content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def uptime_seconds(uptime_list):
"""
Convert a list of the following form:
[years, weeks, days, hours, minutes]
To an uptime in seconds
"""
years = uptime_list[0]
weeks = uptime_list[1]
days = uptime_list[2]
hours = uptime_list[3]
minutes = uptime_list[4]
# No leap day calculation
days = years*365 + weeks*7 + days
minutes = days*24*60 + hours*60 + minutes
seconds = minutes*60
return seconds
|
abf29658193ab373c8e7e8c722fe308d3642c176
| 40,835 |
def _load_coverage_exclusion_list(path):
"""Load modules excluded from per-file coverage checks.
Args:
path: str. Path to file with exclusion list. File should have
one dotted module name per line. Blank lines and lines
starting with `#` are ignored.
Returns:
list(str). Dotted names of excluded modules.
"""
exclusion_list = []
with open(path, 'r', encoding='utf-8') as exclusion_file:
for line in exclusion_file:
line = line.strip()
if line.startswith('#') or not line:
continue
exclusion_list.append(line)
return exclusion_list
|
da20f154a3ad754c344a378889ce913760743d5a
| 40,837 |
def avg(rows: list, index: int):
"""
This is used to calculate the skill average and the slayer average of the whole guild
:param (list) rows: A list containing more lists which are used to calculate the average
:param (index) index: The index in the list of the value to calculate
:returns (str): The rounded guild average
"""
total = 0
for row in rows:
if type(row[index]) in (int, float):
total += row[index]
result = total / len(rows)
return str(round(float(result), 1))
|
e4a0dbb81e911c114b99e411c7d81209a8d0728f
| 40,843 |
from typing import Iterable
def const_col(dims: Iterable[int]) -> str:
"""
Name of an constant columns.
Parameters
----------
dims
Dimensions, that describe the column content.
Returns
-------
name: str
Column name.
Example
-------
>>> from rle_array.testing import const_col
>>> const_col([1, 2])
'const_1_2'
>>> const_col([2, 1])
'const_1_2'
"""
dims = sorted(dims)
dims_str = [str(d) for d in dims]
return f"const_{'_'.join(dims_str)}"
|
52aecf5872f6444bf0155f0556ce39b2250ce758
| 40,847 |
import re
def file_id (s):
"""Return a conventional file name from a pseudo-file name.
(ast/FooBar.hh -> ast/foo-bar.hh)."""
return re.sub ("([a-z])([A-Z])", "\\1-\\2", s).lower ()
|
316248c3cb701466ba9189b1a8bf24ee21384042
| 40,848 |
def GetDefaultPanelBorder(self):
"""
Default panel border is set to 0 by default as the child control
will set their borders.
"""
return 0
|
abbe52bd59c73ed92a278336c6dd38c1ce0c927e
| 40,851 |
def get_service_state_name(state):
"""
Translate a Windows service run state number to a friendly service run state name.
"""
return {
1: 'Stopped',
2: 'Start Pending',
3: 'Stop Pending',
4: 'Running',
5: 'Continue Pending',
6: 'Pause Pending',
7: 'Paused'
}.get(state, 'Unknown')
|
153bfb340ca20335aa476021d31a9918fb00f1f4
| 40,856 |
def mkdown_p(text):
"""
Generates the markdown syntax for a paragraph.
"""
return '\n'.join([line.strip() for line in text.splitlines()]) + '\n'
|
ac511acb8bb81ad37aac7897763584d062662d99
| 40,859 |
def get_first_selected_text(view):
"""Gets a copy of the given view's first buffer selection"""
first_selected_region = view.sel()[0]
buffer_text = view.substr(first_selected_region)
return buffer_text, first_selected_region
|
74b4508f900c87789ebf41b66f31f5a3d41157b1
| 40,871 |
def create_transcript_objects(refseq_db, nms_in_refseq):
"""Retrieve Transcript objects from RefSeq db"""
transcripts = []
for id in nms_in_refseq:
t = refseq_db.by_id(id)
transcripts.append(t)
return transcripts
|
f1422ebd14eccc1b1f26cefefad1c734e06cb81b
| 40,872 |
def check_params(params):
""" Checks if the parameters are defined in the domain [0, 1].
:param params: parameters (u, v, w)
:type params: list, tuple
:raises ValueError: input parameters are outside of the domain [0, 1]
"""
tol = 10e-8
# Check parameters
for prm in params:
if prm is not None:
if not (0.0 - tol) <= prm <= (1.0 + tol):
raise ValueError("Parameters should be between 0 and 1")
return True
|
a0b8225addd1d499719d26461b2ada79b4d27a8c
| 40,874 |
def apply_tf(data, tf):
"""Apply function `tf` (transformation function) if specified
and return result. Return unmodified data in other case"""
if tf:
return tf(data)
else:
return data
|
86d381f5df2362cd614ec252fd2650f2e0086d0d
| 40,878 |
import collections
def get_gt_distribution(experience, get_block):
"""
Get the ground-truth distribution of an experience buffer.
:param experience: List of transitions.
:param get_block: Function that returns the ground-truth state-action block for each transition.
:return: Number of samples for each state-action block.
"""
dist = collections.defaultdict(lambda: 0)
for transition in experience:
key = get_block(transition.state, transition.reward, transition.next_state)
dist[key] += 1
dist = dict(dist)
return dist
|
6dcba0e714d9d98a530c16fcfa12679980b46871
| 40,881 |
import math
def cost_to_time(cost, avg_seek_time=8, avg_latency=4):
"""
Converts a disk I/O metric to a milliseconds.
:param cost: The disk I/O metric to convert.
:param avg_seek_time: The average seek time in milliseconds.
:param avg_latency: The average latency in milliseconds.
:return: A disk I/O in milliseconds.
"""
return int(
math.ceil(
cost *
((avg_seek_time/1000) +
(avg_latency/1000))
)
)
|
9ec86fef8b1b76260bbb2fe58b539d1dc8164b52
| 40,882 |
def VLerp(startv, endv, t=0.5):
""" Linear interpolation between 2 vectors. """
if t <= 0.0 or t > 1.0:
raise ValueError("E: t must satisfy 0<t<1, but is %f" % t)
return (startv + (t * (endv - startv)))
|
c64dec9b0b966c0b25f6da00392239389e714a30
| 40,883 |
def get_next_deriv(xi, step, n, deriv, func):
"""
(d_theta/d_xi)i+1 = (d_theta/d_xi)i - ([ (2 /xi)i . (d_theta/d_xi)i ] + theta^n ) * d_xi
"""
return deriv - step * ((2./xi)*deriv + func**n)
|
9393131ff5872c8da2fc519611d6fc075ef4ffa5
| 40,885 |
def read_emojis(emojis):
""" Returns a dictionary of emojis in the format of name: url. """
items = []
for k, v in emojis['emoji'].items():
if v.startswith('http'):
items.append((k, v))
return items
|
b8e80fc07cc287f3eff547b111aaaa16989309ce
| 40,886 |
def _prepare_cov_source(cov_source):
"""
Prepare cov_source so that:
--cov --cov=foobar is equivalent to --cov (cov_source=None)
--cov=foo --cov=bar is equivalent to cov_source=['foo', 'bar']
"""
return None if True in cov_source else [path for path in cov_source if path is not True]
|
8287d28c5d82568ee226d89250524b75e81b69d8
| 40,900 |
import time
def last_hour(unixtime, hours=1):
"""Check if a given epochtime is within the last hour(s).
Args:
unixtime: epoch time
hours (int): number of hours
Returns:
True/False
"""
seconds = hours * 3600
# sometimes bash histories do not contain the `time` column
return int(time.time()) - int(unixtime) <= seconds if unixtime else False
|
1ce3ddb73f0316cf36979c1ee7f1269ae55d0d4c
| 40,904 |
def format_stats(stats):
"""Given a dictionary following this layout:
{
'encoded:label': 'Encoded',
'encoded:value': 'Yes',
'encoded:description': 'Indicates if the column is encoded',
'encoded:include': True,
'size:label': 'Size',
'size:value': 128,
'size:description': 'Size of the table in MB',
'size:include': True,
}
format_stats will convert the dict into this structure:
{
'encoded': {
'id': 'encoded',
'label': 'Encoded',
'value': 'Yes',
'description': 'Indicates if the column is encoded',
'include': True
},
'size': {
'id': 'size',
'label': 'Size',
'value': 128,
'description': 'Size of the table in MB',
'include': True
}
}
"""
stats_collector = {}
for stat_key, stat_value in stats.items():
stat_id, stat_field = stat_key.split(":")
stats_collector.setdefault(stat_id, {"id": stat_id})
stats_collector[stat_id][stat_field] = stat_value
# strip out all the stats we don't want
stats_collector = {
stat_id: stats
for stat_id, stats in stats_collector.items()
if stats.get('include', False)
}
# we always have a 'has_stats' field, it's never included
has_stats = {
'id': 'has_stats',
'label': 'Has Stats?',
'value': len(stats_collector) > 0,
'description': 'Indicates whether there are statistics for this table',
'include': False,
}
stats_collector['has_stats'] = has_stats
return stats_collector
|
38b0f19f216d85f57c48a2e4b35a00dfa784d962
| 40,907 |
def get_customer_events(customerId, transcript):
"""
Get all the customer event rows from transcript dataframe
Parameters
----------
customerId: Customer Id.
transcript : The transcript dataframe containing events of all customers
Returns
-------
A dataframe with only rows for customer Id
"""
return transcript[transcript.person == customerId]
|
bf925440e1f43fe715f498e824ebf98180a23858
| 40,916 |
def get_valid_step(current_step: int, max_step: int) -> int:
"""
Checks if the current step is within boundaries and returns a corrected step.
:param current_step: The current step to check.
:param max_step: The maximum allowed step.
:return: A corrected step between 1 and the maximum step.
"""
if current_step < 1:
current_step = 1
elif current_step > max_step:
current_step = max_step
return current_step
|
aa668ef490bce37ac890c767b604e14f4b5d5ed9
| 40,920 |
def phaseplot_values(species):
"""
A convenience function to get a dictionary of values, to allow generalization of the PhasePlot class.
The keys you can pull for phase plots are `x`, `v_x`, `v_y` and `v_z`.
Parameters
----------
species : Species
A species to draw data from
Returns
-------
A dictionary of phase plot values.
"""
return {"x": species.position_history,
"v_x": species.velocity_history[:, :, 0],
"v_y": species.velocity_history[:, :, 1],
"v_z": species.velocity_history[:, :, 2],
}
|
9b7458eb4634bbd7e6b337ecadc0a3db20911d45
| 40,925 |
def get_pagination(current_page_number, total_number_pages):
"""
Generate a pagination dictionary given a page number
:param current_page_number: current page to paginate
:param total_number_pages: total number of pages in the current model
:return: dictionary of pagination
"""
previous_page = current_page_number - 1
next_page = current_page_number + 1
displayed_previous_page = None
displayed_next_page = None
if previous_page > 0:
displayed_previous_page = previous_page
if next_page < total_number_pages:
displayed_next_page = next_page
return {
"first-page": 0,
"previous-page": displayed_previous_page,
"current-page": current_page_number,
"next-page": displayed_next_page,
"last-page": total_number_pages
}
|
cbe5052fead77f1b034452841ae2468373cd4860
| 40,926 |
def assort_values(d):
"""
Collect every values stored in dictionary, then return them as a set
:param d:
:return:
"""
values = set()
for key in d.keys():
values |= set(d[key])
return values
|
b9cf4a705d92aa414bd38e05204764b71bf2e683
| 40,928 |
import struct
def read_vary(stream, data_size_type="B"):
"""!
@brief Read variable length data from stream.
@param stream Data stream.
@param data_size_type Type of data size in Python's struct module representation.
@return Data in byte array.
"""
# Read data size
data_size_size = struct.calcsize(data_size_type)
data_size = struct.unpack(data_size_type, stream.read(data_size_size))[0]
# Read data
return bytearray(stream.read(data_size))
|
9aa8a29470dad880b3f9b718a34c80eb28e2110e
| 40,931 |
from typing import Optional
from enum import Enum
def enum_parse(enum_cls: type, value: str) -> Optional[Enum]:
"""Try to parse a string value to an Enum member."""
if not issubclass(enum_cls, Enum):
raise TypeError("Can only be used with classes derived from enum.Enum.")
if value in enum_cls.__members__:
return enum_cls.__members__[value]
val_lc = value.casefold()
val_map = {name.casefold(): name for name in enum_cls.__members__}
if val_lc in val_map:
return enum_cls.__members__[val_map[val_lc]]
return None
|
f932e9d941daed3a970273c91a2d45abf0261e17
| 40,932 |
def strip_trailing_zero(value):
"""Like builtin "floatformat" but strips trailing zeros from the right (12.5 does not become 12.50)"""
value = str(value)
if "." in value:
return value.rstrip("0").rstrip(".")
return value
|
201c3ee4014db53a613d23131f8d4caad4cab638
| 40,933 |
def get_company(company_id, company_dict):
"""
Get the entry for a key from the company table
"""
return company_dict[company_id]
|
b2f682cf702dbd6877e46cf98b106b9e058fe4fb
| 40,936 |
def find_list_index(a_list, item):
"""
Finds the index of an item in a list.
:param a_list: A list to find the index in.
:type a_list: list
:param item: The item to find the index for.
:type item: str
:return: The index of the item, or None if not in the list.
:rtype: int | None
"""
if item in a_list:
for i, value in enumerate(a_list):
if value == item:
return i
|
c9eb862b4af3eb113cca9ee55edda05b9fbfa8fe
| 40,940 |
def horizontal_flip(img):
"""Flip the image along the horizontal axis."""
return img[:, ::-1, :]
|
7aa0defa82efc835848f5f8d2b73191d63476a74
| 40,944 |
def clip_zero_formatter(tick_val, tick_pos):
"""Tick formatter that returns empty string for zero values."""
if tick_val == 0:
return ''
return tick_val
|
263cd9104f8f8e2332c55454e3fee274afe2ec4a
| 40,945 |
def uri_scheme_behind_proxy(request, url):
"""
Fix uris with forwarded protocol.
When behind a proxy, django is reached in http, so generated urls are
using http too.
"""
if request.META.get("HTTP_X_FORWARDED_PROTO", "http") == "https":
url = url.replace("http:", "https:", 1)
return url
|
873ac1c70627fc8e8dd0cb2b86dec99246bb9344
| 40,949 |
def remove_last_cycles_from_summary(s, last=None):
"""Remove last rows after given cycle number
"""
if last is not None:
s = s.loc[s.index <= last, :]
return s
|
811c73cce5d107a6a3c8fcae71c320c548ee6755
| 40,952 |
def list_all_regions(session):
"""Returns all regions where Lambda is currently supported"""
return session.get_available_regions("lambda")
|
6368a3a357826f49978a06705270bc0124f64b0e
| 40,958 |
def get_center_indices(data, centers):
"""
Outputs the indices of the given centroids in the original dataset.
In case multiple similar arrays are present in the dataset, the first
match is returned. Required since K++ initializer outputs the
actual centroid arrays while the kmedoids implementation needs indices.
data: input matrix, list of arrays
centroids: list of centroid arrays
"""
indices = list()
for medoid in centers:
indices.append([i for i, m in enumerate(data) if list(m) == list(medoid)][0])
return indices
|
78521413a8272a6fb6ce4dcd69b0b7418b937efa
| 40,968 |
async def get_pr_for_commit(gh, sha):
"""Find the PR containing the specific commit hash."""
prs_for_commit = await gh.getitem(
f"/search/issues?q=type:pr+repo:python/cpython+sha:{sha}"
)
if prs_for_commit["total_count"] > 0: # there should only be one
return prs_for_commit["items"][0]
return None
|
c8abfbc613748d88b224db2523b15535169da118
| 40,969 |
def underlying_function(thing):
"""Original function underlying a distribution wrapper."""
return getattr(thing, '__wrapped__', thing)
|
c83ce77b08b1eec84f13b9ba439203fcc045f098
| 40,972 |
def get_factor(units, unit_id):
"""
Returns the factor of a Unit-Config
"""
if not units:
return None
for unit in units:
if unit.id == unit_id:
if unit.to_base_function:
return unit.to_base_function
return unit.factor
|
c941556cba4baa08569c89c9c90edc5f620b5346
| 40,973 |
def write(scope, filename, lines, mode=['a']):
"""
Writes the given string into the given file.
The following modes are supported:
- 'a': Append to the file if it already exists.
- 'w': Replace the file if it already exists.
:type filename: string
:param filename: A filename.
:type lines: string
:param lines: The data that is written into the file.
:type mode: string
:param mode: Any of the above listed modes.
"""
with open(filename[0], mode[0]) as fp:
fp.writelines(['%s\n' % line.rstrip() for line in lines])
return True
|
4c5b905dabd35211a95d6af1ea82967a8ae6ae44
| 40,974 |
def get_direction_per_spike(df, cells, value_query, threshold=1):
"""
For a list of cells in a dataframe, return a list of values that are
associated with spiking activity.
:param df: Dataframe containing the spiking activity, and the values
to be queried
:param cells: List of cells (dataframe column headings)
:param value_query: Dataframe column heading containing values
:param threshold: Spiking threshold to be reached. Default: 1 spike per bin
:return: List of values, and their weights (if there are >1 spike per
temporal bin)
"""
value_list = []
weights = []
for cell in cells:
values = df[value_query][(df[cell] >= threshold)]
weights_cell = df[cell][(df[cell] >= threshold)]
value_list.append(values)
weights.append(weights_cell)
return value_list, weights
|
18ebb4992df35b58106bbe85b883c7a13e8ff73f
| 40,976 |
def calculate(power):
"""Returns the sum of the digits of the number 2 to the power of the specified number"""
answer = sum(list(map(int, str((2 ** power)))))
return answer
|
5f0146e2c885c8c4636a6765a2b8e567e758928a
| 40,981 |
from bs4 import BeautifulSoup
def is_html_text(txt):
"""
Check is input text is html or not
Args:
txt (str): input text
Returns:
bool: Returns True if html else False.
"""
return bool(
BeautifulSoup(txt, "html.parser").find()
)
|
1fb303e79bf1fd8773bc4cc03aaee304e9987aca
| 40,987 |
import random
def mod_hosts_map(cloud_map, n, **kwargs):
"""
Selects n random hosts for the given stack and modifies/adds
the map entry for those hosts with the kwargs.
"""
population = cloud_map.keys()
# randomly select n hosts
hosts = random.sample(population, n)
# modify the hosts
for host in hosts:
cloud_map[host].update(kwargs)
return cloud_map
|
87f766df9701a9da4988aae0ac272cd32c31b011
| 40,988 |
def dist(v1, v2):
""" distance between two vectors. """
d = ((v2.x - v1.x)**2 + (v2.y - v1.y)**2) ** 0.5
return d
|
d06b3fb6543a1531d71db7345912153008e7e7d1
| 40,990 |
def array_shape(x) -> tuple[int, ...]:
"""Return the shape of 'x'."""
try:
return tuple(map(int, x.shape))
except AttributeError:
raise TypeError(f"No array shape defined for type {type(x)}")
|
efceb1a84ff05b94d2aa2e89c7956a96e4337090
| 40,995 |
def reset_slider(modal_open, selected_confidence):
"""
Reset the confidence slider range value to [0, 60] after closing the
modal component.
Parameters
----------
modal_open : bool
A boolean that describes if the modal component is open or not
selected_confidence : list of float
The selected minimum and maximum values of the confidence slider
Returns
-------
list of float
The default minimum and maximum values of the confidence slider
"""
# The modal window is closed so reset the slider values.
if not modal_open:
return [0, 60]
# The modal window is open so return the current slider values.
return selected_confidence
|
e6a43415eb56e8a77ef8cb3a1b58f71e4bf9443c
| 40,996 |
def get_type_check(expected_type):
"""
Any -> (Any -> bool)
:param expected_type: type that will be used in the generated boolean check
:return: a function that will do a boolean check against new types
"""
return lambda x: type(x) is expected_type
|
3e16e7fdf7461702cef4835d0bcfb2ed4131dac8
| 40,998 |
def fmt(x, pos):
"""
Format color bar labels
"""
if abs(x) > 1e4 or (abs(x) < 1e-2 and abs(x) > 0):
a, b = f"{x:.2e}".split("e")
b = int(b)
return fr"${a} \cdot 10^{{{b}}}$"
elif abs(x) > 1e2 or (float(abs(x))).is_integer():
return fr"${int(x):d}$"
elif abs(x) > 1e1:
return fr"${x:.1f}$"
elif abs(x) == 0.0:
return fr"${x:.1f}$"
else:
return fr"${x:.2f}$"
|
02e5c2ecbcbfcd50d40b06ee7792275aa4e32ae3
| 41,000 |
def is_binarystring(s):
"""Return true if an object is a binary string (not unicode)"""
return isinstance(s, bytes)
|
9d4950b7c11b4055460236076200c13a6d51127a
| 41,001 |
def is_superset(token, tokens):
"""If a token is a superset of another one, don't include it."""
for other in tokens:
if other == token:
continue
if other in token:
return True
return False
|
c9530f43ab9f9c123b3cff10b043376a280c57f5
| 41,002 |
import torch
def mu_inverse(y):
""" Inverse operation of mu-law transform for 16-bit integers. """
assert y.min() >= -1 and y.max() <= 1
return torch.sign(y) / 32768. * ((1 + 32768.) ** torch.abs(y) - 1)
|
d4af6953e6770d52597cf49e40bda1abbbbf057f
| 41,005 |
def spherical(h, r, sill, nugget=0):
"""
Spherical variogram model function. Calculates the
dependent variable for a given lag (h). The nugget (b) defaults to be 0.
Parameters
----------
h : float
The lag at which the dependent variable is calculated at.
r : float
Effective range of autocorrelation.
sill : float
The sill of the variogram, where the semivariance begins to saturate.
nugget : float, default=0
The nugget of the variogram. This is the value of independent
variable at the distance of zero.
Returns
-------
gamma : numpy float
Coefficients that describe effective range of spatial autocorrelation
"""
a = r / 1.
if h <= r:
return nugget + sill * ((1.5 * (h / a)) - (0.5 * ((h / a) ** 3.0)))
else:
return nugget + sill
|
074575957faf3a047c649fa31e6f0cc4ff7c4fdf
| 41,011 |
def get_from_session(request):
"""
Get user from request's session.
"""
return request.environ['beaker.session'].get('user')
|
30ad13274797fe3cb183ae1a11e6d07fa83fdf12
| 41,014 |
def S_convolute_values(_data_list, _transformer):
"""
Returns new data samples where values are transformed by transformer values.
"""
c_data = []
ds = len(_data_list)
ts = len(_transformer)
if ds != ts:
return []
for i in range(ds):
c_data.append(_data_list[i] + _transformer[i])
return c_data
|
c13a2750999e4aa144f610a905f96d845b6dbfcc
| 41,023 |
def get_valid_entries(board, row, col):
"""Checks valid entries for given cell in sudoku
params : board : list (sudoku 9 X 9)
: row : int
: col : int
returns : list (list of valid entries)
"""
used_entries = [0] * 10
used_entries[0] = 1
block_row = row // 3
block_col = col // 3
# Row and Column
for m in range(9):
used_entries[board[m][col]] = 1
used_entries[board[row][m]] = 1
# Square
for m in range(3):
for n in range(3):
used_entries[board[m + block_row * 3][n + block_col * 3]] = 1
valid_entries = [i for i in range(1, 10) if used_entries[i] == 0]
return valid_entries
|
4c9178cf4c859dbfc8957c19cbf0ba5f60df5786
| 41,027 |
import json
def get_error_msg(exception) -> str:
"""
Parse the http response body to get relevant error message
"""
http_response_body = json.loads(exception.body.decode("utf-8"))
exception_msg = http_response_body["message"]
return exception_msg
|
6a98431a163ef6f6ec453182fe68b0ebdad41969
| 41,029 |
import six
def _add_simplify(SingleActionType, BulkActionType):
"""
Add .simplify method to "Bulk" actions, which returns None for no rows, non-Bulk version for a
single row, and the original action otherwise.
"""
if len(SingleActionType._fields) < 3:
def get_first(self):
return SingleActionType(self.table_id, self.row_ids[0])
else:
def get_first(self):
return SingleActionType(self.table_id, self.row_ids[0],
{ key: col[0] for key, col in six.iteritems(self.columns)})
def simplify(self):
return None if not self.row_ids else (get_first(self) if len(self.row_ids) == 1 else self)
BulkActionType.simplify = simplify
|
b67d24d63df7ee8de56cc9c47ae64150373fef3b
| 41,030 |
import json
def read_inputs(jpath):
"""
read_inputs reads the input json file and stores it information in a dictionary
Parameters
----------
jpath : string
the input JSON file
Returns
-------
paths: dict
Returns a dictionary of the json file
"""
with open(jpath) as file:
paths = json.load(file)
return paths
|
f3f91db4a60d8267df0b6a8ff0e3b722864c4055
| 41,031 |
def get_author_name(pypi_pkg):
"""Get author's name"""
author_name = pypi_pkg["pypi_data"]["info"]["author"]
return author_name
|
7c4ff935af36824a954605846d8a91bd927470c4
| 41,033 |
def _cleanup_frame(frame):
"""Rename and re-order columns."""
frame = frame.rename(columns={'Non- Hispanic white': 'White'})
frame = frame.reindex(['Asian', 'Black', 'Hispanic', 'White'],
axis=1)
return frame
|
7a25ee47e726314de57dc80d103a0189d3583024
| 41,037 |
def frmt_db_lctn(location):
""" Formats the database location into nicer, more readable style
:param location: sms deposit location
:returns: Formated sms deposit location
"""
if location:
return location.replace("_", " ").replace('-', ' ').title()
|
709b77c96eaa6aa43211445cc03279a28f84cd56
| 41,039 |
import pkg_resources
def riptide_assets_dir() -> str:
""" Path to the assets directory of riptide_lib. """
return pkg_resources.resource_filename('riptide', 'assets')
|
6c82e359d46bb6a82cbf01559574c07629acc23b
| 41,040 |
def signal_to_noise_limit_tag_from_signal_to_noise_limit(signal_to_noise_limit):
"""Generate a signal to noise limit tag, to customize phase names based on limiting the signal to noise ratio of
the dataset being fitted.
This changes the phase name 'phase_name' as follows:
signal_to_noise_limit = None -> phase_name
signal_to_noise_limit = 2 -> phase_name_snr_2
signal_to_noise_limit = 10 -> phase_name_snr_10
"""
if signal_to_noise_limit is None:
return ""
else:
return "__snr_" + str(signal_to_noise_limit)
|
b659aac99a4c728219818d8a5dc9f0fd14defcfd
| 41,046 |
import re
def check_rules(rules, text_list, current_labels, fallback_label):
"""Finds rule's match in a text and returns list of labels to attach.
If no rule matches returns False for match and fallback label will be attached.
Args:
rules (list): List of rules
text_list (list): List of strings to search in
current_labels (list): List of already attached labels
fallback_label (str): Label to attach if no rule matches
Returns:
tuple: (match, labels)
match (bool): True if any rule matches, False otherwise
labels (list): List of labels to attach
"""
labels = set()
match = False
for rule in rules:
for text in text_list:
result = re.search(rule["pattern"], text)
if result is not None:
match = True
if rule["label"] not in current_labels:
labels.add(rule["label"])
# fallback label
if not match:
if fallback_label not in current_labels:
labels.add(fallback_label)
return match, labels
|
5a244532510e1898bef9a6f98d556e4c2e4b7b09
| 41,047 |
def Base_setTextValue(self, param):
"""
- name: input username
setTextValue:
text: |
multi line text1
multi line text2
id: elementid1
"""
txt = self.getvalue(param)
if txt is None:
raise Exception("text not set: param=%s" % (param))
elem = self.findmany2one(param)
self.driver.execute_script("arguments[0].value = arguments[1];", elem, txt)
return self.return_element(param, elem)
|
3030ed2241364002246f0c8c1fadf3c244658eff
| 41,048 |
from datetime import datetime
def get_Mk_global(date):
"""
Based on the script BackRuns_OneSite_ByDay.ksh, calculating the globalMetMk value
:param date: datetime object
:return: integer representing the globalMetMk value
"""
seconds = int(datetime.strftime(date, "%s"))
if seconds < 1136073600:
return 0
elif seconds < 1230768000:
return 3
elif seconds < 1257811200:
return 4
elif seconds < 1268092800:
return 5
elif seconds < 1367280000:
return 6
elif seconds < 1405382400:
return 7
elif seconds < 1440460800:
return 8
elif seconds < 1499731200:
return 9
else:
return 10
|
c05e5dffb2219358147184be28123349071994fc
| 41,050 |
def tf_b(tf, _):
"""Boolean term frequency."""
return 1.0 if tf > 0.0 else 0.0
|
fddd407e4e04f9d3a890303431e462731a79cb3c
| 41,051 |
def dump_netrc(self):
"""Dump the class data in the format of a .netrc file."""
rep = ''
for host in self.hosts.keys():
attrs = self.hosts[host]
rep = rep + 'machine ' + host + '\n\tlogin ' + str(attrs[0]) + '\n'
if attrs[1]:
rep = rep + 'account ' + str(attrs[1])
rep = rep + '\tpassword ' + str(attrs[2]) + '\n'
for macro in self.macros.keys():
rep = rep + 'macdef ' + macro + '\n'
for line in self.macros[macro]:
rep = rep + line
rep = rep + '\n'
return rep
|
08cb24400c7857006f2d2ae226a002485e0cc975
| 41,054 |
import torch
def image_positional_encoding(shape):
"""Generates *per-channel* positional encodings for 2d images.
The positional encoding is a Tensor of shape (N, 2*C, H, W) of (x, y) pixel
coordinates scaled to be between -.5 and .5.
Args:
shape: NCHW shape of image for which to generate positional encodings.
Returns:
The positional encodings.
"""
n, c, h, w = shape
zeros = torch.zeros(n, c, h, w)
return torch.cat((
(torch.arange(-.5, .5, 1 / h)[None, None, :, None] + zeros),
(torch.arange(-.5, .5, 1 / w)[None, None, None, :] + zeros)),
dim=1)
|
b5187f9a97ade7fdad06d54e7a308e7ede8fcf9a
| 41,055 |
def list_keys(client, bucket, prefix, token=None):
"""
Recursive function used to retrieve all the object keys that match with a given prefix in the given S3 bucket.
:param client: Client for the Amazon S3 service.
:param bucket: The S3 bucket name.
:param prefix: The prefix used for filtering.
:param token: The continuation token returned by a previous call.
:return: The found keys matching the prefix.
"""
keys = list()
response = client.list_objects_v2(
Bucket=bucket,
Prefix=prefix,
ContinuationToken=token
) if token else client.list_objects_v2(
Bucket=bucket,
Prefix=prefix
)
if 'Contents' in response:
for item in response['Contents']:
keys.append(item['Key'])
if 'NextContinuationToken' in response:
keys += list_keys(client, bucket, prefix, response['NextContinuationToken'])
return keys
|
3fa42dccf36dd3c2c8e76a71a1add0d28b0abe98
| 41,057 |
def RepairMissingData(time_series, first_value):
"""Given a list of time series value in a string format, replace missing
values. If the first time point is missing, set it to first_value. This
should be 1 if the log transform will be taken or 0 otherwise. If later
time points are missing, set them to the previous observed time point.
"""
if time_series[0] == '':
time_series[0] = first_value
for i in range(1, len(time_series)):
if time_series[i] == '':
time_series[i] = time_series[i-1]
return time_series
|
c2075048c662ecba2c37a95ea12513b105a05d16
| 41,059 |
def replace_stop(sequence):
"""
For a string, replace all '_' characters with 'X's
Args:
sequence (string)
Returns:
string: '_' characters replaced with 'X's
"""
return sequence.replace('_', 'X')
|
e4f0356b5b6b8c2101540c275215e0527ba909c4
| 41,060 |
from pathlib import Path
def tmpfile(tmpdir, request):
"""Path to an empty temporary file."""
path = Path(tmpdir / 'temp.' + request.param)
path.touch()
return path
|
14194a46b8799f967a2ad6ac89cea3f4a3ddbddc
| 41,062 |
def test_function(a:int, b:int) -> int:
"""Adds two numbers together
Args:
a (int): Number 1
b (int): Number 2
Returns:
int: Sum of both numbers
"""
return a + b
|
76d76743c02600f665b7c0ee28a08bc4e0784238
| 41,063 |
def check_abc_lec_status(output):
"""
Reads abc_lec output and determines if the files were equivelent and
if there were errors when preforming lec.
"""
equivalent = None
errored = False
for line in output:
if "Error: The network has no latches." in line:
errored = True
if line.startswith("Networks are NOT EQUIVALENT"):
equivalent = False
elif line.startswith("Networks are equivalent"):
equivalent = True
# Returns None if could not determine LEC status
return equivalent, errored
|
5c2c17e91fed34d46bf911d404e16efe40adebdf
| 41,064 |
from typing import List
from typing import Any
import random
def get_random_sample(items: List[Any], k: int) -> List[Any]:
"""
Thin wrapper around ``random.sample`` that takes the min of ``k`` and ``len(items)``
when sampling, so as to avoid a ``ValueError``.
"""
return random.sample(items, min(k, len(items)))
|
6fe2c5df8a2d8fa34a8f694e1108ce096c91dd4c
| 41,068 |
import math
def projectionVolume(R1, R2, y1, y2):
"""Return the projected volume of a shell of radius R1->R2 onto an
annulus on the sky of y1->y2.
this is the integral:
Int(y=y1,y2) Int(x=sqrt(R1^2-y^2),sqrt(R2^2-y^2)) 2*pi*y dx dy
=
Int(y=y1,y2) 2*pi*y*( sqrt(R2^2-y^2) - sqrt(R1^2-y^2) ) dy
This is half the total volume (front only)
"""
def truncSqrt(x):
if x > 0:
return math.sqrt(x)
else:
return 0.
p1 = truncSqrt(R1**2 - y2**2)
p2 = truncSqrt(R1**2 - y1**2)
p3 = truncSqrt(R2**2 - y2**2)
p4 = truncSqrt(R2**2 - y1**2)
return (2./3.) * math.pi * ((p1**3 - p2**3) + (p4**3 - p3**3))
|
fc09c74fdb6c80d76df1dd996357b5f8cd9eab83
| 41,075 |
def prepend(value: str, char="_"):
"""Prepend a string to a value if the value doesn't already start with that string
Examples:
>>> prepend('a')
'_a'
>>> prepend('_a')
'_a'
>>> prepend('my_str', '--')
'--my_str'
>>> prepend('---my_str', '-')
'---my_str'
"""
if value.strip() == "":
return ""
return value if value.startswith(char) else f"{char}{value}"
|
05a82a8d6dbedb550069610ba47eb0a6f545f925
| 41,078 |
def _is_right(a, b, p):
"""given a line (defined by points a and b) and a point (p),
return true if p is to the right of the line and false otherwise
raises a ValueError if p lies is colinear with a and b
"""
ax, ay = a[0], a[1]
bx, by = b[0], b[1]
px, py = p[0], p[1]
value = (bx - ax) * (py - ay) - (by - ay) * (px - ax)
if value == 0:
raise ValueError(
"p is colinear with a and b, 'tis neither right nor left.")
return value < 0
|
6d630eadc77587de60ef6aefff3cac01d9ba3191
| 41,085 |
def boundary(info, error, otype, oslots, rank):
"""Computes boundary data.
For each slot, the nodes that start at that slot and the nodes that end
at that slot are collected.
Boundary data is used by the API functions
`tf.core.locality.Locality.p`.
and
`tf.core.locality.Locality.n`.
Parameters
----------
info: function
Method to write informational messages to the console.
error: function
Method to write error messages to the console.
otype: iterable
The data of the *otype* feature.
oslots: iterable
The data of the *oslots* feature.
rank: tuple
The data of the *rank* precompute step.
Returns
-------
tuple
* first: tuple of tuple
The *n*-th member is the tuple of nodes that start at slot *n*,
ordered in *reversed* canonical order (`tf.core.nodes`);
* last: tuple of tuple
The *n*-th member is the tuple of nodes that end at slot *n*,
ordered in canonical order;
Notes
-----
!!! hint "why reversed canonical order?"
Just for symmetry.
"""
(otype, maxSlot, maxNode, slotType) = otype
oslots = oslots[0]
firstSlotsD = {}
lastSlotsD = {}
for (node, slots) in enumerate(oslots):
realNode = node + 1 + maxSlot
firstSlotsD.setdefault(slots[0], []).append(realNode)
lastSlotsD.setdefault(slots[-1], []).append(realNode)
firstSlots = tuple(
tuple(sorted(firstSlotsD.get(n, []), key=lambda node: -rank[node - 1]))
# array("I", sorted(firstSlotsD.get(n, []), key=lambda node: -rank[node - 1]))
for n in range(1, maxSlot + 1)
)
lastSlots = tuple(
tuple(sorted(lastSlotsD.get(n, []), key=lambda node: rank[node - 1]))
# array("I", sorted(lastSlotsD.get(n, []), key=lambda node: rank[node - 1]))
for n in range(1, maxSlot + 1)
)
return (firstSlots, lastSlots)
|
b6927dc374fa638b42fb7e85742f074cba7ab88a
| 41,087 |
def standard_x(x_train, x_test=None):
"""
Data normalization (centering and variance normalization).
:param x_train: training data
:type x_train: np.ndarray
:param x_test: testing data
:type x_test: np.ndarray | None
:return: normalized data
:rtype: np.ndarray | (np.ndarray, np.ndarray)
"""
x_mean = x_train.mean(axis=0)
x_std = x_train.std(axis=0)
x_train1 = ((x_train - x_mean) / x_std).values
if x_test is not None:
x_test1 = ((x_test - x_mean) / x_std).values
return x_train1, x_test1
return x_train1
|
181ae9a64b0ed444a4ef49f933cf1d2490763fe5
| 41,088 |
def _offset(offset, size):
"""Calculate the start of a member of `size` after `offset` within a
struct."""
return ((size - (offset % size)) % size) + offset
|
97e277def96dab568d6f2cbe1fd7111d0cac6427
| 41,091 |
def precision_to_string(precision):
"""Translates a precision number (represented as Python string) into a descriptive string"""
if precision == "16":
return "Half"
elif precision == "32":
return "Single"
elif precision == "64":
return "Double"
elif precision == "3232":
return "ComplexSingle"
elif precision == "6464":
return "ComplexDouble"
else:
raise("Unknown precision: " + precision)
|
7f7d9b099091944d4fae1c007d83c375770a6b20
| 41,094 |
def get_ideological_topic_means(objective_topic_loc,
objective_topic_scale,
ideological_topic_loc,
ideological_topic_scale):
"""Returns neutral and ideological topics from variational parameters.
For each (k,v), we want to evaluate E[beta_kv], E[beta_kv * exp(eta_kv)],
and E[beta_kv * exp(-eta_kv)], where the expectations are with respect to the
variational distributions. Like the paper, beta refers to the obective topic
and eta refers to the ideological topic.
Dropping the indices and denoting by mu_b the objective topic location and
sigma_b the objective topic scale, we have E[beta] = exp(mu + sigma_b^2 / 2),
using the mean of a lognormal distribution.
Denoting by mu_e the ideological topic location and sigma_e the ideological
topic scale, we have E[beta * exp(eta)] = E[beta]E[exp(eta)] by the
mean-field assumption. exp(eta) is lognormal distributed, so E[exp(eta)] =
exp(mu_e + sigma_e^2 / 2). Thus, E[beta * exp(eta)] =
exp(mu_b + mu_e + (sigma_b^2 + sigma_e^2) / 2).
Finally, E[beta * exp(-eta)] =
exp(mu_b - mu_e + (sigma_b^2 + sigma_e^2) / 2).
Because we only care about the orderings of topics, we can drop the exponents
from the means.
Args:
objective_topic_loc: Variational lognormal location parameter for the
objective topic (beta). Should be shape [num_topics, num_words].
objective_topic_scale: Variational lognormal scale parameter for the
objective topic (beta). Should be positive, with shape
[num_topics, num_words].
ideological_topic_loc: Variational Gaussian location parameter for the
ideological topic (eta). Should be shape [num_topics, num_words].
ideological_topic_scale: Variational Gaussian scale parameter for the
ideological topic (eta). Should be positive, with shape
[num_topics, num_words].
Returns:
neutral_mean: A matrix with shape [num_topics, num_words] denoting the
variational mean for the neutral topics.
positive_mean: A matrix with shape [num_topics, num_words], denoting the
variational mean for the ideological topics with an ideal point of +1.
negative_mean: A matrix with shape [num_topics, num_words], denoting the
variational mean for the ideological topics with an ideal point of -1.
"""
neutral_mean = objective_topic_loc + objective_topic_scale ** 2 / 2
positive_mean = (objective_topic_loc +
ideological_topic_loc +
(objective_topic_scale ** 2 +
ideological_topic_scale ** 2) / 2)
negative_mean = (objective_topic_loc -
ideological_topic_loc +
(objective_topic_scale ** 2 +
ideological_topic_scale ** 2) / 2)
return neutral_mean, positive_mean, negative_mean
|
3c0681e4b2834a34b0a0c97e5638bf0237d5272c
| 41,098 |
def get_gamma_function(gamma):
"""
:param gamma: desired factor gamma
:return: Returns the lambda function of the gamma adjust operation
"""
return lambda x: pow(x / 255, gamma) * 255
|
48175cacc3c41fcac4da9dfdf7bc475c2f813bb6
| 41,099 |
import re
def replace_initials(s):
"""
For a string s, find all occurrences of A. B. etc and replace them with A B etc
:param s:
:return: string with replacements made
"""
def repl_function(m):
"""
Helper function for re.sub
"""
return m.group(0)[0]
t = re.sub('[A-Z]\.', repl_function, s)
return t
|
da08a0d154e683b9e3ffa4ebd1332a8a855b05be
| 41,100 |
def me_check(pr, fa, ma, ref_count=False):
"""
Simplest possible way to check ME
-1 for skipped sites ('.' or hom-ref in all samples
0 for consistent
1 for inconsistent
"""
pr = pr.split(':')[0].split('/')
fa = fa.split(':')[0].split('/')
ma = ma.split(':')[0].split('/')
if '.' in pr + fa + ma:
return -1
null = ["0", "0"]
if not ref_count and pr == null and fa == null and ma == null:
return -1
if pr[0] in fa and pr[1] in ma:
return 0
if pr[1] in fa and pr[0] in ma:
return 0
return 1
|
c133b42140c36c1ad5dcffa252dc939048493e6f
| 41,101 |
def get_model_queue_data(job):
"""
Formats the queued model data to return to the server
:return: [(id:int, model_id:int, title:str, progress:int, max_progress:int), ...]
"""
return (job.get_id(), job.get_info().get("model_id"), job.get_title(), job.get_progress(), job.get_max_progress())
|
07aad5c6c5b20b66a4cad585069739b058b96d44
| 41,102 |
import random
def roll_unweighted_die(weights=None):
"""Returns the result of an unweighted die.
This uses a fair
Args:
weights: (integer array) a collection of the percentage chances each
result of the die has. The number of sides is determined by
the number of provided weights, and the sum of the weights
must be 1.0 (100%)
Raises:
ValueError: Provided weights did not add up to 1 (100%)
"""
if weights is None or sum(weights) != 1:
raise ValueError('Weight (%s) do not add to 1.0' % (weights))
# Roll the die
fair_roll = random.random()
# Which range did the selected value fall into?
res = 0
for weight in weights:
res = res + 1
if fair_roll <= weight:
return res
# If weights are [0.3, 0.2, 0.5], and 0.45 is rolled, removing the
# weight from the roll allows us to compare it to that section the
# range, compared to the previous possible values
fair_roll -= weight
# This can happen because of floating point inaccuracies. Just use the
# last value if we leave the loop
return res
|
34a8502677b21b59c380bf7fa62eab8aac67959a
| 41,108 |
import hashlib
def md5checksum(afilepath):
""" md5checksum
Calculates the MD5 checksum for afilepath
"""
with open(afilepath, 'rb') as filehandler:
calc_md5 = hashlib.md5()
while True:
data = filehandler.read(8192)
if not data:
break
calc_md5.update(data)
return calc_md5.hexdigest()
|
d8d4711e4657514672e455a3374e3ec400636259
| 41,109 |
def move_to_end(x, dim):
"""
Moves a specified dimension to the end.
"""
N = len(x.shape)
if dim < 0:
dim = N + dim
permute_indices = list(range(N))
permute_indices.remove(dim)
permute_indices.append(dim)
return x.permute(permute_indices)
|
dad4bbceb2c6e5519afee2a3d94e5b06cec222bb
| 41,112 |
def _find_t(e, annotations):
"""
Given an "E" annotation from an .ann file, find the "T" annotation.
Because "E" annotations can be nested, the search should be done on deeper
levels.
:param e: (string) the "E" annotation we want to find the target of.
:param annotations: (dict) the dict of annotations.
:return: the keys of "T" annotations this e annotation points to.
"""
e = e.split()
keys = []
if len(e) > 1:
targetkeys = [y for y in [x.split(":")[1] for x in e[1:]]]
for key in targetkeys:
if key[0] == "E":
keys.append(annotations['E'][key[1:]].split()[0].split(":")[1])
if key[0] == "T":
keys.append(key)
return keys
|
b10c097ed98548d6a51447e3dd23140deef44818
| 41,117 |
def screenRegion(gfx, region=(0.0, 0.0, 1.0, 1.0)):
"""(gfx, 4-tuple of floats) -> (4-tuple of ints)
Determine the absolute coordinates of a screen region from its
relative coordinates (coordinates from 0.0 to 1.0)
"""
w, h = gfx.getSize()
x1 = (w - 1) * region[0]
y1 = (h - 1) * region[1]
x2 = (w - 1) * region[2]
y2 = (h - 1) * region[3]
if type(w) == type(1):
x1 = int(x1 + 0.5)
y1 = int(y1 + 0.5)
x2 = int(x2 + 0.5)
y2 = int(y2 + 0.5)
return (x1, y1, x2, y2)
|
35ef5e208bc1cd6279adaf2fef6b7dfc74830dfe
| 41,119 |
def split(iterable, function):
"""
Split an iterable into two lists according to test function
:param iterable iterable: iterable of values to be split
:param function function: decision function ``value => bool``
:returns: tuple(
list with values for which function is `True`,
list with values for which function is `False`,)
Example
_______
>>> split([1,2,3,4,5,6], lambda x: x<3)
([1, 2], [3, 4, 5, 6])
"""
match = []
unmatch = []
for value in iterable:
if function(value):
match.append(value)
else:
unmatch.append(value)
return match, unmatch
|
ede20fcc80bd126410a8417d1e91dee2e530c9af
| 41,121 |
def split_dictionary(output_dict):
"""Splits a dictionary into two lists for IDs and its full file paths
Parameters
----------
output_dict : dictionary
A dictionary with keys: 'id_llamado' and 'fullpath'
Returns
-------
Two lists
Two lists of 'id_llamado' and 'fullpath'
"""
id_llamado = output_dict['id_llamado']
filenames = output_dict['fullpath']
return filenames, id_llamado
|
33958b60a0e7ca02595c688b1cf7642b6d8a56cb
| 41,125 |
def get_content(html_code):
""" Separates the message section from the content section and returns the for further process
:parameters
html_code (str) html code of the downloaded
:returns
tuple (lists) the tuple returned contains two lists of strings. Each list item is a line
"""
message_list, content_list = [], []
for line in html_code.split('\n'):
if line.startswith('#') and not line.endswith('#'):
message_list.append(line)
elif not line.endswith('#'):
content_list.append(line)
return message_list, content_list
|
debaab77f55d9328cd037d6fffc51c8a7f67758a
| 41,130 |
def read_words_from_file(path):
"""
Reads the content of a file and returns the content, split by space-character.
:param path: The path of the file.
:return: A list of words in this file.
"""
file_obj = open(path, "r")
content = file_obj.read()
return content.split(" ")
|
960ff1d54b0c37211fc06879a74124ff2e60872a
| 41,132 |
def should_trade(strategy, date, previous_trade_date):
"""Determines whether a trade is happening for the strategy."""
# We invest the whole value, so we can only trade once a day.
if (previous_trade_date and
previous_trade_date.replace(hour=0, minute=0, second=0) ==
date.replace(hour=0, minute=0, second=0)):
return False
# The strategy needs to be active.
if strategy["action"] == "hold":
return False
# We need to know the stock price.
if not strategy["price_at"] or not strategy["price_eod"]:
return False
return True
|
8c52eb554673bb0badff4a55c8e3a11cf9392a47
| 41,140 |
import random
def form_batches(batch_size, idx):
"""Shuffles idx list into minibatches each of size batch_size"""
idxs = [i for i in idx]
random.shuffle(idxs)
return [idxs[i:(i+batch_size)] for i in range(0,len(idxs),batch_size)]
|
2afdc93202f553b29a8f4c68dcf6e226816d9de0
| 41,145 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.