content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def _edges_from_path(lst: list) -> list[tuple]:
"""Return a list of edges form the given path"""
edges = []
for index in range(len(lst) - 1):
edges.append((lst[index], lst[index + 1]))
return edges
|
78155390cbbc859134a614e009090cc2da9debc1
| 360,988 |
def does_diff_include_ts_files(diff_files):
"""Returns true if diff includes TypeScript files.
Args:
diff_files: list(str). List of files changed.
Returns:
bool. Whether the diff contains changes in any TypeScript files.
"""
for file_path in diff_files:
if file_path.endswith(b'.ts'):
return True
return False
|
b4bdde2c86687d27ccc0f59fdb4b5e76705e4ec7
| 606,042 |
def proportion_of_missing_values(dfData):
"""
Parameters
#---------
dfData pandas.DataFrame containing data
Returns
#---------
serProportions pandas.Series containing values between 0 and 1 for each
feature.
Description
#----------
Computes the proportion of missing values to all values for each feature
"""
numberOfRows = len(dfData)
serNumberOfNans = dfData.isnull().sum()
serProportions = serNumberOfNans/numberOfRows
return serProportions
|
3d824f60ce1e14f8cb7bbb5fc74978c25df5580c
| 437,568 |
from typing import List
from typing import Any
from typing import Tuple
import itertools
def common_subsequences(
dataset: List[Any],
min_match_len = 3,
max_match_len = 10) -> List[Tuple[int, List[Any]]]:
"""Catalog common sequential patterns
(ie, occuring twice or more) that are of length
min_match_len to max_match_len that occur within
list dataset.
Return a list of (count, subsequence), most
frequent first.
"""
results = []
def _count_occurrences(sublist, parent):
return sum(parent[i:i+len(sublist)]==\
sublist for i in range(len(parent)))
if max_match_len > len(dataset) > 1:
raise Exception("max_match_len cannot be > len(dataset)")
for i1 in range(len(dataset) - max_match_len):
previous = None
for i2 in range(min_match_len, max_match_len):
head = dataset[i1:i1 + i2]
tail = dataset[i1 + i2:]
count = _count_occurrences(head, tail)
if head not in results:
results = results + [head for i in range(count + 1)]
results = [list(j) for i, j in itertools.groupby(sorted(results))]
results = [(len(seq), seq[0]) for seq in results]
results = filter(lambda r: r[0] > 1, results)
results = sorted(results,
key=lambda m: m[0], reverse=True)
return results
|
84f74bf34d08c94f9a06d938935ef12e74333924
| 79,961 |
def mean(num_1st):
"""
Calculates the mean of a list of numbers
Parameters
----------
num_1st : list
List of numbers to calculate the averge of
Returns
--------
The average/mean of num_1st
avgMean
Examples
--------
>>> mean([1,2,3,4,5])
3.0
"""
Sum = sum(num_1st)
N = len(num_1st)
avgMean = float(Sum/N)
return avgMean
|
a01394e0e7cc1ecc63474f06889618c3221cc682
| 400,892 |
def hello(name):
"""Say hello
Function docstring using Google docstring style.
Args:
name (str): Name to say hello to
Returns:
str: Hello message
Raises:
ValueError: If `name` is equal to `nobody`
Example:
This function can be called with `Jane Smith` as argument using
>>> from {{ cookiecutter.package_name }}.my_module import hello
>>> hello('Jane Smith')
'Hello Jane Smith!'
"""
if name == 'nobody':
raise ValueError('Can not say hello to nobody')
return f'Hello {name}!'
|
b3ec11a61b43ad12e5f5206c966ea18ca199ee85
| 324,801 |
def load_doc(filename) -> str:
"""
Opens a file and reads it in as a string.
Parameters:
filename (str): Path to file
Returns:
str: contents of file
"""
with open(filename, 'r') as f:
doc = f.read()
return doc
|
360f05803663bedfa13cb33e3c5ce377ef6086d0
| 517,295 |
def _devicePixelRatioF(obj):
"""
Return obj.devicePixelRatioF() with graceful fallback for older Qt.
This can be replaced by the direct call when we require Qt>=5.6.
"""
try:
# Not available on Qt<5.6
return obj.devicePixelRatioF() or 1
except AttributeError:
pass
try:
# Not available on Qt4 or some older Qt5.
# self.devicePixelRatio() returns 0 in rare cases
return obj.devicePixelRatio() or 1
except AttributeError:
return 1
|
155e498b4be19d572c213f01782156e68c2a60c5
| 589,448 |
def identity(x, rho=None):
"""Identity operator"""
return x
|
fe6b4b802cc1d96b4ce6d79e0f35c4ce51c35bf9
| 556,437 |
def cummean(x):
"""Return a same-length array, containing the cumulative mean."""
return x.expanding().mean()
|
b5a35c56cb78e0588dd5be64a75384c4cd81ccb5
| 704,788 |
def is_oneliner(txt) -> bool:
"""Checks if the given string contains no newlines."""
assert isinstance(txt, str)
return len(txt.splitlines()) == 1
|
cd612c5818b9458e7a048907cdcc9aba32f41973
| 671,995 |
from typing import Iterable
def count_op(it: Iterable, oper, value):
"""Return a count of the number of items in `it` where **oper** **value**
== True. This allows user-defined objects to be included and is subtly
different to ``[...].count(...)`` which uses the __eq__ operator."""
return [oper(x, value) for x in it].count(True)
|
c52bea160b2d4460b9f4ad147752bd080ae440f6
| 120,449 |
def _get_euclidean_dist(e1, e2):
"""Calculate the euclidean distance between e1 and e2."""
e1 = e1.flatten()
e2 = e2.flatten()
return sum([(el1 - el2) ** 2 for el1, el2 in zip(e1, e2)]) ** 0.5
|
c29777c9f17a099d97984711f2f5d261c86276da
| 670,088 |
def Prefix(string, pad, length):
"""
Prefix the supplied string until it is the desired length, with the given
padding character
"""
assert(len(string) <= length)
assert(len(pad) == 1)
result = ""
while len(string) + len(result) < length:
result += pad
result += string
return result
|
d3d66bab9365909d5ac52e1eb1695861ac75a6e3
| 106,667 |
def split_arg(argument, delimiter=","):
""" Split argument with delimiter and return list """
if not argument:
return []
return [arg.strip() for arg in argument.split(delimiter) if arg]
|
2f3eb19fa2a14b7d5b19569b5dc90cce814ff259
| 257,277 |
def adjacent_enemy(inp, rowI, colI, enemy):
"""Check for enemy in adjacent square"""
if any(x[0]==enemy for x in [inp[rowI+1][colI], inp[rowI-1][colI], inp[rowI][colI+1], inp[rowI][colI-1]]):
return True
return False
|
1fb36051402d3fef0c4c8b022676bdeb4f121b3a
| 653,181 |
from typing import Tuple
def calculate_asymmetric_level_ranges(
num_bits: int,
narrow_range: bool = False) -> Tuple[int, int, int]:
"""
Calculates the numbers of the low and high quant and the number of
quantization levels for the asymmetric quantization scheme.
:param num_bits: The bitwidth of the quantization
:param narrow_range: The flag specifying quantization range if it is True
then [1; 2^num_bits - 1] and [0; 2^num_bits - 1] otherwise
:return: A Tuple
level_low - the low quant number
level_high - the high quant number
levels - the number of quantization levels
"""
levels = 2 ** num_bits
level_high = levels - 1
level_low = 0
if narrow_range:
level_low = level_low + 1
levels = levels - 1
return level_low, level_high, levels
|
431deb1ea73a2e0d7f12d17272ceb21b54784f06
| 565,545 |
def _generate_line(club, name_column_width):
""" Generates a single line of output.
:param Organization club: object holding information about club
:param int name_column_width: width of name column
:return: nicely formatted line of output
:rtype: str
"""
name_column = str(club.name) + ":"
while len(name_column) <= (name_column_width + 3):
name_column += " "
stam_column = "{}".format(club.stam)
while len(stam_column) <= 6:
stam_column += " "
guid_column = "({})".format(club.guid)
return "{}{}{}".format(name_column, stam_column, guid_column)
|
a62417b4dcd339cc824a6c3a8a4f79dd19abb4c8
| 671,719 |
def _default_kwargs_split_fn(kwargs):
"""Default `kwargs` `dict` getter."""
return (kwargs.get('distribution_kwargs', {}),
kwargs.get('bijector_kwargs', {}))
|
3d39d73ba6d7bfd673fa7216f3e386e61abca795
| 641,658 |
def pad_args(src: list, total_verdicts: int) -> list:
"""Pad extra args with 0."""
padding_count = max(total_verdicts - len(src), 0)
result = []
result.extend(src)
result.extend(["0",]*padding_count)
return result
|
6c8a5e14d1b6348c9bc1c78ac9193b4ffcd3837e
| 195,552 |
import torch
def central_grady(image):
"""Compute central vertical gradient.
Assumes input is a 4D tensor with dimensions (batch, channels, rows, cols).
"""
assert(len(image.shape) == 4)
padder = torch.nn.ReplicationPad2d((0, 0, 1, 1))
padded_image = padder(image)
gy = 0.5 * (padded_image[:, :, 2:, :] - padded_image[:, :, :-2, :])
return gy
|
5d484c15a0d347cea4fce9c1e7c5cd487224d308
| 595,283 |
def no_anagrams(passphrase):
"""Checks if passphrase doesn't contain words that are anagrams."""
anagrams = set(''.join(sorted(word)) for word in passphrase)
return len(passphrase) == len(anagrams)
|
44b5dc0a7063a34be29982f08db787c30cc019a7
| 467,731 |
import re
def collapse_whitespace(strarg, remove_nl=False):
"""Returns a cleaned-up version of the block text
It collapses whitespaces, removes tabs, and, if specified,
only keeps the tag delimiters(like in cleaneval) as newlines."""
strarg = re.sub(r'\t+', ' ', strarg) # replace tabs with spaces
if remove_nl:
# remove newlines, used for cleaneval
# they will be replaced by the remove tags
strarg = re.sub(r'\n', ' ', strarg)
strarg = re.sub(r'<[a-zA-Z]+>', '\n', strarg)
strarg = re.sub(r' +', ' ', strarg) # collapse whitespace
return strarg
|
3ba832be1a408cc1076ae96fe215601b6bc5f120
| 517,275 |
from typing import List
def parse_int_list(input: str) -> List[int]:
"""Parse a list of ints from the config file.
Args:
input (str): Input list
Returns:
List[int]: List of ints
"""
return list(int(value) for value in input.split(","))
|
86fe2fa6159f6f7d25f970c9661b446888c0b48a
| 331,806 |
def data(object_type: str, subscriber: str) -> str:
"""Return the db key for subscriber event data.
Args:
object_type (str): Type of object
subscriber (str): Name of the subscriber
Returns:
str, database key for the event data
"""
return 'events:{}:{}:data'.format(object_type, subscriber)
|
665f2a765c45fc8b651c9a2060c654d1bd8c362c
| 420,452 |
def FetchEntities(query_obj, limit):
"""Fetches number of Entities up to limit using query object.
Args:
query_obj: AppEngine Datastore Query Object.
limit: Fetch limit on number of records you want to fetch.
Returns:
Fetched Entities.
"""
entities = []
# If Limit is more than 1000 than let's fetch more records using cursor.
if limit > 1000:
results = query_obj.fetch(1000)
entities.extend(results)
cursor = query_obj.cursor()
while results and limit > len(entities):
query_obj.with_cursor(cursor)
results = query_obj.fetch(1000)
entities.extend(results)
cursor = query_obj.cursor()
else:
entities = query_obj.fetch(limit)
return entities
|
ed86b6818ad07cc844a85dd272d29eea803cb11a
| 581,662 |
def lookup(dic, key, *keys):
"""A generic dictionary access helper.
This helps simplify code that uses heavily nested dictionaries. It will
return None if any of the keys in *keys do not exist.
::
>>> lookup({'this': {'is': 'nested'}}, 'this', 'is')
nested
>>> lookup({}, 'this', 'is')
None
"""
if keys:
return lookup(dic.get(key, {}), keys[0], *keys[1:])
return dic.get(key)
|
e4da4ed2bcaf070496a8a5ef3878c7a53099bc84
| 347,300 |
def producer_config(config):
"""Filter the producer config"""
for field in ["group.id", "partition.assignment.strategy", "session.timeout.ms", "default.topic.config"]:
if field in config:
del config[field]
return config
|
3245c62f26288ab58a992494a4d0e87b772fcc81
| 636,930 |
def check_bracket_validity(brackets: str):
"""
Check if a sequence of brackets is valid.
Examples
--------
>>> check_bracket_validity("()[]{}")
True
>>> check_bracket_validity("([{([{}])}])")
True
>>> check_bracket_validity("([{([{}])}]")
False
>>> check_bracket_validity("([{([{}])}]))")
False
>>> check_bracket_validity("([)]")
False
"""
o, p, s = "([{", {"(": ")", "[": "]", "{": "}"}, []
for b in brackets:
if b in o:
s.append(b)
else:
if len(s) == 0:
return False
q = s.pop()
if p[q] != b:
return False
return len(s) == 0
|
1accd13bc2d282d85c038fa06752aa8619f71af3
| 459,377 |
import pytz
from datetime import datetime
def utc_(moment_time, tz):
"""
Converts unix time to datetime.datetime.
:param moment_time: unix time; may be format: int, float
:param tz: timezone; format: str("Region/City")
:return: datetime.datetime + utc
"""
local_tz = pytz.timezone(tz)
dt = local_tz.localize(datetime.utcfromtimestamp(moment_time))
dt = dt.astimezone(pytz.timezone(tz))
return dt
|
ffe8850c7c5204e174c97a13e7548d984d1c844a
| 142,383 |
import torch
def convert_to_boxes(z_where, z_pres, z_pres_prob):
"""
All inputs should be tensors
:param z_where: (B, N, 4). [sx, sy, tx, ty]. N is arch.G ** 2
:param z_pres: (B, N) Must be binary and byte tensor
:param z_pres_prob: (B, N). In range (0, 1)
:return: [[y_min, y_max, x_min, x_max, conf] * N] * B
"""
B, N, _ = z_where.size()
z_pres = z_pres.bool()
# each (B, N, 1)
width, height, center_x, center_y = torch.split(z_where, 1, dim=-1)
center_x = (center_x + 1.0) / 2.0
center_y = (center_y + 1.0) / 2.0
x_min = center_x - width / 2
x_max = center_x + width / 2
y_min = center_y - height / 2
y_max = center_y + height / 2
# (B, N, 4)
pos = torch.cat([y_min, y_max, x_min, x_max], dim=-1)
boxes = []
for b in range(B):
# (N, 4), (N,) -> (M, 4), where M is the number of z_pres == 1
box = pos[b][z_pres[b]]
# (N,) -> (M, 1)
conf = z_pres_prob[b][z_pres[b]][:, None]
# (M, 5)
box = torch.cat([box, conf], dim=1)
box = box.detach().cpu().numpy()
boxes.append(box)
return boxes
|
0efb5118aab6a945537917e101b75f2e78c52897
| 304,224 |
def _eval_expr(expr, ctxt, vars=None):
"""Evaluate the given `Expression` object.
:param expr: the expression to evaluate
:param ctxt: the `Context`
:param vars: additional variables that should be available to the
expression
:return: the result of the evaluation
"""
if vars:
ctxt.push(vars)
retval = expr.evaluate(ctxt)
if vars:
ctxt.pop()
return retval
|
20c3fc9d2a8a4f61ea72d6df3474e034c6369d7e
| 641,808 |
def determinize_tree(determinization, ppddl_tree, index = 0):
"""
Replaces all probabilistic effects with the given determinization.
Variable "determinization" is a list of determinizations, as created by
"get_all_determinizations_effect".
This function will visit the PPDDL tree in pre-order traversal and each time
it encounters a probabilistic effect, it will replace it with the effect at
"determinizaton[index][1][1]", then increment variable "index" and return its
new value.
Therefore, the user of this function must ensure that the each effect in
the given determinization corresponds to the proper probabilistic effect
in the PPDDL tree.
"""
if not isinstance(ppddl_tree, list) or not ppddl_tree:
return index
if ppddl_tree[0] == 'probabilistic':
ppddl_tree[:] = []
ppddl_tree.extend(determinization[index][1][1])
return index + 1
else:
for element in ppddl_tree:
index = determinize_tree(determinization, element, index)
return index
|
255fbec5403cccfb21ee602d5c4f334a22ea181c
| 560,194 |
def len_board(board):
"""Function count elements (X and O) on the board and return integer."""
counter = 0
for line in board:
for cell in line:
if cell != ".":
counter += 1
return counter
|
fcfaa78b7ea9998411ceded4311eccdc243bf970
| 403,372 |
import bz2
import base64
def passx_decode(passx):
"""decode the obfuscated plain text password, returns plain text password"""
return bz2.decompress(base64.b64decode(passx.encode("ascii"))).decode("ascii")
|
b8b2138c55dd28734661484a231128e6f3ccbbb7
| 8,094 |
def get_resource(request):
""" Get the resource being requested
"""
path = request.path
path = [x for x in path.split('/') if x]
if path:
return path[-1]
else:
return None
|
8a17e47e8610f79f0919965e30a0194e4e2e1082
| 187,395 |
def import_name_to_name_version(import_name):
"""Convert the import name to a name and version.
Args:
import_name (str): Import name with a version (Ex: "custom_0_0_0")
Returns:
name (str): Just the package name (Ex: "custom")
version (str)[None]: Version of the package (Ex: "0.0.0")
"""
s = str(import_name).split('_')
for i, n in enumerate(s):
if len(n) > 0 and n.isdigit():
return '_'.join(s[:i]), '.'.join(s[i:])
return import_name, None
|
48142220295454fc0c4db518367d803ee2c09366
| 224,482 |
import six
def next_or_none(iterator):
"""
Returns the next item from the iterator, or None if there are no more.
"""
try:
return six.advance_iterator(iterator)
except StopIteration:
return None
|
dfa130c873e8fa49cba458916b2be933d0b734f1
| 573,748 |
def get_words(xmlelement):
"""
Get all words, lower-cased, from the word tags in the BNC xmlelement.
"""
return [word_tag.text.strip().lower()
for word_tag in xmlelement.find_all('w')]
|
4ae354dd3057260f2a4f15b9203262d8663bb672
| 404,012 |
def _getVersionString(value):
"""Encodes string for version information string tables.
Arguments:
value - string to encode
Returns:
bytes - value encoded as utf-16le
"""
return value.encode("utf-16le")
|
36646a686c17f2c69d71a0cdeede56f0a1e514e2
| 8,511 |
def format_argument_version(arg_version):
"""
Replaces '.' with '-' throughout arg_version to match formatting
requirements for log message
Args:
arg_version(str): Version tag to be formatted
Returns:
str: Formatted version tag
"""
return arg_version.replace(".", "-")
|
690d4cf2ae54ff705d3956295fb2be9ae4985dcb
| 358,903 |
def create_payload(text, target_lang):
"""Create payload for DeepL API call"""
return {
"jsonrpc": "2.0", "method": "LMT_handle_jobs", "id": 1,
"params": {
"jobs": [{"kind": "default", "raw_en_sentence": s} for s in text],
"lang": {"user_preferred_langs": ["EN", "PL"],
"source_lang_user_selected": "auto",
"target_lang": target_lang},
"priority": 1}}
|
4b3def68bc60a8074578cea40ab8a1c8adecd409
| 207,146 |
import pathlib
def list_ancestors(path):
"""Return logical ancestors of the path."""
return [str(parent) for parent in pathlib.PurePosixPath(path).parents if str(parent) != "."]
|
7164933474ce45fd8ad7a5d96370e70205dcc1a7
| 365,524 |
import torch
def collate_fn(samples):
"""
collate_fn for SequentialMNIST.
Args:
samples: a list of samples. Each item is a (imgs, nums) pair. Where
- imgs: shape (T, 1, C, H, W)
- nums: shape (T, 1)
And len(samples) is the batch size.
Returns:
A tuple (imgs, nums). Where
- imgs: shape (T, B, C, H, W)
- nums: shape (T, B)
"""
imgs, nums = zip(*samples)
# (T, B, C, H, W)
imgs = torch.cat(imgs, dim=1)
# (T, B)
nums = torch.cat(nums, dim=1)
return imgs, nums
|
29a8b44a261d9db1de0b91c4f5eace64ee21d5fb
| 674,778 |
import threading
def count_threads_with_name(name):
"""
Returns the number of currently existing threads with the given name
"""
n_count = 0
for th in threading.enumerate():
if th.name == name:
n_count += 1
return n_count
|
9de9e04e823c5e6cde94591616dd9032fb91f665
| 486,491 |
def affixed(text, prefix=None, suffix=None, normalize=None):
"""
Args:
text (str | None): Text to ensure prefixed
prefix (str | None): Prefix to add (if not already there)
suffix (str | None): Suffix to add (if not already there)
normalize (callable | None): Optional function to apply to `text`
Returns:
(str | None): `text' guaranteed starting with `prefix` and ending with `suffix`
"""
if text is not None:
if normalize:
text = normalize(text)
if prefix and not text.startswith(prefix):
text = prefix + text
if suffix and not text.endswith(suffix):
text = text + suffix
return text
|
2ebd8d734ae3cd641212ae173e7e804e359ffffa
| 245,057 |
from typing import Dict
from typing import Any
from typing import List
def get_attribute_details_from_given_lists(source_dict: Dict[str, Any], key: str, lists: List[str]) -> str:
"""
Retrieve attribute details from given lists of various properties
:param source_dict: The source dictionary from which attributes are to be fetched
:param key: The attribute to be fetched from the lists
:param lists: The lists from which the attribute value is to be fetched
:return: value: value of the requested attribute
"""
value = ''
for single_list in source_dict and lists:
if key in source_dict.get(single_list, []):
value += f'{single_list.capitalize()}: {source_dict.get(single_list, []).get(key, "")}\n'
return value
|
6ddc0d6a0d6f14bfe2f7cc8ef6e17fed98ae6c75
| 343,499 |
def words_to_indices(sentence, worddict):
"""
Transform the words in a sentence to integer indices.
Args:
sentence: A list of words that must be transformed to indices.
worddict: A dictionary associating words to indices.
Returns:
A list of indices.
"""
# Include the beggining of sentence token at the start of the sentence.
indices = [worddict["_BOS_"]]
for word in sentence:
if word in worddict:
index = worddict[word]
else:
# Words absent from 'worddict' are treated as a special
# out-of-vocabulary word (OOV).
index = worddict['_OOV_']
indices.append(index)
# Add the end of sentence token at the end of the sentence.
indices.append(worddict["_EOS_"])
return indices
|
17f7722d7c1f6332bbe1b729d51d330ebd6e6933
| 377,492 |
def flip_boxes(boxes, im_width):
"""Flip boxes horizontally."""
boxes_flipped = boxes.copy()
boxes_flipped[:, 0::4] = im_width - boxes[:, 2::4] - 1
boxes_flipped[:, 2::4] = im_width - boxes[:, 0::4] - 1
return boxes_flipped
|
14a384e55e521f4162e0e69c7d946fdf434c149a
| 406,341 |
def format_link_header(link_header_data):
"""Return a string ready to be used in a Link: header."""
links = ['<{0}>; rel="{1}"'.format(data['link'], data['rel'])
for data in link_header_data]
return ', '.join(links)
|
9a68ff381d51e6e10fe257d2d2d6766295ffc050
| 708,695 |
def spancmb(class_=None, **kwargs):
""" span combinator
because class is a reserved keyword in python, class_ is the first arg
kwargs keys may be any html global attribute """
cdict = {'class': class_} # put class first (sign the siren song or python preserving key order)
cdict.update(kwargs)
content = ' '.join(f'{key}="{value}"' for key, value in cdict.items() if value is not None)
def spantag(text):
return f'<span {content}>{text}</span>'
return spantag
|
6a524e035781052ff92b61a35c71faff2bd54b93
| 657,252 |
def _data_range(data: str) -> bool:
""" Checks if a string data are a numbers in range. """
return True if data.find('-') != -1 else False
|
16ba9bade3ec711c59e33f0410d6b48eda4963e6
| 632,212 |
def get_snr(catalog):
"""
This utility computes the S/N for each object in the catalog.
It does not impose any cuts and returns NaNs for invalid S/N values.
"""
snr = catalog['iflux_cmodel'] / catalog['iflux_cmodel_err']
return snr
|
47bff66a244799f154bd87cdb24adcaf92751be3
| 198,503 |
def get_json_field(json_obj, attribute_name, json_filename=None,
suppress_err_msg=False):
"""Retrieves a value from a JSON object (dict).
Args:
json_obj (dict): The JSON file to retrieve a value from.
attribute_name (str): The attribute to look up. If there are nested
structures expressed within the attribute_name, they should be
separated by periods. Consequently, attribute names and nested
names cannot contain periods.
json_filename (Optional[str]): The name of the JSON file the attribute
is read from. This will be included in error messages. Default is
`None`.
suppress_err_msg (Optional[bool]): Specifies whether an error message
will be printed to stdout if an error condition is met. By default,
error messages will be printed.
Raises:
KeyError: If the specified `attribute_name` does not exist in the JSON.
"""
while '.' in attribute_name:
attrib_as_list = attribute_name.split('.')
attrib_name_single = attrib_as_list.pop(0)
try:
json_obj = json_obj[attrib_name_single]
except KeyError:
if not suppress_err_msg:
error_suffix = '.'
if json_filename is not None:
error_suffix = " '%s'." % json_filename
print("Attribute '%s' not found in preferences file%s" %
(attrib_name_single, error_suffix))
raise
attribute_name = '.'.join(attrib_as_list) #no period included for len 1
return json_obj[attribute_name]
|
220078ee53faf2e1cb97548c78b1dd4ba91eb6d7
| 323,698 |
def filter_by_startswith(seq, chars):
"""A generator that filters ``seq`` such that every element in ``seq``
begins with ``chars``.
"""
return (elem for elem in seq if elem.startswith(chars))
|
cafb1b8da41ec5736b6bdd149bb157877184721d
| 377,123 |
from typing import List
from typing import Callable
from typing import Tuple
def classify_annotations(
confidences: List[float], condition: Callable[..., bool], class_if_true: str, class_if_false: str
) -> Tuple[List[str], int, int]:
"""
Classifies annotations based on a condition.
:param confidences: A list of confidences.
:param condition: A function that takes a confidence and returns a boolean.
:param class_if_true: The class to assign to the annotations that satisfy the condition.
:param class_if_false: The class to assign to the annotations that do not satisfy the condition.
:return: A tuple containing:
- A list of classifications.
- The number of positive classifications.
- The number of negative classifications.
"""
classifications = []
num_positive_classifications = 0
num_negative_classifications = 0
for confidence in confidences:
if condition(confidence):
classification = class_if_true
num_positive_classifications += 1
else:
classification = class_if_false
num_negative_classifications += 1
classifications.append(classification)
return classifications, num_positive_classifications, num_negative_classifications
|
c8214cc7c5ab19340ce4353a8f55d8580a2b7738
| 265,917 |
import filelock
import pickle
def pickle_read(filename):
"""Read pickle file contents with a lock."""
lock = filelock.FileLock(filename+'.lck',timeout=20)
pickle_data = None
with lock:
pickle_data = pickle.load(open(filename, 'rb'))
return pickle_data
|
e6bb14a849ff0c8cb524ce7fce4311455d087a11
| 582,300 |
def close_enough(val_1, val_2):
"""Quick function to determine if val_1 ~= val_2"""
return abs(val_1 - val_2) < 0.001
|
06593406d9c4d47ef1b20a0bcc43a36beea38c4c
| 282,965 |
def load_file(file_name: str, modes='r'):
""" Load a file.
:param file_name: file to load.
:param modes: File open modes. Defaults to 'r'
:return: contents of file.
"""
with open(file_name, modes) as f:
return f.read()
|
4800e0531071d1392c432e6801771f4de8414b11
| 288,847 |
def weighted_centroid(x, y, density):
"""
Computes weighted centroid of a bin -- eq 4 of Cappellari & Copin (2003).
INPUTS
x : x-coordinate of pixels in bin
y : y-coordinate of pixels in bin
density : pixel weights
"""
mass = density.sum()
xbar = (x*density).sum()/mass
ybar = (y*density).sum()/mass
return xbar, ybar
|
b613b881eec2fc326c549854d6d5cf4bf901cdd4
| 544,581 |
def moffat(coords, y0, x0, amplitude, alpha, beta=1.5):
"""Moffat Function
Symmetric 2D Moffat function:
.. math::
A (1+\frac{(x-x0)^2+(y-y0)^2}{\alpha^2})^{-\beta}
"""
Y,X = coords
return (amplitude*(1+((X-x0)**2+(Y-y0)**2)/alpha**2)**-beta)
|
7a5138de271a266d711c6d9b354a81ef06479b56
| 489,482 |
from datetime import datetime
def generate_birthdays(birthdays: list, year_to_generate: int):
"""
generate birthdays from lists
:param birthdays:
:param year_to_generate: how many year from this year to add to the event
:return:
"""
this_year = datetime.now().year
event_list = []
for birthday in birthdays:
for year in range(this_year, this_year + year_to_generate):
date = birthday.in_year(year)
event_list.append([birthday, date])
return event_list
|
158c68da9f171904f76d2104dd6a6035a6bf7d39
| 37,669 |
def _get_usb_hub_map(device_info_list):
"""Creates a map of usb hub addresses to device_infos by port.
Args:
device_info_list (list): list of known usb_connections dicts.
Returns:
dict: map of usb hub addresses to device_infos by port
"""
map_usb_hub_ports = {}
for device_info in device_info_list:
hub_address = device_info['usb_hub_address']
port = device_info['usb_hub_port']
if hub_address:
if hub_address not in map_usb_hub_ports:
map_usb_hub_ports[hub_address] = {}
if not map_usb_hub_ports[hub_address].get(
port) or device_info['ftdi_interface'] == 2:
map_usb_hub_ports[hub_address][port] = device_info
return map_usb_hub_ports
|
eaadc4713a41fdf38cea4fce35806d1d8772df27
| 703,943 |
def is_akamai_domain(domain):
"""
Is the provided domain within akamai.net?
"""
return domain.endswith(".akamai.net")
|
d68af4119614f470738ead3b15db085eaeeda359
| 107,370 |
def _GenerateAdditionalProperties(values_dict):
"""Format values_dict into additionalProperties-style dict."""
return {
'additionalProperties': [
{'key': key, 'value': value} for key, value
in sorted(values_dict.items())
]}
|
fcd3e7c2a4f27ee177136ac75ec4704a367dcbc1
| 549,781 |
def _remove_batch(tensor):
"""
Return a tensor with size tensor.size()[1:]
:param tensor: 3D or 4D tensor
:return: 2D or 3D tensor
"""
return tensor.view(tensor.size()[1:])
|
0fb8b56e0507e5f51e98827d5d97cb3b70e66549
| 325,544 |
def get_vehicle_angle(rect_angle):
""" Returns angle needed to be turned to align perpendicularly to long side of object """
angle = 90 - abs(rect_angle) if rect_angle >= -90 else 90 - abs(rect_angle)
return (angle + 90) % 360
|
8d3a9bb7a348e6fc952e0edbaa2c9aa188205869
| 192,165 |
def calcBayes(priorA, probBifA, probB):
"""priorA: initial estimate of probability of A independent of B
priorBifA: est. of probability of B assuming A is true
priorBifNotA: est. of probability of B
returns probability of A given B"""
return priorA*probBifA/probB
|
a02131484b9b66263fb58aeba8521fb20e50b2ad
| 171,894 |
def game_status(game_state):
"""return if a given game is complete, based off game_state"""
for score in game_state.scores:
if score > 100:
return True
return False
|
a9ca63d82ce8ebd16f5c650a5f176b048dba2df0
| 152,530 |
def _rectify_countdown_or_bool(count_or_bool):
"""
used by recursive functions to specify which level to turn a bool on in
counting down yields True, True, ..., False
counting up yields False, False, False, ... True
Args:
count_or_bool (bool or int): if positive and an integer, it will count
down, otherwise it will remain the same.
Returns:
int or bool: count_or_bool_
CommandLine:
python -m utool.util_str --test-_rectify_countdown_or_bool
Example:
>>> from ubelt.util_format import _rectify_countdown_or_bool # NOQA
>>> count_or_bool = True
>>> a1 = (_rectify_countdown_or_bool(2))
>>> a2 = (_rectify_countdown_or_bool(1))
>>> a3 = (_rectify_countdown_or_bool(0))
>>> a4 = (_rectify_countdown_or_bool(-1))
>>> a5 = (_rectify_countdown_or_bool(-2))
>>> a6 = (_rectify_countdown_or_bool(True))
>>> a7 = (_rectify_countdown_or_bool(False))
>>> a8 = (_rectify_countdown_or_bool(None))
>>> result = [a1, a2, a3, a4, a5, a6, a7, a8]
>>> print(result)
[1, 0, 0, -1, -2, True, False, False]
"""
if count_or_bool is True or count_or_bool is False:
count_or_bool_ = count_or_bool
elif isinstance(count_or_bool, int):
if count_or_bool == 0:
return 0
elif count_or_bool > 0:
count_or_bool_ = count_or_bool - 1
else:
# We dont countup negatives anymore
count_or_bool_ = count_or_bool
else:
count_or_bool_ = False
return count_or_bool_
|
ad8edadbe3d0f212629be005eaf22d7ebc6ea3a0
| 521,430 |
def merge_arg(cmd_arg, ini_arg):
"""
Merge command line argument and configure file argument.
The cmd_args has higher priority than ini_arg.
Only none-empty argument will be considered.
"""
if isinstance(cmd_arg, (list, tuple)):
cmd = cmd_arg[0]
return cmd if cmd else ini_arg
else:
return cmd_arg if cmd_arg else ini_arg
|
f896463fad7a00096e9a1e3b730ad96614a6e966
| 23,199 |
def get_dict_key_by_value(val, dic):
"""
Return the first appeared key of a dictionary by given value.
Args:
val (Any): Value of the key.
dic (dict): Dictionary to be checked.
Returns:
Any, key of the given value.
"""
for d_key, d_val in dic.items():
if d_val == val:
return d_key
return None
|
d01522a61d7a0549ed54bfcb620da10857d67ae7
| 703,212 |
import six
def string_repr(text, show_quotes=True):
"""
Prints the repr of a string. Eliminates the leading 'b' in the repr in
Python 3.
Optionally can show or include quotes.
"""
if six.PY3 and isinstance(text, six.binary_type):
# Skip leading 'b' at the beginning of repr
output = repr(text)[1:]
else:
output = repr(text)
if show_quotes:
return output
else:
return output[1:-1]
|
c1a0bea9965418a0ca97e09de7436b73c6659c56
| 372,554 |
def make_safe_for_html(html):
"""Turn the text `html` into a real HTML string."""
html = html.replace("&", "&")
html = html.replace(" ", " ")
html = html.replace("<", "<")
html = html.replace("\n", "<br>")
return html
|
18feac5e745bc86a51829bd7b1a7c4d73c15f1c9
| 623,356 |
from bs4 import BeautifulSoup
import re
import html
def __getCompanyMetadata(parsed: BeautifulSoup) -> dict:
"""Function to extract company Standard Industrial Classification (SIC)
code, SIC type (i.e. description), company location, state of incorporation,
and the end of its fiscal year.
Searches the raw HTML of the company identification section of the page
using regular expressions.
Arguments:
parsed {BeautifulSoup} -- Parsed HTML from company EDGAR filing.
Returns:
dict -- Company metadata with keys `sic`, `sic_type`, `location`,
`incorporation_state`, and `fiscal_year_end`.
"""
# Company metadata container
metadata_container = parsed.find('p', class_='identInfo')
# String representation of HTML (used in RegEx)
metadata_str = str(metadata_container)
# Dictionary for company metadata
company_metadata = dict()
# RegEx for extracting SIC and SIC type
sic_re = re.compile(r'SIC.+?:.+?(\d+?)<\/a> -(.+?)<br')
# Getting SIC and SIC type match
sic_matches = sic_re.findall(metadata_str)
# Saving SIC and stripped, HTML-parsed SIC type
company_metadata['sic'] = sic_matches[0][0]
company_metadata['sic_type'] = html.unescape(sic_matches[0][1]).strip()
# RegEx for extracting company location (state)
location_re = re.compile(r'State location:.+?>(\w+?)<\/a>')
# Getting company location
location_matches = location_re.findall(metadata_str)
# Saving company location
company_metadata['location'] = location_matches[0].strip()
# RegEx for extracting state of incorporation
incorp_state_re = re.compile(r'State of Inc\.:.+?>(\w+?)<\/strong>')
# Getting state of incorporation
incorp_match = incorp_state_re.findall(metadata_str)[0]
# Saving state of incorporation
company_metadata['incorporation_state'] = incorp_match.strip()
# RegEx for extracting end of fiscal year
fiscal_year_re = re.compile(r'Fiscal Year End:.+?(\d{4})')
# Getting end of fiscal year
fiscal_year_match = fiscal_year_re.findall(metadata_str)[0]
# Saving end of fiscal year (in mm-dd format)
fy_formatted = fiscal_year_match[0:2] + '-' + fiscal_year_match[2:]
company_metadata['fiscal_year_end'] = fy_formatted
return company_metadata
|
a9efbed062f8e6f9f43ba46d6753096df3c43e08
| 692,199 |
def api_token_error(context, request):
"""Handle an expected/deliberately thrown API exception."""
request.response.status_code = context.status_code
resp = {'error': context.type}
if context.message:
resp['error_description'] = context.message
return resp
|
d72c71885182f9ecb56efbfddf11f2c474be261b
| 386,339 |
def split_procs(procs, valid_frac = .2):
"""Split the procedures into a
training and validation set based
on start time
"""
procs.sort(key = lambda x: x.get_start_time())
split_ind = int((1-valid_frac) *len(procs))
training = procs[:split_ind]
validation = procs[split_ind:]
return (training, validation)
|
e28f5679631bbeeb9efa9b657d57e156f02d7625
| 111,275 |
def get_header(img):
"""
Gets the header of a NIFTI image
Attributes
----------
:param img: NIFTI image
:type img: Image
:return: Image header
:rtype: nibabel.nifti1.Nifti1Header"""
return img.header
|
d3aa8dcc23d806963f0527328e4f9dac9dba9f19
| 290,696 |
import json
def json_to_obj(json_str: str):
"""
Transforms the json string into tree made up of dictionaries and list.
:param json_str: The json string to transform
:return: the dict or list
"""
return json.loads(json_str)
|
cebf9eacd8c55d80290ed06036bdc754f01c4dbb
| 468,655 |
import importlib
def _on_import_factory(module, raise_errors=True):
"""Factory to create an import hook for the provided module name"""
def on_import(hook):
# Import and patch module
path = 'ddtrace.contrib.%s' % module
imported_module = importlib.import_module(path)
imported_module.patch()
return on_import
|
06c06429559ab3f64a5b0b3a0b2a6f960452ad23
| 424,386 |
def ps_weight_timemean(field, ps):
"""
This takes the surface pressure time mean of atmos_fields
input:
field xr.DataArray or xr.Dataset
ps surface pressure field with the same dimensions are field, it does not need the verical coordinates
return
same structure are field but time averaged
"""
return (field * ps).mean('time') /ps.mean('time')
|
a33d3eb7cdece49e8e6ff41c6dff46bf40a4deb4
| 690,239 |
def substring_search(word, collection):
"""Finds all matches in the `collection` for the specified `word`.
If `word` is empty, returns all items in `collection`.
:type word: str
:param word: The substring to search for.
:type collection: collection, usually a list
:param collection: A collection of words to match.
:rtype: list of strings
:return: A sorted list of matching words from collection.
"""
return [item for item in sorted(collection) if item.startswith(word)]
|
dd200f02a7fe9ed09f01ad267c498d6bf32f6024
| 57,031 |
def dict_of_str(json_dict):
"""Given a dictionary; return a new dictionary with all items as strings.
Args:
json_dict(dict): Input JSON dictionary.
Returns:
A Python dictionary with the contents of the JSON object as strings.
"""
result = {}
for key, value in json_dict.items():
result[key] = '{}'.format(value)
return result
|
9fa004a38ff9d8508c914c5eb6d2a468dfd77708
| 363,483 |
import pickle
def unpickle_file(picklefile, **kwargs):
"""
Load data from `picklefile` with Python's :mod:`pickle` module.
:param picklefile: either target file path as string or file handle
:param kwargs: further parameters passed to :func:`pickle.load`
:return: data stored in `picklefile`
"""
if isinstance(picklefile, str):
with open(picklefile, 'rb') as f:
return pickle.load(f, **kwargs)
else:
return pickle.load(picklefile, **kwargs)
|
793267e872784c25558959e72aeb8014294772a6
| 389,748 |
def dsr_pb(D_eq):
"""
Pruppacher and Beard drop shape relationship function.
Arguments:
D_eq: Drop volume-equivalent diameter (mm)
Returns:
r: The vertical-to-horizontal drop axis ratio. Note: the Scatterer class
expects horizontal to vertical, so you should pass 1/dsr_pb
"""
return 1.03 - 0.062*D_eq
|
cb0980733d3c498f2d7ec5e31a530e75f0585ffc
| 241,148 |
def tidy_passphrase(passphrase: str) -> str:
"""
Perform any string processing we want to apply to the entered passphrase.
Currently we strip leading/trailing whitespace.
"""
return passphrase.strip()
|
3d43caa99a9ffbab03e85b862993d4b07f81f239
| 416,016 |
def is_comment(string):
"""
Find out if line is a comment or line of code
:param string: line to analyze
:return: True if line is a comment
"""
chars = list(string)
if len(chars) <= 0:
return True
if chars[0] == "#":
return True
else:
return False
|
2a6c761130bf608d7363334d95257d8d73332680
| 655,440 |
def contains_memory(memoryrange, memory):
"""Returns True if the given `memory` is in `memoryrange`, False if not."""
for field, value in memoryrange.lower.ListFields():
if getattr(memory, field.name) < value:
return False
for field, value in memoryrange.upper.ListFields():
if getattr(memory, field.name) > value:
return False
return True
|
91133402ee4e150fde8bfa85e4c4a84363ef9c20
| 624,608 |
import pickle
def load_detectron_predictions(detectron_root):
"""Load detectron predictions from root directort.
Args:
detectron_root (Path): Points to a directory which contains a
subdirectory for each sequence, which in turn contains a .pickle
file for each frame in the sequence.
Returns:
predictions (dict): Map sequence to dict mapping from frame name to
a dictionary containining keys 'boxes', and 'segmentations'.
"""
predictions = {}
for sequence_path in detectron_root.iterdir():
if not sequence_path.is_dir():
continue
sequence = sequence_path.stem
predictions[sequence] = {}
for detectron_path in sequence_path.glob('*.pickle'):
with open(detectron_path, 'rb') as f:
frame_data = pickle.load(f)
if frame_data['segmentations'] is None:
frame_data['segmentations'] = [
[] for _ in range(len(frame_data['boxes']))
]
frame_name = detectron_path.stem
predictions[sequence][frame_name] = {
'boxes': [],
'segmentations': []
}
for c in range(len(frame_data['boxes'])):
predictions[sequence][frame_name]['boxes'].extend(
frame_data['boxes'][c])
predictions[sequence][frame_name]['segmentations'].extend(
frame_data['segmentations'][c])
return predictions
|
bc9c999aeab998bdb8de49343e770b5b7a7b99ed
| 668,046 |
from typing import Dict
def invert_dict(d: Dict) -> Dict:
"""
Inverts the key:value relation of a dictionary.
Parameters
----------
d : dict
dictionary to be inverted
Returns
-------
dict
inverted dict
"""
return {v: k for k, v in d.items()}
|
6ca7b0d0cb647025f2ac1383e6a5247dcd1310ec
| 139,694 |
import re
def get_partition_separator(name):
"""Get partition separator based on device name, returns str."""
separator = ''
if re.search(r'(loop|mmc|nvme)', name, re.IGNORECASE):
separator = 'p'
return separator
|
9f4a44e4c1b0c0654a4d19440d27421559530395
| 513,372 |
from re import sub
def remove_multiple_spaces(string):
"""
Strips and removes multiple spaces in a string.
:param str string: the string to remove the spaces from
:return: a new string without multiple spaces and stripped
"""
return sub(" +", " ", string.strip())
|
6d65985fb6b3adddff5e8e6b06d0ae94e6dd5e3a
| 511,304 |
def diff_dict(old, new):
"""
Compare two dicts and create dict (set_) with new or changed values/keys or
a list (remove_) of missing keys.
"""
set_ = {}
remove_ = []
for k in new.keys():
if k in old: # key exists in both
if new[k] != old[k]: # but the value changed
set_[k] = new[k]
else: # something new appeared in new dict
set_[k] = new[k]
for k in old.keys():
if k not in new: # key from old which was not found in new
remove_.append(k) # the remove array is a list of identifiers
return set_, remove_
|
dc1358060d475ed8fa6ba76566359b71f2d58caa
| 348,755 |
def renormalize(values, old_min, old_max, new_min, new_max):
"""
Transforms values in range [old_min, old_max] to values in range [new_min, new_max]
"""
return (new_max - new_min) * (values - old_min) / (old_max -
old_min) + new_min
|
7ac87a8962379b68224ecf4ac8ff939090321d51
| 504,269 |
def outsidein(d):
"""Transform a dictionary of lists to a list of dictionaries."""
ds = []
keys = d.keys()
for key in keys:
d[key] = list(d[key])
for i in range(len(d.values()[0])):
ds.append(dict([(k, d[k][i]) for k in keys]))
return ds
|
3df73ad47cf1aec8b01a3c539ccddfe61c9a29ec
| 235,109 |
import torch
def Conv2dGroup(
in_channels: int,
out_channels: int,
kernel_size: int = 3,
stride: int = 1,
padding: int = 0,
bias: bool = True,
num_groups=1,
**kwargs,
):
"""A 2D convolution followed by a group norm and ReLU activation."""
return torch.nn.Sequential(
torch.nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
bias=bias,
),
torch.nn.GroupNorm(num_groups, out_channels),
torch.nn.ReLU(inplace=True),
)
|
eb723c3673a263c573022681cc5b30018c8647b6
| 80,836 |
def startswith(string, prefixes):
"""Checks if str starts with any of the strings in the prefixes tuple.
Returns the first string in prefixes that matches. If there is no match,
the function returns None.
"""
if isinstance(prefixes, tuple):
for prefix in prefixes:
if string.startswith(prefix):
return prefix
return None
elif isinstance(prefixes, str):
prefix = prefixes
if string.startswith(prefix):
return prefix
return None
else:
raise Exception('Second argument must be string or a tuple of strings.')
|
9a507aa2c4da6cb187023e5be28084b7b915feba
| 608,418 |
def get_gs_distortion(dict_energies: dict):
"""Calculates energy difference between Unperturbed structure and most favourable distortion.
Returns energy drop of the ground-state relative to Unperturbed (in eV) and the BDM distortion that lead to ground-state.
Args:
dict_energies (dict):
Dictionary matching distortion to final energy, as produced by organize_data()
Returns:
(energy_difference, BDM_ground_state_distortion)
"""
if len(dict_energies['distortions']) == 1:
energy_diff = dict_energies['distortions']['rattled'] - dict_energies['Unperturbed']
if energy_diff < 0 :
gs_distortion = 'rattled' #just rattle (no BDM)
else:
gs_distortion = "Unperturbed"
else:
lowest_E_RBDM = min(dict_energies['distortions'].values()) #lowest E obtained with RBDM
energy_diff = lowest_E_RBDM - dict_energies['Unperturbed']
if lowest_E_RBDM < dict_energies['Unperturbed'] : #if energy lower that with Unperturbed
gs_distortion = list(dict_energies['distortions'].keys())[list(dict_energies['distortions'].values()).index( lowest_E_RBDM )] #BDM distortion that lead to ground-state
else:
gs_distortion = "Unperturbed"
return energy_diff, gs_distortion
|
2f23103ccac8e801cb6c2c4aff1fb4fc08341e78
| 4,300 |
def find_disconnected(model):
"""
Return metabolites that are not in any of the reactions.
Parameters
----------
model : cobra.Model
The metabolic model under investigation.
"""
return [met for met in model.metabolites if len(met.reactions) == 0]
|
19c606affff99c01c47522d6903b6f8008cee8c6
| 42,182 |
import logging
def log_level(level_string):
"""
Return a log level for a string
"""
return getattr(logging, level_string.upper())
|
14acbe0701a184247484db226cd36c56d60f7c1f
| 477,836 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.