content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def is_quote(code, idx=0):
"""Position in string is an unescaped quotation mark."""
return (0 <= idx < len(code) and
code[idx] == '"' and
(idx == 0 or code[idx-1] != '\\'))
|
054354ea0372df436d4c2c8a0c52ec98c2b16986
| 623,947 |
import click
def option_output_file(required: bool = False):
"""Get parameter options for output file."""
return click.option(
"--output-file",
"--of",
"output_file",
metavar="string",
required=required,
help="name of file to write to",
type=click.File("w"),
)
|
346d25d615f3b2aab0e5af590ecae83b14762ad0
| 333,770 |
def format_POS(token, light, flat):
"""Helper: form the POS output for a token."""
subtree = dict([
("word", token.text),
("lemma", token.lemma_), # trigger
("NE", token.ent_type_), # trigger
("POS_fine", token.tag_),
("POS_coarse", token.pos_),
("arc", token.dep_),
("modifiers", [])
])
if light:
subtree.pop("lemma")
subtree.pop("NE")
if flat:
subtree.pop("arc")
subtree.pop("modifiers")
return subtree
|
e28085669ec0188d45bb6cce1ae2b163490f4bcd
| 414,921 |
import ast
def _build_st_write_call(nodes):
"""Build AST node for `__streamlit__._transparent_write(*nodes)`."""
return ast.Call(
func=ast.Attribute(
attr="_transparent_write",
value=ast.Name(id="__streamlit__", ctx=ast.Load()),
ctx=ast.Load(),
),
args=nodes,
keywords=[],
kwargs=None,
starargs=None,
)
|
e6263af7378ed69019fbd3090ccc6c3ffca44b74
| 381,066 |
def _round_pow_2(value):
"""Round value to next power of 2 value - max 16"""
if value > 8:
return 16
if value > 4:
return 8
if value > 2:
return 4
return value
|
35458a3a894df8fc579d027f72a6328ba8b8061d
| 674,973 |
from typing import List
import gc
def get_child_ids(obj: object) -> List[int]:
"""
Return children of the provided object using gc.get_referents
:param obj: The object
:return: List of object ids
"""
return [id(child) for child in gc.get_referents(obj)]
|
09e205293ada98080a23196ad74d8e0c65fad1b6
| 81,383 |
def is_valid_esd_json(data: dict, is_train_document: bool = False) -> bool:
"""Test whether a dictionary (parsed JSON) adheres to the input data format as specified in the README file.
Parameters
----------
data : dict
The parsed JSON data (found by applying json.loads on the text contents of the input file).
is_train_document : bool, optional
Whether the document is a train or test document (default : False).
Returns
-------
bool
True if the data is a valid input file.
Raises
------
ValueError
If the data is not a dictionary.
ValueError
If 'text' is not found in the data.
ValueError
if 'abstract' is not found in the train/test data.
ValueError
If 'entities' is not found in the train/test data.
ValueError
If 'entities' is not a list in the train/test data.
ValueError
If there exists an entity without "salience" key.
ValueError
If there exists an entity without "entity" key.
"""
if 'text' not in data:
raise ValueError('The "text" field is not found in the data.')
if is_train_document:
if 'abstract' not in data:
raise ValueError('The "abstract" field is not found in the train/test data.')
if 'entities' not in data:
raise ValueError('The "entities" field is not found in the train/test data.')
if type(data['entities']) != list:
raise ValueError('The "entities" field should be a list.')
for entity in data['entities']:
if 'salience' not in entity:
raise ValueError('All entities should have a "salience" field.')
if 'entity' not in entity:
raise ValueError('All entities should have an "entity" field.')
return True
|
7175c3b1b5512ef0ec51e2e4e569981f1578b38f
| 221,644 |
import re
def identify_entity(identity):
"""
Detect the type of OpsGenie entity being processed: an id, username or name.
identity: string : Expects to be a string containing an OpsGenie entity and
it's type separated by a single '-'
return: A dictionary with the form and type of the entity or None if the identity
can't be processed.
"""
res = identity.rsplit("-", 1)
if len(res) != 2:
print("Skipping {} because it's not formed as '<identiy>-<type>'".format(identity))
return None
re_email = re.compile(r"^[^@]+@[^@]+$")
re_id = re.compile(r"^[0-9a-z]{8}-[0-9a-z]{4}-[0-9a-z]{4}-[0-9a-z]{4}-[0-9a-z]{12}$")
form, type_ = res
# Detect email form: "trinity@opsgenie.com"
if type_ == "user" and re.match(re_email, form):
form_key = "username"
# Detect id form: "4513b7ea-3b91-438f-b7e4-e3e54af9147c"
elif re.match(re_id, form):
form_key = "id"
# Any other forms are just names.
else:
form_key = "name"
return {form_key: str(form), "type": str(type_)}
|
0b6c9619ca2ff37fd3acbc4493ea2a9aa72b1980
| 338,275 |
def compute_files_to_download(client_hashes, server_hashes):
"""
Given a dictionary of file hashes from the client and the
server, specify which files should be downloaded from the server
:param client_hashes: a dictionary where the filenames are keys and the
values are md5 hashes as strings
:param server_hashes: a dictionary where the filenames are keys and the
values are md5 hashes as strings
:return: a list of 2 lists -> [to_dload, to_delete]
to_dload- a list of filenames to get from the server
to_delete- a list of filenames to delete from the folder
Note: we will get a file from the server if a) it is not on the
client or b) the md5 differs between the client and server
Note: we will mark a file for deletion if it is not available on
the server
"""
to_dload, to_delete = [], []
for filename in server_hashes:
if filename not in client_hashes:
to_dload.append(filename)
continue
if client_hashes[filename] != server_hashes[filename]:
to_dload.append(filename)
for filename in client_hashes:
if filename not in server_hashes:
to_delete.append(filename)
return [to_dload, to_delete]
|
f67220d82852edbba751ca794457adfa347483be
| 328,443 |
def is_iri(string):
"""
Return True if the given string looks like an IRI, and False otherwise.
Used for finding type IRIs in the schema.
Right now only supports http(s) URLs because that's all we have in our schema.
"""
return string.startswith('http')
|
c503d36555ce46b6fcecb4d151f3ef7d43818a6d
| 621,030 |
def IsAnyScopeFlagSpecified(flag_values):
"""Returns True if any scope related flags are present, False otherwise."""
if 'zone' in flag_values and flag_values['zone'].present:
return True
if 'region' in flag_values and flag_values['region'].present:
return True
if 'global' in flag_values and flag_values['global'].present:
return True
return False
|
dbba18123ac65158a2050225eca096d715125efc
| 426,133 |
def get_count(self):
""" Return count value with a default of 1
"""
return self.get("count", 1)
|
643064b29fff0b65a39f2eefb4f35d7468db09ae
| 50,298 |
from typing import Union
from typing import Iterable
import torch
from typing import Dict
def get_params_to_average(params: Union[Iterable[torch.nn.Parameter], Iterable[Dict[str, torch.nn.Parameter]]]):
"""
Returns a list of parameters that need to average, which filters out the parameters that do not contain any gradients.
Args:
params: The parameters of a model or parameter groups of an optimizer.
"""
filtered_params = []
for param in params:
if isinstance(param, torch.nn.Parameter):
# model.parameters() input
param_data = param
if param_data.grad is not None:
filtered_params.append(param_data)
elif isinstance(param, dict):
# optimizer.param_groups input
for param_data in param["params"]:
if param_data.grad is not None:
filtered_params.append(param_data)
else:
raise NotImplementedError(f"Parameter input of type {type(param)} is not supported")
return filtered_params
|
e467ab0ec789868d09da8c13f18d3d7430891549
| 321,937 |
def element_junction_tuples(junction_elements=True, branch_elements=True, res_elements=False):
"""
Utility function
Provides the tuples of elements and corresponding columns for junctions they are connected to
:param junction_elements: whether tuples for junction elements e.g. sink, source,
... are included
:param branch_elements: whether branch elements e.g. pipe, pumps, ... are included
:return: set of tuples with element names and column names
"""
ejts = set()
if junction_elements:
elements = ["sink", "source", "ext_grid"]
for elm in elements:
ejts.update([(elm, "junction")])
if branch_elements:
elements = ["pipe", "valve", "pump", "circ_pump_mass", "circ_pump_pressure",
"heat_exchanger"]
for elm in elements:
ejts.update([(elm, "from_junction"), (elm, "to_junction")])
if res_elements:
elements_without_res = ["valve"]
ejts.update(
[("res_" + ejt[0], ejt[1]) for ejt in ejts if ejt[0] not in elements_without_res])
return ejts
|
2f7927ecc04d9df24581ec10fdfa41a27d08776f
| 327,761 |
def depth_name(depth_index):
""" Returns the name of the depth map for index: 0-48 """
if depth_index < 10:
return 'depth_map_000{}.pfm'.format(depth_index)
else:
return 'depth_map_00{}.pfm'.format(depth_index)
|
8602c03ecf6e505437f550f60e3135c76e8d92e6
| 388,882 |
def line_range(lines, ind1, comment_flag='#'):
"""
Find a range of data lines within a line list.
Given an input line list and a starting index, subsequent lines are
examined to see where the next comment line is. Comment lines are
assumed to start with the # character by default, or one can set this
with the comment_flag variable in the call. Lines that are not comments
are assumed to be data lines. The index of the next comment line is
returned, or the index that gives a range to the end of the line list
where there is no such comment line after the index specified.
Parameters
----------
lines : A list of input lines (assumed to be from the readlines()
function)
ind1 : A starting index in the list of lines
comment_flag: An optional string variable that marks comment lines
Returns
-------
n1 : an integer value for the next comment line (assumed to
start with '#') in the list of input lines, or the index
for the length of the line list if no other comment line is
found
"""
ncomment = len(comment_flag)
for n1 in range(ind1+1, len(lines)):
if comment_flag in lines[n1][0:ncomment]:
return n1
return len(lines)
|
6e845f3d44c4093e8e403eaf41317cf14b0299c4
| 695,543 |
def parse_bool(obj):
"""Return true if the object represents a truth value, false otherwise.
For bool and numeric objects, uses Python's built-in bool function. For
str objects, checks string against a list of possible truth values.
Args:
obj: object to determine boolean value of; expected
Returns:
Boolean value according to 5.1 of Python docs if object is not a str
object. For str objects, return True if str is in TRUTH_VALUE_SET
and False otherwise.
http://docs.python.org/library/stdtypes.html
"""
if type(obj) is str:
TRUTH_VALUE_SET = ["true", "1", "yes", "t", "on"]
return obj.lower() in TRUTH_VALUE_SET
else:
return bool(obj)
|
f8115f725871eed1d6cfd6020bd40fb9bdbcd11e
| 361,721 |
def generate_state(td_count: int, node_count: int, records_count: int, ttl: int):
"""Utility method to generate a state dict"""
return {
f"td{i}.example.com": {
"name": f"td{i}.example.com",
"nodes": [f"node{n}" for n in range(node_count)],
"records": [
{"hostname": f"rec{r}", "weight": 100} for r in range(records_count)
],
"ttl": ttl,
}
for i in range(td_count)
}
|
ee4acb68f282926c301000e1f14f791a5b7eb8a9
| 268,512 |
def mimic_dict(filename):
"""Returns mimic dict mapping each word to list of words which follow it."""
arquivo = open(filename, "r")
conteudo = arquivo.read()
palavras = conteudo.lower().split()
arquivo.close()
_dict = {}
anterior = ''
for palavra in palavras:
posteriores = _dict.get(anterior, [])
posteriores.append(palavra)
_dict[anterior] = posteriores
anterior = palavra
return _dict
|
de7225dd2bbdfae887a7d5477bd4403ba8dd5f5f
| 235,068 |
def unpack_vlq(data):
"""Return the first VLQ number and byte offset from a list of bytes."""
offset = 0
value = 0
while True:
tmp = data[offset]
value = (value << 7) | (tmp & 0x7f)
offset += 1
if tmp & 0x80 == 0:
break
return value, offset
|
b459327c50d806e5c4bd251fa3f849a8680b7f27
| 109,857 |
def remove_duplicates(original_list):
"""
removes duplicate items from original_list, keeping first instance of duplicate
:param original_list: list that contains duplicate items
:return: list without duplicate items, keeping the first instance of the duplicated item
"""
final_list = []
for item in original_list:
if item not in final_list:
final_list.append(item)
return final_list
|
08726db4b84f44a93e7a948247bbaeec30a3fc20
| 159,910 |
def count_valid_passports(passports, validation_method):
""" Count valid passports
:param passports: List of passports
:param validation_method: validation method
:return: int
"""
counter = 0
for passport in passports:
if validation_method(passport):
counter += 1
return counter
|
e9559cdb19b445964b5cea9212eb554fc124e740
| 207,945 |
import re
def trim_stopwords(s, stop_words):
"""Case-insensitive removal of stop phrases/words from a string
>>> trim_stopwords('Depártment de Testing Test royale', ['depártment de', 'royale'])
'Testing Test'
"""
for stop in stop_words:
if ' ' in stop: # phrase
s = re.sub(stop, '', s, flags=re.IGNORECASE)
else: # individual word
s = s.split()
for i, w in enumerate(s):
if w.lower() == stop:
s.pop(i)
s = ' '.join(s)
return s.strip()
|
21b161ace4dd0ea288719856c03156fc8b08ec3a
| 46,592 |
import re
def normalize_keys(dict_, lowercase=True, separator='_'):
"""
Recoursively changes keys to their normalized version:
- replaces any special symbol by `separator`
- lowercases (if necessary).
Example:
In [1]: input_ = {"Content-Type": "text/html",
...: "Last-Modified": {
...: "Day-Of-Week": "Sat",
...: "Day": 4,
...: "Month": "Apr"
...: }
...: }
Out[1]:
{'content_type': 'text/html',
'last_modified': {'day_of_week': 'Sat', 'day': 4, 'month': 'Apr'}}
"""
normalized = {}
for key, val in dict_.items():
new_key = re.sub('[^A-Za-z0-9]+', separator, key)
new_key = new_key.lower() if lowercase else new_key
if isinstance(val, dict):
val = normalize_keys(val, lowercase, separator)
normalized[new_key] = val
return normalized
|
a15a3f4ccfe860af2ca7e758b293b297f8b0c3b3
| 687,036 |
import yaml
def load_conf(conf_path: str) -> dict:
"""
Loads the configuration from provided YAML file.
:param conf_path: path to the configuration file
:return: configuration loaded as dict
"""
with open(conf_path, 'rt') as in_fd:
conf = yaml.load(in_fd, Loader=yaml.FullLoader)
return conf
|
d9c72069ccd3f40b71f661acdd0db0a6eb9b8675
| 118,394 |
def total_duration_parser(line):
"""
Parses lines of the following form:
Total duration: 5248.89s
:param line: string
:return: float containing total duration in seconds
"""
try:
return float(line.rstrip('s')[len('Total duration:'):].strip())
except:
return 0.
|
30cc8da46293654b8d4001dbd708160ba208bacb
| 30,367 |
def _dynamic_inputs_creation(dynamic_io_settings):
"""Creates a list of inputs names, supplied to the Task class."""
parameters = dynamic_io_settings["TaskSettings"]["Parameters"]
if parameters["ModelType"] == "LDA":
return [f"TF({parameters['DataSource']})"]
elif parameters["ModelType"] == "NMF":
return [f"TFIDF({parameters['DataSource']})"]
|
1a1dfb8e71a3ce00015cdff6253350f7bdeeb482
| 433,894 |
def get_f_min(f_max, cents_per_value, v_min, v_max):
"""
This function takes in a y value max and min, a maximum frequency and a y scale parameter in units of cents/y value, and returns the minimum frequency that fits to such a scale.
Cents are a logarithmic unit of tone intervals (https://en.wikipedia.org/wiki/Cent_(music)).
Parameters
----------
f_max : float
Maximum frequency.
cents_per_value : float
A y scale parameter in units of cents/y value.
v_min : float
Minimum y value.
v_max : float
Maximum y value.
Returns
-------
float
Minimum frequency.
"""
f_min = f_max / (2 ** ((v_max - v_min) * cents_per_value / 1200))
return f_min
|
c2e92d0f2aa63f8553d85d9fb0bdcf79156deff1
| 663,533 |
import math
def fractionalPart(floater):
"""Returns the Fractional part (_fractionalPart(1.5) == .5) of a
number"""
return(math.modf(float(floater))[0])
# float conversion is there just in case I get an int or something
|
85cd53af31f33052b612a3d6196bcd9f6deb58a8
| 85,514 |
import hashlib
def compute_md5_hash(file, buf_size=65536):
"""Utility method to generate a md5 hash of file."""
md5_hash = hashlib.md5()
while True:
data = file.read(buf_size)
if not data:
break
md5_hash.update(data)
return md5_hash.hexdigest()
|
fe01ee97a7b85a7365c9f9a9540d0e304cdaf24a
| 189,955 |
import re
def fmt_cmd_template(cmd):
""" Format the cmd template `cmd` so that in can be used e.g. for a os.system call """
return re.sub("\s+", " ", cmd)
|
4020f9ae36e5714c1c41a5d608fb719e3f125b06
| 112,992 |
def Not(query):
"""The negation of a query"""
return '(NOT %s)' % (query,)
|
9bddebbd3c3c8e4c2e8e74b6c87049f0e4706dcb
| 635,044 |
import re
def template_to_regex(template):
"""Convert a string template to a parsable regular expression.
Given a data_path_format string template, parse the template into
a parsable regular expression string for extracting each %VAR%
variable.
Supported %VAR% variables:
* %EXPERIMENT_ID% - experiment ID (str)
* %INSTRUMENT_SAT% - instrument/satellite ID (str)
* %DATA_TYPE% - data type (str)
* %YEAR% - full year (int, 4 digits)
* %YEAR4% - full year (int, 4 digits)
* %YEAR2% - last two digits of year (int, 2 digits)
* %MONTH% - integer month (int, 2 digits)
* %MONTH2% - integer month (int, 2 digits)
* %DAY% - integer day (int, 2 digits)
* %DAY2% - integer day (int, 2 digits)
* %HOUR% - integer hour (int, 2 digits)
* %HOUR2% - integer hour (int, 2 digits)
Args:
template (str): A string with the data_path_format template to
be converted to a parsable regular expression.
Returns:
tuple: Tuple with the first element being a parsable regular
expression string, and the second element being a list of the
detected %VAR%s, in order found (from left to right).
"""
# Initialize the final template regex string
template_final = ""
# Initialize the final matching group list
matching_groups = []
# Define the variables to replace, with their corresponding regex
# capturing patterns.
regex_replace_dict = {
"%EXPERIMENT_ID%" : r'(.*)',
"%INSTRUMENT_SAT%" : r'(.*)',
"%DATA_TYPE%" : r'(.*)',
"%YEAR%" : r'(\d{4})',
"%YEAR4%" : r'(\d{4})',
"%YEAR2%" : r'(\d{2})',
"%MONTH%" : r'(\d{2})',
"%MONTH2%" : r'(\d{2})',
"%DAY%" : r'(\d{2})',
"%DAY2%" : r'(\d{2})',
"%HOUR%" : r'(\d{2})',
"%HOUR2%" : r'(\d{2})',
}
# Search for %VAR% variables with a %VAR% matching pattern
matches = re.findall(r'(.*?)(%.*?%)(.*?)', template)
# Loop through each match!
for match in matches:
# Grab the %VAR% part in the match.
# (match returns a tuple with 3 elements - the misc string on
# the left side, the %VAR% part in the middle, and the misc
# string on the right side)
template_part = match[1]
# Check to see if this %VAR% is in our replacement table!
if template_part in regex_replace_dict.keys():
# Add it to the matching group list for future indexing
# reference!
matching_groups.append(template_part)
# Then make the variable to regex replacement.
template_part = template_part.replace(template_part, regex_replace_dict[template_part])
# Finally, assemble the string back together.
template_final += re.escape(match[0]) + template_part + re.escape(match[2])
# Return the regex template and the list of matching groups!
return (template_final, matching_groups)
|
b24378fab8eb80568b5dcdaaaba80d602c28bcab
| 668,631 |
import csv
def get_usernames_from_csv(filename):
"""Return a list of usernames"""
with open(filename, 'r') as csvfile:
csvreader = csv.reader(row for row in csvfile
if not row.startswith('#'))
return [row[0] for row in csvreader]
|
f51ea5d0c5ae50c1edc31c00438ab26cc7cc6224
| 123,881 |
def _add_reciprocal_relations(triples_df):
"""Add reciprocal relations to the triples
Parameters
----------
triples_df : Dataframe
Dataframe of triples
Returns
-------
triples_df : Dataframe
Dataframe of triples and their reciprocals
"""
# create a copy of the original triples to add reciprocal relations
df_reciprocal = triples_df.copy()
# swap subjects and objects
cols = list(df_reciprocal.columns)
cols[0], cols[2] = cols[2], cols[0]
df_reciprocal.columns = cols
# add reciprocal relations
df_reciprocal.iloc[:, 1] = df_reciprocal.iloc[:, 1] + "_reciprocal"
# append to original triples
triples_df = triples_df.append(df_reciprocal)
return triples_df
|
8ca96fc2162d80041c21db8e6b81718781784ffe
| 29,307 |
def get_key(dict, value):
""" Return the first key in the dictionary "dict" that contains the
received value "value".
Parameters
==========
dict: Dict[Any, Any]
Dictionary to be used.
value: Any
Value to be found in the dictionary.
"""
return list(dict.keys())[list(dict.values()).index(value)]
|
fd0c3f2d0421941e2320cbc2b83593ab64dab23f
| 267,420 |
def normalize_color(color):
"""Gets a 3-tuple of RGB ints and return a 3-tuple of unity floats"""
return (color[0] / 255.0, color[1] / 255.0, color[2] / 255.0)
|
c242f7467c9125a7cb189ecf2b0a690352d39525
| 318,959 |
def index_containing_substring(vars_list, var):
"""
Return the index of the first string in vars_list that contains the substring var
:param vars_list: list of string.
:param var: string.
:return: integer.
"""
for i, s in enumerate(vars_list):
if var in s:
return i
return -1
|
805832afba21e52a4eb22304e09b77071ed21b03
| 228,904 |
import json
def name2dict(name) -> dict:
""" Converts JSON format string to dictionary.
Args:
name:: str
A JSON format string. For example, "'penPair':'z1r'".
Examples:
>>> from fwig.tools import attributetools as at
>>> name = "'penPair':'z1r','serif':'1'"
>>> at.name2dict(name)
{'penPair': 'z1r', 'serif': '1'}
"""
if name is None:
return {}
name = '{' + name.replace("'", '"') + '}'
name_dict = json.loads(name)
return name_dict
|
85895a49062f4bd458be8721ba9d69c2327f5ba1
| 337,395 |
def last_power_2(n: int) -> int:
"""Return the largest power of 2 less than or equal to x"""
return 1 << (n.bit_length() - 1)
|
b89602d9568388648a72595d58e485dccbd59d20
| 508,902 |
def char2cid(char, char2id_dict, OOV="<oov>"):
"""
Transform single character to character index.
:param char: a character
:param char2id_dict: a dict map characters to indexes
:param OOV: a token that represents Out-of-Vocabulary characters
:return: int index of the character
"""
if char in char2id_dict:
return char2id_dict[char]
return char2id_dict[OOV]
|
4a872cb12f11ed8ba2f3369749a3a2f356b7b97e
| 696,081 |
def _escapeWildCard(klassContent):
"""
>>> _escapeWildCard('')
''
>>> _escapeWildCard(':*')
''
>>> _escapeWildCard(':Object')
':Object'
"""
return klassContent.replace(':*', '')
|
537b3969dabb46c3a093dacc3ba49a58833f8c18
| 701,336 |
def time_per_line(
desired_wpm,
words_per_line
):
"""
Args:
desired_wpm (int): the target words-per-minute value
you wish to achieve
words_per_line (int): how many words per line your
test book contains on average
Returns:
seconds
"""
# words_per_line * 1 min / 3 * desired_wpm
minute_fraction = words_per_line/(3 * desired_wpm)
return minute_fraction * 60
|
7a9eeb90f6b684bf9c83ad24c119cd8e2f4fd202
| 330,568 |
def sum_of_multiples(below, multiples):
"""Returns sum of multiples below given maximum."""
sums = set()
for number in multiples:
for i in range(number, below, number):
sums.add(i)
return sum(sums)
|
8f9a16c406c9c7fdc352a9b462ca3acfc6b76b1e
| 582,464 |
def _get_header_info(line):
"""
Get number of sequences and length of sequence
"""
header_parts = line.split()
num_seqs, length = list(map(int, header_parts[:2]))
is_interleaved = len(header_parts) > 2
return num_seqs, length, is_interleaved
|
be7fc522fb8d195af6e45c93e42867aecbd23fb6
| 20,026 |
def flatten(sequence):
"""Given a sequence possibly containing nested lists or tuples,
flatten the sequence to a single non-nested list of primitives.
>>> flatten((('META.INSTRUMENT.DETECTOR', 'META.SUBARRAY.NAME'), ('META.OBSERVATION.DATE', 'META.OBSERVATION.TIME')))
['META.INSTRUMENT.DETECTOR', 'META.SUBARRAY.NAME', 'META.OBSERVATION.DATE', 'META.OBSERVATION.TIME']
"""
flattened = []
for elem in sequence:
if isinstance(elem, (list, tuple)):
elem = flatten(elem)
else:
elem = [elem]
flattened.extend(elem)
return flattened
|
6ca3fe470757dc4081c4387d917d5e285c2a3f06
| 12,560 |
import re
def preprocess(sent):
"""
substitute multiple spaces with one and remove non latin-1 symbols
:param sent: string to process
:return: the string without multiple spaces and latin-1 as encoding
"""
whitespaces = re.compile(r"\s+")
sent = whitespaces.sub(" ", sent)
sent = sent.replace("\xad", "")
return sent.encode('latin-1', 'ignore').decode('latin-1')
|
121f2e48c2d1bbf5613c360bb94814fa9169479e
| 531,447 |
import hashlib
def get_digest(value):
"""Return a hashlib digest algorithm from a string."""
if isinstance(value, str):
value = value.lower()
if value not in ('md5', 'sha1', 'sha224', 'sha256', 'sha384', 'sha512'):
raise ValueError("Invalid digest algorithm: %s" % value)
value = getattr(hashlib, value)
return value
|
d513a81b62a81a2c479f713bb3fd97595268132b
| 564,425 |
def reverce_8bit(data_8bit: int) -> int:
"""8bit を反転させる
Parameters
----------
data_8bit : int
8bit数値
Returns
-------
int
ビット反転後の数値
"""
data_8bit = ((data_8bit & 0b01010101) << 1) | ((data_8bit & 0b10101010) >> 1)
data_8bit = ((data_8bit & 0b00110011) << 2) | ((data_8bit & 0b11001100) >> 2)
return (data_8bit & 0b00001111) << 4 | data_8bit >> 4
|
3dcdf58f771848284c58897ea7e2f4727d518e61
| 171,791 |
def solution(n: int = 1000) -> int:
"""
Returns ∑ r_max for 3 <= a <= n as explained above
>>> solution(10)
300
>>> solution(100)
330750
>>> solution(1000)
333082500
"""
return sum(2 * a * ((a - 1) // 2) for a in range(3, n + 1))
|
c6c6e990bf5aaac8dc809aa82429a805e7241f3c
| 617,251 |
from typing import Iterable
from typing import Hashable
from typing import Counter
def major_vote(all_votes: Iterable[Iterable[Hashable]]) -> Iterable[Hashable]:
"""
For the given iterable of object iterations, return an iterable of the most common object at each position of the
inner iterations.
E.g.: for [[1, 2], [1, 3], [2, 3]] the return value would be [1, 3] as 1 and 3 are the most common objects
at the first and second positions respectively.
:param all_votes: an iterable of object iterations
:return: the most common objects in the iterations (the major vote)
"""
return [Counter(votes).most_common()[0][0] for votes in zip(*all_votes)]
|
5a4705f1c6fc401ac1629239c2929cdc0b67e28d
| 674,876 |
def get_international(start_country, end_country):
"""checking if the trip is international or not (from Canada to USA and vice versa)"""
return start_country != end_country
|
eafefad5d8a0558f13a86e682ca68dcce5c47b40
| 522,284 |
def Bps_to_mbps(speed):
"""
Utility function to convert Bytes per second to Megabits per second.
"""
return (speed / 1000 / 1000) * 8
|
ca4126135e3d22f5667da5068d96df620b0418dc
| 373,840 |
def prompt_vialnumber(first_vial, last_vial):
"""Prompt user for a vial number and check it against possible vial range"""
n = input('Vial? ')
try:
n = int(n)
if n > last_vial or n < first_vial:
raise(ValueError('Number out of range'))
except ValueError:
print('Please enter an integer between %g and %g' % (first_vial, last_vial))
return prompt_vialnumber(first_vial, last_vial)
return n
|
c2198d6a3f17928faf922419af75598533863962
| 148,948 |
def forecastTimes(hrStr, d):
"""For wind forecast, create a string showing which forecase this is and valid times.
Args:
hrStr (str): String with hour of forecast (one of ``06``, ``12``, ``24``)
d (dict): Wind message.
Returns:
str: String with winds times. Example ``06 11/02-11/09``.
"""
dtFrom = d['for_use_from_time']
dtTo = d['for_use_to_time']
timeStr = '{} {:02d}/{:02d}-{:02d}/{:02d}'.format(hrStr, \
dtFrom.day, dtFrom.hour, dtTo.day, dtTo.hour)
return timeStr
|
5635e5463af0f7fa3ea7b42d0892a8f26ea4a56d
| 417,280 |
def get_machines_by_vnet_interface_name(config, ifname):
"""
Returns a list of machine that use a particular VNet interface
:param dict config: The config generated by get_config()
:param str ifname: The interface to check for
:return: list of VNet machines using that interface
"""
machines = []
for m_name, m_data in config["machines"].items():
for int_data in m_data["interfaces"].values():
if int(int_data["bridge"]) == int(ifname[-1]):
machines.append(m_name)
return machines
|
9f26b01243664f0af596db2eaf0d067d481076e6
| 82,788 |
def is_subset(l1, l2):
"""Checks whether list l1 is a subset of list l2"""
for x in l1:
if x not in l2:
return False
return True
|
8189d161947b95097887e5df234dd1c71b3b71a3
| 592,902 |
import six
def downgrader(version):
"""
A decorator for marking a method as a downgrader to an older
version of a given object. Note that downgrader methods are
implicitly class methods. Also note that downgraders take a
single argument--a dictionary of attributes--and must return a
dictionary. Downgraders may modify the argument in place, if
desired.
:param version: The version number the downgrader returns the
attributes for. Must be provided.
:returns: A decorator.
"""
def decorator(func):
# Save the version to downgrade to
func.__vers_downgrader__ = version
return func
# Sanity-check the version number
if not isinstance(version, six.integer_types) or version < 1:
raise TypeError("Invalid downgrader version number %r" % version)
return decorator
|
e136829783f2e002ee741fed7acf210d6235c535
| 655,984 |
import random
def Ui(lo, hi):
"""Uniformly distributed integer, inclusive limits."""
return random.randint(lo, hi)
|
f2cd9020ff8297367c387cd14b27cf50e75bb59f
| 655,555 |
import base64
def b64str_to_img_stream(src, urlsafe=False):
"""
Decode a Base64 string of image to the image file's byte stream.
:param src: The Base64 string you want to decode.
:param urlsafe: Trigger using URL-Safe format. Must be consistent with what you generate with.
:return: Decoded byte stream of image.
"""
stream_base64 = src.encode('utf-8')
if urlsafe:
stream = base64.urlsafe_b64decode(stream_base64)
else:
stream = base64.standard_b64decode(stream_base64)
return stream
|
5c1de8227c66c68701ddd4bffd31f87941f7f9a9
| 403,000 |
def _MasterToBotsToDeprecatedDict(suites):
"""Makes a dictionary listing masters, bots and deprecated for tests.
Args:
suites: A collection of test suite Test entities. All of the keys in
this set should have the same test suite name.
Returns:
A dictionary mapping master names to bot names to deprecated.
"""
def MasterName(key):
return key.pairs()[0][1]
def BotName(key):
return key.pairs()[1][1]
result = {}
for master in {MasterName(s.key) for s in suites}:
bot = {}
for suite in suites:
if MasterName(suite.key) == master:
bot[BotName(suite.key)] = suite.deprecated
result[master] = bot
return result
|
3ce07ed17ab826a9a08ac0d43e9440002a6cb25e
| 145,184 |
def get_messages(soup):
"""Parses the messages from the Soup object."""
raw_messages = soup.find_all('p')
# There are two <p> tags for every message, so just get rid of the
# odd-numbered ones
raw_messages = raw_messages[1::2]
return [message.text for message in raw_messages]
|
1918c4d1116db06248f26690f322fde7c3a0a385
| 168,718 |
import torch
def n_step_returns(q_values, rewards, kls, discount=0.99):
"""
Calculates all n-step returns.
Args:
q_values (torch.Tensor): the Q-value estimates at each time step [time_steps+1, batch_size, 1]
rewards (torch.Tensor): the rewards at each time step [time_steps, batch_size, 1]
kls (torch.Tensor): the scaled kl divergences at each time step [time_steps, batch_size, 1]
discount (float): the temporal discount factor
"""
discounts = torch.cat([(discount*torch.ones_like(q_values[:1]))**i for i in range(rewards.shape[0])], 0)
rewards[1:] = rewards[1:] - kls[:-1]
discounted_returns = torch.cumsum(discounts * rewards, dim=0)
terminal_values = discount * discounts * (q_values[1:] - kls)
# return torch.cat([q_values[:1], discounted_returns], dim=0)
return torch.cat([q_values[:1], discounted_returns + terminal_values], dim=0)
|
3bbd6026046328dc8ef63ab3e871f6c47636cb80
| 5,010 |
import json
def format(obj): # pylint: disable=W0622
"""Output object as json."""
return json.dumps(obj)
|
2a41cd3aebf9ad329298de388d38c2290fa1fc2b
| 207,229 |
def get_pb_id_from_deploy_id(deploy_id: str) -> str:
"""Get processing block ID from deployment ID.
This assumes that all deployments associated with a processing
block of ID `[type]-[date]-[number]` have a deployment ID of the
form `[type]-[date]-[number]-*`.
"""
return '-'.join(deploy_id.split('-')[0:3])
|
0ae109a57dd28260206c8d81a5545e1b1803d278
| 383,942 |
def load_voxel_params(param):
"""
Based on the lidar range and resolution of voxel, calcuate the anchor box
and target resolution.
Parameters
----------
param : dict
Original loaded parameter dictionary.
Returns
-------
param : dict
Modified parameter dictionary with new attribute `anchor_args[W][H][L]`
"""
anchor_args = param['postprocess']['anchor_args']
cav_lidar_range = anchor_args['cav_lidar_range']
voxel_size = param['preprocess']['args']['voxel_size']
vw = voxel_size[0]
vh = voxel_size[1]
vd = voxel_size[2]
anchor_args['vw'] = vw
anchor_args['vh'] = vh
anchor_args['vd'] = vd
anchor_args['W'] = int((cav_lidar_range[3] - cav_lidar_range[0]) / vw)
anchor_args['H'] = int((cav_lidar_range[4] - cav_lidar_range[1]) / vh)
anchor_args['D'] = int((cav_lidar_range[5] - cav_lidar_range[2]) / vd)
param['postprocess'].update({'anchor_args': anchor_args})
# sometimes we just want to visualize the data without implementing model
if 'model' in param:
param['model']['args']['W'] = anchor_args['W']
param['model']['args']['H'] = anchor_args['H']
param['model']['args']['D'] = anchor_args['D']
return param
|
6e364e23ecc450ed6d12879ba50217897adcfc4d
| 106,110 |
def indent(txt, indent_level):
"""
Indent a piece of text
>>> indent('foo', 2)
' foo'
"""
indent = " " * indent_level
return "\n".join(indent + x for x in txt.splitlines())
|
b0b48e304cfafd65c8d8f7be6b056cf755951cdf
| 632,369 |
def bin_to_dec(l):
"""Converts a list "l" of 1s and 0s into a decimal"""
return int(''.join(map(str, l)), 2)
|
8876bfd35bc2cf14026455b833a1244b6bb424b6
| 398,284 |
def str2hexstr(md5sum):
"""Return the hex representation of a string."""
return "".join([ "%02x" % ord(c) for c in md5sum ])
|
e2c01d5cb05775c846d223ca90c5a78797907f60
| 295,514 |
def sans_virgule(x):
"""
Retourne la partie du nombre x sans sa partie décimale. Ex : -2.5 devient -2
Arguments:
x (float): Un nombre decimal.
"""
return int(x)
|
d095d336d11c9884a4149633fcd1c82c5dfa4a93
| 215,753 |
def conversion(amount, rates, output_currency=None):
"""
Converts amount from input currency to the output currency. If output
currency is not defined, conversion is made for all supported currencies.
Parameters
----------
amount : float
Amount of money to be converted.
rates : dict
Conversion rates.
output_currency : str, optional
Currency for which conversion is made.
Returns
-------
dict
Converted rates.
"""
result = {
k: round(v * amount, 2) for k, v in rates.items()
} # it is necessary to have float(amount)?
if output_currency:
result = {output_currency: result[output_currency]}
return result
|
ad9f506d3597b22d54e612fe0ee572ee019732ef
| 82,835 |
def merge_short_sentences(lst: list) -> list:
"""Merge subsequent sentences that consist of only a single word."""
last_is_short = False
out_lst = []
for s in lst:
if s.find(' ') == -1:
if last_is_short:
out_lst[-1] = out_lst[-1] + s
else:
last_is_short = True
out_lst.append(s)
else:
last_is_short = False
out_lst.append(s)
return out_lst
|
9b0f77c009c250c58e732c93fc04532c8cdfb5b0
| 154,175 |
from typing import List
def filter_prefix(str_list: List[str], prefix: str) -> list:
"""
Filter the list for strings with the given prefix.
:param str_list: list of strings to filter
:param prefix: prefix to filter on
:return: list of filtered strings
"""
return [string for string in str_list if string.startswith(prefix)]
|
b22ad728bbdfd58a7b4f52117dcb3bb24fde0ead
| 257,615 |
def components(issue):
"""Get the component names of an issue"""
if hasattr(issue.fields, 'components'):
return [component.name for component in issue.fields.components]
return []
|
6d3daf700c63d344a69348f3e60dc1e85b059995
| 216,817 |
import uuid
def random_name(prefix: str = "") -> str:
"""Generate random name (with given prefix)"""
return '{p}{r}'.format(p=prefix, r=uuid.uuid4().hex[:8])
|
b4d2d8f271069f973357a5e38f1a31b6c40fe4ea
| 326,533 |
def tab_fibonacci(n):
"""
A fibonacci function that uses tabulation.
Start with the smallest problems and use returned values to calculate larger values.
Bottom up approach. The complexity is O(n).
"""
n = int(n)
if n == 0 or n == 1:
return n
x = 0
y = 1
for each in range(n)[2:]:
subSum = x + y
x = y
y = subSum
return x + y
|
1a0ee4870d326a6c3e370913da48f853efaac4cb
| 400,818 |
import requests
def is_pkg_available(pkg_name: str, channel: str = "conda-forge") -> bool:
"""Verify if the package is available on Anaconda for a specific channel.
:param pkg_name: Package name
:param channel: Anaconda channel
:return: Return True if the package is present on the given channel
"""
response = requests.get(
url=f"https://anaconda.org/{channel}/{pkg_name}/files", allow_redirects=False
)
return response.status_code == 200
|
aa69523b2e73df5fd84d9c6d77f79166e76cdb0a
| 255,649 |
import torch
import random
def one_hot_tensor(n: int) -> torch.Tensor:
""" Sample a one hot vector of length n, return as a torch Tensor. """
one_hot = torch.zeros(n)
k = random.randrange(n)
one_hot[k] = 1.0
return one_hot
|
d94b3d39237b2227eea4f9310d994721716eb6d2
| 106,343 |
def get_factors_(number, printed=False):
"""Get the factors of a number."""
factors = []
for x in range(1, number+1): # For each number from 1 to the given number.
if number % x == 0: # If number divided by x has a remainder of 0.
factors.append(x) # Then it is a factor of the given number.
if printed:
print(factors)
else:
return factors
|
b7bb2cdc8f667fa31f8bf3555bc1cc985d984532
| 488,984 |
def Sqrt(x):
"""Square root function."""
return x ** 0.5
|
e726dfad946077826bcc19f44cd6a682c3b6410c
| 13,774 |
def get_user_identity(event: dict) -> str:
""" Get user identity from CloudTrail event. """
if 'arn' not in event['userIdentity'].keys():
return "Unknown"
return event['userIdentity']['arn'].split(':')[-1]
|
b9418ddb4616b5062bf0dd2c3df75906e478e55b
| 587,810 |
import pkg_resources
def riptide_assets_dir() -> str:
""" Path to the assets directory of riptide_lib. """
return pkg_resources.resource_filename('riptide', 'assets')
|
6c82e359d46bb6a82cbf01559574c07629acc23b
| 41,040 |
def get_data_files(data_dir):
""" Retrieves a list from data_files to train/test with from a txt file.
Args:
data_dir (string): the path to the txt file
"""
data_files = [x.strip() for x in open(data_dir).readlines()]
return data_files
|
58e0096f94c367b59ea2c4bf9b2f7bd2b0f53c1a
| 287,574 |
def get_base(x):
"""Returns b | b ** i == x[i], or None"""
x = tuple(x)
if len(x) >= 2 and x[0] == 1:
base = x[1]
for i, xi in enumerate(x):
if base ** i != xi:
return
return base
|
52e822acc22eb368dfba730b9b7f1923174caf9f
| 354,734 |
def not_null(value):
"""A validation function that checks that a value isn't None."""
return True if value is not None else False
|
fddea3681dc6f4d1ae1c393464223d5ace4b1bab
| 413,432 |
def fix_logger_name(logger, method_name, event_dict):
"""
Captured stdlib logging messages have logger=feedhq.logging and
logger_name=original_logger_name. Overwrite logger with correct name.
"""
if 'logger_name' in event_dict:
event_dict['logger'] = event_dict.pop('logger_name')
return event_dict
|
e950da34b68c51d2b5c1349c04226e45b3b52523
| 159,476 |
def softmax_backward(Y, softmax_out):
"""
Y: labels of training data. shape: (vocab_size, m)
softmax_out: output out of softmax. shape: (vocab_size, m)
"""
dL_dZ = softmax_out - Y
assert (dL_dZ.shape == softmax_out.shape)
return dL_dZ
|
cbae57b45ef6ea6b8cf25aa9919b03aa5aef048d
| 390,392 |
def common_errors_remark(common_errors):
"""Generate remark for common errors and issues detection."""
if common_errors["display_results"]:
if common_errors["failed"] != 0:
return "<li>fix common errors</li>"
else:
return ""
else:
return "<li>setup common errors detection tool</li>"
|
be4103f83cc05e85772e565630a088b17edec1ec
| 603,390 |
def mapPoint(number, start1, stop1, start2, stop2):
"""
This method maps the number number between start2 and stop2 with the same ratio it had between start1 and start2.
@:param number: is the mapped number
@:param start1: is the lowest value of the range in which number is
@:param stop1: is the highest value of the range in which number is
@:param start2: is the lowest value of the range in which number is going to be
@:param stop2: is the highest value of the range in which number is going to be
@:return the calculated number
"""
return ((number - start1) / (stop1 - start1)) * (stop2 - start2) + start2
|
f37324113a391ed9574cda57c413d58b8b01b53d
| 298,457 |
def banner() -> None:
""" Return an ascii art """
with open("src/interface/art.txt", "r") as file:
return print(f"[red]{file.read()}[/]")
|
5e3e0dab46e7e6e33fad90a516490151c80f3719
| 33,399 |
def solution_b(puzzle, stop=2020):
"""
This next solution is even faster, about 25%, thanks to Gravitar64.
https://github.com/Gravitar64/Advent-of-Code-2020
Counting the turns from len(puzzle) instead of len(puzzle) + 1 makes
everything so easy and nice!
"""
spoken = {last: turn for turn, last in enumerate(puzzle, 1)}
last = puzzle[-1]
for turn in range(len(puzzle), stop):
recent = spoken.get(last, turn)
spoken[last] = turn
last = turn - recent
return last
|
1bb5058840d67aec9d0fe06eed06f4b25596b662
| 352,937 |
def parse_splits(chunk_lines):
"""
Parse splits from a chunk_lines (as list) and return
a list of splits.
:param chunk_lines: list
Note:
-----
Assume split infos have 3 lines where a line which starts
with 'S' begin split infos and the next 2 lines begin with '$'
and 'E' in that order.
"""
split = {}
splits = []
for index, line in enumerate(chunk_lines):
prefix = line[0]
data = line[1:]
if prefix == 'S': split["category"] = data
elif prefix == 'E': split["memo"] = data
elif prefix == '$':
split["amount"] = data
splits.append(split)
split = {}
else:
continue
return splits
|
25440e1c0ccb284934f08a0aa5f3c37221c6eb4f
| 492,407 |
from typing import List
from typing import Dict
def get_bad_images(images: List[Dict], tag_whitelist: List[str]) -> List[Dict]:
"""Filter a list of images for non-whitelisted tags or no tags."""
bad_images = []
for image in images:
image_tag = image.get("imageTag", "")
image_digest = image.get("imageDigest", "")
if not image_tag and not image_digest:
print("Found entirely blank image")
elif not image_tag:
bad_images.append({"imageDigest": image_digest})
elif image_tag not in tag_whitelist:
bad_images.append({"imageTag": image_tag})
return bad_images
|
33925df6a1e093f4756a35d25dde4b5948fda566
| 471,299 |
import calendar
def month_bound_from_date(d):
"""Get first and last date in date's month."""
return d.replace(day=1), d.replace(day=calendar.monthrange(d.year, d.month)[1])
|
71524f9b274d89bf81dfacb848291e0e45b460a6
| 433,275 |
def compute_n_steps(control_timestep, physics_timestep, tolerance=1e-8):
"""Returns the number of physics timesteps in a single control timestep.
Args:
control_timestep: Control time-step, should be an integer multiple of the
physics timestep.
physics_timestep: The time-step of the physics simulation.
tolerance: Optional tolerance value for checking if `physics_timestep`
divides `control_timestep`.
Returns:
The number of physics timesteps in a single control timestep.
Raises:
ValueError: If `control_timestep` is smaller than `physics_timestep` or if
`control_timestep` is not an integer multiple of `physics_timestep`.
"""
if control_timestep < physics_timestep:
raise ValueError(
'Control timestep ({}) cannot be smaller than physics timestep ({}).'.
format(control_timestep, physics_timestep))
if abs((control_timestep / physics_timestep - round(
control_timestep / physics_timestep))) > tolerance:
raise ValueError(
'Control timestep ({}) must be an integer multiple of physics timestep '
'({})'.format(control_timestep, physics_timestep))
return int(round(control_timestep / physics_timestep))
|
56fe329a7dc546262f25f388fdb28da75428e638
| 295,075 |
def AppendSolution(df, func, **kwargs):
"""
Appends a solution to the dataframe
Parameters
----------
df: pd.DataFrame
A dataframe containing the extracted
properties for the edges/nodes.
func: function
A function that takes a dataframe
and returns a solution.
Returns
-------
df: pd.DataFrame
A dataframe containing the extracted
properties for the edges/nodes with
a solution.
"""
# Get solution
df.loc[:, "solution"] = df.apply(lambda x: func(x), axis=1, **kwargs)
return df
|
2138d27b8157cd031232a135f11f25653db66db0
| 316,872 |
def complete_cell(self):
"""
Return a cell where atoms have been translated to complete all molecules of
the cell
Returns
-------
out_cell : Mol object
The new untruncated cell
full_mol_l : list of Mol objects
Each molecule in the untruncated cell
"""
full_mol_l = []
remaining = self.copy()
while len(remaining) != 0:
full_mol, cell = remaining.complete_mol(0)
full_mol_l.append(full_mol)
remaining = cell
for atom in full_mol:
if atom in remaining:
remaining.remove(atom)
# Convinently, remaining is now an empty Mol
out_cell = remaining
for mol in full_mol_l:
out_cell.extend(mol)
return out_cell, full_mol_l
|
ad87c167f32035f99b59e4c0c832f5d0877e7523
| 235,044 |
import math
def computeTelescopeTransmission(pars, offAxis):
"""
Compute tel. transmission (0 < T < 1) for a given set of parameters
as defined by the MC model and for a given off-axis angle.
Parameters
----------
pars: list of float
Parameters of the telescope transmission. Len(pars) should be 4.
offAxis: float
Off-axis angle in deg.
Returns
-------
float
Telescope transmission.
"""
_degToRad = math.pi / 180.0
if pars[1] == 0:
return pars[0]
else:
t = math.sin(offAxis * _degToRad) / (pars[3] * _degToRad)
return pars[0] / (1.0 + pars[2] * t ** pars[4])
|
50b2e2908726b8a77bc83a2821cf760b7475300b
| 708,732 |
def update_processing_mask(mask, index, window=None):
"""
Update the persistent processing mask.
Because processes apply the mask first, index values given are in relation
to that. So we must apply the mask to itself, then update the boolean
values.
The window slice object is to catch when it is in relation to some
window of the masked values. So, we must mask against itself, then look at
a subset of that result.
This method should create a new view object to avoid mutability issues.
Args:
mask: 1-d boolean ndarray, current mask being used
index: int/list/tuple of index(es) to be excluded from processing,
or boolean array
window: slice object identifying a further subset of the mask
Returns:
1-d boolean ndarray
"""
new_mask = mask[:]
sub_mask = new_mask[new_mask]
if window:
sub_mask[window][index] = False
else:
sub_mask[index] = False
new_mask[new_mask] = sub_mask
return new_mask
|
b5360dbce829f66d5ccf9de3a74984bf16b6e921
| 237,582 |
def GetBrowserScoreKeyName(suite, browser_instance):
"""Key name generator for browser score model.
Args:
suite: TestSuite Entity.
browser_instance: Browser Entity.
Returns:
BrowserScore key name as string.
"""
return '%s_%s' % (suite.key().name(), browser_instance.key().name())
|
608eb61cdf8597bba9e9a93ddaebcc5bff234d22
| 187,597 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.