code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def __pipeline_image(image, options): results = [] if 'resolutions' in options: resolutions = options['resolutions'] for res in resolutions: img_rs = resize(image, res) results.append(img_rs) if 'wmark-img' in options: wtrmk_path = options['wmark-img'] if wtrmk_path: if len(results) == 0: image = watermark_image(image, wtrmk_path) else: for i in range(0, len(results)): results[i] = watermark_image( results[i], wtrmk_path) if 'wmark-txt' in options: wtrmk_txt = options['wmark-txt'] if wtrmk_txt: if len(results) == 0: image = watermark_text(image, wtrmk_txt) else: for i in range(0, len(results)): results[i] = watermark_text(results[i], wtrmk_txt) if len(results) == 0: results.append(image) return results
Sends an image through a processing pipeline. Applies all (relevant) provided options to a given image. Args: image: An instance of a PIL Image. options: Options to apply to the image (i.e. resolutions). Returns: A list containing instances of PIL Images. This list will always be length 1 if no options exist that require multiple copies to be created for a single image (i.e resolutions).
juraj-google-style
def get_subset_in_chemsys(self, chemsys: List[str]): chemsys = set(chemsys) if not chemsys.issubset(self.chemsys): raise ValueError("%s is not a subset of %s" % (chemsys, self.chemsys)) subset = set() for e in self.entries: elements = [sp.symbol for sp in e.composition.keys()] if chemsys.issuperset(elements): subset.add(e) return EntrySet(subset)
Returns an EntrySet containing only the set of entries belonging to a particular chemical system (in this definition, it includes all sub systems). For example, if the entries are from the Li-Fe-P-O system, and chemsys=["Li", "O"], only the Li, O, and Li-O entries are returned. Args: chemsys: Chemical system specified as list of elements. E.g., ["Li", "O"] Returns: EntrySet
juraj-google-style
def ParseOptions(cls, options, configuration_object): if not isinstance(configuration_object, tools.CLITool): raise errors.BadConfigObject( 'Configuration object is not an instance of CLITool') temporary_directory = getattr(options, 'temporary_directory', None) if temporary_directory and not os.path.isdir(temporary_directory): raise errors.BadConfigOption( 'No such temporary directory: {0:s}'.format(temporary_directory)) setattr(configuration_object, '_temporary_directory', temporary_directory)
Parses and validates options. Args: options (argparse.Namespace): parser options. configuration_object (CLITool): object to be configured by the argument helper. Raises: BadConfigObject: when the configuration object is of the wrong type.
juraj-google-style
def write(self, output_buffer, kmip_version=enums.KMIPVersion.KMIP_1_0): local_buffer = utils.BytearrayStream() if self._private_key_unique_identifier: self._private_key_unique_identifier.write(local_buffer, kmip_version=kmip_version) else: raise exceptions.InvalidField('The CreateKeyPair response payload is missing the private key unique identifier field.') if self._public_key_unique_identifier: self._public_key_unique_identifier.write(local_buffer, kmip_version=kmip_version) else: raise exceptions.InvalidField('The CreateKeyPair response payload is missing the public key unique identifier field.') if self._private_key_template_attribute: self._private_key_template_attribute.write(local_buffer, kmip_version=kmip_version) if self._public_key_template_attribute: self._public_key_template_attribute.write(local_buffer, kmip_version=kmip_version) self.length = local_buffer.length() super(CreateKeyPairResponsePayload, self).write(output_buffer, kmip_version=kmip_version) output_buffer.write(local_buffer.buffer)
Write the data encoding the CreateKeyPair response payload to a buffer. Args: output_buffer (stream): A data buffer in which to encode object data, supporting a write method. kmip_version (KMIPVersion): An enumeration defining the KMIP version with which the object will be encoded. Optional, defaults to KMIP 1.0. Raises: InvalidField: Raised if the private key unique identifier or the public key unique identifier is not defined.
codesearchnet
def hist(self, lumping=None, summary=False, sort=True, plot=True, legend=None, ax=None): comps = [] labels = [] entries = defaultdict(int) for i in self: if lumping: k = i.primary[lumping] elif summary: k = i.primary.summary() else: k = i.primary comps.append(i.primary) labels.append(i.primary.summary()) entries[k] += i.thickness if sort: allitems = sorted(entries.items(), key=(lambda i: i[1]), reverse=True) (ents, counts) = zip(*allitems) else: (ents, counts) = (tuple(entries.keys()), tuple(entries.values())) if plot: if (ax is None): (fig, ax) = plt.subplots() return_ax = False else: return_ax = True ind = np.arange(len(ents)) bars = ax.bar(ind, counts, align='center') ax.set_xticks(ind) ax.set_xticklabels(labels) if legend: colours = [legend.get_colour(c) for c in comps] for (b, c) in zip(bars, colours): b.set_color(c) ax.set_ylabel('Thickness [m]') else: bars = [] if (plot and return_ax): return (counts, ents, ax) return (counts, ents, bars)
Plots a histogram and returns the data for it. Args: lumping (str): If given, the bins will be lumped based on this attribute of the primary components of the intervals encountered. summary (bool): If True, the summaries of the components are returned as the bins. Otherwise, the default behaviour is to return the Components themselves. sort (bool): If True (default), the histogram is sorted by value, starting with the largest. plot (bool): If True (default), produce a bar plot. legend (Legend): The legend with which to colour the bars. ax (axis): An axis object, which will be returned if provided. If you don't provide one, it will be created but not returned. Returns: Tuple: A tuple of tuples of entities and counts. TODO: Deal with numeric properties, so I can histogram 'Vp' values, say.
codesearchnet
def url_to_filename(url, index='index.html', alt_char=False): assert isinstance(url, str), 'Expect str. Got {}.'.format(type(url)) url_split_result = urllib.parse.urlsplit(url) filename = url_split_result.path.split('/')[-1] if not filename: filename = index if url_split_result.query: if alt_char: query_delim = '@' else: query_delim = '?' filename = '{0}{1}{2}'.format( filename, query_delim, url_split_result.query ) return filename
Return a filename from a URL. Args: url (str): The URL. index (str): If a filename could not be derived from the URL path, use index instead. For example, ``/images/`` will return ``index.html``. alt_char (bool): If True, the character for the query deliminator will be ``@`` intead of ``?``. This function does not include the directories and does not sanitize the filename. Returns: str
juraj-google-style
def GetIapKey(key_id): global _KEY_CACHE key = _KEY_CACHE.get(key_id) if (not key): resp = requests.get('https: if (resp.status_code != 200): raise KeysCanNotBeFetchedError('Unable to fetch IAP keys: {} / {} / {}'.format(resp.status_code, resp.headers, resp.text)) _KEY_CACHE = resp.json() key = _KEY_CACHE.get(key_id) if (not key): raise KeyNotFoundError('Key {!r} not found'.format(key_id)) return key
Retrieves a public key from the list published by Identity-Aware Proxy. The key file is re-fetched if necessary. Args: key_id: Key id. Returns: String with a key. Raises: KeyNotFoundError: if the key is not found in the key file. KeysCanNotBeFetchedError: if the key file can't be fetched.
codesearchnet
def token_accuracy(labels, outputs): weights = tf.to_float(tf.not_equal(labels, 0)) return tf.metrics.accuracy(labels, outputs, weights=weights)
Compute tokenwise (elementwise) accuracy. Args: labels: ground-truth labels, shape=(batch, seq_length) outputs: predicted tokens, shape=(batch, seq_length) Returns: Two ops, one for getting the current average accuracy and another for updating the running average estimate.
juraj-google-style
def write(self, value, *labels): raise NotImplementedError
Writes the value to the given cache. Args: value: An encodable (with corresponding PCoder) value *labels: List of labels for PCollection instance
github-repos
def _get_strides_and_dilation_rate(num_spatial_dims, strides, dilation_rate): if dilation_rate is None: dilation_rate = [1] * num_spatial_dims elif len(dilation_rate) != num_spatial_dims: raise ValueError(f'`len(dilation_rate)` should be {num_spatial_dims}. Received: dilation_rate={dilation_rate} of length {len(dilation_rate)}') dilation_rate = np.array(dilation_rate, dtype=np.int32) if np.any(dilation_rate < 1): raise ValueError(f'all values of `dilation_rate` must be positive. Received: dilation_rate={dilation_rate}') if strides is None: strides = [1] * num_spatial_dims elif len(strides) != num_spatial_dims: raise ValueError(f'`len(strides)` should be {num_spatial_dims}. Received: strides={strides} of length {len(strides)}') strides = np.array(strides, dtype=np.int32) if np.any(strides < 1): raise ValueError(f'all values of `strides` must be positive. Received: strides={strides}') if np.any(strides > 1) and np.any(dilation_rate > 1): raise ValueError(f'`strides > 1` not supported in conjunction with `dilation_rate > 1`. Received: strides={strides} and dilation_rate={dilation_rate}') return (strides, dilation_rate)
Helper function for verifying strides and dilation_rate arguments. This is used by `convolution` and `pool`. Args: num_spatial_dims: int strides: Optional. List of N ints >= 1. Defaults to `[1]*N`. If any value of strides is > 1, then all values of dilation_rate must be 1. dilation_rate: Optional. List of N ints >= 1. Defaults to `[1]*N`. If any value of dilation_rate is > 1, then all values of strides must be 1. Returns: Normalized (strides, dilation_rate) as int32 numpy arrays of shape [num_spatial_dims]. Raises: ValueError: if the parameters are invalid.
github-repos
def check_url(url): request = urllib2.Request(url) try: response = urlopen(request) return True, response.code except urllib2.HTTPError as e: return False, e.code
Check if resource at URL is fetchable. (by trying to fetch it and checking for 200 status. Args: url (str): Url to check. Returns: Returns a tuple of {True/False, response code}
juraj-google-style
def build_counter_list(counter_list): counters = [] index = 0 for (obj, instance, counter_name) in counter_list: try: counter = Counter.build_counter(obj, instance, index, counter_name) index += 1 counters.append(counter) except CommandExecutionError as exc: log.debug(exc.strerror) continue return counters
r''' Create a list of Counter objects to be used in the pdh query Args: counter_list (list): A list of tuples containing counter information. Each tuple should contain the object, instance, and counter name. For example, to get the ``% Processor Time`` counter for all Processors on the system (``\Processor(*)\% Processor Time``) you would pass a tuple like this: ``` counter_list = [('Processor', '*', '% Processor Time')] ``` If there is no ``instance`` for the counter, pass ``None`` Multiple counters can be passed like so: ``` counter_list = [('Processor', '*', '% Processor Time'), ('System', None, 'Context Switches/sec')] ``` .. note:: Invalid counters are ignored Returns: list: A list of Counter objects
codesearchnet
def _fillBorder(self, image, color): height, width, depth = image.shape if depth != color.shape[0]: raise ValueError('Image (%d) and color (%d) depths must match.' % (depth, color.shape[0])) image[0:height, 0, 0:depth] = color image[0:height, width - 1, 0:depth] = color image[0, 0:width, 0:depth] = color image[height - 1, 0:width, 0:depth] = color return image
Fill the border of the image. Args: image: Numpy array of shape [height, width, depth]. color: Numpy color of shape [depth] and either contents RGB/RGBA. Returns: image of original shape with border filled with "color". Raises: ValueError: Depths of image and color don"t match.
github-repos
def rebin(d, n_x, n_y=None): if d.ndim == 2: if n_y is None: n_y = 1 if n_x is None: n_x = 1 d = d[:int(d.shape[0] d = d.reshape((d.shape[0] d = d.mean(axis=3) d = d.mean(axis=1) elif d.ndim == 1: d = d[:int(d.shape[0] d = d.reshape((d.shape[0] d = d.mean(axis=1) else: raise RuntimeError("Only NDIM <= 2 supported") return d
Rebin data by averaging bins together Args: d (np.array): data n_x (int): number of bins in x dir to rebin into one n_y (int): number of bins in y dir to rebin into one Returns: d: rebinned data with shape (n_x, n_y)
juraj-google-style
def diagflat(x, k=0): if any_symbolic_tensors((x,)): return Diagflat(k=k).symbolic_call(x) return backend.numpy.diagflat(x, k=k)
Create a two-dimensional array with the flattened input on the k-th diagonal. Args: x: Input tensor to be flattened and placed on the diagonal. k: The diagonal to place the flattened input. Defaults to `0`. Use `k > 0` for diagonals above the main diagonal, and `k < 0` for diagonals below the main diagonal. Returns: A 2-D tensor with the flattened input on the specified diagonal.
github-repos
def delete_note(self, note_id): (note, status) = self.trash_note(note_id) if (status == (- 1)): return (note, status) params = ('/i/%s' % str(note_id)) request = Request(url=(DATA_URL + params), method='DELETE') request.add_header(self.header, self.get_token()) try: response = urllib2.urlopen(request) except IOError as e: return (e, (- 1)) except HTTPError as e: if (e.code == 401): raise SimplenoteLoginFailed('Login to Simplenote API failed! Check Token.') else: return (e, (- 1)) return ({}, 0)
Method to permanently delete a note Arguments: - note_id (string): key of the note to trash Returns: A tuple `(note, status)` - note (dict): an empty dict or an error message - status (int): 0 on success and -1 otherwise
codesearchnet
def _resize_volumes(self, x, depth_factor, height_factor, width_factor, data_format): if data_format == 'channels_first': output = ops.repeat(x, depth_factor, axis=2) output = ops.repeat(output, height_factor, axis=3) output = ops.repeat(output, width_factor, axis=4) return output elif data_format == 'channels_last': output = ops.repeat(x, depth_factor, axis=1) output = ops.repeat(output, height_factor, axis=2) output = ops.repeat(output, width_factor, axis=3) return output else: raise ValueError(f'Invalid data_format: {data_format}')
Resizes the volume contained in a 5D tensor. Args: x: Tensor or variable to resize. depth_factor: Positive integer. height_factor: Positive integer. width_factor: Positive integer. data_format: One of `"channels_first"`, `"channels_last"`. Returns: Resized tensor.
github-repos
def _cross_suppression(boxes, box_slice, iou_threshold, inner_idx, tile_size): batch_size = array_ops.shape(boxes)[0] new_slice = array_ops.slice(boxes, [0, inner_idx * tile_size, 0], [batch_size, tile_size, 4]) iou = _bbox_overlap(new_slice, box_slice) box_slice_after_suppression = array_ops.expand_dims(math_ops.cast(math_ops.reduce_all(iou < iou_threshold, [1]), box_slice.dtype), 2) * box_slice return (boxes, box_slice_after_suppression, iou_threshold, inner_idx + 1)
Suppress boxes between different tiles. Args: boxes: a tensor of shape [batch_size, num_boxes_with_padding, 4] box_slice: a tensor of shape [batch_size, tile_size, 4] iou_threshold: a scalar tensor inner_idx: a scalar tensor representing the tile index of the tile that is used to supress box_slice tile_size: an integer representing the number of boxes in a tile Returns: boxes: unchanged boxes as input box_slice_after_suppression: box_slice after suppression iou_threshold: unchanged
github-repos
def AddDirectory(self, path): if self.file_system.FileEntryExistsByPath(path): raise ValueError('Path: {0:s} already set.'.format(path)) self._AddParentDirectories(path) self.file_system.AddFileEntry( path, file_entry_type=definitions.FILE_ENTRY_TYPE_DIRECTORY)
Adds a directory to the fake file system. Note that this function will create parent directories if needed. Args: path (str): path of the directory within the fake file system. Raises: ValueError: if the path is already set.
juraj-google-style
def sudo_remove_dirtree(dir_name): try: subprocess.check_output(['sudo', 'rm', '-rf', dir_name]) except subprocess.CalledProcessError as e: raise WorkerError('Can''t remove directory {0}'.format(dir_name), e)
Removes directory tree as a superuser. Args: dir_name: name of the directory to remove. This function is necessary to cleanup directories created from inside a Docker, since they usually written as a root, thus have to be removed as a root.
juraj-google-style
def editTemplate(id, data): conn = Qubole.agent() return conn.put(Template.element_path(id), data)
Edit an existing template. Args: `id`: ID of the template to edit `data`: json data to be updated Returns: Dictionary containing the updated details of the template.
codesearchnet
def from_config(cls, gitlab_id=None, config_files=None): config = gitlab.config.GitlabConfigParser(gitlab_id=gitlab_id, config_files=config_files) return cls(config.url, private_token=config.private_token, oauth_token=config.oauth_token, ssl_verify=config.ssl_verify, timeout=config.timeout, http_username=config.http_username, http_password=config.http_password, api_version=config.api_version, per_page=config.per_page)
Create a Gitlab connection from configuration files. Args: gitlab_id (str): ID of the configuration section. config_files list[str]: List of paths to configuration files. Returns: (gitlab.Gitlab): A Gitlab connection. Raises: gitlab.config.GitlabDataError: If the configuration is not correct.
juraj-google-style
def _align_output_features_output_indices(out_features: Optional[list[str]], out_indices: Optional[Union[list[int], tuple[int]]], stage_names: list[str]): if out_indices is None and out_features is None: out_indices = [len(stage_names) - 1] out_features = [stage_names[-1]] elif out_indices is None and out_features is not None: out_indices = [stage_names.index(layer) for layer in out_features] elif out_features is None and out_indices is not None: out_features = [stage_names[idx] for idx in out_indices] return (out_features, out_indices)
Finds the corresponding `out_features` and `out_indices` for the given `stage_names`. The logic is as follows: - `out_features` not set, `out_indices` set: `out_features` is set to the `out_features` corresponding to the `out_indices`. - `out_indices` not set, `out_features` set: `out_indices` is set to the `out_indices` corresponding to the `out_features`. - `out_indices` and `out_features` not set: `out_indices` and `out_features` are set to the last stage. - `out_indices` and `out_features` set: input `out_indices` and `out_features` are returned. Args: out_features (`List[str]`): The names of the features for the backbone to output. out_indices (`List[int]` or `Tuple[int]`): The indices of the features for the backbone to output. stage_names (`List[str]`): The names of the stages of the backbone.
github-repos
def train(cluster_info, cluster_meta, feed_timeout=600, qname='input'): def _train(iter): mgr = _get_manager(cluster_info, util.get_ip_address(), util.read_executor_id()) try: queue = mgr.get_queue(qname) equeue = mgr.get_queue('error') except (AttributeError, KeyError): msg = "Queue '{}' not found on this node, check for exceptions on other nodes.".format(qname) raise Exception(msg) state = str(mgr.get('state')) logging.info("mgr.state={0}".format(state)) terminating = state == "'terminating'" if terminating: logging.info("mgr is terminating, skipping partition") count = sum(1 for item in iter) logging.info("Skipped {0} items from partition".format(count)) else: logging.info("Feeding partition {0} into {1} queue {2}".format(iter, qname, queue)) count = 0 for item in iter: count += 1 queue.put(item, block=True) joinThr = Thread(target=queue.join) joinThr.start() timeout = feed_timeout while (joinThr.isAlive()): if (not equeue.empty()): e_str = equeue.get() equeue.task_done() raise Exception("exception in worker:\n" + e_str) time.sleep(1) timeout -= 1 if timeout <= 0: raise Exception("Timeout while feeding partition") logging.info("Processed {0} items in partition".format(count)) if not terminating: state = str(mgr.get('state')) terminating = state == "'terminating'" if terminating: try: logging.info("TFSparkNode: requesting stop") client = reservation.Client(cluster_meta['server_addr']) client.request_stop() client.close() except Exception as e: logging.debug("Error while requesting stop: {0}".format(e)) return [terminating] return _train
Feeds Spark partitions into the shared multiprocessing.Queue. Args: :cluster_info: node reservation information for the cluster (e.g. host, executor_id, pid, ports, etc) :cluster_meta: dictionary of cluster metadata (e.g. cluster_id, reservation.Server address, etc) :feed_timeout: number of seconds after which data feeding times out (600 sec default) :qname: *INTERNAL_USE* Returns: A dataRDD.mapPartitions() function
juraj-google-style
def str(name, default=None, allow_none=False, fallback=None): value = read(name, default, allow_none, fallback=fallback) if value is None and allow_none: return None else: return builtins.str(value).strip()
Get a string based environment value or the default. Args: name: The environment variable name default: The default value to use if no environment variable is found allow_none: If the return value can be `None` (i.e. optional)
juraj-google-style
def GetUserById(self, local_id): user = self.rpc_helper.GetAccountInfoById(local_id) return GitkitUser.FromApiResponse(user)
Gets user info by id. Args: local_id: string, the user id at Gitkit server. Returns: GitkitUser, containing the user info.
codesearchnet
def get(self, page=0, size=10): dash_list = r_db.zrevrange(config.DASH_ID_KEY, 0, (- 1), True) id_list = dash_list[(page * size):((page * size) + size)] dash_meta = [] data = [] if id_list: dash_meta = r_db.hmget(config.DASH_META_KEY, [i[0] for i in id_list]) data = [json.loads(i) for i in dash_meta] return build_response(dict(data=data, code=200))
Get dashboard meta info from in page `page` and page size is `size`. Args: page: page number. size: size number. Returns: list of dict containing the dash_id and accordingly meta info. maybe empty list [] when page * size > total dashes in db. that's reasonable.
codesearchnet
def get_converter(in_type, out_type, *args, **kwargs): convs = pliers.converters.__all__ out_type = listify(out_type)[::-1] default_convs = config.get_option('default_converters') for ot in out_type: conv_str = '%s->%s' % (in_type.__name__, ot.__name__) if conv_str in default_convs: convs = list(default_convs[conv_str]) + convs for name in convs: cls = getattr(pliers.converters, name) if not issubclass(cls, Converter): continue available = cls.available if issubclass( cls, EnvironmentKeyMixin) else True if cls._input_type == in_type and cls._output_type in out_type \ and available: conv = cls(*args, **kwargs) return conv return None
Scans the list of available Converters and returns an instantiation of the first one whose input and output types match those passed in. Args: in_type (type): The type of input the converter must have. out_type (type): The type of output the converter must have. args, kwargs: Optional positional and keyword arguments to pass onto matching Converter's initializer.
juraj-google-style
def compute_matches(self, args: list[types.Arg], match_all_views: bool, keep_all_views: bool=False, alias_map: datatypes.UnionFind | None=None) -> list[GoodMatch]: matches = None has_self = args and args[0].name == 'self' for arg in args: match_result = self.compute_one_match(arg.value, arg.typ, arg.name, match_all_views, keep_all_views, alias_map) if not match_result.success: if matches: self._error_subst = matches[0].subst bad_param = self._get_bad_type(arg.name, arg.typ) else: bad_param = match_result.bad_matches[0].expected raise error_types.MatchError(bad_param) if keep_all_views or any((m.subst for m in match_result.good_matches)): typ = cast(abstract.BaseValue, arg.typ) matches = self._merge_matches(arg.name, typ, matches, match_result.good_matches, keep_all_views, has_self) return matches if matches else [GoodMatch.default()]
Compute information about type parameters using one-way unification. Given the arguments of a function call, try to find substitutions that match them against their expected types. Args: args: A sequence of function arguments. match_all_views: If True, every possible match must succeed for the overall match to be considered a success. Otherwise, the overall match succeeds as long as at least one possible match succeeds. keep_all_views: If True, avoid optimizations that discard views. alias_map: Optionally, a datatypes.UnionFind, which stores all the type renaming information, mapping of type parameter name to its representative. Returns: A sequence of GoodMatch results containing the computed substitutions. Raises: MatchError: if any of the arguments does not match its expected type.
github-repos
def __get_conn(self, flag_force_new=False, filename=None): flag_open_new = flag_force_new or not self._conn_is_open() if flag_open_new: if filename is None: filename = self.filename conn = self._get_conn(filename) self._conn = conn else: conn = self._conn return conn
Returns connection to database. Tries to return existing connection, unless flag_force_new Args: flag_force_new: filename: Returns: sqlite3.Connection object **Note** this is a private method because you can get a connection to any file, so it has to be used in the right moment
juraj-google-style
def make_same_degree(nodes1, nodes2): (_, num_nodes1) = nodes1.shape (_, num_nodes2) = nodes2.shape for _ in six.moves.xrange((num_nodes2 - num_nodes1)): nodes1 = _curve_helpers.elevate_nodes(nodes1) for _ in six.moves.xrange((num_nodes1 - num_nodes2)): nodes2 = _curve_helpers.elevate_nodes(nodes2) return (nodes1, nodes2)
Degree-elevate a curve so two curves have matching degree. Args: nodes1 (numpy.ndarray): Set of control points for a B |eacute| zier curve. nodes2 (numpy.ndarray): Set of control points for a B |eacute| zier curve. Returns: Tuple[numpy.ndarray, numpy.ndarray]: The potentially degree-elevated nodes passed in.
codesearchnet
def method_not_allowed(cls, errors=None): if cls.expose_status: cls.response.content_type = 'application/json' cls.response._status_line = '405 Method Not Allowed' return cls(405, None, errors).to_json
Shortcut API for HTTP 405 `Method not allowed` response. Args: errors (list): Response key/value data. Returns: WSResponse Instance.
codesearchnet
def events(config): celery_app = create_app(config) for event in event_stream(celery_app, filter_by_prefix='task'): try: yield create_event_model(event) except JobEventTypeUnsupported: pass
Return a generator that yields workflow events. For every workflow event that is sent from celery this generator yields an event object. Args: config (Config): Reference to the configuration object from which the settings are retrieved. Returns: generator: A generator that returns workflow events.
juraj-google-style
def leaves(self, nodes=None, unique=True): if nodes is None: return super(DependencyTree, self).leaves(unique=unique) res = list() for child_id in nodes: for sub_child in self._all_nodes[child_id].leaves(unique=unique): if not unique or sub_child not in res: res.append(sub_child) return res
Get the leaves of the tree starting at this root. Args: nodes (iterable): limit leaves for these node names unique: only include individual leaf nodes once Returns: list of leaf nodes
juraj-google-style
def random_restore( rnd: Optional[tcod.random.Random], backup: tcod.random.Random ) -> None: lib.TCOD_random_restore(rnd.random_c if rnd else ffi.NULL, backup.random_c)
Restore a random number generator from a backed up copy. Args: rnd (Optional[Random]): A Random instance, or None to use the default. backup (Random): The Random instance which was used as a backup. .. deprecated:: 8.4 You can use the standard library copy and pickle modules to save a random state.
juraj-google-style
def _trigger(self): self._completed.set() for callback in self._callbacks: callback(self)
Trigger all callbacks registered to this Future. This method is called internally by the batch once the batch completes. Args: message_id (str): The message ID, as a string.
codesearchnet
def select_inputs(self, address, nfees, ntokens, min_confirmations=6): unspents = self._t.get(address, min_confirmations=min_confirmations)['unspents'] unspents = [u for u in unspents if (u not in self._spents.queue)] if (len(unspents) == 0): raise Exception('No spendable outputs found') fees = [u for u in unspents if (u['amount'] == self.fee)][:nfees] tokens = [u for u in unspents if (u['amount'] == self.token)][:ntokens] if ((len(fees) != nfees) or (len(tokens) != ntokens)): raise SpoolFundsError('Not enough outputs to spend. Refill your wallet') if (self._spents.qsize() > (self.SPENTS_QUEUE_MAXSIZE - (nfees + ntokens))): [self._spents.get() for i in range((((self._spents.qsize() + nfees) + ntokens) - self.SPENTS_QUEUE_MAXSIZE))] [self._spents.put(fee) for fee in fees] [self._spents.put(token) for token in tokens] return (fees + tokens)
Selects the inputs for the spool transaction. Args: address (str): bitcoin address to select inputs for nfees (int): number of fees ntokens (int): number of tokens min_confirmations (Optional[int]): minimum number of required confirmations; defaults to 6
codesearchnet
def _FormatSourceShort(self, event): source_short, _ = self._output_mediator.GetFormattedSources(event) if source_short is None: data_type = getattr(event, 'data_type', 'UNKNOWN') raise errors.NoFormatterFound( 'Unable to find event formatter for: {0:s}.'.format(data_type)) return source_short
Formats the short source. Args: event (EventObject): event. Returns: str: short source field. Raises: NoFormatterFound: If no event formatter can be found to match the data type in the event.
juraj-google-style
def insert_tag(tag, before, root): if not before: root.childs.append(tag) tag.parent = root return if type(before) in [tuple, list]: before = first(before) if not hasattr(before, "parent"): raise ValueError("Input must be double-linked!") parent = before.parent parent.childs.insert( parent.childs.index(before), tag ) tag.parent = parent
Insert `tag` before `before` tag if present. If not, insert it into `root`. Args: tag (obj): HTMLElement instance. before (obj): HTMLElement instance. root (obj): HTMLElement instance.
juraj-google-style
def Add(self, other): if (len(self.data) != len(other.data)): raise RuntimeError('Can only add series of identical lengths.') for i in range(len(self.data)): if (self.data[i][1] != other.data[i][1]): raise RuntimeError('Timestamp mismatch.') if ((self.data[i][0] is None) and (other.data[i][0] is None)): continue self.data[i][0] = ((self.data[i][0] or 0) + (other.data[i][0] or 0))
Add other to self pointwise. Requires that both self and other are of the same length, and contain identical timestamps. Typically this means that Normalize has been called on both with identical time parameters. Args: other: The sequence to add to self. Raises: RuntimeError: other does not contain the same timestamps as self.
codesearchnet
def top(self, **kwargs): return self.client.api.top(self.id, **kwargs)
Display the running processes of the container. Args: ps_args (str): An optional arguments passed to ps (e.g. ``aux``) Returns: (str): The output of the top Raises: :py:class:`docker.errors.APIError` If the server returns an error.
codesearchnet
def forward(self, inputs, expert_size): input_list = inputs.split(expert_size, dim=0) output_list = [] for i in range(self.num_experts): output_list.append(F.linear(input_list[i], self.weight[i])) results = torch.cat(output_list, dim=0) return results
Forward pass of the GraniteMoeParallelExperts module. Args: inputs (Tensor): Input tensor. expert_size: Expert size information. Returns: Tensor: Output tensor.
github-repos
def as_allocate_quota_request(self, timer=datetime.utcnow): if (not self.service_name): raise ValueError(u'the service name must be set') if (not self.operation_id): raise ValueError(u'the operation id must be set') if (not self.operation_name): raise ValueError(u'the operation name must be set') op = super(Info, self).as_operation(timer=timer) labels = {} if self.client_ip: labels[_KNOWN_LABELS.SCC_CALLER_IP.label_name] = self.client_ip if self.referer: labels[_KNOWN_LABELS.SCC_REFERER.label_name] = self.referer qop = sc_messages.QuotaOperation(operationId=op.operationId, methodName=op.operationName, consumerId=op.consumerId, quotaMode=sc_messages.QuotaOperation.QuotaModeValueValuesEnum.BEST_EFFORT) qop.labels = encoding.PyValueToMessage(sc_messages.QuotaOperation.LabelsValue, labels) quota_info = (self.quota_info if self.quota_info else {}) qop.quotaMetrics = [sc_messages.MetricValueSet(metricName=name, metricValues=[sc_messages.MetricValue(int64Value=cost)]) for (name, cost) in quota_info.items()] allocate_quota_request = sc_messages.AllocateQuotaRequest(allocateOperation=qop) if self.config_id: allocate_quota_request.serviceConfigId = self.config_id return sc_messages.ServicecontrolServicesAllocateQuotaRequest(serviceName=self.service_name, allocateQuotaRequest=allocate_quota_request)
Makes a `ServicecontrolServicesAllocateQuotaRequest` from this instance Returns: a ``ServicecontrolServicesAllocateQuotaRequest`` Raises: ValueError: if the fields in this instance are insufficient to to create a valid ``ServicecontrolServicesAllocateQuotaRequest``
codesearchnet
def _PrintParsersCounter(self, parsers_counter, session_identifier=None): if (not parsers_counter): return title = 'Events generated per parser' if session_identifier: title = '{0:s}: {1:s}'.format(title, session_identifier) table_view = views.ViewsFactory.GetTableView(self._views_format_type, column_names=['Parser (plugin) name', 'Number of events'], title=title) for (key, value) in sorted(parsers_counter.items()): if (key == 'total'): continue table_view.AddRow([key, value]) table_view.AddRow(['Total', parsers_counter['total']]) table_view.Write(self._output_writer)
Prints the parsers counter Args: parsers_counter (collections.Counter): number of events per parser or parser plugin. session_identifier (Optional[str]): session identifier.
codesearchnet
def iso_date(d) -> str: if isinstance(d, datetime): return d.isoformat() elif isinstance(d, date): return datetime.combine(d, datetime.min.time()).isoformat() else: try: datetime.strptime(d, '%Y-%m-%dT%H:%M:%S') return d except ValueError: try: datetime.strptime(d, '%Y-%m-%d') return (d + 'T00:00:00') except ValueError: pass raise ISODateError('Can not convert value to ISO format for kg')
Return iso format of a date Args: d: Returns: str
codesearchnet
def Convert(self, metadata, grr_message, token=None): return self.BatchConvert([(metadata, grr_message)], token=token)
Converts GrrMessage into a set of RDFValues. Args: metadata: ExportedMetadata to be used for conversion. grr_message: GrrMessage to be converted. token: Security token. Returns: List or generator with resulting RDFValues.
juraj-google-style
def _elevate_nodes(nodes): (dimension, num_nodes) = np.shape(nodes) new_nodes = np.empty((dimension, (num_nodes + 1)), order='F') multipliers = np.arange(1, num_nodes, dtype=_FLOAT64)[(np.newaxis, :)] denominator = float(num_nodes) new_nodes[(:, 1:(- 1))] = ((multipliers * nodes[(:, :(- 1))]) + ((denominator - multipliers) * nodes[(:, 1:)])) new_nodes /= denominator new_nodes[(:, 0)] = nodes[(:, 0)] new_nodes[(:, (- 1))] = nodes[(:, (- 1))] return new_nodes
r"""Degree-elevate a B |eacute| zier curves. Does this by converting the current nodes :math:`v_0, \ldots, v_n` to new nodes :math:`w_0, \ldots, w_{n + 1}` where .. math:: \begin{align*} w_0 &= v_0 \\ w_j &= \frac{j}{n + 1} v_{j - 1} + \frac{n + 1 - j}{n + 1} v_j \\ w_{n + 1} &= v_n \end{align*} .. note:: There is also a Fortran implementation of this function, which will be used if it can be built. Args: nodes (numpy.ndarray): The nodes defining a curve. Returns: numpy.ndarray: The nodes of the degree-elevated curve.
codesearchnet
def from_question_encoder_generator_configs(cls, question_encoder_config: PretrainedConfig, generator_config: PretrainedConfig, **kwargs) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **kwargs)
Instantiate a [`EncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model configuration and decoder model configuration. Returns: [`EncoderDecoderConfig`]: An instance of a configuration object
github-repos
def _merge_beam_dim(tensor): shape = common_layers.shape_list(tensor) shape[0] *= shape[1] shape.pop(1) return tf.reshape(tensor, shape)
Reshapes first two dimensions in to single dimension. Args: tensor: Tensor to reshape of shape [A, B, ...] Returns: Reshaped tensor of shape [A*B, ...]
juraj-google-style
def _add_dependency(self, dependency, var_name=None): if (var_name is None): var_name = next(self.temp_var_names) if ((dependency, var_name) not in self.dependencies): self.dependencies.append((dependency, var_name)) return var_name
Adds the given dependency and returns the variable name to use to access it. If `var_name` is not given then a random one will be created. Args: dependency (str): var_name (str, optional): Returns: str
codesearchnet
def parse_criteria(criteria_string): toks = criteria_string.split() def parse_sym(sym): if (sym == '*'): return [el.symbol for el in Element] else: m = re.match('\\{(.*)\\}', sym) if m: return [s.strip() for s in m.group(1).split(',')] else: return [sym] def parse_tok(t): if re.match('\\w+-\\d+', t): return {'task_id': t} elif ('-' in t): elements = [parse_sym(sym) for sym in t.split('-')] chemsyss = [] for cs in itertools.product(*elements): if (len(set(cs)) == len(cs)): cs = [Element(s).symbol for s in cs] chemsyss.append('-'.join(sorted(cs))) return {'chemsys': {'$in': chemsyss}} else: all_formulas = set() explicit_els = [] wild_card_els = [] for sym in re.findall('(\\*[\\.\\d]*|\\{.*\\}[\\.\\d]*|[A-Z][a-z]*)[\\.\\d]*', t): if (('*' in sym) or ('{' in sym)): wild_card_els.append(sym) else: m = re.match('([A-Z][a-z]*)[\\.\\d]*', sym) explicit_els.append(m.group(1)) nelements = (len(wild_card_els) + len(set(explicit_els))) parts = re.split('(\\*|\\{.*\\})', t) parts = [parse_sym(s) for s in parts if (s != '')] for f in itertools.product(*parts): c = Composition(''.join(f)) if (len(c) == nelements): for e in c.keys(): Element(e.symbol) all_formulas.add(c.reduced_formula) return {'pretty_formula': {'$in': list(all_formulas)}} if (len(toks) == 1): return parse_tok(toks[0]) else: return {'$or': list(map(parse_tok, toks))}
Parses a powerful and simple string criteria and generates a proper mongo syntax criteria. Args: criteria_string (str): A string representing a search criteria. Also supports wild cards. E.g., something like "*2O" gets converted to {'pretty_formula': {'$in': [u'B2O', u'Xe2O', u"Li2O", ...]}} Other syntax examples: mp-1234: Interpreted as a Materials ID. Fe2O3 or *2O3: Interpreted as reduced formulas. Li-Fe-O or *-Fe-O: Interpreted as chemical systems. You can mix and match with spaces, which are interpreted as "OR". E.g., "mp-1234 FeO" means query for all compounds with reduced formula FeO or with materials_id mp-1234. Returns: A mongo query dict.
codesearchnet
def Calls(self, conditions=None): results = set() if (conditions is None): conditions = [None] for condition in conditions: for c in self.Match(*condition): results.update(self._registry.get(c, [])) return results
Find the methods that evaluate data that meets this condition. Args: conditions: A tuple of (artifact, os_name, cpe, label) Returns: A list of methods that evaluate the data.
codesearchnet
def update_fitness(objective_function, particle): fitness = objective_function(particle.position) best_fitness = particle.best_fitness cmp = comparator(fitness) if ((best_fitness is None) or cmp(fitness, best_fitness)): best_position = particle.position return particle._replace(fitness=fitness, best_fitness=fitness, best_position=best_position) else: return particle._replace(fitness=fitness)
Calculates and updates the fitness and best_fitness of a particle. Fitness is calculated using the 'problem.fitness' function. Args: problem: The optimization problem encapsulating the fitness function and optimization type. particle: cipy.algorithms.pso.Particle: Particle to update the fitness for. Returns: cipy.algorithms.pso.Particle: A new particle with the updated fitness.
codesearchnet
def sg_gpus(): global _gpus if (_gpus is None): local_device_protos = device_lib.list_local_devices() _gpus = len([x.name for x in local_device_protos if (x.device_type == 'GPU')]) return max(_gpus, 1)
r""" Gets current available GPU nums Returns: A integer : total # of GPUs available
codesearchnet
def with_inverse(points, noise): n_points = (len(points) / 2) break_point = n_points points_part = copy.deepcopy(points) points_part = list(reversed(points_part)) part = kalman_filter(points_part, noise) total = kalman_filter(points, noise) result = (list(reversed(part))[:break_point] + total[break_point:]) result[break_point] = point_mean(part[break_point], total[break_point]) return result
Smooths a set of points It smooths them twice, once in given order, another one in the reverse order. The the first half of the results will be taken from the reverse order and the second half from the normal order. Args: points (:obj:`list` of :obj:`Point`) noise (float): Expected noise, the higher it is the more the path will be smoothed. Returns: :obj:`list` of :obj:`Point`
codesearchnet
def emit(self, event, *args, **kwargs): listeners = self._listeners[event] listeners = itertools.chain(listeners, self._once[event]) self._once[event] = [] for listener in listeners: self._loop.call_soon(functools.partial(self._dispatch, event, listener, *args, **kwargs)) return self
Call each listener for the event with the given arguments. Args: event (str): The event to trigger listeners on. *args: Any number of positional arguments. **kwargs: Any number of keyword arguments. This method passes all arguments other than the event name directly to the listeners. If a listener raises an exception for any reason the 'listener-error', or current value of LISTENER_ERROR_EVENT, is emitted. Listeners to this event are given the event name, listener object, and the exception raised. If an error listener fails it does so silently. All event listeners are fired in a deferred way so this method returns immediately. The calling coro must yield at some point for the event to propagate to the listeners.
codesearchnet
def repr_result(obj: Any, elements: List[str], with_addr: bool = False, joiner: str = COMMA_SPACE) -> str: if with_addr: return "<{qualname}({elements}) at {addr}>".format( qualname=obj.__class__.__qualname__, elements=joiner.join(elements), addr=hex(id(obj))) else: return "{qualname}({elements})".format( qualname=obj.__class__.__qualname__, elements=joiner.join(elements))
Internal function to make a :func:`repr`-style representation of an object. Args: obj: object to display elements: list of object ``attribute=value`` strings with_addr: include the memory address of ``obj`` joiner: string with which to join the elements Returns: string: :func:`repr`-style representation
juraj-google-style
def endpoint_from_production_variants(self, name, production_variants, tags=None, kms_key=None, wait=True): if (not _deployment_entity_exists((lambda : self.sagemaker_client.describe_endpoint_config(EndpointConfigName=name)))): config_options = {'EndpointConfigName': name, 'ProductionVariants': production_variants} if tags: config_options['Tags'] = tags if kms_key: config_options['KmsKeyId'] = kms_key self.sagemaker_client.create_endpoint_config(**config_options) return self.create_endpoint(endpoint_name=name, config_name=name, tags=tags, wait=wait)
Create an SageMaker ``Endpoint`` from a list of production variants. Args: name (str): The name of the ``Endpoint`` to create. production_variants (list[dict[str, str]]): The list of production variants to deploy. tags (list[dict[str, str]]): A list of key-value pairs for tagging the endpoint (default: None). kms_key (str): The KMS key that is used to encrypt the data on the storage volume attached to the instance hosting the endpoint. wait (bool): Whether to wait for the endpoint deployment to complete before returning (default: True). Returns: str: The name of the created ``Endpoint``.
codesearchnet
def _render_our_module_key_flags(self, module, output_lines, prefix=''): key_flags = self.get_key_flags_for_module(module) if key_flags: self._render_module_flags(module, key_flags, output_lines, prefix)
Returns a help string for the key flags of a given module. Args: module: module|str, the module to render key flags for. output_lines: [str], a list of strings. The generated help message lines will be appended to this list. prefix: str, a string that is prepended to each generated help line.
juraj-google-style
def generate_output_events(self, source, key, val, line='2', hr=True, show_name=False, colorize=True): output = generate_output(line=line, short=(HR_RDAP[source][key]['_short'] if hr else key), name=(HR_RDAP[source][key]['_name'] if (hr and show_name) else None), is_parent=(False if ((val is None) or (len(val) == 0)) else True), value=('None' if ((val is None) or (len(val) == 0)) else None), colorize=colorize) if (val is not None): count = 0 for item in val: try: action = item['action'] except KeyError: action = None try: timestamp = item['timestamp'] except KeyError: timestamp = None try: actor = item['actor'] except KeyError: actor = None if (count > 0): output += generate_output(line=str((int(line) + 1)), is_parent=True, colorize=colorize) output += generate_output(line=str((int(line) + 1)), short=(HR_RDAP_COMMON[key]['action']['_short'] if hr else 'action'), name=(HR_RDAP_COMMON[key]['action']['_name'] if (hr and show_name) else None), value=action, colorize=colorize) output += generate_output(line=str((int(line) + 1)), short=(HR_RDAP_COMMON[key]['timestamp']['_short'] if hr else 'timestamp'), name=(HR_RDAP_COMMON[key]['timestamp']['_name'] if (hr and show_name) else None), value=timestamp, colorize=colorize) output += generate_output(line=str((int(line) + 1)), short=(HR_RDAP_COMMON[key]['actor']['_short'] if hr else 'actor'), name=(HR_RDAP_COMMON[key]['actor']['_name'] if (hr and show_name) else None), value=actor, colorize=colorize) count += 1 return output
The function for generating CLI output RDAP events results. Args: source (:obj:`str`): The parent key 'network' or 'objects' (required). key (:obj:`str`): The event key 'events' or 'events_actor' (required). val (:obj:`dict`): The event dictionary (required). line (:obj:`str`): The line number (0-4). Determines indentation. Defaults to '0'. hr (:obj:`bool`): Enable human readable key translations. Defaults to True. show_name (:obj:`bool`): Show human readable name (default is to only show short). Defaults to False. colorize (:obj:`bool`): Colorize the console output with ANSI colors. Defaults to True. Returns: str: The generated output.
codesearchnet
def new_product(self, name): n = self._product_cls(self, name, summary_cls=self._summary_cls) self.graph.add_node(n) self.products.append(n) return n
Create a new product. Args: name: name of the new product. Returns: A new product instance.
codesearchnet
def emit(self, record): try: message = self.format(record) log_record = LogRecord( record.levelno, record.name, os.path.basename(record.pathname), record.lineno, int(record.created * 1000), message, ) self._test_record.add_log_record(log_record) self._notify_update() except Exception: self.handleError(record)
Save a logging.LogRecord to our test record. Logs carry useful metadata such as the logger name and level information. We capture this in a structured format in the test record to enable filtering by client applications. Args: record: A logging.LogRecord to record.
juraj-google-style
def is_custom_device(device_name): return context().is_custom_device(device_name)
Calls TFE_IsCustomDevice. Enables using C extensions specifying a custom device from Python. See the experimental eager C API in tensorflow/c/eager/c_api_experimental.h for details. Args: device_name: A string indicating the name to check whether it is a registered custom device. Returns: A boolean.
github-repos
def read_excel(filename, dataset_class=dataset.pandas_dataset.PandasDataset, expectations_config=None, autoinspect_func=None, *args, **kwargs): df = pd.read_excel(filename, *args, **kwargs) if isinstance(df, dict): for key in df: df[key] = _convert_to_dataset_class(df[key], dataset_class, expectations_config, autoinspect_func) else: df = _convert_to_dataset_class(df, dataset_class, expectations_config, autoinspect_func) return df
Read a file using Pandas read_excel and return a great_expectations dataset. Args: filename (string): path to file to read dataset_class (Dataset class): class to which to convert resulting Pandas df expectations_config (string): path to great_expectations config file Returns: great_expectations dataset or ordered dict of great_expectations datasets, if multiple worksheets are imported
codesearchnet
def get_energy_tersoff(structure, gulp_cmd='gulp'): gio = GulpIO() gc = GulpCaller(gulp_cmd) gin = gio.tersoff_input(structure) gout = gc.run(gin) return gio.get_energy(gout)
Compute the energy of a structure using Tersoff potential. Args: structure: pymatgen.core.structure.Structure gulp_cmd: GULP command if not in standard place
juraj-google-style
def run(self, input_dir, output_dir, epsilon): logging.info('Running attack %s', self.submission_id) tmp_run_dir = self.temp_copy_extracted_submission() cmd = ['--network=none', '-m=24g', '--cpus=3.75', '-v', '{0}:/input_images:ro'.format(input_dir), '-v', '{0}:/output_images'.format(output_dir), '-v', '{0}:/code'.format(tmp_run_dir), '-w', '/code', self.container_name, './' + self.entry_point, '/input_images', '/output_images', str(epsilon)] elapsed_time_sec = self.run_with_time_limit(cmd) sudo_remove_dirtree(tmp_run_dir) return elapsed_time_sec
Runs attack inside Docker. Args: input_dir: directory with input (dataset). output_dir: directory where output (adversarial images) should be written. epsilon: maximum allowed size of adversarial perturbation, should be in range [0, 255]. Returns: how long it took to run submission in seconds
juraj-google-style
def fn(x: tuple[int, str]): return x
Test function Args: x: The input Returns: The output
github-repos
def MergeMessage(self, source, destination, replace_message_field=False, replace_repeated_field=False): tree = _FieldMaskTree(self) tree.MergeMessage(source, destination, replace_message_field, replace_repeated_field)
Merges fields specified in FieldMask from source to destination. Args: source: Source message. destination: The destination message to be merged into. replace_message_field: Replace message field if True. Merge message field if False. replace_repeated_field: Replace repeated field if True. Append elements of repeated field if False.
codesearchnet
def get_size_with_aspect_ratio(image_size, size, max_size=None) -> Tuple[int, int]: height, width = image_size raw_size = None if max_size is not None: min_original_size = float(min((height, width))) max_original_size = float(max((height, width))) if max_original_size / min_original_size * size > max_size: raw_size = max_size * min_original_size / max_original_size size = int(round(raw_size)) if height <= width and height == size or (width <= height and width == size): oh, ow = (height, width) elif width < height: ow = size if max_size is not None and raw_size is not None: oh = int(raw_size * height / width) else: oh = int(size * height / width) else: oh = size if max_size is not None and raw_size is not None: ow = int(raw_size * width / height) else: ow = int(size * width / height) return (oh, ow)
Computes the output image size given the input image size and the desired output size. Args: image_size (`Tuple[int, int]`): The input image size. size (`int`): The desired output size. max_size (`int`, *optional*): The maximum allowed output size.
github-repos
def gunzip_file(infile, outfile=None, outdir=None, delete_original=False, force_rerun_flag=False): if (not outfile): outfile = infile.replace('.gz', '') if (not outdir): outdir = '' else: outdir = op.dirname(infile) outfile = op.join(outdir, op.basename(outfile)) if force_rerun(flag=force_rerun_flag, outfile=outfile): gz = gzip.open(infile, 'rb') decoded = gz.read() with open(outfile, 'wb') as new_file: new_file.write(decoded) gz.close() log.debug('{}: file unzipped'.format(outfile)) else: log.debug('{}: file already unzipped'.format(outfile)) if delete_original: os.remove(infile) return outfile
Decompress a gzip file and optionally set output values. Args: infile: Path to .gz file outfile: Name of output file outdir: Path to output directory delete_original: If original .gz file should be deleted force_rerun_flag: If file should be decompressed if outfile already exists Returns: str: Path to decompressed file
codesearchnet
def subtree(self, root_path: Union[int, str, KeyPath]) -> Optional['KeyPathSet']: root_path = KeyPath.from_value(root_path) if not root_path: return self root = self._trie for key in root_path.keys: if key not in root: return None root = root[key] ret = KeyPathSet() ret._trie = root return ret
Returns the relative paths of the sub-tree rooted at the given path. Args: root_path: A KeyPath for the root of the sub-tree. Returns: A KeyPathSet that contains all the child paths of the given root path. Please note that the returned value share the same trie as the current value. So addition/removal of paths in the returned value will also affect the current value. If there is no child path under the given root path, None will be returned.
github-repos
def get_min_max_value(self) -> tuple[float, float]: return (self._statistics.min_max_statistics.global_min, self._statistics.min_max_statistics.global_max)
Calculates the global min and max values. Returns: (min_value, max_value): Min and max calculated using MinMax
github-repos
def _ConvertInteger(value): if isinstance(value, float) and not value.is_integer(): raise ParseError('Couldn\'t parse integer: {0}.'.format(value)) if isinstance(value, six.text_type) and value.find(' ') != -1: raise ParseError('Couldn\'t parse integer: "{0}".'.format(value)) return int(value)
Convert an integer. Args: value: A scalar value to convert. Returns: The integer value. Raises: ParseError: If an integer couldn't be consumed.
juraj-google-style
def asset(self, asset_id, asset_type, action='GET'): if not self.can_update(): self._tcex.handle_error(910, [self.type]) if asset_type == 'PHONE': return self.tc_requests.victim_phone_asset( self.api_type, self.api_sub_type, self.unique_id, asset_id, action=action ) if asset_type == 'EMAIL': return self.tc_requests.victim_email_asset( self.api_type, self.api_sub_type, self.unique_id, asset_id, action=action ) if asset_type == 'NETWORK': return self.tc_requests.victim_network_asset( self.api_type, self.api_sub_type, self.unique_id, asset_id, action=action ) if asset_type == 'SOCIAL': return self.tc_requests.victim_social_asset( self.api_type, self.api_sub_type, self.unique_id, asset_id, action=action ) if asset_type == 'WEB': return self.tc_requests.victim_web_asset( self.api_type, self.api_sub_type, self.unique_id, asset_id, action=action ) self._tcex.handle_error( 925, ['asset_type', 'asset', 'asset_type', 'asset_type', asset_type] ) return None
Gets a asset of a Victim Valid asset_type: + PHONE + EMAIL + NETWORK + SOCIAL + WEB Args: asset_type: asset_id: action: Returns:
juraj-google-style
def _embedding_lookup_for_sparse_tensor(inp: sparse_tensor.SparseTensor, weight: Optional[sparse_tensor.SparseTensor], table: tf_variables.Variable, feature: tpu_embedding_v2_utils.FeatureConfig) -> tensor.Tensor: inp_rank = inp.shape.rank if not feature.output_shape and feature.max_sequence_length > 0 and (inp_rank is None or inp_rank == 2): batch_size = math_ops.cast(array_ops.shape(inp)[0], dtype=dtypes.int64) sparse_shape = array_ops_stack.stack([batch_size, feature.max_sequence_length], axis=0) truncated_inp = sparse_ops.sparse_slice(inp, start=[0, 0], size=sparse_shape) dense_output_shape = array_ops_stack.stack([batch_size, feature.max_sequence_length, feature.table.dim], axis=0) return array_ops.scatter_nd(truncated_inp.indices, array_ops.gather(table.read_value(), truncated_inp.values), dense_output_shape) else: if feature.max_sequence_length > 0: logging.warning('max_sequence_length setting will be ignored because the rank of the input tensor is %d which is not 2.', inp_rank) if not feature.validate_weights_and_indices and inp_rank is not None and (inp_rank <= 2): return embedding_ops.embedding_lookup_sparse_v2(table, inp, sp_weights=weight, combiner=feature.table.combiner) else: return embedding_ops.safe_embedding_lookup_sparse_v2(table, inp, sparse_weights=weight, combiner=feature.table.combiner)
Embedding lookup for sparse tensor based on its feature config. Args: inp: a single SparseTensor input. weight: None or SparseTensor which has the same shape of the input. table: a table variable. feature: a feature config. Returns: Embedding lookup result.
github-repos
def MakeHistFromList(t, name=''): hist = Hist(name=name) [hist.Incr(x) for x in t] return hist
Makes a histogram from an unsorted sequence of values. Args: t: sequence of numbers name: string name for this histogram Returns: Hist object
juraj-google-style
def kill_all_processes(self, check_alive=True, allow_graceful=False): if (ray_constants.PROCESS_TYPE_RAYLET in self.all_processes): self._kill_process_type(ray_constants.PROCESS_TYPE_RAYLET, check_alive=check_alive, allow_graceful=allow_graceful) for process_type in list(self.all_processes.keys()): self._kill_process_type(process_type, check_alive=check_alive, allow_graceful=allow_graceful)
Kill all of the processes. Note that This is slower than necessary because it calls kill, wait, kill, wait, ... instead of kill, kill, ..., wait, wait, ... Args: check_alive (bool): Raise an exception if any of the processes were already dead.
codesearchnet
def do_reset_ids(concatenated_meta_df, data_df, concat_direction): if concat_direction == "horiz": assert concatenated_meta_df.index.equals(data_df.columns), ( "cids in concatenated_meta_df do not agree with cids in data_df.") reset_ids_in_meta_df(concatenated_meta_df) data_df.columns = pd.Index(concatenated_meta_df.index.values) elif concat_direction == "vert": assert concatenated_meta_df.index.equals(data_df.index), ( "rids in concatenated_meta_df do not agree with rids in data_df.") reset_ids_in_meta_df(concatenated_meta_df) data_df.index = pd.Index(concatenated_meta_df.index.values)
Reset ids in concatenated metadata and data dfs to unique integers and save the old ids in a metadata column. Note that the dataframes are modified in-place. Args: concatenated_meta_df (pandas df) data_df (pandas df) concat_direction (string): 'horiz' or 'vert' Returns: None (dfs modified in-place)
juraj-google-style
def _manual_repartition(self, axis, repartition_func, **kwargs): func = self._prepare_method(repartition_func, **kwargs) return self.data.manual_shuffle(axis, func)
This method applies all manual partitioning functions. Args: axis: The axis to shuffle data along. repartition_func: The function used to repartition data. Returns: A `BaseFrameManager` object.
juraj-google-style
def __init__(self, source_dict, url, path, token): self._vault_url = url self._path = path self._token = token super(VaultLoader, self).__init__(source_dict)
Initializer. Args: source_dict: used to initialize the class. Use constructors to read from Vault. url: Vault url path: Vault path where secrets are stored vault_token: token (must have access to vault path)
juraj-google-style
def run_parallel(self, para_func): if self.timer: start_timer = time.time() with mp.Pool(self.num_processors) as pool: print('start pool with {} processors: {} total processes.\n'.format(self.num_processors, len(self.args))) results = [pool.apply_async(para_func, arg) for arg in self.args] out = [r.get() for r in results] out = {key: np.concatenate([out_i[key] for out_i in out]) for key in out[0].keys()} if self.timer: print('SNR calculation time:', (time.time() - start_timer)) return out
Run parallel calulation This will run the parallel calculation on self.num_processors. Args: para_func (obj): Function object to be used in parallel. Returns: (dict): Dictionary with parallel results.
codesearchnet
def _encode_fhir_path_builder(self, builder: expressions.Builder) -> Optional[str]: try: sql_expression = self._bq_interpreter.encode(builder) except Exception as e: self._error_reporter.report_fhir_path_error(self._abs_path_invocation(builder), str(builder), self._error_message_for_exception(e)) return None return sql_expression
Returns a Standard SQL translation of the constraint `fhir_path_expression`. If an error is encountered during encoding, the associated error reporter will be notified, and this method will return `None`. Args: builder: Builder containing the information to be encoded to Standard SQL. Returns: A Standard SQL encoding of the constraint `fhir_path_expression` upon successful completion. The SQL will evaluate to a single boolean indicating whether the constraint is satisfied.
github-repos
def _read_metrics(repo, metrics, branch): res = {} for (out, typ, xpath) in metrics: assert (out.scheme == 'local') if (not typ): typ = os.path.splitext(out.path.lower())[1].replace('.', '') if out.use_cache: open_fun = open path = repo.cache.local.get(out.checksum) else: open_fun = repo.tree.open path = out.path try: with open_fun(path) as fd: metric = _read_metric(fd, typ=typ, xpath=xpath, rel_path=out.rel_path, branch=branch) except IOError as e: if (e.errno == errno.ENOENT): logger.warning(NO_METRICS_FILE_AT_REFERENCE_WARNING.format(out.rel_path, branch)) metric = None else: raise if (not metric): continue res[out.rel_path] = metric return res
Read the content of each metric file and format it. Args: metrics (list): List of metric touples branch (str): Branch to look up for metrics. Returns: A dict mapping keys with metrics path name and content. For example: {'metric.csv': ("value_mse deviation_mse data_set\n" "0.421601 0.173461 train\n" "0.67528 0.289545 testing\n" "0.671502 0.297848 validation\n")}
codesearchnet
def check_response_code(response, expected_response_code): if (response.status_code == expected_response_code): pass elif (response.status_code == RATE_LIMIT_RESPONSE_CODE): raise RateLimitError(response) else: raise ApiError(response)
Check response code against the expected code; raise ApiError. Checks the requests.response.status_code against the provided expected response code (erc), and raises a ApiError if they do not match. Args: response(requests.response): The response object returned by a request using the requests package. expected_response_code(int): The expected response code (HTTP response code). Raises: ApiError: If the requests.response.status_code does not match the provided expected response code (erc).
codesearchnet
async def send_message( self, request: str, response_expected: bool, **kwargs: Any ) -> Response: with async_timeout.timeout(self.timeout): async with self.session.post( self.endpoint, data=request, ssl=self.ssl ) as response: response_text = await response.text() return Response(response_text, raw=response)
Transport the message to the server and return the response. Args: request: The JSON-RPC request string. response_expected: Whether the request expects a response. Returns: A Response object.
juraj-google-style
def _handle_failure_and_recovery(self, e, on_failure_fn, on_transient_failure_fn, on_recovery_fn, worker_device_name): if on_failure_fn: on_failure_fn(e) with self._cluster_update_lock: self._cluster_due_for_update_or_finish.set() self._worker_up_cond.wait(_WORKER_MAXIMUM_RECOVERY_SEC) if self._error_from_recovery: try: raise self._error_from_recovery finally: self._error_from_recovery = None logging.info('Worker %s has been recovered.', worker_device_name) if on_recovery_fn: logging.info('Worker %s calling on_recovery_fn', worker_device_name) with self.wait_on_failure(on_recovery_fn=on_recovery_fn, on_transient_failure_fn=on_transient_failure_fn, worker_device_name=worker_device_name): on_recovery_fn()
Call failure fn, wait for cluster to recover, then call recovery fn. Args: e: the Exception thrown during closure execution. on_failure_fn: an optional function to run if preemption happens. on_transient_failure_fn: an optional function to run if transient failure happens. on_recovery_fn: an optional function to run when a worker is recovered from preemption. worker_device_name: the device name of the worker instance that is passing through the failure.
github-repos
def _GetDaysPerMonth(self, year, month): if month not in range(1, 13): raise ValueError('Month value out of bounds.') days_per_month = self._DAYS_PER_MONTH[month - 1] if month == 2 and self._IsLeapYear(year): days_per_month += 1 return days_per_month
Retrieves the number of days in a month of a specific year. Args: year (int): year e.g. 1970. month (int): month, where 1 represents January. Returns: int: number of days in the month. Raises: ValueError: if the month value is out of bounds.
juraj-google-style
def merge_json_fhir_string_into_proto(raw_json: str, target: message.Message, *, validate: bool=True, default_timezone: str=_primitive_time_utils.SIMPLE_ZULU) -> None: json_value = load_json(raw_json) merge_json_fhir_object_into_proto(json_value, target, validate=validate, default_timezone=default_timezone)
Merges the provided raw_json string into a target Message. Args: raw_json: The JSON to parse and merge into target. target: The Message instance to merge raw_json into. validate: A Boolean value indicating if validation should be performed on the resultant Message. Validation takes the form of ensuring that basic checks such as cardinality guarantees, required field adherence, etc. are met. Defaults to True. default_timezone: A string specifying the timezone string to use for time- like FHIR data during parsing. Defaults to 'Z' for UTC. Raises: fhir_errors.InvalidFhirError: In the event that validation fails after parsing.
github-repos
def parse_cscore(infile): cscore_dict = {} with open(infile, 'r') as f: for ll in f.readlines(): if ll.lower().startswith('model1'): l = ll.split() cscore = l[1] tmscore_full = l[2].split('+-') tmscore = tmscore_full[0] tmscore_err = tmscore_full[1] rmsd_full = l[3].split('+-') rmsd = rmsd_full[0] rmsd_err = rmsd_full[1] cscore_dict['c_score'] = float(cscore) cscore_dict['tm_score'] = float(tmscore) cscore_dict['tm_score_err'] = float(tmscore_err) cscore_dict['rmsd'] = float(rmsd) cscore_dict['rmsd_err'] = float(rmsd_err) return cscore_dict
Parse the cscore file to return a dictionary of scores. Args: infile (str): Path to cscore Returns: dict: Dictionary of scores
juraj-google-style
def process_attributes_of_node(attrs, node_name, class_type): attrs['_nodes'] = {} attrs['_linked_models'] = defaultdict(list) attrs['_debug_linked_models'] = defaultdict(list) attrs['_lazy_linked_models'] = defaultdict(list) attrs['_fields'] = {} attrs['_uniques'] = [] for (key, attr) in list(attrs.items()): if (hasattr(attr, '__base__') and (getattr(attr.__base__, '_TYPE', '') in ['Node', 'ListNode'])): attrs['_nodes'][key] = attrs[key] else: attr_type = getattr(attr, '_TYPE', '') if (attr_type == 'Model'): attrs[('%s_id' % key)] = '' lnk_mdl_ins = attrs[key] lnk = {'null': (lnk_mdl_ins.null or (class_type == 'ListNode')), 'link_source': True, 'mdl': lnk_mdl_ins.__class__, 'o2o': lnk_mdl_ins._is_one_to_one, 'm2m': (class_type == 'ListNode'), 'reverse': lnk_mdl_ins.reverse_name, 'verbose': lnk_mdl_ins.verbose_name, 'field': key, 'is_set': False} attrs['_linked_models'][attr.__class__.__name__].append(lnk) debug_lnk = lnk.copy() debug_lnk['lnksrc'] = 'process_attributes_of_node' attrs['_debug_linked_models'][attr.__class__.__name__].append(debug_lnk) elif (attr_type == 'Field'): attr.name = key attrs['_fields'][key] = attr if attr.unique: attrs['_uniques'].append(key) elif (attr_type == 'Link'): attrs[('%s_id' % key)] = '' lzy_lnk = attrs[key] attrs['_lazy_linked_models'][key].append({'from': node_name, 'to': lzy_lnk.link_to, 'o2o': lzy_lnk.one_to_one, 'verbose': lzy_lnk.verbose_name, 'reverse': lzy_lnk.reverse_name, 'field': key})
prepare the model fields, nodes and relations Args: node_name (str): name of the node we are currently processing attrs (dict): attribute dict class_type (str): Type of class. Can be one of these: 'ListNode', 'Model', 'Node'
codesearchnet
def serialize(self): lines = [] for criterion in self.filter_criteria: lines.append(criterion.name()) lines.append(criterion.serialize()) return '\n'.join(lines)
Return a string representing the subview with all of its filter criteria. Returns: str: String with subview definition.
codesearchnet
def __init__(self, channel): self.ListEntityTypes = channel.unary_unary( '/google.cloud.dialogflow.v2beta1.EntityTypes/ListEntityTypes', request_serializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_entity__type__pb2.ListEntityTypesRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_entity__type__pb2.ListEntityTypesResponse.FromString, ) self.GetEntityType = channel.unary_unary( '/google.cloud.dialogflow.v2beta1.EntityTypes/GetEntityType', request_serializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_entity__type__pb2.GetEntityTypeRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_entity__type__pb2.EntityType.FromString, ) self.CreateEntityType = channel.unary_unary( '/google.cloud.dialogflow.v2beta1.EntityTypes/CreateEntityType', request_serializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_entity__type__pb2.CreateEntityTypeRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_entity__type__pb2.EntityType.FromString, ) self.UpdateEntityType = channel.unary_unary( '/google.cloud.dialogflow.v2beta1.EntityTypes/UpdateEntityType', request_serializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_entity__type__pb2.UpdateEntityTypeRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_entity__type__pb2.EntityType.FromString, ) self.DeleteEntityType = channel.unary_unary( '/google.cloud.dialogflow.v2beta1.EntityTypes/DeleteEntityType', request_serializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_entity__type__pb2.DeleteEntityTypeRequest.SerializeToString, response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString, ) self.BatchUpdateEntityTypes = channel.unary_unary( '/google.cloud.dialogflow.v2beta1.EntityTypes/BatchUpdateEntityTypes', request_serializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_entity__type__pb2.BatchUpdateEntityTypesRequest.SerializeToString, response_deserializer=google_dot_longrunning_dot_operations__pb2.Operation.FromString, ) self.BatchDeleteEntityTypes = channel.unary_unary( '/google.cloud.dialogflow.v2beta1.EntityTypes/BatchDeleteEntityTypes', request_serializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_entity__type__pb2.BatchDeleteEntityTypesRequest.SerializeToString, response_deserializer=google_dot_longrunning_dot_operations__pb2.Operation.FromString, ) self.BatchCreateEntities = channel.unary_unary( '/google.cloud.dialogflow.v2beta1.EntityTypes/BatchCreateEntities', request_serializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_entity__type__pb2.BatchCreateEntitiesRequest.SerializeToString, response_deserializer=google_dot_longrunning_dot_operations__pb2.Operation.FromString, ) self.BatchUpdateEntities = channel.unary_unary( '/google.cloud.dialogflow.v2beta1.EntityTypes/BatchUpdateEntities', request_serializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_entity__type__pb2.BatchUpdateEntitiesRequest.SerializeToString, response_deserializer=google_dot_longrunning_dot_operations__pb2.Operation.FromString, ) self.BatchDeleteEntities = channel.unary_unary( '/google.cloud.dialogflow.v2beta1.EntityTypes/BatchDeleteEntities', request_serializer=google_dot_cloud_dot_dialogflow__v2beta1_dot_proto_dot_entity__type__pb2.BatchDeleteEntitiesRequest.SerializeToString, response_deserializer=google_dot_longrunning_dot_operations__pb2.Operation.FromString, )
Constructor. Args: channel: A grpc.Channel.
juraj-google-style
def analyze(fqdn, result, argl, argd): package = fqdn.split('.')[0] if (package not in _methods): _load_methods(package) if ((_methods[package] is not None) and (fqdn in _methods[package])): return _methods[package][fqdn](fqdn, result, *argl, **argd)
Analyzes the result from calling the method with the specified FQDN. Args: fqdn (str): full-qualified name of the method that was called. result: result of calling the method with `fqdn`. argl (tuple): positional arguments passed to the method call. argd (dict): keyword arguments passed to the method call.
codesearchnet
def create_tensorboard_process(self): port = 6006 for _ in range(100): p = subprocess.Popen(['tensorboard', '--logdir', self.logdir, '--host', 'localhost', '--port', str(port)], stdout=subprocess.PIPE, stderr=subprocess.PIPE) self.event.wait(5) if p.poll(): port += 1 else: return (port, p) raise OSError('No available ports to start TensorBoard. Attempted all ports between 6006 and 6105')
Create a TensorBoard process. Returns: tuple: A tuple containing: int: The port number. process: The TensorBoard process. Raises: OSError: If no ports between 6006 and 6105 are available for starting TensorBoard.
codesearchnet
def filter_children(self, ctype: ContentType = None) -> List[SchemaNode]: if ctype is None: ctype = self.content_type() return [c for c in self.children if not isinstance(c, (RpcActionNode, NotificationNode)) and c.content_type().value & ctype.value != 0]
Return receiver's children based on content type. Args: ctype: Content type.
juraj-google-style
def _child(details): if isinstance(details, list): return OptionsNode(details) elif isinstance(details, dict): if '__array__' in details: return ArrayNode(details) elif '__hash__' in details: return HashNode(details) elif '__type__' in details: if isinstance(details['__type__'], (dict,list)): return _child(details['__type__']) else: return Node(details) else: return Parent(details) elif isinstance(details, basestring): return Node(details) else: raise TypeError('details')
Child A private function to figure out the child node type Arguments: details {dict} -- A dictionary describing a data point Returns: _NodeInterface
juraj-google-style
def reformat_to_pretty_xml(doc_xml): assert isinstance(doc_xml, str) dom_obj = xml.dom.minidom.parseString(doc_xml) pretty_xml = dom_obj.toprettyxml(indent=' ') return re.sub(r'^\s*$\n', r'', pretty_xml, flags=re.MULTILINE)
Pretty print XML doc. Args: doc_xml : str Well formed XML doc Returns: str: Pretty printed XML doc
juraj-google-style
def filter_moving_count(self: EventSetOrNode, window_length: Duration) -> EventSetOrNode: from temporian.core.operators.filter_moving_count import filter_moving_count return filter_moving_count(self, window_length=window_length)
Filters out events such that no more than one output event is within a tailing time window of `window_length`. Filtering is applied in chronological order: An event received at time t is filtered out if there is a non-filtered out event in (t-window_length, t]. This operator is different from `(evset.moving_count(window_length) == 0).filter()`. In `filter_moving_count` a filtered event does not block following events. Usage example: ```python >>> a = tp.event_set(timestamps=[1, 2, 3]) >>> b = a.filter_moving_count(window_length=1.5) >>> b indexes: [] features: [] events: (2 events): timestamps: [1. 3.] ... ``` Returns: EventSet without features with the filtered events.
github-repos
def _pool(inputs, initial_value, reduce_fn, pool_size, strides=None, padding='valid'): if padding not in ('same', 'valid'): raise ValueError(f"Invalid padding '{padding}', must be 'same' or 'valid'.") padding = padding.upper() return np.array(lax.reduce_window(inputs, initial_value, reduce_fn, pool_size, strides, padding))
Helper function to define pooling functions. Args: inputs: input data of shape `N+2`. initial_value: the initial value for the reduction. reduce_fn: a reduce function of the form `(T, T) -> T`. pool_size: a sequence of `N` integers, representing the window size to reduce over. strides: a sequence of `N` integers, representing the inter-window strides (default: `(1, ..., 1)`). padding: either the string `same` or `valid`. Returns: The output of the reduction for each window slice.
github-repos
def parse_gene_panel(path, institute='cust000', panel_id='test', panel_type='clinical', date=datetime.now(), version=1.0, display_name=None, genes = None): LOG.info("Parsing gene panel %s", panel_id) gene_panel = {} gene_panel['path'] = path gene_panel['type'] = panel_type gene_panel['date'] = date gene_panel['panel_id'] = panel_id gene_panel['institute'] = institute version = version or 1.0 gene_panel['version'] = float(version) gene_panel['display_name'] = display_name or panel_id if not path: panel_handle = genes else: panel_handle = get_file_handle(gene_panel['path']) gene_panel['genes'] = parse_genes(gene_lines=panel_handle) return gene_panel
Parse the panel info and return a gene panel Args: path(str): Path to panel file institute(str): Name of institute that owns the panel panel_id(str): Panel id date(datetime.datetime): Date of creation version(float) full_name(str): Option to have a long name Returns: gene_panel(dict)
juraj-google-style