content
stringlengths 22
815k
| id
int64 0
4.91M
|
---|---|
def mock_imap_search_error():
"""Mock imap class values."""
with patch(
"custom_components.mail_and_packages.helpers.imaplib"
) as mock_imap_search_error:
mock_conn = mock.Mock(spec=imaplib.IMAP4_SSL)
mock_imap_search_error.IMAP4_SSL.return_value = mock_conn
mock_conn.login.return_value = (
"OK",
[b"user@fake.email authenticated (Success)"],
)
mock_conn.list.return_value = (
"OK",
[b'(\\HasNoChildren) "/" "INBOX"'],
)
mock_conn.search.side_effect = Exception("Invalid SEARCH format")
mock_conn.select.return_value = ("OK", [])
yield mock_conn
| 7,000 |
def delete_models_shares_groups(id, group_id, client=None):
"""Revoke the permissions a group has on this object
Use this function on both training and scoring jobs.
Parameters
----------
id : integer
The ID of the resource that is shared.
group_id : integer
The ID of the group.
client : :class:`civis.APIClient`, optional
If not provided, an :class:`civis.APIClient` object will be
created from the :envvar:`CIVIS_API_KEY`.
Returns
-------
None
Response code 204: success
"""
return _unshare_model(id, group_id, entity_type='groups', client=client)
| 7,001 |
def step1ddiffusionanalytical(q, dt, alpha, beta, prng=np.random, **kwargs):
"""Analytical time stepping as proposed in Jenkins, Spano arXiv:1506.06998
Uses the asymptotic normality of the death process for small times
(see Griffiths, J. Math. Bio, 1984)
"""
theta = alpha+beta
beta_ = 0.5*(theta-1.0)*dt
if beta_ == 0.0:
eta = 1.0
sigma = (2.0/(3.0*dt))**.5
else:
eta = beta_/np.expm1(beta_)
# calculation can sometimes give negative numbers due to numerical precision
factor = max(0, 2.0*eta/dt *(1.0 + eta/(eta+beta_)-2.0*eta))
sigma = max((eta+beta_) * factor**.5 / beta_, 1e-16)
mu = 2.0*eta/dt
m = max(int(round(prng.normal(mu, sigma))), 0)
l = prng.binomial(m, q)
qnew = prng.beta(alpha+l, beta+m-l)
return qnew
| 7,002 |
def no_vtk():
""" Checks if VTK is installed and the python wrapper is functional """
global _vtk_version
return _vtk_version is None
| 7,003 |
def _download_type(
archive, manifest, model_class, batch_size, privacy_transform_fn):
"""Downloads a set of files and adds them to the archive."""
json_path = os.path.join(
os.path.dirname(archive.path), '%s.json' % model_class)
_LOG.info(
'Adding entities of type %s to temporary file %s',
model_class, json_path)
json_file = transforms.JsonFile(json_path)
json_file.open('w')
model_map_fn = functools.partial(
_write_model_to_json_file, json_file, privacy_transform_fn)
_process_models(
db.class_for_kind(model_class), batch_size,
model_map_fn=model_map_fn)
json_file.close()
internal_path = _AbstractArchive.get_internal_path(
os.path.basename(json_file.name), prefix=_ARCHIVE_PATH_PREFIX_MODELS)
_LOG.info('Adding %s to archive', internal_path)
archive.add_local_file(json_file.name, internal_path)
manifest.add(_ManifestEntity(internal_path, False))
_LOG.info('Removing temporary file ' + json_file.name)
os.remove(json_file.name)
| 7,004 |
def get_request_list(flow_list: list) -> list:
"""
将flow list转换为request list。在mitmproxy中,flow是对request和response的总称,这个功能只获取request。
:param flow_list: flow的列表
:return: request的列表
"""
req_list = []
for flow in flow_list:
request = flow.get("request")
req_list.append(request)
return req_list
| 7,005 |
def safety(session: Session) -> None:
"""Scan dependencies for insecure packages."""
poetry = Poetry(session)
with poetry.export("--dev", "--without-hashes") as requirements:
install(session, "safety")
session.run("safety", "check", f"--file={requirements}", "--bare")
| 7,006 |
def query_total_production(start_date, end_date) -> Tuple[int]:
"""Total count of semi production on the given time interval"""
semi_count = None
fg_count = None
try:
with stSession() as s:
semi_count = (
s.query(ProductionScan)
.filter(
sa.and_(
ProductionScan.date >= start_date,
ProductionScan.date <= end_date,
)
)
.count()
)
fg_count = (
s.query(StorageScan)
.filter(
sa.and_(
StorageScan.date >= start_date,
StorageScan.date <= end_date,
)
)
.count()
)
except sa.exc.OperationalError as e:
logging.error(f"Operational error occured\n{e}")
return None
except Exception as e:
logging.error("Unknown Error", exc_info=True)
return None
finally:
s.close()
return (semi_count, fg_count)
| 7,007 |
def createPolyPlaneCtx(*args, **kwargs):
"""
Flags:
- attachToSubdivisionsAll : asa (bool) []
- attachToSubdivisionsHeight : ash (bool) []
- attachToSubdivisionsWidth : asw (bool) []
- axis : ax (int) []
- createUVs : cuv (int) []
- doDragEdit : dde (bool) []
- doSubdivisionsCapsEdit : dsc (bool) []
- exists : ex (bool) []
- height : h (float) []
- history : ch (bool) []
- image1 : i1 (unicode) []
- image2 : i2 (unicode) []
- image3 : i3 (unicode) []
- name : n (unicode) []
- subdivisionsHeight : sh (int) []
- subdivisionsWidth : sw (int) []
- width : w (float) []
Derived from mel command `maya.cmds.createPolyPlaneCtx`
"""
pass
| 7,008 |
def add_fields(_, level, event_dict):
""" Add custom fields to each record. """
now = dt.datetime.now()
event_dict['timestamp'] = TZ.localize(now, True).astimezone(pytz.utc).isoformat()
event_dict['level'] = level
if session:
event_dict['session_id'] = session.get('session_id')
if request:
try:
event_dict['ip_address'] = request.headers['X-Forwarded-For'].split(',')[0].strip()
except Exception:
event_dict['ip_address'] = 'unknown'
return event_dict
| 7,009 |
def Smith_set(A,P,params,election_ID,printing_wanted=False):
"""
Compute and return a list of the candidates in the Smith set.
This is the smallest set of candidates such that every candidate in the
Smith set beats every candidate not in the Smith set in one-on-one contests.
In this implementation, "a beats b" if at least half the voters prefer a to b.
Thus, a beats b and vice versa if they are tied; this gives probably the most
reasonable notion for a Smith set when there are ties.
The algorithm uses the fact that the Smith set will be the *last*
strongly connected component discovered by the usual DFS SCC algorithm.
Here A = set of alternatives (candidates), and
P = profile (dict mapping ballots to counts).
"""
if printing_wanted:
print "%s: Computing Smith set."%election_ID
pref = pairwise_prefs(A,P,params) # pref[(i,j)] gives number preferring i to j
n = number_of_ballots_in_profile(P)
stack = []
in_stack = set()
index = 0 # DFS node counter
I = { } # gives indices of vertics
L = { } # gives lowlinks of vertices
for a in A:
if not I.has_key(a): # Start a DFS at each node we haven't seen yet
(index,scc)=Smith_aux(a,A,index,I,L,stack,in_stack,pref,n)
scc = sorted(scc)
if printing_wanted:
print indent+"Smith set is: "+string.join(scc)
return scc
| 7,010 |
def run_async_from_thread(func: Callable[..., Coroutine[Any, Any, T_Retval]], *args) -> T_Retval:
"""
Call a coroutine function from a worker thread.
:param func: a coroutine function
:param args: positional arguments for the callable
:return: the return value of the coroutine function
"""
try:
asynclib = _local.current_async_module
except AttributeError:
raise RuntimeError('This function can only be run from an AnyIO worker thread')
return asynclib.run_async_from_thread(func, *args)
| 7,011 |
def check_tensor_shape(tensor_tf, target_shape):
""" Return a Tensorflow boolean graph that indicates whether
sample[features_key] has the specified target shape. Only check
not None entries of target_shape.
:param tensor_tf: Tensor to check shape for.
:param target_shape: Target shape to compare tensor to.
:returns: True if shape is valid, False otherwise (as TF boolean).
"""
result = tf.constant(True)
for i, target_length in enumerate(target_shape):
if target_length:
result = tf.logical_and(
result,
tf.equal(tf.constant(target_length), tf.shape(tensor_tf)[i]))
return result
| 7,012 |
def print_as_markdown_table(l, heading=None):
"""print(`l` as a markdown formatted table)
Parameters
----------
l : list of lists or list of tuples or pandas.Series
the list of data you want printed. All rows must be same length
heading : list
a list of column headings. Must be same width as items of l
"""
if type(l) != list and type(l) != pd.Series:
raise TypeError("only supports printing list or pandas.Series")
if type(l) == pd.Series:
new_l = list()
for key in l.keys():
value = l.get_value(key)
if type(value) != tuple:
value = (value,)
new_l.append(key + value)
l = new_l
output = ''
if heading is not None:
output += ' | '.join([str(x) for x in heading]) + '\n'
output += '-|-'.join(['-'*len(str(x)) for x in heading]) + '\n'
for item in l:
output += ' | '.join([str(x) for x in item]) + '\n'
print(output)
| 7,013 |
def main(bind, workers):
"""Run the WSGI service."""
BarrierApplication(app, locals()).run()
| 7,014 |
def LabelAddressPlus(ea, name, force=False, append_once=False, unnamed=False, nousername=False, named=False, throw=False):
"""
Label an address with name (forced) or an alternative_01
:param ea: address
:param name: desired name
:param force: force name (displace existing name)
:param append_once: append `name` if not already ending with `name`
:param named: [str, callable(addr, name)] name for things with existing usernames
:return: success as bool
"""
def ThrowOnFailure(result):
if not result and throw:
raise RuntimeError("Couldn't label address {:x} with \"{}\"".format(ea, name))
return result
def MakeUniqueLabel(name, ea=idc.BADADDR):
fnLoc = idc.get_name_ea_simple(name)
if fnLoc == idc.BADADDR or fnLoc == ea:
return name
fmt = "%s_%%i" % name
for i in range(100000):
tmpName = fmt % i
fnLoc = idc.get_name_ea_simple(tmpName)
if fnLoc == idc.BADADDR or fnLoc == ea:
return tmpName
return ""
if nousername:
unnamed = nousername
if ea < idc.BADADDR:
if HasUserName(ea):
if named:
if callable(named):
_name = idc.get_name(ea)
_name = named(ea, _name, name)
else:
name = named
elif unnamed:
return
fnName = idc.get_name(ea)
if append_once:
if not fnName.endswith(name):
name += fnName
else:
return ThrowOnFailure(False)
fnLoc = idc.get_name_ea_simple(name)
if fnLoc == idc.BADADDR:
return ThrowOnFailure(idc.set_name(ea, name, idc.SN_NOWARN))
elif fnLoc == ea:
return ThrowOnFailure(True)
else:
if force:
idc.set_name(fnLoc, "", idc.SN_AUTO | idc.SN_NOWARN)
idc.Wait()
return ThrowOnFailure(idc.set_name(ea, name, idc.SN_NOWARN))
else:
name = MakeUniqueLabel(name, ea)
return ThrowOnFailure(idc.set_name(ea, name, idc.SN_NOWARN))
else:
print("0x0%0x: Couldn't label %s, BADADDR" % (ea, name))
return False
| 7,015 |
def do_match(station1, station2, latitude, elevation, distance):
"""
Perform the match between two stations.
Do initial latitude check to speed up the test
(not longitude as this isn't a constant distance)
Return probabilities for elevation, separation and Jaccard Index
:param Station Class station1:
:param Station Class station2:
:returns:
list of 3 probabilities [elev, dist, jaccard]
"""
# latitude - pre check to make quicker
if np.abs(station1.lat - station2.lat) > LATITUDE_THRESHOLD:
return False
# elevation
height = np.abs(station1.elev - station2.elev)
if height < (ELEVATION_THRESHOLD*4):
height_Pr = np.exp(-1.0 * height / ELEVATION_THRESHOLD)
else:
height_Pr = 0
# latitude & longitude
distance, bearing = utils.get_dist_and_bearing([station1.lat, station1.lon],[station2.lat, station2.lon])
if distance < (DISTANCE_THRESHOLD*4):
dist_Pr = np.exp(-1.0 * distance / DISTANCE_THRESHOLD)
else:
dist_Pr = 0.
# Jaccard Index on name - remove all whitespace
jac_Pr = jaccard(station1.name.strip(), station2.name.strip())
# Jaccard Index on METAR call sign
if station1.call != "" and station2.call != "":
jac_Pr_metar = jaccard(station1.call, station2.call)
# name matching
return [height_Pr, dist_Pr, jac_Pr]
| 7,016 |
def rotation_matrix_from_vectors(vec1, vec2):
""" Find the rotation matrix that aligns vec1 to vec2
Args
----
vec1 (numpy.ndarray): A 3d "source" vector
vec2 (numpy.ndarray): A 3d "destination" vector
Returns
-------
numpy.ndarray: A transform matrix (3x3) which when applied to vec1, aligns it with vec2.
"""
a, b = (vec1 / np.linalg.norm(vec1)).reshape(3), (vec2 / np.linalg.norm(vec2)).reshape(3)
v = np.cross(a, b)
c = np.dot(a, b)
s = np.linalg.norm(v)
kmat = np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]])
rotation_matrix = np.eye(3) + kmat + kmat.dot(kmat) * ((1 - c) / (s ** 2))
return rotation_matrix
| 7,017 |
def get_file_from_cache_if_exists(file_path,
update_modification_time_on_access=True):
"""Get file from nfs cache if available."""
cache_file_path = get_cache_file_path(file_path)
if not cache_file_path or not file_exists_in_cache(cache_file_path):
# If the file does not exist in cache, bail out.
return False
# Fetch cache file size before starting the actual copy.
cache_file_size = get_cache_file_size_from_metadata(cache_file_path)
# Copy file from cache to local.
if not shell.copy_file(cache_file_path, file_path):
return False
# Update timestamp to later help with eviction of old files.
if update_modification_time_on_access:
update_access_and_modification_timestamp(cache_file_path)
# Return success or failure based on existence of local file and size
# comparison.
return (os.path.exists(file_path) and
os.path.getsize(file_path) == cache_file_size)
| 7,018 |
def audio(src, type="audio/ogg", other_attr={}):
"""
add audio file
args:
src <str> : source file
type <str> : type of audio file
other_attr <dict> : other attributes
"""
return f"""
<audio {_parse_attr(other_attr)}>
<source src="{src}" type="{type}">
</audio>
""".strip()
| 7,019 |
def test_triangle(dim):
"""
Tests if dimensions can come from a triangle.
dim is a list or tuple of the three dimensions
"""
dim = [int(x) for x in dim]
dim.sort()
if dim[0] + dim[1] > dim[2]:
return True
else:
return False
| 7,020 |
def arg_parser(data: str):
"""parse "x[a1, a2, a3], y[k1=a1, a2, k3=a3], z"
nested [] are ignored.
"""
res: List[NameWithAttrs] = _ARG_WITH_ATTR_PARSER.parse(data)
return res
| 7,021 |
def _get_resource(span):
"""Get resource name for span"""
if "http.method" in span.attributes:
route = span.attributes.get("http.route")
return (
span.attributes["http.method"] + " " + route
if route
else span.attributes["http.method"]
)
return span.name
| 7,022 |
def merge(
_0: dask.dataframe.core.DataFrame,
_1: dask.dataframe.core.DataFrame,
/,
*,
how: Literal["inner"],
left_on: Literal["x"],
right_index: bool,
shuffle: Literal["disk"],
):
"""
usage.dask: 1
"""
...
| 7,023 |
def preprocess_hedge_funds(csv, fund_name):
"""
Get hedge funds holding from their 13F filling. Data is from https://whalewisdom.com/.
You need to sign up a free account to access the csv files. Data is updated quarterly.
Parameters
----------
csv: str
csv file path
fund_name: str
name of the csv file you want to save.
I would advice you to name it the same as the names inside scheduled_tasks/hedge_funds_description.json.
"""
df = pd.read_csv(csv)
df.fillna("N/A", inplace=True)
df = df.apply(lambda x: x.astype(str).str.upper())
del df["Qtr first owned"]
del df["Recent Price"]
del df["Ranking"]
df = df[df["source_type"] == "13F"]
df.index = df.index + 1
df = df.reset_index()
df.columns = ["Rank", "Stock", "Ticker", "Type", "Quantity", "Market Value", "% Portfolio", "Previous % Portfolio",
"Change", "% Change", "Change Type", "% Ownership", "Sector", "Source Type",
"Source Date", "Avg Price"]
df.to_csv(os.path.join("../database", "hedge_funds_holdings", "{}.csv".format(fund_name)), index=False)
| 7,024 |
def get_draw_title(kdata):
"""根据typ值,返回相应的标题,如 上证指数(日线)
参数:kdata: KData实例
返回:一个包含stock名称的字符串,可用作绘图时的标题
"""
if not kdata:
return ""
query = kdata.getQuery()
stock = kdata.getStock()
if stock.isNull():
return ""
s1 = ''
if query.kType == KQuery.KType.DAY:
s1 = u' (日线)'
elif query.kType == KQuery.KType.WEEK:
s1 = u' (周线)'
elif query.kType == KQuery.KType.MONTH:
s1 = u' (月线)'
elif query.kType == KQuery.KType.QUARTER:
s1 = u' (季线)'
elif query.kType == KQuery.KType.HALFYEAR:
s1 = u' (半年线)'
elif query.kType == KQuery.KType.YEAR:
s1 = u' (年线)'
elif query.kType == KQuery.KType.MIN:
s1 = u' (1分钟线)'
elif query.kType == KQuery.KType.MIN5:
s1 = u' (5分钟线)'
elif query.kType == KQuery.KType.MIN15:
s1 = u' (15分钟线)'
elif query.kType == KQuery.KType.MIN30:
s1 = u' (30分钟线)'
elif query.kType == KQuery.KType.MIN60:
s1 = u' (60分钟线)'
name = stock.name
if stock.code == "":
stitle = "Block(%s) %s" % (stock.id, name) + s1
else:
stitle = stock.market + stock.code + ' ' + name + s1
return stitle
| 7,025 |
def _B(slot):
"""Convert slot to Byte boundary"""
return slot*2
| 7,026 |
def nll(perm, true):
"""
perm: (n, n) or (s, n, n)
true: (n)
"""
n = true.size(-1)
# i = torch.arange(n, device=perm.device)
# j = true.to(perm.device)
# print("perm.nll:", perm.size(), true.size())
elements = perm.cpu()[..., torch.arange(n), true]
# elements = perm.cpu()[torch.arange(n), true]
nll = -torch.sum(torch.log2(elements.to(perm.device)))
if perm.dim() == 3: # normalize by number samples
nll = nll / perm.size(0)
# print("nll", nll)
return nll
| 7,027 |
def _peaks_colors_from_points(points, colors=None, points_per_line=2):
"""
Returns a VTK scalar array containing colors information for each one of
the peaks according to the policy defined by the parameter colors.
Parameters
----------
points : (N, 3) array or ndarray
points coordinates array.
colors : None or string ('rgb_standard') or tuple (3D or 4D) or
array/ndarray (N, 3 or 4) or array/ndarray (K, 3 or 4) or
array/ndarray(N, ) or array/ndarray (K, )
If None a standard orientation colormap is used for every line.
If one tuple of color is used. Then all streamlines will have the same
color.
If an array (N, 3 or 4) is given, where N is equal to the number of
points. Then every point is colored with a different RGB(A) color.
If an array (K, 3 or 4) is given, where K is equal to the number of
lines. Then every line is colored with a different RGB(A) color.
If an array (N, ) is given, where N is the number of points then these
are considered as the values to be used by the colormap.
If an array (K,) is given, where K is the number of lines then these
are considered as the values to be used by the colormap.
points_per_line : int (1 or 2), optional
number of points per peak direction.
Returns
-------
color_array : vtkDataArray
vtk scalar array with name 'colors'.
colors_are_scalars : bool
indicates whether or not the colors are scalars to be interpreted by a
colormap.
global_opacity : float
returns 1 if the colors array doesn't contain opacity otherwise -1.
"""
num_pnts = len(points)
num_lines = num_pnts // points_per_line
colors_are_scalars = False
global_opacity = 1
if colors is None or colors == 'rgb_standard':
# Automatic RGB colors
colors = np.asarray((0, 0, 0))
color_array = numpy_to_vtk_colors(np.tile(255 * colors, (num_pnts, 1)))
elif type(colors) is tuple:
global_opacity = 1 if len(colors) == 3 else -1
colors = np.asarray(colors)
color_array = numpy_to_vtk_colors(np.tile(255 * colors, (num_pnts, 1)))
else:
colors = np.asarray(colors)
if len(colors) == num_lines:
pnts_colors = np.repeat(colors, points_per_line, axis=0)
if colors.ndim == 1: # Scalar per line
color_array = numpy_support.numpy_to_vtk(pnts_colors,
deep=True)
colors_are_scalars = True
elif colors.ndim == 2: # RGB(A) color per line
global_opacity = 1 if colors.shape[1] == 3 else -1
color_array = numpy_to_vtk_colors(255 * pnts_colors)
elif len(colors) == num_pnts:
if colors.ndim == 1: # Scalar per point
color_array = numpy_support.numpy_to_vtk(colors, deep=True)
colors_are_scalars = True
elif colors.ndim == 2: # RGB(A) color per point
global_opacity = 1 if colors.shape[1] == 3 else -1
color_array = numpy_to_vtk_colors(255 * colors)
color_array.SetName('colors')
return color_array, colors_are_scalars, global_opacity
| 7,028 |
def log_verbose(message):
"""Logs a message to stdout if VERBOSE is True"""
if VERBOSE:
print(message)
| 7,029 |
def epi_reg(epi, t1, t1brain, out='epi_reg', **kwargs):
"""Wrapper for the ``epi_reg`` command.
:arg epi: Input EPI image
:arg t1: Input wholehead T1 image
:arg t1brain: Input brain extracted T1 image
:arg out: Output name
"""
asrt.assertIsNifti(epi)
asrt.assertIsNifti(t1)
asrt.assertIsNifti(t1brain)
valmap = {
'nofmapreg' : wutils.SHOW_IF_TRUE,
'noclean' : wutils.SHOW_IF_TRUE,
'v' : wutils.SHOW_IF_TRUE,
}
cmd = ['epi_reg', '--epi='+epi, '--t1='+t1, '--t1brain='+t1brain, '--out='+out]
cmd += wutils.applyArgStyle('--=',
valmap=valmap,
singlechar_args=True,
**kwargs)
return cmd
| 7,030 |
def load_towns():
"""Sample of Wikipedia dataset that contains informations about Toulouse, Paris, Lyon and
Bordeaux.
Examples
--------
>>> from pprint import pprint as print
>>> from cherche import data
>>> towns = data.load_towns()
>>> print(towns[:3])
[{'article': 'Paris (French pronunciation: \u200b[paʁi] (listen)) is the '
'capital and most populous city of France, with an estimated '
'population of 2,175,601 residents as of 2018, in an area of more '
'than 105 square kilometres (41 square miles).',
'id': 0,
'title': 'Paris',
'url': 'https://en.wikipedia.org/wiki/Paris'},
{'article': "Since the 17th century, Paris has been one of Europe's major "
'centres of finance, diplomacy, commerce, fashion, gastronomy, '
'science, and arts.',
'id': 1,
'title': 'Paris',
'url': 'https://en.wikipedia.org/wiki/Paris'},
{'article': 'The City of Paris is the centre and seat of government of the '
'region and province of Île-de-France, or Paris Region, which has '
'an estimated population of 12,174,880, or about 18 percent of '
'the population of France as of 2017.',
'id': 2,
'title': 'Paris',
'url': 'https://en.wikipedia.org/wiki/Paris'}]
"""
with open(pathlib.Path(__file__).parent.joinpath("towns.json"), "r") as towns_json:
return json.load(towns_json)
| 7,031 |
def nonce_initialization(params: InitializeNonceParams) -> TransactionInstruction:
"""Generate an instruction to initialize a Nonce account.
Args:
params: The nonce initialization params.
Returns:
The instruction to initialize the nonce account.
"""
return TransactionInstruction.from_solders(ssp.initialize_nonce_account(params.to_solders()))
| 7,032 |
def to_weeknr(date=''):
"""
Transforms a date strings YYYYMMDD to the corresponding week nr (e.g. 20200713 becomes w29)
"""
week_nr = pd.to_datetime(date).to_pydatetime().isocalendar()[1]
return f"w{week_nr}"
| 7,033 |
def build_logisticregression(X_loc, y_loc, args):
"""finds best parameters for logistic regression"""
Printer(colored('(training) ', 'green') +
'searching for best parameters for logistic regression')
# specify parameters and distributions to sample from
param_dist = {"C": np.logspace(-9, 3, 13),
"solver": ['newton-cg', 'lbfgs', 'liblinear', 'sag'],
"dual": [False],
"tol": np.logspace(-9, 3, 13)
}
clf = LogisticRegression(penalty='l2')
random_search = RandomizedSearchCV(clf, param_distributions=param_dist, scoring='accuracy', n_iter=int(args.iter), n_jobs=-1, refit=True, cv=3)
random_search.fit(X_loc, y_loc)
acc = random_search.cv_results_['mean_test_score']
filename = 'cv/logisticregression_' + str(np.mean(acc)) + '.pkl'
# save model
savemodel(random_search, filename)
# save best params
filename_param = 'cv/logisticregression_param_' + str(np.mean(acc)) + '.json'
saveparams(random_search.best_params_, filename_param)
return random_search
| 7,034 |
def load_data(experiments,
remove_outlier=True,
peptides=["A5cons",
"A6cons",
"phage_ctl_0",
"phage_ctl_1",
"phage_ctl_2",
"phage_ctl_4",
"phage_ctl_5",
"phage_ctl_6",
"phage_ctl_7",
"phage_ctl_8",
"phage_ctl_9"]):
"""
Convenience function that allows one to load a whole bunch of experiments,
with different peptides, into a single data frame.
experiments should be a list of dictionaries of the following form:
[{"protein":"hA6",
"name_in_file":"hA6_4.3",
"Kd":45,
"prot_conc":4.2,
"probe_conc":4.2,
"data_file":"13_main-collection.txt",
"plate_file":"13_plate-layout.xlsx"},...]
remove_outlier: whether or not to look for outlier points and remove them
when averaging technical reps
peptides: list of peptides. these are used to build regular expressions
to match peptides in each data file. It looks for an exact match
at the start of the string, allowing any trailing characters.
NOTE: this could lead to problems if you had peptides with names
like pep10, pep100.
"""
pep_patterns = [re.compile(f"{p}") for p in peptides]
proteins = set([e["protein"] for e in experiments])
times_pep_was_seen = dict([(protein,dict([(p,0) for p in peptides]))
for protein in proteins])
all_df = []
for expt in experiments:
df, _ = read_file(expt["data_file"],expt["plate_file"])
df = df[df.protein == expt["name_in_file"]]
peptide_Kd_scalar = get_peptide_Kd_scalar(Kd=expt["Kd"],
Mt=expt["prot_conc"],
Xt=expt["probe_conc"])
peps_in_df = np.unique(df.peptide)
for p in peps_in_df:
for pattern in pep_patterns:
if pattern.match(p):
pep_df = df[df.peptide == p]
plates = np.unique(pep_df.plate)
protein = expt["protein"]
peptide = pattern.pattern
for plate in plates:
times_pep_was_seen[protein][peptide] += 1
single_rep = pep_df[pep_df.plate == plate]
fit_df = average_tech_reps(single_rep,remove_outlier=remove_outlier)
fit_df["protein"] = protein
fit_df["peptide"] = peptide
fit_df["rep_number"] = times_pep_was_seen[protein][peptide]
fit_df["Kd_scalar"] = peptide_Kd_scalar
fit_df["plate_file"] = expt["plate_file"]
fit_df["data_file"] = expt["data_file"]
fit_df["name_in_file"] = expt["name_in_file"]
fit_df["plate_number"] = plate
all_df.append(fit_df)
break
return pd.concat(all_df)
| 7,035 |
def get_lines(clearance):
"""
Add lines per reference well interval between the closest points on the
reference well and the offset well and color them according to the
calculated Separation Factor (SF) between the two wells at these points.
Parameters
----------
clearance: welleng.clearance object
Returns
-------
lines: vedo.Lines object
A vedo.Lines object colored by the object's SF values.
"""
assert VEDO, "ImportError: try pip install welleng[easy]"
c = clearance.SF
start_points, end_points = clearance.get_lines()
lines = Lines(start_points, end_points).cmap('hot_r', c, on='cells')
lines.addScalarBar(title='SF')
return lines
| 7,036 |
def generate_md5_hash(filepath):
"""Returns md5 hash of file.
Args:
filepath: str. Absolute path to the file.
Returns:
str. Hexadecimal hash of specified file.
"""
m = hashlib.md5()
with python_utils.open_file(filepath, 'rb', encoding=None) as f:
while True:
buf = f.read(HASH_BLOCK_SIZE)
if not buf:
break
m.update(buf)
return m.hexdigest()
| 7,037 |
def app():
"""Provide the initialized Flask app."""
init_app(app_, None)
with app_.app_context():
yield app_
| 7,038 |
def status():
"""Return status."""
return jsonify(STATUS)
| 7,039 |
def get_entitlement(account_id: Optional[str] = None,
customer_id: Optional[str] = None,
entitlement_id: Optional[str] = None,
opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetEntitlementResult:
"""
Returns the requested Entitlement resource. Possible error codes: * PERMISSION_DENIED: The customer doesn't belong to the reseller. * INVALID_ARGUMENT: Required request parameters are missing or invalid. * NOT_FOUND: The customer entitlement was not found. Return value: The requested Entitlement resource.
"""
__args__ = dict()
__args__['accountId'] = account_id
__args__['customerId'] = customer_id
__args__['entitlementId'] = entitlement_id
if opts is None:
opts = pulumi.InvokeOptions()
if opts.version is None:
opts.version = _utilities.get_version()
__ret__ = pulumi.runtime.invoke('google-native:cloudchannel/v1:getEntitlement', __args__, opts=opts, typ=GetEntitlementResult).value
return AwaitableGetEntitlementResult(
association_info=__ret__.association_info,
commitment_settings=__ret__.commitment_settings,
create_time=__ret__.create_time,
name=__ret__.name,
offer=__ret__.offer,
parameters=__ret__.parameters,
provisioned_service=__ret__.provisioned_service,
provisioning_state=__ret__.provisioning_state,
purchase_order_id=__ret__.purchase_order_id,
suspension_reasons=__ret__.suspension_reasons,
trial_settings=__ret__.trial_settings,
update_time=__ret__.update_time)
| 7,040 |
def test_mitpe_extract(settings, base_url):
"""Verify that BeautifulSoup tags are returned per listing and course detail"""
settings.MITPE_BASE_URL = base_url
results = extract()
assert len(results) == (1 if base_url else 0)
assert results == (
[
{
"url": "https://professional.mit.edu/course-catalog/mitpe-course-detail",
"title": title,
"dates": [
(
datetime.datetime(2020, 7, 13, 12, 0, tzinfo=pytz.utc),
datetime.datetime(2020, 7, 17, 12, 0, tzinfo=pytz.utc),
)
],
"price": Decimal("5500"),
"topics": ["Innovation", "Systems Engineering"],
"short_description": short_description,
"full_description": full_description,
"instructors": [["Marcus", "Aurelius I"]],
}
]
if base_url
else []
)
| 7,041 |
def skip_to_home(fxn):
""" Skips past page straight to home page if logged in
"""
@wraps(fxn)
def skipped_page_fxn(*arg, **kwargs):
if session.get('logged_in'):
return redirect(url_for('home'))
else:
return fxn(*arg, **kwargs)
return skipped_page_fxn
| 7,042 |
def compute(infile, cmpdfile='compounds.txt', rxnfile='reactions.txt',
sinkfile='sinks.txt', reverse=False):
"""Convert the output from the RetroPath2.0 workflow."""
# Get content
content = dict()
with open(infile, 'r') as fh:
reader = csv.DictReader(fh)
for row in reader:
# Skip if we are in a "header"
if row['Initial source'] == 'Initial source':
continue
# Regroup by transformation ID
tid = row['Transformation ID']
if tid not in content.keys():
content[tid] = [row]
else:
content[tid].append(row)
# 1) Check consistency and 2) Populate compounds
all_cmpds = dict()
for tid in sorted(content.keys()): # Order determine CMPD IDs
first = True
for row in content[tid]:
# ..
if first:
first = False
# Parse the Reaction SMILES
tmp = row['Reaction SMILES'].split('>>')
subs_from_rxn = set(tmp[0].split('.'))
prods_from_rxn = set(tmp[1].split('.'))
# Prep for parsing Substrate and Product columns
subs_from_cmpd = set()
prods_from_cmpd = set()
# Accumulate compounds from Substrate and Product columns
subs_from_cmpd.add(row['Substrate SMILES'])
prods_from_cmpd.add(row['Product SMILES'])
# Double check that each SMILES substrate/product is also present
# in the description of the reaction
try:
assert subs_from_rxn == subs_from_cmpd
except AssertionError:
print('Assertion error: differences in substrates')
print(tid)
print(subs_from_rxn, subs_from_cmpd)
sys.exit(0)
try:
assert prods_from_rxn == prods_from_cmpd
except BaseException:
print('Assertion error: differences in products')
print(tid)
print(prods_from_rxn, prods_from_cmpd)
sys.exit(0)
# Populate
for smi in sorted(list(subs_from_rxn | prods_from_rxn)):
if smi not in all_cmpds.keys():
cmpd = Compound(smi)
all_cmpds[smi] = cmpd
# Populate transformations
all_trs = dict()
for tid in content.keys():
first = True
for row in content[tid]:
if first:
first = False
trs = Transformation(row)
all_trs[tid] = trs
# Update Sink information
for tid in content.keys():
for row in content[tid]:
if row['In Sink'] == '1':
cids = row['Sink name'].lstrip('[').rstrip(']').split(', ')
smi = row['Product SMILES']
for cid in cids:
all_cmpds[smi].AddCid(cid)
all_cmpds[smi].SetIsSink(True)
# Make accessible compounds information from Transformation objects
Transformation.SetAllCompounds(compounds=all_cmpds)
# Retrieve target compounds (substrate appearing in first iteration)
# then set a specific compound IDs
target_ids_handler = IDsHandler(length=10, prefix='TARGET')
target_visited = set()
for tid, trs in all_trs.items():
if trs.iteration == '0':
for target_smi in trs.left.keys():
if target_smi not in target_visited:
target_visited.add(target_smi)
new_uid = target_ids_handler.MakeNewID()
all_cmpds[target_smi].SetUid(new_uid)
# Write the compounds file
with open(cmpdfile, 'w', newline='') as fh:
header = ['Compound ID', 'Structure']
writer = csv.DictWriter(fh, fieldnames=header,
delimiter='\t', quoting=csv.QUOTE_NONE)
writer.writeheader()
for cmpd in sorted(all_cmpds.values(), key=lambda x: x.GetCids()):
for cid in cmpd.GetCids():
towrite = {'Compound ID': cid,
'Structure': cmpd.GetSmiles()}
writer.writerow(towrite)
# fh.write(cid + '\t' + cmpd.GetSmiles() + '\n')
# Write the sink file
with open(sinkfile, 'w') as fh:
for cmpd in sorted(all_cmpds.values(), key=lambda x: x.GetCids()):
if cmpd.IsSink():
for cid in cmpd.GetCids():
fh.write(cid + '\n')
# Write the reactions file
with open(rxnfile, 'w') as fh:
for trs in sorted(all_trs.values(), key=lambda x: x.trs_id):
fh.write(trs.ToStr(reverse=reverse) + '\n')
| 7,043 |
def get_all_paths_from_directory(directory: Path, recursive: bool, paths: [str] = [], ) -> [Path]:
"""
Gets a list of file paths for all files in the given directory (and its subdirectories if recursive is true)
:param directory: The starting directory to get file paths from
:param recursive: Whether files in subdirectories should be included
:param paths: The list that file paths will be added to
:return: A list of file paths from the given directory (and subdirectories if recursive is true)
"""
directories = []
for file in directory.iterdir():
# If the file is a subdirectory and we are processing subdirectories, add it to the list for later processing
if file.is_dir():
if recursive:
directories.append(file)
else: # If the file is just a normal file then add it to the paths list
paths.append(file)
# If we are processing subdirectories then go through all the subdirectories and process them
if recursive:
for file in directories:
get_all_paths_from_directory(file, recursive, paths)
return paths
| 7,044 |
def check_contigs_for_dupes(matches):
"""check for contigs that match more than 1 UCE locus"""
node_dupes = defaultdict(list)
for node in matches:
node_dupes[node] = len(set(matches[node]))
dupe_set = set([node for node in node_dupes if node_dupes[node] > 1])
return dupe_set
| 7,045 |
def substitute(P, x0, x1, V=0):
"""
Substitute a variable in a polynomial array.
Args:
P (Poly) : Input data.
x0 (Poly, int) : The variable to substitute. Indicated with either unit
variable, e.g. `x`, `y`, `z`, etc. or through an integer
matching the unit variables dimension, e.g. `x==0`, `y==1`,
`z==2`, etc.
x1 (Poly) : Simple polynomial to substitute `x0` in `P`. If `x1` is an
polynomial array, an error will be raised.
Returns:
(Poly) : The resulting polynomial (array) where `x0` is replaced with
`x1`.
Examples:
>>> x,y = cp.variable(2)
>>> P = cp.Poly([y*y-1, y*x])
>>> print(cp.substitute(P, y, x+1))
[q0^2+2q0, q0^2+q0]
With multiple substitutions:
>>> print(cp.substitute(P, [x,y], [y,x]))
[q0^2-1, q0q1]
"""
x0,x1 = map(Poly, [x0,x1])
dim = np.max([p.dim for p in [P,x0,x1]])
dtype = chaospy.poly.typing.dtyping(P.dtype, x0.dtype, x1.dtype)
P, x0, x1 = [chaospy.poly.dimension.setdim(p, dim) for p in [P,x0,x1]]
if x0.shape:
x0 = [x for x in x0]
else:
x0 = [x0]
if x1.shape:
x1 = [x for x in x1]
else:
x1 = [x1]
# Check if substitution is needed.
valid = False
C = [x.keys[0].index(1) for x in x0]
for key in P.keys:
if np.any([key[c] for c in C]):
valid = True
break
if not valid:
return P
dims = [tuple(np.array(x.keys[0])!=0).index(True) for x in x0]
dec = is_decomposed(P)
if not dec:
P = decompose(P)
P = chaospy.poly.dimension.dimsplit(P)
shape = P.shape
P = [p for p in chaospy.poly.shaping.flatten(P)]
for i in range(len(P)):
for j in range(len(dims)):
if P[i].keys and P[i].keys[0][dims[j]]:
P[i] = x1[j].__pow__(P[i].keys[0][dims[j]])
break
P = Poly(P, dim, None, dtype)
P = chaospy.poly.shaping.reshape(P, shape)
P = chaospy.poly.collection.prod(P, 0)
if not dec:
P = chaospy.poly.collection.sum(P, 0)
return P
| 7,046 |
def munkres(costs):
"""
Entry method to solve the assignment problem.
costs: list of non-infinite values entries of the cost matrix
[(i,j,value)...]
"""
solver = Munkres(costs)
return solver.munkres()
| 7,047 |
def train(fold=C.TRAIN.SAMPLES.CURRENT_FOLD):
"""Do the main training loop, as described in the config.
"""
warnings.filterwarnings('always')
training_data = RgbLidarDataset('train', fold=fold)
eval_data = RgbLidarDataset('test', fold=fold)
train_sampler = make_stratified_sampler(training_data, C.TRAIN.CLASS_BALANCE)
eval_sampler = make_stratified_sampler(eval_data, C.TRAIN.CLASS_BALANCE)
trn_loader = torch.utils.data.DataLoader(training_data, batch_size=C.TRAIN.BATCH_SIZE, sampler=train_sampler)
val_loader = torch.utils.data.DataLoader(eval_data, batch_size=C.TRAIN.BATCH_SIZE, sampler=eval_sampler)
torch.set_default_tensor_type('torch.cuda.FloatTensor')
net = Architecture(shape=(C.TRAIN.PATCH_SIZE, C.TRAIN.PATCH_SIZE),
lidar_channels=C.VOLUME.Z.STEPS,
rgb_channels=3,
num_features=C.TRAIN.NUM_FEATURES)
solver = Solver(trn_loader, val_loader, net=net)
solver.train()
eval_data = [(h.epoch, h.trn_loss, h.val_loss, h.f_measure, h.accuracy, h.precision, h.recall, h.f1, h.iou, h.l1, h.l2) for h in solver.history]
columns = ['epoch', 'trn_loss', 'val_loss', 'f_2', 'accuracy', 'precision', 'recall', 'f_1', 'iou', 'L_1', 'L_2']
pd.DataFrame(np.array(eval_data), columns=columns).to_csv('history_fold{}.csv'.format(fold))
| 7,048 |
def compute_mean_std(dataset):
"""
https://stats.stackexchange.com/questions/25848/how-to-sum-a-standard-deviation
"""
# global_mean = np.zeros((3 * 64), dtype=np.float64)
# global_var = np.zeros((3 * 64), dtype=np.float64)
n_items = 0
s = RunningStatistics()
for image_fname in dataset:
dct_file = np.load(fs.change_extension(image_fname, ".npz"))
y = torch.from_numpy(dct_file["dct_y"])
cb = torch.from_numpy(dct_file["dct_cb"])
cr = torch.from_numpy(dct_file["dct_cr"])
dct = torch.stack([y, cb, cr], dim=0).unsqueeze(0).float()
dct = sd2(dct)[0]
s.update(dct)
# dct = to_numpy()
# global_mean += dct.mean(axis=(1, 2))
# global_var += dct.std(axis=(1, 2)) ** 2
# n_items += 1
return s.mean, s.std
| 7,049 |
def test_clean_connections_p0(monkeypatch):
"""Add a connection, fake a closed thread and make sure it is removed."""
db_disconnect_all()
class mock_connection():
def __init__(self) -> None: self.value = _MOCK_VALUE_1
def close(self): self.value = None
def mock_connect(*args, **kwargs): return mock_connection()
monkeypatch.setattr(database, 'connect', mock_connect)
db_connect(_MOCK_DBNAME, _MOCK_CONFIG)
monkeypatch.setitem(database._connections, _MOCK_CONFIG['host'], {_MOCK_DBNAME: {1234: None}})
_clean_connections()
assert database._connections[_MOCK_CONFIG['host']][_MOCK_DBNAME].get(1234, None) is None
| 7,050 |
def linkrref(rref:RRef, subdirs:List[str]=[], verbose:bool=False)->None:
""" Create a 'result-' symlink under the Pylightnix experiments folder """
linkrrefs([rref], subdirs, verbose)
| 7,051 |
def add(request):
"""
Add contact information.
**Templates:**
* ``rolodex/add.html``
**Template Variables:**
* form
* results: the list of similar names to allow user to check for dupes
* name: the new name that is submitted
"""
results = []
name = None
if request.method == 'POST':
form = NameForm(request.POST)
if form.is_valid():
request.session['post_data'] = request.POST
# search to see if contact already exists
name = form.cleaned_data['name']
results = Alias.objects.filter(name=name)
if not results:
return HttpResponseRedirect('../add-proceed/')
else:
form = NameForm()
return render_to_response('rolodex/add.html', {
'form': form,
'results': results,
'name': name},
RequestContext(request, {}),
)
| 7,052 |
def convert_total (letter1,number1, letter2, number2):
"""
Description
-----------
Converting the letter of a column and the number of a line from an exceldata to a range
Context
----------
is called in wrapp_ProcessUnits and wrapp_SystemData
Parameters
----------
letter1 : String, "A", "B" etc.
number1 : Integer
letter2 : String, "A", "B" etc.
number2 : Integer
Returns
-------
None.
"""
Range = range (convert_numbers(number1), convert_numbers(number2)+1), range(convert_letters(letter1)-1, convert_letters(letter2))
return(Range)
| 7,053 |
def scale_facet_list(facet_list, scale):
"""
Scale list of facets by the given scaling factor
"""
new_facet_list = []
for facet in facet_list:
new_facet_list.append(scale_facet(facet, scale))
return new_facet_list
| 7,054 |
def assert_mask_equal(m1, m2, err_msg=''):
"""
Asserts the equality of two masks.
"""
if m1 is nomask:
assert_(m2 is nomask)
if m2 is nomask:
assert_(m1 is nomask)
assert_array_equal(m1, m2, err_msg=err_msg)
| 7,055 |
def options():
""" Prints the options for the player to choose: to Play or Quit game """
options_font_size = 50
options_font = pygame.font.SysFont('impact', options_font_size)
options_pos = [(100,500),(570,500)]
play_text = options_font.render("Play", True, black)
quit_text = options_font.render("Quit", True, black)
window.blit(play_text, options_pos[0])
window.blit(quit_text, options_pos[1])
| 7,056 |
def move_lines_to_index(uwline_index_to, lineno, uwlines, lines):
"""Method moves all lines in the list to the proper index of uwlines and
update lineno on these lines. This is useful when you want to change the
order of code lines. But note: it is not updating lineno on other lines
@:returns positions (indexes) from original source where
lines are taken from
"""
# saving positions of imports here, that will be used for restoring 'lineno'
lineno_where_line_was_taken_from = list()
for line in lines:
lineno_where_line_was_taken_from.append(line.lineno)
for token in line.tokens:
# here we will restore correct lineno for moved lines
token.node.lineno = lineno
# hack to remove newlines between imports that we moved to top
pytree_utils.SetNodeAnnotation(token.node,
pytree_utils.Annotation.NEWLINES, 0)
lineno += get_lineno_delta(token)
# need to update lineno on import lines to have consistency
lineno += 1
# filtering moved values and removing them from uwlines
uwlines[:] = [line for line in uwlines if line not in lines]
uwlines[uwline_index_to:uwline_index_to] = lines
return lineno_where_line_was_taken_from
| 7,057 |
def birch(V, E0, B0, BP, V0):
"""
From Intermetallic compounds: Principles and Practice, Vol. I: Principles
Chapter 9 pages 195-210 by M. Mehl. B. Klein, D. Papaconstantopoulos paper downloaded from Web
case where n=0
"""
E = (E0
+ 9.0/8.0*B0*V0*((V0/V)**(2.0/3.0) - 1.0)**2
+ 9.0/16.0*B0*V0*(BP-4.)*((V0/V)**(2.0/3.0) - 1.0)**3)
return E
| 7,058 |
def test_zarr_dask_nD(make_napari_viewer):
"""Test adding nD zarr image."""
viewer = make_napari_viewer()
data = zarr.zeros((200, 100, 50), chunks=(40, 20, 10))
data[53:63, 10:20, :] = 1
zdata = da.from_zarr(data)
viewer.add_image(zdata)
assert np.all(viewer.layers[0].data == zdata)
| 7,059 |
def debloat(edges: set, nodes: int, threshold: tuple = (0.95, 0.95)) -> Set[Tuple[str, str]]:
"""Remove nodes with inflow and/or ourflow > threshold"""
df = pd.DataFrame(list(edges), columns=["source", "target"])
checkpoint_shape = df.shape[0]
df_inflow = df.groupby("target").count().reset_index().rename(columns={"source": "inflow"})
df_outflow = df.groupby("source").count().reset_index().rename(columns={"target": "outflow"})
df = df.merge(df_inflow, on="target", how="left")
df = df.merge(df_outflow, on="source", how="left")
df["inflow_ratio"] = df["inflow"] / nodes
df["outflow_ratio"] = df["outflow"] / nodes
df = df[(df["inflow_ratio"] <= threshold[0]) & (df["outflow_ratio"] <= threshold[1])]
print(f"{checkpoint_shape - df.shape[0]} edges removed")
df.drop(["outflow", "inflow", "outflow_ratio", "inflow_ratio"], axis=1, inplace=True)
return set(tuple(i) for i in df.values.tolist())
| 7,060 |
def result(jid):
""" Displays a job result.
Args:
jid (str): The job id.
"""
job = q.fetch_job(jid)
statuses = {
'queued': 202,
'started': 202,
'finished': 200,
'failed': 500,
'job not found': 404,
}
if job:
job_status = job.get_status()
result = job.result
else:
job_status = 'job not found'
result = None
resp = {
'status': statuses[job_status],
'job_id': jid,
'job_status': job_status,
'result': result}
return jsonify(**resp)
| 7,061 |
def install_(ca_path, password, ca_url):
"""Create a ca workspace."""
install(ca_path, ca_url, password)
| 7,062 |
def fd_nabla_1(
x: np.ndarray,
fun: Callable,
delta_vec: np.ndarray,
) -> np.ndarray:
"""Calculate FD approximation to 1st order derivative (Jacobian/gradient).
Parameters
----------
x: Parameter vector, shape (n_par,).
fun: Function returning function values. Scalar- or vector-valued.
delta_vec: Step size vector, shape (n_par,).
Returns
-------
nabla_1:
The FD approximation to the 1st order derivatives.
Shape (n_par, ...) with ndim > 1 if `f_fval` is not scalar-valued.
"""
# parameter dimension
n_par = len(x)
nabla_1 = []
for ix in range(n_par):
delta_val = delta_vec[ix]
delta = delta_val * unit_vec(dim=n_par, ix=ix)
fp = fun(x + delta / 2)
fm = fun(x - delta / 2)
nabla_1.append((fp - fm) / delta_val)
return np.array(nabla_1)
| 7,063 |
def test_api_export_spacy_model(temp_folder: Path) -> None:
"""spaCy model loading is one of the things we need to support"""
use_fs(temp_folder)
bucket = Pathy("gs://my-bucket/")
bucket.mkdir(exist_ok=True)
model = spacy.blank("en")
output_path = Pathy("gs://my-bucket/models/my_model")
model.to_disk(output_path)
sorted_entries = sorted([str(p) for p in output_path.glob("*")])
expected_entries = [
"gs://my-bucket/models/my_model/meta.json",
"gs://my-bucket/models/my_model/tokenizer",
"gs://my-bucket/models/my_model/vocab",
]
assert sorted_entries == expected_entries
| 7,064 |
def init(options, configuration, plugin):
""" initializes the plugin """
plugin.log("spiderpay.py initializing")
# maps destination to list of paths each of which has some score
# window corresponding to its max capacity and how much we use it
plugin.routes_in_use = {}
# per-destination queue at the sender of payments to be sent
plugin.queue = {}
# maps the payments already sent out to the route index that they were
# sent on
plugin.payment_hash_to_route = {}
# maps the payments already sent out to their requests to set result
# eventually
plugin.payment_hash_to_request = {}
# window decrease and increase factors
plugin.beta = 1
plugin.alpha = 10
| 7,065 |
def get_ref_len_from_bam(bam_path, target_contig):
"""
Fetch the length of a given reference sequence from a :py:class:`pysam.AlignmentFile`.
Parameters
----------
bam_path : str
Path to the BAM alignment
target_contig : str
The name of the contig for which to recover haplotypes.
Returns
-------
end_pos : int
The 1-indexed genomic position at which to stop considering variants.
"""
bam = pysam.AlignmentFile(bam_path)
end = bam.lengths[bam.get_tid(target_contig)]
bam.close()
return end
| 7,066 |
def matches_geometry(block, coords, tolerances):
"""
Given the interactions of a block and some coordinates,
verify that the coordinates match the geometry as defined
in the block interactions within accpatable deviations.
"""
for bond in itertools.chain(block.interactions["bonds"], block.interactions["constraints"]):
ref = float(bond.parameters[1])
dist = np.linalg.norm(coords[bond.atoms[0]] - coords[bond.atoms[1]])
assert np.isclose(dist, ref, atol=tolerances['bonds'])
for inter in block.interactions["angles"]:
ref = float(inter.parameters[1])
ang = angle(coords[inter.atoms[0]], coords[inter.atoms[1]], coords[inter.atoms[2]])
print(ref, ang)
assert np.isclose(ang, ref, atol=tolerances['angles'])
# only improper dihedrals
for inter in block.interactions["dihedrals"]:
if inter.parameters[0] == "2":
ref = float(inter.parameters[1])
ang = dih(coords[inter.atoms[0]],
coords[inter.atoms[1]],
coords[inter.atoms[2]],
coords[inter.atoms[3]])
assert np.isclose(ang, ref, atol=tolerances["dihedrals"])
for virtual_site in block.interactions["virtual_sitesn"]:
ref_coord = construct_vs("virtual_sitesn", virtual_site, coords)
vs_coords = coords[virtual_site.atoms[0]]
assert np.allclose(ref_coord, vs_coords)
| 7,067 |
def vstd(df, n=10):
"""
成交量标准差 vstd(10)
VSTD=STD(Volume,N)=[∑(Volume-MA(Volume,N))^2/N]^0.5
"""
_vstd = pd.DataFrame()
_vstd['date'] = df.date
_vstd['vstd'] = df.volume.rolling(n).std(ddof=1)
return _vstd
| 7,068 |
def createMonatomicGas(elm, pascal):
"""createMonatomicGas(elm, pascal)
Create a gas of single atoms of the specified element at the specified pressure in Pascal and 300 K"""
return epq.Gas((elm,), (1,), pascal, 300.0, elm.toString() + " gas at %f Pa" % pascal)
| 7,069 |
def _create_campaign_feed(
client, customer_id, campaign_id, feed_mapping, feed_resource_name, chain_id
):
"""Creates the campaign feed.
Args:
client: The Google Ads API client.
customer_id: The Google Ads customer ID.
campaign_id: The campaign ID to which the affiliate location extensions
will be added.
feed_mapping: The affliate location extension feedmapping for the feed
resource name.
feed_resource_name: The feed resource name.
chain_id: The retail chain ID.
"""
# Get the CampaignFeedService.
campaign_feed_service = client.get_service("CampaignFeedService")
feed_service = client.get_service("FeedService")
attribute_id_for_chain_id = _get_attribute_id_for_chain_id(
client, feed_mapping
)
feed_id = feed_service.parse_feed_path(feed_resource_name)["feed_id"]
matching_function = (
f"IN(FeedAttribute[{feed_id}, {attribute_id_for_chain_id}], {chain_id})"
)
# Add a CampaignFeed that associates the feed with this campaign for
# the AFFILIATE_LOCATION placeholder type.
campaign_feed_operation = client.get_type("CampaignFeedOperation")
campaign_feed = campaign_feed_operation.create
campaign_feed.feed = feed_resource_name
campaign_feed.placeholder_types.append(
client.enums.PlaceholderTypeEnum.AFFILIATE_LOCATION
)
campaign_feed.matching_function.function_string = matching_function
campaign_feed.campaign = client.get_service(
"CampaignService"
).campaign_path(customer_id, campaign_id)
mutate_campaign_feeds_response = campaign_feed_service.mutate_campaign_feeds(
customer_id=customer_id, operations=[campaign_feed_operation]
)
# Display the result.
print(
"Campaign feed created with resource name: "
f"{mutate_campaign_feeds_response.results[0].resource_name}."
)
# [END add_affiliate_location_extensions_3]
| 7,070 |
def boxes_to_central_line_torch(boxes):
"""See boxes_to_central_line
Args:
boxes (tensor[..., 7]): (x, y, z, l, w, h, theta) of each box
Returns:
boxes_lp (tensor[..., 3]): (a, b, c) line parameters of each box
"""
# in case length is shorter than width
bmask = boxes[..., 3] < boxes[..., 4]
theta = -boxes[..., 6] # not sure why minus is needed
theta[bmask] -= 0.5 * np.pi
a = torch.tan(theta)
b = -torch.ones_like(a)
c = -a * boxes[..., 0] - b * boxes[..., 1]
boxes_lp = torch.stack((a, b, c), dim=-1)
boxes_lp /= torch.linalg.norm(boxes_lp, dim=-1, keepdim=True)
return boxes_lp
| 7,071 |
def load_as_spark(url: str) -> "PySparkDataFrame": # noqa: F821
"""
Load the shared table using the give url as a Spark DataFrame. `PySpark` must be installed, and
the application must be a PySpark application with the Apache Spark Connector for Delta Sharing
installed.
:param url: a url under the format "<profile>#<share>.<schema>.<table>"
:return: A Spark DataFrame representing the shared table.
"""
try:
from pyspark.sql import SparkSession
except ImportError:
raise ImportError("Unable to import pyspark. `load_as_spark` requires PySpark.")
spark = SparkSession.getActiveSession()
assert spark is not None, (
"No active SparkSession was found. "
"`load_as_spark` requires running in a PySpark application."
)
return spark.read.format("deltaSharing").load(url)
| 7,072 |
def surface_plot_go(fields, is_note_book=False):
"""Plots 3D surface plot over given theta/phi range in Fields by calculating cartesian
coordinate equivalent of spherical form."""
print("Processing SurfacePlot...")
# Finds the phi & theta range
phiSize = fields.shape[0]
thetaSize = fields.shape[1]
# Prepare arrays to hold the cartesian coordinate data.
X = np.ones((phiSize, thetaSize))
Y = np.ones((phiSize, thetaSize))
Z = np.ones((phiSize, thetaSize))
for phi in range(phiSize):
for theta in range(thetaSize):
e = fields[phi][theta]
xe, ye, ze = sph2cart1(e, math.radians(theta), math.radians(phi))
X[phi, theta] = xe
Y[phi, theta] = ye
Z[phi, theta] = ze
surface = go.Surface(x=X, y=Y, z=Z)
data = [surface]
layout = go.Layout(
title='Surface Plot of EH Plane',
scene=dict(
xaxis=dict(
gridcolor='rgb(255, 255, 255)',
zerolinecolor='rgb(255, 255, 255)',
showbackground=True,
backgroundcolor='rgb(230, 230,230)'
),
yaxis=dict(
gridcolor='rgb(255, 255, 255)',
zerolinecolor='rgb(255, 255, 255)',
showbackground=True,
backgroundcolor='rgb(230, 230,230)'
),
zaxis=dict(
gridcolor='rgb(255, 255, 255)',
zerolinecolor='rgb(255, 255, 255)',
showbackground=True,
backgroundcolor='rgb(230, 230,230)'
)
)
)
fig = go.Figure(data=data, layout=layout)
if is_note_book:
iplot(fig)
else:
plotly.offline.plot(fig)
| 7,073 |
def calClassSpecificProbPanel(param, expVars, altAvMat, altChosen, obsAv):
"""
Function that calculates the class specific probabilities for each decision-maker in the
dataset
Parameters
----------
param : 1D numpy array of size nExpVars.
Contains parameter values.
expVars : 2D numpy array of size (nExpVars x (nRows)).
Contains explanatory variables.
altAvMat : sparse matrix of size (nRows x nObs).
The (i, j)th element equals 1 if the alternative corresponding to the ith
column in expVars is available to the decision-maker corresponding to the
jth observation, and 0 otherwise.
altChosen : sparse matrix of size (nRows x nObs).
The (i, j)th element equals 1 if the alternative corresponding to the ith
column in expVars was chosen by the decision-maker corresponding to the
jth observation, and 0 otherwise.
obsAv : sparse matrix of size (nObs x nInds).
The (i, j)th element equals 1 if the ith observation in the dataset corresponds
to the jth decision-maker, and 0 otherwise.
Returns
-------
np.exp(lPInd) : 2D numpy array of size 1 x nInds.
Identifies the class specific probabilities for each individual in the
dataset.
"""
v = np.dot(param[None, :], expVars) # v is 1 x nRows
ev = np.exp(v) # ev is 1 x nRows
ev[np.isinf(ev)] = 1e+20 # As precaution when exp(v) is too large for machine
ev[ev < 1e-200] = 1e-200 # As precaution when exp(v) is too close to zero
nev = ev * altAvMat # nev is 1 x nObs
nnev = altAvMat * np.transpose(nev) # nnev is nRows x 1
p = np.divide(ev, np.transpose(nnev)) # p is 1 x nRows
p[np.isinf(p)] = 1e-200 # When none of the alternatives are available
pObs = p * altChosen # pObs is 1 x nObs
lPObs = np.log(pObs) # lPObs is 1 x nObs
lPInd = lPObs * obsAv # lPInd is 1 x nInds
return np.exp(lPInd) # prob is 1 x nInds
| 7,074 |
def build_expression_tree(tokens):
"""Returns an ExpressionTree based upon by a tokenized expression."""
s = [] # we use Python list as stack
for t in tokens:
if t in '+-x*/': # t is an operator symbol
s.append(t) # push the operator symbol on the stack
elif t not in '()': # consider t to be a literal
s.append(ExpressionTree(t)) # push trivial tree storing value
elif t == ')' : # compose a new tree from three constituent parts
right = s.pop() # right subtree as per LIFO
op = s.pop() # operator symbol
left = s.pop() # left subtree
s.append(ExpressionTree(op, left, right)) # reconstruct tree and push it back on the stack
# ignore the parenthesis
return s.pop() # the last reconstructed tree
| 7,075 |
def unpack_blockchain(s: str) -> block.Blockchain:
"""Unapck blockchain from JSON string with b64 for bytes."""
blocks = json.loads(s)
return [_unpack_block(block) for block in blocks]
| 7,076 |
def parse(options,full_path):
"""
Parse the data according to several regexes
"""
global p_entering_vip_block, p_exiting_vip_block, p_vip_next, p_vip_number, p_vip_set
in_vip_block = False
vip_list = []
vip_elem = {}
order_keys = []
if (options.input_file != None):
with open(options.input_file, mode=fd_read_options) as fd_input:
for line in fd_input:
line = line.strip()
# We match a vip block
if p_entering_vip_block.search(line):
in_vip_block = True
# We are in a vip block
if in_vip_block:
if p_vip_number.search(line):
vip_number = p_vip_number.search(line).group('vip_number')
vip_number = re.sub('["]', '', vip_number)
vip_elem['id'] = vip_number
if not('id' in order_keys):
order_keys.append('id')
# We match a setting
if p_vip_set.search(line):
vip_key = p_vip_set.search(line).group('vip_key')
if not(vip_key in order_keys):
order_keys.append(vip_key)
vip_value = p_vip_set.search(line).group('vip_value').strip()
vip_value = re.sub('["]', '', vip_value)
vip_elem[vip_key] = vip_value
# We are done with the current vip id
if p_vip_next.search(line):
vip_list.append(vip_elem)
vip_elem = {}
# We are exiting the vip block
if p_exiting_vip_block.search(line):
in_vip_block = False
return (vip_list, order_keys)
else:
# for files in os.listdir(os.path.abspath(options.input_folder)):
with open(full_path, mode=fd_read_options) as fd_input:
for line in fd_input:
line = line.strip()
# We match a vip block
if p_entering_vip_block.search(line):
in_vip_block = True
# We are in a vip block
if in_vip_block:
if p_vip_number.search(line):
vip_number = p_vip_number.search(line).group('vip_number')
vip_number = re.sub('["]', '', vip_number)
vip_elem['id'] = vip_number
if not('id' in order_keys):
order_keys.append('id')
# We match a setting
if p_vip_set.search(line):
vip_key = p_vip_set.search(line).group('vip_key')
if not(vip_key in order_keys):
order_keys.append(vip_key)
vip_value = p_vip_set.search(line).group('vip_value').strip()
vip_value = re.sub('["]', '', vip_value)
vip_elem[vip_key] = vip_value
# We are done with the current vip id
if p_vip_next.search(line):
vip_list.append(vip_elem)
vip_elem = {}
# We are exiting the vip block
if p_exiting_vip_block.search(line):
in_vip_block = False
return (vip_list, order_keys)
| 7,077 |
def launch(**kwargs):
""" Connects to PM320E and instantiates server
:param kwargs: (dict) containing relevant kwargs
:logger: instance of LogClient for logging purposes
:port: (int) port number for the Cnt Monitor server
"""
try:
settings = load_device_config('thorlabs_pm320e',
kwargs['config'],
logger=kwargs['logger']
)
except KeyError:
kwargs['logger'].warn('No config file was provided')
try:
pm = Driver(
logger=kwargs['logger'],
gpib_address=settings['device_id'],
)
# Handle error of wrong GPIB address by allowing user to select
# NOTE: this will fail if used from the main script launcher, since script client
# will automatically try to connect (even though server isn't launched)
#
# TLDR: if you want to use launch-control, please fill in GPIB variable with
# the correct resource string
except:
kwargs['logger'].error('Please check GPIB address, could not connect')
pm_service = Service()
pm_service.assign_module(module=pm)
pm_service.assign_logger(logger=kwargs['logger'])
pm_server = GenericServer(
service=pm_service,
host=get_ip(),
port=kwargs['port']
)
pm_server.start()
| 7,078 |
def update_wishlist_games(cur, table, wishlist_args, update_delay):
"""A function to update wishlist games.
:param cur: database cursor object
:type cur: Cursor
:param table: name of table to work on
:type table: str
:param wishlist_args: list of wishlist games to add to database
:type wishlist_args: list
:param update_delay: the amount of time that must pass before updating
:type update_delay: timedelta
"""
# Figure out which games need updating
outdated_games = DB_Calls.wishlist_needs_updating(cur, table, update_delay)
# Fetch deals for new and existing wishlist games
if(wishlist_args or outdated_games):
if(table == DB_Tables.PC_WISHLIST.value):
_table = DB_Tables.PC_WISHLIST.value
games_to_update, new_games = (
PC.get_wishlist_deals(cur, outdated_games+wishlist_args))
elif(table == DB_Tables.PS_WISHLIST.value):
_table = DB_Tables.PS_WISHLIST.value
games_to_update, new_games = (
PS.get_wishlist_deals(cur, outdated_games+wishlist_args))
if(new_games):
DB_Calls.add_games(cur, _table, new_games, games_to_update)
return True
return False
| 7,079 |
def WrapSignal(signal):
"""Wrap a model signal with a corresponding frontend wrapper."""
if type(signal) is M.BitsSignal:
return BitsFrontend(signal)
elif type(signal) is M.ListSignal:
return ListFrontend(signal)
elif type(signal) is M.BundleSignal:
return BundleFrontend(signal)
else:
assert False, f'Cannot wrap signal of type {type(signal)}'
| 7,080 |
def is_array_like(element: Any) -> bool:
"""Returns `True` if `element` is a JAX array, a NumPy array, or a Python
`float`/`complex`/`bool`/`int`.
"""
return isinstance(
element, (jnp.ndarray, np.ndarray, float, complex, bool, int)
) or hasattr(element, "__jax_array__")
| 7,081 |
def parse(javascript_code):
"""Returns syntax tree of javascript_code.
Syntax tree has the same structure as syntax tree produced by esprima.js
Same as PyJsParser().parse For your convenience :) """
p = PyJsParser()
return p.parse(javascript_code)
| 7,082 |
def twitterAuth():
""" Authenticate user using Twitter API generated credentials """
auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET)
auth.set_access_token(ACCESS_KEY, ACCESS_SECRET)
return tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True)
| 7,083 |
def GetInstalledPackageUseFlags(pkg_str, board=None):
"""Gets the list of USE flags for installed packages matching |pkg_str|.
Args:
pkg_str: The package name with optional category, version, and slot.
board: The board to inspect.
Returns:
A dictionary with the key being a package CP and the value being the list
of USE flags for that package.
"""
cmd = ['qlist']
if board:
cmd = ['qlist-%s' % board]
cmd += ['-CqU', pkg_str]
result = cros_build_lib.RunCommand(
cmd, enter_chroot=True, capture_output=True, error_code_ok=True)
use_flags = {}
if result.returncode == 0:
for line in result.output.splitlines():
tokens = line.split()
use_flags[tokens[0]] = tokens[1:]
return use_flags
| 7,084 |
async def test_clear_snapshots(coresys: CoreSys, tmp_path):
"""Test snapshot cleanup."""
for slug in ["sn1", "sn2", "sn3", "sn4", "sn5"]:
temp_tar = Path(tmp_path, f"{slug}.tar")
with SecureTarFile(temp_tar, "w"):
pass
snapshot = Snapshot(coresys, temp_tar)
snapshot._data = { # pylint: disable=protected-access
ATTR_SLUG: slug,
ATTR_DATE: utcnow().isoformat(),
ATTR_TYPE: SNAPSHOT_PARTIAL
if "1" in slug or "5" in slug
else SNAPSHOT_FULL,
}
coresys.snapshots.snapshots_obj[snapshot.slug] = snapshot
newest_full_snapshot = coresys.snapshots.snapshots_obj["sn4"]
assert newest_full_snapshot in coresys.snapshots.list_snapshots
assert (
len(
[x for x in coresys.snapshots.list_snapshots if x.sys_type == SNAPSHOT_FULL]
)
== 3
)
coresys.resolution.storage.clean_full_snapshots()
assert newest_full_snapshot in coresys.snapshots.list_snapshots
assert (
len(
[x for x in coresys.snapshots.list_snapshots if x.sys_type == SNAPSHOT_FULL]
)
== 1
)
| 7,085 |
def test_scorekeeper_retrieve_by_slug(scorekeeper_slug: str):
"""Testing for :py:meth:`wwdtm.scorekeeper.Scorekeeper.retrieve_by_slug`
:param scorekeeper_slug: Scorekeeper slug string to test retrieving
scorekeeper information
"""
scorekeeper = Scorekeeper(connect_dict=get_connect_dict())
info = scorekeeper.retrieve_by_slug(scorekeeper_slug)
assert info, f"Scorekeeper slug {scorekeeper_slug} not found"
assert "name" in info, f"'name' was not returned for slug {scorekeeper_slug}"
| 7,086 |
def make_cursor():
"""
Creates a cursor for iterating through results
GetParams:
account: an account
user: a user
handle: a shark client handle
Returns:
a json object container the cursor handle
"""
data, statusCode = cursor()
return jsonify(data), statusCode
| 7,087 |
def run_result_factory(data: list[tuple[Any, Any]]):
"""
We need to handle dt.datetime and agate.table.Table.
The rest of the types should already be JSON-serializable.
"""
d = {}
for key, val in data:
if isinstance(val, dt.datetime):
val = val.isoformat()
elif isinstance(val, agate.table.Table):
# agate Tables have a few print methods but they offer plain
# text representations of the table which are not very JSON
# friendly. There is a to_json method, but I don't think
# sending the whole table in an XCOM is a good idea either.
val = {
k: v.__class__.__name__
for k, v in zip(val._column_names, val._column_types)
}
d[key] = val
return d
| 7,088 |
def compute_steepness(zeroth_moment, peak_wavenumber):
"""Compute characteristic steepness from given peak wave number."""
return np.sqrt(2 * zeroth_moment) * peak_wavenumber
| 7,089 |
def test_getting_monthly_annual_temp_values():
""" Test that prior_months and prior_year values are correct
Values were hand-verified using panoply tables"""
ct = AlaskaTemperature()
ct.initialize_from_config_file()
# Test prior months values
# These are values starting from 2/1901
# actualvalues = [-28.700001, -24.799999, -16.600000, -2.700000,
# 7.800000, 11.000000, 7.100000, -0.300000,
# -13.400000, -22.100000, -26.500000, -25.700001]
# actualmean = -11.241668
# These values start with 1/1902
actualvalues = [
-25.7,
-27.0,
-26.6,
-16.9,
-2.8,
8.1,
11.4,
7.3,
-0.3,
-13.6,
-22.1,
-28.9,
]
actualmean = -11.425
vallist = []
for i in np.arange(0, 12):
vallist.append(ct.T_air_prior_months[i][0, 0])
for i in np.arange(0, 12):
assert vallist[i] == pytest.approx(actualvalues[i])
# Test prior year value
assert ct.T_air_prior_year[0, 0] == pytest.approx(actualmean)
| 7,090 |
def secondary_side_radius(mass_ratio, surface_potential):
"""
Side radius of secondary component
:param mass_ratio: float;
:param surface_potential: float;
:return: float; side radius
"""
return calculate_side_radius(1.0, mass_ratio, 1.0, surface_potential, 'secondary')
| 7,091 |
def pts_from_rect_inside(r):
""" returns start_pt, end_pt where end_pt is _inside_ the rectangle """
return (r[0], r[1]), ((r[0] + r[2] - 1), (r[1] + r[3] - 1))
| 7,092 |
def minimum_distance(object_1, object_2):
""" Takes two lists as input
A list of numpy arrays of coordinates that make up object 1 and object 2
Measures the distances between each of the coordinates
Returns the minimum distance between the two objects, as calculated using a vector norm
Stops the calculation and returns 0 if two coordinates overlap
"""
# package import
import numpy as np
# main algorithm
minimum_distance = 100000
for coord_1 in object_1:
for coord_2 in object_2:
distance_btwn_coords = np.linalg.norm(coord_1 - coord_2)
if distance_btwn_coords == 0:
minimum_distance = distance_btwn_coords
return float(minimum_distance)
elif distance_btwn_coords < minimum_distance:
minimum_distance = distance_btwn_coords
return float(minimum_distance)
| 7,093 |
def _park_ship(board: MyBoard, ship: Ship):
""" Send our ship to the nearest shipyard """
moves_left = board.moves_left
shipyard_to_distance = _get_shipyard_to_distance(board, ship.position, board.me)
shipyards = [s for s, d in shipyard_to_distance.items() if d <= moves_left]
if not shipyards:
# create new one, if there are enough halite
if (
ship.halite > board.configuration.convert_cost
and not board.is_danger_position(ship.position, ship)
):
board.create_shipyard(ship)
return
shipyards = sorted(shipyards, key=lambda x: shipyard_to_distance[x])
for sy in shipyards:
if _sent_ship_to_shipyard(board, ship, sy):
return
for sy in shipyards:
if shipyard_to_distance[sy] < moves_left - 1:
if _sent_ship_to_shipyard(board, ship, sy, can_wait=True):
return
for sy in shipyards:
if _sent_ship_to_shipyard(board, ship, sy, allow_collision=True):
return
| 7,094 |
def retrieve_pkl_file(filename, verbose = False):
"""
Retrieve and return contents of pkl file
"""
if verbose == True:
start_time = timelib.time()
print("\n * Retrieving %s file ..."%filename)
data = pd.read_pickle(filename)
if verbose == True:
print("\n %s retrieved in %.1f seconds."%(filename, timelib.time() - start_time))
return data;
| 7,095 |
def extractIpsFile(containerFile,newSimName):
"""
Given a container file, get the ips file in it and write it to current
directory so that it can be used
"""
oldIpsFile=os.path.splitext(containerFile)[0]+os.extsep+"ips"
zf=zipfile.ZipFile(containerFile,"r")
foundFile=""
# Assume that container file contains 1 ips file.
oldIpsFile=fnmatch.filter(zf.namelist(),"*.ips")[0]
ifile=zf.read(oldIpsFile)
ipsFile=newSimName+".ips"
if os.path.exists(ipsFile):
print "Moving "+ipsFile+" to "+"Save"+ipsFile
shutil.copy(ipsFile, "Save"+ipsFile)
ff=open(ipsFile,"w")
ff.write(ifile)
ff.close()
return ipsFile
| 7,096 |
def nplr(measure, N, rank=1, dtype=torch.float):
""" Return w, p, q, V, B such that
(w - p q^*, B) is unitarily equivalent to the original HiPPO A, B by the matrix V
i.e. A = V[w - p q^*]V^*, B = V B
"""
assert dtype == torch.float or torch.cfloat
if measure == 'random':
dtype = torch.cfloat if dtype == torch.float else torch.cdouble
# w = torch.randn(N//2, dtype=dtype)
w = -torch.exp(torch.randn(N//2)) + 1j*torch.randn(N//2)
P = torch.randn(rank, N//2, dtype=dtype)
B = torch.randn(N//2, dtype=dtype)
V = torch.eye(N, dtype=dtype)[..., :N//2] # Only used in testing
return w, P, B, V
A, B = transition(measure, N)
A = torch.as_tensor(A, dtype=dtype) # (N, N)
B = torch.as_tensor(B, dtype=dtype)[:, 0] # (N,)
P = rank_correction(measure, N, rank=rank, dtype=dtype)
AP = A + torch.sum(P.unsqueeze(-2)*P.unsqueeze(-1), dim=-3)
w, V = torch.linalg.eig(AP) # (..., N) (..., N, N)
# V w V^{-1} = A
# Only keep one of the conjugate pairs
w = w[..., 0::2].contiguous()
V = V[..., 0::2].contiguous()
V_inv = V.conj().transpose(-1, -2)
B = contract('ij, j -> i', V_inv, B.to(V)) # V^* B
P = contract('ij, ...j -> ...i', V_inv, P.to(V)) # V^* P
return w, P, B, V
| 7,097 |
def read_data(oldest_year: int = 2020, newest_year: int = 2022):
"""Read in csv files of yearly covid data from the nytimes and concatenate into a single pandas DataFrame.
Args:
oldest_year: first year of data to use
newest_year: most recent year of data to use
"""
df_dicts = {} # dictionary to hold the data for each year before concatenation
for year in range(oldest_year, newest_year + 1):
df_dicts[f"df_{year}"] = pd.read_csv(
f"https://raw.githubusercontent.com/nytimes/covid-19-data/master/rolling-averages/us-counties-{year}.csv",
index_col="date",
)
logger.info("data read in successfully")
return pd.concat(df_dicts.values())
| 7,098 |
def ip_is_v4(ip: str) -> bool:
"""
Determines whether an IP address is IPv4 or not
:param str ip: An IP address as a string, e.g. 192.168.1.1
:raises ValueError: When the given IP address ``ip`` is invalid
:return bool: True if IPv6, False if not (i.e. probably IPv4)
"""
return type(ip_address(ip)) == IPv4Address
| 7,099 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.