content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def negative_log_likelihood(y_true, predicted_distributions):
"""Calculates the negative log likelihood of the predicted distribution
``predicted_distribution`` and the true label value ``y_true``
# Arguments
y_true: Numpy array of shape [num_samples, 1].
predicted_distribution: TensorFlow probability distribution
"""
log_likelihood = predicted_distributions.log_prob(y_true)
return - log_likelihood
|
cb212b478a087cf995be84549dea1ad0869838f5
| 654,867 |
def _count(bs) -> int:
"""Given a sequence of bools, count the Trues"""
return sum(1 for b in bs if b)
|
58a030c42f369407f61c8f9234950d3c0bbc31b5
| 496,895 |
from typing import List
from typing import Dict
from typing import Any
def parse_unknown_options(args: List[str]) -> Dict[str, Any]:
"""Parse unknown options from the CLI.
Args:
args: A list of strings from the CLI.
Returns:
Dict of parsed args.
"""
warning_message = (
"Please provide args with a proper "
"identifier as the key and the following structure: "
'--custom_argument="value"'
)
assert all(a.startswith("--") for a in args), warning_message
assert all(len(a.split("=")) == 2 for a in args), warning_message
p_args = [a.lstrip("--").split("=") for a in args]
assert all(k.isidentifier() for k, _ in p_args), warning_message
r_args = {k: v for k, v in p_args}
assert len(p_args) == len(r_args), "Replicated arguments!"
return r_args
|
e356703c36e71ab15601d64cc9187e2a91cedff4
| 455,302 |
def parse_flag(value):
""" Convert string to boolean (True or false)
:param value: string value
:return: True if the value is equal to "true" (case insensitive), otherwise False
"""
return value.lower() == "true"
|
4555e655ecd39f362d11065718e10b144ecf2b85
| 633,919 |
def user_name_to_file_name(user_name):
"""
Provides a standard way of going from a user_name to something that will
be unique (should be ...) for files
NOTE: NO extensions are added
See Also:
utils.get_save_root
"""
# Create a valid save name from the user_name (email)
# ----------------------------------------------------------------------
# Good enough for now ...
# Removes periods from email addresses, leaves other characters
return user_name.replace('.', '')
|
d1e45e47f2da4f23c8b97081438aa2d732c56bb1
| 239,479 |
import yaml
def load_config(path):
"""Load yaml collection configuration."""
with open(path, 'r') as stream:
return yaml.load(stream, Loader=yaml.SafeLoader)
|
4beb9fff0d471bb23e06b55e18f4d286263fbd4e
| 644,258 |
def check_end_condition(grid):
"""The end condition: There are no more hidden characters.
:param grid: The grid.
:return: Returns False if there still are hidden characters, otherwise returns True.
"""
char_locs = grid[2]
for x in char_locs:
if char_locs[x][3] == 'H' or char_locs[x][3] == 'h':
return False
return True
|
93e25b0dcc8e6ed5fd8552b45e46be7081e6aa9a
| 248,216 |
import types
def _get_object_config(obj):
"""Return the object's config depending on string, function, or others."""
if isinstance(obj, str):
# Use the content of the string as the config for string.
return obj
elif isinstance(obj, types.FunctionType):
# Keep track of the function's module and name in a dict as the config.
return {
'module': obj.__module__,
'function_name': obj.__name__,
}
if not hasattr(obj, 'get_config'):
raise TypeError(f'Unable to recognize the config of {obj}.')
return obj.get_config()
|
ea95c5131e10400dd773a218cb93879849964027
| 469,100 |
from functools import reduce
def excel_col_letter_to_index(x):
"""
Convert a 'AH','C', etc. style Excel column reference to its integer
equivalent.
@param x (str) The letter style Excel column reference.
@return (int) The integer version of the column reference.
"""
return reduce(lambda s,a:s*26+ord(a)-ord('A')+1, x, 0)
|
800f650118c1216727be18722aa4b435ec34b56f
| 692,397 |
def delete_models(client, model=None, drawing=None, delete_views=None):
"""Delete one or more models from a drawing.
Args:
client (obj):
creopyson Client
model (str, optional):
Model name (wildcard allowed: True).
Defaults: all models will be deleted from the drawing.
drawing (str, optional):
Drawing name. Defaults: current active drawing.
delete_views (boolean, optional):
Whether to delete drawing views associated with the model.
Defaults is False.
Returns:
None
"""
data = {}
if drawing:
data["drawing"] = drawing
if model:
data["model"] = model
if delete_views:
data["delete_views"] = delete_views
return client._creoson_post("drawing", "delete_models", data)
|
213da46fcb9af55c340bc687010a2d44661e5e57
| 497,273 |
def apply_ratio(o_w, o_h, t_w, t_h):
"""Calculate width or height to keep aspect ratio.
o_w, o_h -- origin width and height
t_w, t_h -- target width or height, the dimension
to be calculated must be set to 0.
Returns: (w, h) -- the new dimensions
"""
new_w = t_h * o_w / o_h
new_h = t_w * o_h / o_w
return new_w+t_w, new_h+t_h
|
f3143e5a5ad8aeafbb913e73aab40e8e8990ddd6
| 16,045 |
def convert_to_list(xml_value):
"""
An expected list of references is None for zero values, a dict for
one value, and a list for two or more values. Use this function to
standardize to a list. If individual items contain an "@ref" field, use
that in the returned list, otherwise return the whole item
Args:
xml_value (dict or list): value to transform to a list
Returns:
list: processed list of values from original xml_value
"""
if not xml_value:
return []
elif isinstance(xml_value, dict):
return [xml_value.get('@ref', xml_value)]
else:
return [val.get('@ref', val) for val in xml_value]
|
17bb8e21e4247a14a37bb98643cfe9f847168c4c
| 83,420 |
def get_attr(obj, attr, default=None):
"""Recursive get object's attribute. May use dot notation.
>>> class C(object): pass
>>> a = C()
>>> a.b = C()
>>> a.b.c = 4
>>> get_attr(a, 'b.c')
4
>>> get_attr(a, 'b.c.y', None)
>>> get_attr(a, 'b.c.y', 1)
1
"""
if '.' not in attr:
return getattr(obj, attr, default)
else:
L = attr.split('.')
return get_attr(getattr(obj, L[0], default), '.'.join(L[1:]), default)
|
a14b821ed3d5ea61abc9b66cb80df4391519055d
| 464,170 |
def get_im_physical_coords(array, grid, image_data, direction):
"""
Converts one dimension of "pixel" image (row or column) coordinates to
"physical" image (range or azimuth in meters) coordinates, for use in the
various two-variable sicd polynomials.
Parameters
----------
array : numpy.array|float|int
either row or col coordinate component
grid : sarpy.io.complex.sicd_elements.Grid.GridType
image_data : sarpy.io.complex.sicd_elements.ImageData.ImageDataType
direction : str
one of 'Row' or 'Col' (case insensitive) to determine which
Returns
-------
numpy.array|float
"""
if direction.upper() == 'ROW':
return (array - image_data.SCPPixel.Row)*grid.Row.SS
elif direction.upper() == 'COL':
return (array - image_data.SCPPixel.Col)*grid.Col.SS
else:
raise ValueError('Unrecognized direction {}'.format(direction))
|
18db75e08404004f0515233b4e759d4d69b92598
| 571,170 |
def contact_sequence(data, pIDs):
"""
Given a pd.DataFrame with variables ['gID', 'pID', 'begin', 'end'], generate a contact sequence of events (j, i, t) where j is the group member being interrupted, i is the group member doing the interrupting, and t is the start time of the interruptive speech. Ignores non-interruptive simultaneous speech.
Ref: Holme & Saramäki (2012)
"""
C = []
data = data[data['pID'].isin(pIDs)]
for i in range(len(data)):
ego = data.iloc[i, :]
interruptions = data[
(data['end'] > ego['end']) &
(data['begin'] < ego['end']) &
(data['begin'] >= ego['begin'])
]
if interruptions.empty:
continue
else:
for j in range(len(interruptions)):
alter = interruptions.iloc[j, :]
c = (ego['pID'], alter['pID'], alter['begin'])
C.append(c)
C = sorted(C, key = lambda x: x[2])
return C
|
bb36b4bddefc094f036a32319a5cdf47b146005d
| 645,057 |
def matrix_mult(a, b):
"""
Function that multiplies two matrices a and b
Parameters
----------
a,b : matrices
Returns
-------
new_array : matrix
The matrix product of the inputs
"""
new_array = []
for i in range(len(a)):
new_array.append([0 for i in range(len(b[0]))])
for j in range(len(b[0])):
for k in range(len(a[0])):
new_array[i][j] += a[i][k] * b[k][j]
return new_array
|
5e0f27f29b6977ea38987fa243f08bb1748d4567
| 708,359 |
def emulator_uses_kvm(emulator):
"""Determines if the emulator can use kvm."""
return emulator["uses_kvm"]
|
654ec1207180e0ac90af71d9333acf3ef431add6
| 67,164 |
def expand_features_and_labels(x_feat, y_labels):
"""
Take features and labels and expand them into labelled examples for the
model.
"""
x_expanded = []
y_expanded = []
for x, y in zip(x_feat, y_labels):
for segment in x:
x_expanded.append(segment)
y_expanded.append(y)
return x_expanded, y_expanded
|
5cd5dbe18285fdcbc633809cd95dde17e32dd82b
| 47,651 |
import math
def calc_rms(data, channel, num_channels, num_samples_per_channel):
""" Calculate RMS of a data buffer """
value = 0.0
for i in range(num_samples_per_channel):
index = (i * num_channels) + channel
value += (data[index] * data[index]) / num_samples_per_channel
return math.sqrt(value)
|
cd6bf82aeda1e54f692060befcfbd1dc47cedf86
| 171,620 |
def get_number_rows(pi_settings, ship_height, alien_height):
"""Determine the number of rows of aliens that fit on the screen."""
available_space_y = (pi_settings.screen_height -
(3 * alien_height) - ship_height)
number_rows = int(available_space_y / (alien_height))
return number_rows
|
3f0cb2282405e543aee93600dfdecda6a7870f79
| 537,110 |
def format_multitask_preds(preds):
"""
Input format: list of dicts (one per task, named with task_name), each having a
'predictions' list containing dictionaries that represent predictions for each sample.
Prediction score is represented by the field {task_name}_score in each of those dicts.
Output format: a list of lists of dictionaries, where now each dictionary include scores for all the
tasks that were included in the input.
"""
out = []
score_names = [f"{task['task']}_score" for task in preds[1:]]
first_task = preds[0]
for sentence_idx, sentence in enumerate(first_task["predictions"]):
out_sent = []
for token_idx, token in enumerate(sentence):
for task, score in zip(preds[1:], score_names):
token[score] = task["predictions"][sentence_idx][token_idx][score]
out_sent.append(token)
out.append(out_sent)
return out
|
470b23f6a5cc6b8e48ce0becfafd62104e016de8
| 12,041 |
def rivers_with_stations(stations):
"""This returns a list of all the rivers which have monitoring stations on them"""
rivers = []
for s in stations:
if s.river not in rivers:
rivers.append(s.river)
return rivers
|
4fb7490a0613b2aded3ac42dccb225fef4a147ac
| 325,490 |
def calcStraightLine(x0, y0, x1, y1):
"""
calculates the slope and the axis intercept of a straight line using to
points in an x, y grid
:Parameters:
x0, y0, x1, y1: float
2 points in an x, y grid
:Returns:
m, b: float
the slope and the axis intercept of the calculated straight line
"""
m = (y1 - y0) /(x1 - x0)
b = (x1*y0 - x0*y1)/(x1 - x0)
return m, b
|
43ca4c5072ecb25d4cda334f1b51337cf8e4bc0d
| 562,728 |
def normalize_node_id(nid):
"""Returns a suitable DOT node id for `nid`."""
return '"%s"' % nid
|
ec40c11895ca6976792ba37eec10e6ef0d61bfde
| 319,282 |
def add_header(response):
"""Add header to response."""
response.cache_control.max_age = 300
response.cache_control.no_cache = True
response.cache_control.must_revalidate = True
response.cache_control.proxy_revalidate = True
return response
|
b2ae7e23bd1b419c7c2664ee45dad4f0598617d4
| 464,802 |
def getReward(state, marker):
"""Given the state (a board) determine the reward."""
if ( state.gameWon() ):
return marker * 10
else:
return 0
|
b4532c64ae1229c15c4c4c391b07d4fb1fd0eba4
| 367,005 |
import torch
def pow_p_norm(signal):
"""Compute 2 Norm"""
return torch.pow(torch.norm(signal, p=2, dim=-1, keepdim=True), 2)
|
2f4a1cce69ce765b1768ed2548c2749f856b5c75
| 176,361 |
def recursive_multiply(a: int, b: int, _sum: int = 0) -> int:
"""Multiplies a with b, returns product
Args:
a (int): factor of product
b (int): factor of product
_sum (int): private, shouldn't be used
Returns:
int: product of a * b
"""
if b != 0:
if b > 0:
_sum += a
b -= 1
else:
_sum -= a
b += 1
return recursive_multiply(a, b, _sum)
else:
return _sum
|
f8d13c02e96b5c90db3f1c3a4f00031c65066622
| 177,393 |
def filter_dictionary_starts_with(dictionary, prefix):
"""Filters a dictionary from a key prefix."""
return {key: dictionary[key] for key in dictionary if key.startswith(prefix)}
|
49fc5d9701c7f0c2856c10154508654a739f49c3
| 208,789 |
import socket
import struct
def ip2d(ip):
"""IP to decimal"""
packed = socket.inet_aton(ip)
return struct.unpack("!L", packed)[0]
|
0dbbac8438da0ce705633573c701033ee72763bb
| 467,122 |
def _dehydrate_token(token):
"""
Convert the request token into a dict suitable for storing in the session.
"""
session_token = {}
session_token["key"] = token.key
session_token["secret"] = token.secret
return session_token
|
5b2b27e0e4f7de776d1ef35e16be1bec1328ef3b
| 204,959 |
def get_closer(a, b, test_val):
"""Returns which ever of a or b is closer to test_val"""
diff_a = abs(a - test_val)
diff_b = abs(b - test_val)
if diff_a < diff_b:
return a
else:
return b
|
42452b2b03314f96ca8793802e1cd7e5ec7a8b1b
| 117,000 |
def create_constant_learning_rate_fn(base_learning_rate):
"""Create a constant learning rate function.
Args:
base_learning_rate: learning rate that will always be returned
Returns:
function of the form f(step) -> learning_rate
"""
def step_fn(step): ## pylint: disable=unused-argument
return base_learning_rate
return step_fn
|
1ba81be7545080ec8be6ec550fe91500cee552ee
| 282,884 |
def strip_math(s):
"""remove latex formatting from mathtext"""
remove = (r'\mathdefault', r'\rm', r'\cal', r'\tt', r'\it', '\\', '{', '}')
s = s[1:-1]
for r in remove:
s = s.replace(r, '')
return s
|
ef1231185b1344b6dbf8897198057a11b1ecc652
| 503,509 |
from importlib import import_module
def load_app(module_name, objects=None):
"""Simply loads and returns an app module for you.\n
Params:
- module_name - module name of your app.
- objects (str) - if provided, returns a certain part of the module
instead of the whole thing. Example:
`load_app('my_app', objects='views')` will return `my_app.views`.
"""
if objects:
return import_module(module_name + '.' + objects)
else:
return import_module(module_name)
|
0bc98ba83a27302d1047c58ca7125f5ceecc419a
| 510,853 |
from typing import List
def nine_to_no_fix(alts: List[str]) -> List[str]:
"""
Google ASR specific
GASR gives 9 when the person says no or not. Therefore if both of them
are present at the start of the sentence, convert all 9 to no
"""
count_9 = 0
count_no = 0
if len(alts) < 2:
return alts
for txt in alts:
if txt:
if txt.split()[0] == "9":
count_9 += 1
elif txt.split()[0] in ["no", "not"]:
count_no += 1
if count_no and count_9:
output_texts = []
for txt in alts:
if txt and txt.split()[0] == "9":
output_texts.append("no " + " ".join(txt.split()[1:]))
else:
output_texts.append(txt)
return output_texts
else:
return alts
|
0811e71f5128796f1dfc7d385465bdf8264b6b72
| 288,328 |
from datetime import datetime
def minutes_to_datetime(minutes: int):
"""
Convert minutes to datetime
:param minutes: int
:return: datetime
"""
days, remainder = divmod(minutes, 24 * 60)
hours, minutes = divmod(remainder, 60)
return datetime(1900, 1, 1+days, hours, minutes)
|
4f4cae1cdd7cd8c30dfdd3318808bc6a688a9d04
| 281,275 |
def calc_step(epoch: int, n_batches: int, batch_index: int) -> int:
"""Calculates current step.
Args:
epoch (int): Current epoch.
n_batches (int): Number of batches in dataloader.
batch_index (int): Current batch index.
Returns:
int: Current step.
"""
return (epoch - 1) * n_batches + (1 + batch_index)
|
333ccb043213bc007d77c8e087c4523613605d8e
| 320,613 |
def get_feature(tablerow):
"""Extract the feature of a tablerow.
Parameters:
tablerow (bs4.BeautifulSoup): A tablerow from the wikipedia infobox in html
Returns:
feature (str): Feature of the tablerow
Raises:
None
"""
tableheader = tablerow.find('th')
if tableheader:
feature = tableheader.text
else:
feature = ''
return feature
|
767f422aad2ff82fd86f10cbce9b6208fff6bef2
| 301,376 |
def _adjust_component(component: int) -> int:
"""Return the midpoint of the quadrant of the range 0-255 that the given
component belongs to. Each quadrant spans 63 integers, and the midpoints
are: 31, 95, 159, 223.
>>> _adjust_component(25)
31
>>> _adjust_component(115)
95
"""
if component <= 63:
return 31
elif component > 63 and component <= 127:
return 95
elif component > 127 and component <= 191:
return 159
else: #component > 191
return 223
|
444baac61f20dc32d05c60900f6fe7dbf7374d51
| 670,731 |
def get_centroid(M):
"""
Returns the centroid using the inputted image moments.
Centroid is computed as being the first moment in x and y divided by the
zeroth moment.
Parameters
----------
M : list
List of image moments.
Returns
-------
tuple
Centroid of the image moments.
"""
return int(M['m10']/M['m00']), int(M['m01']/M['m00'])
|
7da4f9ef80e7daee6d95c121088e136a4c93756c
| 491,835 |
def sorted_dict(d, key=None, reverse=False):
"""
Return dictionary sorted using key. If no key provided sorted by dict keys.
"""
if key is None:
return dict(sorted(d.items(), key=lambda e: e[0], reverse=reverse))
return dict(sorted(d.items(), key=key, reverse=reverse))
|
97b08901c1cd39a2fb17ae6db0cfd088e8366e70
| 83,022 |
import fnmatch
def select_signals(signal_list, signal_spec):
"""
Selects signals from a signal list following signal specifications.
signal_list: List of strings of possible signal names
signal_spec: List of strings with signal specifications including wildcards
Normal Unix file name wildcards are accepted and extended with
[<num>-<num>] type expressions so as e.g. a channel range can be selected.
Returs select_list, select_index
select_list: List of strings with selected signal names
select_index: List of indices to signal list of the selected signals
Raises ValueError if there is no match for one specification
"""
if (type(signal_spec) is not list):
_signal_spec = [signal_spec]
else:
_signal_spec = signal_spec
if ((len(_signal_spec) == 0) or (signal_list == [])):
raise ValueError("No signal list or signal specification.")
select_list = []
select_index = []
for ch in _signal_spec:
# This will add a list of possible channel names to the _signal_spec while [<num>-<num>} is found
startpos = 0
extended = False
extended_list = []
while 1:
# Searching for opening and closing []
for i1 in range(startpos,len(ch)):
if (ch[i1] == '['):
break
else:
break
if (i1 == len(ch)-1):
break
for i2 in range(i1+1,len(ch)):
if (ch[i2] == ']'):
break
else:
break
# found the opening and closing bracket
# Trying to interpret the string between the brackets as <int> - <int>
try:
nums = ch[i1+1:i2].split('-')
nums = [int(nums[0]), int(nums[1])]
# Extracting the strings before and after the []
except Exception:
if (i2 >= len(ch)-2):
break
startpos = i2+1
continue
if (i1 == 0):
str1 = ""
else:
str1 = ch[0:i1]
if (i2 < len(ch)-1):
str2 = ch[i2+1:len(ch)]
else:
str2 = ""
extended = True
for i in range(nums[0],nums[1]+1):
# Adding all the possible strings
extended_list.append(str1+str(i)+str2)
startpos = i2+1
continue
ch_match = False
# if extended list is created not checking original name
if (not extended):
for i in range(len(signal_list)):
if (fnmatch.fnmatch(signal_list[i], ch)):
select_list.append(signal_list[i])
select_index.append(i)
ch_match = True
if (extended):
for i in range(len(signal_list)):
for che in extended_list:
if (fnmatch.fnmatch(signal_list[i], che)):
select_list.append(signal_list[i])
select_index.append(i)
ch_match = True
break
if (not ch_match):
raise ValueError("Signal name: " + ch + " is not present.")
return select_list, select_index
|
9d39ef92641e851395f02c81117d046d907d229f
| 224,542 |
def crop_scores(player):
"""Select specific only parts of the full score object
Args:
player (dict): player object from which to read the score
Returns:
score (dict): filtered scores from the game data
"""
score = {}
# if there is no active username, nobody finished, but the
# last seen player might still get a valid rank
if player['username'] in ['dead', 'open']:
score['finished'] = 0
score['rank'] = player['finishrank']
return score
keys_wanted = [
'capitalships',
'freighters',
'planets',
'starbases',
'militaryscore',
'percent',
]
score = {k: player['score'].get(k, None) for k in keys_wanted}
score['finished'] = 1
score['rank'] = player['finishrank']
return score
|
5466cf39b59ce4b49b7da3ff2c355b2d7b46455c
| 35,959 |
def percent_delta(old_score, new_score):
"""Calculates the percent change between two scores.
"""
return float(new_score - old_score) / float(old_score)
|
ceaf4e0eecb436818c12a52c32fb1db7f88ca102
| 582,044 |
def accession_entry_map(klass):
"""Creates a `dict` mapping from accessions to the owning instance.
for all instances in the database represented by `klass`.
Parameters
----------
klass : :class:`Pubmed` or :class:`Psimi`
A class having the accession attribute.
Returns
-------
dict[str, object]
A dictionary mapping from accession to the associated instance.
"""
if not hasattr(klass, 'accession'):
raise AttributeError(
"`{}` does not have the attribute `accession`." % klass.__name__
)
items = klass.query.all()
mapping = {e.accession: e for e in items}
return mapping
|
d3ca955ccea5ee45e1eb938f89c6fdd61ff42390
| 322,982 |
def difference(li1, li2):
"""Difference of two lists."""
return list(list(set(li1)-set(li2)) + list(set(li2)-set(li1)))
|
c2e9b30c5eeed330f7a10531c4269c6aa43e3ab7
| 65,856 |
def calcGeometricMean (theList):
"""Calculates the geometric mean of a list of values.
:param theList: The list of which the geometric mean
:type theList: list
:return: The geometric mean of the values of theList
:rtype: float
"""
product = 1
root = 0
for value in theList:
product *= value
root += 1
return product ** (1 / root)
|
923ca02c2bb39e65fd7f25eaf0becaae03bdeb18
| 106,231 |
def equal_zip(*args):
"""
Zip which also verifies that all input lists are of the same length
"""
# make sure that all lists are of the same length
assert len(set(map(len, args))) == 1, "lists are of different lengths {}".format(args)
return zip(*args)
|
f50ad8586d24516ba641e1bbef5d62879a0f3d6b
| 23,922 |
def limit_vector(vector, bottom_limit, upper_limit):
"""
This function cut the a vector to keep only the values between the bottom_limit and the upper_limit.
Parameters
----------
vector : list
The vector that will be cut
upper_limit : float
The maximum value of the vector.
bottom_limit : float
The minimum value of the vector
Returns
-------
vector : iterable
The limited vector
"""
temp = []
for x in vector:
if bottom_limit <= x <= upper_limit:
temp.append(x)
return temp
|
5c520f09e6caac08461cd6add911ea69a12afa72
| 47,293 |
def dict_get(d, *args):
"""Get the values corresponding to the given keys in the provided dict."""
return [d[arg] for arg in args]
|
0202cbed5cc2b81b1d8b74986630e3c797596837
| 595,111 |
def construct_resolver(model_name, resolver_type):
"""Constructs a resolve_[cable_peer|connected_endpoint]_<endpoint> function for a given model type.
Args:
model_name (str): Name of the model to construct a resolver function for (e.g. CircuitTermination).
resolver_type (str): One of ['connected_endpoint', 'cable_peer']
"""
if resolver_type == "cable_peer":
def resolve(self, args):
peer = self.get_cable_peer()
if type(peer).__name__ == model_name:
return peer
return None
return resolve
if resolver_type == "connected_endpoint":
def resolve(self, args):
peer = self.connected_endpoint
if type(peer).__name__ == model_name:
return peer
return None
return resolve
|
e7c16fec9e68d875725692349742380dfb1e0e2c
| 198,973 |
def Predict_Var(vcf, snp_mdl, ind_mdl):
"""Predicts the truth value of a variant
Parameters
----------
vcf : DataFrame
vcf file with variants of interest
snp_mdl : XGBClassifier
classifier object, trained on SNPs
ind_mdl : XGBClassifier
classifier object, trained on InDels
Returns
-------
int
an integer representation of whether or not a variant is predicted
to be real
"""
params = vcf.iloc[0:11].values
if vcf['Is_SNP'] == 1:
return int(snp_mdl.predict(params[None, :]))
else:
return int(ind_mdl.predict(params[None, :]))
|
1544785f95b02016f249f5b5e390a1b075c1325b
| 439,617 |
def slice_list(list_a: list, start: int, end: int):
"""Problem 18: Extract a slice from list.
Parameters
----------
list_a : list
The input list
start : int
The start of the slice
end : int
The end of the slice
Returns
-------
list
A slice of the initial list
Raises
------
TypeError
If the given argument is not of `list` type
ValueError
If the values of `start` and / or `end` are invalid
"""
if not isinstance(list_a, list):
raise TypeError('The argument given is not of `list` type.')
if start < 1 or len(list_a) < start:
raise ValueError('The value of `start` argument is not valid')
if end < start or len(list_a) < end:
raise ValueError('The value of `end` argument is not valid')
return list_a[(start - 1):end]
|
853088bb218666771e6024953e9956524b139443
| 665,452 |
def rk4_step(force, state, time, dt):
"""Compute one step of the rk4 approximation.
Parameters
----------
force : callable
Vector field that is being integrated.
state : array-like, shape=[2, dim]
State at time t, corresponds to position and velocity variables at
time t.
time : float
Time variable.
dt : float
Time-step in the integration.
Returns
-------
point_new : array-like, shape=[,,,, {dim, [n, n]}]
First variable at time t + dt.
vector_new : array-like, shape=[,,,, {dim, [n, n]}]
Second variable at time t + dt.
See Also
--------
https://en.wikipedia.org/wiki/Runge–Kutta_methods
"""
k1 = force(state, time)
k2 = force(state + dt / 2 * k1, time + dt / 2)
k3 = force(state + dt / 2 * k2, time + dt / 2)
k4 = force(state + dt * k3, time + dt)
new_state = state + dt / 6 * (k1 + 2 * k2 + 2 * k3 + k4)
return new_state
|
9d2eb400d608d1c15b73e1e78fcd3bebaff868bd
| 363,471 |
import time
def fade_to_black(connection):
"""Transition from the current brightness to zero in a smooth fade"""
command = "X03FE" # Lowers by 2 points
# Loop until the number is 0
i = 0
while i < 128:
connection.write(bytes(command, 'UTF-8'))
i += 1
time.sleep(0.03)
return True
|
1de93280291d873c8928140a6ff6410fce70bde1
| 405,390 |
import torch
def _default_collate_mbatches_fn(mbatches):
"""Combines multiple mini-batches together.
Concatenates each tensor in the mini-batches along dimension 0 (usually this
is the batch size).
:param mbatches: sequence of mini-batches.
:return: a single mini-batch
"""
batch = []
for i in range(len(mbatches[0])):
t = torch.cat([el[i] for el in mbatches], dim=0)
batch.append(t)
return batch
|
e3855ff27ec82e723008b9ad6ad6af94fda27b23
| 323,775 |
import pytz
def add_timezone(time_record):
""" Add a default America/New_York timezone info to a datetime object.
Args:
time_record: Datetime object.
Returns:
Datetime object with a timezone if time_record did not have tzinfo,
otherwise return time_record itself.
"""
if time_record.tzname() is None:
return time_record.replace(tzinfo=pytz.timezone('America/New_York'))
return time_record
|
e3e16fbb87f9d5ff3a3bd5c7f24b3bd880700a00
| 127,352 |
import pickle
def compare_pickles(filename_1, filename_2):
"""Read in both pickles, and see if they match,
and return both of them.
Inputs:
filename_1: string
filename_2: string
Outputs:
pickle_equal: boolean - True iff the pickles have identical contents
pickle_1: object from filename_1
pickle_2: object from filename_2
"""
pickle_1 = pickle.load(open(filename_1, "rb"))
pickle_2 = pickle.load(open(filename_2, "rb"))
pickle_equal = (pickle_1 == pickle_2)
return pickle_equal, pickle_1, pickle_2
|
83af39a6b2416d15bbe97a3c29d7a3e6a8c43bd1
| 345,705 |
def clean_name(name):
"""Replace dashes and spaces with underscores"""
return '_'.join(name.split()).replace('-', '_')
|
5de49ec064b3e6b4359d29d822fd732d080f8a43
| 641,612 |
from typing import Any
import json
def to_json(path: str, output: Any) -> None:
"""
Writes output to json file
Args:
path (str): Output path
output (Any): Content to output
"""
with open(path, "w") as stream:
return json.dump(output, stream)
|
9957f8678f94fb9c440cfc0d3387ae8f281e054b
| 512,454 |
from typing import List
from typing import Any
from typing import Dict
import torch
def my_data_collator(features: List[Any]) -> Dict[str, torch.Tensor]:
"""
A nearly identical version of the default_data_collator from the
HuggingFace transformers library.
"""
first = features[0]
batch = {}
# Special handling for labels.
# Ensure that tensor is created with the correct type
# (it should be automatically the case, but let's make sure of it.)
if "label" in first and first["label"] is not None:
label = first["label"].item() if isinstance(first["label"], torch.Tensor) else first["label"]
dtype = torch.long if isinstance(label, int) else torch.float
batch["labels"] = torch.tensor([f["label"] for f in features], dtype=dtype)
elif "label_ids" in first and first["label_ids"] is not None:
if isinstance(first["label_ids"], torch.Tensor):
batch["labels"] = torch.stack([f["label_ids"] for f in features])
else:
dtype = torch.long if type(first["label_ids"][0]) is int else torch.float
batch["labels"] = torch.tensor([f["label_ids"] for f in features], dtype=dtype)
# Handling of all other possible keys.
# Again, we will use the first element to figure out which key/values are not None for this model.
for k, v in first.items():
if k not in ("label", "label_ids") and v is not None and not isinstance(v, str):
if isinstance(v, torch.Tensor):
batch[k] = torch.stack([f[k] for f in features])
else:
batch[k] = torch.tensor([f[k] for f in features], dtype=torch.long)
return batch
|
80e8e92fee033716ee1e5b22231e6127d2c6349e
| 595,991 |
import re
def tokenize(text):
"""
First splits on r',|\.|and', strips the result, and removes empty tokens
:param text: the text to tokenize
:return: list of string tokens
"""
tokens = re.split(r',|\.(?![0-9])|and', text)
tokens = [t.strip() for t in tokens]
tokens = [t for t in tokens if t is not u'']
return tokens
|
38cb91abc8c3cfdc87bf4aa3728184bb157daaf4
| 251,500 |
def convert_coord_to_axis(coord):
"""
Converts coordinate type to its single character axis identifier (tzyx).
:param coord: (str) The coordinate to convert.
:return: (str) The single character axis identifier of the coordinate (tzyx).
"""
axis_dict = {"time": "t", "longitude": "x", "latitude": "y", "level": "z"}
return axis_dict.get(coord, None)
|
bc32c5837f7a4fb5a515ee4c3b50d67cf244da6a
| 261,953 |
def get_executors(tech):
"""From a loaded technique, get all executors."""
return tech['atomic_tests']
|
b5a8d6ed974c22f1c73b6671961b009828d1e87c
| 600,930 |
import random
def generate_random(choicelist):
"""
This function generates a random choice of the items in the
given list.
"""
random_choice = random.choice(choicelist)
return random_choice
|
46129c987a78b11d8a12f43625cfd6b825efb0c9
| 440,138 |
import re
def regex_compile(search_string):
"""
Used to compile regex search string to object.
------------Parameters----------
search_string : str : a regex pattern string to be used to search for
------------Yields--------------
A compiled regex object that can be used in regex matching commands.
"""
search_obj = re.compile(search_string)
return search_obj
|
da9e64de7ba35ad3e58289827f973d127d3fc4ca
| 359,254 |
import json
def get_json(data):
"""
Attempts to load json from data.
@param data - String containing json
@return - Dictionary|None
"""
try:
return json.loads(data)
except ValueError:
return None
|
85ce81316904d5b52a21fa5c45365401ff9f3d85
| 311,467 |
import uuid
def generate_molecule_object_dict(source, format, values):
"""Generate a dictionary that represents a Squonk MoleculeObject when
written as JSON
:param source: Molecules in molfile or smiles format
:param format: The format of the molecule. Either 'mol' or 'smiles'
:param values: Optional dict of values (properties) for the MoleculeObject
"""
m = {"uuid": str(uuid.uuid4()), "source": source, "format": format}
if values:
m["values"] = values
return m
|
4a917521a2fd5d4f5f5180aa7d5da60aec2cd00a
| 81,712 |
def is_viable_non_dupe(text: str, comparison) -> bool:
"""text must be longer than 2 ('""'), not 'NULL' and not in comparison.
:param text: String to be tested.
:param comparison: Dictionary or set to search for text in.
:return: bool
"""
return 2 < len(text) and text != 'NULL' and text not in comparison
|
da575dffde2f13e849949350aabe73f40802f14a
| 697,200 |
def get_info(sets, **totals):
"""
Gets use input and adds values to the totals dictionary.
Loops through the items in the totals dictionary and asks for
user input for each amount and adds replaces that item's amount
in the dictionary.
Parameters:
- sets (int): Number of sets for the current group of materials
- **totals (dict): Unpacked dictionary of the totals for each
set of materials. Ex: {Paper: 20, Color: 40}
Returns:
- (int): sets - The number of sets for the current group
- (dict): totals - The material: amount dictionary for the current group
"""
# get user input for each item in 'totals' dictionary
sets = int(input('\nHow many Sets?: '))
# loop through and replace the values in the dictionary passed
# assign to a different variable by calling function on return
for item in totals.keys():
totals[item] = int(input(f'How many {item} per set?: '))
return sets, totals
|
1d9b43c2fc10a05b23c60a8bd6230e3fac5141dc
| 544,376 |
def is_opening_ext_app(text):
"""
Checks if user wants to open an app.
Parameters: text (string): user's speech
Returns: (bool)
"""
state = False
keyword = [
"open",
"launch",
"start"
]
for word in keyword:
if ((text.lower()).find(word.lower()) != -1):
state = True
return state
|
7a78306753cb53b3e5ff1bd2aee356c2a0a33fb6
| 461,601 |
def get_test_case_and_alg(basename):
"""
Extracts the changefile name and algorithm name
from the basename of the file, e.g.
changefile100Lazy Floyd-Warshall.out yields the output
(changefile100, Lazy Floyd-Warshall)
"""
# Skip "changefile" in the search of an integer
i = 10
while True:
try:
# Check if we have reached the start
# of the algorithm name
int(basename[i])
except ValueError:
# We have reached the start of the
# algorithm name
break
else:
# We have not reached the start of
# the algorithm name
i += 1
# e.g. return (changefile100, Lazy Floyd-Warshall)
return (basename[:i], basename[i:-4])
|
43e25512d534a2672b4a426f8670e92c6b07d79b
| 570,495 |
import re
def check_date_format(date: str):
"""Parses a string for a date. Returns true if
date is any of the following formats:
MM/DD/YYYY
MM/DD
DD
Arguments:
date -- the date string
"""
return re.match('([0-9]){1,2}((\/)([0-9]){1,2}){0,1}((\/)([0-9]){4}){0,1}', date)
|
06287a64cc8e48367a8bab875e7165bd11fe6b23
| 296,863 |
def search_workspace(results, params, meta):
"""
Return result data from es_client.query and convert into a format
conforming to the schema found in
rpc-methods.yaml/definitions/methods/search_workspace/result
"""
return {
"search_time": results["search_time"],
"count": results["count"],
"hits": [hit["doc"] for hit in results["hits"]],
}
|
5a102b964d2ecacc4e8ae590a9afd5ed4d1dba23
| 446,882 |
import re
def parse_timestep_str_from_path(path: str) -> str:
"""
Get the model timestep timestamp from a given path
Args:
path: A file or directory path that includes a timestep to extract
Returns:
The extrancted timestep string
"""
extracted_time = re.search(r"(\d\d\d\d\d\d\d\d\.\d\d\d\d\d\d)", path)
if extracted_time is not None:
return extracted_time.group(1)
else:
raise ValueError(f"No matching time pattern found in path: {path}")
|
fad83119e54fb7110e6f414d213cfa58c5b72db8
| 451,754 |
from typing import Any
from typing import Optional
from typing import Sequence
def is_allowed_types(value: Any, allowed_types: Optional[Sequence[Any]], required: Optional[bool] = None) -> bool:
"""
Check whether the type of value is in the allowed types.
:param value: the value to check the type of
:param allowed_types: a list of allowed types, to be checked with :func:`isinstance`.
If *None*, no type check is made.
:return: whether the type is allowed
"""
if value is None and required is not None:
return not required
if allowed_types is None:
return True
tfound = False
for t in allowed_types:
if t is None:
if value is None:
tfound = True
break
elif isinstance(value, t):
tfound = True
break
return tfound
|
2fd9dee9d83cd5b59b3486ab918ecd290552b6e6
| 118,934 |
def str2list(src: str) -> list:
"""Separate a string to a list by \n and ignore blank line at the end automatically."""
ret = src.split("\n")
while ret[-1] == "\n" or ret[-1] == "":
ret.pop()
return ret
|
db14b8646db070563a7ad3cbb7a915588e9560d1
| 285,408 |
def pe6a(n=100):
"""
sum
>>> pe6a()
25164150
"""
s1 = sum(x for x in range(1, n + 1))
s2 = sum(x * x for x in range(1, n + 1))
return(s1 * s1 - s2)
|
8552ca60e9b734a7d3aa46ae416ee78ce7860aea
| 160,818 |
import requests
import re
def CTDrequest(chemName, association, outputPath):
"""
Function requests CTD database.
Search all genes which interact with the chemical given in input.
Could be several chemicals names. Analysis will be done like if it's only one chemical.
If hierarchicalAssociations is used, chemical related to the chemical given in input are used as query.
Focus on genes present in Homo sapiens.
:param str chemName: chemical name of MeSH ids string
:param str association: association name (hierarchicalAssociations or directAssociations)
:param str outputPath: Folder path to save the results
:return:
- **homoGenesList** (*list*) – List of genes which interact with chemicals given in input (only Homo sapiens)
- **chemMeSH** (*str*) – Composition of MeSH ID from chemicals given in input
"""
# Parameters
URL = "http://ctdbase.org/tools/batchQuery.go"
PARAMS = {'inputType': "chem", 'inputTerms': chemName, 'report': "genes_curated", 'format': "tsv",
'inputTermSearchType': association}
homoResultsList = []
homoGenesList = []
meshNamesDict = {}
chemMeSHList = []
# Request CTD
requestResult = requests.get(url=URL, params=PARAMS)
requestResultList = requestResult.text.split("\n")
# Extract results only for Homo sapiens
for element in requestResultList:
elementList = element.split("\t")
# resultsList.append(elementList)
if re.match('#', elementList[0]):
elementList[0] = re.sub('# ', "", elementList[0])
homoResultsList.append(elementList)
else:
if re.match(PARAMS['inputTerms'].lower(), elementList[0]):
if elementList[6] == "Homo sapiens":
homoResultsList.append(elementList)
if elementList[4] not in homoGenesList:
homoGenesList.append(elementList[4])
if elementList[1].lower() not in meshNamesDict:
meshNamesDict[elementList[1].lower()] = elementList[2]
# Result len
# len(homoResultsList)
# len(resultsList)
# Build name of output results file
for chem in chemName.split("|"):
if chem in meshNamesDict:
chemMeSHList.append(meshNamesDict[chem.lower()])
else:
chemMeSHList.append(chem)
chemMeSH = "_".join(chemMeSHList)
resultFileName = outputPath + "/CTD_request_" + chemMeSH + ".tsv"
# Write result into file
with open(resultFileName, 'w') as outputFileHandler:
for resultLine in homoResultsList:
outputFileHandler.write("\t".join(resultLine))
outputFileHandler.write("\n")
return chemMeSH, homoGenesList
|
2fc172e9de82568f84c386c791d0f44a966a65ce
| 464,380 |
import json
from datetime import datetime
import time
def iso_to_unix_secs(s):
""" convert an json str like {'time': '2022-02-05T15:20:09.429963Z'} to microsecs since unix epoch
as a json str {'usecs': 1644927167429963}
"""
dt_str = json.loads(s)["time"]
dt = datetime.strptime(dt_str, "%Y-%m-%dT%H:%M:%S.%fZ")
usecs = int(time.mktime(dt.timetuple()) * 1000000 + dt.microsecond)
return json.dumps({"usecs": usecs})
|
7421e6b1781b712ebc3b8bafd1d96f49c5f1d10c
| 35,587 |
import cmath
import math
def line_details(Z1_polar=True, Z1=[]
, Z0_polar=True, Z0=[]
, length=1
, CT=[1,1], VT=[1,1]
, Prim=True):
"""This function returns the line details for a MiCOM P543 relay
Inputs:
Z1_polar: Set True if the input values for the line positive sequence impedance is in polar
Set False for rectangular coordinates
Z1: [Z1mag, Z1ang] for Z1_Polar = True, [R , jX] for Z1_Polar = False
Z0_polar: Set True if the input values for the line positive sequence impedance is in polar
Set False for rectangular coordinates
Z0: [Z0mag, Z0ang] for Z0_Polar = True, [R , jX] for Z0_Polar = False
CT: [Primary, Secondary]
VT: [Primary, Secondary]
Prim: Set True when the input parameters are in primary values, Set False for Secondary Values
Outputs:
A dictionary containing the following variables (in secondary values)
Z1mag:
Z1ang:
K0mag:
K0ang:
"""
if len(Z1) != 2:
print('Z1 Argument Error')
return
if len(Z0) != 2:
print('Z0 Argument Error')
return
if Z1_polar:
Z1 = cmath.rect(Z1[0],math.radians(Z1[1]))
else:
Z1 = complex(Z1[0],Z1[1])
if Z0_polar:
Z0 = cmath.rect(Z0[0],math.radians(Z0[1]))
else:
Z0 = complex(Z0[0],Z0[1])
if Prim:
CTR = max(CT) / min(CT)
VTR = max(VT) / min(VT)
Z0 = Z0 * CTR/VTR
Z1 = Z1 * CTR/VTR
K0 = (Z0-Z1)/(3*Z1)
K0mag = round(abs(K0),2)
K0ang = round(math.degrees(cmath.phase(K0)),0)
Z1mag = round(abs(Z1),2)
Z1ang = round(math.degrees(cmath.phase(Z1)),0)
return {'Z1mag':Z1mag, 'Z1ang':Z1ang, 'K0mag':K0mag, 'K0ang':K0ang}
|
154720abeef715745ee2616e858c5f610bf2cccc
| 605,381 |
def issafe(arg):
"""Returns False if arg contains ';' or '|'."""
return arg.find(';') == -1 and arg.find('|') == -1
|
f6746d5290e21eb84d7343792d277bce4c1871ff
| 21,804 |
def get_email_name(email_from):
"""parse email from header and return the name part
First Last <ab@cd.com> -> First Last
ab@cd.com -> ""
"""
if "<" in email_from:
return email_from[: email_from.find("<")].strip()
return ""
|
f8b9fad0a6ceff486a71b24995576845a521a83f
| 537,979 |
def remove_repeated_first_names(names):
"""
Question 14.4: Remove duplicate first names
from input array
"""
seen = set()
output = []
for name in names:
if name[0] not in seen:
output.append(name)
seen.add(name[0])
return output
|
4b433d248bfde2075ca57d7cee6e6d6b7c224170
| 285,628 |
def get_location(response):
"""
Returns location of a transaction as returned in the header of a response object.
:param response: response object succeeding a successful post request.
:type response: requests.models.Response
:return: str
"""
resource_location = response.headers('location')
return resource_location
|
82bc9fb272d47fd8e9d245cb15d4581455c690a8
| 595,157 |
def _standardize_sample_or_class_weights(x_weight, output_names, weight_type):
"""Maps `sample_weight` or `class_weight` to model outputs.
# Arguments
x_weight: User-provided `sample_weight` or `class_weight` argument.
output_names: List of output names (strings) in the model.
weight_type: A string used purely for exception printing.
# Returns
A list of `sample_weight` or `class_weight` where there are exactly
one element per model output.
# Raises
ValueError: In case of invalid user-provided argument.
"""
if x_weight is None or len(x_weight) == 0:
return [None for _ in output_names]
if len(output_names) == 1:
if isinstance(x_weight, list) and len(x_weight) == 1:
return x_weight
if isinstance(x_weight, dict) and output_names[0] in x_weight:
return [x_weight[output_names[0]]]
else:
return [x_weight]
if isinstance(x_weight, list):
if len(x_weight) != len(output_names):
raise ValueError('Provided `' + weight_type + '` was a list of ' +
str(len(x_weight)) +
' elements, but the model has ' +
str(len(output_names)) + ' outputs. '
'You should provide one `' + weight_type + '`'
'array per model output.')
return x_weight
if isinstance(x_weight, dict):
x_weights = []
for name in output_names:
x_weights.append(x_weight.get(name))
return x_weights
else:
raise TypeError('The model has multiple outputs, so `' +
weight_type + '` '
'should be either a list or a dict. '
'Provided `' + weight_type +
'` type not understood: ' +
str(x_weight))
|
f0997b61a2759f35ee3aabddc8b57e3424843562
| 330,632 |
def traverse_enum(type_context, enum_proto, visitor):
"""Traverse an enum definition.
Args:
type_context: type_context.TypeContext for enum type.
enum_proto: EnumDescriptorProto for enum.
visitor: visitor.Visitor defining the business logic of the plugin.
Returns:
Plugin specific output.
"""
return visitor.visit_enum(enum_proto, type_context)
|
b83864f19eb9891b4cc6877a137949857343e18f
| 215,381 |
def remove_synthetic(entries):
"""
Filter the given entries by removing those that are synthetic.
Args:
entries: An iterable of Entry nodes
Yields:
An iterable of Entry nodes
"""
return (e for e in entries if not e.synthetic)
|
bbbd5f79d245520d26a804f4a3a7387c10975018
| 282,767 |
from typing import MutableMapping
from typing import Any
def basic_params_override(dtype: str = 'float32') -> MutableMapping[str, Any]:
"""Returns a basic parameter configuration for testing."""
return {
'train_dataset': {
'builder': 'synthetic',
'use_per_replica_batch_size': True,
'batch_size': 1,
'image_size': 224,
'dtype': dtype,
},
'validation_dataset': {
'builder': 'synthetic',
'batch_size': 1,
'use_per_replica_batch_size': True,
'image_size': 224,
'dtype': dtype,
},
'train': {
'steps': 1,
'epochs': 1,
'callbacks': {
'enable_checkpoint_and_export': True,
'enable_tensorboard': False,
},
},
'evaluation': {
'steps': 1,
},
}
|
341e8e3df6b0ec99d148ea43909aa28404939c15
| 368,834 |
def predict_large_image(model, input_image):
"""Predict on an image larger than the one it was trained on
All networks with U-net like architecture in this repo, use downsampling of
2, which is only conducive for images with shapes in powers of 2. If
different, please crop / resize accordingly to avoid shape mismatches.
:param keras.Model model: Model instance
:param np.array input_image: as named. expected shape:
[num_channels, (depth,) height, width] or
[(depth,) height, width, num_channels]
:return np.array predicted image: as named. Batch axis removed (and channel
axis if num_channels=1)
"""
im_size = input_image.shape
num_dims = len(im_size)
assert num_dims in [4, 5], \
'Invalid image shape: only 4D and 5D inputs - 2D / 3D ' \
'images with channel and batch dim allowed'
predicted_image = model.predict(input_image)
return predicted_image
|
f762c997c953487df32e111babfb25059a2d344d
| 683,060 |
def buildIdtoLoc(geoDict, idNameDict):
"""
Build a dictionary mapping from user id to country for all classes
Takes as input a dictionary mapping usernames to countries (as build by
builddict, above) and a dictionary that maps from ids to names (as is built
by globalUserList.readId2Name) and returns a dictionary that maps from
user id to country
"""
retDict = {}
for i in iter(idNameDict):
if idNameDict[i] in geoDict:
retDict[i] = geoDict[idNameDict[i]]
else:
retDict[i] = 'unknown'
return retDict
|
2ace83855d81adf7dc6d804d3452c3c4b4a5037e
| 333,852 |
import re
def getMessageError(response):
"""
Extracts the error message from an ERDDAP error output.
"""
emessageSearch = re.search(r'message="(.*)"', response)
if emessageSearch:
return emessageSearch.group(1)
else:
return ""
|
020a597e8b3a93a190536dd83b7dfe12d651ed07
| 694,226 |
def round_to_full_hour(time_step: int, base=3600) -> int:
"""Returns given `time_step` and rounds it to nearest full hour"""
return base * round(time_step / base)
|
38b6d78b46e1c2d026a31c0906f0f5f149eddf02
| 443,570 |
def check_emptiness(param):
"""
Function that checks a canvas to see if is empty or not
Args:
param : str
The string we want to check if is empty or not
Returns:
Bool
True if empty, False if not.
"""
if param not in ['\n', '\r\n']:
return True
else:
return False
|
a4a5a5a31836558931a6beee9f2bca9cb5b4f7dd
| 337,328 |
def vect_mult(_V, _a):
"""
Multiplies vector _V (in place) by number _a
"""
for i in range(len(_V)): _V[i] *= _a
return _V
|
8035b8634dc88c98f03c1531d577a05f97215ae9
| 342,504 |
def multiplex_user_input(data, cube):
"""
Get input from the user and ensure it's a multi-dataset dict.
Parameters
----------
data: Union[pandas.DataFrame, Dict[str, pandas.DataFrame]]
User input.
cube: kartothek.core.cube.cube.Cube
Cube specification.
Returns
-------
pipeline_input: Dict[str, pandas.DataFrame]
Input for write pipelines.
"""
if not isinstance(data, dict):
data = {cube.seed_dataset: data}
return data
|
27841b3e0e22cf8259ed73db9d2289903cd88b1d
| 222,334 |
def _create_product(product_name):
"""Given a product name, prompt for the price and quantity
Return a new product record
{ "name": (str), "price": (float), "quantity": (int) }
"""
while True:
try:
product_price = float(input('What is the price for the item? '))
break
except ValueError:
print('Enter a valid price')
while True:
try:
product_quantity = int(input('What is the quantity of the item? '))
break
except ValueError:
print('Enter a valid quantity')
return {
'name': product_name,
'price': product_price,
'quantity': product_quantity
}
|
6dbe3fd064a80e261018d4094e458c1bc22e6bf3
| 94,345 |
import json
def load_json_file(file_path):
"""Return the contents of a json file in the file path."""
if not file_path:
return {}
try:
with open(file_path, "r", encoding="uts-8") as read_file:
data = json.load(read_file)
return data
except FileNotFoundError as error_obj:
print(f"ERROR: JSON argument file '{file_path}' was not found.")
raise error_obj
|
5ac25e98a476cf778aa291be5e84765d5babc9e9
| 304,481 |
import csv
def read_csv(file_path):
"""
Reads all lines from csv file into a list representing the header
and a seperate list holding all data.
Args:
file_path (str): Path to file
Returns:
tuple[list[str], list[list[str]]]: Header, other rows
"""
with open(file_path, "r", encoding="UTF8") as f:
reader = csv.reader(f)
header = next(reader) # Save header
rows = []
for row in reader:
rows.append(row)
return header, rows
|
46b2dbc57c00cb4e4da83741d4c777495cdf021b
| 424,744 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.