content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def convert_quat_wxyz_to_xyzw(quat):
"""Convert quaternion from wxyz to xyzw representation."""
return quat[..., [1, 2, 3, 0]]
|
ed02298c4f7ff61297fdcb6f40aa394045b9a812
| 40,233 |
def yaml(path, _pod):
"""Retrieves a yaml file from the pod."""
return _pod.read_yaml(path)
|
ca610b1b916a83a535e578e3b6f102c36f0ed4af
| 40,234 |
def snake_case_to_title(string):
""" A convenience function that converts a snake-cased function name into title case
:param str string: A string encoded using snake case
:return: A converted string
"""
return string.replace('_', ' ').title()
|
9229ebbfbe48fd13da17616a9b81dae01cfcb303
| 40,238 |
def 取最大数(数值列表):
"""
传入要对比的列表,如(1,2,3),返回里面最大的数字
:param 数值列表: (1,2,3)
:return: 3
"""
return max(数值列表)
|
111eba5c9c37e7656ca410447e1ac5a3f0041ea7
| 40,239 |
def ucc(graph):
"""Identify connected components in undirected graph.
Examples:
>>> ucc(graph)
{1: ['A', 'B', 'C', 'E', 'D', 'F', 'G'], 2: ['H', 'I', 'J'], 3: ['K']}
"""
visited = []
# Group each vertex with a component.
components = {}
# Component marker
num_cc = 0
for v in graph:
if v not in visited:
num_cc += 1
components[num_cc] = [v]
# BFS
q = [v]
visited.append(v)
while q:
current = q.pop(0)
for a in graph[current]:
if a not in visited:
visited.append(a)
q.append(a)
components[num_cc].append(a)
return components
|
60688d8c4bc025e4cb12bbfff08c07cc29a611bd
| 40,247 |
import datetime
def epoch_to_datetime(value):
"""
Converts epoch(unix) time into python datatime
"""
# return datetime.datetime.fromtimestamp(value)
return datetime.datetime.fromtimestamp(value).strftime('%c')
|
5e725f3b6e43828fc08e9fb68ba3ce6db13ae8b6
| 40,248 |
import random
def random_number(bits):
"""Generate a random integer that will cleanly fit in a number of bits."""
max, min = 2**bits - 1, 2**(bits - 1)
return random.randint(min, max)
|
89e7f167bc7af35b7193a7c148f863fd1e185a74
| 40,251 |
def check_ALL_DS(DS_ES_X_Map):
"""
ES used with ALL as DS can not be used with any other DS.
This function checks if this is true.
"""
ES_with_ALL = [row[1] for row in DS_ES_X_Map if row[0] == "ALL"]
ES_without_ALL = [ES for ES in ES_with_ALL
for row in DS_ES_X_Map if row[0] != "ALL"]
return len(ES_without_ALL) == 0
|
58b2f2fd4a4a1f20bba74aa6150d91169a4a9695
| 40,252 |
def default_zero(input):
"""
Helper function that returns the input, replacing anything Falsey
(such as Nones or empty strings) with 0.0.
"""
return round(input if input else 0.0, 2)
|
d5c06c9f0449277e5fc2b8083335fa7e35595305
| 40,256 |
def unquote_colors(context):
"""
URL unqote colors from context.
"""
for k, v in context.items():
if len(v) == 9 and v.startswith("%23"):
context[k] = "#" + v[3:]
return context
|
040fa15b3f480db7762128b08d0e053a83697f50
| 40,258 |
def split_name(name):
"""
Split a name into two names. If there is only one name, the last name will be
empty. If there are more than two, the extra names will be appended to the last
name.
Args:
name (str): A name to split into first name, last name
Returns:
tuple: (first, last)
"""
if name is None:
return "", ""
names = name.split(maxsplit=1)
if len(names) == 0:
return "", ""
else:
return names[0], " ".join(names[1:])
|
e399cc06f780a2c0139de93c1070a50f4224b38d
| 40,260 |
def _GetAllBuildersInConfig(trybot_config):
"""Returns a list of all variable builders referenced in config."""
all_config_builders = set()
for builders in trybot_config.itervalues():
for builder in builders.itervalues():
waterfall_builder = builder.get('waterfall_trybot')
flake_builder = builder.get('flake_trybot')
all_config_builders.add(waterfall_builder)
all_config_builders.add(flake_builder)
return list(all_config_builders)
|
1796a221aebcb9724568e49bde781bc568f867a1
| 40,262 |
def filter_process_by_name(name):
"""Filter process by process name."""
if name in ["cp", "tee", "date", "Null", "recon-all"]:
return True
return False
|
2b33d14e7e1bd3e6e09ce8af97a90e01d10dbe59
| 40,263 |
import time
def _CalculatePastDate(days_ago, now=None):
"""Calculates the timestamp N days ago from now."""
if now is None:
now = int(time.time())
ts = now - days_ago * 24 * 60 * 60
return ts
|
1a0affad807e1380dbb61a093cbc956dd3e86107
| 40,267 |
def assert_uniqueness_clause(property: str, node: str = 'node') -> str:
"""
Returns the *part* of a statement that ensures a property of a node is unique.
Parameters
----------
property : str
Name of the mean-to-be-unique property
node : str, optional
Name of the node (coming from other statement)
Returns
-------
out: str
Neo4j statement
"""
return f"ASSERT {node}.`{property}` IS UNIQUE"
|
2433dfe24df0b58264387310b7875ce78ea7b3ac
| 40,268 |
def findLinker(seq, linker):
"""
Match the linker in the read sequence.
"""
pos = -1
for i in range(len(seq) - 9):
seed = seq[i:i + 9]
if linker.startswith(seed):
pos = i
break
return pos
|
93e767552d289a004eb10385d15e46ad90e785f3
| 40,269 |
def split_lengths_for_ratios(nitems, *ratios):
"""Return the lengths of the splits obtained when splitting nitems
by the given ratios"""
lengths = [int(ratio * nitems) for ratio in ratios]
i = 1
while sum(lengths) != nitems and i < len(ratios):
lengths[-i] += 1
i += 1
assert sum(lengths) == nitems, f'{sum(lengths)} != {nitems}\n{ratios}'
return lengths
|
8d2ccdd028afe74309d955e3a3a6741c87411b0b
| 40,271 |
def filter_corpus_category(corpus, category):
"""Returns only corrections with a defined category from the full corpus format.
Args:
corpus (dict): Corpus dictionary, loaded with 'load_enelvo_format_full'.
category (str): Selected category.
Returns:
list A list of tuples with format (noisy_word,correction) if noisy_word belongs to ``category``.
"""
corrs = []
for i in corpus:
for e in corpus[i]["errs"]:
if e["cat"] == category:
corrs.append((e["word"], e["corr"]))
return corrs
|
e0fd35aaad9d0af429e21686fe56fcfdcf651533
| 40,274 |
def to_date_obj(date):
""" Transforms a date into an obj """
obj = {}
obj['year'] = date.year
obj['month'] = date.month
obj['day'] = date.day
obj['hour'] = date.hour
obj['minute'] = date.minute
obj['second'] = date.second
obj['microsecond'] = date.microsecond
obj['tzinfo'] = str(date.tzinfo)
return obj
|
34fcc0234a76c4644dc13ada139d11c0559ba4ea
| 40,276 |
def read(name):
"""
Read file in local current working directory and return the contents
:param name: The name of the file
:type name: string
:returns: string -- Contents of file
"""
return open(name).read()
|
243f3e0c5818e3e498d3be14a5dea0a59495e417
| 40,278 |
import pickle
def load_df(path):
"""Loads and returns an object from a pickle file in path
Parameters:
path (string): Path where the pickle file resides
Returns:
object: Object in pickle file
"""
infile = open(path, 'rb')
df = pickle.load(infile)
infile.close()
return df
|
4399e897ef7ae9d7a2342548f0ad15819ded331e
| 40,285 |
def getStratifiedSampleBandPoints(image, region, bandName, **kwargs):
"""
Function to perform stratitfied sampling of an image over a given region, using ee.Image.stratifiedSample(image, region, bandName, **kwargs)
Args:
image (ee.Image): an image to sample
region (ee.Geometry): the geometry over which to sample
bandName (String): the bandName to select for stratification
Returns:
An ee.FeatureCollection of sampled points along with coordinates
"""
dargs = {
'numPoints': 1000,
'classBand': bandName,
'region': region
}
dargs.update(kwargs)
stratified_sample = image.stratifiedSample(**dargs)
return stratified_sample
|
c5a8ae26f8b4a76dc2d12e48524698f2d582d08e
| 40,287 |
def z2lin(array):
"""calculate linear values from a array of dBs"""
return 10**(array/10.)
|
e0ed221666398c9ca8488fd20f5e3b0711ad6a7c
| 40,288 |
def compute_jaccard_similarity(site_a, site_b):
"""
Compute the Jaccard similarity between two given ActiveSite instances.
Input: two ActiveSite instances
Output: the similarity between them (a floating point number)
"""
a = [i.type for i in site_a.residues]
b = [i.type for i in site_b.residues]
similarity = 0.0
intersection = len(set(a) & set(b))
union = len(set(a) | set(b))
similarity = float(intersection)/float(union)
return similarity
|
1e3f83e3a98c3e7f658a22f75a5f377efd6529d5
| 40,289 |
def images_path(instance, filename):
"""
Returns path where free parking place images will be stored.
"""
parking_name = instance.owning_parking.name
if not parking_name:
parking_name = '.'
return 'parking_places/{0}/{1}'.format(parking_name.replace(' ', '_'), filename)
|
6ea3eb2f8ffbd2af3f729fd7c425a707cccf3c32
| 40,295 |
def stringifyPlayMove(pos, modifiers, name="game"):
"""
A utility method for automating getting code for playing moves.
Helpful for generating code for testing particular cases of moves made.
Can be used with things like the GUI or moves made by the QModels to replicate exact board states
without having to manually place every piece.
Parameters work in the same way as are passed to Game.play and Game.canPlay
:param pos: The position of the piece to move
:param modifiers: A 3-tuple of the modifiers (left, forward, jump) for the piece to move
:param name: The variable name of the game that this play method call will use
:return A string representing the code used to make the move
"""
return name + ".play(" + str(pos) + ", " + str(modifiers) + ")"
|
2a902ce02627be707664f125346f21d14f333e02
| 40,298 |
from typing import Counter
def get_piece(turn, grid):
"""Counts the current piece on the grid
:param turn: "X" or "O"
:param grid: A 2-dimensional 7x7 list
:return: Number of pieces of "turn" on the grid
"""
grid_combined = []
for row in grid:
grid_combined += row
counter = Counter(tuple(grid_combined))
return counter[turn]
|
1c7fda238ddba6d2620b5dfdee1b4173f606ede6
| 40,302 |
def get_distance(p1, p2):
"""It finds the minimum distance between two Points
Parameters
----------
p1 : shapely geometric object
The first point
p2 : shapely geometric object
The second point
Returns
-------
list
Returns the minimum distance. The value follows the geometric object projection.
"""
dist = 5000
try:
dist = min(dist, p1.distance(p2))
except TypeError as err:
print(f'{err}')
return [dist]
|
2bcfdc62b25e286d1a1d46c27f058e8da3e722e9
| 40,305 |
def is_proxy(obj):
""" Return True if `obj` is an array proxy
"""
try:
return obj.is_proxy
except AttributeError:
return False
|
871c163b30ccc1b31b435c9baac5c0d6063d271e
| 40,308 |
def is_key_all_values_equal(list_of_dict, key, value):
"""
Check if all values of a key are equal to the specified value.
"""
for d in list_of_dict:
if d[key] != value:
return False
return True
|
c8e303ffd3f9de4f065ba0bd52d67e1a6c1f8708
| 40,309 |
def celsius_to_fahrenheit(celsius_temp):
"""Calculate fahrenheit temperature from celsius
PARAMETERS
----------
celsius_temp : float
A temperature in degrees
RETURNS
-------
temperature : float
"""
# apply formula
return (celsius_temp * (9/5)) + 32
|
c6674816a463d022da8863e0f8fea78dd57c1a22
| 40,314 |
from functools import reduce
def merge_dicts(list_of_dicts):
"""
This will merge a list of dicts. Any duplicate keys will end up with the last value seen.
"""
return reduce(lambda a, d: a.update(d) or a, list_of_dicts, {})
|
68c2d67c97f2276c31b4932c34e31034b1fe3213
| 40,317 |
def filename_flag(filename, flag):
"""Add a string to filenames to indicate how they've been processed."""
filename_parts = filename.split('.')
output = ''
count = len(filename_parts)
for part in filename_parts:
if count == 1:
output = output + '-' + flag + '.'
count = count - 1
output = output + part
return str(output)
|
f3cd6016244cf050b732e273be8dea4f94693677
| 40,327 |
from typing import Union
from pathlib import Path
def is_valid_file(filepath: Union[str, Path, None]) -> bool:
"""check if the passed filepath points to a real file"""
if filepath is None:
return False
return Path(filepath).exists()
|
dbe6713938ac335d38d4df6a1f80b6595a65969f
| 40,329 |
def shorten_record_name(record_name):
""" Return the first part of the record (which can be None, comet or
comet.connection)
"""
if record_name is None:
return record_name
return record_name.split(".", 1)[0]
|
b84c86b22153f403909e86aa452d6f2c7eea32ca
| 40,330 |
import hashlib
def digest(key: str) -> str:
"""Get the hash digest for the key."""
return hashlib.sha256(key.encode()).hexdigest()
|
82c426ce7f396ac6c5bce38ffe83ba802bb7ed83
| 40,333 |
import functools
import warnings
def deprecated(custom_msg=None, new_func_name=None):
"""This is a decorator which can be used to mark functions as deprecated.
It will result in a warning being emitted when the function is used. We use
this decorator instead of any deprecation library because all libraries raise
a DeprecationWarning but since by default this warning is hidden, we use this
decorator to manually activate DeprecationWarning and turning it off after
the warn has been done."""
def wrap(func):
@functools.wraps(func)
def wrapped_method(*args, **kwargs):
warnings.simplefilter('always', DeprecationWarning) # Turn off filter
msg = 'Call to deprecated function "{}".'.format(func.__name__)
if new_func_name:
msg += ' Please, use "{}" function instead.'.format(new_func_name)
if custom_msg:
msg = custom_msg
warnings.warn(msg, category=DeprecationWarning, stacklevel=2)
warnings.simplefilter('ignore', DeprecationWarning) # Reset filter
return func(*args, **kwargs)
return wrapped_method
return wrap
|
119774d6e0eb093b0e9039411ca62b824d6fb4e0
| 40,334 |
def coalesce_dates(dates):
"""
Coalesces all date pairs into combined date pairs that makes it easy to find free time gaps.
>>> from date_collapse import coalesce_dates
>>> dates = [(1,4),(2,8),(12,16),(16,21)]
>>> cdates = coalesce_dates(dates)
>>> print(cdates)
[(1, 8), (12, 21)]
>>> dates = [(1,4),(2,8),(8,10),(12,16),(16,21),(21,31)]
>>> cdates = coalesce_dates(dates)
>>> print(cdates)
[(1, 10), (12, 31)]
"""
parsed_dates = []
for date in dates:
parsed_dates.extend([(date[0], 1),(date[1], -1)])
parsed_dates.sort(key = lambda d: d[0])
count = 0
coalesced = []
current_block = [None, None]
for date in parsed_dates:
if count == 0:
if not coalesced or (coalesced[-1][1] != date[0]):
current_block = [date[0], None]
else:
coalesced.pop()
count += date[1]
if count == 0:
current_block[1] = date[0]
coalesced.append((current_block[0], current_block[1]))
return coalesced
|
161ef92c6c8946a277e11504cb3dee1082582123
| 40,337 |
def zscore(rate, mean, std):
"""Calculates the Z-score from the mean and std."""
zscore = (rate - mean) / std
return zscore
|
f122034a930301182a85db67457ba18b76ceeea0
| 40,342 |
def apply_process(sequence, number_of_times, process):
"""Apply process function to sequence number_of_times."""
if isinstance(sequence, int):
sequence = [int(num) for num in str(sequence)]
for _ in range(number_of_times):
sequence = process(sequence)
return sequence
|
6db3657360c4dfdb6f38d9241429f66656913135
| 40,345 |
def apply_1overt_decay(params, t):
"""
Implements the mathematical form: a = a0 / (1 + k*t).
Args:
params: parameters for the annealing
t: iteration number (or you can use number of epochs)
Returns:
Updated learning rate
"""
a0 = params['lr0'] # initial learning rate
k = params['k'] # decay factor
return a0 * 1. / (1 + k*t)
|
867e43cfe9733d66e469d9223d8b6e2521ca3362
| 40,347 |
import re
def _SplitFreqRange(freq_range):
"""Splits a `freq_range` str in a list of numerical (fmin, fmax) tuples."""
try:
fmin, fmax = re.split(',|-', freq_range.strip())
return [(float(fmin), float(fmax))]
except AttributeError:
freq_ranges = []
for one_range in freq_range:
fmin, fmax = re.split(',|-', one_range.strip())
freq_ranges.append((float(fmin), float(fmax)))
return freq_ranges
|
db3c7fc2d2a3576ab07b5acdbae9308408a04575
| 40,349 |
def _create_key_val_str(input_dict):
"""
Returns string of format {'key': val, 'key2': val2}
Function is called recursively for nested dictionaries
:param input_dict: dictionary to transform
:return: (str) reformatted string
"""
def list_to_str(input_list):
"""
Convert all list items to string.
Function is called recursively for nested lists
"""
converted_list = []
for item in sorted(input_list, key=lambda x: str(x)):
if isinstance(item, dict):
item = _create_key_val_str(item)
elif isinstance(item, list):
item = list_to_str(item)
converted_list.append(str(item))
list_str = ", ".join(converted_list)
return "[" + list_str + "]"
items_list = []
for key in sorted(input_dict.keys(), key=lambda x: str(x)):
val = input_dict[key]
if isinstance(val, dict):
val = _create_key_val_str(val)
elif isinstance(val, list):
val = list_to_str(input_list=val)
items_list.append("{}: {}".format(key, val))
key_val_str = "{{{}}}".format(", ".join(items_list))
return key_val_str
|
4313054d7afd46b216fabe226530c75466fee527
| 40,350 |
import re
def filter_tests(filters, test_ids):
"""Filter test_ids by the test_filters.
:param list filters: A list of regex filters to apply to the test_ids. The
output will contain any test_ids which have a re.search() match for any
of the regexes in this list. If this is None all test_ids will be
returned
:param list test_ids: A list of test_ids that will be filtered
:return: A list of test ids.
"""
if filters is None:
return test_ids
_filters = list(map(re.compile, filters))
def include(test_id):
for pred in _filters:
if pred.search(test_id):
return True
return list(filter(include, test_ids))
|
d8ca31fddb052dde7eaaa21c777e2963e705a598
| 40,353 |
def choose_best(ordered_choices, possible, check, default=None):
"""
Select the best xref from several possible xrefs given the ordered list of
xref database names. This function will iterate over each database name and
select all xrefs that come from the first (most preferred) database. This
uses the check function to see if the database contains the correct
information because this doesn't always just check based upon the database
names or xref, but also the rna_type (in some cases). Using a function
gives a lot of flexibility in how we select the acceptable xrefs.
Parameters
----------
ordered_choices : list
A list of several possible xref database names. These should be in the
order in which they are preferred.
possible : list
The list of xrefs to find the best for.
check : callable
A callable object to see if given xref and database name match.
default : obj, None
The default value to return if we cannot find a good xref.
Returns
-------
selected : obj
The list of xrefs which are 'best' given the choices. If there is no
good xref the default value is returned.
"""
for choice in ordered_choices:
found = [entry for entry in possible if check(choice, entry)]
if found:
return (choice, found)
return (None, default)
|
d10d8d1d527fc2a04603a8f4a6c8e10bb5768bdd
| 40,357 |
def format_time_to_HMS( num_seconds ):
"""
Formats 'num_seconds' in H:MM:SS format. If the argument is a string,
then it checks for a colon. If it has a colon, the string is returned
untouched. Otherwise it assumes seconds and converts to an integer before
changing to H:MM:SS format.
"""
if type(num_seconds) == type(''):
if ':' in num_seconds:
return num_seconds
secs = int(num_seconds)
nhrs = secs // 3600
secs = secs % 3600
nmin = secs // 60
nsec = secs % 60
hms = str(nhrs)+':'
if nmin < 10: hms += '0'
hms += str(nmin)+':'
if nsec < 10: hms += '0'
hms += str(nsec)
return hms
|
2cd24911976f9d502458043b022a3007e1a1611b
| 40,361 |
def afri_16(b8a, b11):
"""
Aerosol Free Vegetation Index 1.6 \
(Karnieli, Kaufman, Remer, and Wald, 2001).
.. math:: AFRI_16 = b8a - 0.66 * (b11 / b8a) + 0.66 * b11
:param b8a: NIR narrow.
:type b8a: numpy.ndarray or float
:param b11: SWIR 1.
:type b11: numpy.ndarray or float
:returns AFRI_16: Index value
.. Tip::
Karnieli, A., Kaufman, Y. J., Remer, L., Wald, A. 2001. \
AFRI - aerosol free vegetation index. Remote Sensing of Environment \
77,10-21. doi:10.1016/S0034-4257(01)00190-0.
"""
AFRI_16 = b8a - 0.66 * (b11 / b8a) + 0.66 * b11
return AFRI_16
|
0d0da371a4fea948032b2dfd1bb89a55ffe19680
| 40,364 |
def reserved(num):
"""
Return reserved bytes - zeros
"""
return bytearray(num)
|
3e76b61a3c71179d3b3c8573420b60431f711d31
| 40,372 |
def episode_player_url(episode):
"""Return the player URL for the given episode code"""
player_url = 'http://www.bbc.co.uk/radio/player/{}'
return player_url.format(episode)
|
99400b8d0b0a8ed8bcd73e788ecad0e19764cc33
| 40,375 |
import torch
def build_sparse_adjacent_matrix(edges: list, n: int, device=None, dtype=torch.float, undirectional=True):
"""
Return adjacency matrix
:param edges: list of edges, for example (st, ed)
:param n: number of vertices
:param device:
:param dtype:
:param undirectional: make adjacency matrix un-directional
:return: the sparse adjacent matrix
"""
i = torch.tensor(list(zip(*edges)))
v = torch.ones(i.shape[1], dtype=dtype)
sparse = torch.sparse_coo_tensor(i, v, (n, n))
if device is not None:
sparse = sparse.to(device)
a = sparse.to_dense()
if undirectional:
ud_a = ((a > 0) | (a.transpose(-2, -1) > 0)).to(dtype)
a = ud_a
return a
|
bffcea8b65cd3c94c8b0da33aad3dc4108ce0519
| 40,384 |
def oz_to_g(oz):
"""
Convert ounces to grams
"""
return oz * 28.34952
|
0c547b3b95964e25ace4d00d9c491f367282b89f
| 40,393 |
def lam2f(l):
"""
Computes the photon frequency in Hz
Parameters
----------
l : float
Photon wavelength in m
Returns
-------
f : float
Frequency in Hz
"""
f = 299792458/l
return f
|
5e6d5745c1a19f4b2a8def3fbdca707e60634019
| 40,395 |
def _mangle(cls, name):
"""
Given a class and a name, apply python name mangling to it
:param cls: Class to mangle with
:param name: Name to mangle
:return: Mangled name
"""
return f"_{cls.__name__}__{name}"
|
8b789a03b2f25c71bc661cc1eb394650087128b9
| 40,397 |
from typing import List
from typing import Dict
from typing import Optional
def aggregate_statuses(statuses: List[Dict], dc_voltage=False) -> Optional[Dict]:
"""Aggregates inverter statuses for use for PVOutput.org uploads.
Does some rounding and integer conversion.
Args:
statuses: List of inverter statuses as returned by Inverter.status().
dc_voltage: If True, aggregates DC voltage instead of AC voltage.
Returns:
Dictionary of keyword arguments for add_status() or None if no inverter
has operation mode normal.
"""
def avg(items):
"""Calculates average."""
i = list(items)
return sum(i) / len(i)
# Calculate values for each inverter separately
values = []
for s in statuses:
# Filter systems with normal operating mode
if s['operation_mode'] != "Normal":
continue
# Calculate voltage
if dc_voltage:
# Takes average of PV1 and PV2 voltage
voltage = avg([s['pv1_voltage'], s['pv2_voltage']])
elif 'grid_voltage_r_phase' in s:
# For three-phase inverters, take average voltage of all three phases
voltage = avg([s['grid_voltage_r_phase'], s['grid_voltage_s_phase'], s['grid_voltage_t_phase']])
else:
# For one phase inverter, pick the grid voltage
voltage = s['grid_voltage']
values.append({
'energy_gen': int(s['energy_today'] * 1000),
'power_gen': int(s['output_power']),
'temp': s['internal_temperature'],
'voltage': voltage,
})
# Aggregate values of all inverters
if not values:
return None
return {
'energy_gen': sum(v['energy_gen'] for v in values),
'power_gen': sum(v['power_gen'] for v in values),
'temp': round(avg(v['temp'] for v in values), 1),
'voltage': round(avg(v['voltage'] for v in values), 1),
}
|
8432ec1f14c3e96360934df456e655eb08553f37
| 40,401 |
def traverse(fileName, steepness=(1, 3), start=0):
"""Count collisions of a traversal of a slope.
Parameters:
fileName: of tree-map
start: index of start position
steepness: tuple of horizontal speed (veer) and vertical speed (plummet)."""
width = 0
collisions = 0
position = start
progress = 0
plummet, veer = steepness
with open(fileName) as inFile:
for line in inFile:
if width == 0: #firstLine
width = len(line) - 1 # don't count newline
progress %= plummet
if progress == 0:
if(line[position] == '#'):
collisions += 1
position += veer
position %= width
progress += 1
return collisions
|
45b13edb3726b19d0df3e347dd177390568a54c2
| 40,403 |
def match_host(host, domainlist):
"""Return True if host matches an entry in given domain list."""
if not host:
return False
for domain in domainlist:
if domain.startswith('.'):
if host.endswith(domain):
return True
elif host == domain:
return True
return False
|
099ea605da3734433a564815c1eb58d7d58dfd5a
| 40,404 |
def isthaichar(ch: str) -> bool:
"""
Check if a character is Thai
เป็นอักษรไทยหรือไม่
:param str ch: input character
:return: True or False
"""
ch_val = ord(ch)
if ch_val >= 3584 and ch_val <= 3711:
return True
return False
|
e50f78105c3db03dc4ee8bac7735a1d809d53656
| 40,406 |
def get_prop_architecture(typology_df, architecture_DB):
"""
This function obtains every building's architectural properties based on the construction and renovation years.
:param typology_df: DataFrame containing each building's construction and renovation categories for each building
component based on the construction and renovation years
:type typology_df: DataFrame
:param architecture_DB: DataFrame containing the archetypal architectural properties for each use type, construction
and renovation year
:type categories_df: DataFrame
:return prop_architecture_df: DataFrame containing the architectural properties of each building in the area
:rtype prop_architecture_df: DataFrame
"""
# create prop_architecture_df based on the construction categories and archetype architecture database
prop_architecture_df = typology_df.merge(architecture_DB, left_on='STANDARD', right_on='STANDARD')
return prop_architecture_df
|
3dc4bfe88783c2a20a12a8951db789b3cdcfd460
| 40,410 |
def sets_to_contingency(a, b, N):
"""
Creates a contingency table from two sets.
params:
a, b: sets to compare
N: total number of possible items
returns:
(f11, f10, f01, f00) tuple of contingency table entries:
f11 = # of items both in a and b
f10 = # of items only in a
f01 = # of items only in b
f00 = # of items not in either a or b
"""
f11 = len(a.intersection(b))
f10 = len(a) - f11
f01 = len(b) - f11
f00 = N - (f11 + f10 + f01)
return (f11, f10, f01, f00)
|
3d782fb47899c6e401034750dddfaffc98f9afc2
| 40,412 |
def uniq_list(inlist):
"""Remove unique elements from a list"""
inset = set(inlist)
return list(inset)
|
7699d42cbfad14f2479c8cf133113c62ae236ab4
| 40,413 |
from typing import Dict
from typing import Any
def get_field(data: Dict[str, Dict[str, Any]], key: str) -> Any:
"""
Get a field from nested dictionary, with the field denoted with dot-separated keys.
For example, "a.b.c" -> data['a']['b']['c']
"""
keys = key.split(".")
while keys:
data = data[keys.pop(0)]
return data
|
efd342e3badde4e83d3ad344a2188b7fb49b6d04
| 40,414 |
def canonicalize_node_size(node):
"""
Given a node description from the GCE API returns the canonical butter
format.
"""
return {
"type": node.name,
# Memory is returned in "MB"
"memory": int(node.ram * 1000 * 1000),
"cpus": float(node.extra["guestCpus"]),
"storage": node.disk * 1024,
"location": node.extra["zone"].name
}
|
3bc9655234b6f7141eb3b311b3aecd9ba5ec1b99
| 40,420 |
def mix_images(background_img, foreground_img):
"""paste an image on top of another image
Args:
background_img: pillow image in background
foreground_img: pillow image in foreground
Returns:
pillow image
"""
background_img = background_img.convert('RGBA')
foreground_img = foreground_img.convert('RGBA')
img_w, img_h = foreground_img.size
bg_w, bg_h = background_img.size
offset = ((bg_w - img_w) // 2, (bg_h - img_h) // 2)
background_img.paste(foreground_img, offset, mask=foreground_img)
return background_img
|
b86834041c42891b54795b72588f33f1c41e320a
| 40,421 |
def _decode_instance(encoded_data, decoded_objects, data_to_decode):
""" Decode a data structure
Args:
encoded_data (:obj:`dict`, :obj:`list`, or scalar): data structure with
encoded objects
decoded_objects (:obj:`dict`): dictionary that maps the unique ids of
encoded objects to dictionaries that represent the decoded objects
data_to_decode (:obj:`list`): list of tuples of data structures that still
need to decoded. The first element represents the data structure that
needs to be decoded. The second element represents the object that will
represent the decoded data structure.
Returns:
:obj:`dict`, :obj:`list`, or scalar: decoded data structure
"""
if isinstance(encoded_data, dict) and '__type' in encoded_data:
obj_type = encoded_data.get('__type')
obj = decoded_objects.get(encoded_data['__id'], None)
if obj is None:
obj = {'__type': obj_type}
decoded_objects[encoded_data['__id']] = obj
data_to_decode.append((encoded_data, obj))
elif isinstance(encoded_data, list):
obj = []
data_to_decode.append((encoded_data, obj))
elif isinstance(encoded_data, dict):
obj = {}
data_to_decode.append((encoded_data, obj))
else:
obj = encoded_data
return obj
|
8e9cb5502aded89cc04268b3098cff9e25fb1a91
| 40,422 |
import bisect
def find_min_revision_index(revisions_list, revision):
"""Find the min index for bisection. Find largest revision <= the given
revision."""
# bisect_left partitions |revisions_list| into 2 such that:
# all(val < revision for val in a[:index])
# all(val >= revision for val in a[index:])
index = bisect.bisect_left(revisions_list, revision)
if index < len(revisions_list) and revisions_list[index] == revision:
return index
if index > 0:
return index - 1
# No revisions <= given revision.
return None
|
5a664b74613394a7376a5d2e54333dbf66e83b2c
| 40,423 |
def users_to_names(users):
"""Convert a list of Users to a list of user names (str).
"""
return [u.display_name if u is not None else '' for u in users]
|
881b6717e11d88971ef307fd6b128f9d83d0868c
| 40,424 |
def sensibleBulk(Tw,Ta,S,rhoa=1.2,Ch=1.5e-3,cpa=1004.67):
"""
Sensible heat flux from water using the bulk exchange formulation
Inputs:
Tw - Water temp [C]
Ta - Air temp [C]
S - Wind speed magnitude [m s^-1]
rhoa - air density [kg m^-3]
Ch - Stanton number
cpa - Specific heat of air [J kg-1 K-1]
"""
return -rhoa*cpa*Ch*S*(Tw-Ta)
|
ec7bf965a58704c7cbd5e099f6771fa40698c4e8
| 40,429 |
def triage_hashes(hash_map):
"""Triage hash map in pair of names to keep and to remove in that order.
Three cases:
0. size zero regardless of hash => remove
1. unique hash => keep
2. hash matching two entries => keep both
3. hash with more than two entries => keep first and last, rest remove
"""
keep, remove = [], []
for info in hash_map.values():
if info[0][1] == 0:
remove.extend(name for name, _ in info)
else:
if len(info) == 1:
keep.extend(name for name, _ in info)
else:
first, last = info[0][0], info[-1][0]
keep.extend([first, last])
remove.extend(name for name, _ in info[1:-1])
return keep, remove
|
0d2cb2f6cbff3436b780ac45eb1db0c3b7753488
| 40,432 |
import re
def remove_outer_parens(s):
"""
If there are outer parens when we don't need them, get rid of them
Only one set
>>> a = "(1910-1920)"
>>> remove_outer_parens(a)
'1910-1920'
"""
ret_val = s
m = re.match("\s*\((?P<inside_data>.*)\)\s*", s)
if m:
ret_val = m.group("inside_data")
return ret_val
|
353aa7adb19dd6e521c038acac3dabac72030325
| 40,434 |
import re
def expNumRe(text):
"""
expand numeric regular expression to list
e.g. 'n[01-03],n1[0-1]': ['n01','n02','n03','n10','n11']
e.g. 'n[09-11].com': ['n09.com','n10.com','n11.com']
"""
explist = []
for regex in text.split(','):
regex = regex.strip()
r = re.match(r'(.*)\[(\d+)-(\d+)\](.*)', regex)
if r:
h = r.group(1)
d1 = r.group(2)
d2 = r.group(3)
t = r.group(4)
convert = lambda d: str(('%0' + str(min(len(d1), len(d2))) + 'd') % d)
if d1 > d2: d1, d2 = d2, d1
explist.extend([h + convert(c) + t for c in range(int(d1), int(d2)+1)])
else:
# keep original value if not matched
explist.append(regex)
return explist
|
cd42ba0fca726c69a0a3b4335373317467cc9463
| 40,435 |
import shutil
def process_java_resources(target, source, env):
"""Copy resource file into .resources dir. """
shutil.copy2(str(source[0]), str(target[0]))
return None
|
3ee5194703956d43187a0c4f802c3ee4c132c18a
| 40,440 |
def function_paths(func, tags):
"""Paths to all source files in tags defining a function func."""
return sorted([tag['file'] for tag in tags if tag['symbol'] == func])
|
39931421d8220bd9aa74dc9d5813d29e7e686b5c
| 40,441 |
def float_to_string(value: float, replacement: str = "0,00") -> str:
"""
Converts a float to a properly formatted string value
"""
return ("%.2f" % value).replace('.', ',') if value is not None else replacement
|
95570ff4fcb78911c9f9a66f5559aea7fa73bbee
| 40,442 |
import glob
import re
def _find_cpt_base(cpt_base):
"""
Find checkpoint file base name in current directory
:param str cpt_base: Start of checkpoint file name that ends with a
number of one to three digits followed by '.cpt'
:return: The base name of the checkpoint files (everything but the number
and ".cpt")
:rtype: str
"""
possible_matches = glob.glob(cpt_base + "*.cpt")
for f_name in possible_matches:
match = re.match(r"({}.*?)\d{}\.cpt".format(cpt_base, "{1,3}"), f_name)
if match:
return match.group(1)
raise ValueError(
"No checkpoint file name found based on the base " "name {}.".format(cpt_base)
)
|
765bc409c49ffdc9d0574fab93a4e3a8e5660ab2
| 40,448 |
def _as_bytes(s):
""" Used to ensure string is treated as bytes
The output
Args:
s (str): string to convert to bytes
Returns:
byte-encoded string
Example:
>>> str(_as_bytes('Hello, World').decode()) # Duck typing to check for byte-type object
'Hello, World'
"""
if isinstance(s, bytes):
return s
return bytes(s, encoding='latin_1')
|
fb5c2d09a1a1d930e05142ec4644554979156170
| 40,452 |
def _maybe_correct_vars(vars):
"""Change vars from string to singleton tuple of string, if necessary."""
if isinstance(vars, str):
return (vars,)
else:
return vars
|
1aa46b03988f06a3697b703991c64899e173d0eb
| 40,453 |
def decrementing_pattern(size: int) -> bytes:
"""
Return `size` bytes with a pattern of decrementing byte values.
"""
ret = bytearray(size)
for i in range(size - 1, -1, -1):
ret[i] = i & 0xff
return bytes(ret)
|
b33981468c9e23ae09582e873547147609ebd2e2
| 40,459 |
from typing import List
import json
def analyze_apache_logs(input_file: str, http_response_code_threshold=0.5) -> List:
"""
Analyze parsed Apache access log file to find malicious activity.
:param input_file: Apache access log file (JSON format)
:param http_response_code_threshold: HTTP response code ratio under which to flag as malicious
:return: list of malicious logs
"""
malicious_logs = []
http_response_ratios = {}
with open(input_file, 'r') as f:
logs = json.load(f)
# look for specific message types and count number of HTTP 200 response codes versus error codes
for log in logs:
if 'Nmap Scripting Engine' in log['user_agent']:
mal_data = {'category': 'NMAP Scanning', 'client_ip': log['client_ip'], 'datetime': log['datetime']}
malicious_logs.append(mal_data)
if log['client_ip'] not in http_response_ratios:
http_response_ratios[log['client_ip']] = {'200': 0, 'error': 0}
if log['response_code'] != '200':
http_response_ratios[log['client_ip']]['error'] += 1
else:
http_response_ratios[log['client_ip']]['200'] += 1
http_response_ratios[log['client_ip']]['datetime'] = log['datetime']
# process HTTP response code ratios and append to malicious logs if ratio is under given threshold
for k, v in http_response_ratios.items():
http_200 = v['200']
http_error = v['error']
total = http_200 + http_error
ratio = http_200 / total
if ratio < http_response_code_threshold:
v['ratio'] = ratio
v['category'] = 'Web Directory Enumeration'
tmp_dict = {'category': 'Web Directory Enumeration', 'client_ip': k, 'datetime': v['datetime']}
malicious_logs.append(tmp_dict)
return malicious_logs
|
2255e9ca7c43f93d28f61e6e25687d3b5f61ebd8
| 40,460 |
def build_lookup_dict_snmp_trap(list_content):
"""
Build key/value lookup dict specifically for SNMP Traps which use "server-ip" + "version"
:param list_content: List of dicts to derive lookup structs from
:return: lookup dict
"""
lookup_dict = {}
for item in list_content:
item_server_ip = item.get('server_ip')
item_version = item.get('version')
item_id = item.get('id')
if item_server_ip and item_version and item_id is not None:
lookup_dict["{0}+{1}".format(item_server_ip, item_version)] = item_id
return lookup_dict
|
42b38ff7cd26cd5c785f474d131c67c303fbe1ce
| 40,463 |
import math
def format_hash(hash_str: str, hash_len: int, hash_seg_len: int, hash_sep: str) -> str:
"""
Format a hash string: keep only hash_len chars from it, and break it up into
segments of len hash_seg_len, using the hash_sep as separator. Ex:
>>> format_hash('abcdef1232567890', 8, 2, '-')
ab-cd-ef-12
"""
hash_str = hash_str[:hash_len]
if hash_seg_len >= hash_len:
return hash_str
num_segs = math.ceil(len(hash_str) / hash_seg_len)
return hash_sep.join(hash_str[hash_seg_len * i: (hash_seg_len * i + hash_seg_len)]
for i in range(num_segs))
|
2e7866fcc871bab1c1758403bc198a10c54c1334
| 40,468 |
import importlib
def package_is_installed(package_name):
"""Return true iff package can be successfully imported."""
try:
importlib.import_module(package_name)
return True
except Exception:
return False
|
eb0c279bd85aae209331d4e6677fb19c31ab037e
| 40,470 |
from typing import List
import difflib
def get_list_difference(list1: List[str], list2: List[str]) -> List[str]:
"""
Return list of elements that help turn list1 into list2.
This should be a "minimal" list of differences based on changing one list into the other.
>>> get_list_difference(["a", "b"], ["b", "a"])
['b']
>>> get_list_difference(["a", "b"], ["a", "c", "b"])
['c']
>>> get_list_difference(["a", "b", "c", "d", "e"], ["a", "c", "b", "e"])
['c', 'd']
The last list happens because the matcher asks to insert 'c', then delete 'c' and 'd' later.
"""
diff = set()
matcher = difflib.SequenceMatcher(None, list1, list2) # None means skip junk detection
for code, left1, right1, left2, right2 in matcher.get_opcodes():
if code != "equal":
diff.update(list1[left1:right1])
diff.update(list2[left2:right2])
return sorted(diff)
|
e09e87148f4827a766afe42d8878e2eeeb4f3127
| 40,473 |
def _lane_detail_to_ss(fcid, ldetail):
"""Convert information about a lane into Illumina samplesheet output.
"""
return [fcid, ldetail["lane"], ldetail["name"], ldetail["genome_build"],
ldetail["bc_index"], ldetail["description"], "N", "", "",
ldetail["project_name"]]
|
cad5549b67a9147685416e9982b219ed29577190
| 40,474 |
def nv_compute_capability(dev):
"""If *dev* is an Nvidia GPU :class:`pyopencl.Device`, return a tuple
*(major, minor)* indicating the device's compute capability.
"""
try:
return (dev.compute_capability_major_nv,
dev.compute_capability_minor_nv)
except:
return None
|
eb7b6a9386b1f80019e94a0ed697f795d4474d79
| 40,477 |
def make_mmi_cmd(fa):
"""Return a minimap2 cmd string to build mmi index.
"""
return 'minimap2 -x map-pb -d {fa}.mmi {fa}'.format(fa=fa)
|
8f03063cb3abcfee66ad364f788f4851c955d0b9
| 40,481 |
def _dict_keys_get(d, keys):
"""Recursively get values from d using `__getitem__`
"""
d = d
for k in keys:
d = d[k]
return d
|
d83dfce489ecff1b53eb7434e12d615aaf76def8
| 40,482 |
def _remove_tokens(tokenized_docs, counts, min_counts, max_counts):
"""
Words with count < min_counts or count > max_counts
will be removed.
"""
total_tokens_count = sum(
count for token, count in counts.most_common()
)
print('total number of tokens:', total_tokens_count)
unknown_tokens_count = sum(
count for token, count in counts.most_common()
if count < min_counts or count > max_counts
)
print('number of tokens to be removed:', unknown_tokens_count)
keep = {}
for token, count in counts.most_common():
keep[token] = count >= min_counts and count <= max_counts
return [(i, [t for t in doc if keep[t]]) for i, doc in tokenized_docs]
|
2ef618c0ef7c7180c1426ca99f67ee98862813c8
| 40,486 |
def _get_cmd_tree(subcmds):
"""Convert flat list of subcmd objects into hierarchical dictionary
{'command name': {'subcommand name 1': subcmd1, 'subcommand name 2': subcmd2}}"""
cmds = {}
for sub_cmd in subcmds:
cmd_dict = cmds.setdefault(sub_cmd.cmd, {})
cmd_dict[sub_cmd.name] = sub_cmd
return cmds
|
76f44db545d298b94f9eb2323a5ade280b5f0380
| 40,490 |
def _key_split(matchobj):
"""Expands a {key a+b+c} syntax into <span class="key">a</span> + ...
More explicitly, it takes a regex matching {key ctrl+alt+del} and returns:
<span class="key">ctrl</span> + <span class="key">alt</span> +
<span class="key">del</span>
"""
keys = [k.strip() for k in matchobj.group(1).split('+')]
return ' + '.join(['<span class="key">%s</span>' % key for key in keys])
|
519aa2512967aabf266df604280c07d85575a291
| 40,494 |
def is_3d(ds, v):
"""Check if xr.DataArray has 3 dimensions."""
dims = ds[v].dims
if len(dims) == 3:
return True
return False
|
e095561f47f9daeeb57be327a8af93bb4ac2c2f4
| 40,496 |
def flat_ind_zp_so3(l, m, n, b):
"""
The SO3 spectrum consists of matrices f_hat^l of size (2l+1, 2l+1) for l=0, ..., L_max = b - 1.
These can be stored in a zero-padded array A of shape (b, 2b, 2b) with axes l, m, n with zero padding around
the center of the last two axes. If we flatten this array A we get a vector v of size 4b^3.
This function gives the flat index in this array v corresponding to element (l, m, n)
The zero-based 3D index of (l, m, n) in A is (l, b + m, b + n).
The corresponding flat index is i = l * 4b^2 + (b + m) * 2b + b + n
:param l, m, n: spectral indices
:return: index of (l, m, n) in flat zero-padded vector
"""
return l * 4 * (b ** 2) + (b + m) * 2 * b + b + n
|
f1e9327e33ae31fce28c33d18c2c49b72adafb22
| 40,498 |
import warnings
def process_interaction_params(parameters):
"""Formats and completes interaction parameters.
Interaction parameters are combined into a dictionary passed as a single argumnet.
Parameters
----------
color: tuple
Format (r,g,b).
headheight: float
Height of interaction head.
headwidth: float
Width of interaction head.
zorder: int
Matplotlib zorder value of
the interaction.
direction: string
Determines what side of the
construct the interaction is
drawn on; 'forward' or 'reverse'.
linewidth: float
Determines the width of lines
used to draw the interaction.
heightskew: float
Skews the total height of the
interaction.
sending_length_skew: float
Skews the length of the origin
line of the interaction.
receiving_length_skew: float
Skews the length of the
receiving line of the
interaction.
distance_from_baseline: float
Skews the distance between the
interaction and the baseline.
"""
final_parameters = {'color': (0,0,0),
'headheight': 7.0,
'headwidth': 7.0,
'zorder': 0,
'direction': 'forward',
'linewidth': 1.0,
'heightskew': 10.0,
'sending_length_skew': 0.0,
'receiving_length_skew': 0.0,
'distance_from_baseline': 10.0}
if parameters is None:
return final_parameters
# Collate interaction parameters
for key in parameters:
if key in final_parameters:
final_parameters[key] = parameters[key]
else:
warnings.warn(f"""'{key}' is not a valid interaction parameter.""")
# Amplify zorder to ensure all drawings composing the interaction can be grouped on Z axis
final_parameters['zorder'] *= 100
return final_parameters
|
9665eb8ae602e3436609eda4920772c006a82127
| 40,500 |
import torch
def kl_loss_full(mean, var, mean_prior, var_prior):
"""
KL divergence of two multivariate normal distributions.
:param mean: mean of distribution 1
:param var: covariance of distribution 1
:param mean_prior: mean of distribution 2
:param var_prior: covariance of distribution 2
:return: KL divergence of distribution 1 and 2
"""
mvn = torch.distributions.MultivariateNormal(loc=mean, covariance_matrix=var)
prior = torch.distributions.MultivariateNormal(loc=mean_prior, covariance_matrix=var_prior)
return torch.distributions.kl_divergence(mvn, prior).mean()
|
b3d7e01a37445b354f47daabb0159745d438b1df
| 40,504 |
def xml_tree_equivalence(e1, e2):
"""
Rough XML comparison function based on https://stackoverflow.com/a/24349916/1294458.
This is necessary to provide some sort of structural equivalence of a generated XML
tree; however there is no XML deserialisation implementation yet. A naive text comparison
fails because it seems it enforces ordering, which seems to vary between python versions
etc. Strictly speaking, I think, only the *leaf-list* element mandates ordering.. this
function uses simple sorting on tag name, which I think, should maintain the relative
order of these elements.
"""
if e1.tag != e2.tag:
return False
if e1.text != e2.text:
return False
if e1.tail != e2.tail:
return False
if e1.attrib != e2.attrib:
return False
if len(e1) != len(e2):
return False
e1_children = sorted(e1.getchildren(), key=lambda x: x.tag)
e2_children = sorted(e2.getchildren(), key=lambda x: x.tag)
if len(e1_children) != len(e2_children):
return False
return all(xml_tree_equivalence(c1, c2) for c1, c2 in zip(e1_children, e2_children))
|
bdd135de65e0ecdf9f6d9d22f03b4b5dc06c476c
| 40,505 |
def flip_check(intron, flip_dict):
"""
Checks an intron against a dictionary of introns with scores
that did not survive boundary switching.
If present, the score resulting from the boundary switch
will be returned, otherwise None.
"""
name = intron.get_name()
if name in flip_dict:
return flip_dict[name]
else:
return None
|
9b1a392a102c757ccf4938fe0bf3ea6ae4955238
| 40,507 |
def correct_title(title):
"""
Return properly formatted job title.
"""
# Make sure title is a string
title = str(title)
if "grad student" in title.lower():
return "Grad student"
# We will group all professors together
if "professor" in title.lower():
return "Professor"
else:
return "Research staff"
|
c1ddd3392bc0e1c310d21a2e61086526a086b240
| 40,508 |
def _mk_key(srev_info):
"""Returns the key for a SignedRevInfo object."""
return (srev_info.rev_info().isd_as(), srev_info.rev_info().p.ifID)
|
780fb59859b514e0f6d4699cb1e6fef1d6e14042
| 40,511 |
def get_channels(ifo, plottype):
"""Get a list of channels to plot for a given IFO. Plot Type must be
either 'irigb' or 'duotone'."""
if plottype == "irigb":
return ['{}:CAL-PCAL{}_IRIGB_OUT_DQ'.format(ifo, arm)
for arm in ['X', 'Y']]
elif plottype == "duotone":
return ['{}:CAL-PCAL{}_FPGA_DTONE_IN1_DQ'.format(ifo, arm)
for arm in ['X', 'Y']]
else:
raise ValueError("Must specify 'irigb' or 'duotone' for plottype.")
|
d0c46f2a4f39b4a9eeb79a7ea9b43e994c95ad24
| 40,514 |
def use_tpu(tpu_cores: int, tpu_resource: str, tf_version: str):
"""An operator that configures GCP TPU spec in a container op.
Args:
tpu_cores: Required. The number of cores of TPU resource.
For example, the value can be '8', '32', '128', etc.
Check more details at: https://cloud.google.com/tpu/docs/kubernetes-engine-setup#pod-spec.
tpu_resource: Required. The resource name of the TPU resource.
For example, the value can be 'v2', 'preemptible-v1', 'v3' or 'preemptible-v3'.
Check more details at: https://cloud.google.com/tpu/docs/kubernetes-engine-setup#pod-spec.
tf_version: Required. The TensorFlow version that the TPU nodes use.
For example, the value can be '1.12', '1.11', '1.9' or '1.8'.
Check more details at: https://cloud.google.com/tpu/docs/supported-versions.
"""
def _set_tpu_spec(task):
task.add_pod_annotation('tf-version.cloud-tpus.google.com', tf_version)
task.add_resource_limit('cloud-tpus.google.com/{}'.format(tpu_resource), str(tpu_cores))
return task
return _set_tpu_spec
|
ce5b9869512119966d59f1c0fb5ec53eeee53237
| 40,517 |
from typing import Any
from pathlib import Path
import json
def _save_to_json(data: Any, path: Path) -> Path:
"""
json形式で保存する
Parameters
----------
data : Any
保存対象のデータ
path : Path
保存先
Returns
-------
Path
保存されたPath
"""
with open(path, "w") as f:
json.dump(data, f)
return path
|
d3fb406bc4767e2e5ce88b83126e68b0906850b6
| 40,520 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.