content
stringlengths 22
815k
| id
int64 0
4.91M
|
---|---|
def gather_parent_cnvs(vcf, fa, mo):
"""
Create BEDTools corresponding to parent CNVs for converage-based inheritance
"""
cnv_format = '{0}\t{1}\t{2}\t{3}\t{4}\n'
fa_cnvs = ''
mo_cnvs = ''
for record in vcf:
# Do not include variants from sex chromosomes
if record.chrom in sex_chroms:
continue
# Process biallelic CNVs
if record.info['SVTYPE'] in 'DEL DUP'.split() \
and 'MULTIALLELIC' not in record.filter:
# Father
fa_ac = get_AC(get_GT(record, fa))
if fa_ac != 'NA':
if int(fa_ac) > 0:
new_cnv = cnv_format.format(record.chrom, str(record.pos),
str(record.stop),
record.info['SVTYPE'], fa_ac)
fa_cnvs = fa_cnvs + new_cnv
# Mother
mo_ac = get_AC(get_GT(record, mo))
if mo_ac != 'NA':
if int(mo_ac) > 0:
new_cnv = cnv_format.format(record.chrom, str(record.pos),
str(record.stop),
record.info['SVTYPE'], mo_ac)
mo_cnvs = mo_cnvs + new_cnv
# Process multiallelic CNVs
if record.info['SVTYPE'] == 'MCNV' and 'MULTIALLELIC' in record.filter:
# Father
fa_ac = get_GT(record, fa).split('/')[1]
if fa_ac != 'None':
fa_ac = int(fa_ac)
if fa_ac < 2:
new_cnv = cnv_format.format(record.chrom, str(record.pos),
str(record.stop), 'DEL',
str(2 - fa_ac))
fa_cnvs = fa_cnvs + new_cnv
elif fa_ac > 2:
new_cnv = cnv_format.format(record.chrom, str(record.pos),
str(record.stop), 'DUP',
str(fa_ac - 2))
fa_cnvs = fa_cnvs + new_cnv
# Mother
mo_ac = get_GT(record, mo).split('/')[1]
if mo_ac != 'None':
mo_ac = int(mo_ac)
if mo_ac < 2:
new_cnv = cnv_format.format(record.chrom, str(record.pos),
str(record.stop), 'DEL',
str(2 - mo_ac))
mo_cnvs = mo_cnvs + new_cnv
elif mo_ac > 2:
new_cnv = cnv_format.format(record.chrom, str(record.pos),
str(record.stop), 'DUP',
str(mo_ac - 2))
mo_cnvs = mo_cnvs + new_cnv
fa_cnvs = pbt.BedTool(fa_cnvs, from_string=True)
mo_cnvs = pbt.BedTool(mo_cnvs, from_string=True)
return fa_cnvs, mo_cnvs
| 6,600 |
def test_get_light_information(light_control):
"""Test get light information API."""
light_control._request.return_value = response_getLightInformation
light_control.get_light_information()
light_control._request.assert_called_with(
"post",
"/axis-cgi/lightcontrol.cgi",
json={
"method": "getLightInformation",
"apiVersion": "1.1",
"context": "Axis library",
},
)
| 6,601 |
def create_images():
""" Create new images
Internal Parameters:
image (FileStorage): Image
Returns:
success (boolean)
image (list)
"""
# vars
image_file = request.files.get('image')
validate_image_data({"image": image_file})
image_url_set = create_img_set(image_file)
# create image
image = Image(**{
"user_id": auth_user_id(),
"url": json.dumps(image_url_set)
})
try:
image.insert()
# return the result
return jsonify({
'success': True,
'image': image.format()
})
except Exception as e:
abort(400)
| 6,602 |
def docx2python(
docx_filename: Union[str, Path],
image_folder: Optional[str] = None,
html: bool = False,
paragraph_styles: bool = False,
extract_image: bool = None,
) -> DocxContent:
"""
Unzip a docx file and extract contents.
:param docx_filename: path to a docx file
:param image_folder: optionally specify an image folder
(images in docx will be copied to this folder)
:param html: bool, extract some formatting as html
:param paragraph_styles: prepend the paragraphs style (if any, else "") to each
paragraph. This will only be useful with ``*_runs`` attributes.
:param extract_image: bool, extract images from document (default True)
:return: DocxContent object
"""
if extract_image is not None:
warn(
"'extract_image' is no longer a valid argument for docx2python. If an "
"image_folder is given as an argument to docx2python, images will be "
"written to that folder. A folder can be provided later with "
"``docx2python(filename).write_images(image_folder)``. Images files are "
"available as before with ``docx2text(filename).images`` attribute."
)
docx_context = DocxReader(docx_filename, html, paragraph_styles)
docx_content = DocxContent(docx_context, locals())
if image_folder:
_ = docx_content.images
return docx_content
| 6,603 |
def test_check_datasets_raises_with_unsorted_interactions():
"""Passed datasets that have sublattice interactions not in sorted order should raise."""
with pytest.raises(DatasetError):
check_dataset(dataset_single_unsorted_interaction)
| 6,604 |
def parcel_analysis(con_imgs, parcel_img,
msk_img=None, vcon_imgs=None,
design_matrix=None, cvect=None,
fwhm=8, smooth_method='default',
res_path=None):
"""
Helper function for Bayesian parcel-based analysis.
Given a sequence of independent images registered to a common
space (for instance, a set of contrast images from a first-level
fMRI analysis), perform a second-level analysis assuming constant
effects throughout parcels defined from a given label image in
reference space. Specifically, a model of the following form is
assumed:
Y = X * beta + variability,
where Y denotes the input image sequence, X is a design matrix,
and beta are parcel-wise parameter vectors. The algorithm computes
the Bayesian posterior probability of cvect'*beta, where cvect is
a given contrast vector, in each parcel using an expectation
propagation scheme.
Parameters
----------
con_imgs: sequence of nipy-like images
Images input to the group analysis.
parcel_img: nipy-like image
Label image where each label codes for a parcel.
msk_img: nipy-like image, optional
Binary mask to restrict analysis. By default, analysis is
carried out on all parcels with nonzero value.
vcon_imgs: sequece of nipy-like images, optional
First-level variance estimates corresponding to `con_imgs`. This
is useful if the input images are "noisy". By default,
first-level variances are assumed to be zero.
design_matrix: array, optional
If None, a one-sample analysis model is used. Otherwise, an
array with shape (n, p) where `n` matches the number of input
scans, and `p` is the number of regressors.
cvect: array, optional
Contrast vector of interest. The method makes an inference on
the contrast defined as the dot product cvect'*beta, where beta
are the unknown parcel-wise effects. If None, `cvect` is assumed
to be np.array((1,)). However, the `cvect` argument is mandatory
if `design_matrix` is provided.
fwhm: float, optional
A parameter that represents the localization uncertainty in
reference space in terms of the full width at half maximum of an
isotropic Gaussian kernel.
smooth_method: str, optional
One of 'default' and 'spm'. Setting `smooth_method=spm` results
in simply smoothing the input images using a Gaussian kernel,
while the default method involves more complex smoothing in
order to propagate spatial uncertainty into the inference
process.
res_path: str, optional
An existing path to write output images. If None, no output is
written.
Returns
-------
pmap_mu_img: nipy image
Image of posterior contrast means for each parcel.
pmap_prob_img: nipy image
Corresponding image of posterior probabilities of positive
contrast.
"""
p = ParcelAnalysis(con_imgs, parcel_img, parcel_info=None,
msk_img=msk_img, vcon_imgs=vcon_imgs,
design_matrix=design_matrix, cvect=cvect,
fwhm=fwhm, smooth_method=smooth_method,
res_path=res_path)
return p.parcel_maps()
| 6,605 |
def memoize(fn):
"""Simple memoization decorator for functions and methods,
assumes that all arguments to the function can be hashed and
compared.
"""
memoized_values = {}
@wraps(fn)
def wrapped_fn(*args, **kwargs):
key = (args, tuple(sorted(kwargs.items())))
try:
return memoized_values[key]
except KeyError:
memoized_values[key] = fn(*args, **kwargs)
return memoized_values[key]
return wrapped_fn
| 6,606 |
def insert_record(bitdotio, record, qualified_table):
"""Inserts a single sensor measurement record.
Parameters
----------
bitdotio : _Bit object
bit.io connection client.
record : list
The record as a list of str representations.
qualified_table: str
The schema qualified table to upload to.
----
"""
sql = f'INSERT INTO {qualified_table} '
sql += 'VALUES (' + ', '.join(['%s'] * len(record)) + ');'
execute_sql(bitdotio, sql, record)
| 6,607 |
def remove(tag: str, not_exist_ok: bool = True) -> None:
"""
Remove the map with the given ``tag``.
Parameters
----------
tag
The ``tag`` to search for and remove.
not_exist_ok
If ``False``, raise :class:`htmap.exceptions.MapIdNotFound` if the ``tag`` doesn't exist.
"""
try:
load(tag).remove()
except (exceptions.TagNotFound, FileNotFoundError) as e:
if not not_exist_ok:
if not isinstance(e, exceptions.TagNotFound):
raise exceptions.TagNotFound(f"Map {tag} not found") from e
raise e
| 6,608 |
def validate(
args: Namespace,
model: BaseModel
) -> pd.DataFrame:
"""Perform the validation.
Parameters
----------
args : Namespace
Arguments to configure the model and the validation.
model : BaseModel
The model to be used for validation.
Returns
-------
pd.DataFrame
A DataFrame with the metric results.
See Also
--------
ptlflow.models.base_model.base_model.BaseModel : The parent class of the available models.
"""
model.eval()
if torch.cuda.is_available():
model = model.cuda()
dataloaders = model.val_dataloader()
dataloaders = {model.val_dataloader_names[i]: dataloaders[i] for i in range(len(dataloaders))}
metrics_df = pd.DataFrame()
metrics_df['model'] = [args.model]
metrics_df['checkpoint'] = [args.pretrained_ckpt]
for dataset_name, dl in dataloaders.items():
metrics_mean = validate_one_dataloader(args, model, dl, dataset_name)
metrics_df[[f'{dataset_name}-{k}' for k in metrics_mean.keys()]] = list(metrics_mean.values())
args.output_path.mkdir(parents=True, exist_ok=True)
metrics_df.T.to_csv(args.output_path / 'metrics.csv', header=False)
metrics_df = metrics_df.round(3)
return metrics_df
| 6,609 |
def test_directory_origin_multi_char_delimited(sdc_builder, sdc_executor):
"""
Test Directory Origin with multi-character delimited format. This will generate a sample file with the custom
multi-char delimiter then read it with the test pipeline.
The pipeline looks like:
directory >> trash
"""
tmp_directory = os.path.join(tempfile.gettempdir(), get_random_string(string.ascii_letters, 10))
# crazy delimiter
delim = '_/-\\_'
custom_delimited_lines = [
f"first{delim}second{delim}third",
f"1{delim}11{delim}111",
f"2{delim}22{delim}222",
f"31{delim}3,3{delim}3,_/-_3,3"
]
setup_dilimited_file(sdc_executor, tmp_directory, custom_delimited_lines)
pipeline_builder = sdc_builder.get_pipeline_builder()
directory = pipeline_builder.add_stage('Directory', type='origin')
directory.set_attributes(data_format='DELIMITED', delimiter_format_type='MULTI_CHARACTER',
multi_character_field_delimiter=delim,
header_line='WITH_HEADER',
file_name_pattern='sdc*', file_name_pattern_mode='GLOB',
file_post_processing='DELETE', files_directory=tmp_directory,
process_subdirectories=True, read_order='TIMESTAMP')
trash = pipeline_builder.add_stage('Trash')
directory >> trash
directory_pipeline = pipeline_builder.build('Multi Char Delimited Directory')
sdc_executor.add_pipeline(directory_pipeline)
snapshot = sdc_executor.capture_snapshot(directory_pipeline, start_pipeline=True, batch_size=3).snapshot
sdc_executor.stop_pipeline(directory_pipeline)
output_records = snapshot[directory.instance_name].output
assert 3 == len(output_records)
assert output_records[0].get_field_data('/first') == '1'
assert output_records[0].get_field_data('/second') == '11'
assert output_records[0].get_field_data('/third') == '111'
assert output_records[1].get_field_data('/first') == '2'
assert output_records[1].get_field_data('/second') == '22'
assert output_records[1].get_field_data('/third') == '222'
assert output_records[2].get_field_data('/first') == '31'
assert output_records[2].get_field_data('/second') == '3,3'
assert output_records[2].get_field_data('/third') == '3,_/-_3,3'
| 6,610 |
def stats(last_day=None, timeframe=None, dates_sources=None):
"""See :class:`bgpranking.api.get_stats`"""
query = {'method': 'stats'}
query.update({'last_day': last_day, 'timeframe': timeframe,
'dates_sources': dates_sources})
return __prepare_request(query)
| 6,611 |
def restore_purchases() -> None:
"""restore_purchases() -> None
(internal)
"""
return None
| 6,612 |
def show_corner_plot(chain, burnin=0.5, save=False, **kwargs):
"""
Display or save a figure showing the corner plot (pdfs + correlation plots)
Parameters
----------
chain: numpy.array
The Markov chain. The shape of chain must be nwalkers x length x dim.
If a part of the chain is filled with zero values, the method will
discard these steps.
burnin: float, default: 0
The fraction of a walker we want to discard.
save: boolean, default: False
If True, a pdf file is created.
kwargs:
Additional attributs are passed to the corner.corner() method.
Returns
-------
Display the figure or create a pdf file named walk_plot.pdf in the working
directory.
Raises
------
ImportError
"""
#burnin = kwargs.pop('burnin',0)
try:
temp = np.where(chain[0,:,0] == 0.0)[0]
if len(temp) != 0:
chain = chain[:,:temp[0],:]
length = chain.shape[1]
chain = chain[:,int(np.floor(burnin*(length-1))):length,:].reshape((-1,3))
except IndexError:
pass
if chain.shape[0] == 0:
print("It seems that the chain is empty. Have you already run the MCMC ?")
else:
fig = corner.corner(chain, labels=kwargs.pop('labels',["$r$",r"$\theta$","$f$"]), **kwargs)
if save:
plt.savefig('corner_plot.pdf')
plt.close(fig)
else:
plt.show()
| 6,613 |
def sim_mat(fc7_feats):
"""
Given a matrix of features, generate the similarity matrix S and sparsify it.
:param fc7_feats: the fc7 features
:return: matrix_S - the sparsified matrix S
"""
print("Something")
t = time.time()
pdist_ = spatial.distance.pdist(fc7_feats)
print('Created distance matrix' + ' ' + str(time.time() - t) + ' sec')
t = time.time()
dist_mat = spatial.distance.squareform(pdist_)
print('Created square distance matrix' + ' ' + str(time.time() - t) + ' sec')
del pdist_
t = time.time()
sigmas = np.sort(dist_mat, axis=1)[:, 7] + 1e-16
matrice_prodotti_sigma = np.dot(sigmas[:, np.newaxis], sigmas[np.newaxis, :])
print('Generated Sigmas' + ' ' + str(time.time() - t) + ' sec')
t = time.time()
dist_mat /= -matrice_prodotti_sigma
print('Computed dists/-sigmas' + ' ' + str(time.time() - t) + ' sec')
del matrice_prodotti_sigma
t = time.time()
W = np.exp(dist_mat, dist_mat)
# W = np.exp(-(dist_mat / matrice_prodotti_sigma))
np.fill_diagonal(W, 0.)
# sparsify the matrix
k = int(np.floor(np.log2(fc7_feats.shape[0])) + 1)
n = W.shape[0]
print('Created inplace similarity matrix' + ' ' + str(time.time() - t) + ' sec')
t = time.time()
for x in W:
x[np.argpartition(x, n - k)[:(n - k)]] = 0.0
print('Sparsify the matrix' + ' ' + str(time.time() - t) + ' sec')
t = time.time()
# matrix_S = np.zeros((n, n))
m1 = W[np.triu_indices(n, k=1)]
m2 = W.T[np.triu_indices(n, k=1)]
W = spatial.distance.squareform(np.maximum(m1, m2))
print('Symmetrized the similarity matrix' + ' ' + str(time.time() - t) + ' sec')
return W
| 6,614 |
def text_split(in_text, insert_points, char_set):
""" Returns: Input Text Split into Text and Nonce Strings. """
nonce_key = []
encrypted_nonce = ""
in_list = list(in_text)
for pos in range(3967):
if insert_points[pos] >= len(in_list) - 1: point = len(in_list) - 2
else: point = insert_points[pos]
char = in_list[point]
in_list.pop(point)
nonce_key.append(char)
if char is not char_set[-1]: break
length = ((len(nonce_key) - 1) * (len(char_set) -2)) + char_set.index(nonce_key[len(nonce_key) - 1])
for pos in range(length):
if insert_points[pos + len(nonce_key)] >= len(in_list) - 1: point = len(in_list) - 2
else: point = insert_points[pos + len(nonce_key)]
char = in_list[point]
in_list.pop(point)
encrypted_nonce = encrypted_nonce + char
return "".join(in_list), encrypted_nonce
| 6,615 |
def set_global_manager(manager):
"""Set the global ResourceManager."""
global RESOURCE_MANAGER
RESOURCE_MANAGER = manager
| 6,616 |
def f_approximation(g_matrix, coeficients_array):
"""
Retorna um vetor para o valor aproximado de f, dados os coeficientes ak.
"""
decimal.getcontext().prec = PRECSION
decimal.getcontext().rounding = ROUNDING_MODE
num_of_xs = len(g_matrix[0])
num_of_coeficients = len(g_matrix)
f_approx_array = np.full(num_of_xs, decimal.Decimal('0'))
for i in range(0, num_of_xs):
approx_sum = 0
for k in range(0, num_of_coeficients):
approx_sum += coeficients_array[k] * g_matrix[k][i]
f_approx_array[i] = approx_sum
return f_approx_array
| 6,617 |
def _module_exists(module_name):
"""
Checks if a module exists.
:param str module_name: module to check existance of
:returns: **True** if module exists and **False** otherwise
"""
try:
__import__(module_name)
return True
except ImportError:
return False
| 6,618 |
def users(request):
"""Show a list of users and their puzzles."""
context = {'user_list': []}
for user in User.objects.all().order_by('username'):
objs = Puzzle.objects.filter(user=user, pub_date__lte=timezone.now()).order_by('-number')
if objs:
puzzle_list = []
for puz in objs:
puzzle_list.append({'number': puz.number, 'date': get_date_string(puz)})
context['user_list'].append({'name': user.username, 'puzzles': puzzle_list})
return render(request, 'puzzle/users.html', context)
| 6,619 |
def write_file(data_feed, file_path):
"""Write data to a file."""
if data_feed == None:
return
with open(file_path, "w") as open_file:
keys = data_feed[0].keys()
header = ",".join(keys)
open_file.write("{}\n".format(header))
for data in data_feed:
data_string = "^^".join(data.values())
data_string = data_string.replace(",", "")
data_string = data_string.replace("^^", ",")
data_string = data_string.replace('"', "")
open_file.write("{}\n".format(data_string.encode("UTF-8")))
return
| 6,620 |
def switchClock(onoff, alarmSymbol):
"""
changes the mode of the clock display, from time to text
:param onoff (bool): True=Time mode False=Text Display
:param alarmSymbol (bool): indicates whether the alarm is set when in clock mode (alarm symbol is drawn)
:param scrollOverride (bool): indicates whether the scrolling will be stopped when in text mode
"""
print "clock",onoff
| 6,621 |
def featurize(mode, output_filename=None):
"""
Catch all method to featurize either train or test dataset and save to CSV
Params:
mode: (str) TRAIN or TEST
output_filename: (str) Optional- name of the csv to save the data
"""
MODE = mode
if not os.path.exists('train/') or not os.path.exists('test/'):
train_test_split()
if not os.path.exists('block_files/'):
os.mkdir('block_files/')
BLOCK_FILE = 'block_files/'+MODE+'.jl'
CORPUS_FREQ_FILE = MODE+'/corpus_freq.json'
ds_amzn = rltk.Dataset(reader=rltk.CSVReader(open(MODE + '/Amazon.csv', encoding='latin-1')),
record_class=AmazonRecord, adapter=rltk.MemoryAdapter())
ds_goog = rltk.Dataset(reader=rltk.CSVReader(open(MODE + '/GoogleProducts.csv', encoding='latin-1')),
record_class=GoogleRecord, adapter=rltk.MemoryAdapter())
try:
block_handler = open(BLOCK_FILE,'r')
print("Block file exists. Reading from disk...")
except FileNotFoundError:
block_handler = rltk.InvertedIndexBlockGenerator(
ds_amzn, ds_goog, writer=rltk.BlockFileWriter(BLOCK_FILE), tokenizer=tokenizer).generate()
features = ['id1', 'id2', 'price_difference',
'desc_jaccard', 'desc_tf_idf', 'desc_trigram',
'manufacturer_jaccard', 'manufacturer_jaro_winkler',
'manufacturer_levenshtien', 'name_jaccard', 'name_jaro_winkler',
'name_trigram','label']
pairs = rltk.get_record_pairs(ds_amzn, ds_goog, rltk.BlockFileReader(block_handler))
freq = get_document_frequency(CORPUS_FREQ_FILE, ds_amzn, ds_goog)
if MODE == "train":
print("Featurizing train")
if not output_filename:
output_filename = 'train/features_train.csv'
featurize_all_records(pairs, features, output_filename, freq, TRAIN_DOC_SIZE)
elif MODE == "test":
print("Featurizing test")
if not output_filename:
output_filename = 'test/features_test.csv'
featurize_all_records(pairs, features, output_filename, freq, TEST_DOC_SIZE)
| 6,622 |
def my_removefile(filename,my_sys_ldebug=0,fatal=0):
"""
Verwijdert een file.
Argumenten: pad naar file en evt een fatal-optie
"""
#Controleer of opgegeven pad een bestaande file is.
if os.path.isfile(filename):
try:
if (my_sys_ldebug):
print("MY_REMOVEFILE: Deleting file: "+filename)
os.remove(filename)
except:
my_print("MY_REMOVEFILE: Bestand " + str(filename) + " kan niet verwijderd worden.",fatal)
else:
my_print("MY_REMOVEFILE: Bestand " + str(filename) + " bestaat niet.",fatal)
| 6,623 |
def MIPS_SPIRE_gen(phot_priors,sed_prior_model,chains=4,seed=5363,iter=1000,max_treedepth=10,adapt_delta=0.8):
"""
Fit the three SPIRE bands
:param priors: list of xidplus.prior class objects. Order (MIPS,PACS100,PACS160,SPIRE250,SPIRE350,SPIRE500)
:param sed_prior: xidplus.sed.sed_prior class
:param chains: number of chains
:param iter: number of iterations
:return: pystan fit object
"""
prior24=phot_priors[0]
prior250=phot_priors[1]
prior350=phot_priors[2]
prior500=phot_priors[3]
#input data into a dictionary
XID_data = {
'nsrc': prior250.nsrc,
'bkg_prior': [prior24.bkg[0],prior250.bkg[0], prior350.bkg[0], prior500.bkg[0]],
'bkg_prior_sig': [prior24.bkg[1],prior250.bkg[1], prior350.bkg[1], prior500.bkg[1]],
'conf_prior_sig': [0.0001, 0.1, 0.1, 0.1],
'z_median': prior24.z_median,
'z_sig': prior24.z_sig,
'npix_psw': prior250.snpix,
'nnz_psw': prior250.amat_data.size,
'db_psw': prior250.sim,
'sigma_psw': prior250.snim,
'Val_psw': prior250.amat_data,
'Row_psw': prior250.amat_row.astype(np.long),
'Col_psw': prior250.amat_col.astype(np.long),
'npix_pmw': prior350.snpix,
'nnz_pmw': prior350.amat_data.size,
'db_pmw': prior350.sim,
'sigma_pmw': prior350.snim,
'Val_pmw': prior350.amat_data,
'Row_pmw': prior350.amat_row.astype(np.long),
'Col_pmw': prior350.amat_col.astype(np.long),
'npix_plw': prior500.snpix,
'nnz_plw': prior500.amat_data.size,
'db_plw': prior500.sim,
'sigma_plw': prior500.snim,
'Val_plw': prior500.amat_data,
'Row_plw': prior500.amat_row.astype(np.long),
'Col_plw': prior500.amat_col.astype(np.long),
'npix_mips24': prior24.snpix,
'nnz_mips24': prior24.amat_data.size,
'db_mips24': prior24.sim,
'sigma_mips24': prior24.snim,
'Val_mips24': prior24.amat_data,
'Row_mips24': prior24.amat_row.astype(np.long),
'Col_mips24': prior24.amat_col.astype(np.long),
'nTemp': sed_prior_model.shape[0],
'nz': sed_prior_model.shape[2],
'nband': sed_prior_model.shape[1],
'SEDs': sed_prior_model,
}
#see if model has already been compiled. If not, compile and save it
model_file='/XID+MIPS_SPIRE_SED_gen'
from xidplus.stan_fit import get_stancode
sm = get_stancode(model_file)
fit = sm.sampling(data=XID_data,iter=iter,chains=chains,seed=seed,verbose=True,control=dict(max_treedepth=max_treedepth,adapt_delta=adapt_delta))
#return fit data
return fit
| 6,624 |
def check_cstr(solver, indiv):
"""Check the number of constraints violations of the individual
Parameters
----------
solver : Solver
Global optimization problem solver
indiv : individual
Individual of the population
Returns
-------
is_feasible : bool
Individual feasibility
"""
# Non valid simulation violate every constraints
if indiv.is_simu_valid == False:
indiv.cstr_viol = len(solver.problem.constraint)
return True # To not add errors to infeasible
# Browse constraints
for constraint in solver.problem.constraint:
# Compute value to compare
var_val = constraint.get_variable(indiv.output)
# Compare the value with the constraint
type_const = constraint.type_const
if type_const == "<=":
if var_val > constraint.value:
indiv.cstr_viol += 1
elif type_const in ["==", "="]:
if var_val != constraint.value:
indiv.cstr_viol += 1
elif type_const == ">=":
if var_val < constraint.value:
indiv.cstr_viol += 1
elif type_const == "<":
if var_val >= constraint.value:
indiv.cstr_viol += 1
elif type_const == ">":
if var_val <= constraint.value:
indiv.cstr_viol += 1
else:
raise ValueError("Wrong type of constraint")
return indiv.cstr_viol == 0
| 6,625 |
def _FixFsSelectionBit(key, expected):
"""Write a repair script to fix a bad fsSelection bit.
Args:
key: The name of an fsSelection flag, eg 'ITALIC' or 'BOLD'.
expected: Expected value, true/false, of the flag.
Returns:
A python script to fix the problem.
"""
if not _ShouldFix('fsSelection'):
return None
op = '|='
verb = 'set'
mask = bin(fonts.FsSelectionMask(key))
if not expected:
op = '&='
verb = 'unset'
mask = '~' + mask
return 'ttf[\'OS/2\'].fsSelection %s %s # %s %s' % (op, mask, verb, key)
| 6,626 |
def checkThread(self):
"""
Скинуть название исключения в потоке, ежели такое произойдет
:rtype: none
"""
for x in as_completed(self.futures):
if x.exception() is not None:
logging.error(x.exception())
print(f"ошибОЧКА разраба: {x.exception()}")
self.futures.remove(x)
logging.info("Поток закрылся")
| 6,627 |
def dilation_dist(path_dilation, n_dilate=None):
"""
Compute surface of distances with dilation
:param path_dilation: binary array with zeros everywhere except for paths
:param dilate: How often to do dilation --> defines radious of corridor
:returns: 2dim array of same shape as path_dilation, with values
0 = infinite distance from path
n_dilation = path location
"""
saved_arrs = [path_dilation]
if n_dilate is None:
# compute number of iterations: maximum distance of pixel to line
x_coords, y_coords = np.where(path_dilation)
x_len, y_len = path_dilation.shape
# dilate as much as the largest distance from the sides
n_dilate = max(
[
np.min(x_coords), x_len - np.max(x_coords),
np.min(y_coords), y_len - np.max(y_coords)
]
)
# dilate
for _ in range(n_dilate):
path_dilation = binary_dilation(path_dilation)
saved_arrs.append(path_dilation)
saved_arrs = np.sum(np.array(saved_arrs), axis=0)
return saved_arrs
| 6,628 |
def no_lfs_size_limit(client):
"""Configure environment track all files in LFS independent of size."""
client.set_value("renku", "lfs_threshold", "0b")
client.repo.git.add(".renku/renku.ini")
client.repo.index.commit("update renku.ini")
yield client
| 6,629 |
def append(filename, string):
"""open file for appending, dump string, close file"""
op = open(filename, "a")
op.write(string)
op.close()
| 6,630 |
def plot_rgb_phases(absolute, phase):
"""
Calculates a visualization of an inverse Fourier transform, where the absolute value is plotted as brightness
and the phase is plotted as color.
:param absolute: 2D numpy array containing the absolute value
:param phase: 2D numpy array containing phase information in units of pi (should range from -1 to +1!)
:return: numpy array containing red, green and blue values
"""
red = 0.5 * (np.sin(phase * np.pi) + 1) * absolute / absolute.max()
green = 0.5 * (np.sin(phase * np.pi + 2 / 3 * np.pi) + 1) * absolute / absolute.max()
blue = 0.5 * (np.sin(phase * np.pi + 4 / 3 * np.pi) + 1) * absolute / absolute.max()
return np.dstack([red, green, blue])
| 6,631 |
def init(file: str, template: str, verbose = False, dry_run = False) -> None:
"""Copies template to file"""
if exists(file):
inp = input(
"File '{}' aldready exists, overwrite with new LaTeX file (y/n) ? ".format(file)
)
if not inp or inp.lower()[0] != "y":
exit(0)
command = 'cp "{}" "{}"'.format(template, file)
process = run_command(command, verbose, dry_run)
TexmgrConstants.check_error(process,
'when initializing file "{}"'.format(file)
)
| 6,632 |
def layer_view_attachment_warning():
"""Unlimited attachments are warnings"""
content = {
'id': str(uuid.uuid4()),
'_type': 'CatXL',
'attachment': {
'currency': 'USD',
'value': float_info.max,
}
}
return convert_to_analyzere_object(content, LayerView)
| 6,633 |
async def test_multi_group_move(
mock_can_messenger: AsyncMock, move_group_multiple: MoveGroups
) -> None:
"""It should start next group once the prior has completed."""
subject = MoveScheduler(move_groups=move_group_multiple)
mock_sender = MockSendMoveCompleter(move_group_multiple, subject)
mock_can_messenger.send.side_effect = mock_sender.mock_send
position = await subject.run(can_messenger=mock_can_messenger)
mock_can_messenger.send.assert_has_calls(
calls=[
call(
node_id=NodeId.broadcast,
message=md.ExecuteMoveGroupRequest(
payload=ExecuteMoveGroupRequestPayload(
group_id=UInt8Field(0),
cancel_trigger=UInt8Field(0),
start_trigger=UInt8Field(0),
)
),
),
call(
node_id=NodeId.broadcast,
message=md.ExecuteMoveGroupRequest(
payload=ExecuteMoveGroupRequestPayload(
group_id=UInt8Field(1),
cancel_trigger=UInt8Field(0),
start_trigger=UInt8Field(0),
)
),
),
call(
node_id=NodeId.broadcast,
message=md.ExecuteMoveGroupRequest(
payload=ExecuteMoveGroupRequestPayload(
group_id=UInt8Field(2),
cancel_trigger=UInt8Field(0),
start_trigger=UInt8Field(0),
)
),
),
]
)
assert len(position) == 5
assert position[0][1].payload.current_position_um.value == 229000
assert position[1][1].payload.current_position_um.value == 522000
assert position[2][1].payload.current_position_um.value == 25000
assert position[3][1].payload.current_position_um.value == 12000
assert position[4][1].payload.current_position_um.value == 12000
| 6,634 |
def restart(bot: DeltaBot, message: Message, replies: Replies) -> None:
"""Restart the game in the game group it is sent."""
with session_scope() as session:
game = session.query(Game).filter_by(chat_id=message.chat.id).first()
if game is None:
replies.add("❌ This is not a game group.")
return
name, player = game.name, game.player
_reset_game(_get_folder(bot), name, player)
frotz_game = _get_game(name, player, bot)
frotz_game.stop()
replies.add(text=frotz_game.intro)
| 6,635 |
def create_resfinder_sqlite3_db(dbfile, mappings):
"""
Create and fill an sqlite3 DB with ResFinder mappings.
Expects mappings to be a list of tuples:
(header, symbol, family, class, extra)
"""
logging.info("Creating sqlite3 db: %s ...", dbfile)
if os.path.isfile(dbfile):
logging.warning("Overwriting previously existing dbfile: %s")
os.remove(dbfile)
logging.debug("Removed pre-existing dbfile: %s")
con = sqlite3.connect(dbfile)
con.execute("CREATE TABLE resfinder(header TEXT PRIMARY KEY, symbol TEXT, family TEXT, class TEXT, extra TEXT)")
con.executemany("INSERT INTO resfinder VALUES (?,?,?,?,?)", mappings)
num_mappings = con.execute("SELECT Count(*) FROM resfinder").fetchone()[0]
con.commit()
logging.debug("Inserted %i mappings in to sqlite3 DB", num_mappings)
return con
| 6,636 |
def normal_shock_pressure_ratio(M, gamma):
"""Gives the normal shock static pressure ratio as a function of upstream Mach number."""
return 1.0+2.0*gamma/(gamma+1.0)*(M**2.0-1.0)
| 6,637 |
def create_small_test_fixture(output_dir: str = '/tmp') -> None:
"""
This is how I created the transformer_model.tar.gz.
After running this, go to the specified output dir and run
tar -czvf transformer_model.tar.gz model/
In case you need to regenerate the fixture for some reason.
"""
import json
import pathlib
model_dir = pathlib.Path(output_dir) / 'model'
model_dir.mkdir(exist_ok=True) # pylint: disable=no-member
symbols = ["e", "w", "o", "wo", "."]
byte_pairs = [(sym1, sym2 + end)
for sym1 in symbols # prefer earlier first symbol
for sym2 in symbols # if tie, prefer earlier second symbol
for end in ('</w>', '')] # if tie, prefer ending a word
encoding = {f"{sym1}{sym2}": idx for idx, (sym1, sym2) in enumerate(byte_pairs)}
encoding["<unk>"] = 0
with open(model_dir / 'encoder_bpe.json', 'w') as encoder_file:
json.dump(encoding, encoder_file)
with open(model_dir / 'vocab.bpe', 'w') as bpe_file:
bpe_file.write("#version 0.0\n")
for sym1, sym2 in byte_pairs:
bpe_file.write(f"{sym1} {sym2}\n")
bpe_file.write("\n")
transformer = OpenaiTransformer(embedding_dim=10, num_heads=2, num_layers=2, vocab_size=(50 + 50), n_ctx=50)
transformer.dump_weights(output_dir, num_pieces=2)
| 6,638 |
def _lorentz_berthelot(
epsilon_1: float, epsilon_2: float, sigma_1: float, sigma_2: float
) -> Tuple[float, float]:
"""Apply Lorentz-Berthelot mixing rules to a pair of LJ parameters."""
return numpy.sqrt(epsilon_1 * epsilon_2), 0.5 * (sigma_1 + sigma_2)
| 6,639 |
def test_searchChunked_chunksize(client):
"""Same as test_searchChunked_simple, but setting a chunksize now.
"""
# chunksize is an internal tuning parameter in searchChunked()
# that should not have any visible impact on the result. So we
# may test the same assumptions as above. We choose the chunksize
# small enough such that the result cannot be fetched at once and
# thus force searchChunked() to repeat the search internally.
query = "User"
users = client.search(query)
chunksize = int(len(users)/2)
if chunksize < 1:
pytest.skip("too few objects for this test")
res = client.searchChunked(query, chunksize=chunksize)
assert isinstance(res, Iterable)
objs = list(res)
assert objs == users
| 6,640 |
def test_utc_to_local():
"""Check if passed utc datestamp becomes local one."""
import pytz
from tokendito import helpers
from tzlocal import get_localzone
utc = datetime.now(pytz.utc)
local_time = utc.replace(tzinfo=pytz.utc).astimezone(tz=get_localzone())
local_time = local_time.strftime("%Y-%m-%d %H:%M:%S %Z")
assert helpers.utc_to_local(utc) == local_time
| 6,641 |
def test_iterate_input_serializer(aiida_profile, generate_iterator):
"""Test of the classmethod `_iterate_input_serializer` of `BaseIterator`."""
import pytest
with pytest.raises(ValueError):
generate_iterator._iterate_input_serializer({"www": "w"})
it_over = generate_iterator._iterate_input_serializer({"www": [1,2]})
it_ov_el = it_over.get_attribute("www")
assert isinstance(it_ov_el, orm.List)
assert isinstance(orm.load_node(it_ov_el[0]), orm.Int)
| 6,642 |
def verify_password_str(password, password_db_str):
"""Verify password matches database string."""
split_password_db = password_db_str.split('$')
algorithm = split_password_db[0]
salt = split_password_db[1]
return password_db_str == generate_password_str(algorithm, salt, password)
| 6,643 |
def get_ical_file_name(zip_file):
"""Gets the name of the ical file within the zip file."""
ical_file_names = zip_file.namelist()
if len(ical_file_names) != 1:
raise Exception(
"ZIP archive had %i files; expected 1."
% len(ical_file_names)
)
return ical_file_names[0]
| 6,644 |
def unquoted_str(draw):
"""Generate strings compatible with our definition of an unquoted string."""
start = draw(st.text(alphabet=(ascii_letters + "_"), min_size=1))
body = draw(st.text(alphabet=(ascii_letters + digits + "_")))
return start + body
| 6,645 |
def _reduce_attribute(states: List[State],
key: str,
default: Optional[Any] = None,
reduce: Callable[..., Any] = _mean) -> Any:
"""Find the first attribute matching key from states.
If none are found, return default.
"""
attrs = list(_find_state_attributes(states, key))
if not attrs:
return default
if len(attrs) == 1:
return attrs[0]
return reduce(*attrs)
| 6,646 |
def sync_garmin(fit_file):
"""Sync generated fit file to Garmin Connect"""
garmin = GarminConnect()
session = garmin.login(ARGS.garmin_username, ARGS.garmin_password)
return garmin.upload_file(fit_file.getvalue(), session)
| 6,647 |
def get_paths(graph: Graph, filter: Callable) -> List:
""" Collect all the paths consist of valid vertices.
Return one path every time because the vertex index may be modified.
"""
result = []
if filter == None:
return result
visited = set()
vs = graph.topological_sorting()
for vertex in vs:
if not filter(vertex, graph) or vertex in visited:
continue
visited.add(vertex)
path = [vertex]
slist = graph.successors(vertex)
while len(set(slist))==1 and filter(slist[0], graph) and not slist[0] in visited:
cur = slist[0]
path.append(cur)
visited.add(cur)
slist = graph.successors(cur)
if len(path) > 0:
result.append(path)
return result
| 6,648 |
def create_app(app_name=PKG_NAME):
"""Initialize the core application."""
app = Flask(app_name)
CORS(app)
with app.app_context():
# Register Restx Api
api.init_app(app)
return app
| 6,649 |
def smtlib_to_sympy_constraint(
smtlib_input: str,
interpreted_constants: Dict[str, Callable] = default_interpreted_constants,
interpreted_unary_functions: Dict[str,
Callable] = default_interpreted_unary_functions):
"""Convert SMTLIB(v2) constraints into sympy constraints analyzable via SYMPAIS.
This function is experimental and introduced as an example.
It is implemented on top of PySMT (https://github.com/pysmt/pysmt).
Additional features can be added extending the `SMTToSympyWalker` class.
Args:
smtlib_input: SMT constraint as a string in SMTLIB(v2) format, as accepted by PySMT
interpreted_constants:
predefined interpreted constants to be declared in the SMT problem.
Default: E (Euler), PI
interpreted_unary_functions:
predefined interpreted functions Real -> Real.
Default: sin, cos, tan, asin, acos, atan, log, exp, sqrt
Returns:
A dict of the estimates found by the DMC sampler.
"""
interpreted_symbols_declarations = '\n'.join(
[f'(declare-const {cname} Real)' for cname in interpreted_constants.keys()])
interpreted_symbols_declarations += '\n'.join([
f'(declare-fun {fname} (Real) Real)'
for fname in interpreted_unary_functions.keys()
])
smtlib_with_interpreted_symbols = (
interpreted_symbols_declarations + '\n' + smtlib_input)
reset_env()
parser = SmtLibParser()
script = parser.get_script(cStringIO(smtlib_with_interpreted_symbols))
f = script.get_last_formula()
converter = SMTToSympyWalker(get_env(), interpreted_constants,
interpreted_unary_functions)
f_sympy = converter.walk(f)
f_sympy = sympy.logic.simplify_logic(f_sympy)
f_sympy = sympy.simplify(f_sympy)
if f_sympy.atoms(sympy.logic.Or):
warnings.warn(
'Disjunctive constraints are not supported by RealPaver. Consider replacing it with an adequate interval constraint propagation tool for benefit from all the features of SYMPAIS'
)
return f_sympy
| 6,650 |
async def revert(app, change_id: str) -> dict:
"""
Revert a history change given by the passed ``change_id``.
:param app: the application object
:param change_id: a unique id for the change
:return: the updated OTU
"""
db = app["db"]
change = await db.history.find_one({"_id": change_id}, ["index"])
if change["index"]["id"] != "unbuilt" or change["index"]["version"] != "unbuilt":
raise virtool.errors.DatabaseError(
"Change is included in a build an not revertible"
)
otu_id, otu_version = change_id.split(".")
if otu_version != "removed":
otu_version = int(otu_version)
_, patched, history_to_delete = await patch_to_version(app, otu_id, otu_version - 1)
# Remove the old sequences from the collection.
await db.sequences.delete_many({"otu_id": otu_id})
if patched is not None:
patched_otu, sequences = virtool.otus.utils.split(patched)
# Add the reverted sequences to the collection.
for sequence in sequences:
await db.sequences.insert_one(sequence)
# Replace the existing otu with the patched one. If it doesn't exist, insert it.
await db.otus.replace_one({"_id": otu_id}, patched_otu, upsert=True)
else:
await db.otus.delete_one({"_id": otu_id})
await db.history.delete_many({"_id": {"$in": history_to_delete}})
return patched
| 6,651 |
def days_away(date):
"""Takes in the string form of a date and returns the number of days until date."""
mod_date = string_to_date(date)
return abs((current_date() - mod_date).days)
| 6,652 |
def node_constraints_transmission(model):
"""
Constrains e_cap symmetrically for transmission nodes.
"""
m = model.m
# Constraint rules
def c_trans_rule(m, y, x):
y_remote, x_remote = transmission.get_remotes(y, x)
if y_remote in m.y_trans:
return m.e_cap[y, x] == m.e_cap[y_remote, x_remote]
else:
return po.Constraint.NoConstraint
# Constraints
m.c_transmission_capacity = po.Constraint(m.y_trans, m.x,
rule=c_trans_rule)
| 6,653 |
def plot_mtf(faxis, MTF, labels=None):
"""Plot the MTF. Return the figure reference."""
fig_lineplot = plt.figure()
plt.rc('axes', prop_cycle=PLOT_STYLES)
for i in range(0, MTF.shape[0]):
plt.plot(faxis, MTF[i, :])
plt.xlabel('spatial frequency [cycles/length]')
plt.ylabel('Radial MTF')
plt.gca().set_ylim([0, 1])
if labels is not None:
plt.legend([str(n) for n in labels])
plt.title("Modulation Tansfer Function for various angles")
return fig_lineplot
| 6,654 |
def make_distributor_init(distributor_init, dll_filename):
"""Create a _distributor_init.py file for the vcomp140.dll.
This file is imported first when importing the
sklearn package so as to pre-load the vendored
vcomp140.dll.
"""
with open(distributor_init, "wt") as f:
f.write(textwrap.dedent("""
'''Helper to preload vcomp140.dll to prevent "not found" errors.
Once the vcomp140.dll is preloaded, the namespace is made
available to any subsequent vcomp140.dll. This is created
as part of the scripts that build the wheel.
'''
import os
import os.path as op
from ctypes import WinDLL
if os.name == "nt":
# Load the vcomp140.dll in sklearn/.libs by convention
dll_path = op.join(op.dirname(__file__), ".libs", "{0}")
WinDLL(op.abspath(dll_path))
""".format(dll_filename)))
| 6,655 |
def forward_ref_structure_hook(context, converter, data, forward_ref):
"""Applied to ForwardRef model and enum annotations
- Map reserved words in json keys to approriate (safe) names in model.
- handle ForwardRef types until github.com/Tinche/cattrs/pull/42/ is fixed
Note: this is the reason we need a "context" param and have to use a
partial func to register the hook. Once the issue is resolved we can
remove "context" and the partial.
"""
data = hooks.tr_data_keys(data)
actual_type = eval(forward_ref.__forward_arg__, context, locals())
if issubclass(actual_type, enum.Enum):
instance = converter.structure(data, actual_type)
elif issubclass(actual_type, model.Model):
# cannot use converter.structure - recursion error
instance = converter.structure_attrs_fromdict(data, actual_type)
else:
raise DeserializeError(f"Unknown type to deserialize: {actual_type}")
return instance
| 6,656 |
def test_slicestim_3d():
"""Test slicing a 3D stimulus into overlapping segments."""
np.random.seed(0)
stim_size = (100, 5, 5)
stim = np.random.randn(*stim_size)
history = 10
sliced_stim = stimulustools.slicestim(stim, history)
assert sliced_stim.ndim == stim.ndim + 1
assert sliced_stim.shape[0] == stim.shape[0] - history + 1
for i in range(stim_size[0] - history + 1):
assert np.all(sliced_stim[i] == stim[i:i + history, ...]), 'slicing failed'
| 6,657 |
def cross(x: VariableLike, y: VariableLike) -> VariableLike:
"""Element-wise cross product.
Parameters
----------
x:
Left hand side operand.
y:
Right hand side operand.
Raises
------
scipp.DTypeError
If the dtype of the input is not vector3.
Returns
-------
:
The cross product of the input vectors.
"""
return _call_cpp_func(_cpp.cross, x, y)
| 6,658 |
def p_dividerchar_spec(p):
"""
dividerchar_spec : DIVIDERCHAR CHAR_PAIRS_QUOTED SEMICOLON
"""
p[0] = DEF.declarations.dividerchar(p[2])
| 6,659 |
def delete(service, name, parent_id=None,
appProperties=defaults.GDRIVE_USE_APPPROPERTIES):
""" Delete a file/folder on Google Drive
Parameters
----------
service : googleapiclient.discovery.Resource
Google API resource for GDrive v3
name : str
Name of file/folder
parent_id : str, optional
Parent ID of folder containing file (to narrow search)
appProperties : bool
Search for application-specific files using ``appProperties``
Returns
-------
str
ID of deleted file/folder
"""
name_id = exists(service, name, parent_id=parent_id)
resp = service.files().delete(fileId=name_id).execute()
return name_id
| 6,660 |
def _is_LoginForm_in_this_frame(driver, frame):
""" 判断指定的 frame 中是否有 登录表单 """
driver.switch_to.frame(frame) # 切换进这个 frame
if _is_LoginForm_in_this_page(driver):
return True
else:
driver.switch_to.parent_frame() # 如果没有找到就切换回去
return False
| 6,661 |
def parse_range_header(specifier, len_content):
"""Parses a range header into a list of pairs (start, stop)"""
if not specifier or '=' not in specifier:
return []
ranges = []
unit, byte_set = specifier.split('=', 1)
unit = unit.strip().lower()
if unit != "bytes":
return []
for val in byte_set.split(","):
val = val.strip()
if '-' not in val:
return []
if val.startswith("-"):
# suffix-byte-range-spec: this form specifies the last N
# bytes of an entity-body
start = len_content + int(val)
if start < 0:
start = 0
stop = len_content
else:
# byte-range-spec: first-byte-pos "-" [last-byte-pos]
start, stop = val.split("-", 1)
start = int(start)
# Add 1 to make stop exclusive (HTTP spec is inclusive)
stop = int(stop)+1 if stop else len_content
if start >= stop:
return []
ranges.append((start, stop))
return ranges
| 6,662 |
def acf(x, lags=None):
""" Computes the empirical autocorralation function.
:param x: array (n,), sequence of data points
:param lags: int, maximum lag to compute the ACF for. If None, this is set to n-1. Default is None.
:return gamma: array (lags,), values of the ACF at lags 0 to lags
"""
gamma = np.correlate(x, x, mode='full') # Size here is always 2*len(x)-1
gamma = gamma[int((gamma.size - 1) / 2):] # Keep only second half
if lags is not None and lags < len(gamma):
gamma = gamma[0:lags + 1]
return gamma / gamma[0]
| 6,663 |
def copyInfotainmentServerFiles(tarName, targetId=None):
"""
Stuff the server binary into a tar file
"""
# grab the pre-built binary
osImage = getSetting('osImage', targetId=targetId)
infotainmentBinDir = getBinDir('infotainment-server', targetId=targetId)
cpFilesToBuildDir(infotainmentBinDir, pattern="infotainment_server", targetId=targetId)
tarFiles = ["infotainment_server"]
infotainmentAppDir = getCyberphysAppDir('infotainment-server')
runtimeFilesDir = os.path.join(infotainmentAppDir, osImage)
if osImage == 'debian':
cpFilesToBuildDir(runtimeFilesDir, pattern="infotainment-server.service", targetId=targetId)
tarFiles += ["infotainment-server.service"]
elif osImage == 'FreeBSD':
cpFilesToBuildDir(runtimeFilesDir, pattern="infotainment-server.sh", targetId=targetId)
tarFiles += ["infotainment-server.sh"]
else:
logAndExit(f"Installing infotainment-server is not supported on <{osImage}>",
exitCode=EXIT.Dev_Bug)
buildDirPathTuplePartial = functools.partial(buildDirPathTuple, targetId=targetId)
filesList=map(buildDirPathTuplePartial, tarFiles)
return filesList
| 6,664 |
def _login(client, user, users):
"""Login user and return url."""
login_user_via_session(client, user=User.query.get(user.id))
return user
| 6,665 |
def search(request):
"""renders search page"""
queryset_list = Listing.objects.order_by('-list_date')
if 'keywords' in request.GET:
keywords = request.GET['keywords']
# Checking if its none
if keywords:
queryset_list = queryset_list.filter(
description__icontains=keywords)
if 'city' in request.GET:
city = request.GET['city']
# Checking if its none
if city:
queryset_list = queryset_list.filter(
city__iexact=city)
if 'state' in request.GET:
state = request.GET['state']
# Checking if its none
if state:
queryset_list = queryset_list.filter(
state__iexact=state)
if 'bedrooms' in request.GET:
bedrooms = request.GET['bedrooms']
# Here LTE(lte) means less then or equal
if bedrooms:
queryset_list = queryset_list.filter(
bedrooms__lte=bedrooms)
if 'price' in request.GET:
price = request.GET['price']
# Here LTE(lte) means less then or equal
if price:
queryset_list = queryset_list.filter(
price__lte=price)
context = {
"price_choices": price_choices,
"bedroom_choices": bedroom_choices,
"state_choices": state_choices,
"listings": queryset_list,
"values": request.GET
}
return render(request, 'listings/search.html', context)
| 6,666 |
def generate_cutout(butler, skymap, ra, dec, band='N708', data_type='deepCoadd',
half_size=10.0 * u.arcsec, psf=True, verbose=False):
"""Generate a single cutout image.
"""
if not isinstance(half_size, u.Quantity):
# Assume that this is in pixel
half_size_pix = int(half_size)
else:
half_size_pix = int(half_size.to('arcsec').value / PIXEL_SCALE)
if isinstance(ra, u.Quantity):
ra = ra.value
if isinstance(dec, u.Quantity):
dec = dec.value
# Width and height of the post-stamps
stamp_shape = (half_size_pix * 2 + 1, half_size_pix * 2 + 1)
# Make a list of (RA, Dec) that covers the cutout region
radec_list = np.array(
sky_cone(ra, dec, half_size_pix * PIXEL_SCALE * u.Unit('arcsec'), steps=50)).T
# Retrieve the Patches that cover the cutout region
img_patches = _get_patches(butler, skymap, radec_list, band, data_type=data_type)
if img_patches is None:
if verbose:
print('***** No data at {:.5f} {:.5f} *****'.format(ra, dec))
return None
# Coordinate of the image center
coord = geom.SpherePoint(ra * geom.degrees, dec * geom.degrees)
# Making the stacked cutout
cutouts = []
idx, bbox_sizes, bbox_origins = [], [], []
for img_p in img_patches:
# Generate cutout
cut, x0, y0 = _get_single_cutout(img_p, coord, half_size_pix)
cutouts.append(cut)
# Original lower corner pixel coordinate
bbox_origins.append([x0, y0])
# New lower corner pixel coordinate
xnew, ynew = cut.getBBox().getBeginX() - x0, cut.getBBox().getBeginY() - y0
idx.append([xnew, xnew + cut.getBBox().getWidth(),
ynew, ynew + cut.getBBox().getHeight()])
# Area of the cutout region on this patch in unit of pixels
# Will reverse rank all the overlapped images by this
bbox_sizes.append(cut.getBBox().getWidth() * cut.getBBox().getHeight())
# Stitch cutouts together with the largest bboxes inserted last
stamp = afwImage.MaskedImageF(geom.BoxI(geom.Point2I(0,0), geom.Extent2I(*stamp_shape)))
bbox_sorted_ind = np.argsort(bbox_sizes)
for i in bbox_sorted_ind:
masked_img = cutouts[i].getMaskedImage()
stamp[idx[i][0]: idx[i][1], idx[i][2]: idx[i][3]] = masked_img
# Build the new WCS of the cutout
stamp_wcs = _build_cutout_wcs(coord, cutouts, bbox_sorted_ind[-1], bbox_origins)
cutout = afwImage.ExposureF(stamp, stamp_wcs)
if bbox_sizes[bbox_sorted_ind[-1]] < (half_size_pix * 2 + 1) ** 2:
flag = 1
else:
flag = 2
# The final product of the cutout
if psf:
psf = _get_psf(cutouts[bbox_sorted_ind[-1]], coord)
return cutout, psf, flag
return cutout, flag
| 6,667 |
def main():
""" Main Program """
pygame.init()
# Set the height and width of the screen
size = [SCREEN_WIDTH, SCREEN_HEIGHT]
screen = pygame.display.set_mode(size)
pygame.display.set_caption("Pingwiny z Rovaniemi")
# Create the player
player = Player()
# Create all the levels
level_list = []
level_list.append( Level_01(player) )
level_list.append( Level_02(player) )
level_list.append( Level_03(player) )
# Set the current level
current_level_no = 0
current_level = level_list[current_level_no]
active_sprite_list = pygame.sprite.Group()
player.level = current_level
for enemy in current_level.enemy_list:
enemy.level = current_level
player.rect.x = player.level.start[0]
player.rect.y = player.level.start[1]
active_sprite_list.add(player)
bubble_list = pygame.sprite.Group()
# Wczytujemy aktualny najlepszy wynik
high_score_file = open("high_score.txt", "r")
high_score_str = high_score_file.readlines()
high_score = [int(high_score_str[0]),int(high_score_str[1])]
high_score_file.close()
font = pygame.font.Font(None, 45)
timerfont = pygame.font.Font(None, 40)
titlefont = pygame.font.Font(None, 60)
frame_count = 0
minutes = 0
seconds = 0
game_over = False
win_game = False
# Loop until the user clicks the close button.
done = False
# Used to manage how fast the screen updates
clock = pygame.time.Clock()
display_menu = True
display_instructions = False
option = 0
# Odczytywanie ustawień z pliku
settings_file = open("settings.txt", "r")
settings_str = settings_file.readlines()
settings = [int(settings_str[0]),int(settings_str[1])]
settings_file.close()
difficulty = settings[0]
mute = settings[1]
# -------- Main menu Loop -----------
while not done and display_menu:
for event in pygame.event.get():
if event.type == pygame.QUIT:
done = True
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_DOWN:
option +=1
option = option % 5
if event.key == pygame.K_UP:
option -=1
option = option % 5
if display_instructions == True and event.key == pygame.K_SPACE:
display_instructions = False
if event.key == pygame.K_RETURN and option == 0:
display_menu = False
if event.key == pygame.K_RETURN and option == 1:
display_instructions = True
if event.key == pygame.K_RETURN and option == 2:
difficulty += 1
difficulty = difficulty % 3
if event.key == pygame.K_RETURN and option == 3:
mute *= -1
if event.key == pygame.K_RETURN and option == 4:
done = True
# Set the screen background
screen.fill(BG_BLUE)
wall_list = pygame.sprite.Group()
walls = []
seg_pion = int(SCREEN_HEIGHT/40)
seg_poz = int(SCREEN_WIDTH/40)
for i in range(seg_poz):
walls.append([40, 40, 40*i, 0]) # sufit
walls.append([40, 40, 40*i, SCREEN_HEIGHT - 40]) # podłoga
for i in range(seg_pion):
walls.append([40, 40, 0, 40*i]) # lewa ściana
walls.append([40, 40, SCREEN_WIDTH - 40, 40*i]) # prawa ściana
for platform in walls:
wall = Platform(platform[0], platform[1], 1)
wall.rect.x = platform[2]
wall.rect.y = platform[3]
wall_list.add(wall)
wall_list.draw(screen)
if display_instructions == True:
ster = titlefont.render("Sterowanie", True, BLUE)
ster_rect = ster.get_rect()
ster_x = SCREEN_WIDTH / 2 - ster_rect.width / 2
screen.blit(ster, [ster_x, 80])
up = pygame.image.load("./obrazki/Keyboard_Black_Arrow_Up.png").convert()
up = pygame.transform.scale(up, (50,50))
up.set_colorkey(BLACK)
screen.blit(up, [200, 350])
up_ins = font.render("Skok", True, BLACK)
screen.blit(up_ins, [300, 360])
left = pygame.image.load("./obrazki/Keyboard_Black_Arrow_Left.png").convert()
left = pygame.transform.scale(left, (50,50))
left.set_colorkey(BLACK)
screen.blit(left, [200, 250])
left_ins = font.render("Ruch w lewo", True, BLACK)
screen.blit(left_ins, [300, 260])
right = pygame.image.load("./obrazki/Keyboard_Black_Arrow_Right.png").convert()
right = pygame.transform.scale(right, (50,50))
right.set_colorkey(BLACK)
screen.blit(right, [200, 150])
right_ins = font.render("Ruch w prawo", True, BLACK)
screen.blit(right_ins, [300, 160])
space = pygame.image.load("./obrazki/Keyboard_Black_Space.png").convert()
space = pygame.transform.scale(space, (50,50))
space.set_colorkey(BLACK)
screen.blit(space, [200, 450])
space_ins = font.render("Strzał bąbelkiem", True, BLACK)
screen.blit(space_ins, [300, 460])
powrot = font.render("Jeśli chcesz wrócić do Menu, wciśnij SPACJĘ", True, WHITE)
powrot_rect = powrot.get_rect()
powrot_x = SCREEN_WIDTH / 2 - powrot_rect.width / 2
screen.blit(powrot, [powrot_x, 520])
else:
nazwa = titlefont.render("Pingwiny z Rovaniemi", True, BLACK)
nazwa_rect = nazwa.get_rect()
nazwa_x = SCREEN_WIDTH / 2 - nazwa_rect.width / 2
screen.blit(nazwa, [nazwa_x, 80])
start = font.render("Start Gry", True, BLACK)
sterowanie = font.render("Sterowanie", True, BLACK)
poziom_trudnosci = font.render("Poziom Trudności", True, BLACK)
dzwiek = font.render("Dźwięk", True, BLACK)
wyjscie = font.render("Wyjście", True, BLACK)
if option == 0:
start = font.render("Start Gry", True, BLUE)
elif option == 1:
sterowanie = font.render("Sterowanie", True, BLUE)
elif option == 2:
if difficulty == 0:
poziom_trudnosci = font.render("Poziom Trudności: Łatwy", True, BLUE)
elif difficulty == 1:
poziom_trudnosci = font.render("Poziom Trudności: Średni", True, BLUE)
else:
poziom_trudnosci = font.render("Poziom Trudności: Trudny", True, BLUE)
elif option == 3:
if mute == -1:
dzwiek = font.render("Dźwięk: włączony", True, BLUE)
else:
dzwiek = font.render("Dźwięk: wyłączony", True, BLUE)
else:
wyjscie = font.render("Wyjście", True, BLUE)
start_rect = start.get_rect()
start_x = SCREEN_WIDTH / 2 - start_rect.width / 2
screen.blit(start, [start_x, 170])
sterowanie_rect = sterowanie.get_rect()
sterowanie_x = SCREEN_WIDTH / 2 - sterowanie_rect.width / 2
screen.blit(sterowanie, [sterowanie_x, 230])
poziom_trudnosci_rect = poziom_trudnosci.get_rect()
poziom_trudnosci_x = SCREEN_WIDTH / 2 - poziom_trudnosci_rect.width / 2
screen.blit(poziom_trudnosci, [poziom_trudnosci_x, 290])
dzwiek_rect = dzwiek.get_rect()
dzwiek_x = SCREEN_WIDTH / 2 - dzwiek_rect.width / 2
screen.blit(dzwiek, [dzwiek_x, 350])
wyjscie_rect = wyjscie.get_rect()
wyjscie_x = SCREEN_WIDTH / 2 - wyjscie_rect.width / 2
screen.blit(wyjscie, [wyjscie_x, 410])
naw = font.render("Nawigacja strzałkami góra/dół", True, WHITE)
naw_rect = naw.get_rect()
naw_x = SCREEN_WIDTH / 2 - naw_rect.width / 2
screen.blit(naw, [naw_x, 480])
naw2 = font.render("Wybór/zmiana przyciskiem ENTER", True, WHITE)
naw2_rect = naw2.get_rect()
naw2_x = SCREEN_WIDTH / 2 - naw2_rect.width / 2
screen.blit(naw2, [naw2_x, 520])
clock.tick(60)
pygame.display.flip()
for enemy in current_level.enemy_list:
if enemy.direction == "R":
enemy.change_x = 1 + 0.5*difficulty
else:
enemy.change_x = -1 - 0.5*difficulty
# Dźwięki
pop = pygame.mixer.Sound("./dzwieki/pop.ogg")
santa = pygame.mixer.Sound("./dzwieki/santa-ho-ho-ho-2.ogg")
switch = pygame.mixer.Sound("./dzwieki/switch5.ogg")
# Wyciszenie
if mute == 1:
pop.set_volume(0)
santa.set_volume(0)
switch.set_volume(0)
# Zapisanie ustawień
settings_file = open("settings.txt", "w")
settings_file.writelines([str(difficulty)+"\n",str(mute)])
settings_file.close()
# -------- Main Program Loop -----------
while not done:
for event in pygame.event.get():
if event.type == pygame.QUIT:
done = True
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_LEFT:
player.go_left()
if event.key == pygame.K_RIGHT:
player.go_right()
if event.key == pygame.K_UP:
player.jump()
if event.key == pygame.K_SPACE:
bubble = player.bubble()
bubble.level = current_level
active_sprite_list.add(bubble)
bubble_list.add(bubble)
if player.direction == "R":
bubble.where_pop = bubble.rect.x + bubble.range + player.bonus - 50*difficulty
else:
bubble.where_pop = player.rect.x - bubble.range - player.bonus + 50*difficulty
if event.type == pygame.KEYUP:
if event.key == pygame.K_LEFT and player.change_x < 0:
player.stop()
if event.key == pygame.K_RIGHT and player.change_x > 0:
player.stop()
# Update the player and bubbles
active_sprite_list.update()
# Update items in the level
current_level.update()
# Zmiana poziomu przy przejściu przez drzwi
if player.rect.left > SCREEN_WIDTH:
current_level_no += 1
if current_level_no == 3:
win_game = True
done = True
else:
current_level = level_list[current_level_no]
active_sprite_list = pygame.sprite.Group()
player.level = current_level
current_level.difficulty = difficulty
for enemy in current_level.enemy_list:
enemy.level = current_level
player.rect.x = player.level.start[0]
player.rect.y = player.level.start[1]
active_sprite_list.add(player)
bubble_list = pygame.sprite.Group()
# Kiedy gracz wskoczy w podłogę, to pojawia się na suficie
if player.rect.top > SCREEN_HEIGHT:
player.rect.bottom = 0
# To samo dla pingwinków
for enemy in current_level.enemy_list:
if enemy.rect.top > SCREEN_HEIGHT:
enemy.rect.bottom = 0
for bubble in bubble_list:
# Wrogowie trafieni bąbelkiem
enemy_hit_list = pygame.sprite.spritecollide(bubble, current_level.enemy_list, False)
# Jak trafiliśmy wroga, to bąbelek znika
if len(enemy_hit_list) > 0:
bubble_list.remove(bubble)
active_sprite_list.remove(bubble)
for enemy in enemy_hit_list:
enemy.bubble()
wall_hit_list = pygame.sprite.spritecollide(bubble, current_level.wall_list, False)
# Bąbelek pęka po zderzeniu ze ścianą
if len(wall_hit_list) > 0:
pop.play()
bubble_list.remove(bubble)
active_sprite_list.remove(bubble)
# Bąbelek znika gdy za długo leci
if ((player.direction == "R" and bubble.rect.x > bubble.where_pop) or (player.direction == "L" and bubble.rect.x + bubble.rect.width < bubble.where_pop)):
pop.play()
bubble_list.remove(bubble)
active_sprite_list.remove(bubble)
for enemy in current_level.enemy_inbubble_list:
# Wydostanie się z bąbelka
koniec = pygame.time.get_ticks()
if koniec - enemy.poczatek > (7000 - 1000*difficulty):
pop.play()
enemy.unbubble()
elif (player.rect.right > enemy.rect.left - 2) and (player.rect.left < enemy.rect.right + 2) and (player.rect.top < enemy.rect.bottom + 2) and (player.rect.bottom > enemy.rect.top - 2):
pop.play()
current_level.enemy_list.remove(enemy)
current_level.enemy_inbubble_list.remove(enemy)
gifts_collected = pygame.sprite.spritecollide(player,current_level.gift_list,True)
for gift in gifts_collected:
if gift.type == "Blue":
santa.play()
elif gift.type == "Green":
player.bonus += 100
elif gift.type == "Red":
player.speed += 2
lever_pushed = pygame.sprite.spritecollide(player, current_level.lever_list,False)
if len(lever_pushed) > 0 and len(current_level.enemy_list) == 0:
for candy in current_level.lever_list:
if candy.pushed == False:
switch.play()
candy.image = pygame.image.load("./obrazki/RTSobject_10.png").convert()
candy.image = candy.image.subsurface((12,16,41,30))
candy.image.set_colorkey(BLACK)
candy.rect = candy.image.get_rect()
candy.rect.x = current_level.candy_pushed[0]
candy.rect.y = current_level.candy_pushed[1]
candy.pushed = True
current_level.door_list.empty()
if player.dead:
done = True
game_over = True
total_seconds = frame_count // 30
# Divide by 60 to get total minutes
minutes = total_seconds // 60
# Use modulus (remainder) to get seconds
seconds = total_seconds % 60
# Use python string formatting to format in leading zeros
output_string = "Czas: {0:02}:{1:02}".format(minutes, seconds)
current_level.draw(screen)
active_sprite_list.draw(screen)
# Blit to the screen
text = timerfont.render(output_string, True, BLUE)
screen.blit(text, [80, 10])
frame_count += 1
clock.tick(30)
pygame.display.flip()
quit = False
while game_over and not quit:
screen.fill(BG_BLUE)
wall_list = pygame.sprite.Group()
walls = []
seg_pion = int(SCREEN_HEIGHT/40)
seg_poz = int(SCREEN_WIDTH/40)
for i in range(seg_poz):
walls.append([40, 40, 40*i, 0]) # sufit
walls.append([40, 40, 40*i, SCREEN_HEIGHT - 40]) # podłoga
for i in range(seg_pion):
walls.append([40, 40, 0, 40*i]) # lewa ściana
walls.append([40, 40, SCREEN_WIDTH - 40, 40*i]) # prawa ściana
for platform in walls:
wall = Platform(platform[0], platform[1], 1)
wall.rect.x = platform[2]
wall.rect.y = platform[3]
wall_list.add(wall)
wall_list.draw(screen)
koniec = font.render("Koniec gry", True, BLUE)
koniec_rect = koniec.get_rect()
koniec_x = SCREEN_WIDTH / 2 - koniec_rect.width / 2
koniec_y = SCREEN_HEIGHT / 2 - koniec_rect.height / 2
screen.blit(koniec, [koniec_x, koniec_y])
powrot = font.render("Jeśli chcesz zagrać jeszcze raz, wciśnij SPACJĘ", True, WHITE)
powrot_rect = powrot.get_rect()
powrot_x = SCREEN_WIDTH / 2 - powrot_rect.width / 2
screen.blit(powrot, [powrot_x, 520])
pygame.display.flip()
for event in pygame.event.get():
if event.type == pygame.QUIT:
quit = True
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_SPACE:
main()
quit = False
current_score = [minutes,seconds]
while win_game and not quit:
screen.fill(BG_BLUE)
wall_list = pygame.sprite.Group()
walls = []
seg_pion = int(SCREEN_HEIGHT/40)
seg_poz = int(SCREEN_WIDTH/40)
for i in range(seg_poz):
walls.append([40, 40, 40*i, 0]) # sufit
walls.append([40, 40, 40*i, SCREEN_HEIGHT - 40]) # podłoga
for i in range(seg_pion):
walls.append([40, 40, 0, 40*i]) # lewa ściana
walls.append([40, 40, SCREEN_WIDTH - 40, 40*i]) # prawa ściana
for platform in walls:
wall = Platform(platform[0], platform[1], 1)
wall.rect.x = platform[2]
wall.rect.y = platform[3]
wall_list.add(wall)
wall_list.draw(screen)
grat = font.render("Gratulacje!", True, BLUE)
grat_rect = grat.get_rect()
grat_x = SCREEN_WIDTH / 2 - grat_rect.width / 2
grat_y = SCREEN_HEIGHT / 2 - grat_rect.height / 2
output_string = "{0:01}:{1:02}".format(minutes, seconds)
czas = font.render("Twój czas to: " + output_string, True, BLUE)
czas_rect = czas.get_rect()
czas_x = SCREEN_WIDTH / 2 - czas_rect.width / 2
czas_y = SCREEN_HEIGHT / 2 - czas_rect.height / 2 + 40
if current_score[0] < high_score[0] or (current_score[0] == high_score[0] and current_score[1] < high_score[1]):
high = font.render("Pobiłeś rekord!", True, BLUE)
high_score_file = open("high_score.txt", "w")
high_score_file.writelines([str(current_score[0])+"\n",str(current_score[1])])
high_score_file.close()
else:
high = font.render("Aktualny rekord to: " + str(high_score[0]) + ":" + str(high_score[1]), True, BLUE)
high_rect = high.get_rect()
high_x = SCREEN_WIDTH / 2 - high_rect.width / 2
high_y = SCREEN_HEIGHT / 2 - high_rect.height / 2 + 80
screen.blit(grat, [grat_x, grat_y])
screen.blit(czas, [czas_x, czas_y])
screen.blit(high, [high_x, high_y])
powrot = font.render("Jeśli chcesz zagrać jeszcze raz, wciśnij SPACJĘ", True, WHITE)
powrot_rect = powrot.get_rect()
powrot_x = SCREEN_WIDTH / 2 - powrot_rect.width / 2
screen.blit(powrot, [powrot_x, 520])
pygame.display.flip()
for event in pygame.event.get():
if event.type == pygame.QUIT:
quit = True
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_SPACE:
main()
pygame.quit()
| 6,668 |
def get_arraytypes ():
"""pygame.sndarray.get_arraytypes (): return tuple
Gets the array system types currently supported.
Checks, which array system types are available and returns them as a
tuple of strings. The values of the tuple can be used directly in
the use_arraytype () method.
If no supported array system could be found, None will be returned.
"""
vals = []
if __hasnumeric:
vals.append ("numeric")
if __hasnumpy:
vals.append ("numpy")
if len (vals) == 0:
return None
return tuple (vals)
| 6,669 |
def is_request_authentic(request, secret_token: bytes = conf.WEBHOOK_SECRET_TOKEN):
"""
Examine the given request object to determine if it was sent by an authorized source.
:param request: Request object to examine for authenticity
:type request: :class:`~chalice.app.Request`
:param secret_token: Shared secret token used to create payload hash
:type: :class:`~bytes`
:return: Response object indicating whether or not the request is authentic
:rtype: :class:`~lopper.response.Response`
"""
signature = request.headers.get('X-Hub-Signature')
if not signature:
return response.unauthorized('Missing "X-Hub-Signature" header')
return auth.is_authentic(signature, request.raw_body, secret_token)
| 6,670 |
def verify_convenience_header(folder):
"""
Performs the actual checking of convenience header for specific folder.
Checks that
1) The header even exists
2) That all includes in the header are sorted
3) That there are no duplicated includes
4) That all includes that should be in the header are actually present in the header
5) That there are no superfluous includes that should not be in the header
"""
global errors_found
path = normalized_path(folder.path)
assert path.startswith(source_path), '{} does not start with {}'.format(path, source_path)
stripped_path = path[len(source_path) + 1:]
path_pieces = stripped_path.split('/')
if path == source_path:
header_name = 'catch_all.hpp'
else:
header_name = 'catch_{}_all.hpp'.format('_'.join(path_pieces))
# 1) Does it exist?
full_path = path + '/' + header_name
if not os.path.isfile(full_path):
errors_found = True
print('Missing convenience header: {}'.format(full_path))
return
file_incs = includes_from_file(path + '/' + header_name)
# 2) Are the includes are sorted?
if sorted(file_incs) != file_incs:
errors_found = True
print("'{}': Includes are not in sorted order!".format(header_name))
# 3) Are there no duplicates?
duplicated = get_duplicates(file_incs)
for duplicate in duplicated:
errors_found = True
print("'{}': Duplicated include: '{}'".format(header_name, duplicate))
target_includes = normalize_includes(collated_includes(path))
# Avoid requiring the convenience header to include itself
target_includes = [x for x in target_includes if header_name not in x]
# 4) Are all required headers present?
file_incs_set = set(file_incs)
for include in target_includes:
if include not in file_incs_set:
errors_found = True
print("'{}': missing include '{}'".format(header_name, include))
# 5) Are there any superfluous headers?
desired_set = set(target_includes)
for include in file_incs:
if include not in desired_set:
errors_found = True
print("'{}': superfluous include '{}'".format(header_name, include))
| 6,671 |
def circular_mask_string(centre_ra_dec_posns, aperture_radius="1arcmin"):
"""Get a mask string representing circular apertures about (x,y) tuples"""
mask = ''
if centre_ra_dec_posns is None:
return mask
for coords in centre_ra_dec_posns:
mask += 'circle [ [ {x} , {y}] , {r} ]\n'.format(
x=coords[0], y=coords[1], r=aperture_radius)
return mask
| 6,672 |
def dataset_hdf5(dataset, tmp_path):
"""Make an HDF5 dataset and write it to disk."""
path = str(tmp_path / 'test.h5')
dataset.write_hdf5(path, object_id_itemsize=10)
return path
| 6,673 |
def _usage():
"""Print command line usage."""
txt = "[INFO] Usage: %s ldtfile tsfile finalfile" %(sys.argv[0])
txt += " anomaly_gt_prefix climo_gt_prefix LSM yyyymmddhh"
print(txt)
print("[INFO] where:")
print("[INFO] ldtfile: LDT parameter file with full lat/lon data")
print("[INFO] tsfile: LVT 'TS' soil moisture anomaly file")
print("[INFO] finalfile: LVT 'FINAL' soil moisture anomaly file")
print("[INFO] anomaly_gt_prefix: prefix for new anomaly GeoTIFF files")
print("[INFO] climo_gt_prefix: prefix for new climatology GeoTIFF files")
print("[INFO] LSM: land surface model")
print("[INFO] yyyymmddhh: Valid date and time (UTC)")
| 6,674 |
def test_exists_calculate_index(
mocked_buckets_hash_map,
): # pylint: disable=redefined-outer-name
"""
GIVEN hash map with mocked _calculate_index and key
WHEN exists is called with the key
THEN _calculate_index is called with the key.
"""
mocked_buckets_hash_map._calculate_index.return_value = 0
key = "key 1"
mocked_buckets_hash_map.exists(key)
mocked_buckets_hash_map._calculate_index.assert_called_once_with(key)
| 6,675 |
def _make_indexable(iterable):
"""Ensure iterable supports indexing or convert to an indexable variant.
Convert sparse matrices to csr and other non-indexable iterable to arrays.
Let `None` and indexable objects (e.g. pandas dataframes) pass unchanged.
Parameters
----------
iterable : {list, dataframe, array, sparse} or None
Object to be converted to an indexable iterable.
"""
if sp.issparse(iterable):
return iterable.tocsr()
elif hasattr(iterable, "__getitem__") or hasattr(iterable, "iloc"):
return iterable
elif iterable is None:
return iterable
return np.array(iterable)
| 6,676 |
def get_all_readers():
"""Get all the readers from the module."""
readers = []
for _, name in getmembers(sys.modules[__name__]):
if isinstance(name, abc.ABCMeta) and name.__name__ != 'Reader':
readers.append(name)
return readers
| 6,677 |
def fib_for(n):
"""
Compute Fibonnaci sequence using a for loop
Parameters
----------
n : integer
the nth Fibonnaci number in the sequence
Returns
-------
the nth Fibonnaci number in the sequence
"""
res = [0, 1]
for i in range(n-1):
res.append(res[i] + res[i+1])
return res[n]
| 6,678 |
def command_factory(command):
"""A factory which returns functions for direct daemon communication.
This factory will create a function which sends a payload to the daemon
and returns the unpickled object which is returned by the daemon.
Args:
command (string): The type of payload this should be. This determines
as what kind of instruction this will be interpreted by the daemon.
Returns:
function: The created function.
"""
def communicate(body={}, root_dir=None):
"""Communicate with the daemon.
This function sends a payload to the daemon and returns the unpickled
object sent by the daemon.
Args:
body (dir): Any other arguments that should be put into the payload.
root_dir (str): The root directory in which we expect the daemon.
We need this to connect to the daemons socket.
Returns:
function: The returned payload.
"""
client = connect_socket(root_dir)
body['mode'] = command
# Delete the func entry we use to call the correct function with argparse
# as functions can't be pickled and this shouldn't be send to the daemon.
if 'func' in body:
del body['func']
data_string = pickle.dumps(body, -1)
client.send(data_string)
# Receive message, unpickle and return it
response = receive_data(client)
return response
return communicate
| 6,679 |
def load_prepare_saif_data(threshold=0.25):
"""
Loads and prepares saif's data.
Parameters
----------
threshold : float
Only data with intensities equal to or
above this threshold will be kept (range 0-1).
Returns
-------
DataFrame : pd.DataFrame
Concatenated tweets with labels as a pandas DataFrame.
"""
files = get_saif_files()
df = pd.concat([pd.read_csv(f, sep='\t', index_col=0, names=['tweet', 'emotion', 'intensity']) for f in files], axis=0)
df = df[df['intensity'] >= threshold]
df.drop('intensity', axis=1, inplace=True)
return df
| 6,680 |
def nonmax_suppression(harris_resp, halfwidth=2):
"""
Takes a Harris response from an image, performs nonmax suppression, and outputs the x,y values
of the corners in the image.
:param harris_resp: Harris response for an image which is an array of the same shape as the original image.
:param halfwidth: The size of the padding to use in building the window (matrix) for nonmax suppression.
The window will have a total shape of (2*halfwidth+1, 2*halfwidth+1).
:return: Tuple of x and y coordinates for the corners that were found from the Harris response
after nonmax suppression.
"""
cornersx = []
cornersy = []
h, w = harris_resp.shape[:2]
boxlength = 2*halfwidth + 1
for i in range(halfwidth, w-halfwidth-1):
for j in range(halfwidth, h-halfwidth-1):
matrix = np.zeros((boxlength, boxlength))
for k in range(-halfwidth, halfwidth+1):
for l in range(-halfwidth, halfwidth+1):
matrix[k+halfwidth, l+halfwidth] = harris_resp[i+k, j+l]
if matrix[halfwidth, halfwidth] == 0:
pass
elif matrix[halfwidth, halfwidth] < np.amax(matrix):
matrix[halfwidth, halfwidth] = 0
else:
cornersx.append(j)
cornersy.append(i)
return cornersx, cornersy
| 6,681 |
def create_credit_request(course_key, provider_id, username):
"""
Initiate a request for credit from a credit provider.
This will return the parameters that the user's browser will need to POST
to the credit provider. It does NOT calculate the signature.
Only users who are eligible for credit (have satisfied all credit requirements) are allowed to make requests.
A provider can be configured either with *integration enabled* or not.
If automatic integration is disabled, this method will simply return
a URL to the credit provider and method set to "GET", so the student can
visit the URL and request credit directly. No database record will be created
to track these requests.
If automatic integration *is* enabled, then this will also return the parameters
that the user's browser will need to POST to the credit provider.
These parameters will be digitally signed using a secret key shared with the credit provider.
A database record will be created to track the request with a 32-character UUID.
The returned dictionary can be used by the user's browser to send a POST request to the credit provider.
If a pending request already exists, this function should return a request description with the same UUID.
(Other parameters, such as the user's full name may be different than the original request).
If a completed request (either accepted or rejected) already exists, this function will
raise an exception. Users are not allowed to make additional requests once a request
has been completed.
Arguments:
course_key (CourseKey): The identifier for the course.
provider_id (str): The identifier of the credit provider.
username (str): The user initiating the request.
Returns: dict
Raises:
UserIsNotEligible: The user has not satisfied eligibility requirements for credit.
CreditProviderNotConfigured: The credit provider has not been configured for this course.
RequestAlreadyCompleted: The user has already submitted a request and received a response
from the credit provider.
Example Usage:
>>> create_credit_request(course.id, "hogwarts", "ron")
{
"url": "https://credit.example.com/request",
"method": "POST",
"parameters": {
"request_uuid": "557168d0f7664fe59097106c67c3f847",
"timestamp": 1434631630,
"course_org": "HogwartsX",
"course_num": "Potions101",
"course_run": "1T2015",
"final_grade": "0.95",
"user_username": "ron",
"user_email": "ron@example.com",
"user_full_name": "Ron Weasley",
"user_mailing_address": "",
"user_country": "US",
"signature": "cRCNjkE4IzY+erIjRwOQCpRILgOvXx4q2qvx141BCqI="
}
}
"""
try:
user_eligibility = CreditEligibility.objects.select_related('course').get(
username=username,
course__course_key=course_key
)
credit_course = user_eligibility.course
credit_provider = CreditProvider.objects.get(provider_id=provider_id)
except CreditEligibility.DoesNotExist:
log.warning(
'User "%s" tried to initiate a request for credit in course "%s", '
'but the user is not eligible for credit',
username, course_key
)
raise UserIsNotEligible # lint-amnesty, pylint: disable=raise-missing-from
except CreditProvider.DoesNotExist:
log.error('Credit provider with ID "%s" has not been configured.', provider_id)
raise CreditProviderNotConfigured # lint-amnesty, pylint: disable=raise-missing-from
# Check if we've enabled automatic integration with the credit
# provider. If not, we'll show the user a link to a URL
# where the user can request credit directly from the provider.
# Note that we do NOT track these requests in our database,
# since the state would always be "pending" (we never hear back).
if not credit_provider.enable_integration:
return {
"url": credit_provider.provider_url,
"method": "GET",
"parameters": {}
}
else:
# If automatic credit integration is enabled, then try
# to retrieve the shared signature *before* creating the request.
# That way, if there's a misconfiguration, we won't have requests
# in our system that we know weren't sent to the provider.
shared_secret_key = get_shared_secret_key(credit_provider.provider_id)
check_keys_exist(shared_secret_key, credit_provider.provider_id)
if isinstance(shared_secret_key, list):
# if keys exist, and keys are stored as a list
# then we know at least 1 is available for [0]
shared_secret_key = [key for key in shared_secret_key if key][0]
# Initiate a new request if one has not already been created
credit_request, created = CreditRequest.objects.get_or_create(
course=credit_course,
provider=credit_provider,
username=username,
)
# Check whether we've already gotten a response for a request,
# If so, we're not allowed to issue any further requests.
# Skip checking the status if we know that we just created this record.
if not created and credit_request.status != "pending":
log.warning(
(
'Cannot initiate credit request because the request with UUID "%s" '
'exists with status "%s"'
), credit_request.uuid, credit_request.status
)
raise RequestAlreadyCompleted
if created:
credit_request.uuid = uuid.uuid4().hex
# Retrieve user account and profile info
user = User.objects.select_related('profile').get(username=username)
# Retrieve the final grade from the eligibility table
try:
final_grade = CreditRequirementStatus.objects.get(
username=username,
requirement__namespace="grade",
requirement__name="grade",
requirement__course__course_key=course_key,
status="satisfied"
).reason["final_grade"]
# NOTE (CCB): Limiting the grade to seven characters is a hack for ASU.
if len(str(final_grade)) > 7:
final_grade = f'{final_grade:.5f}'
else:
final_grade = str(final_grade)
except (CreditRequirementStatus.DoesNotExist, TypeError, KeyError):
msg = 'Could not retrieve final grade from the credit eligibility table for ' \
'user [{user_id}] in course [{course_key}].'.format(user_id=user.id, course_key=course_key)
log.exception(msg)
raise UserIsNotEligible(msg) # lint-amnesty, pylint: disable=raise-missing-from
# Getting the students's enrollment date
course_enrollment = CourseEnrollment.get_enrollment(user, course_key)
enrollment_date = course_enrollment.created if course_enrollment else ""
# Getting the student's course completion date
completion_date = get_last_exam_completion_date(course_key, username)
parameters = {
"request_uuid": credit_request.uuid,
"timestamp": to_timestamp(datetime.datetime.now(pytz.UTC)),
"course_org": course_key.org,
"course_num": course_key.course,
"course_run": course_key.run,
"enrollment_timestamp": to_timestamp(enrollment_date) if enrollment_date else "",
"course_completion_timestamp": to_timestamp(completion_date) if completion_date else "",
"final_grade": final_grade,
"user_username": user.username,
"user_email": user.email,
"user_full_name": user.profile.name,
"user_mailing_address": "",
"user_country": (
user.profile.country.code
if user.profile.country.code is not None
else ""
),
}
credit_request.parameters = parameters
credit_request.save()
if created:
log.info('Created new request for credit with UUID "%s"', credit_request.uuid)
else:
log.info(
'Updated request for credit with UUID "%s" so the user can re-issue the request',
credit_request.uuid
)
# Sign the parameters using a secret key we share with the credit provider.
parameters["signature"] = signature(parameters, shared_secret_key)
return {
"url": credit_provider.provider_url,
"method": "POST",
"parameters": parameters
}
| 6,682 |
def is_valid_project_root(project_root: pathlib.Path) -> bool:
"""Check if the project root is a valid trestle project root."""
if project_root is None or project_root == '' or len(project_root.parts) <= 0:
return False
trestle_dir = pathlib.Path.joinpath(project_root, const.TRESTLE_CONFIG_DIR)
if trestle_dir.exists() and trestle_dir.is_dir():
return True
return False
| 6,683 |
def make_2D_predictions_into_one_hot_4D(prediction_2D, dim):
"""
This method gets 2D prediction of shape (#batch, #kpts)
and then returns 4D one_hot maps of shape
(#batch, #kpts, #dim, #dim)
"""
# getting one_hot maps of predicted locations
# one_hot_maps is of shape (#batch, #kpts, #dim * #dim)
one_hot_Maps = get_one_hot_map(prediction_2D, dim)
num_batch, num_kpt = prediction_2D.shape
one_hot_Maps_4D = one_hot_Maps.reshape(num_batch, num_kpt, dim, dim)
return one_hot_Maps_4D
| 6,684 |
def aszarr(path, verbose, remap, flip, host, output):
"""
Convert arbitrary dataset into Zarr dataset format.
If OUTPUT is not specified, it will default to 'SOURCE.zarr'
\f
Args:
path (str): path to the original dataset
verbose (str, optional): how verbose should the logger behave
output (str, optional): path to the destination
"""
# we know this is annoying, silence it
logging.getLogger("tifffile").setLevel(logging.ERROR)
# convert verbose level
verbose = 2 if verbose > 2 else verbose
level = {0: "WARNING", 1: "INFO", 2: "DEBUG"}.get(verbose)
coloredlogs.install(
level=level, fmt="%(asctime)s %(levelname)s %(message)s", datefmt="%H:%M:%S"
)
# ensure we does not have ambiguous input
src_path = os.path.abspath(path)
logger.info("loading source dataset")
show_trace = logger.getEffectiveLevel() <= logging.DEBUG
ds = open_dataset(src_path, show_trace=show_trace)
ds = _remap_and_flip(ds, remap, flip)
# generate the output
if output is None:
parent, dname = os.path.split(src_path)
dst_path = os.path.join(parent, f"{dname}.zarr")
else:
dst_path = output
logger.info(f'converted dataset will save to "{dst_path}"')
dump, overwrite = True, False
if os.path.exists(dst_path):
# output already exists, ask user what's next
dump, overwrite = button_dialog(
title="Zarr dataset exists",
text="What should we do?",
buttons=[
("Skip", (False, None)),
("Update", (True, False)),
("Overwrite", (True, True)),
],
).run()
else:
dump, overwrite = True, False
if dump:
with get_client(address=host):
ZarrDataset.dump(dst_path, ds, overwrite=overwrite)
logger.info("complete zarr dataset conversion")
| 6,685 |
def checkwritable(val, depth=0):
"""Check whether a value is valid for writing to the database.
If it is, returns nothing. If not, raises TypeError.
This should embody the same logic as BSON.encode(val, check_keys=True).
Why not just use that? Because the BSON class displays this weird
runtime warning:
couldn't encode - reloading python modules and trying again
I don't know what that means, but it can't be good for me.
"""
if val is None:
return
if isinstance(val, (bool, int, float, str, bytes, ObjectId, datetime.datetime)):
return
if depth >= 8:
raise TypeError('Database object cannot be recursive')
if isinstance(val, (list, tuple)):
for subval in val:
checkwritable(subval, depth=depth+1)
return
if isinstance(val, dict):
for (key, subval) in val.items():
if not isinstance(key, str):
raise TypeError('Database dicts must have string keys: %s' % (key,))
if '.' in key:
raise TypeError('Database dict keys must not contain period: %s' % (key,))
if key.startswith('$'):
raise TypeError('Database dict keys must not start with dollar: %s' % (key,))
checkwritable(subval, depth=depth+1)
return
raise TypeError('Not a database type: %s' % (val,))
| 6,686 |
def delete_user_model(creds: PostgresCredentials, uid: str, model_id: UUID):
"""DB function used to delete user model
from database
Args:
creds (PostgresCredentials): [description]
uid (str): [description]
model_id (UUID): [description]
Returns:
[type]: [description]
"""
with get_cursor(creds) as db:
db.execute('DELETE FROM models WHERE model_id = %s AND username = %s', (model_id, uid))
| 6,687 |
def display_code_marginal_densities(codes, num_hist_bins, log_prob=False,
ignore_vals=[], lines=True, overlaid=False, plot_title=""):
"""
Estimates the marginal density of coefficients of a code over some dataset
Parameters
----------
codes : ndarray(float32, size=(D, s))
The codes for a dataset of size D. These are the vectors x for each
sample from the dataset. The value s is the dimensionality of the code
num_hist_bins : int
The number of bins to use when we make a histogram estimate of the
empirical density.
log_prob : bool, optional
Display probabilities on a logarithmic scale. Useful for most sparse
codes. Default False.
ignore_vals : list, optional
A list of code values to ignore from the estimate. Default []. TODO:
make this more flexible so this can ignore values in a certain range.
lines : bool, optional
If true, plot the binned counts using a line rather than bars. This
can make it a lot easier to compare multiple datasets at once but
can look kind of jagged if there aren't many samples
overlaid : bool, optional
If true, then make a single plot with the marginal densities all overlaid
on top of eachother. This gets messy for more than a few coefficients.
Alteratively, display the densities in their own separate plots.
Default False.
plot_title : str, optional
The title of the plot. Default ""
Returns
-------
code_density_figs : list
A list containing pyplot figures. Can be saved separately, or whatever
from the calling function
"""
def filter_code_vals(scalar_code_vals):
if len(ignore_vals) > 0:
keep_these_inds = scalar_code_vals != ignore_vals[0]
for i in range(1, len(ignore_vals)):
keep_these_inds = np.logical_and(keep_these_inds,
scalar_code_vals != ignore_vals[i])
return scalar_code_vals[keep_these_inds]
else:
return scalar_code_vals
# TODO: get this going for convolutional codes
if overlaid:
# there's just a single plot
fig = plt.figure(figsize=(15, 15))
fig.suptitle(plot_title, fontsize=15)
ax = plt.subplot(1, 1, 1)
blue=plt.get_cmap('Blues')
cmap_indeces = np.linspace(0.25, 1.0, codes.shape[1])
histogram_min = np.min(codes)
histogram_max = np.max(codes)
histogram_bin_edges = np.linspace(histogram_min, histogram_max,
num_hist_bins + 1)
histogram_bin_centers = (histogram_bin_edges[:-1] +
histogram_bin_edges[1:]) / 2
for de_idx in range(codes.shape[1]):
code = filter_code_vals(codes[:, de_idx])
counts, _ = np.histogram(code, histogram_bin_edges)
empirical_density = counts / np.sum(counts)
if lines:
ax.plot(histogram_bin_centers, empirical_density,
color=blue(cmap_indeces[de_idx]), linewidth=2,
label='Coeff idx ' + str(de_idx))
else:
ax.bar(histogram_bin_centers, empirical_density, align='center',
color=blue(cmap_indeces[de_idx]),
width=histogram_bin_centers[1]-histogram_bin_centers[0],
alpha=0.4, label='Coeff idx ' + str(de_idx))
ax.legend(fontsize=10)
if log_prob:
ax.set_yscale('log')
de_figs = [fig]
else:
# every coefficient gets its own subplot
max_de_per_fig = 20*20 # max 20x20 {d}ictionary {e}lements displayed
assert np.sqrt(max_de_per_fig) % 1 == 0, 'please pick a square number'
num_de = codes.shape[1]
num_de_figs = int(np.ceil(num_de / max_de_per_fig))
# this determines how many dictionary elements are aranged in a square
# grid within any given figure
if num_de_figs > 1:
de_per_fig = max_de_per_fig
else:
squares = [x**2 for x in range(1, int(np.sqrt(max_de_per_fig))+1)]
de_per_fig = squares[bisect.bisect_left(squares, num_de)]
plot_sidelength = int(np.sqrt(de_per_fig))
de_idx = 0
de_figs = []
for in_de_fig_idx in range(num_de_figs):
fig = plt.figure(figsize=(15, 15))
fig.suptitle(plot_title + ', fig {} of {}'.format(
in_de_fig_idx+1, num_de_figs), fontsize=15)
subplot_grid = gridspec.GridSpec(plot_sidelength, plot_sidelength)
fig_de_idx = de_idx % de_per_fig
while fig_de_idx < de_per_fig and de_idx < num_de:
if de_idx % 100 == 0:
print('plotted', de_idx, 'of', num_de, 'code coefficients')
ax = plt.Subplot(fig, subplot_grid[fig_de_idx])
code = filter_code_vals(codes[:, de_idx])
histogram_min = min(code)
histogram_max = max(code)
histogram_bin_edges = np.linspace(histogram_min, histogram_max,
num_hist_bins + 1)
histogram_bin_centers = (histogram_bin_edges[:-1] +
histogram_bin_edges[1:]) / 2
counts, _ = np.histogram(code, histogram_bin_edges)
empirical_density = counts / np.sum(counts)
max_density = np.max(empirical_density)
variance = np.var(code)
hist_kurtosis = kurtosis(empirical_density, fisher=False)
if lines:
ax.plot(histogram_bin_centers, empirical_density,
color='k', linewidth=1)
else:
ax.bar(histogram_bin_centers, empirical_density,
align='center', color='k',
width=histogram_bin_centers[1]-histogram_bin_centers[0])
ax.yaxis.set_major_formatter(FormatStrFormatter('%0.1f'))
ax.xaxis.set_major_formatter(FormatStrFormatter('%0.1f'))
ax.tick_params(axis='both', which='major',
labelsize=5)
if histogram_min < 0.:
ax.set_xticks([histogram_min, 0., histogram_max])
else:
ax.set_xticks([histogram_min, histogram_max])
ax.text(0.1, 0.75, 'K: {:.1f}'.format(
hist_kurtosis), transform=ax.transAxes,
color='g', fontsize=5)
ax.text(0.95, 0.75, 'V: {:.1f}'.format(
variance), transform=ax.transAxes,
color='b', fontsize=5, horizontalalignment='right')
ax.set_yticks([0., max_density])
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
if log_prob:
ax.set_yscale('log')
fig.add_subplot(ax)
fig_de_idx += 1
de_idx += 1
subplot_grid.tight_layout(figure=fig, pad=3.25, w_pad=0.2, h_pad=0.2)
de_figs.append(fig)
return de_figs
| 6,688 |
def distance(a, b):
"""
"""
dimensions = len(a)
_sum = 0
for dimension in range(dimensions):
difference_sq = (a[dimension] - b[dimension]) ** 2
_sum += difference_sq
return sqrt(_sum)
| 6,689 |
def is_block(modules):
"""Check if is ResNet building block."""
if isinstance(modules, (BasicBlock, Bottleneck)):
return True
return False
| 6,690 |
def playlist_500_fixture():
"""Load payload for playlist 500 and return it."""
return load_fixture("plex/playlist_500.xml")
| 6,691 |
def strip_output(nb):
"""strip the outputs from a notebook object"""
nb.metadata.pop('signature', None)
for cell in nb.cells:
if 'outputs' in cell:
cell['outputs'] = []
if 'prompt_number' in cell:
cell['prompt_number'] = None
return nb
| 6,692 |
async def on_ready():
"""starts AVAX ticker"""
print("joeBot have logged in as {0.user}".format(discord_bot))
TaskManager((AvaxTicker(),)).start()
| 6,693 |
def set_current_directory(path):
"""Open a context with specified current directory."""
curdir = os.path.abspath(os.path.curdir)
os.chdir(os.path.abspath(path))
try:
yield
finally:
os.chdir(curdir)
| 6,694 |
def get_neighbors_general(status: CachingDataStructure, key: tuple) -> list:
"""
Returns a list of tuples of all coordinates that are direct neighbors,
meaning the index is valid and they are not KNOWN
"""
coords = []
for key in get_direct_neighbour_coords_general(key):
if status.valid_index(*key) and not status[key]: # Not known
coords.append(key)
return coords
| 6,695 |
def transit_params(time):
"""
Dummy transit parameters for time series simulations
Parameters
----------
time: sequence
The time axis of the transit observation
Returns
-------
batman.transitmodel.TransitModel
The transit model
"""
params = batman.TransitParams()
params.t0 = 0. # time of inferior conjunction
params.per = 5.7214742 # orbital period (days)
params.a = 0.0558*q.AU.to(q.R_sun)*0.66 # semi-major axis (in units of stellar radii)
params.inc = 89.8 # orbital inclination (in degrees)
params.ecc = 0. # eccentricity
params.w = 90. # longitude of periastron (in degrees)
params.limb_dark = 'quadratic' # limb darkening profile to use
params.u = [0.1, 0.1] # limb darkening coefficients
params.rp = 0. # planet radius (placeholder)
tmodel = batman.TransitModel(params, time)
tmodel.teff = 3500 # effective temperature of the host star
tmodel.logg = 5 # log surface gravity of the host star
tmodel.feh = 0 # metallicity of the host star
return tmodel
| 6,696 |
def actions(__INPUT):
"""
Regresamos una lista de los posibles movimientos de la matriz
"""
MOVIMIENTOS = []
m = eval(__INPUT)
i = 0
while 0 not in m[i]:
i += 1
# Espacio en blanco (#0)
j = m[i].index(0);
if i > 0:
#ACCION MOVER ARRIBA
m[i][j], m[i-1][j] = m[i-1][j], m[i][j];
MOVIMIENTOS.append(str(m))
m[i][j], m[i-1][j] = m[i-1][j], m[i][j];
if i < 3:
# ACCION MOVER ABAJO
m[i][j], m[i+1][j] = m[i+1][j], m[i][j]
MOVIMIENTOS.append(str(m))
m[i][j], m[i+1][j] = m[i+1][j], m[i][j]
if j > 0:
# ACCION MOVER IZQUIERDA
m[i][j], m[i][j-1] = m[i][j-1], m[i][j]
MOVIMIENTOS.append(str(m))
m[i][j], m[i][j-1] = m[i][j-1], m[i][j]
if j < 3:
# ACCION MOVER DERECHA
m[i][j], m[i][j+1] = m[i][j+1], m[i][j]
MOVIMIENTOS.append(str(m))
m[i][j], m[i][j+1] = m[i][j+1], m[i][j]
return MOVIMIENTOS
| 6,697 |
def get_massif_geom(massif: str) -> WKBElement:
"""process to get the massifs geometries:
* go on the meteofrance bra website
* then get the html "area" element
* then convert it to fake GeoJSON (wrong coordinates)
* then open it in qgis.
* Select *all* the geom of the layer.
* rotate -90°
* swap X and Y coordinates (with plugin)
* use grass v.transform with various x, y scale and rotation until you get what you want.
"""
with resource_stream("nivo_api", "cli/data/all_massifs.geojson") as fp:
gj = geojson.load(fp)
for obj in gj.features:
if obj.properties["label"].upper() == massif.upper():
return from_shape(shape(obj.geometry), 4326)
else:
raise ValueError(f"Massif {massif} geometry cannot be found.")
| 6,698 |
def _to_arrow(x):
"""Move data to arrow format"""
if isinstance(x, cudf.DataFrame):
return x.to_arrow()
else:
return pa.Table.from_pandas(x, preserve_index=False)
| 6,699 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.