content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def is_multiline(s):
"""Return True if a str consists of multiple lines.
Args:
s (str): the string to check.
Returns:
bool
"""
return len(s.splitlines()) > 1
|
6c1eca6f1d3d449bff6661b2ab3b9cd8695fbf90
| 41,147 |
def get_rows_to_keep(mode, df, grp, samp_grps, qthreshold, min_child_non_leaf, min_child_nsamp, min_peptides,
min_pep_nsamp):
"""
Use checking to find the rows (taxonomic or functional terms) that satisfy all of the filtering conditions for
the specified group
:param mode: either 'f', 't', or 'ft'
:param df: data frame of functional and taxonomic terms. missing values are represented as 0.
:param grp: grp to check conditions for
:param samp_grps: SampleGroups() object
:param qthreshold: minimum number of quantitations per grp
:param min_child_non_leaf: minimum number of children for terms that are not leaves
:param min_child_nsamp: minimum number of samples with sample children greater than min_child_non_leaf
:param min_peptides: minimum number of peptides for each term
:param min_pep_nsamp: minimum number of samples where the number of peptides has to be larger than
min_peptides
:return: boolean Series with rows to keep as True
"""
# intensity
intcols = samp_grps.sample_names[grp]
keep_int = (df[intcols] > 0).apply(sum, axis=1) >= qthreshold
# peptides
peptide_cols = samp_grps.n_peptide_names_dict[grp]
peptide_keep_series = (df[peptide_cols] > min_peptides)
if min_pep_nsamp == "all":
keep_peptide = peptide_keep_series.all(axis=1)
else:
keep_peptide = peptide_keep_series.apply(sum, axis=1) >= int(min_pep_nsamp)
if mode != 'ft':
# child non leaf
child_cols = samp_grps.samp_children_names_dict[grp]
child_keep_series = (df[child_cols] >= min_child_non_leaf) | (df[child_cols] == 0)
if min_child_nsamp == "all":
keep_child = child_keep_series.all(axis=1)
else:
keep_child = child_keep_series.apply(sum, axis=1) >= int(min_child_nsamp)
all_keep = keep_int & keep_child & keep_peptide
else:
all_keep = keep_int & keep_peptide
return all_keep
|
353c0b0d2717018f60178f37d777be25bbcf2193
| 41,149 |
def send(r, stream=False):
"""Just sends the request using its send method and returns its response. """
r.send(stream=stream)
return r.response
|
7350fe337450e55744ee82541b90d5204868fff0
| 41,150 |
from pathlib import Path
from datetime import datetime
def unique_path(parent: Path, stem: str, suffix: str, seps=('_', '-'), n: int = 1, add_date: bool = True) -> Path:
"""
:param parent: Directory in which a unique file name should be created
:param stem: File name without extension
:param suffix: File extension, including `.`
:param seps: Separators between stem and date/n, respectfully.
:param n: First number to try; incremented by 1 until adding this value would cause the file name to be unique
:param add_date: Whether a date should be added before n. If True, a date will always be added.
:return: Path with a file name that does not currently exist in the target directory
"""
date_sep, n_sep = seps
if add_date:
stem = f'{stem}{date_sep}{datetime.now().strftime("%Y-%m-%d")}'
name = stem + suffix
while (path := parent.joinpath(name)).exists():
name = f'{stem}{n_sep}{n}{suffix}'
n += 1
return path
|
872ec8ad2e24e51edb37a1722f16b85abeb96614
| 41,151 |
def remove_indices_from_range(ixs, max_ix):
"""From the indices 0:max_ix+1, remove the individual
index values in ixs.
Returns the remaining ranges of indices and singletons.
"""
ranges = []
i0 = 0
for ix in ixs:
i1 = ix - 1
if i1 < i0:
i0 = ix + 1
elif i1 == i0:
ranges.append([i0])
i0 = ix + 1
else:
ranges.append([i0,i1+1])
i0 = ix + 1
if i0 < max_ix:
ranges.append([i0, max_ix+1])
elif i0 == max_ix:
ranges.append([i0])
return ranges
|
df71db04b7e521815042237000f036735fbbe0f3
| 41,152 |
def maybe_append(df1, df2):
"""
If both data frames are available, append them and return. Otherwise, return
whichever frame is not None.
"""
if df1 is None:
return df2
if df2 is None:
return df1
return df1.append(df2)
|
aaabcc0f175fc913f0dbce575888cf08ff625c98
| 41,153 |
def max_subarray(nums):
"""
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [-2,1,-3,4,-1,2,1,-5,4],
the contiguous subarray [4,-1,2,1] has the largest sum = 6.
Args:
nums: list[int]
Returns:
int
"""
# Method 1 Kadane Algorithm
max_so_far = max_end_here = nums[0]
for x in nums:
# DP, optimal substructure:
max_end_here = max(max_end_here + x, x) # max_end_here[i] = max(max_end_here[i - 1] + nums[i], nums[i])
max_so_far = max(max_so_far, max_end_here) # max_so_far[i] = max(max_so_far[i-1], max_end_here[i])
return max_so_far
|
8660758cc758f85ea4750e491f249b08c0dfdd00
| 41,154 |
def pandas_table_to_nested_list(df):
"""
Converts pandas table df to nested list
"""
table_data = [["" for x in range(df.shape[1])] for y in range(df.shape[0]+1)]
# Columns names
for i in range(df.shape[1]):
table_data[0][i] = df.columns[i]
for i in range(df.shape[0]):
for j in range(df.shape[1]):
table_data[i+1][j] = df.iat[i, j]
return table_data
|
fc5aa04de82dcacab5ae6f6c64f22417d3d9318f
| 41,155 |
def cescape(string):
"""Escapes special characters needed for color codes.
Replaces the following symbols with their equivalent literal forms:
===== ======
``@`` ``@@``
``}`` ``}}``
===== ======
Parameters:
string (str): the string to escape
Returns:
(str): the string with color codes escaped
"""
string = str(string)
string = string.replace('@', '@@')
string = string.replace('}', '}}')
return string
|
48aef7c95851f9a7ae475d3ba38db55ce09fb5de
| 41,158 |
def closest_pair_strip(cluster_list, horiz_center, half_width):
"""
Helper function to compute the closest pair of clusters in a vertical strip
Input: cluster_list is a list of clusters produced by fast_closest_pair
horiz_center is the horizontal position of the strip's vertical center line
half_width is the half the width of the strip (i.e; the maximum horizontal distance
that a cluster can lie from the center line)
Output: tuple of the form (dist, idx1, idx2) where the centers of the clusters
cluster_list[idx1] and cluster_list[idx2] lie in the strip and have minimum distance dist.
"""
strip = list()
for cluster in cluster_list:
if abs(cluster.horiz_center()-horiz_center) < half_width:
strip.append((cluster, cluster_list.index(cluster)))
strip.sort(key = lambda cluster: cluster[0].vert_center())
length = len(strip)
dist, idx1, idx2 = float('inf'), -1, -1
for idx_u in range(length-1):
for idx_v in range(idx_u+1, min(idx_u+4, length)):
uv_dist = strip[idx_u][0].distance(strip[idx_v][0])
if uv_dist < dist:
dist = uv_dist
if strip[idx_u][1] < strip[idx_v][1]:
idx1 = strip[idx_u][1]
idx2 = strip[idx_v][1]
else:
idx1 = strip[idx_v][1]
idx2 = strip[idx_u][1]
return (dist, idx1, idx2)
|
d6966ec785d6ca5053ab8f91661735cbe0083dc5
| 41,160 |
def tb_args(exc):
"""Easily format arguments for `traceback` functions."""
return (type(exc), exc, exc.__traceback__)
|
d5c65e67556c28de3a97742fb4115cf8bddfb6a4
| 41,163 |
def flatten_list(cols_list, recursive=True):
"""Take a list of lists and return a flattened list.
Args:
cols_list: an iterable of any quantity of str/tuple/list/set.
Example:
>>> flatten_list(["a", ("b", set(["c"])), [["d"]]])
["a", "b", "c", "d"]
"""
cols = []
for i in cols_list:
if isinstance(i, (set, list, tuple)):
cols.extend(flatten_list(i) if recursive else i)
else:
cols.append(i)
return cols
|
d8e16a99b2e5f61ce53813ca7424e1b01cb1cddf
| 41,164 |
def table_entry_size(name, value):
"""
Calculates the size of a single entry
This size is mostly irrelevant to us and defined
specifically to accommodate memory management for
lower level implementations. The 32 extra bytes are
considered the "maximum" overhead that would be
required to represent each entry in the table.
See RFC7541 Section 4.1
"""
return 32 + len(name) + len(value)
|
fb05f2299bd264d3ae8143307d9c428aad18d5d7
| 41,168 |
def global_video_success(row, weights=None):
"""Create a video success measurement based on basic video stats."""
metric_cols = ["commentCount", "dislikeCount", "favoriteCount",
"likeCount", "viewCount"]
if weights is None:
weights = [1 for _ in metric_cols]
weights[1] = -1
scores = [row[key] for key in metric_cols]
return sum(scores)
|
49ca735b7efe54b49f29ba79be6c5aee250d64ba
| 41,176 |
def has_converged(mu, oldmu):
"""
A boolean indicating whether or not a set of centroids has converged
Parameters:
mu - the latest array of centroids
oldmu - the array of centroids from the previous iteration
Returns:
A boolean indicating whether or not the old and new centroids are the same,
representing whether or not the clustering has converged
"""
return (set([tuple(a) for a in mu]) == set([tuple(a) for a in oldmu]))
|
35234531a15baaf4f1df2f196e6abcec40fade59
| 41,177 |
import copy
def merge_config(new_config, old_config):
"""Merge the user-defined config with default config"""
config = copy.deepcopy(old_config)
if new_config is not None:
config.update(new_config)
return config
|
0d6d3f4b1df504485b991d6edc63d675439ab6d0
| 41,178 |
def make_range(chain_range_dic):
"""Expand a chain dictionary into ranges."""
chain_ranges = {}
for chain in chain_range_dic:
min_idx = min(chain_range_dic[chain])
max_idx = max(chain_range_dic[chain])
chain_ranges[chain] = (min_idx, max_idx)
return chain_ranges
|
718f1acfae09fb0651cd351d232359f8b8ff7dfc
| 41,179 |
import math
def calculateHeading(origin, destination):
""" Calculate the heading direction between two coordinates. It returns the
heading in degrees, where 0 deg is North. (This is not very accurate but
good enough for us.)"""
x1 = destination[0]
y1 = destination[1]
x2 = origin[0]
y2 = origin[1]
degrees = math.degrees(math.atan2((y1 - y2), (x1 - x2)))
degrees = degrees + 90 # North is 0 deg
return degrees
|
b114c6c4c028e148fe87f828128d2bd2766f0c61
| 41,185 |
import math
def smoothedsigmoid(x, b=1):
"""
English:
b controls smoothness, lower = smoother
Japanese:
b γ―η·©γγγγθͺΏζ΄γγΎγγb γε°γγγ»γ©η·©γγγ«(ε€εγε°γγ)γͺγγΎγγ
"""
return 1 / (1 + math.exp(- b * x))
|
014bec11a761fcf19c9e5885a1fa870115b90a00
| 41,192 |
def diff_lists(list1,list2, option=None):
"""
if option equal 'and', return a list of items which are in both list1
and list2. Otherwise, return a list of items in list1 but not in list2.
"""
if option and option == 'and':
return [x for x in list1 if x in list2]
else:
return [x for x in list1 if x not in list2]
|
2ffe6656d638d1ce185501361288266158ead09f
| 41,193 |
from typing import Sequence
def boolListToString(binary : Sequence[bool]) -> str:
"""Convert a boolean list to a string
Parameters
----------
binary : Sequence[bool]
Sequence of booleans representing a binary number in
big endian form
Returns
-------
str
String representing a binary number in big endian form
"""
rtn = ""
for val in binary:
if val:
rtn += "1"
else:
rtn += "0"
return rtn
|
9a0eda92124336b66ca74304efabdf1c7f1b082e
| 41,194 |
def process_passport(passport):
"""Turn a passport list into a dictionary."""
pass_string = ' '.join([n.strip('\n') for n in passport])
pass_list = pass_string.split(' ')
pass_dict = {}
for n in pass_list:
key, entry = n.split(':')
pass_dict[key] = entry
return pass_dict
|
30e5d0943f8b34fd5c02dad70af143070348331d
| 41,202 |
def remove_none_items(adict):
"""Return a similar dict without keys associated to None values"""
return {k: v for k, v in adict.items() if v is not None}
|
ddea6a77bc55ce33485f74c83a75e14f01d303a9
| 41,209 |
import struct
def unpack_info_packet(packet):
"""Unpack an informational packet."""
return struct.unpack("Ld", packet)
|
5976abc2b2fc1d072bf5434e639cbf27f3e69e58
| 41,211 |
def release_string(d_release):
""" Produces a string describing a release
Args:
d_release (dict): dictonary containing the release data
Returns:
(string): representing the release
Raises:
(KeyError):
if the data does not contain the field
"basic_information".
>>> release_string({'id': 1}) # doctest: +NORMALIZE_WHITESPACE
Traceback (most recent call last):
...
KeyError: "Your release 1 doesn't contain the field 'basic_information'"
Example:
>>> with open('discogs_finder/tests/test.json', 'r') as f:
... r = json.load(f)
>>> release_string(r) # doctest: +NORMALIZE_WHITESPACE
u'Keith Jarrett: Shades (3318191)'
"""
release_id = d_release['id']
basics = d_release.get('basic_information', None)
if not basics:
raise KeyError("Your release %d doesn't contain"
" the field 'basic_information'" % release_id)
artists = basics.get('artists', None)
if len(artists):
j = artists[0]['join']
if j == ',':
j = '%s ' % j
else:
j = ' %s ' % j
arts = j.join((a['name'] for a in artists))
else:
arts = None
title = basics.get('title', None)
return u'{arts}: {title} ({release_id})'.format(arts=arts,
title=title,
release_id=release_id)
|
4ca448b4778fd0ef56bbcfc0c3dce1c60d157174
| 41,213 |
def atleast_list(thing):
"""Make sure the item is at least a list of len(1) if not a list
otherwise, return the original list
Args
----
thing (any type) : thing to assert is a list
Returns
-------
thing (list)
"""
if not isinstance(thing, list):
thing = [thing]
return thing
|
e97b61266b76aa5ffea65541515e44807c57ba1a
| 41,218 |
import decimal
def has_number_type(value):
"""
Is a value a number or a non-number?
>>> has_number_type(3.5)
True
>>> has_number_type(3)
True
>>> has_number_type(decimal.Decimal("3.5"))
True
>>> has_number_type("3.5")
False
>>> has_number_type(True)
False
"""
return isinstance(value, (int, float, decimal.Decimal)) and not isinstance(value, bool)
|
d5db38736244af750ee881ceb83b5433eecd6bb9
| 41,220 |
def flat_list(x=None):
"""
Description:
It returns a list that contains all the elements form the input list of lists.
It should work for any number of levels.
Example:
>>> x = flat_list([1, 'k', [], 3, [4, 5, 6], [[7, 8]], [[[9]]]])
>>> x
>>> [1, 'k', 3, 4, 5, 6, 7, 8, 9]
Args:
- x (list): List of lists of objects.
Raises:
- TypeError: If the input is not a list object.
"""
# Check for empty input.
if x is None:
return []
# _end_if_
# Input 'x' should be a list.
if not isinstance(x, list):
raise TypeError(" Input should be a list.")
# _end_if_
# Define the return list.
flat_x = []
# Go through all the list elements.
for item_x in x:
# Check for embedded lists.
if isinstance(item_x, list):
# Check for empty entries.
if not item_x:
continue
# _end_if_
# Note the recursive call in "flat_list".
for ix in flat_list(item_x):
flat_x.append(ix)
# _end_for_
else:
# If the item is not a list.
flat_x.append(item_x)
# _end_if_
# _end_for_
# Return the flatten list.
return flat_x
|
5b96d06192ac96530674042459277f9acfd6c707
| 41,221 |
import pipes
def CommandToString(command):
"""Returns quoted command that can be run in bash shell."""
return ' '.join(map(pipes.quote, command))
|
e20a81b1336352e51b624e41aca3bea615cd030b
| 41,226 |
import re
def _parse_parameters(script):
"""Parse parameters from script header"""
params = {'profiles': [],
'templates': [],
'platform': ['multi_platform_all'],
'remediation': ['all']}
with open(script, 'r') as script_file:
script_content = script_file.read()
for parameter in params:
found = re.search('^# {0} = ([ ,_\.\-\w]*)$'.format(parameter),
script_content,
re.MULTILINE)
if found is None:
continue
splitted = found.group(1).split(',')
params[parameter] = [value.strip() for value in splitted]
return params
|
30c028dd1bbd8c4737a613c15bf311798ef8e816
| 41,228 |
def get_communicator(episode, agents, alternate=False):
"""
This function selects the communicator.
:param episode: The current episode.
:param agents: The agents in the game.
:param alternate: Alternate the leader or always the same.
:return: The id of the communicating agent and the communicating agent itself.
"""
if alternate:
communicator = episode % len(agents)
else:
communicator = 0
communicating_agent = agents[communicator]
return communicator, communicating_agent
|
fb0939abe003f4aba04e58870a1266982921dec1
| 41,232 |
def _get_language(uid, query):
"""
Returns ui_locales of a language
:param uid: of language
:param query: of all languages
:return: string
"""
return query.get(uid).ui_locales
|
914d0a1e59ea34a5732b8baee13bf5899a10cc3f
| 41,234 |
import torch
def ridge_regularize(network, lam):
"""Apply ridge penalty at linear layer and hidden-hidden weights."""
return lam * (
torch.sum(network.linear.weight ** 2) + torch.sum(network.rnn.weight_hh_l0 ** 2)
)
|
29e46f10b0ee63f0bda090836b95b1f0b4b1664c
| 41,236 |
def build_grid(filename):
"""Scrapes a formatted text file and converts it into a word search grid.
Args:
filename: A text file containing rows of alphabetical characters,
optionally separated by spaces or commas. Each row must contain the
same number of letters.
Returns:
A 2d list, representing the rows and columns of the word search grid.
"""
grid = []
input_file = open(filename, 'r')
for line in input_file.read().splitlines():
# Ignore separators
line = line.replace(' ', '')
line = line.replace(',', '')
row = list(line)
grid.append(row)
input_file.close()
return grid
|
0bed89308de1ba3c6fb1d0372364305deb5d0856
| 41,237 |
def question_result_type(response):
"""
Generate the answer text for question result type.
:param response: Kendra query response
:return: Answer text
"""
try:
faq_answer_text = "On searching the Enterprise repository, I have found" \
" the following answer in the FAQs--"
faq_answer_text += '\"' + response['resultItems'][0]['documentExcerpt']['text'] + '\"'
except KeyError:
faq_answer_text = "Sorry, I could not find an answer in our FAQs."
return faq_answer_text
|
15fd06ee46d6377f1fe38243c11acf5e66d739b6
| 41,243 |
def sftp_prefix(config):
"""
Generate SFTP URL prefix
"""
login_str = ''
port_str = ''
if config['username'] and config['password']:
login_str = '%s:%s@' % (config['username'], config['password'])
elif config['username']:
login_str = '%s@' % config['username']
if config['port'] and config['port'] != 22:
port_str = ':%d' % config['port']
return 'sftp://%s%s%s/' % (login_str, config['host'], port_str)
|
225ae15212f7024590b1aa91f3ad7a32594cb9c3
| 41,250 |
def get_prov(uid):
"""
return provenance string
"""
return uid.prov
|
0f92e61f946f42ddcda0ca8962e6364ef3c2cc32
| 41,253 |
def wrap_row(r:list, by:int = 1) -> list:
"""Wraps the list r by number of positions.
Positive by will shift right.
Negative shifts left.
Args:
r (list): list to wrap.
by (int, optional): number of positions to shift by. Defaults to 1.
Returns:
list: wrapped list.
"""
return r[-by:] + r[:-by]
|
bb1302fd7f20e2a8f3356448cc6da3826b3baf4d
| 41,255 |
import re
def extract_pin(module, pstr, _regex=re.compile(r"([^/]+)/([^/]+)")):
"""
Extract the pin from a line of the result of a Yosys select command, or
None if the command result is irrelevant (e.g. does not correspond to the
correct module)
Inputs
-------
module: Name of module to extract pins from
pstr: Line from Yosys select command (`module/pin` format)
"""
m = re.match(r"([^/]+)/([^/]+)", pstr)
if m and m.group(1) == module:
return m.group(2)
else:
return None
|
6d48dc9ccdb2dfe1dc89a8c7a56f564fccfe60a3
| 41,256 |
def compute_logits(theta, ob):
"""
theta: A matrix of size |A| * (|S|+1)
ob: A vector of size |S|
return: A vector of size |A|
"""
#ob_1 = include_bias(ob)
logits = ob.dot(theta.T)
return logits
|
1913409b9a2f95b83c199379d602d111f6e49851
| 41,260 |
def AddOrdinalSuffix(value):
"""Adds an ordinal suffix to a non-negative integer (e.g. 1 -> '1st').
Args:
value: A non-negative integer.
Returns:
A string containing the integer with a two-letter ordinal suffix.
"""
if value < 0 or value != int(value):
raise ValueError('argument must be a non-negative integer: %s' % value)
if value % 100 in (11, 12, 13):
suffix = 'th'
else:
rem = value % 10
if rem == 1:
suffix = 'st'
elif rem == 2:
suffix = 'nd'
elif rem == 3:
suffix = 'rd'
else:
suffix = 'th'
return str(value) + suffix
|
732ac382c83983d2083f22bb23ff8968bb05875d
| 41,261 |
def first_player_wins(a, b):
"""
If tie : Returns 0
If first player wins : Returns 1
If second player wins : Returns -1
"""
if a == b:
return 0
elif [a, b] == ["R", "S"] or [a, b] == ["S", "P"] or [a, b] == ["P", "R"]:
return 1
return -1
|
ebb0b92862039ed5a8227573d5e79e1a5ea7f353
| 41,264 |
def _get_right_parentheses_index_(struct_str):
"""get the position of the first right parenthese in string"""
# assert s[0] == '('
left_paren_count = 0
for index, single_char in enumerate(struct_str):
if single_char == '(':
left_paren_count += 1
elif single_char == ')':
left_paren_count -= 1
if left_paren_count == 0:
return index
else:
pass
return None
|
43c1d890fb4ba62ae6e1a7c7df603428f9b342cd
| 41,265 |
def obs_is_afternoon(obcode):
"""Given an observation code (eg 'ob_1a', 'ob12_b') is this an afternoon obs?"""
return obcode[-1] == 'b'
|
8d1f87b7f526f98a831c1da3fd6ebeb429d954ef
| 41,268 |
def center_on_atom(obj_in, idx=None, copy=True):
"""Shift all coords in `obj` such that the atom with index `idx` is at the
center of the cell: [0.5,0.5,0.5] fractional coords.
"""
assert idx is not None, ("provide atom index")
obj = obj_in.copy() if copy else obj_in
obj.coords = None
# [...,idx,:] works for (natoms,3) and (nstep,natoms,3) -- numpy rocks!
obj.coords_frac = obj.coords_frac - obj.coords_frac[...,idx,:][...,None,:] + 0.5
obj.set_all()
return obj
|
690f12a7e95a8e24930096e76941c3061a080b17
| 41,269 |
def binary_search(num_list, num, not_found="none"):
"""Performs a binary search on a sorted list of numbers, returns index.
Only works properly if the list is sorted, but does not check whether it is
or not, this is up to the caller.
Arguments:
num_list: a sorted list of numbers.
num: a number to search for.
not_found: string. Controls what happens if the number is not in the
list.
- "none": None is returned.
- "upper", "force_upper": upper index is returned
- "lower", "force_lower": lower index is returned
- "nearest": index to nearest item is returned
If num is larger than all numbers in num_list,
if "upper", "lower", "force_lower", or "nearest":
index to the last item of the list is returned.
if "force_upper":
index to the next item past the end of the list is returned.
If num is smaller than all numbers in num_list,
if "upper", "force_upper", "lower", or "nearest":
0 is returned.
if "force_lower":
-1 is returned.
Default: None.
returns:
None if len(num_list) is 0
None if num is not in num_list and not_found is "none"
Integer index to item, or perhaps nearest item (depending on
"not_found" keyword argument).
"""
if not_found not in (
"none",
"upper",
"force_upper",
"lower",
"force_lower",
"nearest",
):
raise ValueError(
f"{not_found} is not a recognized value for argument " "'not_found'"
)
lower_i, upper_i = 0, len(num_list)
if upper_i == 0:
return None
if num < num_list[0]:
if not_found == "none":
return None
if not_found == "force_lower":
return -1
return 0
if num > num_list[upper_i - 1]:
if not_found == "none":
return None
if not_found == "force_upper":
return upper_i
return upper_i - 1
while True:
mid_i = (lower_i + upper_i) // 2
n = num_list[mid_i]
if n == num:
return mid_i
if mid_i == lower_i:
if not_found == "none":
return None
if not_found in ("upper", "force_upper"):
return upper_i
if not_found in ("lower", "force_lower"):
return lower_i
return lower_i + (num_list[upper_i] - num < num - n)
if n > num:
upper_i = mid_i
else:
lower_i = mid_i
|
91b77d6910698e18f0369990dee11dfab3333b6e
| 41,271 |
def _int_to_hex(x: int) -> str:
"""Converts an integer to a hex string representation.
"""
return hex(x)
|
2a9bdeb96339747ec33e90393a448519daa59a84
| 41,272 |
def bai_from_bam_file(bam_file):
"""
Simple helper function to change the file extension of a .bam file to .bai.
"""
if not bam_file.endswith('.bam'):
raise ValueError('{0} must have a .bam extension.'.format(bam_file))
return bam_file[:-3] + 'bai'
|
812aee46a94a3a1d3eec15a72d820785cf531692
| 41,282 |
def get_events_summaries(events, event_name_counter, resource_name_counter, resource_type_counter):
""" Summarizes CloudTrail events list by reducing into counters of occurences for each event, resource name, and resource type in list.
Args:
events (dict): Dictionary containing list of CloudTrail events to be summarized.
Returns:
(list, list, list)
Lists containing name:count tuples of most common occurences of events, resource names, and resource types in events list.
"""
for event in events['Events']:
resources = event.get("Resources")
event_name_counter.update([event.get('EventName')])
if resources is not None:
resource_name_counter.update([resource.get("ResourceName") for resource in resources])
resource_type_counter.update([resource.get("ResourceType") for resource in resources])
return (event_name_counter.most_common(10),
resource_name_counter.most_common(10),
resource_type_counter.most_common(10))
|
b8d061f9710a3914b74da9ec56a2037dcf8320d4
| 41,283 |
def note_css_class(note_type):
"""
Django Lesson Note Type
text = blocks.TextBlock()
note_type = blocks.ChoiceBlock(
choices=(
('info', 'Info'),
('warning', 'Warning'),
('danger', 'Danger'),
('note', 'Note'),
),
required=False,
default='info',
)
mapped to bootstrap
alert types css classes:
https://getbootstrap.com/docs/4.3/components/alerts/
"""
css_class_map = {
'info': 'success',
'warning': 'warning',
'danger': 'danger',
'note': 'primary'
}
return css_class_map.get(note_type, 'info')
|
241ec5698e384d1d5026b955b32bff8e8e188dd3
| 41,286 |
def polynomial(coeffs):
"""
Return a polynomial function which with coefficients `coeffs`.
Coefficients are list lowest-order first, so that ``coeffs[i]`` is the coefficient in front of ``x**i``.
"""
if len(coeffs)==0:
return lambda x:x*0
def f(x):
y=(x*0)+coeffs[0]
for p,c in enumerate(coeffs[1:]):
y=y+c*x**(p+1)
return y
return f
|
4df8fa27e3dab2d7feca9b19d6e8f87a07acd100
| 41,289 |
import math
def get_xy(lat, lng, zoom):
"""
Generates an X,Y tile coordinate based on the latitude, longitude
and zoom level
Returns: An X,Y tile coordinate
"""
tile_size = 256
# Use a left shift to get the power of 2
# i.e. a zoom level of 2 will have 2^2 = 4 tiles
num_tiles = 1 << zoom
# Find the x_point given the longitude
point_x = (tile_size / 2 + lng * tile_size / 360.0) * num_tiles // tile_size
# Convert the latitude to radians and take the sine
sin_y = math.sin(lat * (math.pi / 180.0))
# Calculate the y coordinate
point_y = ((tile_size / 2) + 0.5 * math.log((1 + sin_y) / (1 - sin_y)) *
- (tile_size / (2 * math.pi))) * num_tiles // tile_size
return int(point_x), int(point_y)
|
eca13cf7d5ba4ba8b3799d80d6d71c7e72eb4402
| 41,293 |
import ast
def eval_condition(condition, locals):
"""Evaluates the condition, if a given variable used in the condition
isn't present, it defaults it to None
"""
condition_variables = set()
st = ast.parse(condition)
for node in ast.walk(st):
if type(node) is ast.Name:
condition_variables.add(node.id)
for v in condition_variables:
if v not in locals:
locals[v] = None
result = eval(condition, {}, locals)
return result
|
f3fb7a871c16f22b2cd5f9d5087aec364772f6bb
| 41,296 |
def echo(data):
"""
Just return data back to the client.
"""
return data
|
80655150d1578c12b2f196b664df8935bae569f1
| 41,297 |
def uhex(num: int) -> str:
"""Uppercase Hex."""
return "0x{:02X}".format(num)
|
f6025d7aa2a3b1cbf8286a878b5bc6f9dcc87f4c
| 41,301 |
import torch
def rae(target, predictions: list, total=True):
"""
Calculate the RAE (Relative Absolute Error) compared to a naive forecast that only
assumes that the future will produce the average of the past observations
Parameters
----------
target : torch.Tensor
The true values of the target variable
predictions : list
- predictions[0] = y_hat_test, predicted expected values of the target variable (torch.Tensor)
total : bool, default = True
Used in other loss functions to specify whether to return overall loss or loss over
the horizon. This function only supports the former.
Returns
-------
torch.Tensor
A scalar with the overall RAE (the lower the better)
Raises
------
NotImplementedError
When 'total' is set to False, as rae does not support loss over the horizon
"""
y_hat_test = predictions[0]
y_hat_naive = torch.mean(target)
if not total:
raise NotImplementedError("rae does not support loss over the horizon")
# denominator is the mean absolute error of the preidicity dependent "naive forecast method"
# on the test set -->outsample
return torch.mean(torch.abs(target - y_hat_test)) / torch.mean(torch.abs(target - y_hat_naive))
|
6f3650873d00fcd237bb608eed58593a927d8815
| 41,304 |
import operator
def count_words(s, n):
"""Return the n most frequently occurring words in s."""
# Count the number of occurrences of each word in s
dictionary = {}
s = s.split(" ")
for word in s:
if word in dictionary:
dictionary[word] += 1
else:
dictionary[word] = 1
# Sort the occurences in descending order (alphabetically in case of ties)
sorted_x = sorted(dictionary.items(), key=operator.itemgetter(0))
sorted_x = sorted(sorted_x, key=operator.itemgetter(1), reverse=True)
# Return the top n words as a list of tuples (<word>, <count>)
output = []
for number in range(n):
output.append(sorted_x[number])
return output
|
f5d2595ffadc1eebf671d3a11ee2ead45466a732
| 41,305 |
def server_address(http_server):
"""IP address of the http server."""
return http_server.server_address[0]
|
ff5c9e56f7db02924913c1f9484c83d8091c9d67
| 41,308 |
def isNestedInstance(obj, cl):
""" Test for sub-classes types
I could not find a universal test
Parameters
----------
obj: object instance
object to test
cl: Class
top level class to test
returns
-------
r: bool
True if obj is indeed an instance or subclass instance of cl
"""
tree = [cl]
if hasattr(cl, "__subclasses"):
for k in cl.__subclasses():
if hasattr(k, "__subclasses"):
tree += k.__subclasses__()
return issubclass(obj.__class__, tuple(tree))
|
bca1adb3ba93605b55ed6d204e89210d6b570882
| 41,314 |
def _transform_metric(metrics):
"""
Remove the _NUM at the end of metric is applicable
Args:
metrics: a list of str
Returns:
a set of transformed metric
"""
assert isinstance(metrics, list)
metrics = {"_".join(metric.split("_")[:-1]) if "_cut" in metric or "P_" in metric else metric for metric in metrics}
return metrics
|
13747864d70f7aae6aaec5c9139724ff6c8cb7fb
| 41,315 |
def ProgressBar(percent, prefix=None, notches=50, numericalpercent=True, unicode=False):
"""Accepting a number between 0.0 and 1.0 [percent], returns a string containing a UTF-8
representation of a progress bar of x segments [notches] to the screen, along with an
optional indication of the progress as the given percentage rounded to two places
[numericalpercent], and, if given one, a custom string preceding the progress bar
[prefix]. By default, common number symbols and periods are used to draw the bar's full
and empty portions, respectively; [unicode] can be set to True to use full and empty
blocks from the Unicode character set instead, which are not defined in all fonts."""
outString = u"" # Unicode string.
if prefix:
prefix = "{} ".format(prefix)
outString = outString + prefix
x_of_notches = int(round(percent * notches))
startCap = "["
endCap = "]"
fullSegment = "#"
blankSegment = "."
if unicode:
fullSegment = "\u25AE" # Full block in Unicode
blankSegment = "\u25AF" # Empty block in Unicode
outString = outString + startCap
for i in range(x_of_notches):
outString = outString + fullSegment # Full block
for i in range(notches - x_of_notches):
outString = outString + blankSegment
outString = outString + endCap
if numericalpercent:
outString = outString + " [{}%]".format(str(round(percent * 100, 2)))
return outString
|
1ad220f55d9dd242778f879c75905a0484bdbd73
| 41,316 |
import re
def get_inputs( filename ):
"""
Each line in the input file contains directions to a tile
starting from the origin.
This function returns a list of lists with directions to each tile.
"""
with open( filename, 'r' ) as input_file:
raw_data = input_file.read().splitlines()
directions = 'e|se|sw|w|nw|ne'
tiles = []
for line in raw_data:
tile = re.findall( directions, line )
tiles.append( tile )
return tiles
|
d4171a45d93db37959d9422a3d12c193249856a1
| 41,318 |
def is_boundary(loop):
"""Is a given loop on the boundary of a manifold (only connected to one face)"""
return len(loop.link_loops) == 0
|
4d4df7e552c6a57b42fa3e9c43682368ae5091c1
| 41,325 |
def collapse(array):
"""
Collapse a homogeneous array into a scalar; do nothing if the array
is not homogenous
"""
if len(set(a for a in array)) == 1: # homogenous array
return array[0]
return array
|
1573cbcfe3691b83be4710e3d2ea1ff3791bc098
| 41,334 |
from typing import Union
import time
def time_ms(as_float: bool = False) -> Union[int, float]:
"""Convert current time to milliseconds.
:param as_float: result should be float, default result is int
:return: current time in milliseconds
"""
_time_ms = time.time() * 1000
if not as_float:
return int(_time_ms)
return _time_ms
|
9e9dd47636182935d2a6f52156fc987996c75ec3
| 41,335 |
def getcode(line):
""" Extract out the Geonames reference code for searching. """
split_line = line.split('\t')
head = split_line[0][2:]
desc = split_line[1]
return (head, desc)
|
fd647765934571c2bf1f4d55e94f572a26bf5250
| 41,342 |
def path_add_str(path_):
""" Format path_ for console printing """
return '+ {}'.format(path_)
|
0f1edde223e432560482edd68f78cb2b42a6bc84
| 41,347 |
def get_time_in_min(timestamp):
"""
Takes a timestamp, for example 12:00 and splits it, then converts it into minutes.
"""
hours, minutes = timestamp.split(":")
total_minutes = int(hours)*60+int(minutes)
return total_minutes
|
ef7f8418ad50a2ac0c2814610004aec48236f5a8
| 41,348 |
def is_leaf(tree):
"""
:param tree: a tree node
:return: True if tree is a leaf
"""
if tree.left is None and tree.right is None:
return True
return False
|
5db41c7c31ba9edd03d86d8463ef23b5e289e38b
| 41,349 |
def removeForwardSlash(path):
"""
removes forward slash from path
:param path: filepath
:returns: path without final forward slash
"""
if path.endswith('/'):
path = path[:-1]
return path
|
bbba3cd1d3c051f805bda075227ce1ba4428df8c
| 41,351 |
def getAgnData(hd_agn, agn_FX_soft, redshift_limit):
"""
Function to get the relavant data for AGNs
@hd_agn :: table file with all relevant info on AGNs
@AGN_FX_soft, AGN_SDSS_r_magnitude :: limits on flux, and brightness to be classified as an AGN
@redshift_limit :: decides until which AGNs to consider in the sample
--> typically, we are interested in the low-z universe for this project
Returns:: @pos_z :: positions (ra, dec) and redshifts of the downsampled AGNs
"""
# criteria on flux and brightness for selection of AGNs
downsample_agn = (hd_agn['FX_soft']>agn_FX_soft) & (hd_agn['redshift_R']<redshift_limit)
# get the ra, dec and z for the AGNs
ra_AGN = hd_agn['RA'][downsample_agn]
dec_AGN = hd_agn['DEC'][downsample_agn]
z_AGN = hd_agn['redshift_R'][downsample_agn]
pos_z = [ra_AGN, dec_AGN, z_AGN]
# scale factor of last major merger
scale_merger = hd_agn['HALO_scale_of_last_MM'][downsample_agn]
return pos_z, scale_merger, downsample_agn
|
b9f048e8ff2055a38f66959b8465279d0fa34609
| 41,353 |
def extract_name_and_link(a_object):
"""
Get the source name and url if it's present.
Parameters:
----------
- a_object (bs4.element.Tag - `a`) : an a object html tag parsed by beautiful soup 4
Returns:
----------
- source_name (str) : the plain text source name as included by Ad Fontes Media
- link (str) : the url location where Ad Fontes Media stores the reliability and bias data
"""
if (a_object is not None) and (a_object["href"] is not None) and (a_object["href"].startswith("https://adfontesmedia.com")):
source_name, link = a_object.get_text(), a_object["href"]
source_name = source_name.replace(" Bias and Reliability", "")
return source_name, link
else:
return None, None
|
aebe743e27c2150cd81b582075091386253939e5
| 41,354 |
def async_get_pin_from_uid(uid):
"""Get the device's 4-digit PIN from its UID."""
return uid[-4:]
|
7556416888dbeaabd39c368458a8b64927a7a13a
| 41,360 |
def insert_ordered(value, array):
"""
This will insert the value into the array, keeping it sorted, and returning the
index where it was inserted
"""
index = 0
# search for the last array item that value is larger than
for n in range(0,len(array)):
if value >= array[n]: index = n+1
array.insert(index, value)
return index
|
9f491aab83fcd3716eb5894d675ec4ba90bbbae9
| 41,363 |
def compute_linenumber_stats(file_name):
""" Collect data on number of total lines in the current file """
x = 0
with open(file_name) as input:
for line in input:
x = x + 1
return(x)
|
39a170010e0987903c080d2ebab1c37d7099af0b
| 41,365 |
def find_following_duplicates(array):
"""
Find the duplicates that are following themselves.
Parameters
----------
array : list or ndarray
A list containing duplicates.
Returns
----------
uniques : list
A list containing True for each unique and False for following duplicates.
Example
----------
>>> import neurokit as nk
>>> mylist = ["a","a","b","a","a","a","c","c","b","b"]
>>> uniques = nk.find_following_duplicates(mylist)
>>> indices = np.where(uniques) # Find indices of uniques
Notes
----------
*Authors*
- `Dominique Makowski <https://dominiquemakowski.github.io/>`_
*Dependencies*
- numpy
"""
array = array.copy()
uniques = []
for i in range(len(array)):
if i == 0:
uniques.append(True)
else:
if array[i] == array[i-1]:
uniques.append(False)
else:
uniques.append(True)
return(uniques)
|
aafd4bb76c318ed907732549e3650df063c8c5b5
| 41,366 |
import ipaddress
def list_all_available_cidr(jnj_root_cidr_list, allocated_cidr_list, subnet_prefix):
"""
Find all CIDRs of specified size from the provided top level CIDR list in the region
Args:
jnj_root_cidr_list: top-level CIDRs allocated to region
allocated_cidr_list: CIDRs currently in use in region
subnet_prefix: requested CIDR size
Returns: locked CIDR
"""
# Initialize result array
available_cidr_list = []
# Iterate through root level CIDRs
for cidr in jnj_root_cidr_list:
# Cast top-level CIDR string to network objet
cidr = ipaddress.IPv4Network(cidr)
# If top-level CIDR is smaller than requested CIDR, skip this top-level CIDR
if int(cidr.prefixlen) > int(subnet_prefix):
continue
# Iterate through already allocated CIDRs
allocated_cidr_in_master_list = [ipaddress.IPv4Network(cidr_block) for cidr_block in allocated_cidr_list if
ipaddress.IPv4Network(cidr_block).overlaps(cidr)]
# Divide the top-level CIDR into a CIDRs of the requested size
cidr_subnets = list(cidr.subnets(new_prefix=int(subnet_prefix)))
# Iterate through theoretical subnets and search for overlap
for subnet in cidr_subnets:
# Search for overlap with already allocated CIDRs
subnet_conflict_flag = False
for allocated_cidr in allocated_cidr_in_master_list:
if subnet.overlaps(allocated_cidr):
subnet_conflict_flag = True
break
# Found a conflict
if subnet_conflict_flag:
continue
# This subnet has no conflicts, append to list of available subnets
else:
available_cidr_list.append(subnet.with_prefixlen)
# Return results
return available_cidr_list
|
caf84de05b7c8b6a7246062e2f34ce57329cf6b7
| 41,374 |
def is_unibipartite(graph):
"""Internal function that returns whether the given graph is a uni-directional
bipartite graph.
Parameters
----------
graph : GraphIndex
Input graph
Returns
-------
bool
True if the graph is a uni-bipartite.
"""
src, dst, _ = graph.edges()
return set(src.tonumpy()).isdisjoint(set(dst.tonumpy()))
|
d7603408c4a99c8028a944dd699b0728cce57760
| 41,376 |
def bss_host_xname(host):
"""
Retrieves the xname from the BSS host object
"""
return host["ID"]
|
08a05819502815b30c71929ee66613ab164210f3
| 41,377 |
from typing import OrderedDict
def unique(iterable, key=None):
"""Return unique elements of an iterable."""
if key:
odict = OrderedDict()
for element in iterable:
odict.setdefault(key(element), element)
return list(odict.values())
else:
return list(OrderedDict.fromkeys(iterable))
|
ec20ceb5de991ad8828920eeac060c8651ee0da5
| 41,379 |
def get_longest_string(in_list):
"""
Get the longest string(s) in a list.
:param in_list: list of strings
:return: single string if there's only one with the max length,
or a list of strings if there are several.
"""
if len(in_list) == 0:
return None
max_length = max(len(x) for x in in_list)
matches = [x for x in in_list if len(x) == max_length]
if len(matches) == 1:
return matches[0]
else:
return matches
|
ccff7bacf938725dccbee93e52cd6fcbe9064c43
| 41,382 |
def numpy(tensor):
"""Convert a torch.tensor to a 1D numpy.ndarray."""
return tensor.cpu().detach().numpy().ravel()
|
cdea8e80a6129ba846d9f69dc4825bf574e688ac
| 41,383 |
def calc_node_coords(tiling_edge_list, first_node_offset=0):
"""
For a single tiling path (tiling_edge_list is a list
of edges for a particular contig) calculates the
genomic coordinate of every node in the path.
In case there are cycles in the tiling path,
the existing node's coordinate will be overwritten.
`first_node_offset` refers to the length of the first node. If
not specified, the contig length should not
consider the length of the first node.
"""
if not tiling_edge_list:
return {}, 0
coord_map = {}
contig_len = 0
edge0 = tiling_edge_list[0]
coord_map[edge0.v] = first_node_offset
for edge in tiling_edge_list:
if edge.v not in coord_map:
raise Exception(
'Tiling path is not in sorted order. Node "{v!r}" does not yet have an assigned coordinate.'.format(v=edge.v))
coord = coord_map[edge.v]
coord += abs(int(edge.b) - int(edge.e))
coord_map[edge.w] = coord
contig_len = max(contig_len, coord)
return coord_map, contig_len
|
f0d2e310bf68328f4edc4ba35619b7b242d9ff10
| 41,393 |
def bytes_to_int(byte_string) -> int:
"""
:param byte_string: a string formatted like b'\xd4\x053K\xd8\xea'
:return: integer value of the byte stream
"""
return int.from_bytes(byte_string, "big")
|
932b6cb3e41fa0c1afdae2aa1ca765e64ce44986
| 41,394 |
from pathlib import Path
def path_type(value) -> Path:
"""argparse type for converting string into a pathlib.Path object"""
p = Path(value)
if not p.exists():
raise ValueError(f"Given Path not found: {value}")
return p
|
8b54b1c60cdb312f95c655d72ca542de7afdd826
| 41,396 |
import math
def li_times(i, epsilon, delta):
"""
Computes li, the optimal number of times to loop while sampling the
equivalence oracle. This li is the reason pac-basis is sooo much faster
than the original horn1 algorithm.
Parameters:
-----------------------------------
i : int
Number of times the equivalence oracle has been called already
epsilon : float (0, 1)
Tolerance for error in accuracy for the pac-basis
delta : float (0, 1)
Tolerance for confidence in confidence for the pac-basis
"""
return((1.0 / epsilon) * (i - (math.log(delta) / math.log(2))))
|
006afaaed14902e58d73dbb642d04fc468d684c2
| 41,397 |
import torch
def size_getter(shape):
"""
Helper function for defining a size object.
:param shape: The shape
:type shape: int|tuple[int]
:return: Size object
:rtype: torch.Size
"""
return torch.Size([]) if shape is None else torch.Size(shape if isinstance(shape, (tuple, list)) else (shape,))
|
d6ec148770871ef636cb18a499ef30cf82997ac9
| 41,399 |
def list_diff(list1, list2):
"""
Returns a a list with all the elements of second list that are not contained in the first list
:param list1: list
:param list2: list
:return: list
"""
return [i for i in list1 if i not in list2]
|
aa7869d879d2b53fe584f74ced7983ffc9e98710
| 41,404 |
def total_weight(graph, path):
"""Sum the weights of the edges between nodes in path
Args:
graph (Graph): A graph containing nodes and edges between them
path (list of str): A list of strings representing nodes in graph
Returns:
int: The total weight of all the implied edges in path
"""
pairs = zip(path, path[1:])
weight = sum(graph.weight(*p) for p in pairs)
return weight
|
ec7c88f913a23bc5bf03fa4f6724c0f6af8fc437
| 41,409 |
def reduce_by_maxcc(result_list, maxcc):
""" Filter list image tiles by maximum cloud coverage
:param result_list: list of dictionaries containing info provided by Opensearch REST service
:type result_list: list(dict)
:param maxcc: filter images by maximum percentage of cloud coverage
:type maxcc: float in range [0, 1]
:return: list of dictionaries containing info provided by Opensearch REST service
:rtype: list(dict)
"""
return [tile_info for tile_info in result_list if tile_info['properties']['cloudCover'] <= 100 * float(maxcc)]
|
cdc9ad0bdff825a1f58f7211f1c1fd57f4611755
| 41,411 |
import re
def extract_answer_text(options_text: str, answer_tag: str):
"""Extracts correct answer's text from all options.
Args:
options_text: all options as text in various format.
answer_tag: correct answers tag a, b, c, ...
Returns:
parsed option text corresponding to the correct answer.
"""
if options_text.startswith('[') and options_text.endswith(']'):
options = eval(options_text) # pylint: disable = eval-used
options = [re.sub('[abcde] \\)', '', x).strip() for x in options]
else:
options = re.split('[abcde] \\)', options_text)
if options[0]:
raise ValueError(f'Expects first segment to be empty in {options}.')
options = [x.strip().rstrip(',').strip() for x in options[1:]]
correct_id = ord(answer_tag) - ord('a')
if correct_id >= len(options):
raise ValueError(f'Ill parsed dictionary {options} from {options_text}.')
return options[correct_id]
|
63c2027087d405c99831b2e6ea922d1989f51c20
| 41,415 |
def pass1(arg, *args, **kwargs):
"""Return the first positional argument."""
return arg
|
d0b666ed5a2e0a4c84166dc790845fed126dc57b
| 41,418 |
import re
def string_is_number(target_str):
""" Check whether passed string can accurately be converted to a number.
Args:
target_str (str): string to validate if parsable to number.
Returns:
bool
"""
if target_str is None:
return False
else:
return bool(re.fullmatch('^\\d+$', re.sub('[^0-9]', '', target_str)))
|
ef477fd6fd7072497ee58f986fc4d73bfa25f2b8
| 41,420 |
def crop_image(image, rect):
"""
Crops an image using the rectangle passed as parameter
Args:
image: the image to crop
rect: a rectangle in the form of a tuple that defines the area we
want to crop (top left x, top left y, width, height)
Returns:
The cropped image
"""
point1 = (rect[0], rect[1]) # Top-left point
point2 = (rect[0] + rect[2], rect[1] + rect[3]) # Lower right point
return image[point1[1]:point2[1], point1[0]:point2[0]]
|
b062177d187501692e32ef3911f750a183d1cf4c
| 41,425 |
def _add_p_tags(raw_body):
"""Return raw_body surrounded by p tags"""
return f"<p>{raw_body}</p>"
|
27012f6220ed6fb983f5ee9af63e97f2497cf793
| 41,426 |
def check_run(system, dx, work_root, cmd, cwd=None, env=None):
"""Runs a command |cmd|.
Args:
system (runtime.System): The System instance.
dx (dockcross.Image or None): The DockCross image to use. If None, the
command will be run on the local system.
work_root (str): The work root directory. If |dx| is not None, this will
be the directory mounted as "/work" in the Docker environment.
cmd (list): The command to run. Any components that are paths beginning
with |work_root| will be automatically made relative to |work_root|.
cwd (str or None): The working directory for the command. If None,
|work_root| will be used. Otherwise, |cwd| must be a subdirectory of
|work_root|.
env (dict or None): Extra environment variables (will be applied to current
env with dict.update)
"""
if dx is None:
if cmd[0] == 'python':
cmd[0] = system.native_python
return system.check_run(cmd, cwd=cwd or work_root, env=env)
return dx.check_run(work_root, cmd, cwd=cwd, env=env)
|
1507b5b916253644bf0645b7856e2c27227e084f
| 41,430 |
import hashlib
def get_sha256(file_name):
"""
Calculate the sha256 for the file
:param file_name:
:return:
"""
s1 = hashlib.sha256()
with open(file_name, 'rb') as f:
while True:
data = f.read(4096)
if not data:
break
s1.update(data)
return s1.hexdigest()
|
057caae3bfa0d2232ed92a3f241375fba0b1b231
| 41,432 |
def lineno(el):
"""
Get the first line number of ast element
:param ast el:
:rtype: int
"""
if isinstance(el, list):
el = el[0]
ret = el['loc']['start']['line']
assert type(ret) == int
return ret
|
e57bfa22b3e16f39585621edc109f7904ef648d8
| 41,436 |
def ether2wei(ether: float):
"""Converts units of wei to Ether (1e18 * wei)."""
return ether * 1e18
|
b826daaa171d24b43b7f901b6498f24f5481ed1c
| 41,448 |
def _prepare_chain(structures, pdb_id, pdb_chain,
atom_filter, mapping, model=0):
"""
Prepare PDB chain for distance calculation
Parameters
----------
structures : dict
Dictionary containing loaded PDB objects
pdb_id : str
ID of structure to extract chain from
pdb_chain: str
Chain ID to extract
atom_filter : str
Filter for this type of atom. Set to None
if no filtering should be applied
mapping : dict
Seqres to Uniprot mapping that will be applied
to Chain object
model : int, optional (default: 0)
Use this model from PDB structure
Returns
-------
Chain
Chain prepared for distance calculation
"""
# get chain from structure
chain = structures[pdb_id].get_chain(pdb_chain, model)
# filter atoms if option selected
if atom_filter is not None:
chain = chain.filter_atoms(atom_filter)
# remap chain to Uniprot
chain = chain.remap(mapping)
return chain
|
cdc859f9742f31f32879892a30303412001ab612
| 41,451 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.