code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def getitem_slot(self, node: cfg.CFGNode, index_var: cfg.Variable) -> tuple[cfg.CFGNode, cfg.Variable]:
results = []
unresolved = False
node, ret = self.call_pytd(node, '__getitem__', index_var)
if self.is_concrete:
for val in index_var.bindings:
try:
index = self.ctx.convert.value_to_constant(val.data, int)
except abstract_utils.ConversionError:
unresolved = True
else:
self_len = len(self.pyval)
if -self_len <= index < self_len:
results.append(self.pyval[index])
else:
unresolved = True
if unresolved or not self.is_concrete:
results.append(ret)
return (node, self.ctx.join_variables(node, results))
|
Implements __getitem__ for List.
Arguments:
node: The current CFG node.
index_var: The Variable containing the index value, the i in lst[i].
Returns:
Tuple of (node, return_variable). node may be the same as the argument.
return_variable is a Variable with bindings of the possible return values.
|
github-repos
|
def from_millis(cls, timeout_ms):
if hasattr(timeout_ms, 'has_expired'):
return timeout_ms
if timeout_ms is None:
return cls(None)
return cls(timeout_ms / 1000.0)
|
Create a new PolledTimeout if needed.
If timeout_ms is already a PolledTimeout, just return it, otherwise create a
new PolledTimeout with the given timeout in milliseconds.
Args:
timeout_ms: PolledTimeout object, or number of milliseconds to use for
creating a new one.
Returns:
A PolledTimeout object that will expire in timeout_ms milliseconds, which
may be timeout_ms itself, or a newly allocated PolledTimeout.
|
juraj-google-style
|
def __deepcopy__(self, memo):
with distribute_lib.enter_or_assert_strategy(self._distribute_strategy):
v = copy.deepcopy(self._v, memo)
copied_variable = type(self)(strategy=self._distribute_strategy, v=v, aggregation=self._aggregation)
memo[id(self)] = copied_variable
return copied_variable
|
Perform a deepcopy of the `AggregatingVariable`.
Unlike the deepcopy of a regular tf.Variable, this keeps the original
strategy and devices of the `AggregatingVariable`. To avoid confusion
with the behavior of deepcopy on a regular `Variable` (which does
copy into new devices), we only allow a deepcopy of a `AggregatingVariable`
within its originating strategy scope.
Args:
memo: The memoization object for `deepcopy`.
Returns:
A deep copy of the current `AggregatingVariable`.
Raises:
RuntimeError: If trying to deepcopy into a different strategy.
|
github-repos
|
def make_mapper(features):
if (not features):
features = Feature(input=[], transformer=NullTransformer())
if (not iterable(features)):
features = (features,)
return DataFrameMapper([t.as_input_transformer_tuple() for t in features], input_df=True)
|
Make a DataFrameMapper from a feature or list of features
Args:
features (Union[Feature, List[Feature]]): feature or list of features
Returns:
DataFrameMapper: mapper made from features
|
codesearchnet
|
def compute_classification_results(self, adv_batches, dataset_batches, dataset_meta, defense_work=None):
class_batch_to_work = {}
if defense_work:
for v in itervalues(defense_work.work):
class_batch_to_work[v['output_classification_batch_id']] = v
accuracy_matrix = ResultMatrix()
error_matrix = ResultMatrix()
hit_target_class_matrix = ResultMatrix()
processed_images_count = {}
total_count = len(self.data)
processed_count = 0
logging.info('Processing %d files with classification results', len(self.data))
for (k, v) in iteritems(self.data):
if ((processed_count % 100) == 0):
logging.info('Processed %d out of %d classification results', processed_count, total_count)
processed_count += 1
defense_id = v['submission_id']
adv_batch = adv_batches.data[v['adversarial_batch_id']]
attack_id = adv_batch['submission_id']
work_item = class_batch_to_work.get(k)
required_work_stats = ['stat_correct', 'stat_error', 'stat_target_class', 'stat_num_images']
if (work_item and work_item['error']):
continue
if (work_item and all(((work_item.get(i) is not None) for i in required_work_stats))):
count_correctly_classified = work_item['stat_correct']
count_errors = work_item['stat_error']
count_hit_target_class = work_item['stat_target_class']
num_images = work_item['stat_num_images']
else:
logging.warning('Recomputing accuracy for classification batch %s', k)
(count_correctly_classified, count_errors, count_hit_target_class, num_images) = analyze_one_classification_result(self._storage_client, v['result_path'], adv_batch, dataset_batches, dataset_meta)
accuracy_matrix[(defense_id, attack_id)] += count_correctly_classified
error_matrix[(defense_id, attack_id)] += count_errors
hit_target_class_matrix[(defense_id, attack_id)] += count_hit_target_class
processed_images_count[defense_id] = (processed_images_count.get(defense_id, 0) + num_images)
return (accuracy_matrix, error_matrix, hit_target_class_matrix, processed_images_count)
|
Computes classification results.
Args:
adv_batches: instance of AversarialBatches
dataset_batches: instance of DatasetBatches
dataset_meta: instance of DatasetMetadata
defense_work: instance of DefenseWorkPieces
Returns:
accuracy_matrix, error_matrix, hit_target_class_matrix,
processed_images_count
|
codesearchnet
|
def index_bgen(fn, legacy=False):
logger.info("Indexing {} (BGEN) using 'bgenix'{}".format(fn, (' (legacy mode)' if legacy else '')))
command = ['bgenix', '-g', fn, '-index']
if legacy:
command.append('-with-rowid')
try:
logger.info("Executing '{}'".format(' '.join(command)))
subprocess.Popen(command).communicate()
except FileNotFoundError:
logger.error("Cannot find 'bgenix', impossible to index {}".format(fn))
sys.exit(1)
logger.info('Index generated')
|
Indexes a BGEN file.
Args:
fn (str): The name of the BGEN file.
|
codesearchnet
|
def tensor_dimension_to_mesh_axis(self, tensor_dimension, mesh_shape):
val = [i for i, mesh_dimension in enumerate(mesh_shape)
if (tensor_dimension.name, mesh_dimension.name) in self._pairs]
if len(val) > 1:
raise ValueError(
"Tensor dimension maps to multiple mesh dimensions"
" tensor_dimension=%s mesh_shape=%s layout=%s"
% (tensor_dimension, mesh_shape, self._pairs))
return val[0] if val else None
|
Mesh axis associated with tensor dimension (or None).
Args:
tensor_dimension: Dimension.
mesh_shape: Shape.
Returns:
Integer or None.
Raises:
ValueError: If one Tensor dimension maps to two mesh dimensions.
|
juraj-google-style
|
def _term(self, term):
term = str(term)
if term:
self.__query["q"] += term
return self
|
Add a term to the query.
Arguments:
term (str): The term to add.
Returns:
SearchHelper: Self
|
juraj-google-style
|
def sigmoid(x):
return nn.sigmoid(x)
|
Element-wise sigmoid.
Args:
x: A tensor or variable.
Returns:
A tensor.
|
github-repos
|
def launch_minecraft(port, installdir="MalmoPlatform", replaceable=False):
launch_script = './launchClient.sh'
if os.name == 'nt':
launch_script = 'launchClient.bat'
cwd = os.getcwd()
os.chdir(installdir)
os.chdir("Minecraft")
try:
cmd = [launch_script, '-port', str(port), '-env']
if replaceable:
cmd.append('-replaceable')
subprocess.check_call(cmd)
finally:
os.chdir(cwd)
|
Launch Minecraft listening for malmoenv connections.
Args:
port: the TCP port to listen on.
installdir: the install dir name. Defaults to MalmoPlatform.
Must be same as given (or defaulted) in download call if used.
replaceable: whether or not to automatically restart Minecraft (default is false).
|
juraj-google-style
|
def get_parent(self, path):
self.__validate_storage_path(path, projects_allowed=False)
path_steps = [step for step in path.split('/') if step]
del path_steps[(- 1)]
parent_path = '/{0}'.format('/'.join(path_steps))
return self.api_client.get_entity_by_query(path=parent_path)
|
Get the parent entity of the entity pointed by the given path.
Args:
path (str): The path of the entity whose parent is needed
Returns:
A JSON object of the parent entity if found.
Raises:
StorageArgumentException: Invalid arguments
StorageForbiddenException: Server response code 403
StorageNotFoundException: Server response code 404
StorageException: other 400-600 error codes
|
codesearchnet
|
def _WriteCacheFile(self, cache_filename, scopes):
creds = {'scopes': sorted(list(scopes)), 'svc_acct_name': self.__service_account_name}
creds_str = json.dumps(creds)
cache_file = _MultiProcessCacheFile(cache_filename)
try:
cache_file.LockedWrite(creds_str)
except KeyboardInterrupt:
raise
except:
pass
|
Writes the credential metadata to the cache file.
This does not save the credentials themselves (CredentialStore class
optionally handles that after this class is initialized).
Args:
cache_filename: Cache filename to check.
scopes: Scopes for the desired credentials.
|
codesearchnet
|
def write_value(self, ostream, kmip_version=enums.KMIPVersion.KMIP_1_0):
try:
ostream.write(pack('!Q', self.value))
except Exception:
self.logger.error('Error writing boolean value to buffer')
raise
|
Write the value of the Boolean object to the output stream.
Args:
ostream (Stream): A buffer to contain the encoded bytes of the
value of a Boolean object. Usually a BytearrayStream object.
Required.
kmip_version (KMIPVersion): An enumeration defining the KMIP
version with which the object will be encoded. Optional,
defaults to KMIP 1.0.
|
codesearchnet
|
def do_test(create_module_fn, exported_names=None, show_debug_info=False):
if exported_names is None:
exported_names = []
logging.set_stderrthreshold('error')
tf.enable_v2_behavior()
def app_main(argv):
if len(argv) > 1:
raise app.UsageError('Too many command-line arguments.')
if FLAGS.save_model_path:
save_model_path = FLAGS.save_model_path
else:
save_model_path = tempfile.mkdtemp(suffix='.saved_model')
save_options = tf.saved_model.SaveOptions(save_debug_info=show_debug_info)
tf.saved_model.save(create_module_fn(), save_model_path, options=save_options)
logging.info('Saved model to: %s', save_model_path)
mlir = pywrap_mlir.experimental_convert_saved_model_to_mlir(save_model_path, ','.join(exported_names), show_debug_info)
mlir = pywrap_mlir.experimental_run_pass_pipeline(mlir, 'canonicalize', show_debug_info)
print(mlir)
filename = '%s/result.mlirbc' % save_model_path
pywrap_mlir.experimental_write_bytecode(filename, mlir)
if not file_io.file_exists(filename):
raise app.UsageError('Failed to create bytecode output.')
app.run(app_main)
|
Runs test.
1. Performs absl and tf "main"-like initialization that must run before almost
anything else.
2. Converts `tf.Module` to SavedModel
3. Converts SavedModel to MLIR
4. Prints the textual MLIR to stdout (it is expected that the caller will have
FileCheck checks in its file to check this output).
This is only for use by the MLIR SavedModel importer tests.
Args:
create_module_fn: A callable taking no arguments, which returns the
`tf.Module` to be converted and printed.
exported_names: A set of exported names for the MLIR converter (default is
"export all").
show_debug_info: If true, shows debug locations in the resulting MLIR.
|
github-repos
|
def block_diag(*blocks: np.ndarray) -> np.ndarray:
for b in blocks:
if (b.shape[0] != b.shape[1]):
raise ValueError('Blocks must be square.')
if (not blocks):
return np.zeros((0, 0), dtype=np.complex128)
n = sum((b.shape[0] for b in blocks))
dtype = functools.reduce(_merge_dtypes, (b.dtype for b in blocks))
result = np.zeros(shape=(n, n), dtype=dtype)
i = 0
for b in blocks:
j = (i + b.shape[0])
result[(i:j, i:j)] = b
i = j
return result
|
Concatenates blocks into a block diagonal matrix.
Args:
*blocks: Square matrices to place along the diagonal of the result.
Returns:
A block diagonal matrix with the given blocks along its diagonal.
Raises:
ValueError: A block isn't square.
|
codesearchnet
|
def _WriteAttributeContainer(self, attribute_container):
if (attribute_container.CONTAINER_TYPE == self._CONTAINER_TYPE_EVENT):
(timestamp, serialized_data) = self._serialized_event_heap.PopEvent()
else:
serialized_data = self._SerializeAttributeContainer(attribute_container)
if (self.compression_format == definitions.COMPRESSION_FORMAT_ZLIB):
compressed_data = zlib.compress(serialized_data)
serialized_data = sqlite3.Binary(compressed_data)
else:
compressed_data = ''
if self._storage_profiler:
self._storage_profiler.Sample('write', attribute_container.CONTAINER_TYPE, len(serialized_data), len(compressed_data))
if (attribute_container.CONTAINER_TYPE == self._CONTAINER_TYPE_EVENT):
query = 'INSERT INTO event (_timestamp, _data) VALUES (?, ?)'
self._cursor.execute(query, (timestamp, serialized_data))
else:
query = 'INSERT INTO {0:s} (_data) VALUES (?)'.format(attribute_container.CONTAINER_TYPE)
self._cursor.execute(query, (serialized_data,))
identifier = identifiers.SQLTableIdentifier(attribute_container.CONTAINER_TYPE, self._cursor.lastrowid)
attribute_container.SetIdentifier(identifier)
|
Writes an attribute container.
The table for the container type must exist.
Args:
attribute_container (AttributeContainer): attribute container.
|
codesearchnet
|
def get_available_versions(self, project_name):
available_versions = self.pypi_client.package_releases(project_name)
if not available_versions:
available_versions = self.pypi_client.package_releases(
project_name.capitalize()
)
return dict(
(self._parse_version(version), version)
for version in available_versions
)
|
Query PyPI to see if package has any available versions.
Args:
project_name (str): The name the project on PyPI.
Returns:
dict: Where keys are tuples of parsed versions and values are the
versions returned by PyPI.
|
juraj-google-style
|
def contains(self, key):
path = self.object_path(key)
return os.path.exists(path) and os.path.isfile(path)
|
Returns whether the object named by `key` exists.
Optimized to only check whether the file object exists.
Args:
key: Key naming the object to check.
Returns:
boalean whether the object exists
|
juraj-google-style
|
def scalar_input_map(func, input_):
if util_iter.isiterable(input_):
return list(map(func, input_))
else:
return func(input_)
|
Map like function
Args:
func: function to apply
input_ : either an iterable or scalar value
Returns:
If ``input_`` is iterable this function behaves like map
otherwise applies func to ``input_``
|
codesearchnet
|
def load_types_for_deserialization(cls, *types_to_deserialize: Type[Any]) -> ContextManager[Dict[str, Type[Any]]]:
return cls._TYPE_REGISTRY.load_types_for_deserialization(*types_to_deserialize)
|
Context manager for loading unregistered types for deserialization.
Example::
class A(pg.Object):
auto_register = False
x: int
class B(A):
y: str
with pg.JSONConvertile.load_types_for_deserialization(A, B):
pg.from_json_str(A(1).to_json_str())
pg.from_json_str(B(1, 'hi').to_json_str())
Args:
*types_to_deserialize: A list of types to be loaded for deserialization.
Returns:
A context manager within which the objects of the requested types
could be deserialized.
|
github-repos
|
def dataframe(start_row=0, max_rows=None, use_cache=True):
output = QueryOutput()
output._output_type = 'dataframe'
output._dataframe_start_row = start_row
output._dataframe_max_rows = max_rows
output._use_cache = use_cache
return output
|
Construct a query output object where the result is a dataframe
Args:
start_row: the row of the table at which to start the export (default 0).
max_rows: an upper limit on the number of rows to export (default None).
use_cache: whether to use cached results or not (default True).
|
juraj-google-style
|
def docx_table_from_xml_node(table_node: ElementTree.Element,
level: int,
config: TextProcessingConfig) -> str:
table = CustomDocxTable()
for row_node in table_node:
if row_node.tag != DOCX_TABLE_ROW:
continue
table.new_row()
for cell_node in row_node:
if cell_node.tag != DOCX_TABLE_CELL:
continue
table.new_cell()
for para_node in cell_node:
text = docx_text_from_xml_node(para_node, level, config)
if text:
table.add_paragraph(text)
return docx_process_table(table, config)
|
Converts an XML node representing a DOCX table into a textual
representation.
Args:
table_node: XML node
level: current level in XML hierarchy (used for recursion; start level
is 0)
config: :class:`TextProcessingConfig` control object
Returns:
string representation
|
juraj-google-style
|
def mix_over_posterior_draws(means, variances):
with tf.compat.v1.name_scope(
'mix_over_posterior_draws', values=[means, variances]):
num_posterior_draws = dist_util.prefer_static_value(
tf.shape(input=means))[0]
component_observations = tfd.Independent(
distribution=tfd.Normal(
loc=dist_util.move_dimension(means, 0, -2),
scale=tf.sqrt(dist_util.move_dimension(variances, 0, -2))),
reinterpreted_batch_ndims=1)
return tfd.MixtureSameFamily(
mixture_distribution=tfd.Categorical(
logits=tf.zeros([num_posterior_draws],
dtype=component_observations.dtype)),
components_distribution=component_observations)
|
Construct a predictive normal distribution that mixes over posterior draws.
Args:
means: float `Tensor` of shape
`[num_posterior_draws, ..., num_timesteps]`.
variances: float `Tensor` of shape
`[num_posterior_draws, ..., num_timesteps]`.
Returns:
mixture_dist: `tfd.MixtureSameFamily(tfd.Independent(tfd.Normal))` instance
representing a uniform mixture over the posterior samples, with
`batch_shape = ...` and `event_shape = [num_timesteps]`.
|
juraj-google-style
|
class AssertEqual(beam.PTransform):
def __init__(self, elements: Iterable[Any]):
self._elements = elements
def expand(self, pcoll):
return assert_that(pcoll | beam.Map(lambda row: beam.Row(**row._asdict())), equal_to(dicts_to_rows(self._elements)))
|
Asserts that the input contains exactly the elements provided.
This is primarily used for testing; it will cause the entire pipeline to
fail if the input to this transform is not exactly the set of `elements`
given in the config parameter.
As with Create, YAML/JSON-style mappings are interpreted as Beam rows,
e.g.::
type: AssertEqual
input: SomeTransform
config:
elements:
- {a: 0, b: "foo"}
- {a: 1, b: "bar"}
would ensure that `SomeTransform` produced exactly two elements with values
`(a=0, b="foo")` and `(a=1, b="bar")` respectively.
Args:
elements: The set of elements that should belong to the PCollection.
YAML/JSON-style mappings will be interpreted as Beam rows.
|
github-repos
|
def write(self, __text: str) -> None:
if __text == os.linesep:
self.handle.write(__text)
else:
frame = inspect.currentframe()
if frame is None:
filename = 'unknown'
lineno = 0
else:
outer = frame.f_back
filename = outer.f_code.co_filename.split(os.sep)[-1]
lineno = outer.f_lineno
self.handle.write('[{:>15s}:{:03d}] {}'.format(filename[-15:],
lineno, __text))
|
Write text to the debug stream.
Args:
__text: Text to write
|
juraj-google-style
|
def _replace_image(image_url, image_tag, ebook_folder, image_name=None):
try:
assert isinstance(image_tag, bs4.element.Tag)
except AssertionError:
raise TypeError(('image_tag cannot be of type ' + str(type(image_tag))))
if (image_name is None):
image_name = str(uuid.uuid4())
try:
image_full_path = os.path.join(ebook_folder, 'images')
assert os.path.exists(image_full_path)
image_extension = save_image(image_url, image_full_path, image_name)
image_tag['src'] = (((('images' + '/') + image_name) + '.') + image_extension)
except ImageErrorException:
image_tag.decompose()
except AssertionError:
raise ValueError(("%s doesn't exist or doesn't contain a subdirectory images" % ebook_folder))
except TypeError:
image_tag.decompose()
|
Replaces the src of an image to link to the local copy in the images folder of the ebook. Tightly coupled with bs4
package.
Args:
image_url (str): The url of the image.
image_tag (bs4.element.Tag): The bs4 tag containing the image.
ebook_folder (str): The directory where the ebook files are being saved. This must contain a subdirectory
called "images".
image_name (Option[str]): The short name to save the image as. Should not contain a directory or an extension.
|
codesearchnet
|
def _get_resource_list(self, rsrc_dict):
if 'collections' in rsrc_dict:
return rsrc_dict['collections']
if 'experiments' in rsrc_dict:
return rsrc_dict['experiments']
if 'channels' in rsrc_dict:
return rsrc_dict['channels']
if 'coords' in rsrc_dict:
return rsrc_dict['coords']
raise RuntimeError('Invalid list response received from Boss. No known resource type returned.')
|
Extracts list of resources from the HTTP response.
Args:
rsrc_dict (dict): HTTP response encoded in a dictionary.
Returns:
(list[string]): List of a type of resource (collections, experiments, etc).
Raises:
(RuntimeError): If rsrc_dict does not contain any known resources.
|
juraj-google-style
|
def load_pip_addons(_globals):
for package_name in known_pip_addons:
(_, username) = package_username(package_name)
try:
load_addon(username, package_name.replace('-', '_'), _globals)
except ImportError:
pass
|
Load all known fabsetup addons which are installed as pypi pip-packages.
Args:
_globals(dict): the globals() namespace of the fabric script.
Return: None
|
codesearchnet
|
def egress(self, envelope, http_headers, operation, binding_options):
if self._logger.isEnabledFor(logging.INFO):
service_name = operation.binding.wsdl.services.keys()[0]
self._logger.info(_REQUEST_LOG_LINE, service_name, operation.name, binding_options['address'])
if self._logger.isEnabledFor(logging.DEBUG):
http_headers_safe = http_headers.copy()
if (self._AUTHORIZATION_HEADER in http_headers_safe):
http_headers_safe[self._AUTHORIZATION_HEADER] = self._REDACTED
request_string = etree.tostring(envelope, pretty_print=True)
safe_request = self._DEVELOPER_TOKEN_SUB.sub(self._REDACTED, request_string.decode('utf-8'))
self._logger.debug(_REQUEST_XML_LOG_LINE, http_headers_safe, safe_request)
return (envelope, http_headers)
|
Overrides the egress function ror request logging.
Args:
envelope: An Element with the SOAP request data.
http_headers: A dict of the current http headers.
operation: The SoapOperation instance.
binding_options: An options dict for the SOAP binding.
Returns:
A tuple of the envelope and headers.
|
codesearchnet
|
def send(email, subject=None, from_email=None, to_email=None, cc=None, bcc=None, reply_to=None, smtp=None):
if is_string(email):
email = EmailContent(email)
from_email = sanitize_email_address((from_email or email.headers.get('from')))
to_email = sanitize_email_address((to_email or email.headers.get('to')))
cc = sanitize_email_address((cc or email.headers.get('cc')))
bcc = sanitize_email_address((bcc or email.headers.get('bcc')))
reply_to = sanitize_email_address((reply_to or email.headers.get('reply-to')))
message_args = {'html': email.html, 'text': email.text, 'subject': (subject or email.headers.get('subject', '')), 'mail_from': from_email, 'mail_to': to_email}
if cc:
message_args['cc'] = cc
if bcc:
message_args['bcc'] = bcc
if reply_to:
message_args['headers'] = {'reply-to': reply_to}
message = emails.Message(**message_args)
for (filename, data) in email.inline_images:
message.attach(filename=filename, content_disposition='inline', data=data)
message.send(smtp=smtp)
|
Send markdown email
Args:
email (str/obj): A markdown string or EmailContent object
subject (str): subject line
from_email (str): sender email address
to_email (str/list): recipient email addresses
cc (str/list): CC email addresses (string or a list)
bcc (str/list): BCC email addresses (string or a list)
reply_to (str): Reply-to email address
smtp (dict): SMTP configuration (dict)
Schema of smtp dict:
host (str): SMTP server host. Default: localhost
port (int): SMTP server port. Default: 25
tls (bool): Use TLS. Default: False
ssl (bool): Use SSL. Default: False
user (bool): SMTP login user. Default empty
password (bool): SMTP login password. Default empty
|
codesearchnet
|
def read(self, vals):
i = 0
{%- for field in fields %}
{%- if field.is_list %}
count = int(vals[i])
i += 1
for _ in range(count):
obj = {{field.object_name}}()
obj.read(vals[i:i + obj.field_count])
self.add_{{field.field_name}}(obj)
i += obj.field_count
{%- else %}
if len(vals[i]) == 0:
self.{{field.field_name}} = None
else:
self.{{field.field_name}} = vals[i]
i += 1
{%- endif %}
{%- endfor %}
|
Read values
Args:
vals (list): list of strings representing values
|
juraj-google-style
|
def save(self, filename=None, directory=None):
if (filename is not None):
self.filename = filename
if (directory is not None):
self.directory = directory
filepath = self.filepath
tools.mkdirs(filepath)
data = text_type(self.source)
with io.open(filepath, 'w', encoding=self.encoding) as fd:
fd.write(data)
if (not data.endswith(u'\n')):
fd.write(u'\n')
return filepath
|
Save the DOT source to file. Ensure the file ends with a newline.
Args:
filename: Filename for saving the source (defaults to ``name`` + ``'.gv'``)
directory: (Sub)directory for source saving and rendering.
Returns:
The (possibly relative) path of the saved source file.
|
codesearchnet
|
def Add(self, service, method, request, global_params=None):
method_config = service.GetMethodConfig(method)
upload_config = service.GetUploadConfig(method)
http_request = service.PrepareHttpRequest(method_config, request, global_params=global_params, upload_config=upload_config)
api_request = self.ApiCall(http_request, self.retryable_codes, service, method_config)
self.api_requests.append(api_request)
|
Add a request to the batch.
Args:
service: A class inheriting base_api.BaseApiService.
method: A string indicated desired method from the service. See
the example in the class docstring.
request: An input message appropriate for the specified
service.method.
global_params: Optional additional parameters to pass into
method.PrepareHttpRequest.
Returns:
None
|
codesearchnet
|
def _read_parquet_columns(path, columns, num_splits, kwargs):
import pyarrow.parquet as pq
df = pq.read_pandas(path, columns=columns, **kwargs).to_pandas()
return (_split_result_for_readers(0, num_splits, df) + [len(df.index)])
|
Use a Ray task to read columns from Parquet into a Pandas DataFrame.
Note: Ray functions are not detected by codecov (thus pragma: no cover)
Args:
path: The path of the Parquet file.
columns: The list of column names to read.
num_splits: The number of partitions to split the column into.
Returns:
A list containing the split Pandas DataFrames and the Index as the last
element. If there is not `index_col` set, then we just return the length.
This is used to determine the total length of the DataFrame to build a
default Index.
|
codesearchnet
|
def break_bond(self, ind1, ind2, tol=0.2):
sites = self._sites
clusters = [[sites[ind1]], [sites[ind2]]]
sites = [site for (i, site) in enumerate(sites) if (i not in (ind1, ind2))]
def belongs_to_cluster(site, cluster):
for test_site in cluster:
if CovalentBond.is_bonded(site, test_site, tol=tol):
return True
return False
while (len(sites) > 0):
unmatched = []
for site in sites:
for cluster in clusters:
if belongs_to_cluster(site, cluster):
cluster.append(site)
break
else:
unmatched.append(site)
if (len(unmatched) == len(sites)):
raise ValueError('Not all sites are matched!')
sites = unmatched
return (self.__class__.from_sites(cluster) for cluster in clusters)
|
Returns two molecules based on breaking the bond between atoms at index
ind1 and ind2.
Args:
ind1 (int): Index of first site.
ind2 (int): Index of second site.
tol (float): Relative tolerance to test. Basically, the code
checks if the distance between the sites is less than (1 +
tol) * typical bond distances. Defaults to 0.2, i.e.,
20% longer.
Returns:
Two Molecule objects representing the two clusters formed from
breaking the bond.
|
codesearchnet
|
def _on_report(self, sequence, topic, message):
try:
conn_key = self._find_connection(topic)
conn_id = self.conns.get_connection_id(conn_key)
except ArgumentError:
self._logger.warn("Dropping report message that does not correspond with a known connection, topic=%s", topic)
return
try:
rep_msg = messages.ReportNotification.verify(message)
serialized_report = {}
serialized_report['report_format'] = rep_msg['report_format']
serialized_report['encoded_report'] = rep_msg['report']
serialized_report['received_time'] = datetime.datetime.strptime(rep_msg['received_time'].encode().decode(), "%Y%m%dT%H:%M:%S.%fZ")
report = self.report_parser.deserialize_report(serialized_report)
self._trigger_callback('on_report', conn_id, report)
except Exception:
self._logger.exception("Error processing report conn_id=%d", conn_id)
|
Process a report received from a device.
Args:
sequence (int): The sequence number of the packet received
topic (string): The topic this message was received on
message (dict): The message itself
|
juraj-google-style
|
def random_channel_shift(x, intensity_range, channel_axis=0):
intensity = np.random.uniform(-intensity_range, intensity_range)
return apply_channel_shift(x, intensity, channel_axis=channel_axis)
|
Performs a random channel shift.
DEPRECATED.
Args:
x: Input tensor. Must be 3D.
intensity_range: Transformation intensity.
channel_axis: Index of axis for channels in the input tensor.
Returns:
Numpy image tensor.
|
github-repos
|
def _apply_conv(self, inputs, w):
if self._data_format == DATA_FORMAT_NWC:
h_dim = 1
two_dim_conv_data_format = DATA_FORMAT_NHWC
else:
h_dim = 2
two_dim_conv_data_format = DATA_FORMAT_NCHW
inputs = tf.expand_dims(inputs, axis=h_dim)
two_dim_conv_stride = self.stride[:h_dim] + (1,) + self.stride[h_dim:]
two_dim_conv_rate = (1,) + self._rate
w_dw, w_pw = w
outputs = tf.nn.separable_conv2d(inputs,
w_dw,
w_pw,
strides=two_dim_conv_stride,
rate=two_dim_conv_rate,
padding=self._conv_op_padding,
data_format=two_dim_conv_data_format)
outputs = tf.squeeze(outputs, [h_dim])
return outputs
|
Apply a `separable_conv2d` operation on `inputs` using `w`.
Args:
inputs: A Tensor of shape `data_format` and of type `tf.float16`,
`tf.bfloat16` or `tf.float32`.
w: A tuple of weight matrices of the same type as `inputs`, the first
being the depthwise weight matrix, and the second being the pointwise
weight matrix.
Returns:
outputs: The result of the convolution operation on `inputs`.
|
juraj-google-style
|
def load_dot_env_file(dot_env_path):
if not os.path.isfile(dot_env_path):
return {}
logger.log_info("Loading environment variables from {}".format(dot_env_path))
env_variables_mapping = {}
with io.open(dot_env_path, 'r', encoding='utf-8') as fp:
for line in fp:
if "=" in line:
variable, value = line.split("=", 1)
elif ":" in line:
variable, value = line.split(":", 1)
else:
raise exceptions.FileFormatError(".env format error")
env_variables_mapping[variable.strip()] = value.strip()
utils.set_os_environ(env_variables_mapping)
return env_variables_mapping
|
load .env file.
Args:
dot_env_path (str): .env file path
Returns:
dict: environment variables mapping
{
"UserName": "debugtalk",
"Password": "123456",
"PROJECT_KEY": "ABCDEFGH"
}
Raises:
exceptions.FileFormatError: If .env file format is invalid.
|
juraj-google-style
|
def price(self, market: pmd.ProcessedMarketData, name: Optional[str]=None) -> types.FloatTensor:
name = name or self._name + '_price'
with tf.name_scope(name):
discount_curve = cashflow_streams.get_discount_curve(self._discount_curve_type, market, self._discount_curve_mask)
currencies = [cur.currency.value for cur in self._discount_curve_type]
vol_surface = equity_utils.get_vol_surface(currencies, self._equity, market, self._equity_mask)
spots = tf.stack(market.spot(currencies, self._equity), axis=0)
discount_factors = discount_curve.discount_factor(self._expiry_date.expand_dims(axis=-1))
daycount_convention = discount_curve.daycount_convention
day_count_fn = market_data_utils.get_daycount_fn(daycount_convention)
if spots.shape.rank > 0:
spots = tf.gather(spots, self._equity_mask)
if self._model == 'BS-LSM':
vols = vol_surface.volatility(expiry_dates=self._expiry_date.expand_dims(axis=-1), strike=tf.expand_dims(self._strike, axis=-1))
prices = utils.bs_lsm_price(spots=spots, expiry_times=day_count_fn(start_date=market.date, end_date=self._expiry_date, dtype=self._dtype), strikes=self._strike, volatility=tf.squeeze(vols, axis=-1), discount_factors=tf.squeeze(discount_factors), is_call_option=self._is_call_option, num_samples=self._num_samples, num_exercise_times=self._num_exercise_times, num_calibration_samples=self._num_calibration_samples, seed=self._seed)
return self._short_position * self._contract_amount * prices
else:
raise ValueError('Only BS-LSM model is supported. Supplied {}'.format(self._model))
|
Returns the present value of the American options.
Args:
market: An instance of `ProcessedMarketData`.
name: Python str. The name to give to the ops created by this function.
Default value: `None` which maps to 'price'.
Returns:
A `Tensor` of shape `batch_shape` containing the modeled price of each
American option contract based on the input market data.
|
github-repos
|
def write(self, face, data, viewport=None, *, alignment=1) -> None:
if (type(data) is Buffer):
data = data.mglo
self.mglo.write(face, data, viewport, alignment)
|
Update the content of the texture.
Args:
face (int): The face to update.
data (bytes): The pixel data.
viewport (tuple): The viewport.
Keyword Args:
alignment (int): The byte alignment of the pixels.
|
codesearchnet
|
def _parse_dbpath(dbpath):
if isinstance(dbpath, list):
dbpath = '|'.join(dbpath)
if (not dbpath.endswith('$')):
dbpath = ('(%s)$' % dbpath)
return dbpath
|
Converts the dbpath to a regexp pattern.
Transforms dbpath from a string or an array of strings to a
regexp pattern which will be used to match database names.
Args:
dbpath: a string or an array containing the databases to be matched
from a cluster.
Returns:
A regexp pattern that will match any of the desired databases on
on a cluster.
|
codesearchnet
|
def window_unpartition(windows, window_size, pad_height_width, height_width):
padded_height, padded_width = pad_height_width
height, width = height_width
batch_size = windows.shape[0]
hidden_state = windows.view(batch_size, padded_height
hidden_state = hidden_state.permute(0, 1, 3, 2, 4, 5).contiguous()
hidden_state = hidden_state.view(batch_size, padded_height, padded_width, -1)
hidden_state = hidden_state[:, :height, :width, :].contiguous()
return hidden_state
|
Window unpartition into original sequences and removing padding.
Args:
windows (`torch.Tensor`):
Input tokens with [batch_size * num_windows, window_size, window_size, num_channels].
window_size (`int`):
Window size.
pad_height_width (`Tuple[int]`):
Padded height and width (padded_height, padded_width).
height_width (`Tuple[int]`):
Original height and width before padding.
Returns:
hidden_state: unpartitioned sequences with [batch_size, height, width, num_channels].
|
github-repos
|
def from_text_vision_configs(cls, text_config: Dict, vision_config: Dict, **kwargs):
config_dict = {}
config_dict['text_config'] = text_config
config_dict['vision_config'] = vision_config
return cls.from_dict(config_dict, **kwargs)
|
Instantiate a [`Owlv2Config`] (or a derived class) from owlv2 text model configuration and owlv2 vision
model configuration.
Returns:
[`Owlv2Config`]: An instance of a configuration object
|
github-repos
|
def retry(self, retry_message=''):
if not self.async:
raise UnexpectedPipelineError(
'May only call retry() method for asynchronous pipelines.')
if self.try_cancel():
self._context.transition_retry(self._pipeline_key, retry_message)
return True
else:
return False
|
Forces a currently running asynchronous pipeline to retry.
Note this may not be called by synchronous or generator pipelines. Those
must instead raise the 'Retry' exception during execution.
Args:
retry_message: Optional message explaining why the retry happened.
Returns:
True if the Pipeline should be retried, False if it cannot be cancelled
mid-flight for some reason.
|
juraj-google-style
|
def gumbel_softmax(x, z_size, mode, softmax_k=0, temperature_warmup_steps=150000, summary=True, name=None):
with tf.variable_scope(name, default_name='gumbel_softmax'):
m = tf.layers.dense(x, (2 ** z_size), name='mask')
if (softmax_k > 0):
(m, kl) = top_k_softmax(m, softmax_k)
return (m, m, (1.0 - tf.reduce_mean(kl)))
logsm = tf.nn.log_softmax(m)
gumbel_samples = gumbel_sample(common_layers.shape_list(m))
steps = temperature_warmup_steps
gumbel_samples *= (common_layers.inverse_exp_decay((steps
temperature = (1.2 - common_layers.inverse_lin_decay(steps))
temperature = tf.cond(tf.less(tf.random_uniform([]), 0.9), (lambda : temperature), (lambda : tf.random_uniform([], minval=0.5, maxval=1.0)))
s = tf.nn.softmax(((logsm + gumbel_samples) / temperature))
m = tf.nn.softmax(m)
kl = (- tf.reduce_max(logsm, axis=(- 1)))
if summary:
tf.summary.histogram('max-log', tf.reshape(kl, [(- 1)]))
maxvec = tf.reshape(tf.argmax(m, axis=(- 1)), [(- 1)])
maxvhot = tf.stop_gradient(tf.one_hot(maxvec, (2 ** z_size)))
distrib = (tf.reshape(logsm, [(- 1), (2 ** z_size)]) * maxvhot)
d_mean = tf.reduce_mean(distrib, axis=[0], keep_dims=True)
d_variance = tf.reduce_mean(tf.squared_difference(distrib, d_mean), axis=[0])
d_dev = (- tf.reduce_mean(d_variance))
ret = s
if (mode != tf.estimator.ModeKeys.TRAIN):
ret = tf.reshape(maxvhot, common_layers.shape_list(s))
return (m, ret, ((d_dev * 5.0) + (tf.reduce_mean(kl) * 0.002)))
|
Gumbel softmax discretization bottleneck.
Args:
x: Input to the discretization bottleneck.
z_size: Number of bits, where discrete codes range from 1 to 2**z_size.
mode: tf.estimator.ModeKeys.
softmax_k: If > 0 then do top-k softmax.
temperature_warmup_steps: Number of steps it takes to decay temperature to
0.
summary: Whether to write summaries.
name: Name for the bottleneck scope.
Returns:
Embedding function, discrete code, and loss.
|
codesearchnet
|
def temporal_latent_to_dist(name, x, hparams, output_channels=None):
_, _, width, _, res_channels = common_layers.shape_list(x)
if output_channels is None:
output_channels = res_channels
dilation_rates = get_dilation_rates(hparams, width)
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
h = x
for i in range(hparams.latent_encoder_depth):
if hparams.latent_apply_dilations:
h2 = dilated_conv_stack("dil_latent_3d_res_%d" % i, h,
mid_channels=hparams.latent_encoder_width,
output_channels=res_channels,
dilation_rates=dilation_rates,
activation=hparams.latent_activation,
dropout=hparams.latent_dropout)
else:
h2 = conv_stack("latent_3d_res_%d" % i, h,
mid_channels=hparams.latent_encoder_width,
output_channels=res_channels,
activation=hparams.latent_activation,
dropout=hparams.latent_dropout)
h += h2
h = h[:, -1, :, :, :]
h = conv("res_final", h, apply_actnorm=False, conv_init="zeros",
output_channels=2*output_channels, filter_size=[1, 1])
mean, log_scale = h[:, :, :, 0::2], h[:, :, :, 1::2]
return tfp.distributions.Normal(mean, tf.exp(log_scale))
|
Network that maps a time-indexed list of 3-D latents to a gaussian.
Args:
name: variable scope.
x: List of 4-D Tensors indexed by time, (NHWC)
hparams: tf.contrib.training.Hparams.
output_channels: int, Number of channels of the output gaussian mean.
Returns:
dist: tfp.distributions.Normal
|
juraj-google-style
|
def _save(filename, tensor_names, tensors, tensor_slices=None, name='save'):
if tensor_slices is None:
return gen_io_ops.save(filename, tensor_names, tensors, name=name)
else:
return gen_io_ops.save_slices(filename, tensor_names, tensor_slices, tensors, name=name)
|
Save a list of tensors to a file with given names.
Example usage without slice info:
Save("/foo/bar", ["w", "b"], [w, b])
Example usage with slices:
Save("/foo/bar", ["w", "w"], [slice0, slice1],
tensor_slices=["4 10 0,2:-", "4 10 2,2:-"])
Args:
filename: the file name of the sstable.
tensor_names: a list of strings.
tensors: the list of tensors to be saved.
tensor_slices: Optional list of strings to specify the shape and slices of
a larger virtual tensor that each tensor is a part of. If not specified
each tensor is saved as a full slice.
name: string. Optional name for the op.
Requires:
The length of tensors should match the size of tensor_names and of
tensor_slices.
Returns:
An Operation that saves the tensors.
|
github-repos
|
def HashFilePath(self, path, byte_count):
with open(path, "rb") as fd:
self.HashFile(fd, byte_count)
|
Updates underlying hashers with file on a given path.
Args:
path: A path to the file that is going to be fed to the hashers.
byte_count: A maximum numbers of bytes that are going to be processed.
|
juraj-google-style
|
def one_of(self, chset: str) -> str:
res = self.peek()
if res in chset:
self.offset += 1
return res
raise UnexpectedInput(self, "one of " + chset)
|
Parse one character form the specified set.
Args:
chset: string of characters to try as alternatives.
Returns:
The character that was actually matched.
Raises:
UnexpectedInput: If the next character is not in `chset`.
|
juraj-google-style
|
def pnlSingle(
self, account: str = '', modelCode: str = '',
conId: int = 0) -> List[PnLSingle]:
return [v for v in self.wrapper.pnlSingles.values() if
(not account or v.account == account) and
(not modelCode or v.modelCode == modelCode) and
(not conId or v.conId == conId)]
|
List of subscribed :class:`.PnLSingle` objects (profit and loss for
single positions).
The :class:`.PnLSingle` objects are kept live updated.
Args:
account: If specified, filter for this account name.
modelCode: If specified, filter for this account model.
conId: If specified, filter for this contract ID.
|
juraj-google-style
|
def _create_key_func(extractor, none_is_largest):
if none_is_largest:
def key_func_none_is_largest(session_group):
value = extractor(session_group)
return (value is None, value)
return key_func_none_is_largest
def key_func_none_is_smallest(session_group):
value = extractor(session_group)
return (value is not None, value)
return key_func_none_is_smallest
|
Returns a key_func to be used in list.sort().
Returns a key_func to be used in list.sort() that sorts session groups
by the value extracted by extractor. 'None' extracted values will either
be considered largest or smallest as specified by the "none_is_largest"
boolean parameter.
Args:
extractor: An extractor function that extract the key from the session
group.
none_is_largest: bool. If true treats 'None's as largest; otherwise
smallest.
|
juraj-google-style
|
def time(func, *args, **kwargs):
start_time = time_module.time()
func(*args, **kwargs)
end_time = time_module.time()
return (end_time - start_time)
|
Call the supplied function with the supplied arguments,
and return the total execution time as a float in seconds.
The precision of the returned value depends on the precision of
`time.time()` on your platform.
Arguments:
func: the function to run.
*args: positional arguments to pass into the function.
**kwargs: keyword arguments to pass into the function.
Returns:
Execution time of the function as a float in seconds.
|
codesearchnet
|
def words(self, index = None):
if index is None:
return self.select(Word,None,True,default_ignore_structure)
else:
if index < 0:
index = self.count(Word,None,True,default_ignore_structure) + index
for i, e in enumerate(self.select(Word,None,True,default_ignore_structure)):
if i == index:
return e
raise IndexError
|
Returns a generator of Word elements found (recursively) under this element.
Arguments:
* ``index``: If set to an integer, will retrieve and return the n'th element (starting at 0) instead of returning the list of all
|
juraj-google-style
|
def print_tools(self, pattern=None, buf=sys.stdout):
seen = set()
rows = []
context = self.context
if context:
data = context.get_tools()
conflicts = set(context.get_conflicting_tools().keys())
for (_, (variant, tools)) in sorted(data.items()):
pkg_str = variant.qualified_package_name
for tool in tools:
if (pattern and (not fnmatch(tool, pattern))):
continue
if (tool in conflicts):
label = '(in conflict)'
color = critical
else:
label = ''
color = None
rows.append([tool, '-', pkg_str, 'active context', label, color])
seen.add(tool)
for suite in self.suites:
for (tool, d) in suite.get_tools().iteritems():
if (tool in seen):
continue
if (pattern and (not fnmatch(tool, pattern))):
continue
label = []
color = None
path = which(tool)
if path:
path_ = os.path.join(suite.tools_path, tool)
if (path != path_):
label.append(("(hidden by unknown tool '%s')" % path))
color = warning
variant = d['variant']
if isinstance(variant, set):
pkg_str = ', '.join(variant)
label.append('(in conflict)')
color = critical
else:
pkg_str = variant.qualified_package_name
orig_tool = d['tool_name']
if (orig_tool == tool):
orig_tool = '-'
label = ' '.join(label)
source = ("context '%s' in suite '%s'" % (d['context_name'], suite.load_path))
rows.append([tool, orig_tool, pkg_str, source, label, color])
seen.add(tool)
_pr = Printer(buf)
if (not rows):
_pr('No matching tools.')
return False
headers = [['TOOL', 'ALIASING', 'PACKAGE', 'SOURCE', '', None], ['----', '--------', '-------', '------', '', None]]
rows = (headers + sorted(rows, key=(lambda x: x[0].lower())))
print_colored_columns(_pr, rows)
return True
|
Print a list of visible tools.
Args:
pattern (str): Only list tools that match this glob pattern.
|
codesearchnet
|
def _getAuthenticated(self, browser, url):
try:
if (len(self.creds) > 0):
c = random.choice(self.creds)[0]
browser.setNewPassword(url, c.user, c.password)
return True
else:
raise NoCredentialsException(str(self))
except AttributeError as e:
raise BadImplementationError(str(e))
|
Getting authenticated.
This method may be overwritten.
TODO: update to version 2 of the wrappers.
Args:
-----
browser: The browser in which the user will be authenticated.
url: The URL to get authenticated in.
Return:
-------
True or False.
Raises:
------
NoCredentialsException: If no valid credentials have been found.
BadImplementationError: If an expected attribute is missing.
|
codesearchnet
|
def get_tree_starting_at(module: str, edges: List[Tuple[str, str]]) -> List[Union[str, List[str]]]:
vertices_seen = [module]
new_edges = [edge for edge in edges if edge[0] == module and edge[1] != module and ('__init__.py' not in edge[1])]
tree = [module]
while len(new_edges) > 0:
tree.append(new_edges)
final_vertices = list({edge[1] for edge in new_edges})
vertices_seen.extend(final_vertices)
new_edges = [edge for edge in edges if edge[0] in final_vertices and edge[1] not in vertices_seen and ('__init__.py' not in edge[1])]
return tree
|
Returns the tree starting at a given module following all edges.
Args:
module (`str`): The module that will be the root of the subtree we want.
eges (`List[Tuple[str, str]]`): The list of all edges of the tree.
Returns:
`List[Union[str, List[str]]]`: The tree to print in the following format: [module, [list of edges
starting at module], [list of edges starting at the preceding level], ...]
|
github-repos
|
def get_destination(self, filepath, targetdir=None):
dst = self.change_extension(filepath, 'css')
if targetdir:
dst = os.path.join(targetdir, dst)
return dst
|
Return destination path from given source file path.
Destination is allways a file with extension ``.css``.
Args:
filepath (str): A file path. The path is allways relative to
sources directory. If not relative, ``targetdir`` won't be
joined.
absolute (bool): If given will be added at beginning of file
path.
Returns:
str: Destination filepath.
|
codesearchnet
|
def preprocess_bel_stmt(stmt: str) -> str:
stmt = stmt.strip()
stmt = re.sub(r",+", ",", stmt)
stmt = re.sub(r",", ", ", stmt)
stmt = re.sub(r" +", " ", stmt)
return stmt
|
Clean up basic formatting of BEL statement
Args:
stmt: BEL statement as single string
Returns:
cleaned BEL statement
|
juraj-google-style
|
def get_sub_category(alt_len, ref_len, category, svtype=None):
subcategory = ''
if category in ('snv', 'indel', 'cancer'):
if ref_len == alt_len:
subcategory = 'snv'
else:
subcategory = 'indel'
elif category == 'sv':
subcategory = svtype
return subcategory
|
Get the subcategory for a VCF variant
The sub categories are:
'snv', 'indel', 'del', 'ins', 'dup', 'bnd', 'inv'
Args:
alt_len(int)
ref_len(int)
category(str)
svtype(str)
Returns:
subcategory(str)
|
juraj-google-style
|
def from_flag(cls, flagname, flag_values, other_flag_values=None):
first_module = flag_values.find_module_defining_flag(flagname, default='<unknown>')
if (other_flag_values is None):
second_module = _helpers.get_calling_module()
else:
second_module = other_flag_values.find_module_defining_flag(flagname, default='<unknown>')
flag_summary = flag_values[flagname].help
msg = ("The flag '%s' is defined twice. First from %s, Second from %s. Description from first occurrence: %s" % (flagname, first_module, second_module, flag_summary))
return cls(msg)
|
Creates a DuplicateFlagError by providing flag name and values.
Args:
flagname: str, the name of the flag being redefined.
flag_values: FlagValues, the FlagValues instance containing the first
definition of flagname.
other_flag_values: FlagValues, if it is not None, it should be the
FlagValues object where the second definition of flagname occurs.
If it is None, we assume that we're being called when attempting
to create the flag a second time, and we use the module calling
this one as the source of the second definition.
Returns:
An instance of DuplicateFlagError.
|
codesearchnet
|
def log_uuid(self, uuid):
if ((uuid not in self.uuids) and (uuid in uuids)):
self.uuids[uuid] = uuids[uuid].describe()
|
Logs the object with the specified `uuid` to `self.uuids` if
possible.
Args:
uuid (str): string value of :meth:`uuid.uuid4` value for the
object.
|
codesearchnet
|
def list_partitions(self, table, retry=DEFAULT_RETRY):
table = _table_arg_to_table_ref(table, default_project=self.project)
meta_table = self.get_table(TableReference(self.dataset(table.dataset_id, project=table.project), ('%s$__PARTITIONS_SUMMARY__' % table.table_id)))
subset = [col for col in meta_table.schema if (col.name == 'partition_id')]
return [row[0] for row in self.list_rows(meta_table, selected_fields=subset, retry=retry)]
|
List the partitions in a table.
Arguments:
table (Union[ \
:class:`~google.cloud.bigquery.table.Table`, \
:class:`~google.cloud.bigquery.table.TableReference`, \
str, \
]):
The table or reference from which to get partition info
retry (google.api_core.retry.Retry):
(Optional) How to retry the RPC.
Returns:
List[str]:
A list of the partition ids present in the partitioned table
|
codesearchnet
|
def __getitem__(self, pkg_id):
if pkg_id in self.__reg_software:
return self.__reg_software[pkg_id]
else:
raise KeyError(pkg_id)
|
Returns information on a package.
Args:
pkg_id (str): Package Id of the software/component
Returns:
dict or list: List if ``version_only`` is ``True`` otherwise dict
|
juraj-google-style
|
def prepare_for_model(self, ids: List[int], pair_ids: Optional[List[int]]=None, add_special_tokens: bool=True, padding: Union[bool, str, PaddingStrategy]=False, truncation: Union[bool, str, TruncationStrategy, None]=None, max_length: Optional[int]=None, stride: int=0, pad_to_multiple_of: Optional[int]=None, padding_side: Optional[str]=None, return_tensors: Optional[Union[str, TensorType]]=None, return_token_type_ids: Optional[bool]=None, return_attention_mask: Optional[bool]=None, return_overflowing_tokens: bool=False, return_special_tokens_mask: bool=False, return_offsets_mapping: bool=False, return_length: bool=False, verbose: bool=True, prepend_batch_axis: bool=False, **kwargs) -> BatchEncoding:
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs)
pair = bool(pair_ids is not None)
len_ids = len(ids)
len_pair_ids = len(pair_ids) if pair else 0
if return_token_type_ids and (not add_special_tokens):
raise ValueError('Asking to return token_type_ids while setting add_special_tokens to False results in an undefined behavior. Please set add_special_tokens to True or set return_token_type_ids to None.')
if return_overflowing_tokens and truncation_strategy == TruncationStrategy.LONGEST_FIRST and (pair_ids is not None):
raise ValueError('Not possible to return overflowing tokens for pair of sequences with the `longest_first`. Please select another truncation strategy than `longest_first`, for instance `only_second` or `only_first`.')
if return_token_type_ids is None:
return_token_type_ids = 'token_type_ids' in self.model_input_names
if return_attention_mask is None:
return_attention_mask = 'attention_mask' in self.model_input_names
encoded_inputs = {}
total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
overflowing_tokens = []
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and (total_len > max_length):
ids, pair_ids, overflowing_tokens = self.truncate_sequences(ids, pair_ids=pair_ids, num_tokens_to_remove=total_len - max_length, truncation_strategy=truncation_strategy, stride=stride)
if return_overflowing_tokens:
encoded_inputs['overflowing_tokens'] = overflowing_tokens
encoded_inputs['num_truncated_tokens'] = total_len - max_length
if add_special_tokens:
sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
else:
sequence = ids + pair_ids if pair else ids
token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
encoded_inputs['input_ids'] = sequence
if return_token_type_ids:
encoded_inputs['token_type_ids'] = token_type_ids
if return_special_tokens_mask:
if add_special_tokens:
encoded_inputs['special_tokens_mask'] = self.get_special_tokens_mask(ids, pair_ids)
else:
encoded_inputs['special_tokens_mask'] = [0] * len(sequence)
self._eventual_warn_about_too_long_sequence(encoded_inputs['input_ids'], max_length, verbose)
if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
encoded_inputs = self.pad(encoded_inputs, max_length=max_length, padding=padding_strategy.value, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=return_attention_mask)
if return_length:
encoded_inputs['length'] = len(encoded_inputs['input_ids'])
batch_outputs = BatchEncoding(encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis)
return batch_outputs
|
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *pair_ids*
different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return
overflowing tokens. Such a combination of arguments will raise an error.
Args:
ids (`List[int]`):
Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
`convert_tokens_to_ids` methods.
pair_ids (`List[int]`, *optional*):
Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
and `convert_tokens_to_ids` methods.
|
github-repos
|
def to_json_string(self) -> str:
dictionary = self.to_dict()
for key, value in dictionary.items():
if isinstance(value, np.ndarray):
dictionary[key] = value.tolist()
_processor_class = dictionary.pop('_processor_class', None)
if _processor_class is not None:
dictionary['processor_class'] = _processor_class
return json.dumps(dictionary, indent=2, sort_keys=True) + '\n'
|
Serializes this instance to a JSON string.
Returns:
`str`: String containing all the attributes that make up this feature_extractor instance in JSON format.
|
github-repos
|
def binary_cross_entropy_loss_with_logits(x, target, name=None):
with tf.name_scope(name, 'binary_cross_entropy_with_logits',
[x, target]) as scope:
x.get_shape().assert_is_compatible_with(target.get_shape())
neg_softplus = -tf.nn.softplus(-x)
return -tf.add(tf.multiply(target, neg_softplus),
tf.multiply(1 - target, -x + neg_softplus),
name=scope)
|
Calculates the binary cross entropy between sigmoid(x) and target.
Expects unscaled logits. Do not pass in results of sigmoid operation.
Args:
x: the calculated pre-sigmoid values
target: the desired values.
name: the name for this op, defaults to binary_cross_entropy_with_logits
Returns:
-(target * -softplus(-x) + (1-target) * (-x - softplus(-x)))
Raises:
ValueError: If shapes are incompatible.
|
juraj-google-style
|
def forward(self, layer_input):
bsz, length, emb_size = layer_input.size()
layer_input = layer_input.reshape(-1, emb_size)
_, batch_index, batch_gates, expert_size, router_logits = self.router(layer_input)
expert_inputs = layer_input[batch_index]
hidden_states = self.input_linear(expert_inputs, expert_size)
chunked_hidden_states = hidden_states.chunk(2, dim=-1)
hidden_states = self.activation(chunked_hidden_states[0]) * chunked_hidden_states[1]
expert_outputs = self.output_linear(hidden_states, expert_size)
expert_outputs = expert_outputs * batch_gates[:, None]
zeros = torch.zeros((bsz * length, self.input_size), dtype=expert_outputs.dtype, device=expert_outputs.device)
layer_output = zeros.index_add(0, batch_index, expert_outputs)
layer_output = layer_output.view(bsz, length, self.input_size)
return (layer_output, router_logits)
|
Forward pass of the mixture of experts layer.
Args:
layer_input (Tensor):
Input tensor.
Returns:
Tensor:
Output tensor.
Tensor:
Router logits.
|
github-repos
|
def get_model_schema_and_features(model_dir):
schema_file = os.path.join(model_dir, 'assets.extra', 'schema.json')
schema = json.loads(file_io.read_file_to_string(schema_file))
features_file = os.path.join(model_dir, 'assets.extra', 'features.json')
features_config = json.loads(file_io.read_file_to_string(features_file))
return schema, features_config
|
Get a local model's schema and features config.
Args:
model_dir: local or GCS path of a model.
Returns:
A tuple of schema (list) and features config (dict).
|
juraj-google-style
|
def claim(self, file_readers):
(prefix_to_reader, unclaimed_readers) = self._find_strelka_files(file_readers)
prefix_by_patients = self._split_prefix_by_patient(prefix_to_reader)
self._validate_vcf_readers(prefix_by_patients)
vcf_readers = self._create_vcf_readers(prefix_to_reader)
return (unclaimed_readers, vcf_readers)
|
Recognizes and claims Strelka VCFs form the set of all input VCFs.
Each defined caller has a chance to evaluate and claim all the incoming
files as something that it can process.
Args:
file_readers: the collection of currently unclaimed files
Returns:
A tuple of unclaimed readers and StrelkaVcfReaders.
|
codesearchnet
|
def __init__(self, listener, dispatcher):
logger.info('Creating %s', ClearlyServer.__name__)
self.listener = listener
self.dispatcher = dispatcher
|
Constructs a server instance.
Args:
listener (EventListener): the object that listens and keeps celery events
dispatcher (StreamingDispatcher): the mechanism to dispatch data to clients
|
juraj-google-style
|
def automatic_linemode(divisions, ibz):
kpoints = list()
labels = list()
for path in ibz.kpath["path"]:
kpoints.append(ibz.kpath["kpoints"][path[0]])
labels.append(path[0])
for i in range(1, len(path) - 1):
kpoints.append(ibz.kpath["kpoints"][path[i]])
labels.append(path[i])
kpoints.append(ibz.kpath["kpoints"][path[i]])
labels.append(path[i])
kpoints.append(ibz.kpath["kpoints"][path[-1]])
labels.append(path[-1])
return Kpoints("Line_mode KPOINTS file",
style=Kpoints.supported_modes.Line_mode,
coord_type="Reciprocal",
kpts=kpoints,
labels=labels,
num_kpts=int(divisions))
|
Convenient static constructor for a KPOINTS in mode line_mode.
gamma centered Monkhorst-Pack grids and the number of subdivisions
along each reciprocal lattice vector determined by the scheme in the
VASP manual.
Args:
divisions: Parameter determining the number of k-points along each
hight symetry lines.
ibz: HighSymmKpath object (pymatgen.symmetry.bandstructure)
Returns:
Kpoints object
|
juraj-google-style
|
def _CopyFromDateTimeValues(self, date_time_values):
year = date_time_values.get('year', 0)
month = date_time_values.get('month', 0)
day_of_month = date_time_values.get('day_of_month', 0)
hours = date_time_values.get('hours', 0)
minutes = date_time_values.get('minutes', 0)
seconds = date_time_values.get('seconds', 0)
self._normalized_timestamp = None
self._number_of_seconds = self._GetNumberOfSecondsFromElements(
year, month, day_of_month, hours, minutes, seconds)
self._time_elements_tuple = (
year, month, day_of_month, hours, minutes, seconds)
self.is_local_time = False
|
Copies time elements from date and time values.
Args:
date_time_values (dict[str, int]): date and time values, such as year,
month, day of month, hours, minutes, seconds, microseconds.
|
juraj-google-style
|
def fit(self, x, augment=False, rounds=1, seed=None):
x = np.asarray(x, dtype=self.dtype)
if x.ndim != 4:
raise ValueError('Input to `.fit()` should have rank 4. Got array with shape: ' + str(x.shape))
if x.shape[self.channel_axis] not in {1, 3, 4}:
warnings.warn('Expected input to be images (as Numpy array) following the data format convention "' + self.data_format + '" (channels on axis ' + str(self.channel_axis) + '), i.e. expected either 1, 3 or 4 channels on axis ' + str(self.channel_axis) + '. However, it was passed an array with shape ' + str(x.shape) + ' (' + str(x.shape[self.channel_axis]) + ' channels).')
if seed is not None:
np.random.seed(seed)
x = np.copy(x)
if self.rescale:
x *= self.rescale
if augment:
ax = np.zeros(tuple([rounds * x.shape[0]] + list(x.shape)[1:]), dtype=self.dtype)
for r in range(rounds):
for i in range(x.shape[0]):
ax[i + r * x.shape[0]] = self.random_transform(x[i])
x = ax
if self.featurewise_center:
self.mean = np.mean(x, axis=(0, self.row_axis, self.col_axis))
broadcast_shape = [1, 1, 1]
broadcast_shape[self.channel_axis - 1] = x.shape[self.channel_axis]
self.mean = np.reshape(self.mean, broadcast_shape)
x -= self.mean
if self.featurewise_std_normalization:
self.std = np.std(x, axis=(0, self.row_axis, self.col_axis))
broadcast_shape = [1, 1, 1]
broadcast_shape[self.channel_axis - 1] = x.shape[self.channel_axis]
self.std = np.reshape(self.std, broadcast_shape)
x /= self.std + 1e-06
if self.zca_whitening:
n = len(x)
flat_x = np.reshape(x, (n, -1))
u, s, _ = np.linalg.svd(flat_x.T, full_matrices=False)
s_inv = np.sqrt(n) / (s + self.zca_epsilon)
self.zca_whitening_matrix = (u * s_inv).dot(u.T)
|
Fits the data generator to some sample data.
This computes the internal data stats related to the
data-dependent transformations, based on an array of sample data.
Only required if `featurewise_center` or
`featurewise_std_normalization` or `zca_whitening`
are set to `True`.
When `rescale` is set to a value, rescaling is applied to
sample data before computing the internal data stats.
Args:
x: Sample data. Should have rank 4.
In case of grayscale data,
the channels axis should have value 1, in case
of RGB data, it should have value 3, and in case
of RGBA data, it should have value 4.
augment: Boolean (default: False).
Whether to fit on randomly augmented samples.
rounds: Int (default: 1).
If using data augmentation (`augment=True`),
this is how many augmentation passes over the data to use.
seed: Int (default: None). Random seed.
|
github-repos
|
def add_one(self, url: str,
url_properties: Optional[URLProperties]=None,
url_data: Optional[URLData]=None):
self.add_many([AddURLInfo(url, url_properties, url_data)])
|
Add a single URL to the table.
Args:
url: The URL to be added
url_properties: Additional values to be saved
url_data: Additional data to be saved
|
juraj-google-style
|
def norm(self, coords: Vector3Like, frac_coords: bool = True) -> float:
return np.sqrt(self.dot(coords, coords, frac_coords=frac_coords))
|
Compute the norm of vector(s).
Args:
coords:
Array-like object with the coordinates.
frac_coords:
Boolean stating whether the vector corresponds to fractional or
cartesian coordinates.
Returns:
one-dimensional `numpy` array.
|
juraj-google-style
|
def _safe_close(self, sess: session.Session):
try:
sess.close()
except Exception:
pass
|
Closes a session without raising an exception.
Just like sess.close() but ignores exceptions.
Args:
sess: A `Session`.
|
github-repos
|
def show_inputs(self, varnames=None, nids=None, wslice=None, stream=sys.stdout):
if varnames is not None:
varnames = [s.strip() for s in list_strings(varnames)]
dlist = collections.defaultdict(list)
for task in self.select_tasks(nids=nids, wslice=wslice):
dstruct = task.input.structure.as_dict(fmt="abivars")
for vname in varnames:
value = task.input.get(vname, None)
if value is None:
value = dstruct.get(vname, None)
if value is not None:
dlist[vname].append((task, value))
for vname in varnames:
tv_list = dlist[vname]
if not tv_list:
stream.write("[%s]: Found 0 tasks with this variable\n" % vname)
else:
stream.write("[%s]: Found %s tasks with this variable\n" % (vname, len(tv_list)))
for i, (task, value) in enumerate(tv_list):
stream.write(" %s --> %s\n" % (str(value), task))
stream.write("\n")
else:
lines = []
for task in self.select_tasks(nids=nids, wslice=wslice):
s = task.make_input(with_header=True)
if task.deps:
s += "\n\nDependencies:\n" + "\n".join(str(dep) for dep in task.deps)
else:
s += "\n\nDependencies: None"
lines.append(2*"\n" + 80 * "=" + "\n" + s + 2*"\n")
stream.writelines(lines)
|
Print the input of the tasks to the given stream.
Args:
varnames:
List of Abinit variables. If not None, only the variable in varnames
are selected and printed.
nids:
List of node identifiers. By defaults all nodes are shown
wslice:
Slice object used to select works.
stream:
File-like object, Default: sys.stdout
|
juraj-google-style
|
def eval(self, session=None):
raise NotImplementedError
|
In a session, computes and returns the value of this variable.
This is not a graph construction method, it does not add ops to the graph.
This convenience method requires a session where the graph
containing this variable has been launched. If no session is
passed, the default session is used. See `tf.compat.v1.Session` for more
information on launching a graph and on sessions.
```python
v = tf.Variable([1, 2])
init = tf.compat.v1.global_variables_initializer()
with tf.compat.v1.Session() as sess:
sess.run(init)
# Usage passing the session explicitly.
print(v.eval(sess))
# Usage with the default session. The 'with' block
# above makes 'sess' the default session.
print(v.eval())
```
Args:
session: The session to use to evaluate this variable. If none, the
default session is used.
Returns:
A numpy `ndarray` with a copy of the value of this variable.
|
github-repos
|
def _ParseMRUListKey(self, parser_mediator, registry_key, codepage='cp1252'):
try:
mrulist = self._ParseMRUListValue(registry_key)
except (ValueError, errors.ParseError) as exception:
parser_mediator.ProduceExtractionWarning(
'unable to parse MRUList value with error: {0!s}'.format(exception))
return
if not mrulist:
return
values_dict = {}
found_terminator = False
for entry_index, entry_letter in enumerate(mrulist):
if entry_letter == 0:
break
if found_terminator:
parser_mediator.ProduceExtractionWarning((
'found additional MRUList entries after terminator in key: '
'{0:s}.').format(registry_key.path))
found_terminator = False
entry_letter = chr(entry_letter)
value_string = self._ParseMRUListEntryValue(
parser_mediator, registry_key, entry_index, entry_letter,
codepage=codepage)
value_text = 'Index: {0:d} [MRU Value {1:s}]'.format(
entry_index + 1, entry_letter)
values_dict[value_text] = value_string
event_data = windows_events.WindowsRegistryEventData()
event_data.key_path = registry_key.path
event_data.offset = registry_key.offset
event_data.regvalue = values_dict
event_data.source_append = self._SOURCE_APPEND
event = time_events.DateTimeValuesEvent(
registry_key.last_written_time, definitions.TIME_DESCRIPTION_WRITTEN)
parser_mediator.ProduceEventWithEventData(event, event_data)
|
Extract event objects from a MRUList Registry key.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
registry_key (dfwinreg.WinRegistryKey): Windows Registry key.
codepage (Optional[str]): extended ASCII string codepage.
|
juraj-google-style
|
def get_sanger_unevaluated(store, institute_id, user_id):
sanger_ordered_by_case = store.sanger_ordered(institute_id, user_id)
unevaluated = []
for item in sanger_ordered_by_case:
case_id = item['_id']
case_obj = store.case(case_id=case_id)
if not case_obj:
continue
case_display_name = case_obj.get('display_name')
varid_list = item['vars']
unevaluated_by_case = {}
unevaluated_by_case[case_display_name] = []
for var_id in varid_list:
variant_obj = store.variant(document_id=var_id, case_id=case_id)
if variant_obj is None or variant_obj.get('sanger_ordered') is None or variant_obj.get('sanger_ordered') is False:
continue
validation = variant_obj.get('validation', 'not_evaluated')
if validation in ['True positive', 'False positive']:
continue
unevaluated_by_case[case_display_name].append(variant_obj['_id'])
if len(unevaluated_by_case[case_display_name]) > 0:
unevaluated.append(unevaluated_by_case)
return unevaluated
|
Get all variants for an institute having Sanger validations ordered but still not evaluated
Args:
store(scout.adapter.MongoAdapter)
institute_id(str)
Returns:
unevaluated: a list that looks like this: [ {'case1': [varID_1, varID_2, .., varID_n]}, {'case2' : [varID_1, varID_2, .., varID_n]} ],
where the keys are case_ids and the values are lists of variants with Sanger ordered but not yet validated
|
juraj-google-style
|
def __init__(self, min_bundle_size=0, desired_bundle_size=DEFAULT_DESIRED_BUNDLE_SIZE, columns=None, with_filename=False, label='ReadAllFiles'):
super().__init__()
source_from_file = partial(_ParquetSource, min_bundle_size=min_bundle_size, columns=columns)
self._read_all_files = filebasedsource.ReadAllFiles(True, CompressionTypes.UNCOMPRESSED, desired_bundle_size, min_bundle_size, source_from_file, with_filename)
self.label = label
|
Initializes ``ReadAllFromParquet``.
Args:
min_bundle_size: the minimum size in bytes, to be considered when
splitting the input into bundles.
desired_bundle_size: the desired size in bytes, to be considered when
splitting the input into bundles.
columns: list of columns that will be read from files. A column name
may be a prefix of a nested field, e.g. 'a' will select
'a.b', 'a.c', and 'a.d.e'
with_filename: If True, returns a Key Value with the key being the file
name and the value being the actual data. If False, it only returns
the data.
|
github-repos
|
def _infer_state_dtype(explicit_dtype, state):
if explicit_dtype is not None:
return explicit_dtype
elif nest.is_nested(state):
inferred_dtypes = [element.dtype for element in nest.flatten(state)]
if not inferred_dtypes:
raise ValueError(f'Unable to infer dtype from argument state={state}.')
all_same = all((x == inferred_dtypes[0] for x in inferred_dtypes))
if not all_same:
raise ValueError(f'Argument state={state} has tensors of different inferred dtypes. Unable to infer a single representative dtype. Dtypes received: {inferred_dtypes}')
return inferred_dtypes[0]
else:
return state.dtype
|
Infer the dtype of an RNN state.
Args:
explicit_dtype: explicitly declared dtype or None.
state: RNN's hidden state. Must be a Tensor or a nested iterable containing
Tensors.
Returns:
dtype: inferred dtype of hidden state.
Raises:
ValueError: if `state` has heterogeneous dtypes or is empty.
|
github-repos
|
def root(self) -> bytes:
retry_interval = ADB_ROOT_RETRY_ATTEMPT_INTERVAL_SEC
for attempt in range(ADB_ROOT_RETRY_ATTEMPTS):
try:
return self._exec_adb_cmd('root', args=None, shell=False, timeout=None, stderr=None)
except AdbError as e:
if attempt + 1 < ADB_ROOT_RETRY_ATTEMPTS:
logging.debug('Retry the command "%s" since Error "%s" occurred.' % (utils.cli_cmd_to_string(e.cmd), e.stderr.decode('utf-8').strip()))
time.sleep(retry_interval)
retry_interval *= 2
else:
raise e
|
Enables ADB root mode on the device.
This method will retry to execute the command `adb root` when an
AdbError occurs, since sometimes the error `adb: unable to connect
for root: closed` is raised when executing `adb root` immediately after
the device is booted to OS.
Returns:
A string that is the stdout of root command.
Raises:
AdbError: If the command exit code is not 0.
|
github-repos
|
def links(res: requests.models.Response, search: str=None, pattern: str=None) -> list:
hrefs = [link.to_text() for link in find_all_links(res.text)]
if search:
hrefs = [href for href in hrefs if (search in href)]
if pattern:
hrefs = [href for href in hrefs if re.findall(pattern, href)]
return list(set(hrefs))
|
Get the links of the page.
Args:
res (requests.models.Response): The response of the page.
search (str, optional): Defaults to None. Search the links you want.
pattern (str, optional): Defaults to None. Search the links use a regex pattern.
Returns:
list: All the links of the page.
|
codesearchnet
|
def draw(self, filename, color=True):
verify_dependencies(['pgv'])
if (not hasattr(self, '_results')):
raise RuntimeError('Graph cannot be drawn before it is executed. Try calling run() first.')
g = pgv.AGraph(directed=True)
g.node_attr['colorscheme'] = 'set312'
for elem in self._results:
if (not hasattr(elem, 'history')):
continue
log = elem.history
while log:
source_from = (log.parent[6] if log.parent else '')
s_node = hash((source_from, log[2]))
s_color = stim_list.index(log[2])
s_color = ((s_color % 12) + 1)
t_node = hash((log[6], log[7]))
t_style = ('filled,' if color else '')
t_style += ('dotted' if log.implicit else '')
if log[6].endswith('Extractor'):
t_color = '
elif log[6].endswith('Filter'):
t_color = '
else:
t_color = '
r_node = hash((log[6], log[5]))
r_color = stim_list.index(log[5])
r_color = ((r_color % 12) + 1)
if color:
g.add_node(s_node, label=log[2], shape='ellipse', style='filled', fillcolor=s_color)
g.add_node(t_node, label=log[6], shape='box', style=t_style, fillcolor=t_color)
g.add_node(r_node, label=log[5], shape='ellipse', style='filled', fillcolor=r_color)
else:
g.add_node(s_node, label=log[2], shape='ellipse')
g.add_node(t_node, label=log[6], shape='box', style=t_style)
g.add_node(r_node, label=log[5], shape='ellipse')
g.add_edge(s_node, t_node, style=t_style)
g.add_edge(t_node, r_node, style=t_style)
log = log.parent
g.draw(filename, prog='dot')
|
Render a plot of the graph via pygraphviz.
Args:
filename (str): Path to save the generated image to.
color (bool): If True, will color graph nodes based on their type,
otherwise will draw a black-and-white graph.
|
codesearchnet
|
def _get_or_load_domain(self, domain):
if isinstance(domain, six.string_types):
if (domain in self.domains):
return self.domains[domain]
elif exists(domain):
with open(domain, 'r') as fobj:
domain = json.load(fobj)
else:
raise ValueError("No domain could be found/loaded from input '{}'; value must be either the name of an existing Domain, or a valid path to a configuration file.".format(domain))
name = domain['name']
if (name in self.domains):
msg = "Domain with name '{}' already exists; returning existing Domain configuration.".format(name)
warnings.warn(msg)
return self.domains[name]
entities = domain.get('entities', [])
domain = Domain(domain)
for e in entities:
self.add_entity(domain=domain, **e)
self.domains[name] = domain
return self.domains[name]
|
Return a domain if one already exists, or create a new one if not.
Args:
domain (str, dict): Can be one of:
- The name of the Domain to return (fails if none exists)
- A path to the Domain configuration file
- A dictionary containing configuration information
|
codesearchnet
|
def inter_data_operation(self, axis, func, other):
if axis:
partitions = self.row_partitions
other_partitions = other.row_partitions
else:
partitions = self.column_partitions
other_partitions = other.column_partitions
func = self.preprocess_func(func)
result = np.array(
[
partitions[i].apply(
func,
num_splits=self._compute_num_partitions(),
other_axis_partition=other_partitions[i],
)
for i in range(len(partitions))
]
)
return self.__constructor__(result) if axis else self.__constructor__(result.T)
|
Apply a function that requires two BaseFrameManager objects.
Args:
axis: The axis to apply the function over (0 - rows, 1 - columns)
func: The function to apply
other: The other BaseFrameManager object to apply func to.
Returns:
A new BaseFrameManager object, the type of object that called this.
|
juraj-google-style
|
def chain_break_frequency(samples, embedding):
counts = {v: 0 for v in embedding}
total = 0
for sample in samples:
for (v, chain) in iteritems(embedding):
vals = [sample[u] for u in chain]
if (not _all_equal(vals)):
counts[v] += 1
total += 1
return {v: (counts[v] / total) for v in embedding}
|
Determines the frequency of chain breaks in the given samples.
Args:
samples (iterable): An iterable of samples where each sample
is a dict of the form {v: val, ...} where v is a variable
in the target graph and val is the associated value as
determined by a binary quadratic model sampler.
embedding (dict): The mapping from the source graph to the target graph.
Should be of the form {v: {s, ...}, ...} where v is a variable in the
source model and s is a variable in the target model.
Returns:
dict: The frequency of chain breaks in the form {v: f, ...} where v
is a variable in the source graph and frequency is the fraction
of chains that were broken as a float.
|
codesearchnet
|
def removeRouter(self, xRouterId):
print '%s call removeRouter' % self.port
print xRouterId
routerId = ''
routerId = self.__convertRlocToRouterId(xRouterId)
print routerId
if routerId == None:
print 'no matched xRouterId'
return False
try:
cmd = 'releaserouterid %s' % routerId
return self.__sendCommand(cmd)[0] != 'Fail'
except Exception, e:
ModuleHelper.WriteIntoDebugLogger('removeRouter() Error: ' + str(e))
|
kick router with a given router id from the Thread Network
Args:
xRouterId: a given router id in hex format
Returns:
True: successful to remove the router from the Thread Network
False: fail to remove the router from the Thread Network
|
juraj-google-style
|
def _CreateAnalysisPlugins(self, options):
if (not self._analysis_plugins):
return {}
analysis_plugins = analysis_manager.AnalysisPluginManager.GetPluginObjects(self._analysis_plugins)
for analysis_plugin in analysis_plugins.values():
helpers_manager.ArgumentHelperManager.ParseOptions(options, analysis_plugin)
return analysis_plugins
|
Creates the analysis plugins.
Args:
options (argparse.Namespace): command line arguments.
Returns:
dict[str, AnalysisPlugin]: analysis plugins and their names.
|
codesearchnet
|
def documentation(self, level='first'):
docs = (t.docstring for t in (list(self.conjunction.terms) + [self]) if (t.docstring is not None))
if (level.lower() == 'first'):
doc = next(docs, None)
elif (level.lower() == 'top'):
doc = list(docs)
return doc
|
Return the documentation of the type.
By default, this is the first docstring on a top-level term.
By setting *level* to `"top"`, the list of all docstrings on
top-level terms is returned, including the type's `docstring`
value, if not `None`, as the last item. The docstring for the
type itself is available via :attr:`TypeDefinition.docstring`.
Args:
level (str): `"first"` or `"top"`
Returns:
a single docstring or a list of docstrings
|
codesearchnet
|
def create(self, domain, type_name, search_command, body):
return self._request(domain, type_name, search_command, 'POST', body)
|
Create entry in ThreatConnect Data Store
Args:
domain (string): One of 'local', 'organization', or 'system'.
type_name (string): This is a free form index type name. The ThreatConnect API will use
this resource verbatim.
search_command (string): Search command to pass to ES.
body (str): JSON serialized data.
|
codesearchnet
|
def _convert_ddb_list_to_list(conversion_list):
ret_list = []
for v in conversion_list:
for v1 in v:
ret_list.append(v[v1])
return ret_list
|
Given a dynamodb list, it will return a python list without the dynamodb
datatypes
Args:
conversion_list (dict): a dynamodb list which includes the
datatypes
Returns:
list: Returns a sanitized list without the dynamodb datatypes
|
juraj-google-style
|
def transform_absolute_coords(self, width, height):
if (self.type != EventType.POINTER_MOTION_ABSOLUTE):
raise AttributeError(_wrong_meth.format(self.type))
abs_x = self._libinput.libinput_event_pointer_get_absolute_x_transformed(self._handle, width)
abs_y = self._libinput.libinput_event_pointer_get_absolute_y_transformed(self._handle, height)
return (abs_x, abs_y)
|
Return the current absolute coordinates of the pointer event,
transformed to screen coordinates.
For pointer events that are not of type
:attr:`~libinput.constant.EventType.POINTER_MOTION_ABSOLUTE`,
this method raises :exc:`AttributeError`.
Args:
width (int): The current output screen width.
height (int): The current output screen height.
Returns:
(float, float): The current absolute (x, y) coordinates transformed
to a screen coordinates.
Raises:
AttributeError
|
codesearchnet
|
def getJsonFromApi(view, request):
jsonText = view(request)
jsonText = json.loads(jsonText.content.decode('utf-8'))
return jsonText
|
Return json from querying Web Api
Args:
view: django view function.
request: http request object got from django.
Returns: json format dictionary
|
codesearchnet
|
def force_checkpoint_conversion(value=True):
global _FORCE_CHECKPOINT_CONVERSION
_FORCE_CHECKPOINT_CONVERSION = value
|
Forces checkpoint to use the new implementation.
The new checkpoint implementation is changing the saved metadata slightly,
and therefore may break forward compatibility in newly saved checkpoints. This
means:
- Previous versions of TensorFlow may not be able to load new checkpoints.
- Backwards compatibility is unchanged: Old checkpoints can still be loaded.
TensorFlow guarantees 3 weeks of forward compatibility, so this flag will be
removed in the future weeks, after which checkpoint conversion will happen by
default.
**What happens when this flag is enabled?**
The checkpoint will be saved with different metadata, meaning that previous
versions of TensorFlow (<=2.10) will not be able to load this checkpoint.
Args:
value: Boolean value, whether or not to force checkpoint conversion to the
new implementation.
|
github-repos
|
def nack(self, items):
self.modify_ack_deadline(
[requests.ModAckRequest(ack_id=item.ack_id, seconds=0) for item in items]
)
self.drop([requests.DropRequest(*item) for item in items])
|
Explicitly deny receipt of messages.
Args:
items(Sequence[NackRequest]): The items to deny.
|
juraj-google-style
|
def get_help_usage(command):
if not command:
doc = get_primary_command_usage()
elif command in ('-a', '--all'):
subcommands = [k for k in settings.subcommands if k is not None]
available_commands = subcommands + ['help']
command_doc = '\nAvailable commands:\n{}\n'.format(
'\n'.join(' {}'.format(c) for c in sorted(available_commands)))
doc = get_primary_command_usage(command_doc)
elif command.startswith('-'):
raise ValueError("Unrecognized option '{}'.".format(command))
elif command in settings.subcommands:
subcommand = settings.subcommands[command]
doc = format_usage(subcommand.__doc__)
docopt.docopt(doc, argv=('--help',))
|
Print out a help message and exit the program.
Args:
command: If a command value is supplied then print the help message for
the command module if available. If the command is '-a' or '--all',
then print the standard help message but with a full list of
available commands.
Raises:
ValueError: Raised if the help message is requested for an invalid
command or an unrecognized option is passed to help.
|
juraj-google-style
|
def _choose_random_edge(self, edges: Set[EDGE]) -> Optional[EDGE]:
if edges:
index = self._rand.randint(len(edges))
for e in edges:
if not index:
return e
index -= 1
return None
|
Picks random edge from the set of edges.
Args:
edges: Set of edges to pick from.
Returns:
Random edge from the supplied set, or None for empty set.
|
juraj-google-style
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.