content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def make_seqs(a, b):
""" Makes mutliple sequences of length b, from 0 to a. The sequences are represented
as tuples with start and stop numbers. Note that the stop number of one sequence is
the start number for the next one, meaning that the stop number is NOT included.
"""
seqs = []
x = 0
while x < a:
x2 = x + b
if x2 > a:
x2 = a
seqs.append( (x, x2) )
x = x2
return seqs
|
5a8963572f2ce0d0baf85a99b2614f2c25ce9bde
| 230,954 |
def assume_in_vitro_based_enzyme_modification_assertions(ac):
""" write a JTMS assumption specifying that in vitro-based evidence is acceptable
@param ac:bool True if action is to assert!, False if action is to
retract!, None to get the representation of the assumption
@returns: a string representation of the appropriate JTMS
assumption
"""
rep = "(accept-in-vitro-based-enzyme-modulation-assertions)"
if ac == True:
return "(assume! '%s 'dikb-inference-assumption)" % rep
elif ac == False:
return "(retract! '%s 'dikb-inference-assumption)" % rep
else:
return rep
|
a6bd257c257220bb719a29dda43b93b127a2c75d
| 452,856 |
def truncate(name: str, length: int = 50) -> str:
"""
Truncates a string and adds an elipsis if it exceeds the specified length. Otherwise, return the unmodified string.
"""
if len(name) > length:
name = name[0:length] + "..."
return name
|
7d00f1ce67029cfabc5dfb95da3a2f97d0beb578
| 256,929 |
from typing import List
def extensions_to_glob_patterns(extensions: List) -> List[str]:
"""Generate a list of glob patterns from a list of extensions.
"""
patterns: List[str] = []
for ext in extensions:
pattern = ext.replace(".", "*.")
patterns.append(pattern)
return patterns
|
a04ed356bfa5db7c0210b86dff832d32bfef6dbf
| 8,713 |
import itertools
def zip_longest(*collections, **kwargs):
""":yaql:zipLongest
Returns an iterator over collections, where the n-th iterable contains
the n-th element from each of collections. Iterates until all the
collections are not exhausted and fills lacking values with default value,
which is null by default.
:signature: collection.zipLongest([args], default => null)
:receiverArg collection: input collection
:argType collection: iterable
:arg [args]: collections for zipping with input collection
:argType [args]: chain of collections
:arg default: default value for lacking values, can be passed only
as keyword argument. null by default
:argType default: any type
:returnType: iterator
.. code::
yaql> [1, 2, 3].zipLongest([4, 5])
[[1, 4], [2, 5], [3, null]]
yaql> [1, 2, 3].zipLongest([4, 5], default => 100)
[[1, 4], [2, 5], [3, 100]]
"""
return itertools.zip_longest(
*collections, fillvalue=kwargs.pop('default', None))
|
a618433c5b4d66127d0bdac4d6bfa53304a91a00
| 602,414 |
import types
def isfunc(x):
"""Returns True if x is a function."""
return isinstance(x, types.FunctionType)
|
54597ccd7480da9e6fa602cdd764febfdc9cbba7
| 381,687 |
import re
def intcomma(value, ndigits=None):
"""Converts an integer to a string containing commas every three digits.
For example, 3000 becomes "3,000" and 45000 becomes "45,000". To maintain some
compatibility with Django's intcomma, this function also accepts floats.
Args:
value (int, float, string): Integer or float to convert.
ndigits (int, None): Digits of precision.
Returns:
str: string containing commas every three digits.
"""
try:
if isinstance(value, str):
float(value.replace(',', ''))
else:
float(value)
except (TypeError, ValueError):
return value
if ndigits:
orig = "{0:.{1}f}".format(value, ndigits)
else:
orig = str(value)
new = re.sub(r"^(-?\d+)(\d{3})", r'\g<1>,\g<2>', orig)
if orig == new:
return new
else:
return intcomma(new)
|
e61569657989dedecc8c2f01d5f9ec960ed63073
| 373,182 |
def read_edge_list(path):
"""Read edge list in KONECT format."""
with open(path, 'r') as f:
edge_list = set()
for line in f:
if not line.lstrip().startswith("%"): # ignore comments
e = line.strip().split()
edge_list.add((int(e[0]) - 1, int(e[1]) - 1)) # 0 index
return list(edge_list)
|
54af1afc7ff55cd768b890d72eed176b82e4de9b
| 172,653 |
def filter_none_values(dict):
"""Return dictionary with values that are None filtered out"""
return {k: v for (k, v) in dict.items() if v is not None}
|
3c14ad9a339f928be71e7ed88dfd93ff012d30d0
| 459,509 |
def inh2o2pascal(inh2o):
"""convert pressure in inches of water to Pascals"""
return (inh2o * 1.0) / 0.00401865
|
a5ccacf016fd14cc826161e60ee8137404af5738
| 277,292 |
def velocity_transformation(frame_velocity: float, observed_velocity: float) -> float:
"""
Computes the velocity transformation for a given frame velocity and observed velocity.
The frame velocity is the velocity of the new frame relative to this frame.
The observed velocity is a velocity measured in this frame.
The returned velocity is the velocity of the observed velocity in the new frame.
Expects velocity as a multiple of c, i.e. velocity_in_mps = c * velocity.
"""
return (observed_velocity - frame_velocity) / (
1 - frame_velocity * observed_velocity
)
|
970b3392ee658afef81451cd31a9d31330169d41
| 249,106 |
import random
def random_sequence( length ):
"""Return a random string of AGCT of size length."""
return ''.join([ random.choice( 'AGCT' ) for i in range(int( length ))])
|
288d09c4173fdafbdb8529f2318e38b306d4d552
| 358,427 |
def get_image_value(x, y, img):
"""Get pixel value at specified x-y coordinate of image.
Args:
x (int): horizontal pixel coordinate
y (int): vertical pixel coordinate
img (numpy.ndarray): image from which to get get pixel value
Returns:
float: pixel value at specified coordinate
"""
return img[y][x]
|
466815a7d84ae76ece32f1da01d2a103086e1e67
| 670,311 |
def decode_int(pool_im, coord):
"""Helper function that returns uint8 that was encoded
in pool_im tile starting at pixel at coord.
"""
bin_cint = ''
for i in range(8):
bin_cint += str(pool_im[ coord[0], coord[1]+i, 0 ] - pool_im[ coord[0]+1, coord[1]+i, 0 ])
return int(bin_cint, 2)
|
6aa7ea82ab151ba175c0817ac895278095e83f0f
| 371,662 |
def fibonacci(n):
"""Given a positive int n, uses recursion to return the nth Fibonacci number."""
if n == 1 or n==2:
return 1
elif n <= 0:
return 0
else:
return (fibonacci(n-1) + fibonacci(n-2))
|
1071009c3209f4a1b518829b41b60f0ecaa4abd5
| 201,420 |
def cver_t(verstr):
"""Converts a version string into a tuple"""
if verstr.startswith("b"):
return tuple([0,0,0,0]+list(cver_t(verstr[1:])))
return tuple([int(x) for x in verstr.split(".")])
|
73b4abd456551e678f44c0f940ad8d055993a345
| 691,660 |
import io
def get_message_data(msg):
"""Returns ROS1 message as a serialized binary."""
buf = io.BytesIO()
msg.serialize(buf)
return buf.getvalue()
|
7173cd596c0f0be3be31dfcf580260fe025ebcb0
| 477,021 |
from typing import Type
from typing import Any
import typing
def _is_list(field: Type[Any]) -> bool:
"""Returns True when the given type annotation is list[...]."""
return typing.get_origin(field) is list
|
491b764a4255312f1cf89e740293650c89a8fd82
| 424,635 |
def get_actual_objname(full_object_name):
"""Given a object string full name (e.g 0&0&DEFINING_ORIGIN), returns
its name (e.g DEFINING_ORIGIN).
"""
return full_object_name.split('&')[2]
|
e0dd644a16a1c6865e2354b36d2466661939d131
| 558,286 |
def create_listing_date(data):
"""Create listing date feature."""
data['Data_annuncio'] = (data['Riferimento e data annuncio']
.str.split('-')
.str[-1]
.str.strip()
.astype('datetime64[D]'))
return data
|
3d5698b948b7d16d87cc190114f5e6a887349821
| 143,817 |
def safe_compare_dataframes(first, second):
"""Compare two dataframes even if they have NaN values.
Args:
first (pandas.DataFrame): DataFrame to compare
second (pandas.DataFrame): DataFrame to compare
Returns:
bool
"""
if first.isnull().all().all():
return first.equals(second)
else:
nulls = (first.isnull() == second.isnull()).all().all()
values = (first[~first.isnull()] == second[~second.isnull()]).all().all()
return nulls and values
|
1e0ce9c9de03973c7c0448ba0fafd25f399cda04
| 166,939 |
def merge_dicts(*dicts):
"""Merge two or more dicts, later ones replacing values of earlier ones.
Note that only shallow copies are made of the dicts.
@b Examples
```
a = dict(a=1, b=2, c=3)
b = dict(c=-3, d=-4)
c = merge_dicts(a, b)
# Result: dict(a=1, b=2, c=-3, d=-4)
```
"""
result = {}
for d in dicts:
result.update(d)
return result
|
ade27bf5279671ba16af8b1f8ca9dfe881ed9e4b
| 166,310 |
import json
def load_transition_types(transitions_uri):
"""Loads a transition .json file and returns a dictionary mapping
transition ids to their types.
transitions_uri - path to a .json file with the format
{
"modify_landscape_structure": "restoration", ... }
returns a dictionary whose keys and values are found in the transitions
json file"""
transitions_file = open(transitions_uri)
transitions_string = transitions_file.read()
transition_dictionary = json.loads(transitions_string)
return transition_dictionary
|
776f5dd548ac0bb7f4447a24623751f8faca7baf
| 611,370 |
import math
def dist_calc(x, y):
"""Returns a distance calcultion fuction from a static (x, y)"""
def func(x1, y1):
return math.sqrt(math.pow(x1-x, 2) + math.pow(y1-y, 2))
return func
|
7a55c4b00c2a72eb64f1468b650d6195a791b32a
| 568,867 |
def add_value(attr_dict, key, value):
"""Add a value to the attribute dict if non-empty.
Args:
attr_dict (dict): The dictionary to add the values to
key (str): The key for the new value
value (str): The value to add
Returns:
The updated attribute dictionary
"""
if value != "" and value is not None:
attr_dict[key] = value
return attr_dict
|
93728d08c8cbaacc34b62f0437a5c4d2d0cc6ddc
| 521,527 |
def scilabel(value, precision=2):
"""Build scientific notation of some value.
This is dedicated to use in labels displaying scientific values.
Args:
value (float): numeric value to format.
precision (int): number of decimal digits.
Returns:
str: the scientific notation the specified value.
"""
man, exp = f'{value:.{precision}e}'.split('e')
exp = int(exp)
return fr'{man}\times 10^{{{exp}}}'
|
f0f2dcdbdb4d24f594c75381e8daf6a947eac0aa
| 367,094 |
def align16(address):
"""
Return the next 16 byte aligned address.
"""
return (address + 0x10) & 0xFFFFFFF0
|
e330b3eca5ab0997ec3f8b743486237572033929
| 339,813 |
import textwrap
import html
def pretty_text(data):
"""Unsescape the html characters from the data & wrap it"""
if data is not None:
return textwrap.fill(html.unescape(html.unescape(data)), width=60)
else:
return ""
|
f5baf58394b8578b26ad3cb95aff26867bc5f748
| 31,692 |
def isB(ner_tag: str):
"""
We store NER tags as strings, but they contain two pieces: a coarse tag type (BIO) and a label (PER), e.g. B-PER
:param ner_tag:
:return:
"""
return ner_tag.startswith("B")
|
b24752ccb3a83936157fa7a7e73b5591bc64a625
| 79,980 |
from typing import Iterable
def flatten_iterable(its: Iterable, deep: bool = False) -> list:
"""
flatten instance of Iterable to list
Notes:
1. except of str, won't flatten 'abc' to 'a', 'b', 'c'
demo: [[[1], [2], [3]], 4]
if deep is True: flatten to [1, 2, 3, 4]
if deep is False, flatten to [[1], [2], [3], 4].
"""
res = []
for it in its:
if isinstance(it, str):
res.append(it)
elif isinstance(it, Iterable):
if deep:
res += flatten_iterable(it, True)
else:
res.extend(it)
else:
res.append(it)
return res
|
4c17d75a7dde4d0b9002dedea2938deacfef813f
| 687,371 |
def canonicalShape(shape):
"""Calculates a *canonical* shape, how the given ``shape`` should
be presented. The shape is forced to be at least three dimensions,
with any other trailing dimensions of length 1 ignored.
"""
shape = list(shape)
# Squeeze out empty dimensions, as
# 3D image can sometimes be listed
# as having 4 or more dimensions
for i in reversed(range(len(shape))):
if shape[i] == 1: shape = shape[:i]
else: break
# But make sure the shape
# has at 3 least dimensions
if len(shape) < 3:
shape = shape + [1] * (3 - len(shape))
return shape
|
0f11a7298253fe9655846a663f5761cd17ae2880
| 681,045 |
def path2linkTuple(pathString):
"""
Converts a path expressed as a sequence of nodes, e.g. [1,2,3,4] into a tuple
of link IDs for use with the Path object (see path.py), in this case
((1,2),(2,3),(3,4))
"""
# Remove braces
pathString = pathString[1:-1]
# Parse into node list
nodeList = pathString.split(",")
# Now create tuple
linkList = list()
prevNode = nodeList[0]
for i in nodeList[1:]:
curNode = i
linkID = '(' + prevNode + ',' + curNode + ')'
linkList.append(linkID)
prevNode = i
return tuple(linkList)
|
e2a8cbe4f6a5918fa6acd1766618a6862190acce
| 513,908 |
def emphasis(text):
"""Returns a text fragment (tuple) that will be emphasized when displayed."""
return ('emphasis', text)
|
de47483ea93d954af33eb5329090a1d0334c289a
| 401,621 |
import math
def atan_deg(value):
""" returns atan as angle in degrees """
return math.degrees(math.atan(value) )
|
ad7f79e4ebbfc364bddb5f20afd01b8cf70f9c08
| 30,400 |
import torch
def make_creep_tests(stress, temperature, rate, hold_times,
nsteps_load, nsteps_hold, logspace = False):
"""
Produce creep test input (time,stress,temperature) given tensor
inputs for the target stress, target temperature, loading rate
Args:
stress: 1D tensor of target stresses
temperature: 1D tensor of target temperature
rate: 1D tensor of target rates
hold_times: 1D tensor of hold times
nsteps_load: number of time steps to load up the sample
nsteps_hold: number of time steps to hold the sample
logspace (optional): log space the hold time steps
"""
nbatch = stress.shape[0]
nsteps = nsteps_load + nsteps_hold
stresses = torch.zeros(nsteps, nbatch)
times = torch.zeros_like(stresses)
temperatures = torch.zeros_like(stresses)
for i, (s,t,lr,T) in enumerate(zip(stress,hold_times,rate,temperature)):
stresses[:nsteps_load,i] = torch.linspace(0, s, nsteps_load)
stresses[nsteps_load:,i] = s
times[:nsteps_load,i] = torch.linspace(0, s / lr, nsteps_load)
temperatures[:,i] = T
if logspace:
times[nsteps_load:,i] = torch.logspace(torch.log10(times[nsteps_load-1,i]),
torch.log10(t), nsteps_hold+1)[1:]
else:
times[nsteps_load:,i] = torch.linspace(times[nsteps_load-1,i], t, nsteps_hold+1)[1:]
return times, stresses, temperatures
|
9f252018c078158ffc7615aec5a194ced914f17f
| 127,401 |
def find_layer_id(layers_range, router_id):
"""
Find layer id of the router.
Parameters
----------
layers_range : [type]
list of router id range
router_id : int
[description]
Returns
-------
int
layer id
"""
for itr, layer_range in enumerate(layers_range):
if router_id in layer_range:
return itr
|
49b800369f5c2b4c9854e5afb7e3d742875f9b46
| 179,083 |
def is_not_to_keep(is_under_a_day, index):
"""
Return if we should keep this based on if the duration is less than a day.
:param is_under_a_day:
:param index:
:return: to keep or not
"""
index += 1
return not is_under_a_day[index]
|
ba4e16dfd3fd2f7382f27a4692b45b5b729c4afc
| 238,722 |
from typing import List
def open_uniform_knot_vector(n: int, order: int) -> List[float]:
"""
Returns an open uniform knot vector for a B-spline of `order` and `n` control points.
`order` = degree + 1
Args:
n: count of control points
order: spline order
"""
nplusc = n + order
nplus2 = n + 2
knots = [0.]
for i in range(2, nplusc + 1):
if (i > order) and (i < nplus2):
knots.append(knots[-1] + 1.)
else:
knots.append(knots[-1])
return knots
|
9ab62ea4ca3264c29c7c413084887e8c06172a13
| 180,647 |
def _write_a_tikz_coordinate(name, xy, num_fmt):
"""Write a TikZ coordinate definition.
Parameters
----------
name : str
TikZ coordinate identified / name.
xy : list or tuple of floats
(x, y)-coordinates.
num_fmt : str
Specification of the numbers format, e.g. '.4f'.
Returns
-------
str
TikZ coordinate definition without newline char.
"""
fmt_str = "{:" + num_fmt + "}"
tex_str = "\\coordinate ({:s})".format(name)
tex_str += " at ("
tex_str += ", ".join(map(fmt_str.format, xy))
tex_str += ");"
return tex_str
|
5917bbe0fd97ff632a3ff8376f20b43ebdccbd5b
| 567,052 |
def abs2(src, target):
"""
compute the square absolute value of two number.
:param src: first value
:param target: second value
:return: square absolute value
"""
return abs(src - target) ** 2
|
275e015bca3cae2f737b284f40861b3136936109
| 690,527 |
def process_to_dict(process):
"""Return nested dicts for the nested namedtuples of a process."""
# These lines are sort of like a deep version of _asdict().
stages = [stage._asdict() for stage in process.stages]
for stage in stages:
stage['progress_items'] = [pi._asdict() for pi in stage['progress_items']]
stage['actions'] = [act._asdict() for act in stage['actions']]
stage['approvals'] = [appr._asdict() for appr in stage['approvals']]
process_dict = {
'name': process.name,
'description': process.description,
'applicability': process.applicability,
'stages': stages,
}
return process_dict
|
306e565fdaad76fa956e8706a9d2b605bce32a96
| 597,011 |
def parse_cfg(cfgfile):
"""
Takes a configuration file
Returns a list of blocks. Each block describes a layer (usually) in the neural
network to be built. Block is represented as a dictionary in the list
"""
file = open(cfgfile, 'r')
# store the lines in a list
lines = file.read().split('\n')
# get rid of the empty lines
lines = [x for x in lines if len(x) > 0]
# get rid of comments
lines = [x for x in lines if x[0] != '#']
# get rid of fringe whitespaces
lines = [x.rstrip().lstrip() for x in lines]
# To parse the files, we're going to create a key/value pair, and then
# store each pair in a Python list
block = {}
blocks = []
# Now that we collapsed the config file, let's go through each line
for line in lines:
# This marks the start of a new block based on the CFG filename, i.e. [convolutional]
if line[0] == "[":
# If block is not empty, this means we're still building the previous block dict.
# Since we're in an obviously new block with the "[", the first time through we'll
# need to send the current block to the list, and empty the current block dictionary
# so it can receive the next values. This is how we separate dict items for our list.
if len(block) != 0:
# Add the current block info to the list
blocks.append(block)
# Reset the block
block = {}
# Store in a key called 'type' the text of the line minus the brackets,
# deleting any trailing characters. Since we cleared the block earlier the first time
# through (denoted by the "["), the first layer of the block will always be a type
# that is a text value of layer type
block["type"] = line[1:-1].rstrip()
else:
# Since we're somewhere in the block where we're not figuring out layer type,
# split the line pairs into a tuple of key and value using "=" as the break point
key, value = line.split("=")
# Converting the CFG key value pairs into block keys with values
block[key.rstrip()] = value.lstrip()
# This is so the last time through the loop the last block gets added
blocks.append(block)
return blocks
|
63feb42367ba00ab9a14073d6f34761d73378206
| 190,384 |
def parse_org_members(members_json):
""" Extract what we need from Github orgs members listing response. """
return [{'login': member['login']} for member in members_json]
|
038eadc48a01bf5579acf0e8d6fcd3bba66a3623
| 103,206 |
import six
def right_strip00(the_string):
"""Remove '\x00' bytes from the right end of a byte-string."""
assert isinstance(the_string, six.binary_type)
return the_string.rstrip(bytes(b'\x00'))
|
fa5cad2716d24c2a0a67e42e7f0e9db0bb12a2fa
| 218,749 |
def overrides(interface_class):
"""
To be used as a decorator, it allows the explicit declaration you are
overriding the method of class from the one it has inherited. It checks that
the name you have used matches that in the parent class and returns an
assertion error if not
"""
def overrider(method):
"""
Makes a check that the overrided method now exists in the given class
:param method: method to override
:return: the class with the overriden method
"""
assert method.__name__ in dir(interface_class)
return method
return overrider
|
e5264baf1c5a5d97b354a4db3b3a49ccb580c082
| 631,308 |
def calc_ineffdate(row, date_dict: dict):
"""Calculates the date a given SFHA was deemed ineffective based on
whether the SFHA resides inside 2+ different LOMRs.
Parameters
----------
row : Pandas Series
A row of a pandas DataFrame
date_dict : dict
A dictionary of FLD_AR_IDs and all the LOMR EFF_DATEs associated
with each. The EFF_DATEs should be ordered chronologically.
Returns
-------
pandas.Timestamp
The timestamp a polygon went ineffective, or None
"""
fema_id = row["FLD_AR_ID"]
adopt_date = row["EFFDATE"]
ineff_date = None
try:
idx = date_dict[fema_id].index(adopt_date)
try:
ineff_date = date_dict[fema_id][idx+1]
except IndexError:
# The polygon has the most recent ADOPTDATE of all the LOMRs that
# touch the polygon, and therefore doesn't have an INEFFDATE
pass
except KeyError:
# The polygon was not duplicated
pass
return ineff_date
|
3c0c6b44d4917fc1341e6e0f6247c50363980571
| 195,273 |
def get_header(context, header_name):
"""Return all response header values that've been set for header_name."""
return [header[1] for header in context.headers if header[0] == header_name]
|
cc2fba51f028aa76b8864376d8010099de56cc50
| 627,748 |
def format_error(error_code, message):
"""
Converts an error_code and message into a response body
"""
return {"errors": [{"code": error_code, "message": message}]}
|
70319669a5504cf1b6c07cdc9ef1de5f04437f20
| 264,451 |
def get_location(local_dictionary:dict) -> str:
"""
Description:
Function which gets the local location from the returned local dictionary from covid_API_request
Arguments:
local_dictionary {dict} : dictionary containing 3 sub dictionary's: 'data' (containing all covid data requested),
'lastUpdate', 'length', 'totalPages'
Returns:
local_location {str} : string value containing the name of the local location
"""
local_location = str(local_dictionary['data'][0]['areaName'])
return local_location
|
eee208b97e1a8ac64e4bfe5eaa48f45600a67c34
| 383,774 |
def indent(string: str) -> int:
"""Count the indentation in whitespace characters.
Args:
string (str): text with indents
Returns:
int: Number of whitespace indentations
"""
return sum(4 if char == "\t" else 1 for char in string[: -len(string.lstrip())])
|
0a58beace80f6f3c5298ca2179f0fbbc40247362
| 363,108 |
import re
def clean_identifier(identifier: str) -> str:
"""Removes all whitespaces from the identifier."""
return re.sub(r'\s+', '', identifier)
|
5a92edeab99e29c31752cfd452187793c88f444d
| 407,576 |
def by_newlines(*parts):
"""return parts joined by newline characters - Unix style"""
return '\n'.join(parts)
|
16945a617456a2b82e6e814c0e40a188c716b10d
| 543,086 |
import re
def get_include_count(f):
"""Get number of #include statements in the file"""
include_count = 0
for line in f:
if re.match(r'\s*#\s*include', line):
include_count += 1
return include_count
|
b85b0c2c0c9d6ee1ec209ea2aef93fc62c296a02
| 112,218 |
def length_vector_sqrd_xy_numba(a):
""" Calculate the squared length of the vector, assuming it lies in the XY plane.
Parameters
----------
a : array
XY(Z) components of the vector.
Returns
-------
float: The squared length of the XY components.
"""
return a[0]**2 + a[1]**2
|
e1dd9a5830e09318295ee79b2c5235e97059b05e
| 319,547 |
def crop(image, x, y, w, h):
""" Crop image to given position and size """
image = image[y : y + h, x : x + w]
return image
|
31c6cc695e632ee3c9ae58750e7ba3c5fe31ac7b
| 207,799 |
def ts_to_ms(ts):
"""
Convert second timestamp to integer millisecond timestamp
"""
return int(ts * 1e3)
|
2d4435eecc6eb68d3d4644195bc3eccdd212f970
| 316,862 |
def divide(x: float, y: float) -> float:
"""Divide :math:`x` by :math:`y`
Arguments
---------
x : float
First number
y : float
Second number.
Raises
------
ZeroDivisionError:
If the denominator is zero
Returns
-------
float
x / y
"""
if abs(y) < 1e-12:
raise ZeroDivisionError("Cannot divede by zero")
return x / y
|
2279f1fe2063a7bcc8a9086eb800fe5f2c01db99
| 223,040 |
def shave_batch_LFs(inLFs, border=(3, 3)):
"""
Shave the input light field by a given border.
:param inLFs: a batch of input light fields of
size: [B, H, W, S, T, C]
:param border: border values
:return: shaved light field
"""
h_border, w_border = border
if (h_border != 0) and (w_border != 0):
shavedLFs = inLFs[:, h_border:-h_border, w_border:-w_border, :, :, :]
elif (h_border != 0) and (w_border == 0):
shavedLFs = inLFs[:, h_border:-h_border, :, :, :, :]
elif (h_border == 0) and (w_border != 0):
shavedLFs = inLFs[:, :, w_border:-w_border, :, :, :]
else:
shavedLFs = inLFs[:, :, :, :, :, :]
return shavedLFs
|
dfd85adada5a6027224093c2a2f89bd950b4c711
| 394,743 |
def is_df(
df):
"""is_df
Test if ``df`` is a valid ``pandas.DataFrame``
:param df: ``pandas.DataFrame``
"""
return (
hasattr(df, 'to_json'))
|
fe5c111e8883ff64e3b63602e57aaa793ef710fa
| 42,721 |
def detect_missing_leap_days(ts_data):
"""Detect if a time series has missing leap days.
Parameters:
-----------
ts_data (pandas DataFrame) : time series
"""
feb28_index = ts_data.index[(ts_data.index.year % 4 == 0)
& (ts_data.index.month == 2)
& (ts_data.index.day == 28)]
feb29_index = ts_data.index[(ts_data.index.year % 4 == 0)
& (ts_data.index.month == 2)
& (ts_data.index.day == 29)]
mar01_index = ts_data.index[(ts_data.index.year % 4 == 0)
& (ts_data.index.month == 3)
& (ts_data.index.day == 1)]
if len(feb29_index) < min((len(feb28_index), len(mar01_index))):
return True
return False
|
34cd6fe34c48982ceb2f2a7cc8182cd175912080
| 317,774 |
from typing import List
from typing import Union
from typing import Dict
from typing import Any
def tweaks_for_actions(actions: List[Union[str, Dict]]) -> Dict[str, Any]:
"""
Converts a list of actions into a `tweaks` dict (which can then be passed to
the push gateway).
This function ignores all actions other than `set_tweak` actions, and treats
absent `value`s as `True`, which agrees with the only spec-defined treatment
of absent `value`s (namely, for `highlight` tweaks).
Args:
actions: list of actions
e.g. [
{"set_tweak": "a", "value": "AAA"},
{"set_tweak": "b", "value": "BBB"},
{"set_tweak": "highlight"},
"notify"
]
Returns:
dictionary of tweaks for those actions
e.g. {"a": "AAA", "b": "BBB", "highlight": True}
"""
tweaks = {}
for a in actions:
if not isinstance(a, dict):
continue
if "set_tweak" in a:
# value is allowed to be absent in which case the value assumed
# should be True.
tweaks[a["set_tweak"]] = a.get("value", True)
return tweaks
|
9b77b84bd007fe47fd63741f9662ae99d8c9695f
| 444,232 |
def file2tuple(thing):
"""
Function that converts a filename to a tuple of the type: (filename,string containing file)
Input can be filename or tuple with filename and content in a string.
"""
if isinstance(thing,tuple): # it is a tuple with filename and content in a string
filename,string = thing
output = (filename.split('/')[-1],string)
else: # it is a filename
filename = thing
file = open(filename)
output = (filename.split('/')[-1],file.read())
file.close()
return output
|
a62babbb2d2ebaf6e9cd845868fe707af09ff17c
| 143,199 |
def normalize_stats(stats):
"""Normalize frequency statistics."""
return dict((chr(k) if k < 256 else k, v if v else 1) for k, v in stats.items())
|
15953d48f1a99c349096957235ec1986e66b6b11
| 383,577 |
def decode_test_run(test_run):
"""
Function to decode test_run name into sequence of training parameter values
:param test_run:
:return: patience, learning rate, minimal learning rate, anneal rate
"""
x = test_run.split("lr.")
patience = int(x[0][1:])
lr = float(f"0.{x[1][:-1]}")
y = x[2].split("a")
mlr = float(f"0.{y[0]}")
anneal_rate = float(f"0{y[1]}")
print("Training parameters:\n"
f"patience: {patience}\n"
f"learning rate: {lr}\n"
f"minimal learning rate: {mlr}\n"
f"anneal rate: {anneal_rate}\n")
return patience, lr, mlr, anneal_rate
|
e1f7028d8ab104e548ba6cd517763351d5b6ed48
| 261,872 |
import pickle
def load_CIFAR_batch(filename):
""" load single batch of cifar """
with open(filename, 'rb') as f:
datadict = pickle.load(f, encoding='latin1')
X = datadict['data']
Y = datadict['labels']
return X, Y
|
cab8293d1c38bd90ba03074d95c62d4fb96d8460
| 185,562 |
def calc_check_digit(number):
"""Calculate the check digit. The number passed should not have the
check digit included."""
s = sum((9 - i) * int(n) for i, n in enumerate(number))
return str((11 - s) % 11 % 10)
|
85a0b09e7777be767bc3787e185adbd3cc7ad6cc
| 97,188 |
def example_func(param1, param2):
"""Example function with types documented in the docstring
Args:
param1 (int): The first parameter
param2 (str): The second parameter
Returns:
bool: The return value. True for success, False otherwise.
"""
print(param1)
print(param2)
return True
|
2bc46e4cb686cc926383b145ae7b8a7b3ed948c8
| 96,949 |
def common_shape(arrays):
"""
Infers the common shape of an iterable of array-likes (assuming all are of
the same dimensionality). Inconsistent dimensions are replaced with `None`.
"""
arrays = iter(arrays)
shape = next(arrays).shape
for array in arrays:
shape = tuple(a if a == b else None
for a, b in zip(shape, array.shape))
return shape
|
49e2c4a1666ec0a821b9abeef3e1738eaeb22f5c
| 457,518 |
from typing import List
def getLongestCommonPrefix(strs: List[str]) -> str:
"""
>>> getLongestCommonPrefix(["abc_aaa","abc_bb","abc_aaaa"])
'abc_'
>>> getLongestCommonPrefix(["b","abc_bb","abc_aaaa"])
''
>>> getLongestCommonPrefix([])
''
"""
l = len(strs)
if l == 0:
return ""
else:
m = min(map(len, strs))
if m == 0:
return ""
for i in range(0, m):
common = strs[0][i]
for s in strs:
if s[i] != common:
return strs[0][0:i]
return strs[0]
|
23da396c3eb176b8aeb577eed73c5ccd7d1cbc1b
| 127,750 |
def _escape_underscore(text):
"""
Internal utility to escape any TeX-related underscore ('_') characters in mpl strings
"""
return text.replace('_', '\_')
|
ca9d7b55d96d35983e03ccb3337aff810e66356b
| 463,858 |
def lang(name, comment_symbol, multistart=None, multiend=None):
"""
Generate a language entry dictionary, given a name and comment symbol and
optional start/end strings for multiline comments.
"""
result = {
"name": name,
"comment_symbol": comment_symbol
}
if multistart is not None and multiend is not None:
result.update(multistart=multistart, multiend=multiend)
return result
|
e1e89caf4bb595e61a94df1ee70d33c39e75f486
| 688,778 |
import hashlib
def create_hash_id(input):
"""
Creates hash identifier.
Parameters
==========
input : str
Input to be hashed to form an identifier.
Returns
=======
hash_id : str
Identifier formed by hashing the inputs.
"""
input_bytes = bytes(input, encoding="utf-8")
hash_id = hashlib.sha224(input_bytes).hexdigest()
return hash_id
|
e9319728a58b9afc947bb2ddc6fc3701d7ec861a
| 586,177 |
def generate_number_lines(number_of_lines=6, start=0, end=20):
"""
Generates number lines as a tool for practicing mathematics such as addition or subtraction.
:param number_of_lines: Specify the number of lines to have on the page
:param start: start value for the number line as an integer
:param end: end value for the number line as an integer
:return: contents of the latex document as a string
"""
lines = [r'\documentclass[letterpaper]{article}',
r'\usepackage{geometry}',
r'\geometry{landscape,a4paper,total={170mm,257mm},left=10mm,right=10mm,top=30mm}',
r'\usepackage{tikz}',
r'\usepackage{amsmath}',
r'\usetikzlibrary{arrows}',
r'\begin{document}',
r'\pagenumbering{gobble}',
r'\begin{LARGE}',
r'']
numbers = ','.join([str(x) for x in range(start, end + 1)])
for _ in range(number_of_lines):
lines.append(r'')
lines.append(r'{\Large $-$}')
lines.append(r'\begin{tikzpicture}')
lines.append(r'\draw[latex-latex, thick] ' + '({},0) -- ({},0) ;'.format(start - 1, end + 1))
lines.append(r'\foreach \x in {' + numbers + '}')
lines.append(r'\draw[shift={(\x,0)},color=black, thick] (0pt,3pt) -- (0pt,-3pt);')
lines.append(r'\foreach \x in {' + numbers + '}')
lines.append(r'\draw[shift={(\x,0)},color=black, thick] (0pt,0pt) -- (0pt,-3pt) node[below] ')
lines.append(r'{\textbf{\x}};')
lines.append(r'\end{tikzpicture}')
lines.append(r'{\Large $+$}')
lines.append(r'\\')
lines.append(r'\vspace*{50px}')
lines.append(r'')
lines.append(r'\end{LARGE}')
lines.append(r'\end{document}')
return '\n'.join(lines)
|
173aae03162e5d5717078e872051bc11e1e56057
| 632,848 |
def union(list_a: list, list_b: list) -> list:
"""Return the union of two lists"""
if list_a is None:
list_a = [None]
if list_b is None:
list_b = [None]
return list(set(list_a) | set(list_b))
|
4cc4c7fd6214a281115def00ae52a80f6194fd69
| 103,420 |
import typing
import fnmatch
def get_s3_files_for_pattern(client, pattern: str) -> typing.List[str]:
"""Get a list of S3 keys given a potential wildcard pattern
(e.g., 's3://bucket/a/b/*/*.jpg')"""
segments = pattern.replace("s3://", "").split("/")
bucket = segments[0]
keypat = "/".join(segments[1:])
prefix = "/".join(
segments[
1 : 1
+ next((i for i, s in enumerate(segments[1:]) if "*" in s), len(segments))
]
)
keys = []
for page in client.get_paginator("list_objects_v2").paginate(
Bucket=bucket, Prefix=prefix
):
if "Contents" not in page:
break
keys.extend(
[
e["Key"]
for e in page["Contents"]
if (e["Key"] != prefix or e["Key"] == keypat)
]
)
return [f"s3://{bucket}/{key}" for key in keys if fnmatch.fnmatch(key, keypat)]
|
5a371aad8a512934f98911b2ff0ea2c3924645dc
| 501,683 |
def convert_to_iris(dict_):
"""Change all appearances of ``short_name`` to ``var_name``.
Parameters
----------
dict_ : dict
Dictionary to convert.
Returns
-------
dict
Converted dictionary.
Raises
------
KeyError
:obj:`dict` contains keys``'short_name'`` **and** ``'var_name'``.
"""
dict_ = dict(dict_)
if 'short_name' in dict_:
if 'var_name' in dict_:
raise KeyError(
f"Cannot replace 'short_name' by 'var_name', dictionary "
f"already contains 'var_name' (short_name = "
f"'{dict_['short_name']}', var_name = '{dict_['var_name']}')")
dict_['var_name'] = dict_.pop('short_name')
return dict_
|
79e915c95532440ea155adc78a9642375d388a5b
| 437,367 |
def make_altaz_frame(location, time):
"""
Turns location and time into altaz frame
:param location: astroplan.observer object
:param time: astropy.Time object
:returns: Altaz frame
"""
return location.altaz(time)
|
906f5f7735248341d33817b8dfb232740bc3246a
| 264,255 |
import math
def filter_none(mongo_dict):
"""Function to filter out Nones and NaN from a dict."""
for key in list(mongo_dict.keys()):
val = mongo_dict[key]
try:
if val is None or math.isnan(val):
mongo_dict.pop(key)
except Exception:
continue
return mongo_dict
|
6853a7153f98466dc00d262bfaf4a63db1b0cd5c
| 11,581 |
def _options_choose_characters(player):
"""Return the options for choosing a character.
The first options must be the characters name (5 are allowed
by player). The other nodes must be reached through letters:
C to create, D to delete.
"""
options = list()
characters = player.db._playable_characters
if len(characters) < 5:
options.append( {
"key": "c",
"desc": "Create a new character.",
"goto": "create_character",
})
if len(characters) > 0:
options.append( {
"key": "d",
"desc": "Delete an existing character.",
"goto": "delete_character",
})
options.append( {
"key": "_default",
"desc": "Login to an existing character.",
"goto": "choose_characters",
})
return tuple(options)
|
d72c08bf9a2cb7ebfc7d4e6d13a94e1189d0d2f9
| 586,561 |
def feature_normalize(X, mean=None, sigma=None):
"""
returns a normalized version of X where
the mean value of each feature is 0 and the standard deviation
is 1. This is often a good preprocessing step to do when
working with learning algorithms.
the normalization is processed separately for each feature
:param X: numpy array of shape (m,n)
Training data
:return: X_norm, mu, sigma
X_norm matrix(m,n) - Normalised Feature matrix
mu matrix(1,n) - mean of individual features
sigma matrix(1,n) - standard deviation of individual features
"""
if mean is None:
mean = X.mean(0)
if sigma is None:
sigma = X.std(0)
X_norm = (X - mean) / sigma
return X_norm, mean, sigma
|
81342428799f5ac8d1815b54400e8eb4d7cc302b
| 694,919 |
def _format_node(e):
"""
Internal function to format a node element into a dictionary.
"""
ignored_tags = [
"source",
"source_ref",
"source:ref",
"history",
"attribution",
"created_by",
"tiger:tlid",
"tiger:upload_uuid",
]
node = {"id": e["id"], "lat": e["lat"], "lon": e["lon"]}
if "tags" in e:
for t, v in list(e["tags"].items()):
if t not in ignored_tags:
node[t] = v
return node
|
17885312c86fbe731976cd7866a3597d3b05de9e
| 259,889 |
import logging
def __cmp_published__(x, y):
"""A custom ``cmp()`` which sorts descriptors by published date.
:rtype: int
:returns: Return negative if x<y, zero if x==y, positive if x>y.
"""
if x.published < y.published:
return -1
elif x.published == y.published:
# This *shouldn't* happen. It would mean that two descriptors for
# the same router had the same timestamps, probably meaning there
# is a severely-messed up OR implementation out there. Let's log
# its fingerprint (no matter what!) so that we can look up its
# ``platform`` line in its server-descriptor and tell whoever
# wrote that code that they're probably (D)DOSing the Tor network.
logging.warn(("Duplicate descriptor with identical timestamp (%s) "
"for bridge %s with fingerprint %s !") %
(x.published, x.nickname, x.fingerprint))
return 0
elif x.published > y.published:
return 1
|
06c72dd0f914ba2d6fba38d17fffff554e523d90
| 315,935 |
def scriptable(fn):
"""Decorator to register operation for scripting."""
fn.scriptable = True
fn.script_args = fn.__annotations__
return fn
|
6a4b62e6effa59941c24beac7fee4a1b34f0cb8d
| 197,789 |
def is_reverse_related(field):
"""
Test if a given field is a reverse related field.
:param DjangoField field: A reference to the given field.
:rtype: boolean
:returns:
A boolean value that is true only if the field is reverse related.
"""
return 'django.db.models.fields.reverse_related' in field.__module__
|
025c6a4fec1c527ff0e081bee4c6372a9c5dfc74
| 202,642 |
def FlagBelongsToRequiredGroup(flag_dict, flag_groups):
"""Returns whether the passed flag belongs to a required flag group.
Args:
flag_dict: a specific flag's dictionary as found in the gcloud_tree
flag_groups: a dictionary of flag groups as found in the gcloud_tree
Returns:
True if the flag belongs to a required group, False otherwise.
"""
flag_group = flag_dict.get('group', None)
flag_group_properties = flag_groups.get(flag_group, {})
return flag_group_properties.get('is_required', False)
|
79f36d76c78d7ac54d38954a4559a23b15e92b70
| 145,352 |
def get_table_4(air_type):
"""表4 外皮の内側にある空気層の熱抵抗
Args:
air_type(str): 空気層の種類
'AirTight'(面材で密閉された空気層)または'OnSiteNonConnected'(他の空間と連通していない空気層)または
'OnSiteConnected'(他の空間と連通している空気層)
Returns:
float: 外皮の内側にある空気層の熱抵抗
"""
R_dict = {'AirTight': 0.09, 'OnSiteNonConnected': 0, 'OnSiteConnected': 0}
try:
return R_dict[air_type]
except KeyError:
raise ValueError(air_type)
|
66f28b535f9ef69525cf1e74e0af4bbf155ec458
| 32,511 |
from typing import Collection
def iscollection(eo_object):
""" Helper to check whether an EOObject is a collection. """
return issubclass(eo_object.real_type, Collection)
|
7f80f76fb0efdc9098eb324b729f41d753842668
| 359,175 |
import json
def to_json_string(obj):
"""Convert object as a JSON string."""
return json.JSONEncoder(indent=2).encode(obj)
|
5e6377365ec5f5a2550533af733b3c5babbd81fa
| 668,170 |
def forcerange(colval):
"""Caps a value at 0 and 255"""
if colval > 255:
return 255
elif colval < 0:
return 0
else:
return colval
|
d0895fcf53788eb3a09a400576f2f6fc472ec654
| 654,138 |
def ensure_pymongo(obj):
"""If obj is wrapped by motor, return the internal pymongo object
:param obj:
a pymongo or motor client, database, or collection
:returns:
pymongo client, database, or collection
"""
if obj.__class__.__module__.startswith("pymongo."):
return obj
if obj.delegate.__class__.__module__.startswith("pymongo."):
return obj.delegate
raise TypeError("Neither a pymongo nor a motor object")
|
d617b8db535cd3f8bf882da8a2c31f37dc922af6
| 70,470 |
from typing import Dict
from typing import List
def add_toggle_completion(
toggle_outcomes: Dict[str, Dict[str, bool]],
subtasks: List[str]):
"""Create toggled outcomes/completions mapping
for each toggle-able subtasks.
e.g.
>>> toggle({}, ['Click A', 'Click B', 'Click C'])
>>> {
'Click A': {'Click B': False, 'Click C': False},
'Click B': {'Click A': False, 'Click C': False},
'Click C': {'Click A': False, 'Click B': False}
}
"""
for subtask in subtasks:
toggle_outcomes.update({
subtask: {s: False for s in subtasks if s != subtask}
})
return toggle_outcomes
|
383ca79ee47cb6d095c74d5f88dc25f06cf60702
| 119,727 |
def get_crash_id(line):
"""
Takes a raw CSV line and returns a crash_id
:param str line: The raw CSV line
:return str: The Crash ID
"""
try:
return line.strip().split(",")[0]
except Exception as e:
print("Error: " + str(e))
return ""
|
68188ff4290173deddd3608ceb0534ce6ca2df18
| 31,203 |
def has_isolated_transposition(source, image):
"""Check whether a, b exist, with a -> b and b -> a"""
f = dict(zip(source, image))
for s, i in zip(source, image):
if f[i] == s:
return True
return False
|
b856370161ff918bbbf679b1dd366aa2f563ff51
| 87,872 |
def airbnb_js_data() -> dict:
"""
Returns a fake JS data for the Airbnb classes
"""
return {
'layout-init': {
'api_config': {
'key': 'api_key',
}
},
'reduxData': {
'homePDP': {
'listingInfo': {
'listing': {
'listing_amenities': [
{
'id': 1,
'name': 'Breakfast'
},
{
'id': 2,
'name': 'TV'
},
],
'id':
'777',
'photos': [
{
'sort_order': 2,
'large': 'image_2'
},
{
'xx_large': 'image_3'
},
{
'sort_order': 1,
'x_large': 'image_1'
},
],
'name':
'test_name',
'person_capacity':
3,
'location_title':
'City, Region, Country',
'one': {
'two': {
'three': 'result'
}
},
'sectioned_description': {
'description': 'test_description'
}
}
}
}
}
}
|
387cc5fbc5d846036277372ab8fdf302c6adc37a
| 439,556 |
def ensure_tz_UTC(df):
"""
Function to ensure that the tzinfo of a data frame is in UTC
:param df: a pandas data frame with datetime_index
:returns: the dataframe with df.index.tzinfo='UTC'
"""
# ensure tzinfo is in UTC
if (str(df.index.tzinfo)=='None'):
#print('The time stamp is provided is tz naive. It is assumed that the times provided are in UTC')
df=df.tz_localize(tz='UTC')
else:
#print('The provided time zone of the data is '+str(df.index.tzinfo)+'. This is now converted to a tz aware time stampe in UTC')
df.index=df.index.tz_convert('UTC')
return df
|
4e8fb68dc648b32138dda66a415c9c5e660665f1
| 637,473 |
def drop_titles(tree, titles_to_drop):
"""
Walk the tree and drop any nodes whose titles are in `titles_to_drop`.
"""
def _drop_titles(subtree):
new_children = []
for child in subtree["children"]:
if child["title"] in titles_to_drop:
continue
else:
new_child = _drop_titles(child)
new_children.append(child)
subtree["children"] = new_children
return subtree
return _drop_titles(tree)
|
99a1abeca91751703de1626251e8aa4ca115d41e
| 80,455 |
def dig2phys(signal, dmin, dmax, pmin, pmax):
"""
converts digital edf values to analogue values
:param signal: A numpy array with int values (digital values) or an int
:param dmin: digital minimum value of the edf file (eg -2048)
:param dmax: digital maximum value of the edf file (eg 2048)
:param pmin: physical maximum value of the edf file (eg -200.0)
:param pmax: physical maximum value of the edf file (eg 200.0)
:returns: converted physical values
"""
m = (pmax-pmin) / (dmax-dmin)
physical = m * signal
return physical
|
291199109b1318e4b8c24c90f456bd72cc21003b
| 249,298 |
def guess_beta_parameters(guess, strength=5):
"""Given a `guess` of the mean of a beta distribution, calculate beta
distribution parameters such that the distribution is skewed by some
`strength` toward the `guess`.
:param guess: guess of the mean of the beta distribution
:type guess: float
:param strength: strength of the skew, defaults to `5`
:type strength: int
:return: beta distribution parameters (alpha, beta)
:rtype: (float, float)
"""
alpha = max(strength * guess, 0.1)
beta = max(strength - alpha, 0.1)
return alpha, beta
|
c29b7162a6613dfad326868831b862a00fdf08c4
| 247,640 |
def _get_branching(container, index):
""" Returns the nearest valid element from an interable container.
This helper function returns an element from an iterable container.
If the given `index` is not valid within the `container`,
the function returns the closest element instead.
Parameter
---------
container:
A non-empty iterable object.
index:
The index of an element that should be returned.
Returns
-------
object
The closest possible element from `container` for `index`.
Example
-------
The `container` can be an arbitrary iterable object such as a list::
l = ['a', 'b', 'c']
c1 = _get_clamped_index(l, 5)
c2 = _get_clamped_index(l, 1)
c3 = _get_clamped_index(l, -4)
The first call of the function using an index of 5 will return element 'c',
the second call will return 'b' and the third call will return 'a'.
"""
maximal_index = len(container) - 1
minimal_index = 0
clamped_index = min(maximal_index, index)
clamped_index = max(minimal_index, clamped_index)
return container[clamped_index]
# except HttpError as e:
|
5bdb1d45ba5e91a767564a7bd246cda558e10882
| 148,226 |
import random
def get_imbalanced_data(training_data, img_num_per_cls):
"""Get a list of imbalanced training data, store it into im_data dict."""
im_data = {}
for cls_idx, img_id_list in training_data.items():
random.shuffle(img_id_list)
img_num = img_num_per_cls[int(cls_idx)]
im_data[cls_idx] = img_id_list[:img_num]
return im_data
|
42383dffc3f69b2a8620b010c73081ee4c64d3e3
| 206,925 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.