code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def start_test(self, pipeline):
global _TEST_MODE, _TEST_ROOT_PIPELINE_KEY
self.start(pipeline, return_task=True)
_TEST_MODE = True
_TEST_ROOT_PIPELINE_KEY = pipeline._pipeline_key
try:
self.evaluate_test(pipeline, root=True)
finally:
_TEST_MODE = False
|
Starts a pipeline in the test mode.
Args:
pipeline: The Pipeline instance to test.
|
juraj-google-style
|
def createAndStartSwarm(client, clientInfo='', clientKey='', params='', minimumWorkers=None, maximumWorkers=None, alreadyRunning=False):
if (minimumWorkers is None):
minimumWorkers = Configuration.getInt('nupic.hypersearch.minWorkersPerSwarm')
if (maximumWorkers is None):
maximumWorkers = Configuration.getInt('nupic.hypersearch.maxWorkersPerSwarm')
return ClientJobsDAO.get().jobInsert(client=client, cmdLine='$HYPERSEARCH', clientInfo=clientInfo, clientKey=clientKey, alreadyRunning=alreadyRunning, params=params, minimumWorkers=minimumWorkers, maximumWorkers=maximumWorkers, jobType=ClientJobsDAO.JOB_TYPE_HS)
|
Create and start a swarm job.
Args:
client - A string identifying the calling client. There is a small limit
for the length of the value. See ClientJobsDAO.CLIENT_MAX_LEN.
clientInfo - JSON encoded dict of client specific information.
clientKey - Foreign key. Limited in length, see ClientJobsDAO._initTables.
params - JSON encoded dict of the parameters for the job. This can be
fetched out of the database by the worker processes based on the jobID.
minimumWorkers - The minimum workers to allocate to the swarm. Set to None
to use the default.
maximumWorkers - The maximum workers to allocate to the swarm. Set to None
to use the swarm default. Set to 0 to use the maximum scheduler value.
alreadyRunning - Insert a job record for an already running process. Used
for testing.
|
codesearchnet
|
def wrap_rich_text_lines(inp, cols):
new_line_indices = []
if not isinstance(inp, RichTextLines):
raise ValueError('Invalid type of input screen_output')
if not isinstance(cols, int):
raise ValueError('Invalid type of input cols')
out = RichTextLines([])
row_counter = 0
for i, line in enumerate(inp.lines):
new_line_indices.append(out.num_lines())
if i in inp.annotations:
out.annotations[row_counter] = inp.annotations[i]
if len(line) <= cols:
out.lines.append(line)
if i in inp.font_attr_segs:
out.font_attr_segs[row_counter] = inp.font_attr_segs[i]
row_counter += 1
else:
wlines = []
osegs = []
if i in inp.font_attr_segs:
osegs = inp.font_attr_segs[i]
idx = 0
while idx < len(line):
if idx + cols > len(line):
rlim = len(line)
else:
rlim = idx + cols
wlines.append(line[idx:rlim])
for seg in osegs:
if seg[0] < rlim and seg[1] >= idx:
if seg[0] >= idx:
lb = seg[0] - idx
else:
lb = 0
if seg[1] < rlim:
rb = seg[1] - idx
else:
rb = rlim - idx
if rb > lb:
wseg = (lb, rb, seg[2])
if row_counter not in out.font_attr_segs:
out.font_attr_segs[row_counter] = [wseg]
else:
out.font_attr_segs[row_counter].append(wseg)
idx += cols
row_counter += 1
out.lines.extend(wlines)
for key in inp.annotations:
if not isinstance(key, int):
out.annotations[key] = inp.annotations[key]
return (out, new_line_indices)
|
Wrap RichTextLines according to maximum number of columns.
Produces a new RichTextLines object with the text lines, font_attr_segs and
annotations properly wrapped. This ought to be used sparingly, as in most
cases, command handlers producing RichTextLines outputs should know the
screen/panel width via the screen_info kwarg and should produce properly
length-limited lines in the output accordingly.
Args:
inp: Input RichTextLines object.
cols: Number of columns, as an int.
Returns:
1) A new instance of RichTextLines, with line lengths limited to cols.
2) A list of new (wrapped) line index. For example, if the original input
consists of three lines and only the second line is wrapped, and it's
wrapped into two lines, this return value will be: [0, 1, 3].
Raises:
ValueError: If inputs have invalid types.
|
github-repos
|
def obtain_all_bond_lengths(sp1, sp2, default_bl=None):
if isinstance(sp1, Element):
sp1 = sp1.symbol
if isinstance(sp2, Element):
sp2 = sp2.symbol
syms = tuple(sorted([sp1, sp2]))
if syms in bond_lengths:
return bond_lengths[syms].copy()
elif default_bl is not None:
return {1: default_bl}
else:
raise ValueError("No bond data for elements {} - {}".format(*syms))
|
Obtain bond lengths for all bond orders from bond length database
Args:
sp1 (Specie): First specie.
sp2 (Specie): Second specie.
default_bl: If a particular type of bond does not exist, use this
bond length as a default value (bond order = 1).
If None, a ValueError will be thrown.
Return:
A dict mapping bond order to bond length in angstrom
|
juraj-google-style
|
def _compute_full_path(self, fn_parent_ref, fn_parent_seq):
names = []
root_id = 5
(index, seq) = (fn_parent_ref, fn_parent_seq)
is_orphan = False
while (index != root_id):
try:
parent_entry = self[index]
if (seq != parent_entry.header.seq_number):
is_orphan = True
break
else:
parent_fn_attr = parent_entry.get_main_filename_attr()
(index, seq) = (parent_fn_attr.content.parent_ref, parent_fn_attr.content.parent_seq)
names.append(parent_fn_attr.content.name)
except ValueError as e:
is_orphan = True
break
return (is_orphan, '\\'.join(reversed(names)))
|
Based on the parent reference and sequence, computes the full path.
The majority of the files in a filesystem has a very small amount of
parent directories. By definition, a filesystem is expected to have
much smaller amount of directories than files. As such we use a function
with the minimal amount of arguments to find a parent, that way we can
cache the results easily and speed up the overall code.
Args:
fn_parent_ref (int): Parent reference number
fn_parent_seq (int): Parent sequence number
Returns:
tuple(bool, str): A tuple where the first element is a boolean that
is ``True`` if the the file is orphan and ``False`` if not. The
second element is a string with the full path without the file name
|
codesearchnet
|
def apply_and_name(self, aggregator):
reduced_df = self._apply(aggregator)
if (len(self.names) != len(reduced_df.columns)):
raise IndexError('ColumnFunction creates more columns than it has names for.')
reduced_df.columns = self.names
return reduced_df
|
Fetches the row-aggregated input columns for this ColumnFunction.
Args:
aggregator (Aggregator)
Returns:
pd.DataFrame: The dataframe has columns with names self.names
that were created by this ColumnFunction,
and is indexed by the index that was passed to
aggregator.aggregate(index).
|
codesearchnet
|
def delete_qubits(self, indices):
if not isinstance(indices, list):
indices = [indices]
self._z = np.delete(self._z, indices)
self._x = np.delete(self._x, indices)
return self
|
Delete pauli at the indices.
Args:
indices(list[int]): the indices of to-be-deleted paulis
Returns:
Pauli: self
|
juraj-google-style
|
def find(self, **kwargs):
if len(kwargs) != 1:
raise ValueError("One and only one keyword argument accepted")
key = list(kwargs.keys())[0]
value = list(kwargs.values())[0]
ret = None
for row in self.values():
if row[key] == value:
ret = row
break
return ret
|
Finds row matching specific field value
Args:
**kwargs: (**only one argument accepted**) fielname=value, e.g., formula="OH"
Returns: list element or None
|
juraj-google-style
|
def _load_from_cache_if_available(self, key):
if key in self._cache:
entity = self._cache[key]
if entity is None or entity._key == key:
raise tasklets.Return(entity)
|
Returns a cached Model instance given the entity key if available.
Args:
key: Key instance.
Returns:
A Model instance if the key exists in the cache.
|
juraj-google-style
|
def browse(self, max_lines=None, headers=None):
if self.path.startswith('gs:
lines = CsvFile._read_gcs_lines(self.path, max_lines)
else:
lines = CsvFile._read_local_lines(self.path, max_lines)
if len(lines) == 0:
return pd.DataFrame(columns=headers)
columns_size = len(next(csv.reader([lines[0]], delimiter=self._delimiter)))
if headers is None:
headers = ['col' + newstr(e) for e in range(columns_size)]
if len(headers) != columns_size:
raise Exception('Number of columns in CSV do not match number of headers')
buf = StringIO()
for line in lines:
buf.write(line)
buf.write('\n')
buf.seek(0)
df = pd.read_csv(buf, names=headers, delimiter=self._delimiter)
for key, col in df.iteritems():
if self._is_probably_categorical(col):
df[key] = df[key].astype('category')
return df
|
Try reading specified number of lines from the CSV object.
Args:
max_lines: max number of lines to read. If None, the whole file is read
headers: a list of strings as column names. If None, it will use "col0, col1..."
Returns:
A pandas DataFrame with the schema inferred from the data.
Raises:
Exception if the csv object cannot be read or not enough lines to read, or the
headers size does not match columns size.
|
juraj-google-style
|
def get_diff_coeff(hvec, n=1):
hvec = np.array(hvec, dtype=np.float)
acc = len(hvec)
exp = np.column_stack([np.arange(acc)]*acc)
a = np.vstack([hvec] * acc) ** exp
b = np.zeros(acc)
b[n] = factorial(n)
return np.linalg.solve(a, b)
|
Helper function to find difference coefficients of an
derivative on an arbitrary mesh.
Args:
hvec (1D array-like): sampling stencil
n (int): degree of derivative to find
|
juraj-google-style
|
def _GetDataTypeMap(self, name):
data_type_map = self._data_type_maps.get(name, None)
if not data_type_map:
data_type_map = self._fabric.CreateDataTypeMap(name)
self._data_type_maps[name] = data_type_map
return data_type_map
|
Retrieves a data type map defined by the definition file.
The data type maps are cached for reuse.
Args:
name (str): name of the data type as defined by the definition file.
Returns:
dtfabric.DataTypeMap: data type map which contains a data type definition,
such as a structure, that can be mapped onto binary data.
|
juraj-google-style
|
def prefix(self: EventSetOrNode, prefix: str) -> EventSetOrNode:
from temporian.core.operators.prefix import prefix as _prefix
return _prefix(self, prefix=prefix)
|
Adds a prefix to the names of the features in an
[`EventSet`][temporian.EventSet].
Usage example:
```python
>>> a = tp.event_set(
... timestamps=[0, 1],
... features={"f1": [0, 2], "f2": [5, 6]}
... )
>>> b = a * 5
>>> # Prefix before glue to avoid duplicated names
>>> c = tp.glue(a.prefix("original_"), b.prefix("result_"))
>>> c
indexes: ...
'original_f1': [0 2]
'original_f2': [5 6]
'result_f1': [ 0 10]
'result_f2': [25 30]
...
```
Args:
prefix: Prefix to add in front of the feature names.
Returns:
Prefixed EventSet.
|
github-repos
|
def check_errors(self, is_global=False):
errors = self.global_errors if is_global else self.errors
if errors:
print('dfTimewolf encountered one or more errors:')
for error, critical in errors:
print('{0:s} {1:s}'.format('CRITICAL: ' if critical else '', error))
if critical:
print('Critical error found. Aborting.')
sys.exit(-1)
|
Checks for errors and exits if any of them are critical.
Args:
is_global: If True, check the global_errors attribute. If false, check the
error attribute.
|
juraj-google-style
|
def get_config(model_type: str, feature: str) -> OnnxConfig:
return FeaturesManager._SUPPORTED_MODEL_TYPE[model_type][feature]
|
Gets the OnnxConfig for a model_type and feature combination.
Args:
model_type (`str`):
The model type to retrieve the config for.
feature (`str`):
The feature to retrieve the config for.
Returns:
`OnnxConfig`: config for the combination
|
github-repos
|
def move_all_files_from_subfolders_to_top(folder_path, delete_subfolders=False, copy=False):
for item in os.listdir(folder_path):
sub_path = os.path.join(folder_path, item)
if os.path.isdir(sub_path):
for sub_item in os.listdir(sub_path):
src = os.path.join(sub_path, sub_item)
target = os.path.join(folder_path, sub_item)
if copy:
if os.path.isfile(src):
shutil.copy(src, target)
else:
shutil.copytree(src, target)
else:
shutil.move(src, target)
if delete_subfolders:
shutil.rmtree(sub_path)
|
Move all files/folder from all subfolders of `folder_path` on top into `folder_path`.
Args:
folder_path (str): Path of the folder.
delete_subfolders (bool): If True the subfolders are deleted after all items are moved out of it.
copy (bool): If True copies the files instead of moving. (default False)
|
juraj-google-style
|
def __init__(self, zone, environment):
self._zone = zone
self._environment = environment
self._gcs_dag_location = None
|
Initializes an instance of a Composer object.
Args:
zone: Zone in which Composer environment has been created.
environment: Name of the Composer environment.
|
juraj-google-style
|
def to_proto(self, export_scope=None):
if export_scope is None:
return self.saver_def
if not (self.saver_def.filename_tensor_name.startswith(export_scope) and self.saver_def.save_tensor_name.startswith(export_scope) and self.saver_def.restore_op_name.startswith(export_scope)):
return None
saver_def = saver_pb2.SaverDef()
saver_def.CopyFrom(self.saver_def)
saver_def.filename_tensor_name = ops.strip_name_scope(saver_def.filename_tensor_name, export_scope)
saver_def.save_tensor_name = ops.strip_name_scope(saver_def.save_tensor_name, export_scope)
saver_def.restore_op_name = ops.strip_name_scope(saver_def.restore_op_name, export_scope)
return saver_def
|
Converts this `Saver` to a `SaverDef` protocol buffer.
Args:
export_scope: Optional `string`. Name scope to remove.
Returns:
A `SaverDef` protocol buffer.
|
github-repos
|
def add_keyword(self, keyword, schema=None, source=None):
keyword_dict = self._sourced_dict(source, value=keyword)
if (schema is not None):
keyword_dict['schema'] = schema
self._append_to('keywords', keyword_dict)
|
Add a keyword.
Args:
keyword(str): keyword to add.
schema(str): schema to which the keyword belongs.
source(str): source for the keyword.
|
codesearchnet
|
def create_group(self, name):
self.project_service.set_auth(self._token_project)
return self.project_service.create_group(name)
|
Create a new group.
Args:
name (string): Name of the group to create.
Returns:
(bool): True on success.
Raises:
requests.HTTPError on failure.
|
juraj-google-style
|
def is_collection(return_type: FhirPathDataType) -> bool:
return return_type and return_type.cardinality == Cardinality.COLLECTION
|
Indicates if the return type represents a collection.
Args:
return_type: The data type to describe.
Returns:
True if `return_type` represents an element with cardinality greater than
one. False otherwise.
|
github-repos
|
def timestamp_ids(self, time_precision=0.02):
return self.convert_tokens_to_ids(['<|%.2f|>' % (i * time_precision) for i in range(1500 + 1)])
|
Compute the timestamp token ids for a given precision and save to least-recently used (LRU) cache.
Args:
time_precision (`float`, *optional*, defaults to 0.02):
The time ratio to convert from token to time.
|
github-repos
|
def console_map_string_to_font(s: str, fontCharX: int, fontCharY: int) -> None:
lib.TCOD_console_map_string_to_font_utf(_unicode(s), fontCharX, fontCharY)
|
Remap a string of codes to a contiguous set of tiles.
Args:
s (AnyStr): A string of character codes to map to new values.
The null character `'\\x00'` will prematurely end this
function.
fontCharX (int): The starting X tile coordinate on the loaded tileset.
0 is the leftmost tile.
fontCharY (int): The starting Y tile coordinate on the loaded tileset.
0 is the topmost tile.
|
juraj-google-style
|
def get(self, *, txid, headers=None):
block_list = self.transport.forward_request(
method='GET',
path=self.path,
params={'transaction_id': txid},
headers=headers,
)
return block_list[0] if len(block_list) else None
|
Get the block that contains the given transaction id (``txid``)
else return ``None``
Args:
txid (str): Transaction id.
headers (dict): Optional headers to pass to the request.
Returns:
:obj:`list` of :obj:`int`: List of block heights.
|
juraj-google-style
|
def run_inference(self, batch: Sequence[numpy.ndarray], model: BaseEstimator, inference_args: Optional[dict[str, Any]]=None) -> Iterable[PredictionResult]:
predictions = self._model_inference_fn(model, batch, inference_args)
return utils._convert_to_result(batch, predictions, model_id=self._model_uri)
|
Runs inferences on a batch of numpy arrays.
Args:
batch: A sequence of examples as numpy arrays. They should
be single examples.
model: A numpy model or pipeline. Must implement predict(X).
Where the parameter X is a numpy array.
inference_args: Any additional arguments for an inference.
Returns:
An Iterable of type PredictionResult.
|
github-repos
|
def Get(self, request, global_params=None):
config = self.GetMethodConfig('Get')
return self._RunMethod(config, request, global_params=global_params)
|
Returns information about a specific job. Job information is available for a six month period after creation. Requires that you're the person who ran the job, or have the Is Owner project role.
Args:
request: (BigqueryJobsGetRequest) input message
global_params: (StandardQueryParameters, default: None) global arguments
Returns:
(Job) The response message.
|
github-repos
|
def contact(self, id):
try:
json = self.skype.conn("POST", "{0}/users/batch/profiles".format(SkypeConnection.API_USER),
json={"usernames": [id]}, auth=SkypeConnection.Auth.SkypeToken).json()
contact = SkypeContact.fromRaw(self.skype, json[0])
if contact.id not in self.contactIds:
self.contactIds.append(contact.id)
return self.merge(contact)
except SkypeApiException as e:
if len(e.args) >= 2 and getattr(e.args[1], "status_code", None) == 403:
return None
raise
|
Retrieve all details for a specific contact, including fields such as birthday and mood.
Args:
id (str): user identifier to lookup
Returns:
SkypeContact: resulting contact object
|
juraj-google-style
|
def get_stored_variation(self, experiment, user_profile):
user_id = user_profile.user_id
variation_id = user_profile.get_variation_for_experiment(experiment.id)
if variation_id:
variation = self.config.get_variation_from_id(experiment.key, variation_id)
if variation:
self.logger.info(('Found a stored decision. User "%s" is in variation "%s" of experiment "%s".' % (user_id, variation.key, experiment.key)))
return variation
return None
|
Determine if the user has a stored variation available for the given experiment and return that.
Args:
experiment: Object representing the experiment for which user is to be bucketed.
user_profile: UserProfile object representing the user's profile.
Returns:
Variation if available. None otherwise.
|
codesearchnet
|
def plot_waves(self, ax=None, fontsize=12, **kwargs):
(ax, fig, plt) = get_ax_fig_plt(ax)
ax.grid(True)
ax.set_xlabel('r [Bohr]')
ax.set_ylabel('$r\\phi,\\, r\\tilde\\phi\\, [Bohr]^{-\\frac{1}{2}}$')
for (state, rfunc) in self.pseudo_partial_waves.items():
ax.plot(rfunc.mesh, (rfunc.mesh * rfunc.values), lw=2, label=('PS-WAVE: ' + state))
for (state, rfunc) in self.ae_partial_waves.items():
ax.plot(rfunc.mesh, (rfunc.mesh * rfunc.values), lw=2, label=('AE-WAVE: ' + state))
ax.legend(loc='best', shadow=True, fontsize=fontsize)
return fig
|
Plot the AE and the pseudo partial waves.
Args:
ax: matplotlib :class:`Axes` or None if a new figure should be created.
fontsize: fontsize for legends and titles
Returns: `matplotlib` figure
|
codesearchnet
|
def get_all_dataset_names(configuration=None, **kwargs):
dataset = Dataset(configuration=configuration)
dataset['id'] = 'all dataset names'
return dataset._write_to_hdx('list', kwargs, 'id')
|
Get all dataset names in HDX
Args:
configuration (Optional[Configuration]): HDX configuration. Defaults to global configuration.
**kwargs: See below
limit (int): Number of rows to return. Defaults to all dataset names.
offset (int): Offset in the complete result for where the set of returned dataset names should begin
Returns:
List[str]: list of all dataset names in HDX
|
juraj-google-style
|
def get(self, group=None, backend=None):
from .options import Store, Options
keywords = {}
groups = (Options._option_groups if (group is None) else [group])
backend = (backend if backend else Store.current_backend)
for group in groups:
optsobj = Store.lookup_options(backend, self._obj, group)
keywords = dict(keywords, **optsobj.kwargs)
return Options(**keywords)
|
Returns the corresponding Options object.
Args:
group: The options group. Flattens across groups if None.
backend: Current backend if None otherwise chosen backend.
Returns:
Options object associated with the object containing the
applied option keywords.
|
codesearchnet
|
def line_id(self, lat):
if self.grid == 'WAC':
line = np.rint(1.0 + self.LINE_PROJECTION_OFFSET -
self.A_AXIS_RADIUS * np.pi * lat / (self.MAP_SCALE * 1e-3 * 180))
else:
line = np.rint(float(self.LINE_PROJECTION_OFFSET) - float(self.MAP_RESOLUTION)
* (lat - float(self.CENTER_LATITUDE))) + 1
return self._control_line(line)
|
Return the corresponding line
Args:
lat (int): latitude in degree
Returns:
Correponding line
|
juraj-google-style
|
def pose_inv(pose):
pose_inv = np.zeros((4, 4))
pose_inv[(:3, :3)] = pose[(:3, :3)].T
pose_inv[(:3, 3)] = (- pose_inv[(:3, :3)].dot(pose[(:3, 3)]))
pose_inv[(3, 3)] = 1.0
return pose_inv
|
Computes the inverse of a homogenous matrix corresponding to the pose of some
frame B in frame A. The inverse is the pose of frame A in frame B.
Args:
pose: numpy array of shape (4,4) for the pose to inverse
Returns:
numpy array of shape (4,4) for the inverse pose
|
codesearchnet
|
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device)
return position_ids.unsqueeze(0).expand(input_shape)
|
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
|
github-repos
|
def CopyFromStringTuple(self, time_elements_tuple):
if len(time_elements_tuple) < 7:
raise ValueError((
'Invalid time elements tuple at least 7 elements required,'
'got: {0:d}').format(len(time_elements_tuple)))
super(TimeElementsWithFractionOfSecond, self).CopyFromStringTuple(
time_elements_tuple)
try:
fraction_of_second = decimal.Decimal(time_elements_tuple[6])
except (TypeError, ValueError):
raise ValueError('Invalid fraction of second value: {0!s}'.format(
time_elements_tuple[6]))
if fraction_of_second < 0.0 or fraction_of_second >= 1.0:
raise ValueError('Fraction of second value: {0:f} out of bounds.'.format(
fraction_of_second))
self.fraction_of_second = fraction_of_second
|
Copies time elements from string-based time elements tuple.
Args:
time_elements_tuple (Optional[tuple[str, str, str, str, str, str, str]]):
time elements, contains year, month, day of month, hours, minutes,
seconds and fraction of seconds.
Raises:
ValueError: if the time elements tuple is invalid.
|
juraj-google-style
|
def process_sequence(sequence, rules=None, skip_non_vietnamese=True):
result = ''
raw = result
result_parts = []
if (rules is None):
rules = get_telex_definition()
accepted_chars = _accepted_chars(rules)
for key in sequence:
if (key not in accepted_chars):
result_parts.append(result)
result_parts.append(key)
result = ''
raw = ''
else:
(result, raw) = process_key(string=result, key=key, fallback_sequence=raw, rules=rules, skip_non_vietnamese=skip_non_vietnamese)
result_parts.append(result)
return ''.join(result_parts)
|
\
Convert a key sequence into a Vietnamese string with diacritical marks.
Args:
rules (optional): see docstring for process_key().
skip_non_vietnamese (optional): see docstring for process_key().
It even supports continous key sequences connected by separators.
i.e. process_sequence('con meof.ddieen') should work.
|
codesearchnet
|
def add_mixin(self, mixin):
raw = mixin.tokens[0][0].raw()
if raw in self._mixins:
self._mixins[raw].append(mixin)
else:
self._mixins[raw] = [mixin]
|
Add mixin to scope
Args:
mixin (Mixin): Mixin object
|
juraj-google-style
|
def describe(self, **kwargs):
description = {'label': self.label, 'details': inspect.cleandoc(self.details), 'type': ('list of {}'.format(self.type) if self.many else self.type), 'spec': self.spec, 'read_only': self.read_only, 'write_only': self.write_only, 'allow_null': self.allow_null}
description.update(kwargs)
return description
|
Describe this field instance for purpose of self-documentation.
Args:
kwargs (dict): dictionary of additional description items for
extending default description
Returns:
dict: dictionary of description items
Suggested way for overriding description fields or extending it with
additional items is calling super class method with new/overriden
fields passed as keyword arguments like following:
.. code-block:: python
class DummyField(BaseField):
def description(self, **kwargs):
super().describe(is_dummy=True, **kwargs)
|
codesearchnet
|
def create_streaming_endpoint(access_token, name, description='New Streaming Endpoint', scale_units='1'):
path = '/StreamingEndpoints'
endpoint = ''.join([ams_rest_endpoint, path])
body = (((((('{ \t\t"Id":null, \t\t"Name":"' + name) + '", \t\t"Description":"') + description) + '", \t\t"Created":"0001-01-01T00:00:00", \t\t"LastModified":"0001-01-01T00:00:00", \t\t"State":null, \t\t"HostName":null, \t\t"ScaleUnits":"') + scale_units) + '", \t\t"CrossSiteAccessPolicies":{ \t\t\t"ClientAccessPolicy":"<access-policy><cross-domain-access><policy><allow-from http-request-headers=\\"*\\"><domain uri=\\"http:
return do_ams_post(endpoint, path, body, access_token)
|
Create Media Service Streaming Endpoint.
Args:
access_token (str): A valid Azure authentication token.
name (str): A Media Service Streaming Endpoint Name.
description (str): A Media Service Streaming Endpoint Description.
scale_units (str): A Media Service Scale Units Number.
Returns:
HTTP response. JSON body.
|
codesearchnet
|
def NewRow(self, value=''):
newrow = self.row_class()
newrow.row = (self.size + 1)
newrow.table = self
headers = self._Header()
for header in headers:
newrow[header] = value
return newrow
|
Fetches a new, empty row, with headers populated.
Args:
value: Initial value to set each row entry to.
Returns:
A Row() object.
|
codesearchnet
|
def recipe_video(config, auth_read, sheet, tab, project, dataset, table):
sheets(config, {'__comment__': 'Copy the tamplate sheet to the users sheet. If it already exists, nothing happens.', 'auth': auth_read, 'template': {'sheet': 'https:
video(config, {'__comment__': 'Read video effects and values from sheet and/or bigquery.', 'auth': auth_read, 'sheets': {'sheet': sheet, 'tab': tab}, 'bigquery': {'project': project, 'dataset': dataset, 'table': table}})
|
Add images, text, and audio to videos.
Args:
auth_read (authentication) - Credentials used for reading data.
sheet (string) - Name or URL of sheet.
tab (string) - Name of sheet tab.
project (string) - Google Cloud Project Identifier.
dataset (string) - Name of dataset.
table (string) - Name of table.
|
github-repos
|
def encrypt(self, mesg):
seqn = next(self._tx_sn)
rv = self._tx_tinh.enc(s_msgpack.en((seqn, mesg)))
return rv
|
Wrap a message with a sequence number and encrypt it.
Args:
mesg: The mesg to encrypt.
Returns:
bytes: The encrypted message.
|
codesearchnet
|
def unpack(self, buff=None, offset=0):
band_type = UBInt16(enum_ref=MeterBandType)
band_type.unpack(buff, offset)
self.__class__ = MeterBandType(band_type.value).find_class()
length = UBInt16()
length.unpack(buff, offset=offset+2)
super().unpack(buff[:offset+length.value], offset)
|
Unpack *buff* into this object.
This method will convert a binary data into a readable value according
to the attribute format.
Args:
buff (bytes): Binary buffer.
offset (int): Where to begin unpacking.
Raises:
:exc:`~.exceptions.UnpackException`: If unpack fails.
|
juraj-google-style
|
def list2str(self, l: List, joiner: str) -> str:
result = str()
for item in l:
if isinstance(item, list):
result = ((result + self.list2str(item, joiner)) + joiner)
elif isinstance(item, dict):
result = ((result + self.dict2str(item, joiner)) + joiner)
elif item:
result = ((result + str(item)) + joiner)
return result
|
Convert list to str as input for tokenizer
Args:
l (list): list for converting
joiner (str): join the elements using this string to separate them.
Returns: the value of the list as a string
|
codesearchnet
|
def ndtri(p, name="ndtri"):
with tf.name_scope(name):
p = tf.convert_to_tensor(value=p, name="p")
if dtype_util.as_numpy_dtype(p.dtype) not in [np.float32, np.float64]:
raise TypeError(
"p.dtype=%s is not handled, see docstring for supported types."
% p.dtype)
return _ndtri(p)
|
The inverse of the CDF of the Normal distribution function.
Returns x such that the area under the pdf from minus infinity to x is equal
to p.
A piece-wise rational approximation is done for the function.
This is a port of the implementation in netlib.
Args:
p: `Tensor` of type `float32`, `float64`.
name: Python string. A name for the operation (default="ndtri").
Returns:
x: `Tensor` with `dtype=p.dtype`.
Raises:
TypeError: if `p` is not floating-type.
|
juraj-google-style
|
def __update_cleanup_paths(new_path):
cleanup_dirs = settings.CFG['cleanup_paths'].value
cleanup_dirs = set(cleanup_dirs)
cleanup_dirs.add(new_path)
cleanup_dirs = list(cleanup_dirs)
settings.CFG['cleanup_paths'] = cleanup_dirs
|
Add the new path to the list of paths to clean up afterwards.
Args:
new_path: Path to the directory that need to be cleaned up.
|
codesearchnet
|
def pretty_print_fhir_to_json_string_for_analytics(fhir_proto: message.Message, *, indent_size: int=2) -> str:
printer = _json_printer.JsonPrinter.pretty_printer_for_analytics(_PRIMITIVE_HANDLER, indent_size=indent_size)
return printer.print(fhir_proto)
|
Returns an Analytic FHIR JSON representation with spaces and newlines.
Args:
fhir_proto: The proto to serialize into a "pretty" JSON string.
indent_size: An integer denoting the size of space indentation for lexical
scoping. Defaults to 2.
Returns:
An Analytic FHIR JSON representation with spaces and newlines.
|
github-repos
|
def split_sequence_columns_v2(feature_columns):
sequence_columns = []
non_sequence_columns = []
for column in feature_columns:
if not isinstance(column, (_TPUEmbeddingColumnV2, _TPUSharedEmbeddingColumnV2)):
raise TypeError(f'column must be a _TPUEmbeddingColumnV2 or _TPUSharedEmbeddingColumnV2 but got {type(column)} instead.')
if column.is_sequence_column():
sequence_columns.append(column)
else:
non_sequence_columns.append(column)
return (sequence_columns, non_sequence_columns)
|
Split a list of _TPUEmbeddingColumn into sequence and non-sequence columns.
For use in a TPUEstimator model_fn function. E.g.
def model_fn(features):
sequence_columns, feature_columns = (
tf.tpu.feature_column.split_sequence_columns(feature_columns))
input = tf.feature_column.input_layer(
features=features, feature_columns=feature_columns)
sequence_features, sequence_lengths = (
tf.contrib.feature_column.sequence_input_layer(
features=features, feature_columns=sequence_columns))
Args:
feature_columns: A list of _TPUEmbeddingColumns to split.
Returns:
Two lists of _TPUEmbeddingColumns, the first is the sequence columns and the
second is the non-sequence columns.
|
github-repos
|
async def reclaim_task(context, task):
while True:
log.debug(('waiting %s seconds before reclaiming...' % context.config['reclaim_interval']))
(await asyncio.sleep(context.config['reclaim_interval']))
if (task != context.task):
return
log.debug('Reclaiming task...')
try:
context.reclaim_task = (await context.temp_queue.reclaimTask(get_task_id(context.claim_task), get_run_id(context.claim_task)))
clean_response = deepcopy(context.reclaim_task)
clean_response['credentials'] = '{********}'
log.debug('Reclaim task response:\n{}'.format(pprint.pformat(clean_response)))
except taskcluster.exceptions.TaskclusterRestFailure as exc:
if (exc.status_code == 409):
log.debug('409: not reclaiming task.')
if (context.proc and (task == context.task)):
message = 'Killing task after receiving 409 status in reclaim_task'
log.warning(message)
(await context.proc.stop())
raise ScriptWorkerTaskException(message, exit_code=context.config['invalid_reclaim_status'])
break
else:
raise
|
Try to reclaim a task from the queue.
This is a keepalive / heartbeat. Without it the job will expire and
potentially be re-queued. Since this is run async from the task, the
task may complete before we run, in which case we'll get a 409 the next
time we reclaim.
Args:
context (scriptworker.context.Context): the scriptworker context
Raises:
taskcluster.exceptions.TaskclusterRestFailure: on non-409 status_code
from taskcluster.aio.Queue.reclaimTask()
|
codesearchnet
|
def __init__(self, cell):
self._cell = cell
|
Creates a new StringGaugeCell.
Args:
cell: A c pointer of TFE_MonitoringStringGaugeCell.
|
github-repos
|
def checkUser(self, user):
return not self.conn("POST", "{0}/GetCredentialType.srf".format(SkypeConnection.API_MSACC),
json={"username": user}).json().get("IfExistsResult")
|
Query a username or email address to see if a corresponding Microsoft account exists.
Args:
user (str): username or email address of an account
Returns:
bool: whether the account exists
|
juraj-google-style
|
def head(self, n=10):
r = self.__repr__().split('\n')
print('\n'.join(r[:n]), end=' ')
|
Display the top of the file.
Args:
n (int): Number of lines to display
|
codesearchnet
|
def mesh_split(tensor, device_mesh, tensor_split_dims_mapping, use_sharding_op=False, manual_mesh_dims=None, unspecified_dims=None):
sharding = mesh_split_sharding(device_mesh, tensor_split_dims_mapping, manual_mesh_dims)
return sharding.apply_to_tensor(tensor, use_sharding_op=use_sharding_op, unspecified_dims=unspecified_dims or [])
|
Returns a tensor that is split along multiple dimensions in a device mesh.
Args:
tensor: A tf.Tensor to split.
device_mesh: An np.ndarray describing the topology of the device mesh and
each element is the ID of the device in the topology.
tensor_split_dims_mapping: A list of integers that map each tensor axis to
the device mesh axis along which it is sharded. Its length is the tensor
rank, and tensor_split_dims_mapping[i] is device mesh axis for tensor
dimension i. Use -1 for tensor dimensions that are not sharded.
use_sharding_op: If true, adds a sharding op to set the sharding.
manual_mesh_dims: An optional list of mesh dims for manual subgroups.
unspecified_dims: An optional list of dimensions unspecified.
Raises:
ValueError: The number of tensor split dimensions is larger than device mesh
rank.
|
github-repos
|
def categorical(logits, num_samples, dtype=None, seed=None, name=None):
with ops.name_scope(name, 'categorical', [logits]):
return multinomial_categorical_impl(logits, num_samples, dtype, seed)
|
Draws samples from a categorical distribution.
Example:
```python
# samples has shape [1, 5], where each value is either 0 or 1 with equal
# probability.
samples = tf.random.categorical(tf.math.log([[0.5, 0.5]]), 5)
```
Args:
logits: 2-D Tensor with shape `[batch_size, num_classes]`. Each slice
`[i, :]` represents the unnormalized log-probabilities for all classes.
num_samples: 0-D. Number of independent samples to draw for each row slice.
dtype: The integer type of the output: `int32` or `int64`. Defaults to
`int64`.
seed: A Python integer. Used to create a random seed for the distribution.
See `tf.random.set_seed` for behavior.
name: Optional name for the operation.
Returns:
The drawn samples of shape `[batch_size, num_samples]`.
|
github-repos
|
def resize(self, image: np.ndarray, size: Dict[str, int], size_divisor: int=0, resample: PILImageResampling=PILImageResampling.BILINEAR, data_format=None, input_data_format: Optional[Union[str, ChannelDimension]]=None, **kwargs) -> np.ndarray:
max_size = kwargs.pop('max_size', None)
size = get_size_dict(size, max_size=max_size, default_to_square=False)
if 'shortest_edge' in size and 'longest_edge' in size:
size, max_size = (size['shortest_edge'], size['longest_edge'])
elif 'height' in size and 'width' in size:
size = (size['height'], size['width'])
max_size = None
else:
raise ValueError(f"Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got {size.keys()}.")
size = get_maskformer_resize_output_image_size(image=image, size=size, max_size=max_size, size_divisor=size_divisor, default_to_square=False, input_data_format=input_data_format)
image = resize(image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs)
return image
|
Resize the image to the given size. Size can be min_size (scalar) or `(height, width)` tuple. If size is an
int, smaller edge of the image will be matched to this number.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
The size of the output image.
size_divisor (`int`, *optional*, defaults to 0):
If `size_divisor` is given, the output image size will be divisible by the number.
resample (`PILImageResampling` resampling filter, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use when resizing the image.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
|
github-repos
|
def AddVSSProcessingOptions(self, argument_group):
argument_group.add_argument(
'--no_vss', '--no-vss', dest='no_vss', action='store_true',
default=False, help=(
'Do not scan for Volume Shadow Snapshots (VSS). This means that '
'Volume Shadow Snapshots (VSS) are not processed.'))
argument_group.add_argument(
'--vss_only', '--vss-only', dest='vss_only', action='store_true',
default=False, help=(
'Do not process the current volume if Volume Shadow Snapshots '
'(VSS) have been selected.'))
argument_group.add_argument(
'--vss_stores', '--vss-stores', dest='vss_stores', action='store',
type=str, default=None, help=(
'Define Volume Shadow Snapshots (VSS) (or stores that need to be '
'processed. A range of stores can be defined as: "3..5". '
'Multiple stores can be defined as: "1,3,5" (a list of comma '
'separated values). Ranges and lists can also be combined as: '
'"1,3..5". The first store is 1. All stores can be defined as: '
'"all".'))
|
Adds the VSS processing options to the argument group.
Args:
argument_group (argparse._ArgumentGroup): argparse argument group.
|
juraj-google-style
|
def imrescale(img, scale, return_scale=False, interpolation='bilinear'):
(h, w) = img.shape[:2]
if isinstance(scale, (float, int)):
if (scale <= 0):
raise ValueError('Invalid scale {}, must be positive.'.format(scale))
scale_factor = scale
elif isinstance(scale, tuple):
max_long_edge = max(scale)
max_short_edge = min(scale)
scale_factor = min((max_long_edge / max(h, w)), (max_short_edge / min(h, w)))
else:
raise TypeError('Scale must be a number or tuple of int, but got {}'.format(type(scale)))
new_size = _scale_size((w, h), scale_factor)
rescaled_img = imresize(img, new_size, interpolation=interpolation)
if return_scale:
return (rescaled_img, scale_factor)
else:
return rescaled_img
|
Resize image while keeping the aspect ratio.
Args:
img (ndarray): The input image.
scale (float or tuple[int]): The scaling factor or maximum size.
If it is a float number, then the image will be rescaled by this
factor, else if it is a tuple of 2 integers, then the image will
be rescaled as large as possible within the scale.
return_scale (bool): Whether to return the scaling factor besides the
rescaled image.
interpolation (str): Same as :func:`resize`.
Returns:
ndarray: The rescaled image.
|
codesearchnet
|
def setData(self, index, value, role=DTYPE_CHANGE_ROLE):
if ((role != DTYPE_CHANGE_ROLE) or (not index.isValid())):
return False
if (not self.editable()):
return False
self.layoutAboutToBeChanged.emit()
dtype = SupportedDtypes.dtype(value)
currentDtype = np.dtype(index.data(role=DTYPE_ROLE))
if (dtype is not None):
if (dtype != currentDtype):
columnName = self._dataFrame.columns[index.row()]
try:
if (dtype == np.dtype('<M8[ns]')):
if (currentDtype in SupportedDtypes.boolTypes()):
raise Exception("Can't convert a boolean value into a datetime value.")
self._dataFrame[columnName] = self._dataFrame[columnName].apply(pandas.to_datetime)
else:
self._dataFrame[columnName] = self._dataFrame[columnName].astype(dtype)
self.dtypeChanged.emit(index.row(), dtype)
self.layoutChanged.emit()
return True
except Exception:
message = ('Could not change datatype %s of column %s to datatype %s' % (currentDtype, columnName, dtype))
self.changeFailed.emit(message, index, dtype)
raise
return False
|
Updates the datatype of a column.
The model must be initated with a dataframe already, since valid
indexes are necessary. The `value` is a translated description of the
data type. The translations can be found at
`qtpandas.translation.DTypeTranslator`.
If a datatype can not be converted, e.g. datetime to integer, a
`NotImplementedError` will be raised.
Args:
index (QtCore.QModelIndex): The index of the column to be changed.
value (str): The description of the new datatype, e.g.
`positive kleine ganze Zahl (16 Bit)`.
role (Qt.ItemDataRole, optional): The role, which accesses and
changes data. Defaults to `DTYPE_CHANGE_ROLE`.
Raises:
NotImplementedError: If an error during conversion occured.
Returns:
bool: `True` if the datatype could be changed, `False` if not or if
the new datatype equals the old one.
|
codesearchnet
|
def drug_matches_criteria(drug: Drug, **criteria: Dict[str, bool]) -> bool:
for attribute, value in criteria.items():
if getattr(drug, attribute) != value:
return False
return True
|
Determines whether a drug, passed as an instance of :class:`.Drug`, matches
the specified criteria.
Args:
drug: a :class:`.Drug` instance
criteria: ``name=value`` pairs to match against the attributes of
the :class:`Drug` class. For example, you can include keyword
arguments like ``antidepressant=True``.
|
juraj-google-style
|
def verify_cot_signatures(chain):
for link in chain.links:
unsigned_path = link.get_artifact_full_path('public/chain-of-trust.json')
ed25519_signature_path = link.get_artifact_full_path('public/chain-of-trust.json.sig')
verify_link_ed25519_cot_signature(chain, link, unsigned_path, ed25519_signature_path)
|
Verify the signatures of the chain of trust artifacts populated in ``download_cot``.
Populate each link.cot with the chain of trust json body.
Args:
chain (ChainOfTrust): the chain of trust to add to.
Raises:
CoTError: on failure.
|
juraj-google-style
|
def dvds_upcoming(self, **kwargs):
path = self._get_path('dvds_upcoming')
response = self._GET(path, kwargs)
self._set_attrs_to_values(response)
return response
|
Gets the upcoming movies from the API.
Args:
page_limit (optional): number of movies to show per page, default=16
page (optional): results page number, default=1
country (optional): localized data for selected country, default="us"
Returns:
A dict respresentation of the JSON returned from the API.
|
juraj-google-style
|
def post_attention(self, token, x):
with tf.control_dependencies([
self.previous_segment.assign(token[0]),
self.previous_vals.assign(token[1]),
self.previous_bias.assign(token[2]),
]):
return tf.identity(x)
|
Called after self-attention. The memory can be updated here.
Args:
token: Data returned by pre_attention, which can be used to carry over
state related to the current memory operation.
x: a Tensor of data after self-attention and feed-forward
Returns:
a (possibly modified) version of the input x
|
juraj-google-style
|
def swo_set_host_buffer_size(self, buf_size):
buf = ctypes.c_uint32(buf_size)
res = self._dll.JLINKARM_SWO_Control(enums.JLinkSWOCommands.SET_BUFFERSIZE_HOST,
ctypes.byref(buf))
if res < 0:
raise errors.JLinkException(res)
return None
|
Sets the size of the buffer used by the host to collect SWO data.
Args:
self (JLink): the ``JLink`` instance
buf_size (int): the new size of the host buffer
Returns:
``None``
Raises:
JLinkException: on error
|
juraj-google-style
|
def register(self, command: str, handler: Any):
if (not command.startswith('/')):
command = f'/{command}'
LOG.info('Registering %s to %s', command, handler)
self._routes[command].append(handler)
|
Register a new handler for a specific slash command
Args:
command: Slash command
handler: Callback
|
codesearchnet
|
def _ProcessMetadataFile(self, mediator, file_entry):
self.processing_status = definitions.STATUS_INDICATOR_EXTRACTING
self._event_extractor.ParseFileEntryMetadata(mediator, file_entry)
for data_stream in file_entry.data_streams:
if self._abort:
break
self.last_activity_timestamp = time.time()
self._event_extractor.ParseMetadataFile(
mediator, file_entry, data_stream.name)
|
Processes a metadata file.
Args:
mediator (ParserMediator): mediates the interactions between
parsers and other components, such as storage and abort signals.
file_entry (dfvfs.FileEntry): file entry of the metadata file.
|
juraj-google-style
|
def render_root_node_with_subs(root_node, subs):
def rec(node, acc):
if isinstance(node, e_nodes.EndOfStreamNode):
pass
elif isinstance(node, e_nodes.OpenStartElementNode):
acc.append("<")
acc.append(node.tag_name())
for child in node.children():
if isinstance(child, e_nodes.AttributeNode):
acc.append(" ")
acc.append(validate_name(child.attribute_name().string()))
acc.append("=\"")
rec(child.attribute_value(), acc)
acc.append("\"")
acc.append(">")
for child in node.children():
rec(child, acc)
acc.append("</")
acc.append(validate_name(node.tag_name()))
acc.append(">\n")
elif isinstance(node, e_nodes.CloseStartElementNode):
pass
elif isinstance(node, e_nodes.CloseEmptyElementNode):
pass
elif isinstance(node, e_nodes.CloseElementNode):
pass
elif isinstance(node, e_nodes.ValueNode):
acc.append(escape_value(node.children()[0].string()))
elif isinstance(node, e_nodes.AttributeNode):
pass
elif isinstance(node, e_nodes.CDataSectionNode):
acc.append("<![CDATA[")
acc.append(escape_value(node.cdata()))
acc.append("]]>")
elif isinstance(node, e_nodes.EntityReferenceNode):
acc.append(escape_value(node.entity_reference()))
elif isinstance(node, e_nodes.ProcessingInstructionTargetNode):
acc.append(escape_value(node.processing_instruction_target()))
elif isinstance(node, e_nodes.ProcessingInstructionDataNode):
acc.append(escape_value(node.string()))
elif isinstance(node, e_nodes.TemplateInstanceNode):
raise UnexpectedElementException("TemplateInstanceNode")
elif isinstance(node, e_nodes.NormalSubstitutionNode):
sub = subs[node.index()]
if isinstance(sub, e_nodes.BXmlTypeNode):
sub = render_root_node(sub.root())
else:
sub = escape_value(sub.string())
acc.append(sub)
elif isinstance(node, e_nodes.ConditionalSubstitutionNode):
sub = subs[node.index()]
if isinstance(sub, e_nodes.BXmlTypeNode):
sub = render_root_node(sub.root())
else:
sub = escape_value(sub.string())
acc.append(sub)
elif isinstance(node, e_nodes.StreamStartNode):
pass
acc = []
for c in root_node.template().children():
rec(c, acc)
return "".join(acc)
|
render the given root node using the given substitutions into XML.
Args:
root_node (e_nodes.RootNode): the node to render.
subs (list[str]): the substitutions that maybe included in the XML.
Returns:
str: the rendered XML document.
|
juraj-google-style
|
def abs(cls, x: 'TensorFluent') -> 'TensorFluent':
return cls._unary_op(x, tf.abs, tf.float32)
|
Returns a TensorFluent for the abs function.
Args:
x: The input fluent.
Returns:
A TensorFluent wrapping the abs function.
|
codesearchnet
|
def APFSUnlockVolume(fsapfs_volume, path_spec, key_chain):
is_locked = fsapfs_volume.is_locked()
if is_locked:
password = key_chain.GetCredential(path_spec, 'password')
if password:
fsapfs_volume.set_password(password)
recovery_password = key_chain.GetCredential(path_spec, 'recovery_password')
if recovery_password:
fsapfs_volume.set_recovery_password(recovery_password)
is_locked = not fsapfs_volume.unlock()
return not is_locked
|
Unlocks an APFS volume using the path specification.
Args:
fsapfs_volume (pyapfs.volume): APFS volume.
path_spec (PathSpec): path specification.
key_chain (KeyChain): key chain.
Returns:
bool: True if the volume is unlocked, False otherwise.
|
juraj-google-style
|
def download(self, streamed=False, action=None, chunk_size=1024, **kwargs):
path = ('/projects/%s/export/download' % self.project_id)
result = self.manager.gitlab.http_get(path, streamed=streamed, raw=True, **kwargs)
return utils.response_content(result, streamed, action, chunk_size)
|
Download the archive of a project export.
Args:
streamed (bool): If True the data will be processed by chunks of
`chunk_size` and each chunk is passed to `action` for
reatment
action (callable): Callable responsible of dealing with chunk of
data
chunk_size (int): Size of each chunk
**kwargs: Extra options to send to the server (e.g. sudo)
Raises:
GitlabAuthenticationError: If authentication is not correct
GitlabGetError: If the server failed to perform the request
Returns:
str: The blob content if streamed is False, None otherwise
|
codesearchnet
|
def committed(self, partition):
assert (self.config['api_version'] >= (0, 8, 1)), 'Requires >= Kafka 0.8.1'
assert (self.config['group_id'] is not None), 'Requires group_id'
if (not isinstance(partition, TopicPartition)):
raise TypeError('partition must be a TopicPartition namedtuple')
if self._subscription.is_assigned(partition):
committed = self._subscription.assignment[partition].committed
if (committed is None):
self._coordinator.refresh_committed_offsets_if_needed()
committed = self._subscription.assignment[partition].committed
else:
commit_map = self._coordinator.fetch_committed_offsets([partition])
if (partition in commit_map):
committed = commit_map[partition].offset
else:
committed = None
return committed
|
Get the last committed offset for the given partition.
This offset will be used as the position for the consumer
in the event of a failure.
This call may block to do a remote call if the partition in question
isn't assigned to this consumer or if the consumer hasn't yet
initialized its cache of committed offsets.
Arguments:
partition (TopicPartition): The partition to check.
Returns:
The last committed offset, or None if there was no prior commit.
|
codesearchnet
|
def consume_socket_output(frames, demux=False):
if (demux is False):
return six.binary_type().join(frames)
out = [None, None]
for frame in frames:
assert (frame != (None, None))
if (frame[0] is not None):
if (out[0] is None):
out[0] = frame[0]
else:
out[0] += frame[0]
elif (out[1] is None):
out[1] = frame[1]
else:
out[1] += frame[1]
return tuple(out)
|
Iterate through frames read from the socket and return the result.
Args:
demux (bool):
If False, stdout and stderr are multiplexed, and the result is the
concatenation of all the frames. If True, the streams are
demultiplexed, and the result is a 2-tuple where each item is the
concatenation of frames belonging to the same stream.
|
codesearchnet
|
def hide_tool(self, context_name, tool_name):
data = self._context(context_name)
hidden_tools = data["hidden_tools"]
if tool_name not in hidden_tools:
self._validate_tool(context_name, tool_name)
hidden_tools.add(tool_name)
self._flush_tools()
|
Hide a tool so that it is not exposed in the suite.
Args:
context_name (str): Context containing the tool.
tool_name (str): Name of tool to hide.
|
juraj-google-style
|
def peek_record(self, model_class, record_id):
if self._cache:
return self._cache.get_record(model_class.__name__, record_id)
else:
return None
|
Return an instance of the model_class from the cache if it is present.
Args:
model_class (:class:`cinder_data.model.CinderModel`): A subclass of
:class:`cinder_data.model.CinderModel` of your chosen model.
record_id (int): The id of the record requested.
Returns:
:class:`cinder_data.model.CinderModel`: An instance of model_class or None.
|
juraj-google-style
|
def get_help_commands(server_prefix):
datapacks = []
_dir = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
for module_name in os.listdir('{}/../'.format(_dir)):
if ((not module_name.startswith('_')) and (not module_name.startswith('!'))):
help_command = '`{}help {}`'.format(server_prefix, module_name)
datapacks.append((module_name, help_command, True))
return datapacks
|
Get the help commands for all modules
Args:
server_prefix: The server command prefix
Returns:
datapacks (list): A list of datapacks for the help commands for all the modules
|
codesearchnet
|
def _GetNextLogCountPerToken(token):
global _log_counter_per_token
_log_counter_per_token[token] = 1 + _log_counter_per_token.get(token, -1)
return _log_counter_per_token[token]
|
Wrapper for _log_counter_per_token.
Args:
token: The token for which to look up the count.
Returns:
The number of times this function has been called with
*token* as an argument (starting at 0)
|
juraj-google-style
|
def _prepare_grid(self, times, grid_step):
grid = tf.range(0.0, times[-1], grid_step, dtype=self._dtype)
all_times = tf.concat([grid, times], axis=0)
mask = tf.concat([tf.zeros_like(grid, dtype=tf.bool), tf.ones_like(times, dtype=tf.bool)], axis=0)
perm = tf.argsort(all_times, stable=True)
all_times = tf.gather(all_times, perm)
mask = tf.gather(mask, perm)
return (all_times, mask)
|
Prepares grid of times for path generation.
Args:
times: Rank 1 `Tensor` of increasing positive real values. The times at
which the path points are to be evaluated.
grid_step: Rank 0 real `Tensor`. Maximal distance between points in
resulting grid.
Returns:
Tuple `(all_times, mask)`.
`all_times` is 1-D real `Tensor` containing all points from 'times` and
whose intervals are at most `grid_step`.
`mask` is a boolean 1-D tensor of the same shape as 'all_times', showing
which elements of 'all_times' correspond to values from `times`.
Guarantees that times[0]=0 and grid_step[0]=False.
'all_times` is sorted ascending and may contain duplicates.
|
github-repos
|
def update_score_summary(sender, **kwargs):
score = kwargs['instance']
try:
score_summary = ScoreSummary.objects.get(student_item=score.student_item)
score_summary.latest = score
if score.reset:
score_summary.highest = score
elif (score.to_float() > score_summary.highest.to_float()):
score_summary.highest = score
score_summary.save()
except ScoreSummary.DoesNotExist:
ScoreSummary.objects.create(student_item=score.student_item, highest=score, latest=score)
except DatabaseError as err:
logger.exception(u'Error while updating score summary for student item {}'.format(score.student_item))
|
Listen for new Scores and update the relevant ScoreSummary.
Args:
sender: not used
Kwargs:
instance (Score): The score model whose save triggered this receiver.
|
codesearchnet
|
def set_size(self, width, height):
if (width is not None):
try:
width = to_pix(int(width))
except ValueError:
pass
self.style['width'] = width
if (height is not None):
try:
height = to_pix(int(height))
except ValueError:
pass
self.style['height'] = height
|
Set the widget size.
Args:
width (int or str): An optional width for the widget (es. width=10 or width='10px' or width='10%').
height (int or str): An optional height for the widget (es. height=10 or height='10px' or height='10%').
|
codesearchnet
|
def __init__(self, params=None, connection_string=None):
if params is None and connection_string is None:
raise RuntimeError("Please provide either 'params' or 'connection_string'")
if params is not None and connection_string is not None:
raise RuntimeError("Please provide only on of 'params' or 'connection_string'")
if params is not None:
connection_string_no_pw = self.get_connection_string(params=params, hide_password=True)
config.logger.info("Client connecting to: " + connection_string_no_pw)
connection_string = self.get_connection_string(params=params, hide_password=False)
else:
config.logger.info("Client connecting to: " + connection_string)
self.engine = sa.create_engine(connection_string)
if connection_string.startswith('sqlite:
def on_connect(conn, _):
conn.execute('pragma foreign_keys=ON')
from sqlalchemy import event
event.listen(self.engine, 'connect', on_connect)
self.session_maker = orm.sessionmaker(bind=self.get_engine())
|
Instantiate a client object
A client can be configured either from a parameters dictionary ``params`` or directly
from an :mod:`sqlalchemy` connection string ``connection_string``. Exactly one of the two
must be provided.
Args:
params (dict): database configuration, as defined in :mod:`ozelot.config`
connection_string (str): :mod:`sqlalchemy` connection string
|
juraj-google-style
|
def create(cls, tx_signers, recipients, metadata=None, asset=None):
(inputs, outputs) = cls.validate_create(tx_signers, recipients, asset, metadata)
return cls(cls.CREATE, {'data': asset}, inputs, outputs, metadata)
|
A simple way to generate a `CREATE` transaction.
Note:
This method currently supports the following Cryptoconditions
use cases:
- Ed25519
- ThresholdSha256
Additionally, it provides support for the following BigchainDB
use cases:
- Multiple inputs and outputs.
Args:
tx_signers (:obj:`list` of :obj:`str`): A list of keys that
represent the signers of the CREATE Transaction.
recipients (:obj:`list` of :obj:`tuple`): A list of
([keys],amount) that represent the recipients of this
Transaction.
metadata (dict): The metadata to be stored along with the
Transaction.
asset (dict): The metadata associated with the asset that will
be created in this Transaction.
Returns:
:class:`~bigchaindb.common.transaction.Transaction`
|
codesearchnet
|
def list_tags():
codes = _AutoCodes()
grouped = set([(k, '/{0}'.format(k), codes[k], codes['/{0}'.format(k)]) for k in codes if (not k.startswith('/'))])
found = [c for r in grouped for c in r[:2]]
missing = set([(('', r[0], None, r[1]) if r[0].startswith('/') else (r[0], '', r[1], None)) for r in _AutoCodes().items() if (r[0] not in found)])
grouped |= missing
payload = sorted([i for i in grouped if (i[2] is None)], key=(lambda x: x[3]))
grouped -= set(payload)
payload.extend(sorted([i for i in grouped if (i[2] < 10)], key=(lambda x: x[2])))
grouped -= set(payload)
payload.extend(sorted([i for i in grouped if i[0].startswith('auto')], key=(lambda x: x[2])))
grouped -= set(payload)
payload.extend(sorted([i for i in grouped if (not i[0].startswith('hi'))], key=(lambda x: x[2])))
grouped -= set(payload)
payload.extend(sorted(grouped, key=(lambda x: x[2])))
return tuple(payload)
|
Lists the available tags.
Returns:
Tuple of tuples. Child tuples are four items: ('opening tag', 'closing tag', main ansi value, closing ansi value).
|
codesearchnet
|
def join_pretty_tensors(tensors, output, join_function=None, name='join'):
if (not tensors):
raise ValueError('pretty_tensors must be a non-empty sequence.')
with output.g.name_scope(name):
if (join_function is None):
last_dim = (len(tensors[0].shape) - 1)
return output.with_tensor(tf.concat(tensors, last_dim))
else:
return output.with_tensor(join_function(tensors))
|
Joins the list of pretty_tensors and sets head of output_pretty_tensor.
Args:
tensors: A sequence of Layers or SequentialLayerBuilders to join.
output: A pretty_tensor to set the head with the result.
join_function: A function to join the tensors, defaults to concat on the
last dimension.
name: A name that is used for the name_scope
Returns:
The result of calling with_tensor on output
Raises:
ValueError: if pretty_tensors is None or empty.
|
codesearchnet
|
def setup(docker_mount=None, force=False):
if not is_ubuntu() and not is_boot2docker():
raise Exception('Head In The Clouds Docker is only supported on Ubuntu')
if os.path.exists('dot_dockercfg') and not fabric.contrib.files.exists('~/.dockercfg'):
put('dot_dockercfg', '~/.dockercfg')
if not fabric.contrib.files.exists('~/.ssh/id_rsa'):
fab.run('ssh-keygen -t rsa -N "" -f ~/.ssh/id_rsa')
if docker_is_installed() and not force:
return
for attempt in range(3):
sudo('wget -qO- https:
sudo('sh -c "echo deb http:
with settings(warn_only=True):
sudo('apt-get update')
failed = sudo('apt-get install -y lxc-docker sshpass curl').failed
if not failed:
break
if docker_mount:
create_docker_mount(docker_mount)
|
Prepare a vanilla server by installing docker, curl, and sshpass. If a file called ``dot_dockercfg``
exists in the current working directory, it is uploaded as ``~/.dockercfg``.
Args:
* docker_mount=None: Partition that will be mounted as /var/lib/docker
|
juraj-google-style
|
def label_durations(self, label_list_ids=None):
duration = collections.defaultdict(int)
for utterance in self.utterances.values():
for label_value, utt_count in utterance.label_total_duration(label_list_ids=label_list_ids).items():
duration[label_value] += utt_count
return duration
|
Return a dictionary containing the total duration, every label-value in this corpus is occurring.
Args:
label_list_ids (list): If not None, only labels from label-lists with an id contained in this list
are considered.
Returns:
dict: A dictionary containing the total duration with the label-value as key.
|
juraj-google-style
|
def ReadClientFullInfo(self, client_id):
result = self.MultiReadClientFullInfo([client_id])
try:
return result[client_id]
except KeyError:
raise UnknownClientError(client_id)
|
Reads full client information for a single client.
Args:
client_id: A GRR client id string, e.g. "C.ea3b2b71840d6fa7".
Returns:
A `ClientFullInfo` instance for given client.
Raises:
UnknownClientError: if no client with such id was found.
|
juraj-google-style
|
def convert_x_www_form_urlencoded_to_dict(post_data):
if isinstance(post_data, str):
converted_dict = {}
for k_v in post_data.split('&'):
try:
(key, value) = k_v.split('=')
except ValueError:
raise Exception('Invalid x_www_form_urlencoded data format: {}'.format(post_data))
converted_dict[key] = unquote(value)
return converted_dict
else:
return post_data
|
convert x_www_form_urlencoded data to dict
Args:
post_data (str): a=1&b=2
Returns:
dict: {"a":1, "b":2}
|
codesearchnet
|
def _read_config(filename):
parser = configparser.RawConfigParser()
if (filename and (not parser.read(filename))):
sys.stderr.write(("Unable to open configuration file %s. Use --config='' to disable this warning.\n" % filename))
config = {}
for (section, defaults) in BASE_CONFIG.items():
if (section == 'patterns'):
continue
for (name, descr) in defaults.items():
(kind, default) = descr
if ((section in parser.sections()) and (name in parser.options(section))):
if (kind == 'int'):
value = parser.getint(section, name)
elif (kind == 'float'):
value = parser.getfloat(section, name)
elif (kind == 'bool'):
value = parser.getboolean(section, name)
else:
value = parser.get(section, name)
else:
value = default
config[name] = value
if ('patterns' in parser.sections()):
patterns = [parser.get('patterns', opt) for opt in parser.options('patterns')]
else:
patterns = DEFAULT_PATTERNS
config['patterns'] = patterns
return config
|
Read configuration from the given file.
Parsing is performed through the configparser library.
Returns:
dict: a flattened dict of (option_name, value), using defaults.
|
codesearchnet
|
def remove_site(self):
params = dict(oxd_id=self.oxd_id)
logger.debug('Sending command `remove_site` with params %s', params)
response = self.msgr.request('remove_site', **params)
logger.debug('Received response: %s', response)
if (response['status'] == 'error'):
raise OxdServerError(response['data'])
return response['data']['oxd_id']
|
Cleans up the data for the site.
Returns:
oxd_id if the process was completed without error
Raises:
OxdServerError if there was an issue with the operation
|
codesearchnet
|
def plot_brillouin_zone_from_kpath(kpath, ax=None, **kwargs):
lines = [[kpath.kpath['kpoints'][k] for k in p]
for p in kpath.kpath['path']]
return plot_brillouin_zone(bz_lattice=kpath.prim_rec, lines=lines, ax=ax,
labels=kpath.kpath['kpoints'], **kwargs)
|
Gives the plot (as a matplotlib object) of the symmetry line path in
the Brillouin Zone.
Args:
kpath (HighSymmKpath): a HighSymmKPath object
ax: matplotlib :class:`Axes` or None if a new figure should be created.
**kwargs: provided by add_fig_kwargs decorator
Returns:
matplotlib figure
|
juraj-google-style
|
def get_model(servoid):
data = []
data.append(9)
data.append(servoid)
data.append(EEP_READ_REQ)
data.append(MODEL_NO1_EEP)
data.append(BYTE1)
send_data(data)
rxdata = []
try:
rxdata = SERPORT.read(12)
return (ord(rxdata[9]) & 255)
except:
raise HerkulexError('could not communicate with motors')
|
Get the servo model
This function gets the model of the herkules servo, provided its id
Args:
servoid(int): the id of the servo
Returns:
int: an integer corresponding to the model number
0x06 for DRS-602
0x04 for DRS-402
0x02 for DRS-202
|
codesearchnet
|
def Delete(self, request, global_params=None):
config = self.GetMethodConfig('Delete')
return self._RunMethod(config, request, global_params=global_params)
|
Deletes a `WorkerPool`.
Args:
request: (CloudbuildProjectsLocationsWorkerPoolsDeleteRequest) input message
global_params: (StandardQueryParameters, default: None) global arguments
Returns:
(Operation) The response message.
|
github-repos
|
def delete_vmss(access_token, subscription_id, resource_group, vmss_name):
endpoint = ''.join([get_rm_endpoint(), '/subscriptions/', subscription_id, '/resourceGroups/', resource_group, '/providers/Microsoft.Compute/virtualMachineScaleSets/', vmss_name, '?api-version=', COMP_API])
return do_delete(endpoint, access_token)
|
Delete a virtual machine scale set.
Args:
access_token (str): A valid Azure authentication token.
subscription_id (str): Azure subscription id.
resource_group (str): Azure resource group name.
vmss_name (str): Name of the virtual machine scale set.
Returns:
HTTP response.
|
codesearchnet
|
def contains(self, value, equality_comparer=operator.eq):
if self.closed():
raise ValueError('Attempt to call contains() on a closed Queryable.')
if (not is_callable(equality_comparer)):
raise TypeError('contains() parameter equality_comparer={0} is not callable'.format(repr(equality_comparer)))
if (equality_comparer is operator.eq):
return (value in self._iterable)
for item in self:
if equality_comparer(value, item):
return True
return False
|
Determines whether the sequence contains a particular value.
Execution is immediate. Depending on the type of the sequence, all or
none of the sequence may be consumed by this operation.
Note: This method uses immediate execution.
Args:
value: The value to test for membership of the sequence
Returns:
True if value is in the sequence, otherwise False.
Raises:
ValueError: If the Queryable has been closed.
|
codesearchnet
|
def sg_summary_gradient(tensor, gradient, prefix=None, name=None):
prefix = ('' if (prefix is None) else (prefix + '/'))
name = ((prefix + _pretty_name(tensor)) if (name is None) else (prefix + name))
_scalar((name + '/grad'), tf.reduce_mean(tf.abs(gradient)))
_histogram((name + '/grad-h'), tf.abs(gradient))
|
r"""Register `tensor` to summary report as `gradient`
Args:
tensor: A `Tensor` to log as gradient
gradient: A 0-D `Tensor`. A gradient to log
prefix: A `string`. A prefix to display in the tensor board web UI.
name: A `string`. A name to display in the tensor board web UI.
Returns:
None
|
codesearchnet
|
def multi_label_train_test_split(y, test_size=0.2):
if test_size <= 0 or test_size >= 1:
raise ValueError("`test_size` should be between 0 and 1")
frac = Fraction(test_size).limit_denominator()
test_folds, total_folds = frac.numerator, frac.denominator
logger.warn('Inferring test_size as {}/{}. Generating {} folds. The algorithm might fail if denominator is large.'
.format(test_folds, total_folds, total_folds))
folds = equal_distribution_folds(y, folds=total_folds)
test_indices = np.concatenate(folds[:test_folds])
train_indices = np.concatenate(folds[test_folds:])
return train_indices, test_indices
|
Creates a test split with roughly the same multi-label distribution in `y`.
Args:
y: The multi-label outputs.
test_size: The test size in [0, 1]
Returns:
The train and test indices.
|
juraj-google-style
|
def set_icon_file(self, filename, rel='icon'):
(mimetype, encoding) = mimetypes.guess_type(filename)
self.add_child('favicon', ('<link rel="%s" href="%s" type="%s" />' % (rel, filename, mimetype)))
|
Allows to define an icon for the App
Args:
filename (str): the resource file name (ie. "/res:myicon.png")
rel (str): leave it unchanged (standard "icon")
|
codesearchnet
|
def get_policy(observations, hparams, action_space):
if (not isinstance(action_space, gym.spaces.Discrete)):
raise ValueError('Expecting discrete action space.')
obs_shape = common_layers.shape_list(observations)
(frame_height, frame_width) = obs_shape[2:4]
if (hparams.policy_problem_name == 'dummy_policy_problem_ttt'):
tf.logging.info('Using DummyPolicyProblemTTT for the policy.')
policy_problem = tic_tac_toe_env.DummyPolicyProblemTTT()
else:
tf.logging.info('Using DummyPolicyProblem for the policy.')
policy_problem = DummyPolicyProblem(action_space, frame_height, frame_width)
trainer_lib.add_problem_hparams(hparams, policy_problem)
hparams.force_full_predict = True
model = registry.model(hparams.policy_network)(hparams, tf.estimator.ModeKeys.TRAIN)
try:
num_target_frames = hparams.video_num_target_frames
except AttributeError:
num_target_frames = 1
features = {'inputs': observations, 'input_action': tf.zeros((obs_shape[:2] + [1]), dtype=tf.int32), 'input_reward': tf.zeros((obs_shape[:2] + [1]), dtype=tf.int32), 'targets': tf.zeros(((obs_shape[:1] + [num_target_frames]) + obs_shape[2:])), 'target_action': tf.zeros((obs_shape[:1] + [num_target_frames, 1]), dtype=tf.int32), 'target_reward': tf.zeros((obs_shape[:1] + [num_target_frames, 1]), dtype=tf.int32), 'target_policy': tf.zeros(((obs_shape[:1] + [num_target_frames]) + [action_space.n])), 'target_value': tf.zeros((obs_shape[:1] + [num_target_frames]))}
with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):
t2t_model.create_dummy_vars()
(targets, _) = model(features)
return (targets['target_policy'][(:, 0, :)], targets['target_value'][(:, 0)])
|
Get a policy network.
Args:
observations: observations
hparams: parameters
action_space: action space
Returns:
Tuple (action logits, value).
|
codesearchnet
|
def __init__(self, api_login, api_key):
self.login = api_login
self.key = api_key
self.api_url = self.api_base_url.format(api_version=self.api_version)
|
Initializes OpenLoad instance with given parameters and formats api base url.
Args:
api_login (str): API Login found in openload.co
api_key (str): API Key found in openload.co
Returns:
None
|
juraj-google-style
|
def match_any(patterns, name):
if (not patterns):
return True
return any((match(pattern, name) for pattern in patterns))
|
Test if a name matches any of a list of patterns.
Will return `True` if ``patterns`` is an empty list.
Arguments:
patterns (list): A list of wildcard pattern, e.g ``["*.py",
"*.pyc"]``
name (str): A filename.
Returns:
bool: `True` if the name matches at least one of the patterns.
|
codesearchnet
|
def cas(self, key, value, cas, expire=0, noreply=False):
return self._store_cmd(b'cas', {key: value}, expire, noreply, cas)[key]
|
The memcached "cas" command.
Args:
key: str, see class docs for details.
value: str, see class docs for details.
cas: int or str that only contains the characters '0'-'9'.
expire: optional int, number of seconds until the item is expired
from the cache, or zero for no expiry (the default).
noreply: optional bool, False to wait for the reply (the default).
Returns:
If noreply is True, always returns True. Otherwise returns None if
the key didn't exist, False if it existed but had a different cas
value and True if it existed and was changed.
|
codesearchnet
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.