code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def parse(self, filepath, content):
try:
parsed = yaml.load(content)
except yaml.YAMLError as exc:
msg = 'No YAML object could be decoded from file: {}\n{}'
raise SettingsBackendError(msg.format(filepath, exc))
return parsed
|
Parse opened settings content using YAML parser.
Args:
filepath (str): Settings object, depends from backend
content (str): Settings content from opened file, depends from
backend.
Raises:
boussole.exceptions.SettingsBackendError: If parser can not decode
a valid YAML object.
Returns:
dict: Dictionnary containing parsed setting elements.
|
codesearchnet
|
def find_centroid_alleles(alleles, bp=28, t=0.025):
centroid_alleles = set()
len_allele = group_alleles_by_size(alleles)
for (length, seqs) in len_allele.items():
if (len(seqs) == 1):
centroid_alleles.add(seqs[0])
continue
seq_arr = seq_int_arr(seqs)
starts_ends_idxs = group_alleles_by_start_end_Xbp(seq_arr, bp=bp)
for (k, idxs) in starts_ends_idxs.items():
if (len(idxs) == 1):
centroid_alleles.add(seqs[idxs[0]])
continue
seq_arr_subset = seq_arr[idxs]
dists = pdist(seq_arr_subset, 'hamming')
cl = allele_clusters(dists, t=t)
dm_sq = squareform(dists)
for (cl_key, cl_idxs) in cl.items():
if ((len(cl_idxs) == 1) or (len(cl_idxs) == 2)):
centroid_alleles.add(seq_int_arr_to_nt(seq_arr_subset[cl_idxs[0]]))
continue
dm_sub = dm_subset(dm_sq, cl_idxs)
min_idx = min_row_dist_sum_idx(dm_sub)
centroid_alleles.add(seq_int_arr_to_nt(seq_arr_subset[min_idx]))
return centroid_alleles
|
Reduce list of alleles to set of centroid alleles based on size grouping, ends matching and hierarchical clustering
Workflow for finding centroid alleles:
- grouping by size (e.g. 100bp, 101bp, 103bp, etc)
- then grouped by `bp` nucleotides at ends matching
- size and ends grouped alleles hierarchically clustered (Hamming distance, complete linkage)
- tree cutting at threshold `t`
- select allele with minimum distance to other alleles in cluster as centroid
Args:
alleles (iterable): collection of allele nucleotide sequences
bp (int): number of bp matching at allele ends for size grouping (default=28 due to default blastn megablast word size)
t (float): cluster generation (tree cutting) distance threshold for size grouped alleles
Returns:
set of str: centroid alleles
|
codesearchnet
|
def _get_reference_classnames(self, classname, namespace, resultclass_name, role):
self._validate_namespace(namespace)
result_classes = self._classnamedict(resultclass_name, namespace)
rtn_classnames_set = set()
role = (role.lower() if role else role)
for cl in self._get_association_classes(namespace):
for prop in six.itervalues(cl.properties):
if ((prop.type == 'reference') and self._ref_prop_matches(prop, classname, cl.classname, result_classes, role)):
rtn_classnames_set.add(cl.classname)
return list(rtn_classnames_set)
|
Get list of classnames that are references for which this classname
is a target filtered by the result_class and role parameters if they
are none.
This is a common method used by all of the other reference and
associator methods to create a list of reference classnames
Returns:
list of classnames that satisfy the criteria.
|
codesearchnet
|
def __init__(self, error_name, error_id, error_msg, token_value):
self.error_name = error_name
self.error_id = error_id
self.error_msg = error_msg
self._token_value = token_value
|
Create a LexerError that matches |token_value|.
Args:
error_name: A short, human readable name for the error,
using lowercase-with-dashes-format.
error_id: An integer to identify a specific error:
100s: Lexer errors.
200s: Low level parsing errors.
300s: High level parsing errors.
error_msg: A message to display with this error that describes
clearly what caused the error.
token_value: A string to match against the token that the lexer
failed at (or None to match against every token).
Returns:
LexerError that matches against |token_value|.
|
github-repos
|
def nuc_p(msg):
tc = typecode(msg)
if typecode(msg) < 5 or typecode(msg) > 22:
raise RuntimeError(
"%s: Not a surface position message (5<TC<8), \
airborne position message (8<TC<19), \
or airborne position with GNSS height (20<TC<22)" % msg
)
try:
NUCp = uncertainty.TC_NUCp_lookup[tc]
HPL = uncertainty.NUCp[NUCp]['HPL']
RCu = uncertainty.NUCp[NUCp]['RCu']
RCv = uncertainty.NUCp[NUCp]['RCv']
except KeyError:
HPL, RCu, RCv = uncertainty.NA, uncertainty.NA, uncertainty.NA
if tc in [20, 21]:
RCv = uncertainty.NA
return HPL, RCu, RCv
|
Calculate NUCp, Navigation Uncertainty Category - Position (ADS-B version 1)
Args:
msg (string): 28 bytes hexadecimal message string,
Returns:
int: Horizontal Protection Limit
int: 95% Containment Radius - Horizontal (meters)
int: 95% Containment Radius - Vertical (meters)
|
juraj-google-style
|
def _update_in_hdx(self, object_type, id_field_name, file_to_upload=None, **kwargs):
self._check_load_existing_object(object_type, id_field_name)
self._merge_hdx_update(object_type, id_field_name, file_to_upload, **kwargs)
|
Helper method to check if HDX object exists in HDX and if so, update it
Args:
object_type (str): Description of HDX object type (for messages)
id_field_name (str): Name of field containing HDX object identifier
file_to_upload (Optional[str]): File to upload to HDX
**kwargs: See below
operation (string): Operation to perform eg. patch. Defaults to update.
Returns:
None
|
codesearchnet
|
def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: Optional[List[int]]=None) -> List[int]:
if token_ids_1 is None:
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. The special tokens depend on calling set_lang.
An NLLB sequence has the following format, where `X` represents the sequence:
- `input_ids` (for encoder) `X [eos, src_lang_code]`
- `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]`
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
separator.
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
github-repos
|
def print_stack_events(self):
first_token = '7be7981bd6287dd8112305e8f3822a6f'
keep_going = True
next_token = first_token
current_request_token = None
rows = []
try:
while (keep_going and next_token):
if (next_token == first_token):
response = self._cf_client.describe_stack_events(StackName=self._stack_name)
else:
response = self._cf_client.describe_stack_events(StackName=self._stack_name, NextToken=next_token)
next_token = response.get('NextToken', None)
for event in response['StackEvents']:
row = []
event_time = event.get('Timestamp')
request_token = event.get('ClientRequestToken', 'unknown')
if (current_request_token is None):
current_request_token = request_token
elif (current_request_token != request_token):
keep_going = False
break
row.append(event_time.strftime('%x %X'))
row.append(event.get('LogicalResourceId'))
row.append(event.get('ResourceStatus'))
row.append(event.get('ResourceStatusReason', ''))
rows.append(row)
if (len(rows) > 0):
print('\nEvents for the current upsert:')
print(tabulate(rows, headers=['Time', 'Logical ID', 'Status', 'Message']))
return True
else:
print('\nNo stack events found\n')
except Exception as wtf:
print(wtf)
return False
|
List events from the given stack
Args:
None
Returns:
None
|
codesearchnet
|
def ssh(container, cmd='', user='root', password='root'):
ip = get_ip(container)
ssh_cmd = 'sshpass -p \'%s\' ssh -A -t -o StrictHostKeyChecking=no \'%s\'@%s' % (password, user, ip)
local('ssh -A -t -o StrictHostKeyChecking=no -i "%s" %s@%s %s %s' % (
env.key_filename, env.user, env.host, ssh_cmd, cmd))
|
SSH into a running container, using the host as a jump host. This requires
the container to have a running sshd process.
Args:
* container: Container name or ID
* cmd='': Command to run in the container
* user='root': SSH username
* password='root': SSH password
|
juraj-google-style
|
def targets(self):
return self._targets
|
Return the unique names of ops to run.
Returns:
A list of strings.
|
github-repos
|
def switch_to_window(page_class, webdriver):
window_list = list(webdriver.window_handles)
original_window = webdriver.current_window_handle
for window_handle in window_list:
webdriver.switch_to_window(window_handle)
try:
return PageFactory.create_page(page_class, webdriver)
except:
pass
webdriver.switch_to_window(original_window)
raise WindowNotFoundError(
u("Window {0} not found.").format(page_class.__class__.__name__))
|
Utility method for switching between windows. It will search through currently open
windows, then switch to the window matching the provided PageObject class.
Args:
page_class (PageObject): Page class to search for/instantiate.
webdriver (WebDriver): Selenium webdriver.
Usage::
WebUtils.switch_to_window(DetailsPopUpPage, driver) # switches to the pop up window.
|
juraj-google-style
|
def set(self, key, value, **kwargs):
path = '%s/%s' % (self.path, key.replace('/', '%2F'))
data = {'value': value}
server_data = self.gitlab.http_put(path, post_data=data, **kwargs)
return self._obj_cls(self, server_data)
|
Create or update the object.
Args:
key (str): The key of the object to create/update
value (str): The value to set for the object
**kwargs: Extra options to send to the server (e.g. sudo)
Raises:
GitlabAuthenticationError: If authentication is not correct
GitlabSetError: If an error occured
Returns:
obj: The created/updated attribute
|
juraj-google-style
|
def write_fasta_file(self, outfile, force_rerun=False):
if ssbio.utils.force_rerun(flag=force_rerun, outfile=outfile):
SeqIO.write(self, outfile, "fasta")
self.sequence_path = outfile
|
Write a FASTA file for the protein sequence, ``seq`` will now load directly from this file.
Args:
outfile (str): Path to new FASTA file to be written to
force_rerun (bool): If an existing file should be overwritten
|
juraj-google-style
|
def client(self):
if self.proxy:
proxyhandler = urllib.ProxyHandler({'http': self.proxy})
opener = urllib.build_opener(proxyhandler)
urllib.install_opener(opener)
transport = ProxyTransport()
if (not hasattr(self, '_client')):
transport = None
if self.pypi:
if self.proxy:
logger.info('Using provided proxy: {0}.'.format(self.proxy))
self._client = xmlrpclib.ServerProxy(settings.PYPI_URL, transport=transport)
self._client_set = True
else:
self._client = None
return self._client
|
XMLRPC client for PyPI. Always returns the same instance.
If the package is provided as a path to compressed source file,
PyPI will not be used and the client will not be instantiated.
Returns:
XMLRPC client for PyPI or None.
|
codesearchnet
|
def psq2(d1, d2):
d1, d2 = flatten(d1), flatten(d2)
def f(p):
return sum((p ** 2) * np.nan_to_num(np.log(p * len(p))))
return abs(f(d1) - f(d2))
|
Compute the PSQ2 measure.
Args:
d1 (np.ndarray): The first distribution.
d2 (np.ndarray): The second distribution.
|
juraj-google-style
|
def myRank(grade, badFormat, year, length):
return int((sorted(everyonesAverage(year, badFormat, length), reverse=True).index(grade) + 1))
|
rank of candidateNumber in year
Arguments:
grade {int} -- a weighted average for a specific candidate number and year
badFormat {dict} -- candNumber : [results for candidate]
year {int} -- year you are in
length {int} -- length of each row in badFormat divided by 2
Returns:
int -- rank of candidateNumber in year
|
codesearchnet
|
def conversations_replies(self, *, channel: str, ts: str, **kwargs) -> SlackResponse:
kwargs.update({"channel": channel, "ts": ts})
return self.api_call("conversations.replies", http_verb="GET", params=kwargs)
|
Retrieve a thread of messages posted to a conversation
Args:
channel (str): Conversation ID to fetch thread from. e.g. 'C1234567890'
ts (str): Unique identifier of a thread's parent message. e.g. '1234567890.123456'
|
juraj-google-style
|
def __init__(self, scope, parent, name, result, args=None, paren=False):
CodeExpression.__init__(self, scope, parent, name, result, paren)
self.arguments = args or ()
|
Constructor for operators.
Args:
scope (CodeEntity): The program scope where this object belongs.
parent (CodeEntity): This object's parent in the program tree.
name (str): The name of the operator in the program.
result (str): The return type of the operator in the program.
Kwargs:
args (tuple): Initial tuple of arguments.
paren (bool): Whether the expression is enclosed in parentheses.
|
juraj-google-style
|
def NewFromJSON(data):
if data.get('shakes', None):
shakes = [Shake.NewFromJSON(shk) for shk in data.get('shakes')]
else:
shakes = None
return User(
id=data.get('id', None),
name=data.get('name', None),
profile_image_url=data.get('profile_image_url', None),
about=data.get('about', None),
website=data.get('website', None),
shakes=shakes)
|
Create a new User instance from a JSON dict.
Args:
data (dict): JSON dictionary representing a user.
Returns:
A User instance.
|
juraj-google-style
|
def get_backend(self, name=None, **kwargs):
backends = self.backends(name, **kwargs)
if (len(backends) > 1):
raise QiskitBackendNotFoundError('More than one backend matches the criteria')
elif (not backends):
raise QiskitBackendNotFoundError('No backend matches the criteria')
return backends[0]
|
Return a single backend matching the specified filtering.
Args:
name (str): name of the backend.
**kwargs (dict): dict used for filtering.
Returns:
BaseBackend: a backend matching the filtering.
Raises:
QiskitBackendNotFoundError: if no backend could be found or
more than one backend matches.
|
codesearchnet
|
def decompress_dir(path):
for parent, subdirs, files in os.walk(path):
for f in files:
decompress_file(os.path.join(parent, f))
|
Recursively decompresses all files in a directory.
Args:
path (str): Path to parent directory.
|
juraj-google-style
|
def validate_all_values_for_key(obj, key, validation_fun):
for vkey, value in obj.items():
if vkey == key:
validation_fun(value)
elif isinstance(value, dict):
validate_all_values_for_key(value, key, validation_fun)
|
Validate value for all (nested) occurrence of `key` in `obj`
using `validation_fun`.
Args:
obj (dict): dictionary object.
key (str): key whose value is to be validated.
validation_fun (function): function used to validate the value
of `key`.
Raises:
ValidationError: `validation_fun` will raise this error on failure
|
juraj-google-style
|
def be2le_state_by_state(tpm):
le = np.empty(tpm.shape)
N = tpm.shape[0]
n = int(log2(N))
for i in range(N):
le[(i, :)] = tpm[(be2le(i, n), :)]
return le
|
Convert a state-by-state TPM from big-endian to little-endian or vice
versa.
Args:
tpm (np.ndarray): A state-by-state TPM.
Returns:
np.ndarray: The state-by-state TPM in the other indexing format.
Example:
>>> tpm = np.arange(16).reshape([4, 4])
>>> be2le_state_by_state(tpm)
array([[ 0., 1., 2., 3.],
[ 8., 9., 10., 11.],
[ 4., 5., 6., 7.],
[12., 13., 14., 15.]])
|
codesearchnet
|
def generate_orders(events, sell_delay=5, sep=','):
sell_delay = (float(unicode(sell_delay)) or 1)
for (i, (t, row)) in enumerate(events.iterrows()):
for (sym, event) in row.to_dict().iteritems():
if (event and (not np.isnan(event))):
if (event > 0):
sell_event_i = min((i + sell_delay), (len(events) - 1))
sell_event_t = events.index[sell_event_i]
sell_event = events[sym][sell_event_i]
if np.isnan(sell_event):
events[sym][sell_event_t] = (- 1)
else:
events[sym][sell_event_t] += (- 1)
order = (t.year, t.month, t.day, sym, ('Buy' if (event > 0) else 'Sell'), (abs(event) * 100))
if isinstance(sep, basestring):
(yield sep.join(order))
(yield order)
|
Generate CSV orders based on events indicated in a DataFrame
Arguments:
events (pandas.DataFrame): Table of NaNs or 1's, one column for each symbol.
1 indicates a BUY event. -1 a SELL event. nan or 0 is a nonevent.
sell_delay (float): Number of days to wait before selling back the shares bought
sep (str or None): if sep is None, orders will be returns as tuples of `int`s, `float`s, and `str`s
otherwise the separator will be used to join the order parameters into the yielded str
Returns:
generator of str: yielded CSV rows in the format (yr, mo, day, symbol, Buy/Sell, shares)
|
codesearchnet
|
def __query_node(self, ip, host):
host = util.shorten_host_name(host, self.config.host_domains)
(node, node_updated) = self.__get_known_node(ip, host)
if (node == None):
node = natlas_node()
node.name = host
node.ip = [ip]
state = NODE_NEW
else:
if (node.snmpobj.success == 1):
return (node, NODE_KNOWN)
if (node_updated == 1):
state = NODE_NEWIP
else:
state = NODE_KNOWN
node.name = host
if (ip == 'UNKNOWN'):
return (node, state)
if ((ip == '0.0.0.0') | (ip == '')):
return (node, state)
if (node.try_snmp_creds(self.config.snmp_creds) == 0):
return (node, state)
node.name = node.get_system_name(self.config.host_domains)
if (node.name != host):
if (state == NODE_NEW):
(node2, node_updated2) = self.__get_known_node(ip, host)
if ((node2 != None) & (node_updated2 == 0)):
return (node, NODE_KNOWN)
if (node_updated2 == 1):
state = NODE_NEWIP
if ((node.name == None) | (node.name == '')):
node.name = node.get_ipaddr()
node.opts.get_serial = True
node.query_node()
return (node, state)
|
Query this node.
Return node details and if we already knew about it or if this is a new node.
Don't save the node to the known list, just return info about it.
Args:
ip: IP Address of the node.
host: Hostname of this known (if known from CDP/LLDP)
Returns:
natlas_node: Node of this object
int: NODE_NEW = Newly discovered node
NODE_NEWIP = Already knew about this node but not by this IP
NODE_KNOWN = Already knew about this node
|
codesearchnet
|
def replace_batch_norm(model):
for name, module in model.named_children():
if isinstance(module, nn.BatchNorm2d):
new_module = DetaFrozenBatchNorm2d(module.num_features)
if not module.weight.device == torch.device('meta'):
new_module.weight.data.copy_(module.weight)
new_module.bias.data.copy_(module.bias)
new_module.running_mean.data.copy_(module.running_mean)
new_module.running_var.data.copy_(module.running_var)
model._modules[name] = new_module
if len(list(module.children())) > 0:
replace_batch_norm(module)
|
Recursively replace all `torch.nn.BatchNorm2d` with `DetaFrozenBatchNorm2d`.
Args:
model (torch.nn.Module):
input model
|
github-repos
|
def locate_module(module_id: str, module_type: str=None):
entry_point = None
if module_type:
entry_point = ('ehforwarderbot.%s' % module_type)
module_id = module_id.split('
if entry_point:
for i in pkg_resources.iter_entry_points(entry_point):
if (i.name == module_id):
return i.load()
return pydoc.locate(module_id)
|
Locate module by module ID
Args:
module_id: Module ID
module_type: Type of module, one of ``'master'``, ``'slave'`` and ``'middleware'``
|
codesearchnet
|
def change_t(self, t):
t = super().change_t(t)
self.__now_cycles += 1
if self.__now_cycles % self.__reannealing_per == 0:
t = t * self.__thermostat
if t < self.__t_min:
t = self.__t_default
return t
|
Change temperature.
Override.
Args:
t: Now temperature.
Returns:
Next temperature.
|
juraj-google-style
|
def set_parameter_vector(self, vector, include_frozen=False):
v = self.parameter_vector
if include_frozen:
v[:] = vector
else:
v[self.unfrozen_mask] = vector
self.parameter_vector = v
self.dirty = True
|
Set the parameter values to the given vector
Args:
vector (array[vector_size] or array[full_size]): The target
parameter vector. This must be in the same order as
``parameter_names`` and it should only include frozen
parameters if ``include_frozen`` is ``True``.
include_frozen (Optional[bool]): Should the frozen parameters be
included in the returned value? (default: ``False``)
|
juraj-google-style
|
def _pearson_correlation(self, imgs_to_decode):
(x, y) = (imgs_to_decode.astype(float), self.feature_images.astype(float))
return self._xy_corr(x, y)
|
Decode images using Pearson's r.
Computes the correlation between each input image and each feature
image across voxels.
Args:
imgs_to_decode: An ndarray of images to decode, with voxels in rows
and images in columns.
Returns:
An n_features x n_images 2D array, with each cell representing the
pearson correlation between the i'th feature and the j'th image
across all voxels.
|
codesearchnet
|
def process(self, tensor):
for processor in self.preprocessors:
tensor = processor.process(tensor=tensor)
return tensor
|
Process state.
Args:
tensor: tensor to process
Returns: processed state
|
juraj-google-style
|
def substitute(self, var_map, cont=False, tag=None):
return self.apply(substitute, var_map=var_map, cont=cont, tag=tag)
|
Substitute sub-expressions both on the lhs and rhs
Args:
var_map (dict): Dictionary with entries of the form
``{expr: substitution}``
|
juraj-google-style
|
def to_sql(self, view: views.View, limit: Optional[int]=None) -> str:
sql_generator = self._build_sql_generator(view)
sql_statement = sql_generator.build_sql_statement()
view_table_name = f'{self._value_set_codes_table.project}.{self._value_set_codes_table.dataset_id}.{self._value_set_codes_table.table_id}'
valuesets_clause = sql_generator.build_valueset_expression(view_table_name)
if limit is not None and limit < 1:
raise ValueError('Query limits must be positive integers.')
limit_clause = '' if limit is None else f' LIMIT {limit}'
return f'{valuesets_clause}{sql_statement}{limit_clause}'
|
Returns the SQL used to run the given view in BigQuery.
Args:
view: the view used to generate the SQL.
limit: optional limit to attach to the generated SQL.
Returns:
The SQL used to run the given view.
|
github-repos
|
def etm_supported(self):
res = self._dll.JLINKARM_ETM_IsPresent()
if (res == 1):
return True
info = ctypes.c_uint32(0)
index = enums.JLinkROMTable.ETM
res = self._dll.JLINKARM_GetDebugInfo(index, ctypes.byref(info))
if (res == 1):
return False
return True
|
Returns if the CPU core supports ETM.
Args:
self (JLink): the ``JLink`` instance.
Returns:
``True`` if the CPU has the ETM unit, otherwise ``False``.
|
juraj-google-style
|
def pred(scores: jax.Array, rows: jax.Array, cols: jax.Array, N: int) -> jax.Array:
r: jax.Array = 2 * jax.ops.segment_sum(scores.take(cols), rows, N) - scores.sum()
return r > 0
|
Predicts the target output from the learned scores and input entries.
Args:
scores (jax.Array): Contribution scores of features.
rows (jax.Array): Row indices of True values in the input.
cols (jax.Array): Column indices of True values in the input.
N (int): The number of input entries.
Returns:
res (jax.Array): A prediction of the target.
|
github-repos
|
def convert_source_tokens_to_target_tokens(self, input_ids, source_tokenizer, destination_tokenizer):
text = source_tokenizer.batch_decode(input_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
dest_ids = destination_tokenizer(text, add_special_tokens=True, return_tensors='pt')['input_ids']
return dest_ids.to(input_ids.device)
|
Convert token IDs from one tokenizer to another.
Args:
input_ids: The input token IDs.
source_tokenizer: The source tokenizer.
destination_tokenizer: The destination tokenizer.
Returns:
The converted token IDs.
|
github-repos
|
def _CreatePerformanceTarget(client, campaign_group_id):
cgpt_service = client.GetService('CampaignGroupPerformanceTargetService', version='v201809')
operations = [{'operator': 'ADD', 'operand': {'campaignGroupId': campaign_group_id, 'performanceTarget': {'efficiencyTargetType': 'CPC_LESS_THAN_OR_EQUAL_TO', 'efficiencyTargetValue': 3000000, 'spendTargetType': 'MAXIMUM', 'spendTarget': {'microAmount': 500000000}, 'volumeGoalType': 'MAXIMIZE_CLICKS', 'volumeTargetValue': 3000, 'startDate': datetime.datetime.now().strftime('%Y%m%d'), 'endDate': (datetime.datetime.now() + datetime.timedelta(90)).strftime('%Y%m%d')}}}]
cgpt = cgpt_service.mutate(operations)['value'][0]
print(('Campaign performance target with ID "%d" was added for campaign group ID "%d".' % (cgpt['id'], cgpt['campaignGroupId'])))
|
Creates a performance target for the campaign group.
Args:
client: an AdWordsClient instance.
campaign_group_id: an integer ID for the campaign group.
|
codesearchnet
|
def create_proxy_api_files(output_files, proxy_module_root, output_dir):
for file_path in output_files:
module = get_module(os.path.dirname(file_path), output_dir)
if not os.path.isdir(os.path.dirname(file_path)):
os.makedirs(os.path.dirname(file_path))
contents = f'from {proxy_module_root}.{module} import *'
with open(file_path, 'w') as fp:
fp.write(contents)
|
Creates __init__.py files in proxy format for the Python API.
Args:
output_files: List of __init__.py file paths to create.
proxy_module_root: Module root for proxy-import format. If specified, proxy
files with content like `from proxy_module_root.proxy_module import *`
will be created to enable import resolution under TensorFlow.
output_dir: output API root directory.
|
github-repos
|
def __init__(self, to_track: Dict):
self.to_track = to_track
self._seen: Set[str] = set()
|
This class "tracks" a python dictionary by keeping track of which item is accessed.
Args:
to_track (Dict): The dictionary we wish to track
|
github-repos
|
def major_complex(network, state):
log.info('Calculating major complex...')
result = complexes(network, state)
if result:
result = max(result)
else:
empty_subsystem = Subsystem(network, state, ())
result = _null_sia(empty_subsystem)
log.info('Finished calculating major complex.')
return result
|
Return the major complex of the network.
Args:
network (Network): The |Network| of interest.
state (tuple[int]): The state of the network (a binary tuple).
Returns:
SystemIrreducibilityAnalysis: The |SIA| for the |Subsystem| with
maximal |big_phi|.
|
codesearchnet
|
def show_available_noise_curves(return_curves=True, print_curves=False):
if ((return_curves is False) and (print_curves is False)):
raise ValueError(('Both return curves and print_curves are False.' + ' You will not see the options'))
cfd = os.path.dirname(os.path.abspath(__file__))
curves = [curve.split('.')[0] for curve in os.listdir((cfd + '/noise_curves/'))]
if print_curves:
for f in curves:
print(f)
if return_curves:
return curves
return
|
List available sensitivity curves
This function lists the available sensitivity curve strings in noise_curves folder.
Args:
return_curves (bool, optional): If True, return a list of curve options.
print_curves (bool, optional): If True, print each curve option.
Returns:
(optional list of str): List of curve options.
Raises:
ValueError: Both args are False.
|
codesearchnet
|
def run_processor(
processorClass,
ocrd_tool=None,
mets_url=None,
resolver=None,
workspace=None,
page_id=None,
log_level=None,
input_file_grp=None,
output_file_grp=None,
parameter=None,
working_dir=None,
):
workspace = _get_workspace(
workspace,
resolver,
mets_url,
working_dir
)
if parameter is not None:
if not ':
fname = os.path.abspath(parameter)
else:
fname = workspace.download_url(parameter)
with open(fname, 'r') as param_json_file:
parameter = json.load(param_json_file)
else:
parameter = {}
log.debug("Running processor %s", processorClass)
processor = processorClass(
workspace,
ocrd_tool=ocrd_tool,
page_id=page_id,
input_file_grp=input_file_grp,
output_file_grp=output_file_grp,
parameter=parameter
)
ocrd_tool = processor.ocrd_tool
name = '%s v%s' % (ocrd_tool['executable'], processor.version)
otherrole = ocrd_tool['steps'][0]
log.debug("Processor instance %s (%s doing %s)", processor, name, otherrole)
processor.process()
workspace.mets.add_agent(
name=name,
_type='OTHER',
othertype='SOFTWARE',
role='OTHER',
otherrole=otherrole
)
workspace.save_mets()
return processor
|
Create a workspace for mets_url and run processor through it
Args:
parameter (string): URL to the parameter
|
juraj-google-style
|
def set_status(self, trial, status):
trial.status = status
if status in [Trial.TERMINATED, Trial.ERROR]:
self.try_checkpoint_metadata(trial)
|
Sets status and checkpoints metadata if needed.
Only checkpoints metadata if trial status is a terminal condition.
PENDING, PAUSED, and RUNNING switches have checkpoints taken care of
in the TrialRunner.
Args:
trial (Trial): Trial to checkpoint.
status (Trial.status): Status to set trial to.
|
juraj-google-style
|
def unnest_collection(collection, df_list):
for item in collection['link']['item']:
if item['class'] == 'dataset':
df_list.append(Dataset.read(item['href']).write('dataframe'))
elif item['class'] == 'collection':
nested_collection = request(item['href'])
unnest_collection(nested_collection, df_list)
|
Unnest collection structure extracting all its datasets and converting \
them to Pandas Dataframes.
Args:
collection (OrderedDict): data in JSON-stat format, previously \
deserialized to a python object by \
json.load() or json.loads(),
df_list (list): list variable which will contain the converted \
datasets.
Returns:
Nothing.
|
juraj-google-style
|
def retransmit(self, data):
if data["method"] == "REGISTER":
if not self.registered and self.register_retries < self.max_retries:
logger.debug("<%s> Timeout exceeded. " % str(self.cuuid) + \
"Retransmitting REGISTER request.")
self.register_retries += 1
self.register(data["address"], retry=False)
else:
logger.debug("<%s> No need to retransmit." % str(self.cuuid))
if data["method"] == "EVENT":
if data["euuid"] in self.event_uuids:
self.event_uuids[data["euuid"]]["retry"] += 1
if self.event_uuids[data["euuid"]]["retry"] > self.max_retries:
logger.debug("<%s> Max retries exceeded. Timed out waiting "
"for server for event: %s" % (data["cuuid"],
data["euuid"]))
logger.debug("<%s> <euuid:%s> Deleting event from currently "
"processing event uuids" % (data["cuuid"],
str(data["euuid"])))
del self.event_uuids[data["euuid"]]
else:
self.listener.send_datagram(
serialize_data(data, self.compression,
self.encryption, self.server_key),
self.server)
logger.debug("<%s> <euuid:%s> Scheduling to retry in %s "
"seconds" % (data["cuuid"],
str(data["euuid"]),
str(self.timeout)))
self.listener.call_later(
self.timeout, self.retransmit, data)
else:
logger.debug("<%s> <euuid:%s> No need to "
"retransmit." % (str(self.cuuid),
str(data["euuid"])))
|
Processes messages that have been delivered from the transport
protocol.
Args:
data (dict): A dictionary containing the packet data to resend.
Returns:
None
Examples:
>>> data
{'method': 'REGISTER', 'address': ('192.168.0.20', 40080)}
|
juraj-google-style
|
class DPTFeatureFusionLayer(nn.Module):
def __init__(self, config, align_corners=True):
super().__init__()
self.align_corners = align_corners
self.projection = nn.Conv2d(config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=1, bias=True)
self.residual_layer1 = DPTPreActResidualLayer(config)
self.residual_layer2 = DPTPreActResidualLayer(config)
def forward(self, hidden_state, residual=None):
if residual is not None:
if hidden_state.shape != residual.shape:
residual = nn.functional.interpolate(residual, size=(hidden_state.shape[2], hidden_state.shape[3]), mode='bilinear', align_corners=False)
hidden_state = hidden_state + self.residual_layer1(residual)
hidden_state = self.residual_layer2(hidden_state)
hidden_state = nn.functional.interpolate(hidden_state, scale_factor=2, mode='bilinear', align_corners=self.align_corners)
hidden_state = self.projection(hidden_state)
return hidden_state
|
Feature fusion layer, merges feature maps from different stages.
Args:
config (`[DPTConfig]`):
Model configuration class defining the model architecture.
align_corners (`bool`, *optional*, defaults to `True`):
The align_corner setting for bilinear upsample.
|
github-repos
|
def proto_refactor_files(dest_dir, namespace, namespace_path):
for dn, dns, fns in os.walk(dest_dir):
for fn in fns:
fn = os.path.join(dn, fn)
if fnmatch.fnmatch(fn, '*.proto'):
data = proto_refactor(fn, namespace, namespace_path)
with open(fn, 'w') as f:
f.write(data)
|
This method runs the refactoring on all the Protobuf files in the
Dropsonde repo.
Args:
dest_dir (str): directory where the Protobuf files lives.
namespace (str): the desired package name (i.e. "dropsonde.py2")
namespace_path (str): the desired path corresponding to the package
name (i.e. "dropsonde/py2")
|
juraj-google-style
|
def _create(self, monomer, mon_vector):
while self.length != (self.n_units-1):
if self.linear_chain:
move_direction = np.array(mon_vector) / np.linalg.norm(mon_vector)
else:
move_direction = self._next_move_direction()
self._add_monomer(monomer.copy(), mon_vector, move_direction)
|
create the polymer from the monomer
Args:
monomer (Molecule)
mon_vector (numpy.array): molecule vector that starts from the
start atom index to the end atom index
|
juraj-google-style
|
def save_as(self, filename: str) -> None:
lib.TCOD_image_save(self.image_c, filename.encode('utf-8'))
|
Save the Image to a 32-bit .bmp or .png file.
Args:
filename (Text): File path to same this Image.
|
codesearchnet
|
def start(self):
if (not self.started):
self.started = True
self.executor = ThreadPoolExecutor(max_workers=32)
self.poller = self.executor.submit(self.poll_events)
else:
raise IllegalStateError('Dispatcher is already started.')
|
Starts the event dispatcher.
Initiates executor and start polling events.
Raises:
IllegalStateError: Can't start a dispatcher again when it's already
running.
|
codesearchnet
|
def report_fhir_path_warning(self, element_path: str, fhir_path_constraint: str, msg: str) -> None:
|
Reports a FHIRPath constraint warning during validation and/or encoding.
Args:
element_path: The path to the field that the constraint is defined on.
fhir_path_constraint: The FHIRPath constraint expression.
msg: The warning message produced.
|
github-repos
|
def color_gen_map(colors: Iterable[Tuple[(int, int, int)]], indexes: Iterable[int]) -> List[Color]:
ccolors = ffi.new('TCOD_color_t[]', colors)
cindexes = ffi.new('int[]', indexes)
cres = ffi.new('TCOD_color_t[]', (max(indexes) + 1))
lib.TCOD_color_gen_map(cres, len(ccolors), ccolors, cindexes)
return [Color._new_from_cdata(cdata) for cdata in cres]
|
Return a smoothly defined scale of colors.
If ``indexes`` is [0, 3, 9] for example, the first color from ``colors``
will be returned at 0, the 2nd will be at 3, and the 3rd will be at 9.
All in-betweens will be filled with a gradient.
Args:
colors (Iterable[Union[Tuple[int, int, int], Sequence[int]]]):
Array of colors to be sampled.
indexes (Iterable[int]): A list of indexes.
Returns:
List[Color]: A list of Color instances.
Example:
>>> tcod.color_gen_map([(0, 0, 0), (255, 128, 0)], [0, 5])
[Color(0, 0, 0), Color(51, 25, 0), Color(102, 51, 0), \
Color(153, 76, 0), Color(204, 102, 0), Color(255, 128, 0)]
|
codesearchnet
|
def from_node(cls, node):
if (not isinstance(node, aioxmpp.stanza.Message)):
raise AttributeError('node must be a aioxmpp.stanza.Message instance')
msg = cls()
msg._to = node.to
msg._sender = node.from_
if (None in node.body):
msg.body = node.body[None]
else:
for key in node.body.keys():
msg.body = node.body[key]
break
for data in node.xep0004_data:
if (data.title == SPADE_X_METADATA):
for field in data.fields:
if (field.var != '_thread_node'):
msg.set_metadata(field.var, field.values[0])
else:
msg.thread = field.values[0]
return msg
|
Creates a new spade.message.Message from an aixoxmpp.stanza.Message
Args:
node (aioxmpp.stanza.Message): an aioxmpp Message
Returns:
spade.message.Message: a new spade Message
|
codesearchnet
|
def _render_fluent_timestep(self,
fluent_type: str,
fluents: Sequence[Tuple[str, np.array]],
fluent_variables: Sequence[Tuple[str, List[str]]]) -> None:
for fluent_pair, variable_list in zip(fluents, fluent_variables):
name, fluent = fluent_pair
_, variables = variable_list
print(name)
fluent = fluent.flatten()
for variable, value in zip(variables, fluent):
print('- {}: {} = {}'.format(fluent_type, variable, value))
print()
|
Prints `fluents` of given `fluent_type` as list of instantiated variables
with corresponding values.
Args:
fluent_type (str): Fluent type.
fluents (Sequence[Tuple[str, np.array]]): List of pairs (fluent_name, fluent_values).
fluent_variables (Sequence[Tuple[str, List[str]]]): List of pairs (fluent_name, args).
|
juraj-google-style
|
def console_print_ex(
con: tcod.console.Console,
x: int,
y: int,
flag: int,
alignment: int,
fmt: str,
) -> None:
lib.TCOD_console_printf_ex(_console(con), x, y, flag, alignment, _fmt(fmt))
|
Print a string on a console using a blend mode and alignment mode.
Args:
con (Console): Any Console instance.
x (int): Character x position from the left.
y (int): Character y position from the top.
.. deprecated:: 8.5
Use :any:`Console.print_` instead.
|
juraj-google-style
|
def bulkWrite(self, endpoint, buffer, timeout = 100):
r
return self.dev.write(endpoint, buffer, timeout)
|
r"""Perform a bulk write request to the endpoint specified.
Arguments:
endpoint: endpoint number.
buffer: sequence data buffer to write.
This parameter can be any sequence type.
timeout: operation timeout in milliseconds. (default: 100)
Returns the number of bytes written.
|
juraj-google-style
|
def _recursive_remove_blank_dirs(self, path):
path = os.path.abspath(path)
if path == self.path or len(path) <= len(self.path):
return
if not os.path.exists(path):
return self._recursive_remove_blank_dirs(
os.path.dirname(path)
)
if os.listdir(path):
return
shutil.rmtree(path)
return self._recursive_remove_blank_dirs(
os.path.dirname(path)
)
|
Make sure, that blank directories are removed from the storage.
Args:
path (str): Path which you suspect that is blank.
|
juraj-google-style
|
def triangle_area(point1, point2, point3):
a = point_distance(point1, point2)
b = point_distance(point1, point3)
c = point_distance(point2, point3)
s = (a + b + c) / 2.0
return math.sqrt(s * (s - a) * (s - b) * (s - c))
|
Uses Heron's formula to find the area of a triangle
based on the coordinates of three points.
Args:
point1: list or tuple, the x y coordinate of point one.
point2: list or tuple, the x y coordinate of point two.
point3: list or tuple, the x y coordinate of point three.
Returns:
The area of a triangle as a floating point number.
Requires:
The math module, point_distance().
|
juraj-google-style
|
def grad_dot(dy, x1, x2):
if len(numpy.shape(x1)) == 1:
dy = numpy.atleast_2d(dy)
elif len(numpy.shape(x2)) == 1:
dy = numpy.transpose(numpy.atleast_2d(dy))
x2 = numpy.transpose(numpy.atleast_2d(x2))
x2_t = numpy.transpose(numpy.atleast_2d(
numpy.sum(x2, axis=tuple(numpy.arange(numpy.ndim(x2) - 2)))))
dy_x2 = numpy.sum(dy, axis=tuple(-numpy.arange(numpy.ndim(x2) - 2) - 2))
return numpy.reshape(numpy.dot(dy_x2, x2_t), numpy.shape(x1))
|
Gradient of NumPy dot product w.r.t. to the left hand side.
Args:
dy: The gradient with respect to the output.
x1: The left hand side of the `numpy.dot` function.
x2: The right hand side
Returns:
The gradient with respect to `x1` i.e. `x2.dot(dy.T)` with all the
broadcasting involved.
|
juraj-google-style
|
def _publish_internal(self, push_messages):
import requests
response = requests.post(((self.host + self.api_url) + '/push/send'), data=json.dumps([pm.get_payload() for pm in push_messages]), headers={'accept': 'application/json', 'accept-encoding': 'gzip, deflate', 'content-type': 'application/json'})
try:
response_data = response.json()
except ValueError:
response.raise_for_status()
raise PushServerError('Invalid server response', response)
if ('errors' in response_data):
raise PushServerError('Request failed', response, response_data=response_data, errors=response_data['errors'])
if ('data' not in response_data):
raise PushServerError('Invalid server response', response, response_data=response_data)
response.raise_for_status()
if (len(push_messages) != len(response_data['data'])):
raise PushServerError(('Mismatched response length. Expected %d %s but only received %d' % (len(push_messages), ('receipt' if (len(push_messages) == 1) else 'receipts'), len(response_data['data']))), response, response_data=response_data)
receipts = []
for (i, receipt) in enumerate(response_data['data']):
receipts.append(PushResponse(push_message=push_messages[i], status=receipt.get('status', PushResponse.ERROR_STATUS), message=receipt.get('message', ''), details=receipt.get('details', None)))
return receipts
|
Send push notifications
The server will validate any type of syntax errors and the client will
raise the proper exceptions for the user to handle.
Each notification is of the form:
{
'to': 'ExponentPushToken[xxx]',
'body': 'This text gets display in the notification',
'badge': 1,
'data': {'any': 'json object'},
}
Args:
push_messages: An array of PushMessage objects.
|
codesearchnet
|
def pubsub_pop_message(self, deadline=None):
if not self.subscribed:
excep = ClientError("you must subscribe before using "
"pubsub_pop_message")
raise tornado.gen.Return(excep)
reply = None
try:
reply = self._reply_list.pop(0)
raise tornado.gen.Return(reply)
except IndexError:
pass
if deadline is not None:
td = timedelta(seconds=deadline)
yield self._condition.wait(timeout=td)
else:
yield self._condition.wait()
try:
reply = self._reply_list.pop(0)
except IndexError:
pass
raise tornado.gen.Return(reply)
|
Pops a message for a subscribed client.
Args:
deadline (int): max number of seconds to wait (None => no timeout)
Returns:
Future with the popped message as result (or None if timeout
or ConnectionError object in case of connection errors
or ClientError object if you are not subscribed)
|
juraj-google-style
|
def _prepare_for_training(self, job_name=None):
if (job_name is not None):
self._current_job_name = job_name
else:
if self.base_job_name:
base_name = self.base_job_name
elif isinstance(self, sagemaker.algorithm.AlgorithmEstimator):
base_name = self.algorithm_arn.split('/')[(- 1)]
else:
base_name = base_name_from_image(self.train_image())
self._current_job_name = name_from_base(base_name)
if (self.output_path is None):
local_code = get_config_value('local.local_code', self.sagemaker_session.config)
if (self.sagemaker_session.local_mode and local_code):
self.output_path = ''
else:
self.output_path = 's3:
|
Set any values in the estimator that need to be set before training.
Args:
* job_name (str): Name of the training job to be created. If not specified, one is generated,
using the base name given to the constructor if applicable.
|
codesearchnet
|
def DeserializeExclusiveData(self, reader):
self.Type = TransactionType.StateTransaction
self.Descriptors = reader.ReadSerializableArray('neo.Core.State.StateDescriptor.StateDescriptor')
|
Deserialize full object.
Args:
reader (neo.IO.BinaryReader):
Raises:
Exception: If the transaction type is incorrect or if there are no claims.
|
juraj-google-style
|
def __call__(self, raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], padding: Union[bool, str, PaddingStrategy]=False, max_length: Optional[int]=None, pad_to_multiple_of: Optional[int]=None, padding_side: Optional[str]=None, return_tensors: Optional[Union[str, TensorType]]=None, verbose: bool=True, **kwargs) -> BatchEncoding:
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
if is_batched_numpy and len(raw_speech.shape) > 2:
raise ValueError(f'Only mono-channel audio is supported for input to {self}')
is_batched = is_batched_numpy or (isinstance(raw_speech, (list, tuple)) and isinstance(raw_speech[0], (np.ndarray, tuple, list)))
if is_batched and (not isinstance(raw_speech[0], np.ndarray)):
raw_speech = [np.asarray(speech) for speech in raw_speech]
elif not is_batched and (not isinstance(raw_speech, np.ndarray)):
raw_speech = np.asarray(raw_speech)
if not is_batched:
raw_speech = [raw_speech]
if self.do_normalize:
raw_speech = [(x - np.mean(x)) / np.sqrt(np.var(x) + 1e-05) for x in raw_speech]
encoded_inputs = BatchEncoding({'input_values': raw_speech})
padded_inputs = self.pad(encoded_inputs, padding=padding, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=self.return_attention_mask, return_tensors=return_tensors, verbose=verbose)
return padded_inputs
|
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
sequences.
Args:
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
values, a list of numpy array or a list of list of float values. Must be mono channel audio, not
stereo, i.e. single float per timestep.
padding_side (`str`, *optional*):
The side on which the model should have padding applied. Should be selected between ['right', 'left'].
Default value is picked from the class attribute of the same name.
|
github-repos
|
def run(self, args):
jlink = self.create_jlink(args)
if args.list:
print('Built-in Licenses: %s' % ', '.join(jlink.licenses.split(',')))
print('Custom Licenses: %s' % ', '.join(jlink.custom_licenses.split(',')))
elif args.add is not None:
if jlink.add_license(args.add):
print('Successfully added license.')
else:
print('License already exists.')
elif args.erase:
if jlink.erase_licenses():
print('Successfully erased all custom licenses.')
else:
print('Failed to erase custom licenses.')
|
Runs the license command.
Args:
self (LicenseCommand): the ``LicenseCommand`` instance
args (Namespace): the arguments passed on the command-line
Returns:
``None``
|
juraj-google-style
|
def use_gradient(grad_f):
grad_f_name = register_to_random_name(grad_f)
def function_wrapper(f):
def inner(*inputs):
state = {'out_value': None}
out = f(*inputs)
def store_out(out_value):
'Store the value of out to a python variable.'
state['out_value'] = out_value
store_name = ('store_' + f.__name__)
store = tf.py_func(store_out, [out], (), stateful=True, name=store_name)
def mock_f(*inputs):
'Mimic f by retrieving the stored value of out.'
return state['out_value']
with tf.control_dependencies([store]):
with gradient_override_map({'PyFunc': grad_f_name}):
mock_name = ('mock_' + f.__name__)
mock_out = tf.py_func(mock_f, inputs, out.dtype, stateful=True, name=mock_name)
mock_out.set_shape(out.get_shape())
return mock_out
return inner
return function_wrapper
|
Decorator for easily setting custom gradients for TensorFlow functions.
* DO NOT use this function if you need to serialize your graph.
* This function will cause the decorated function to run slower.
Example:
def _foo_grad(op, grad): ...
@use_gradient(_foo_grad)
def foo(x1, x2, x3): ...
Args:
grad_f: function to use as gradient.
Returns:
A decorator to apply to the function you wish to override the gradient of.
|
codesearchnet
|
def MergeBaseClass(cls, base):
bases = tuple((b for b in cls.bases if b != base))
bases += tuple((b for b in base.bases if b not in bases))
method_names = [m.name for m in cls.methods]
methods = cls.methods + tuple((m for m in base.methods if m.name not in method_names))
constant_names = [c.name for c in cls.constants]
constants = cls.constants + tuple((c for c in base.constants if c.name not in constant_names))
class_names = [c.name for c in cls.classes]
classes = cls.classes + tuple((c for c in base.classes if c.name not in class_names))
decorators = cls.decorators or base.decorators
if cls.slots:
slots = cls.slots + tuple((s for s in base.slots or () if s not in cls.slots))
else:
slots = base.slots
return pytd.Class(name=cls.name, keywords=cls.keywords or base.keywords, bases=bases, methods=methods, constants=constants, classes=classes, decorators=decorators, slots=slots, template=cls.template or base.template)
|
Merge a base class into a subclass.
Arguments:
cls: The subclass to merge values into. pytd.Class.
base: The superclass whose values will be merged. pytd.Class.
Returns:
a pytd.Class of the two merged classes.
|
github-repos
|
def check_mailfy(self, query, kwargs={}):
import re
import requests
s = requests.Session()
r1 = s.get("https:
csrf_token = re.findall("csrf_token", r1.text)[0]
r2 = s.post(
'https:
data={"email": query},
headers={"X-CSRFToken": csrf_token}
)
if '{"email": [{"message": "Another account is using' in r2.text:
return r2.text
else:
return None
|
Verifying a mailfy query in this platform.
This might be redefined in any class inheriting from Platform. The only
condition is that any of this should return a dictionary as defined.
Args:
-----
query: The element to be searched.
kwargs: Dictionary with extra parameters. Just in case.
Return:
-------
Returns the collected data if exists or None if not.
|
juraj-google-style
|
def get_frame(self, index=None, onset=None):
if onset:
index = int(onset * self.fps)
return super(VideoStim, self).get_frame(index)
|
Overrides the default behavior by giving access to the onset
argument.
Args:
index (int): Positional index of the desired frame.
onset (float): Onset (in seconds) of the desired frame.
|
juraj-google-style
|
def is_process_running(process_name):
is_running = False
if os.path.isfile('/usr/bin/pgrep'):
dev_null = open(os.devnull, 'wb')
returncode = subprocess.call(['/usr/bin/pgrep', process_name],
stdout=dev_null)
is_running = bool(returncode == 0)
return is_running
|
Check if a process with the given name is running.
Args:
(str): Process name, e.g. "Sublime Text"
Returns:
(bool): True if the process is running
|
juraj-google-style
|
def get_variant_genotypes(self, variant):
if not self.has_index:
raise NotImplementedError("Not implemented when IMPUTE2 file is "
"not indexed (see genipe)")
try:
impute2_chrom = CHROM_STR_TO_INT[variant.chrom.name]
except KeyError:
raise ValueError(
"Invalid chromosome ('{}') for IMPUTE2.".format(variant.chrom)
)
variant_info = self._impute2_index[
(self._impute2_index.chrom == impute2_chrom) &
(self._impute2_index.pos == variant.pos)
]
if variant_info.shape[0] == 0:
logging.variant_not_found(variant)
return []
elif variant_info.shape[0] == 1:
return self._get_biallelic_variant(variant, variant_info)
else:
return self._get_multialleic_variant(variant, variant_info)
|
Get the genotypes from a well formed variant instance.
Args:
marker (Variant): A Variant instance.
Returns:
A list of Genotypes instance containing a pointer to the variant as
well as a vector of encoded genotypes.
|
juraj-google-style
|
def post_warning(self, name, message):
self.post_command(OPERATIONS.CMD_POST_MESSAGE, _create_message(name, states.WARNING_LEVEL, message))
|
Asynchronously post a user facing warning message about a service.
Args:
name (string): The name of the service
message (string): The user facing warning message that will be stored
for the service and can be queried later.
|
codesearchnet
|
def list(self, container_or_share_name, container=None, account=None):
key = self.storage_client.storage_accounts.list_keys(self.resource_group_name, account).keys[0].value
if container:
bs = BlockBlobService(account_name=account, account_key=key)
container_list = []
for i in bs.list_blobs(container_or_share_name).items:
container_list.append(i.name)
return container_list
elif not container:
fs = FileService(account_name=account, account_key=key)
container_list = []
for i in fs.list_directories_and_files(container_or_share_name).items:
container_list.append(i.name)
return container_list
else:
raise ValueError("You have to pass a value for container param")
|
List the blobs/files inside a container/share_name.
Args:
container_or_share_name(str): Name of the container/share_name where we want to list the blobs/files.
container(bool): flag to know it you are listing files or blobs.
account(str): The name of the storage account.
|
juraj-google-style
|
def step1_get_authorize_url(self, redirect_uri=None, state=None):
if (redirect_uri is not None):
logger.warning('The redirect_uri parameter for OAuth2WebServerFlow.step1_get_authorize_url is deprecated. Please move to passing the redirect_uri in via the constructor.')
self.redirect_uri = redirect_uri
if (self.redirect_uri is None):
raise ValueError('The value of redirect_uri must not be None.')
query_params = {'client_id': self.client_id, 'redirect_uri': self.redirect_uri, 'scope': self.scope}
if (state is not None):
query_params['state'] = state
if (self.login_hint is not None):
query_params['login_hint'] = self.login_hint
if self._pkce:
if (not self.code_verifier):
self.code_verifier = _pkce.code_verifier()
challenge = _pkce.code_challenge(self.code_verifier)
query_params['code_challenge'] = challenge
query_params['code_challenge_method'] = 'S256'
query_params.update(self.params)
return _helpers.update_query_params(self.auth_uri, query_params)
|
Returns a URI to redirect to the provider.
Args:
redirect_uri: string, Either the string 'urn:ietf:wg:oauth:2.0:oob'
for a non-web-based application, or a URI that
handles the callback from the authorization server.
This parameter is deprecated, please move to passing
the redirect_uri in via the constructor.
state: string, Opaque state string which is passed through the
OAuth2 flow and returned to the client as a query parameter
in the callback.
Returns:
A URI as a string to redirect the user to begin the authorization
flow.
|
codesearchnet
|
def setup_service(api_name, api_version, credentials=None):
if not credentials:
credentials = oauth2client.client.GoogleCredentials.get_application_default(
)
return apiclient.discovery.build(
api_name, api_version, credentials=credentials)
|
Configures genomics API client.
Args:
api_name: Name of the Google API (for example: "genomics")
api_version: Version of the API (for example: "v2alpha1")
credentials: Credentials to be used for the gcloud API calls.
Returns:
A configured Google Genomics API client with appropriate credentials.
|
juraj-google-style
|
def flatten(self, max_value: int) -> FrozenSet[int]:
return frozenset(self.iter(max_value))
|
Return a set of all values contained in the sequence set.
Args:
max_value: The maximum value, in place of any ``*``.
|
juraj-google-style
|
def recoverURL(self, url):
self.setUserAgent()
if "https:
self.setProxy(protocol = "https")
else:
self.setProxy(protocol = "http")
if ".onion" in url:
try:
pass
except:
pass
url = url.replace(".onion", ".onion.cab")
try:
recurso = self.br.open(url)
except:
return None
html = recurso.read()
return html
|
Public method to recover a resource.
Args:
-----
url: The URL to be collected.
Returns:
--------
Returns a resource that has to be read, for instance, with html = self.br.read()
|
juraj-google-style
|
def print_type(self, t, literal=False) -> str:
|
Returns a string of the type of t.
For example, if t is `0`, then this method returns "int" with literal=False
or `Literal[0]` with literal=True.
Args:
t: An abstract value.
literal: Whether to print literals literally.
|
github-repos
|
def render_table(data, headers=None):
builder = HtmlBuilder()
builder._render_objects(data, headers, datatype='dict')
return builder._to_html()
|
Return a dictionary list formatted as a HTML table.
Args:
data: a list of dictionaries, one per row.
headers: the keys in the dictionary to use as table columns, in order.
|
juraj-google-style
|
def run_benchmarks(benchmark_suite, verbose=True):
def run(benchmark: BenchmarkFactoryFn, size: int):
benchmark_instance_callable = benchmark(size)
start = time.time()
_ = benchmark_instance_callable()
return time.time() - start
cost_series = collections.defaultdict(list)
size_series = collections.defaultdict(list)
for benchmark_config in benchmark_suite:
name = str(benchmark_config)
num_runs = benchmark_config.num_runs
if isinstance(benchmark_config, LinearRegressionBenchmarkConfig):
size = benchmark_config.starting_point
step = benchmark_config.increment
else:
assert isinstance(benchmark_config, BenchmarkConfig)
size = benchmark_config.size
step = 0
for run_id in range(num_runs):
gc.collect()
time_cost = run(benchmark_config.benchmark, size)
cost_series[name].append(time_cost)
size_series[name].append(size)
if verbose:
per_element_cost = time_cost / size
print('%s: run %d of %d, per element time cost: %g sec' % (name, run_id + 1, num_runs, per_element_cost))
size += step
if verbose:
print('')
if verbose:
pad_length = max([len(str(bc)) for bc in benchmark_suite])
for benchmark_config in benchmark_suite:
name = str(benchmark_config)
if isinstance(benchmark_config, LinearRegressionBenchmarkConfig):
from scipy import stats
print()
gradient, intercept, r_value, p_value, std_err = stats.linregress(size_series[name], cost_series[name])
print('Fixed cost ', intercept)
print('Per-element ', gradient)
print('R^2 ', r_value ** 2)
else:
assert isinstance(benchmark_config, BenchmarkConfig)
per_element_median_cost = numpy.median(cost_series[name]) / benchmark_config.size
std = numpy.std(cost_series[name]) / benchmark_config.size
print('%s: p. element median time cost: %g sec, relative std: %.2f%%' % (name.ljust(pad_length, ' '), per_element_median_cost, std * 100 / per_element_median_cost))
return (size_series, cost_series)
|
Runs benchmarks, and collects execution times.
A simple instrumentation to run a callable several times, collect and print
its execution times.
Args:
benchmark_suite: A list of BenchmarkConfig.
verbose: bool, whether to print benchmark results to stdout.
Returns:
A dictionary of the form string -> list of floats. Keys of the dictionary
are benchmark names, values are execution times in seconds for each run.
|
github-repos
|
def erfinv(x):
if any_symbolic_tensors((x,)):
return Erfinv().symbolic_call(x)
x = backend.convert_to_tensor(x)
return backend.math.erfinv(x)
|
Computes the inverse error function of `x`, element-wise.
Args:
x: Input tensor.
Returns:
A tensor with the same dtype as `x`.
Example:
>>> x = np.array([-0.5, -0.2, -0.1, 0.0, 0.3])
>>> keras.ops.erfinv(x)
array([-0.47694, -0.17914, -0.08886, 0. , 0.27246], dtype=float32)
|
github-repos
|
def closest_point(a, b, p):
ap = [(p[0] - a[0]), (p[1] - a[1])]
ab = [(b[0] - a[0]), (b[1] - a[1])]
mag = float(((ab[0] ** 2) + (ab[1] ** 2)))
proj = dot(ap, ab)
if (mag == 0):
dist = 0
else:
dist = (proj / mag)
if (dist < 0):
return [a[0], a[1]]
elif (dist > 1):
return [b[0], b[1]]
else:
return [(a[0] + (ab[0] * dist)), (a[1] + (ab[1] * dist))]
|
Finds closest point in a line segment
Args:
a ([float, float]): x and y coordinates. Line start
b ([float, float]): x and y coordinates. Line end
p ([float, float]): x and y coordinates. Point to find in the segment
Returns:
(float, float): x and y coordinates of the closest point
|
codesearchnet
|
def getfileversion(self):
(status, major_v, minor_v, release, info) = _C.Hgetfileversion(self._id)
_checkErr('getfileversion', status, 'cannot get file version')
return (major_v, minor_v, release, info)
|
Get file version info.
Args:
no argument
Returns:
4-element tuple with the following components:
-major version number (int)
-minor version number (int)
-complete library version number (int)
-additional information (string)
C library equivalent : Hgetlibversion
|
codesearchnet
|
def __init__(self, *args, **kwargs):
super(ClaimTransaction, self).__init__(*args, **kwargs)
self.Type = TransactionType.ClaimTransaction
|
Create an instance.
Args:
*args:
**kwargs:
|
juraj-google-style
|
def add_ensembl_info(genes, ensembl_lines):
LOG.info("Adding ensembl coordinates")
if isinstance(ensembl_lines, DataFrame):
ensembl_genes = parse_ensembl_gene_request(ensembl_lines)
else:
ensembl_genes = parse_ensembl_genes(ensembl_lines)
for ensembl_gene in ensembl_genes:
gene_obj = genes.get(ensembl_gene['hgnc_id'])
if not gene_obj:
continue
gene_obj['chromosome'] = ensembl_gene['chrom']
gene_obj['start'] = ensembl_gene['gene_start']
gene_obj['end'] = ensembl_gene['gene_end']
gene_obj['ensembl_gene_id'] = ensembl_gene['ensembl_gene_id']
|
Add the coordinates from ensembl
Args:
genes(dict): Dictionary with all genes
ensembl_lines(iteable): Iteable with raw ensembl info
|
juraj-google-style
|
def AddArguments(cls, argument_group):
argument_group.add_argument(
'--server', dest='server', type=str, action='store',
default=cls._DEFAULT_SERVER, metavar='HOSTNAME',
help='The hostname or server IP address of the server.')
argument_group.add_argument(
'--port', dest='port', type=int, action='store',
default=cls._DEFAULT_PORT, metavar='PORT',
help='The port number of the server.')
|
Adds command line arguments the helper supports to an argument group.
This function takes an argument parser or an argument group object and adds
to it all the command line arguments this helper supports.
Args:
argument_group (argparse._ArgumentGroup|argparse.ArgumentParser):
argparse group.
|
juraj-google-style
|
def _clean_url(url):
if url == 'default':
url = DEFAULT_SERVER_HTTP_URL
if url.startswith("ws"):
raise ValueError("url should be the http or https URL for the server, not the websocket URL")
return url.rstrip("/")
|
Produce a canonical Bokeh server URL.
Args:
url (str)
A URL to clean, or "defatul". If "default" then the
``BOKEH_SERVER_HTTP_URL`` will be returned.
Returns:
str
|
juraj-google-style
|
async def skip(self, query="1"):
if not self.state == 'ready':
logger.debug("Trying to skip from wrong state '{}'".format(self.state))
return
if query == "":
query = "1"
elif query == "all":
query = str(len(self.queue) + 1)
try:
num = int(query)
except TypeError:
self.statuslog.error("Skip argument must be a number")
except ValueError:
self.statuslog.error("Skip argument must be a number")
else:
self.statuslog.info("Skipping")
for i in range(num - 1):
if len(self.queue) > 0:
self.prev_queue.append(self.queue.pop(0))
try:
self.streamer.stop()
except Exception as e:
logger.exception(e)
|
The skip command
Args:
query (str): The number of items to skip
|
juraj-google-style
|
def rotate(self, vecs):
assert vecs.dtype == np.float32
assert vecs.ndim in [1, 2]
if vecs.ndim == 2:
return vecs @ self.R
elif vecs.ndim == 1:
return (vecs.reshape(1, -1) @ self.R).reshape(-1)
|
Rotate input vector(s) by the rotation matrix.`
Args:
vecs (np.ndarray): Input vector(s) with dtype=np.float32.
The shape can be a single vector (D, ) or several vectors (N, D)
Returns:
np.ndarray: Rotated vectors with the same shape and dtype to the input vecs.
|
juraj-google-style
|
def commit(self, sourcedir, targetdir, abs_config, abs_sourcedir,
abs_targetdir):
config_path, config_filename = os.path.split(abs_config)
if not os.path.exists(config_path):
os.makedirs(config_path)
if not os.path.exists(abs_sourcedir):
os.makedirs(abs_sourcedir)
if not os.path.exists(abs_targetdir):
os.makedirs(abs_targetdir)
self.backend_engine.dump({
'SOURCES_PATH': sourcedir,
'TARGET_PATH': targetdir,
"LIBRARY_PATHS": [],
"OUTPUT_STYLES": "nested",
"SOURCE_COMMENTS": False,
"EXCLUDES": []
}, abs_config, indent=4)
|
Commit project structure and configuration file
Args:
sourcedir (string): Source directory path.
targetdir (string): Compiled files target directory path.
abs_config (string): Configuration file absolute path.
abs_sourcedir (string): ``sourcedir`` expanded as absolute path.
abs_targetdir (string): ``targetdir`` expanded as absolute path.
|
juraj-google-style
|
def abspath(self, path):
if not path.startswith(os.path.sep) or path.startswith('~'):
path = os.path.expanduser(os.path.join(self.base_path, path))
return path
|
Transform the path to an absolute path
Args:
path (string): The path to transform to an absolute path
Returns:
string: The absolute path to the file
|
juraj-google-style
|
def LockedWrite(self, cache_data):
if isinstance(cache_data, six.text_type):
cache_data = cache_data.encode(encoding=self._encoding)
with self._thread_lock:
if not self._EnsureFileExists():
return False
with self._process_lock_getter() as acquired_plock:
if not acquired_plock:
return False
with open(self._filename, 'wb') as f:
f.write(cache_data)
return True
|
Acquire an interprocess lock and write a string.
This method safely acquires the locks then writes a string
to the cache file. If the string is written successfully
the function will return True, if the write fails for any
reason it will return False.
Args:
cache_data: string or bytes to write.
Returns:
bool: success
|
juraj-google-style
|
def __clean__(struct: Union[dict, list]) -> Union[dict, list]:
if isinstance(struct, dict):
for key, value in struct.items():
if isinstance(value, bytes):
struct[key] = base64.standard_b64encode(value).decode('ascii')
elif isinstance(value, date):
struct[key] = str(value)
else:
API.__clean__(value)
elif isinstance(struct, list):
for index, value in enumerate(struct):
if isinstance(value, bytes):
struct[index] = base64.standard_b64encode(value).decode('ascii')
elif isinstance(value, date):
struct[index] = str(value)
else:
API.__clean__(value)
return struct
|
Helper to recursively clean up JSON data for API call.
Converts bytes -> base64.
Converts date -> str (yyyy-mm-dd).
TODO: Add Converts datetime, time -> string.
Args:
struct: The kwargs being cleaned up.
Returns:
struct: The kwargs with replacments.
|
github-repos
|
def get_public_tokens(self):
r = self.remote_utils.get_url((self.url() + 'public_tokens/'))
return r.json()
|
Get a list of public tokens available on this server.
Arguments:
None
Returns:
str[]: list of public tokens
|
codesearchnet
|
def setOutputHandler(self, outputhandler):
class OutputHandlerInternal(amplpython.OutputHandler):
def output(self, kind, msg):
outputhandler.output(kind, msg)
self._outputhandler = outputhandler
self._outputhandler_internal = OutputHandlerInternal()
lock_and_call(
lambda: self._impl.setOutputHandler(
self._outputhandler_internal
),
self._lock
)
|
Sets a new output handler.
Args:
outputhandler: The function handling the AMPL output derived from
interpreting user commands.
|
juraj-google-style
|
def add_scalar_value(self, value_buf):
self.__container_node.add_child(_Node(value_buf))
self.current_container_length += len(value_buf)
|
Add a node to the tree containing a scalar value.
Args:
value_buf (bytearray): bytearray containing the scalar value.
|
codesearchnet
|
def _move_bee(self, bee, new_values):
score = np.nan_to_num(new_values[0])
if (bee.score > score):
bee.failed_trials += 1
else:
bee.values = new_values[1]
bee.score = score
bee.error = new_values[2]
bee.failed_trials = 0
self._logger.log('debug', 'Bee assigned to new merged position')
|
Moves a bee to a new position if new fitness score is better than
the bee's current fitness score
Args:
bee (EmployerBee): bee to move
new_values (tuple): (new score, new values, new fitness function
return value)
|
codesearchnet
|
def merge(profile, branch, merge_into):
data = merges.merge(profile, branch, merge_into)
return data
|
Merge a branch into another branch.
Args:
profile
A profile generated from ``simplygithub.authentication.profile``.
Such profiles tell this module (i) the ``repo`` to connect to,
and (ii) the ``token`` to connect with.
branch
The name of the branch to merge.
merge_into
The name of the branch you want to merge into.
Returns:
A dict wtih data about the merge.
|
codesearchnet
|
def set_brightness(self, brightness):
if not 25 <= brightness <= 255:
raise ValueError("The brightness needs to be between 25 and 255.")
payload = self.generate_payload(SET, {self.DPS_INDEX_BRIGHTNESS: brightness})
data = self._send_receive(payload)
return data
|
Set the brightness value of an rgb bulb.
Args:
brightness(int): Value for the brightness (25-255).
|
juraj-google-style
|
def _accept(random_sample: float, cost_diff: float,
temp: float) -> Tuple[bool, float]:
exponent = -cost_diff / temp
if exponent >= 0.0:
return True, 1.0
else:
probability = math.exp(exponent)
return probability > random_sample, probability
|
Calculates probability and draws if solution should be accepted.
Based on exp(-Delta*E/T) formula.
Args:
random_sample: Uniformly distributed random number in the range [0, 1).
cost_diff: Cost difference between new and previous solutions.
temp: Current temperature.
Returns:
Tuple of boolean and float, with boolean equal to True if solution is
accepted, and False otherwise. The float value is acceptance
probability.
|
juraj-google-style
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.