content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def double_middle_drop(progress):
"""
Returns a linear value with two drops near the middle to a constant value for the Scheduler
:param progress: (float) Current progress status (in [0, 1])
:return: (float) if 0.75 <= 1 - p: 1 - p, if 0.25 <= 1 - p < 0.75: 0.75, if 1 - p < 0.25: 0.125
"""
eps1 = 0.75
eps2 = 0.25
if 1 - progress < eps1:
if 1 - progress < eps2:
return eps2 * 0.5
return eps1 * 0.1
return 1 - progress
|
bfdf14ac75e63b88160f6c511d26c76031f9c663
| 41,453 |
def split_info_from_job_url(BASE_URL, job_rel_url):
"""
Split the job_rel_url to get the separated info and
create a full URL by combining the BASE_URL and the job_rel_url
:params:
job_rel_url str: contain the Relative Job URL
:returns:
job_id str: the unique id contained in the job_rel_url
job_name str: the name of the job
job_full_url str: full URL of the job ads
"""
splitted_url = [i for i in job_rel_url.split("/") if i]
# The first element of the list is 'job' as the structure
# of the string is like this:
# /job/BJR877/assistant-professor-associate-professor-full-professor-in-computational-environmental-sciences-and-engineering/
if len(splitted_url) != 3:
raise
job_id = splitted_url[1]
job_name = splitted_url[2]
job_full_url = BASE_URL + job_rel_url
return job_id, job_name, job_full_url
|
276db11041c18a1675ca10b9581a898787b11321
| 41,457 |
def get_long_id(list_session_id):
"""Extract longitudinal ID from a set of session IDs.
This will create a unique identifier for a participant and its corresponding sessions. Sessions labels are sorted
alphabetically before being merged in order to generate the longitudinal ID.
Args:
list_session_id (list[str]): List of session IDs
(e.g. ["ses-M00"] or ["ses-M00", "ses-M18", "ses-M36"])
Returns:
Longitudinal ID (str)
Example:
>>> from clinica.utils.longitudinal import get_long_id
>>> get_long_id(['ses-M00'])
'long-M00'
>>> get_long_id(['ses-M00', 'ses-M18', 'ses-M36'])
'long-M00M18M36'
>>> get_long_id(['ses-M18', 'ses-M36', 'ses-M00']) # Session IDs do not need to be sorted
'long-M00M18M36'
"""
sorted_list = sorted(list_session_id)
list_session_label = [session_id[4:] for session_id in sorted_list]
long_id = "long-" + "".join(list_session_label)
return long_id
|
f5b0ffa6fe75c9059453d0a2d32456dd88da2a16
| 41,460 |
def get_attrname(name):
"""Return the mangled name of the attribute's underlying storage."""
return '_obj_' + name
|
02d7983a02f7a112479d6289ab1a4ddcb8a104a7
| 41,468 |
def extract_valid_libs(filepath):
"""Evaluate syslibs_configure.bzl, return the VALID_LIBS set from that file."""
# Stub only
def repository_rule(**kwargs): # pylint: disable=unused-variable
del kwargs
# Populates VALID_LIBS
with open(filepath, 'r') as f:
f_globals = {'repository_rule': repository_rule}
f_locals = {}
exec(f.read(), f_globals, f_locals) # pylint: disable=exec-used
return set(f_locals['VALID_LIBS'])
|
e8e9b60dcd86e6216b7d3d321a079da09efa19e8
| 41,475 |
import itertools
def normalise_environment(key_values):
"""Converts denormalised dict of (string -> string) pairs, where the first string
is treated as a path into a nested list/dictionary structure
{
"FOO__1__BAR": "setting-1",
"FOO__1__BAZ": "setting-2",
"FOO__2__FOO": "setting-3",
"FOO__2__BAR": "setting-4",
"FIZZ": "setting-5",
}
to the nested structure that this represents
{
"FOO": [{
"BAR": "setting-1",
"BAZ": "setting-2",
}, {
"BAR": "setting-3",
"BAZ": "setting-4",
}],
"FIZZ": "setting-5",
}
If all the keys for that level parse as integers, then it's treated as a list
with the actual keys only used for sorting
This function is recursive, but it would be extremely difficult to hit a stack
limit, and this function would typically by called once at the start of a
program, so efficiency isn't too much of a concern.
"""
# Separator is chosen to
# - show the structure of variables fairly easily;
# - avoid problems, since underscores are usual in environment variables
separator = "__"
def get_first_component(key):
return key.split(separator)[0]
def get_later_components(key):
return separator.join(key.split(separator)[1:])
without_more_components = {
key: value for key, value in key_values.items() if not get_later_components(key)
}
with_more_components = {
key: value for key, value in key_values.items() if get_later_components(key)
}
def grouped_by_first_component(items):
def by_first_component(item):
return get_first_component(item[0])
# groupby requires the items to be sorted by the grouping key
return itertools.groupby(sorted(items, key=by_first_component), by_first_component)
def items_with_first_component(items, first_component):
return {
get_later_components(key): value
for key, value in items
if get_first_component(key) == first_component
}
nested_structured_dict = {
**without_more_components,
**{
first_component: normalise_environment(
items_with_first_component(items, first_component)
)
for first_component, items in grouped_by_first_component(with_more_components.items())
},
}
def all_keys_are_ints():
def is_int(string_to_test):
try:
int(string_to_test)
return True
except ValueError:
return False
# pylint: disable=use-a-generator
return all([is_int(key) for key, value in nested_structured_dict.items()])
def list_sorted_by_int_key():
return [
value
for key, value in sorted(
nested_structured_dict.items(), key=lambda key_value: int(key_value[0])
)
]
return list_sorted_by_int_key() if all_keys_are_ints() else nested_structured_dict
|
b8670458415404d673e530b0a6e15c9a050ea4ca
| 41,476 |
def create_commit(mutations):
"""A fake Datastore commit method that writes the mutations to a list.
Args:
mutations: A list to write mutations to.
Returns:
A fake Datastore commit method
"""
def commit(req):
for mutation in req.mutations:
mutations.append(mutation)
return commit
|
dc7cfa4c3f79076c2b67e3261058ab5d55e1f189
| 41,478 |
def is_paired(input_string:str):
"""
Determine that any and all pairs are matched and nested correctly.
:param input_string str - The input to check
:return bool - If they are matched and nested or not.
"""
stack = []
for char in input_string:
if char in ['[', '{', '(']:
stack.append(char)
elif char in [']', '}', ')']:
# Closing bracket with no open brackets.
if len(stack) == 0:
return False
element = stack.pop()
if element == '[' and char == ']':
continue
elif element == '{' and char == '}':
continue
elif element == '(' and char == ')':
continue
return False
return len(stack) == 0
|
040d79e471831d4444ffded490f39ed90247e39e
| 41,480 |
import random
def random_value_lookup(lookup):
"""Returns a object for a random key in the lookup."""
__, value = random.choice(list(lookup.items()))
return value
|
b1d7b3859cd9232df2a41505ee4f2bdfaa2607a4
| 41,484 |
def symbols(vma):
""" Obtain the atomic symbols for all atoms defined in the V-Matrix.
:param vma: V-Matrix
:type vma: automol V-Matrix data structure
:rtype: tuple(str)
"""
return tuple(zip(*vma))[0] if vma else ()
|
3f2a547e7ec0eb17e681ec2fe5de93057fdaa22a
| 41,491 |
import pickle
def decode_dict(dictionary):
"""Decodes binary dictionary to native dictionary
Args:
dictionary (binary): storage to decode
Returns:
dict: decoded dictionary
"""
decoded_dict = pickle.loads(dictionary)
return decoded_dict
|
158d7db725f1856c276f867bfea3482c3fbe283b
| 41,494 |
def form_fastqc_cmd_list(fastqc_fp, fastq_fp, outdir):
"""Generate argument list to be given as input to the fastqc function call.
Args:
fastqc_fp(str): the string representing path to fastqc program
fastq_fp(str): the string representing path to the fastq file to be evaluated
outdir(str): the string representing the path to the output directory
Return value:
call_args(list): the list of call_args representing the options for the fastqc subprocess call
Raises:
ValueError is raised when either the fastqc path or the fastqc input files are empty
"""
# throw exceptions to prevent user from accidentally using interactive fastqc
if fastqc_fp is '':
raise ValueError('fastqc_fp name is empty')
if fastq_fp is '':
raise ValueError('fastq_fp file name is empty')
# required arguments
call_args_list = [fastqc_fp, fastq_fp]
# direct output
if outdir is not None:
call_args_list.extend(["--outdir", outdir])
return call_args_list
|
ce0ed8eb7d35bdd2565f910bb982da710daa23c5
| 41,495 |
from datetime import datetime
def get_timestamp_utc() -> str:
"""Return current time as a formatted string."""
return datetime.utcnow().strftime("%Y-%m-%d-%H%M%S")
|
05a1cfeeda438a8f5f9857698cb2e97e4bb62e96
| 41,496 |
def rtd10(raw_value):
"""Convert platinum RTD output to degrees C.
The conversion is simply ``0.1 * raw_value``.
"""
return (float(raw_value) / 10.0, "degC")
|
5b44908c722ff8298cf2f4985f25e00e18f05d21
| 41,500 |
def reverse_list(l):
"""
return a list with the reverse order of l
"""
return l[::-1]
|
21bf60edf75a6016b01186efccdae9a8dd076343
| 41,503 |
import requests
def query_graphql(query, variables, token):
"""Query GitHub's GraphQL API with the given query and variables.
The response JSON always has a "data" key; its value is returned
as a dictionary."""
header = {"Authorization": f"token {token}"}
r = requests.post("https://api.github.com/graphql",
json={"query": query, "variables": variables}, headers=header)
r.raise_for_status()
return r.json()["data"]
|
72da627b5600973303ae4001bf3b07f738212f04
| 41,506 |
def get_passive_el(passive_coord, centroids):
""" Gets index of passive elements .
Args:
passive_coord (:obj:`tuple`): Region that the shape will not be changed.
centroids (:obj:`numpy.array`): Coordinate (x,y) of the centroid of each element.
Returns:
Index of passive elements.
"""
mask = (centroids[:, 0] >= passive_coord[0][0]) & (centroids[:, 0] <= passive_coord[0][1]) & (centroids[:, 1] >= passive_coord[1][0]) & (centroids[:, 1] <= passive_coord[1][1])
return (mask > 0).nonzero()[0]
|
9983ee9d730ced9f8ce56790c07af22c9dfcdb0d
| 41,507 |
def get_exposure_id(exposure):
"""Returns exposure id.
"""
expinf = exposure.getInfo()
visinf = expinf.getVisitInfo()
expid = visinf.getExposureId()
return expid
|
a269a08cd62b629d65db803d92d6e6356b76feab
| 41,508 |
import re
def escapeRegex(text):
"""
Escape string to use it in a regular expression:
prefix special characters « ^.+*?{}[]|()\$ » by an antislash.
"""
return re.sub(r"([][^.+*?{}|()\\$])", r"\\\1", text)
|
97f13b05996daf2a7d01ade0e428244bed156af4
| 41,509 |
def none(active):
"""No tapering window.
Parameters
----------
active : array_like, dtype=bool
A boolean array containing ``True`` for active loudspeakers.
Returns
-------
type(active)
The input, unchanged.
Examples
--------
.. plot::
:context: close-figs
plt.plot(sfs.tapering.none(active1))
plt.axis([-3, 103, -0.1, 1.1])
.. plot::
:context: close-figs
plt.plot(sfs.tapering.none(active2))
plt.axis([-3, 103, -0.1, 1.1])
"""
return active
|
e323f7e153049a4f663688d7bee4b73bd8dd1ca9
| 41,513 |
import re
def get_sandwich(seq, aa="FYW"):
"""
Add sandwich counts based on aromatics.
Parameters:
seq: str, peptide sequence
aa: str,
amino acids to check fo rsandwiches. Def:FYW
"""
# count sandwich patterns between all aromatic aminocds and do not
# distinguish between WxY and WxW.
pattern = re.compile(r"(?=([" + aa + "][^" + aa + "][" + aa + "]))")
return len(re.findall(pattern, seq))
|
d8df68a1873d3912aa64fc91563aae9827da324c
| 41,514 |
def is_param_free(expr) -> bool:
"""Returns true if expression is not parametrized."""
return not expr.parameters()
|
e9dadcaae0c9c0cdcffe1afe5202925d98c6b4fb
| 41,519 |
def null_count(df):
"""
Returns the number of null values in the input DataFrame
"""
return df.isna().sum().sum()
|
d92582292a01412df3433cfaa69ec68a92057301
| 41,522 |
def get_armstrong_value(num):
"""Return Armstrong value of a number, this is the sum of n**k
for each digit, where k is the length of the numeral.
I.e 54 -> 5**2 + 4**2 -> 41.
Related to narcisstic numbers and pluperfect digital invariants.
"""
num = str(num)
length = len(num)
armstrong_value = 0
for char in num:
armstrong_value += int(char)**length
return armstrong_value
|
fd0692566ab0beffb785c1ac4fbd4aa27893cfbf
| 41,523 |
import re
def convert_bert_word(word):
"""
Convert bert token to regular word.
"""
return re.sub("##|\[SEP\]|\[CLS\]", "", word)
|
f7f7d95fd7fd90b55a104ce13e10b08f6ae0c9f0
| 41,526 |
def cleanly_separate_key_values(line):
"""Find the delimiter that separates key from value.
Splitting with .split() often yields inaccurate results
as some values have the same delimiter value ':', splitting
the string too inaccurately.
"""
index = line.find(':')
key = line[:index]
value = line[index + 1:]
return key, value
|
d790f6bca2b52ee87bce01467a561901ba08655d
| 41,527 |
def batch(tensor, batch_size = 50):
""" It is used to create batch samples, each batch has batch_size samples"""
tensor_list = []
length = tensor.shape[0]
i = 0
while True:
if (i+1) * batch_size >= length:
tensor_list.append(tensor[i * batch_size: length])
return tensor_list
tensor_list.append(tensor[i * batch_size: (i+1) * batch_size])
i += 1
|
2b4b10520fd72b90ebe1239b7f52e61ba442484d
| 41,528 |
def mse(predictions, targets):
"""Compute mean squared error"""
return ((predictions - targets) ** 2).mean()
|
516c8767731577db36dc4b503c179c034fca1166
| 41,531 |
def _command(register_offset, port_number, register_type):
"""Return the command register value corresponding to the register type for a given port number and register offset."""
return (register_offset * register_type) + port_number
|
d09815a2451e86448e0da280c8b037b59cfbd87b
| 41,532 |
import math
def myceil(x, base=10):
"""
Returns the upper-bound integer of 'x' in base 'base'.
Parameters
----------
x: float
number to be approximated to closest number to 'base'
base: float
base used to calculate the closest 'largest' number
Returns
-------
n_high: float
Closest float number to 'x', i.e. upper-bound float.
Example
-------
>>>> myceil(12,10)
20
>>>>
>>>> myceil(12.05, 0.1)
12.10000
"""
n_high = float(base*math.ceil(float(x)/base))
return n_high
|
6e52b99755cdd25b882f707c54c3ff27f8ff279e
| 41,537 |
def get_branch_name(ref):
"""
Take a full git ref name and return a more simple branch name.
e.g. `refs/heads/demo/dude` -> `demo/dude`
:param ref: the git head ref sent by GitHub
:return: str the simple branch name
"""
refs_prefix = 'refs/heads/'
if ref.startswith(refs_prefix):
# ref is in the form "refs/heads/master"
ref = ref[len(refs_prefix):]
return ref
|
bb7e791c6dac430fef9a38f8933879782b943fd1
| 41,542 |
def stdin(sys_stdin):
"""
Imports standard input.
"""
return [int(x.strip()) for x in sys_stdin]
|
54964452384ae54961472328e603066f69391957
| 41,546 |
from typing import Tuple
def parse_interval(interval: str) -> Tuple[str, str, str]:
"""
Split the interval in three elements. They are, start time of the working day,
end time of the working day, and the abbreviation of the day.
:param interval: A str that depicts the day, start time and end time
in one string. Ex.: 'SA14:00-18:00'
:return: A tuple with three strings. Ex.: ('SA', '14:00', '18:00')
"""
interval_parsed = interval.split('-')
day = interval_parsed[0][:2] # SU
initial_hour = interval_parsed[0][2:] # '19:00'
end_hour = interval_parsed[1] # '21:00'
return day, initial_hour, end_hour
|
f2bac53a1b56e1f6371187743170646c08109a27
| 41,547 |
def surrogate_loss(policy, all_obs, all_actions, all_adv, old_dist):
"""
Compute the loss of policy evaluated at current parameter
given the observation, action, and advantage value
Parameters
----------
policy (nn.Module):
all_obs (Variable):
all_actions (Variable):
all_adv (Variable):
old_dist (dict): The dict of means and log_stds Variables of
collected samples
Returns
-------
surr_loss (Variable): The surrogate loss function wrapped in
Variable
"""
new_dist = policy.get_policy_distribution(all_obs)
old_dist = policy.distribution(old_dist)
ratio = new_dist.likelihood_ratio(old_dist, all_actions)
surr_loss = -(ratio * all_adv).mean()
return surr_loss
|
26e0f53e91a9537a4b9d0bfc3a3122dbe4917fc2
| 41,550 |
def _get_zero_one_knapsack_matrix(total_weight: int, n: int) -> list:
"""Returns a matrix for a dynamic programming solution to the 0/1 knapsack
problem.
The first row of this matrix contains the numbers corresponding to the
weights of the (sub)problems. The first column contains an enumeration of
the items, starting from the fact that we could not include any item, and
this is represented with a 0.
m[0][0] is 0 just because of the alignment, it does make any logical sense
for this purpose, it could be None, or any other value."""
m = [[0 for _ in range(total_weight + 2)] for _ in range(n + 2)]
for x in range(1, total_weight + 2):
m[0][x] = x - 1
for j in range(1, n + 2):
m[j][0] = j - 1
m[j][1] = 0
return m
|
bc96eb43f487b6ad20b143c177474ba04afc2319
| 41,551 |
def read_atom_file(file):
"""Read file with atoms label
Args:
file (str): Name of file with atoms labels
Returns:
list: atoms labeled as <Residue Name> <Atom Name>
"""
atoms = [line.rstrip('\n').split() for line in open(file, "r")]
atoms = [[a[0] + " " + aa for aa in a[1::]] for a in atoms]
return atoms
|
3d85dff55f7165d1c9b747eb75d395ec03f5b3ce
| 41,554 |
def combine_bolds(graph_text):
"""
Make ID marker bold and remove redundant bold markup between bold elements.
"""
if graph_text.startswith("("):
graph_text = (
graph_text.replace(" ", " ")
.replace("(", "**(", 1)
.replace(")", ")**", 1)
.replace("** **", " ", 1)
)
return graph_text
|
b87afc51de6bb1e83c0f8528773e50f5d797fe2d
| 41,555 |
def format_id(kepler_id):
"""Formats the id to be a zero padded integer with a length of 9 characters.
No ID is greater than 9 digits and this function will throw a ValueError
if such an integer is given.
:kepler_id: The Kepler ID as an integer.
:returns: A 0 padded formatted string of length 9.
"""
return f'{kepler_id:09d}'
|
427726b825f6ee1c4a20c07d098a3a063c18a0c1
| 41,556 |
def rev_comp(s):
"""A simple reverse complement implementation working on strings
Args:
s (string): a DNA sequence (IUPAC, can be ambiguous)
Returns:
list: reverse complement of the input sequence
"""
bases = {
"a": "t", "c": "g", "g": "c", "t": "a", "y": "r", "r": "y", "w": "w",
"s": "s", "k": "m", "m": "k", "n": "n", "b": "v", "v": "b", "d": "h",
"h": "d", "A": "T", "C": "G", "G": "C", "T": "A", "Y": "R", "R": "Y",
"W": "W", "S": "S", "K": "M", "M": "K", "N": "N", "B": "V", "V": "B",
"D": "H", "H": "D"}
sequence = list(s)
complement = "".join([bases[b] for b in sequence])
reverse_complement = complement[::-1]
return reverse_complement
|
3fd61300016da5e8546f0c00303a8477af79902f
| 41,559 |
def sumIO(io_list, pos, end_time):
"""
Given io_list = [(timestamp, byte_count), ...], sorted by timestamp
pos is an index in io_list
end_time is either a timestamp or None
Find end_index, where io_list[end_index] is the index of the first entry in
io_list such that timestamp > end_time.
Sum the byte_count values in io_list from [pos..end_index).
Return (sum_byte_count, end_index).
"""
sum_byte_count = 0
# print(f'sum to {end_time}')
while pos < len(io_list) and io_list[pos][0] <= end_time:
# print(f' {pos}')
sum_byte_count += io_list[pos][1]
pos += 1
return (sum_byte_count, pos)
|
a6b36148e05ac57f599bc6c68ffac242020dc65f
| 41,561 |
def is_child_class(target, base):
""" Check if the target type is a subclass of the base type and not base type itself """
return issubclass(target, base) and target is not base
|
731c551149f94401a358b510aa124ee0cba6d0bd
| 41,567 |
def get_pyramid_single(xyz):
"""Determine to which out of six pyramids in the cube a (x, y, z)
coordinate belongs.
Parameters
----------
xyz : numpy.ndarray
1D array (x, y, z) of 64-bit floats.
Returns
-------
pyramid : int
Which pyramid `xyz` belongs to as a 64-bit integer.
Notes
-----
This function is optimized with Numba, so care must be taken with
array shapes and data types.
"""
x, y, z = xyz
x_abs, y_abs, z_abs = abs(x), abs(y), abs(z)
if (x_abs <= z) and (y_abs <= z): # Top
return 1
elif (x_abs <= -z) and (y_abs <= -z): # Bottom
return 2
elif (z_abs <= x) and (y_abs <= x): # Front
return 3
elif (z_abs <= -x) and (y_abs <= -x): # Back
return 4
elif (x_abs <= y) and (z_abs <= y): # Right
return 5
else: # (x_abs <= -y) and (z_abs <= -y) # Left
return 6
|
8fe2fbc727f13adf242094c3b0db3805af31a1e9
| 41,569 |
import copy
def get_midpoint_radius(pos):
"""Return the midpoint and radius of the hex maze as a tuple (x,y), radius.
Params
======
pos: PositionArray
nelpy PositionArray containing the trajectory data.
Returns
=======
midpoint: (x0, y0)
radius: float
"""
# make a local copy of the trajectory data
local_pos = copy.copy(pos)
# merge the underlyng support to make computations easier
local_pos._support = pos.support.merge(gap=10)
# apply smoothing to tame some outliers:
local_pos = local_pos.smooth(sigma=0.02)
midpoint = local_pos.min() + (local_pos.max() - local_pos.min())/2
radius = ((local_pos.max() - local_pos.min())/2).mean()
return midpoint, radius
|
76290309f12e00b6a487f71b2393fabd8f3944ac
| 41,570 |
from pathlib import Path
from typing import Tuple
from typing import List
def listdir_grouped(root: Path, ignore_folders=[], include_hidden=False) -> Tuple[List, List]:
"""Dizindeki dosya ve dizinleri sıralı olarak listeler
Arguments:
root {Path} -- Listenelecek dizin
Keyword Arguments:
ignore_folders {list} -- Atlanılacak yollar (default: {[]})
include_hidden {bool} -- Gizli dosyaları dahil etme (default: {False})
Returns:
tuple -- dizin, dosya listesi
Examples:
>>> dirs, files = listdir_grouped(".")
"""
if isinstance(root, str):
root = Path(root)
paths = [x for x in root.iterdir()]
dirs, files = [], []
for path in paths:
condition = not include_hidden and path.name.startswith('.')
condition = condition and path.name not in ignore_folders
condition = not condition
if condition:
dirs.append(path) if path.is_dir() else files.append(path)
dirs.sort()
files.sort()
return dirs, files
|
13d2ea09cafd3b4062714cbf151c0a4b290616e1
| 41,574 |
from typing import Optional
from typing import List
def _with_config_file_cmd(config_file: Optional[str], cmd: List[str]):
""" Prefixes `cmd` with ["--config-file", config_file] if
config_file is not None """
return (["--config-file", config_file] if config_file else []) + cmd
|
a7a93f2b089e4265a22fb7fd0ccced1e78e1c55c
| 41,575 |
def _clip_points(gdf, poly):
"""Clip point geometry to the polygon extent.
Clip an input point GeoDataFrame to the polygon extent of the poly
parameter. Points that intersect the poly geometry are extracted with
associated attributes and returned.
Parameters
----------
gdf : GeoDataFrame, GeoSeries
Composed of point geometry that will be clipped to the poly.
poly : (Multi)Polygon
Reference geometry used to spatially clip the data.
Returns
-------
GeoDataFrame
The returned GeoDataFrame is a subset of gdf that intersects
with poly.
"""
return gdf.iloc[gdf.sindex.query(poly, predicate="intersects")]
|
c7f21807d28f37044a4f36f4ededce26defbb837
| 41,578 |
import re
def get_relval_id(file):
"""Returns unique relval ID (dataset name) for a given file."""
dataset_name = re.findall('R\d{9}__([\w\d]*)__CMSSW_', file)
return dataset_name[0]
|
5b3369920ae86d7c4e9ce73e1104f6b05779c6d4
| 41,584 |
def splitdrive(path):
"""Split a pathname into drive and path specifiers.
Returns a 2-tuple "(drive,path)"; either part may be empty.
"""
# Algorithm based on CPython's ntpath.splitdrive and ntpath.isabs.
if path[1:2] == ':' and path[0].lower() in 'abcdefghijklmnopqrstuvwxyz' \
and (path[2:] == '' or path[2] in '/\\'):
return path[:2], path[2:]
return '', path
|
ed50877516130669cfe0c31cd8a6d5085a83e7c6
| 41,586 |
import re
def safe_filename(url):
"""
Sanitize input to be safely used as the basename of a local file.
"""
ret = re.sub(r'[^A-Za-z0-9]+', '.', url)
ret = re.sub(r'^\.*', '', ret)
ret = re.sub(r'\.\.*', '.', ret)
# print('safe filename: %s -> %s' % (url, ret))
return ret
|
4f43984c35678e9b42e2a9294b5ee5dc8c766ac6
| 41,588 |
async def combine_channel_ids(ctx):
"""Combines all channel IDs.
Called by `channel_setter` and `channel_deleter`.
Args:
ctx (discord.ext.commands.Context): context of the message
Returns:
list of int: of Discord channel IDs
"""
channels = []
if not ctx.message.channel_mentions:
channels.append(ctx.channel.id)
else:
for channel_mention in ctx.message.channel_mentions:
channels.append(str(channel_mention.id))
return channels
|
1351faa7e49ce026d4da04c2c8886b62a5f294c3
| 41,589 |
def get_role_arn(iam, role_name):
"""Gets the ARN of role"""
response = iam.get_role(RoleName=role_name)
return response['Role']['Arn']
|
ab6ed4fa7fd760cd6f5636e77e0d1a55372909a8
| 41,590 |
import logging
def get_logger(name: str, level: int = logging.INFO) -> logging.Logger:
"""
Creates a logger with the given attributes and a standard formatter format.
:param name: Name of the logger.
:param level: Logging level used by the logger.
:return: The newly or previously created Logger object.
"""
logger = logging.getLogger(name)
logger.setLevel(level)
# Simple check that prevents a logger from having more than one formatter when using the method.
if len(logger.handlers) == 0:
ch = logging.StreamHandler()
ch.setLevel(level)
formatter = logging.Formatter("%(asctime)s - %(levelname).3s - %(name)s > %(message)s")
formatter.datefmt = "%Y/%m/%d %I:%M:%S"
ch.setFormatter(formatter)
logger.addHandler(ch)
return logger
|
7348e1775d236e34e25d9810d71db59a7faff88e
| 41,594 |
def gera_estados(quantidade_estados: int) -> list:
"""
Recebe uma quantidade e retorna uma lista com nomes de estados
"""
estados: list = []
for i in range(quantidade_estados):
estados.append('q'+str(i))
return estados
|
555ff4821626121b4e32d85acfa1f2ef2a7b08bb
| 41,596 |
def valid_cards_syntax(cards_str):
""" Confirm that only numeric values separated by periods was given as input """
cards = cards_str.split('.')
for c in cards:
if not c.isnumeric():
return 'Cards must contain only digits 0-9 separated by periods'
return None
|
8e3811505075269d2b1a37751c14017e107ce69b
| 41,597 |
def db_to_amplitude(amplitude_db: float, reference: float = 1e-6) -> float:
"""
Convert amplitude from decibel (dB) to volts.
Args:
amplitude_db: Amplitude in dB
reference: Reference amplitude. Defaults to 1 µV for dB(AE)
Returns:
Amplitude in volts
"""
return reference * 10 ** (amplitude_db / 20)
|
d1a2a4a1c82ad2d3083b86687670af37dafa8269
| 41,599 |
def simple_expand_spark(x):
""" Expand a semicolon separated strint to a list (ignoring empties)"""
if not x:
return []
return list(filter(None, x.split(";")))
|
1d4a9f8007f879c29770ea0ea8350a909b866788
| 41,602 |
def get_output_parameters_of_execute(taskFile):
"""Get the set of output parameters of an execute method within a program"""
# get the invocation of the execute method to extract the output parameters
invokeExecuteNode = taskFile.find('assign', recursive=True,
value=lambda value: value.type == 'atomtrailers'
and len(value.value) == 2
and value.value[0].value == 'execute')
# generation has to be aborted if retrieval of output parameters fails
if not invokeExecuteNode:
return None
# only one output parameter
if invokeExecuteNode.target.type == 'name':
return [invokeExecuteNode.target.value]
else:
# set of output parameters
return [parameter.value for parameter in invokeExecuteNode.target.value]
|
56ba0c1f1941a72174befc69646b4bdb6bc9e009
| 41,606 |
def split_addr(ip_port: tuple[str, int]) -> tuple[int, ...]:
"""Split ip address and port for sorting later.
Example
--------
>>> split_addr(('172.217.163.78', 80))
>>> (172, 217, 163, 78, 80)
"""
split = [int(i) for i in ip_port[0].split(".")]
split.append(ip_port[1])
return tuple(split)
|
d768e493d9bdfe07923927c7d157683515c52d7d
| 41,610 |
def is_set(bb, bit):
""" Is bit a position `bit` set? """
return (bb & 1 << bit) != 0
|
4990ccb7eb796da8141bf2b3aec7741addfe2a0c
| 41,611 |
def redirect(status, location, start_response):
"""
Return a redirect code. This function does not set any cookie.
Args:
status (str): code and verbal representation (e.g. `302 Found`)
location (str): the location the client should be redirected to (a URL)
start_response: the start_response() callable
Returns:
list: an empty list
"""
response_headers = [("location", location)]
start_response(status, response_headers)
return []
|
7fb5569d5872be69285a29c404b04df7ff7eef74
| 41,612 |
def count_att(data, column, value):
"""
:param data: Pandas DataFrame
:param column: specific column in the dataset
:param value: which value in the column should be counted
:return: probability of (value) to show in (column), included Laplacian correction
"""
dataset_len = len(data)
try: # if (value) not been found then return laplacian calculation to preserve the probability
p = data[column].value_counts()[value] / dataset_len
if p == 0:
p = 1 / (dataset_len + len(data[column].value_counts()))
return p
except KeyError:
return 1 / (dataset_len + len(data[column].value_counts()))
|
4dd11d02257ab2a5ac7fcc0f366de0286cdc84f7
| 41,615 |
def null_getter(d, fld, default="-"):
"""
Return value if not falsy else default value
"""
return d.get(fld, default) or default
|
7970045e766c60e96bca005f86d214e21762f55c
| 41,625 |
def get_list_string(data: list, delim: str = '\t', fmt: str = '{}') -> str:
"""Converts a 1D data array into a [a0, a1, a2,..., an] formatted string."""
result = "["
first = True
for i in data:
if not first:
result += delim + " "
else:
first = False
result += fmt.format(i)
result += "]"
return result
|
25e9bb0e0220776ff79e121bab3bddf99168602d
| 41,631 |
def mbar2kPa(mbar: float) -> float:
"""Utility function to convert from millibars to kPa."""
return mbar/10
|
9dcb74581fb099da0d136aad57de1c8ac3cf7c1d
| 41,632 |
import re
def prep_for_search(string):
"""
Expects a string. Encodes strings in a search-friendy format,
lowering and replacing spaces with "+"
"""
string = re.sub('[^A-Za-z0-9 ]+', '', string).lower()
string = string.replace(" ", "+")
return string
|
61a6762598fe3538b2d2e2328bc77de53fba4d74
| 41,638 |
def get_default_query_ids(source_id, model):
"""
Returns set of Strings, representing source_id's default queries
Keyword Parameters:
source_id -- String, representing API ID of the selection source
model -- Dict, representing current DWSupport configuration
>>> from copy import deepcopy
>>> no_query_model = { 'queries': []
... ,'associations': []
... ,'tables': [{'name': 'foo_fact', 'type': 'fact'}]
... ,'variables': [ { 'table': 'foo_fact'
... ,'column': 'foo_ml'}]
... ,'variable_custom_identifiers': []}
>>> source = 'my_example.foo_fact'
>>> # Check unspecified 'defaults' on a source without 'queries'
>>> empty_defaults = []
>>> get_default_query_ids(source, no_query_model)
set()
>>> # Check a source with a 'query'
>>> test_model = { 'queries': [{ 'table': 'foo_fact', 'name': 'core'
... ,'variables': {'foo_fact': ['foo_ml']}
... }]
... ,'associations': []
... ,'tables': [{'name': 'foo_fact', 'type': 'fact'}]
... ,'variables': [ { 'table': 'foo_fact'
... ,'column': 'foo_ml'}
... ,{ 'table': 'foo_fact'
... ,'column': 'foo_operation_code'}]
... ,'variable_custom_identifiers': []}
>>> get_default_query_ids(source, test_model)
{'core'}
>>> # Check a source with multiple 'queries'
>>> multiple_query_model = deepcopy(test_model)
>>> multiple_query_model['queries'].append({
... 'table': 'foo_fact'
... ,'name': 'everything'
... ,'variables': {
... 'foo_fact': [
... 'foo_ml'
... ,'foo_operation_code']}
... })
>>> defaults_output = get_default_query_ids(source, multiple_query_model)
>>> defaults_output == {'core', 'everything'}
True
"""
defaults = set()
source_project, source_table_name = source_id.split('.')
for query in model['queries']:
if query['table'] == source_table_name: #add it
set_of_one_identifier_name_to_add = {query['name']}
defaults.update(set_of_one_identifier_name_to_add)
return defaults
|
766b69d32433d586dc086eec7ee1c27c312b7724
| 41,644 |
import aiohttp
from typing import List
from typing import Tuple
async def get_html_blog(
session: aiohttp.ClientSession,
url: str,
contests: List[int],
) -> Tuple[str, str, List[int]]:
"""Get html from a blog url.
Args:
session (aiohttp.ClientSession) : session
url (str) : blog url
contests (List[int]) : list of contests
Returns:
Tuple[str, str, List[int]] : url, html, contests list
"""
async with session.get(url) as resp:
return url, await resp.text(), contests
|
1e0a0a573f1733370a1a59f37ca39a5cd0a5bb9c
| 41,650 |
def query_string_to_kwargs(query_string: str) -> dict:
"""
Converts URL query string to keyword arguments.
Args:
query_string (str): URL query string
Returns:
dict: Generated keyword arguments
"""
key_value_pairs = query_string[1:].split("&")
output = {}
for key_value_pair in key_value_pairs:
if "=" in key_value_pair:
key, value = key_value_pair.split("=")
if value == "None":
value = None
else:
value = value.replace("+", " ")
output[key] = value
return output
|
9382d1c12cc2a534d9edbf183a3fcd3ea7b38968
| 41,651 |
import collections
def group_transcripts_by_name2(tx_iter):
"""Takes a iterable of GenePredTranscript objects and groups them by name2"""
r = collections.defaultdict(list)
for tx in tx_iter:
r[tx.name2].append(tx)
return r
|
a2fce0dfa8ba5e0b7321e977d1dbc8455ab6dfd1
| 41,653 |
def get_var_mode(prefix):
"""Returns False if { in prefix.
``prefix`` -- Prefix for the completion
Variable completion can be done in two ways and completion
depends on which way variable is written. Possible variable
complations are: $ and ${}. In last cursor is between
curly braces.
"""
return False if '{' in prefix else True
|
ab080ae0ea2bce0ce2b267a2e7be839a6a982fb2
| 41,655 |
def lol2str(doc):
"""Transforms a document in the list-of-lists format into
a block of text (str type)."""
return " ".join([word for sent in doc for word in sent])
|
61f58f715f1a923c368fb0643a1cf4d7eddefb73
| 41,657 |
import textwrap
def _pretty_longstring(defstr, prefix='', wrap_at=65):
"""
Helper function for pretty-printing a long string.
:param defstr: The string to be printed.
:type defstr: str
:return: A nicely formated string representation of the long string.
:rtype: str
"""
outstr = ""
for line in textwrap.fill(defstr, wrap_at).split('\n'):
outstr += prefix + line + '\n'
return outstr
|
19008289620b86b8760a36829cbaa97d117a8139
| 41,659 |
def kronecker(x, y):
"""
Returns 1 if x==y, and 0 otherwise.
Note that this should really only be used for integer expressions.
"""
if x == y:
return 1
return 0
|
d28e9c101f61e04445b4d87d91cc7919e1921714
| 41,661 |
def space_join(conllu,sentence_wise=False):
"""Takes conllu input and returns:
All tokens separated by space (if sentence_wise is False), OR
A list of sentences, each a space separated string of tokens
"""
lines = conllu.replace("\r","").strip().split("\n")
lines.append("") # Ensure last blank
just_text = []
sentences = []
length = 0
for line in lines:
if "\t" in line:
fields = line.split("\t")
if "." in fields[0]: # ellipsis tokens
continue
if "-" in fields[0]: # need to get super token and ignore next n tokens
just_text.append(fields[1])
start, end = fields[0].split("-")
start = int(start)
end = int(end)
length = end-start+1
else:
if length > 0:
length -= 1
continue
just_text.append(fields[1])
elif len(line.strip())==0 and sentence_wise: # New sentence
sent_text = " ".join(just_text)
sentences.append(sent_text)
just_text = []
if sentence_wise:
return sentences
else:
text = " ".join(just_text)
return text
|
e3e752906b57090f56c2678031f295c5a8e66f29
| 41,669 |
def cumsum(arr):
""" Cumulative sum. Start at zero. Exclude arr[-1]. """
return [sum(arr[:i]) for i in range(len(arr))]
|
b629695089e731855b47c8fb3e39be222aeba1db
| 41,670 |
def first(it):
"""Get the first element of an iterable."""
return next(iter(it))
|
535f9028d96e0e78bc310b4a8e75e558c9217172
| 41,671 |
from typing import Dict
import hashlib
import base64
def headers_sdc_artifact_upload(base_header: Dict[str, str], data: str):
"""
Create the right headers for sdc artifact upload.
Args:
base_header (Dict[str, str]): the base header to use
data (str): payload data used to create an md5 content header
Returns:
Dict[str, str]: the needed headers
"""
headers = base_header.copy()
headers["Accept"] = "application/json, text/plain, */*"
headers["Accept-Encoding"] = "gzip, deflate, br"
headers["Content-Type"] = "application/json; charset=UTF-8"
md5_content = hashlib.md5(data.encode('UTF-8')).hexdigest()
content = base64.b64encode(md5_content.encode('ascii')).decode('UTF-8')
headers["Content-MD5"] = content
return headers
|
6895fff6d1a26cfb8009a3fedd2dcc9357efbe40
| 41,674 |
def content_disposition_value(file_name):
"""Return the value of a Content-Disposition HTTP header."""
return 'attachment;filename="{}"'.format(file_name.replace('"', '_'))
|
9d7f50b95ab409013af39a08d02d6e7395abe545
| 41,676 |
def decode_dataset_id(dataset_id):
"""Decode a dataset ID encoded using `encode_dataset_id()`.
"""
dataset_id = list(dataset_id)
i = 0
while i < len(dataset_id):
if dataset_id[i] == '_':
if dataset_id[i + 1] == '_':
del dataset_id[i + 1]
else:
char_hex = dataset_id[i + 1:i + 3]
dataset_id[i + 1:i + 3] = []
char_hex = ''.join(char_hex)
dataset_id[i] = chr(int(char_hex, 16))
i += 1
return ''.join(dataset_id)
|
08b31b17f8bda58379e7541eaedb1d1a128e9777
| 41,679 |
def _add_tag(tags, label: str) -> bool:
"""Adds the tag to the repeated field of tags.
Args:
tags: Repeated field of Tags.
label: Label of the tag to add.
Returns:
True if the tag is added.
"""
for tag in tags:
if tag.label == label:
# Episode already has the tag.
return False
tags.add().label = label
return True
|
932399e97ae823ef0922929dc5123a587c06b211
| 41,680 |
def get_admin_net(neutron_client):
"""Return admin netowrk.
:param neutron_client: Authenticated neutronclient
:type neutron_client: neutronclient.Client object
:returns: Admin network object
:rtype: dict
"""
for net in neutron_client.list_networks()['networks']:
if net['name'].endswith('_admin_net'):
return net
|
bbb96a3da0967e74d9229537ca8afbcbfbd786e8
| 41,681 |
def binary_search(target,bounds,fn,eps=1e-2):
""" Perform binary search to find the input corresponding to the target output
of a given monotonic function fn up to the eps precision. Requires initial bounds
(lower,upper) on the values of x."""
lb,ub = bounds
i = 0
while ub-lb>eps:
guess = (ub+lb)/2
y = fn(guess)
if y<target:
lb = guess
elif y>=target:
ub = guess
i+=1
if i>500: assert False
return (ub+lb)/2
|
be5416bd6cdd53ff5fd8f58c489d7cf036dcd6a6
| 41,687 |
from typing import List
def format_learning_rates(learning_rates: List[float]) -> str:
"""
Converts a list of learning rates to a human readable string. Multiple entries are separated by semicolon.
:param learning_rates: An iterable of learning rate values.
:return: An empty string if the argument is None or empty, otherwise the string representation of the rates,
formatted as {:0.2e}
"""
if learning_rates is None or len(learning_rates) == 0:
return ""
return "; ".join("{:0.2e}".format(lr) for lr in learning_rates)
|
06c7395ba609be49ae57db618fe0e739b247de66
| 41,691 |
def add_buffer_to_intervals(ranges, n_channels, pad_channels=5):
"""Extend interval range on both sides by a number of channels.
Parameters
----------
ranges : list
List of intervals [(low, upp), ...].
n_channels : int
Number of spectral channels.
pad_channels : int
Number of channels by which an interval (low, upp) gets extended on both sides, resulting in (low - pad_channels, upp + pad_channels).
Returns
-------
ranges_new : list
New list of intervals [(low - pad_channels, upp + pad_channels), ...].
"""
ranges_new, intervals = ([] for i in range(2))
for i, (low, upp) in enumerate(ranges):
low, upp = low - pad_channels, upp + pad_channels
if low < 0:
low = 0
if upp > n_channels:
upp = n_channels
intervals.append((low, upp))
# merge intervals if they are overlapping
sorted_by_lower_bound = sorted(intervals, key=lambda tup: tup[0])
for higher in sorted_by_lower_bound:
if not ranges_new:
ranges_new.append(higher)
else:
lower = ranges_new[-1]
# test for intersection between lower and higher:
# we know via sorting that lower[0] <= higher[0]
if higher[0] <= lower[1]:
upper_bound = max(lower[1], higher[1])
ranges_new[-1] = (lower[0], upper_bound) # replace by merged interval
else:
ranges_new.append(higher)
return ranges_new
|
44548e70f0cbdc8d1f3df59ba7402ebc6aae0f41
| 41,692 |
def has_required_vowels(text, no_of_vowels=3):
"""Check if there are the required number of vowels"""
# Set up vowels and vowel count
vowels = 'aeiou'
vowel_count = 0
# count vowels in text until it reaches no_of_vowels,
# at which point, return True, or return False otherwise
for character in text:
if character in vowels:
vowel_count += 1
if vowel_count == no_of_vowels:
return True
return False
|
395958ac12f6015bec2d6122670d485d41b2d1b8
| 41,695 |
def image_prepare(image):
"""Clip negative values to 0 to reduce noise and use 0 to 255 integers."""
image[image < 0] = 0
image *= 255 / image.sum()
return image.astype(int)
|
c244a9a9e613215796b1a72b4576e0e39885d65e
| 41,701 |
def parse_value(value):
"""
Tries to convert `value` to a float/int/str, otherwise returns as is.
"""
for convert in (int, float, str):
try:
value = convert(value)
except ValueError:
continue
else:
break
return value
|
7bab352a5bbcfe0eb9de19f7252d9d759950b01e
| 41,702 |
def flatten(xs):
"""Flatten a 2D list"""
return [x for y in xs for x in y]
|
5b3fc103f699cbb0ef56f0457f482f35d0c3e4af
| 41,707 |
def caption_fmt(caption):
""" Format a caption """
if caption:
return "\n== {} ==\n".format(caption)
return ""
|
e6e94efa5f16f9b0590e912e68ee1e3acfb4d54a
| 41,712 |
def rgbi2rgbf(rgbf):
"""Converts a RGB/integer color into a RGB/float.
"""
return (int(rgbf[0]*255.0), int(rgbf[1]*255.0), int(rgbf[2]*255.0))
|
eca27cee4f43653f42b96c84c72a5332927e1dc0
| 41,713 |
def node_count(shape):
"""Total number of nodes.
The total number of nodes in a structured grid with dimensions given
by the tuple, *shape*. Where *shape* is the number of node rows and
node columns.
>>> from landlab.utils.structured_grid import node_count
>>> node_count((3, 4))
12
"""
assert len(shape) == 2
return shape[0] * shape[1]
|
f3f460967346afbb25098db6ebb7ea8db45e2870
| 41,715 |
def Madd(M1, M2):
"""Matrix addition (elementwise)"""
return [[a+b for a, b in zip(c, d)] for c, d in zip(M1, M2)]
|
0e01c5be64f7c7b7c0487080ef08c560bacd6fc1
| 41,717 |
def bubble_sort(li):
""" [list of int] => [list of int]
Bubble sort: starts at the beginning of the data set.
It compares the first two elements, and if the first is
greater than the second, it swaps them. It continues doing
this for each pair of adjacent elements to the end of the
data set. It then starts again with the first two elements,
repeating until no swaps have occurred on the last pass.
"""
# boolean to keep track of whether the algorithm is sorted
unsorted = True
while unsorted:
# assume it's sorted
unsorted = False
for i in range(len(li) - 1):
if li[i] > li[i + 1]:
# it is unsorted
unsorted = True
# swap elements
li[i], li[i + 1] = li[i + 1], li[i]
return li
|
d2730adae8e2ddec4943d5e9a39e2a5e34eaaaaa
| 41,721 |
def get_bgp_attrs(g, node):
"""Return a dict of all BGP related attrs given to a node"""
if 'bgp' not in g.node[node]:
g.node[node]['bgp'] = {'asnum': None, 'neighbors': {}, 'announces': {}}
return g.node[node]['bgp']
|
9345cb12b263a2aec48f000e84b5b115a158c62f
| 41,722 |
def GenerateAndroidResourceStringsXml(names_to_utf8_text, namespaces=None):
"""Generate an XML text corresponding to an Android resource strings map.
Args:
names_to_text: A dictionary mapping resource names to localized
text (encoded as UTF-8).
namespaces: A map of namespace prefix to URL.
Returns:
New non-Unicode string containing an XML data structure describing the
input as an Android resource .xml file.
"""
result = '<?xml version="1.0" encoding="utf-8"?>\n'
result += '<resources'
if namespaces:
for prefix, url in sorted(namespaces.iteritems()):
result += ' xmlns:%s="%s"' % (prefix, url)
result += '>\n'
if not names_to_utf8_text:
result += '<!-- this file intentionally empty -->\n'
else:
for name, utf8_text in sorted(names_to_utf8_text.iteritems()):
result += '<string name="%s">"%s"</string>\n' % (name, utf8_text)
result += '</resources>\n'
return result
|
3561769bff337d71a3ee02acd39f30746e89baf9
| 41,728 |
def similar_lists(list1, list2, eps=1e-3):
"""Checks elementwise whether difference between two elements is at most some number"""
return all(map(lambda pair: abs(pair[0]-pair[1])<eps, zip(list1, list2)))
|
09f8d5eea57eb19e3c64ce6f76603ab13a7e37ac
| 41,730 |
def normalized_difference(x, y):
"""
Normalized difference helper function for computing an index such
as NDVI.
Example
-------
>>> import descarteslabs.workflows as wf
>>> col = wf.ImageCollection.from_id("landsat:LC08:01:RT:TOAR",
... start_datetime="2017-01-01",
... end_datetime="2017-05-30")
>>> nir, red = col.unpack_bands("nir red")
>>> # geoctx is an arbitrary geocontext for 'col'
>>> wf.normalized_difference(nir, red).compute(geoctx) # doctest: +SKIP
ImageCollectionResult of length 2:
* ndarray: MaskedArray<shape=(2, 1, 512, 512), dtype=float64>
* properties: 2 items
* bandinfo: 'nir_sub_red_div_nir_add_red'
* geocontext: 'geometry', 'key', 'resolution', 'tilesize', ...
"""
return (x - y) / (x + y)
|
bfb74cbdae173d31811533f42f88e5165489f5ae
| 41,733 |
def _jd2mjd( jd ):
"""
The `_jd2mjd` function converts the Julian date (serial day number)into a
Modified Julian date (serial day number).
Returns a float.
"""
return jd - 2400000.5
|
01f4db238d092ab235374c5ab64517754ef075de
| 41,736 |
def tokenTextToDict(text):
"""
Prepares input text for use in latent semantic analysis by shifting it from
a list to a dictionary data structure
Parameters
----------
text : list of strings
A list of strings where each string is a word and the list is a document
Returns
-------
wordD : dictionary
A dictionary structure where the key is a word, and the item is the word count
"""
wordD = {}
for word in text:
if word in wordD:
wordD[word] += 1
else:
wordD[word] = 1
return wordD
|
c712eaa06d540486792d59d45f0b489ddb12df56
| 41,738 |
def search(array, value, dir="-"):
"""
Searches a sorted (ascending) array for a value, or if value is not found,
will attempt to find closest value.
Specifying dir="-" finds index of greatest value in array less than
or equal to the given value.
Specifying dir="+" means find index of least value in array greater than
or equal to the given value.
Specifying dir="*" means find index of value closest to the given value.
"""
if value < array[0]:
if dir == "+":
return 0
else:
raise IndexError(f"No value found before {value}.")
if value > array[-1]:
if dir == "-":
return len(array) - 1
else:
raise IndexError(f"No value found after {value}.")
J = 0
K = len(array) - 1
while True:
if value == array[J]:
return J
elif value == array[K]:
return K
elif K == J + 1:
if dir == "-":
return J
elif dir == "+":
return K
elif dir == "*":
return min((J, K), key=lambda n: abs(n - value))
N = (J + K)//2
if value < array[N]:
K = N
elif value > array[N]:
J = N
elif value == array[N]:
return N
|
9284ed8f826f3a472d9149531b29f12a8875870c
| 41,739 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.