10_rules', 'rules')
sched.load_conf(special_days_file, 'special_days', 'special_days')
except IOError:
raise Usage
except KeyError as err:
raise Usage('KeyError: {0}'.format(err))
sched.build()
sched.write()
return 0
except Usage as err:
log.error('{0.msg}\n{0.usage}'.format(err))
return 2
| 6,888 |
def HexaMeshIndexCoord2VoxelValue(nodes, elements, dim, elementValues):
"""
Convert hexamesh (bricks) in index coordinates to volume in voxels with value of voxels assigned according to elementValues.
dim: dimension of volume in x, y and z in voxels (tuple)
elementValues: len(elements) == len(elementValues)
Example: to retrieve nodes corresponding to element 217:
nodesSortedUnique[elements[217],:]
Given the default voxelSize and origin, coordinates range from (-0.5 to dimXYZ+0.5)
nodesSortedUnique.shape = (nodes,3)
"""
volume = np.zeros(dim, dtype=elementValues.dtype) # initialize volume of False
xyz = nodes[elements,:][:,0,:] + 0.5 # voxel coordinates of bone
xyz = xyz.astype(int)
volume[tuple(xyz.T)] = elementValues
return volume
| 6,889 |
def main():
"""Create the database and add data to it"""
Base.metadata.create_all(engine)
create_session = sessionmaker(bind=engine)
session = create_session()
session.add_all([])
session.commit()
| 6,890 |
def protocol_0101(abf):
"""0112 0101 tau -10pA"""
assert isinstance(abf, pyabf.ABF)
generic_overlay_average(abf, baselineSec1=0, baselineSec2=0.1)
return
| 6,891 |
def hamiltonian(latt: Lattice, eps: (float, np.ndarray) = 0.,
t: (float, np.ndarray) = 1.0,
dense: bool = True) -> (csr_matrix, np.ndarray):
"""Computes the Hamiltonian-matrix of a tight-binding model.
Parameters
----------
latt : Lattice
The lattice the tight-binding model is defined on.
eps : array_like, optional
The on-site energies of the model.
t : array_like, optional
The hopping energies of the model.
dense : bool, optional
If ``True`` the hamiltonian matrix is returned as a ``np.ndarray``
Returns
-------
ham : csr_matrix or np.ndarray
The Hamiltonian-matrix as a sparse or dense matrix.
"""
dmap = latt.data.map()
data = np.zeros(dmap.size)
data[dmap.onsite()] = eps
data[dmap.hopping()] = t
ham = csr_matrix((data, dmap.indices))
if dense:
ham = ham.toarray()
return ham
| 6,892 |
def zip_dir(name, srcs, zipname, **kwargs):
"""Zips up an entire directory or Fileset.
Args:
name: The name of the target
srcs: A single-item list with a directory or fileset
zipname: The name of the output zip file
**kwargs: Further generic arguments to pass to genrule, e.g. visibility.
"""
if len(srcs) > 1:
fail("More than one directory is not supported by zip_dir yet", attr = srcs)
native.genrule(
name = name,
srcs = srcs,
outs = [zipname],
cmd = "zip $(OUTS) $(SRCS)",
**kwargs
)
| 6,893 |
def pad_in(string: str, space: int) -> str:
"""
>>> pad_in('abc', 0)
'abc'
>>> pad_in('abc', 2)
' abc'
"""
return "".join([" "] * space) + string
| 6,894 |
def maybe_download_and_extract_tar_gz(root, file_name, data_url):
"""Downloads file from given URL and extracts if compressed as tar.gz
Args:
root (str): The root directory
file_name (str): File name to download to
data_url (str): Url of data
"""
if not os.path.exists(root):
os.makedirs(root)
file_path = os.path.join(root, file_name)
# Download file if not present
if len([x for x in os.listdir(root) if x == file_name]) == 0:
progress_download(data_url, file_path)
if file_name.endswith(".tar.gz"):
with tarfile.open(file_path, "r:gz") as tar:
dirs = [member for member in tar.getmembers()]
tar.extractall(path=root, members=dirs)
| 6,895 |
def get_notifies(request):
"""页面展示全部通知"""
user = request.siteuser
if not user:
return HttpResponseRedirect(reverse('siteuser_login'))
notifies = Notify.objects.filter(user=user).select_related('sender').order_by('-notify_at')
# TODO 分页
ctx = get_notify_context(request)
ctx['notifies'] = notifies
return render_to_response(
notify_template,
ctx,
context_instance=RequestContext(request)
)
| 6,896 |
def set_module_repos(module, path):
"""
Sets the repository path for a specific module
"""
if os.path.exists(path):
Settings.module_repos[module] = path
else:
raise VersionsException("Cannot set the repos path to a non existent directory.")
| 6,897 |
def declare_eq_branch_power_ptdf_approx(model, index_set, PTDF, rel_ptdf_tol=None, abs_ptdf_tol=None):
"""
Create the equality constraints or expressions for power (from PTDF
approximation) in the branch
"""
m = model
con_set = decl.declare_set("_con_eq_branch_power_ptdf_approx_set", model, index_set)
pf_is_var = isinstance(m.pf, pe.Var)
if pf_is_var:
m.eq_pf_branch = pe.Constraint(con_set)
else:
if not isinstance(m.pf, pe.Expression):
raise Exception("Unrecognized type for m.pf", m.pf.pprint())
for branch_name in con_set:
expr = \
get_power_flow_expr_ptdf_approx(m, branch_name, PTDF, rel_ptdf_tol=rel_ptdf_tol, abs_ptdf_tol=abs_ptdf_tol)
if pf_is_var:
m.eq_pf_branch[branch_name] = \
m.pf[branch_name] == expr
else:
m.pf[branch_name] = expr
| 6,898 |
def get_existing_rule(text):
"""
Return the matched rule if the text is an existing rule matched exactly,
False otherwise.
"""
matches = get_license_matches(query_string=text)
if len(matches) == 1:
match = matches[0]
if match.matcher == MATCH_HASH:
return match.rule
| 6,899 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.