code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def golden_images(self): if (not self.__golden_images): self.__golden_images = GoldenImages(self.__connection) return self.__golden_images
Gets the Golden Images API client. Returns: GoldenImages:
codesearchnet
def next_generation(self, mut_rate=0, max_mut_amt=0, log_base=10): if (self.__num_processes > 1): process_pool = Pool(processes=self.__num_processes) members = [m.get() for m in self.__members] else: members = self.__members if (len(members) == 0): raise Exception('Generation 0 not found: use generate_population() first') selected_members = self.__select_fn(members) reproduction_probs = list(reversed(logspace(0.0, 1.0, num=len(selected_members), base=log_base))) reproduction_probs = (reproduction_probs / sum(reproduction_probs)) self.__members = [] for _ in range(self.__pop_size): parent_1 = nrandom.choice(selected_members, p=reproduction_probs) parent_2 = nrandom.choice(selected_members, p=reproduction_probs) feed_dict = {} for param in self.__parameters: which_parent = uniform(0, 1) if (which_parent < 0.5): feed_dict[param.name] = parent_1.parameters[param.name] else: feed_dict[param.name] = parent_2.parameters[param.name] feed_dict[param.name] = self.__mutate_parameter(feed_dict[param.name], param, mut_rate, max_mut_amt) if (self.__num_processes > 1): self.__members.append(process_pool.apply_async(self._start_process, [self.__cost_fn, feed_dict, self.__cost_fn_args])) else: self.__members.append(Member(feed_dict, self.__cost_fn(feed_dict, self.__cost_fn_args))) if (self.__num_processes > 1): process_pool.close() process_pool.join() self.__determine_best_member()
Generates the next population from a previously evaluated generation Args: mut_rate (float): mutation rate for new members (0.0 - 1.0) max_mut_amt (float): how much the member is allowed to mutate (0.0 - 1.0, proportion change of mutated parameter) log_base (int): the higher this number, the more likely the first Members (chosen with supplied selection function) are chosen as parents for the next generation
codesearchnet
def closing(input_rasterfilename, times): input_raster = RasterUtilClass.read_raster(input_rasterfilename) closing_raster = input_raster for i in range(times): closing_raster = RasterUtilClass.raster_dilation(closing_raster) for i in range(times): closing_raster = RasterUtilClass.raster_erosion(closing_raster) return closing_raster
Do closing. Closing: Dilate firstly, then Erode. Args: input_rasterfilename: input original raster image filename. times: Erode and Dilate times. Returns: closing_raster: raster image after close.
codesearchnet
def transpose(self, name=None): if any(x > 1 for x in self._rate): raise base.NotSupportedError( "Cannot transpose a dilated convolution module.") if any(p != self._conv_op_padding for p in self._padding): raise base.NotSupportedError( "Cannot tranpose a convolution using mixed paddings or paddings " "other than SAME or VALID.") if name is None: name = self.module_name + "_transpose" def output_shape(): if self._data_format == DATA_FORMAT_NCHW: return self.input_shape[2:4] else: return self.input_shape[1:3] return Conv2DTranspose(output_channels=lambda: self._input_channels, output_shape=output_shape, kernel_shape=self._kernel_shape, stride=self._stride, padding=self._conv_op_padding, use_bias=self._use_bias, initializers=self._initializers, partitioners=self._partitioners, regularizers=self._regularizers, data_format=self._data_format, custom_getter=self._custom_getter, name=name)
Returns matching `Conv2DTranspose` module. Args: name: Optional string assigning name of transpose module. The default name is constructed by appending "_transpose" to `self.name`. Returns: `Conv2DTranspose` module. Raises: base.NotSupportedError: If `rate` in any dimension > 1.
juraj-google-style
def copy(self, destination): destination_uri = self.repo.parse_uri(destination) response = self.repo.api.http_request('COPY', self.uri, data=None, headers={'Destination':destination_uri.toPython()}) if response.status_code == 201: return destination_uri else: raise Exception('HTTP %s, could not move resource %s to %s' % (response.status_code, self.uri, destination_uri))
Method to copy resource to another location Args: destination (rdflib.term.URIRef, str): URI location to move resource Returns: (Resource) new, moved instance of resource
juraj-google-style
def micros_to_timestamp(micros, timestamp): seconds = long(micros / _MICROS_PER_SECOND) micro_remainder = micros % _MICROS_PER_SECOND timestamp.seconds = seconds timestamp.nanos = micro_remainder * _NANOS_PER_MICRO
Convert microseconds from utc epoch to google.protobuf.timestamp. Args: micros: a long, number of microseconds since utc epoch. timestamp: a google.protobuf.timestamp.Timestamp to populate.
juraj-google-style
def warp(self, to_sref, dest=None, interpolation=gdalconst.GRA_NearestNeighbour): if not hasattr(to_sref, 'ExportToWkt'): to_sref = SpatialReference(to_sref) dest_wkt = to_sref.ExportToWkt() dtype = self[0].DataType err_thresh = 0.125 vrt = gdal.AutoCreateWarpedVRT(self.ds, None, dest_wkt, interpolation, err_thresh) if vrt is None: raise ValueError('Could not warp %s to %s' % (self, dest_wkt)) warpsize = (vrt.RasterXSize, vrt.RasterYSize, len(self)) warptrans = vrt.GetGeoTransform() vrt = None if dest is None: imgio = MemFileIO() rwarp = self.driver.raster(imgio, warpsize, dtype) imgio.close() else: rwarp = self.driver.raster(dest, warpsize, dtype) rwarp.SetGeoTransform(warptrans) rwarp.SetProjection(to_sref) if self.nodata is not None: for band in rwarp: band.SetNoDataValue(self.nodata) band = None gdal.ReprojectImage(self.ds, rwarp.ds, None, None, interpolation) return rwarp
Returns a new reprojected instance. Arguments: to_sref -- spatial reference as a proj4 or wkt string, or a SpatialReference Keyword args: dest -- filepath as str interpolation -- GDAL interpolation type
juraj-google-style
def register(self, table): if table.table_type.is_system: raise ValueError('Cannot add system table to catalog') if not table.table_type.is_shared: raise ValueError('Cannot add local table to catalog') if table.is_substitute: raise ValueError('Cannot add substitute table to catalog') versions = self.__tables.get(table.name) if versions is None: versions = {} self.__tables[table.name] = versions versions[table.version] = table
Adds a shared table to the catalog. Args: table (SymbolTable): A non-system, shared symbol table.
juraj-google-style
def compose_q_update_vec(self, q_update_vec: torch.Tensor, normalize_quats: bool=True) -> Rotation: quats = self.get_quats() new_quats = quats + quat_multiply_by_vec(quats, q_update_vec) return Rotation(rot_mats=None, quats=new_quats, normalize_quats=normalize_quats)
Returns a new quaternion Rotation after updating the current object's underlying rotation with a quaternion update, formatted as a [*, 3] tensor whose final three columns represent x, y, z such that (1, x, y, z) is the desired (not necessarily unit) quaternion update. Args: q_update_vec: A [*, 3] quaternion update tensor normalize_quats: Whether to normalize the output quaternion Returns: An updated Rotation
github-repos
def getToC(doc, simple=True): def recurse(olItem, liste, lvl): 'Recursively follow the outline item chain and record item information in a list.' while olItem: if olItem.title: title = olItem.title else: title = ' ' if (not olItem.isExternal): if olItem.uri: page = (olItem.page + 1) else: page = (- 1) else: page = (- 1) if (not simple): link = getLinkDict(olItem) liste.append([lvl, title, page, link]) else: liste.append([lvl, title, page]) if olItem.down: liste = recurse(olItem.down, liste, (lvl + 1)) olItem = olItem.next return liste if doc.isClosed: raise ValueError('illegal operation on closed document') olItem = doc.outline if (not olItem): return [] lvl = 1 liste = [] return recurse(olItem, liste, lvl)
Create a table of contents. Args: simple: a bool to control output. Returns a list, where each entry consists of outline level, title, page number and link destination (if simple = False). For details see PyMuPDF's documentation.
codesearchnet
def __init__(self, name, data=None, package_cls=None): super(PackageMaker, self).__init__(data) self.name = name self.package_cls = package_cls or Package self.installed_variants = [] self.skipped_variants = []
Create a package maker. Args: name (str): Package name.
juraj-google-style
def copy_sharding(from_tensor, to_tensor, use_sharding_op=False): sharding = get_tensor_sharding(from_tensor) if sharding is None: return to_tensor if isinstance(to_tensor, resource_variable_ops.BaseResourceVariable) and context.xla_sharding_for_resource_variables_enabled(): proto = xla_data_pb2.OpSharding() proto.ParseFromString(sharding) to_tensor._set_xla_sharding(proto) return to_tensor if use_sharding_op: to_tensor = tf2xla.sharding(to_tensor, sharding=sharding) attr_value = attr_value_pb2.AttrValue(s=sharding) to_tensor.op._set_attr('_XlaSharding', attr_value) return to_tensor
Copies the a tensor's sharding to another. Args: from_tensor: Source tensor. Must be the sole output of an op. to_tensor: the tensor the annotate with the copy. use_sharding_op: whether to create a sharding op on `to_tensor`. Returns: A tensor with sharding annotation copied from `from_tensor`.
github-repos
def __init__(self, items: Optional[Iterable[Any]]=None, *, value_spec: Optional[pg_typing.List]=None, onchange_callback: Optional[Callable[[Dict[utils.KeyPath, base.FieldUpdate]], None]]=None, allow_partial: bool=False, accessor_writable: bool=True, sealed: bool=False, root_path: Optional[utils.KeyPath]=None): if value_spec and (not isinstance(value_spec, pg_typing.List)): raise TypeError(f"Argument 'value_spec' must be a `pg.typing.List` object. Encountered {value_spec}.") base.Symbolic.__init__(self, allow_partial=allow_partial, accessor_writable=accessor_writable, sealed=False, root_path=root_path) self._value_spec = None self._onchange_callback = None list.__init__(self) if items: if isinstance(items, List): items = items.sym_values() for item in items: self._set_item_without_permission_check(len(self), item) if value_spec: self.use_value_spec(value_spec, allow_partial) self._onchange_callback = onchange_callback self.seal(sealed)
Constructor. Args: items: A optional iterable object as initial value for this list. value_spec: Value spec that applies to this List. onchange_callback: Callback when sub-tree has been modified. allow_partial: Whether to allow unbound or partial fields. This takes effect only when value_spec is not None. accessor_writable: Whether to allow modification of this List using accessors (operator[]). sealed: Whether to seal this List after creation. root_path: KeyPath of this List in its object tree.
github-repos
def sym_distance(cls, q0, q1): q = Quaternion.sym_log_map(q0, q1) return q.norm
Quaternion symmetrized distance. Find the intrinsic symmetrized geodesic distance between q0 and q1. Params: q0: the first quaternion q1: the second quaternion Returns: A positive amount corresponding to the length of the symmetrized geodesic curve connecting q0 to q1. Note: This formulation is more numerically stable when performing iterative gradient descent on the Riemannian quaternion manifold. However, the distance between q and -q is equal to pi, rendering this formulation not useful for measuring rotation similarities when the samples are spread over a "solid" angle of more than pi/2 radians (the spread refers to quaternions as point samples on the unit hypersphere).
codesearchnet
def __init__(self, batch_size, key_depth, val_depth, memory_size, sharpen_factor=1., name="neural_memory"): self.name = name self.batch_size = batch_size self.key_depth = key_depth self.val_depth = val_depth self.memory_size = memory_size self.sharpen_factor = sharpen_factor with tf.variable_scope(name): self.segment_number = tf.get_variable( "segment_number", [self.batch_size], dtype=tf.int32, trainable=False, initializer=tf.constant_initializer(100000)) self.mem_vals = tf.get_variable( "memvals", [self.batch_size, self.memory_size, self.val_depth], dtype=tf.float32, trainable=False, initializer=tf.constant_initializer(.0)) self.mean_logits = tf.get_variable( "meanlogits", [self.batch_size, self.memory_size], dtype=tf.float32, trainable=False, initializer=tf.constant_initializer(.0))
Initialize the memory object. Args: batch_size: the batch size. key_depth: the depth of the memory keys. val_depth: the depth of the memory values. memory_size: the number of items in the memory. sharpen_factor: the sharpen_factor for addressing the memory. name: the optional variable scope.
juraj-google-style
def _get_token(request=None, allowed_auth_schemes=('OAuth', 'Bearer'), allowed_query_keys=('bearer_token', 'access_token')): allowed_auth_schemes = _listlike_guard(allowed_auth_schemes, 'allowed_auth_schemes', iterable_only=True) auth_header = os.environ.get('HTTP_AUTHORIZATION') if auth_header: for auth_scheme in allowed_auth_schemes: if auth_header.startswith(auth_scheme): return auth_header[(len(auth_scheme) + 1):] return None if request: allowed_query_keys = _listlike_guard(allowed_query_keys, 'allowed_query_keys', iterable_only=True) for key in allowed_query_keys: (token, _) = request.get_unrecognized_field_info(key) if token: return token
Get the auth token for this request. Auth token may be specified in either the Authorization header or as a query param (either access_token or bearer_token). We'll check in this order: 1. Authorization header. 2. bearer_token query param. 3. access_token query param. Args: request: The current request, or None. Returns: The token in the request or None.
codesearchnet
def parse_cscore(infile): cscore_dict = {} with open(infile, 'r') as f: for ll in f.readlines(): if ll.lower().startswith('model1'): l = ll.split() cscore = l[1] tmscore_full = l[2].split('+-') tmscore = tmscore_full[0] tmscore_err = tmscore_full[1] rmsd_full = l[3].split('+-') rmsd = rmsd_full[0] rmsd_err = rmsd_full[1] cscore_dict['c_score'] = float(cscore) cscore_dict['tm_score'] = float(tmscore) cscore_dict['tm_score_err'] = float(tmscore_err) cscore_dict['rmsd'] = float(rmsd) cscore_dict['rmsd_err'] = float(rmsd_err) return cscore_dict
Parse the cscore file to return a dictionary of scores. Args: infile (str): Path to cscore Returns: dict: Dictionary of scores
codesearchnet
def end_of(self, event_id, import_options=True): event_id = str(event_id) if (event_id in DatePickerDictionary.items): linked_picker = DatePickerDictionary.items[event_id] self.config['linked_to'] = linked_picker.config['id'] if import_options: backup_moment_format = self.config['options']['format'] self.config['options'].update(linked_picker.config['options']) self.config['options'].update(self.options_param) if (self.format_param or ('format' in self.options_param)): self.config['options']['format'] = backup_moment_format else: self.format = linked_picker.format self.config['options']['useCurrent'] = False self._link_to(linked_picker) else: raise KeyError(('start-date not specified for event_id "%s"' % event_id)) return self
Set Date-Picker as the end-date of a date-range. Args: - event_id (string): User-defined unique id for linking two fields - import_options (bool): inherit options from start-date input, default: TRUE
codesearchnet
def compile_action_preconditions(self, state: Sequence[tf.Tensor], action: Sequence[tf.Tensor]) -> List[TensorFluent]: scope = self.action_precondition_scope(state, action) preconds = [] with self.graph.as_default(): with tf.name_scope('action_preconditions'): for p in self.rddl.domain.preconds: fluent = self._compile_expression(p, scope) preconds.append(fluent) return preconds
Compiles the action preconditions given current `state` and `action` fluents. Args: state (Sequence[tf.Tensor]): The current state fluents. action (Sequence[tf.Tensor]): The action fluents. Returns: A list of :obj:`rddl2tf.fluent.TensorFluent`.
codesearchnet
def create_event_model(event): if event['type'].startswith('task'): factory = { JobEventName.Started: JobStartedEvent, JobEventName.Succeeded: JobSucceededEvent, JobEventName.Stopped: JobStoppedEvent, JobEventName.Aborted: JobAbortedEvent } if event['type'] in factory: return factory[event['type']].from_event(event) else: raise JobEventTypeUnsupported( 'Unsupported event type {}'.format(event['type'])) elif event['type'].startswith('worker'): raise WorkerEventTypeUnsupported( 'Unsupported event type {}'.format(event['type'])) else: raise EventTypeUnknown('Unknown event type {}'.format(event['type']))
Factory function that turns a celery event into an event object. Args: event (dict): A dictionary that represents a celery event. Returns: object: An event object representing the received event. Raises: JobEventTypeUnsupported: If an unsupported celery job event was received. WorkerEventTypeUnsupported: If an unsupported celery worker event was received. EventTypeUnknown: If an unknown event type (neither job nor worker) was received.
juraj-google-style
def yaw_pitch_roll(self): self._normalise() yaw = np.arctan2((2 * ((self.q[0] * self.q[3]) - (self.q[1] * self.q[2]))), (1 - (2 * ((self.q[2] ** 2) + (self.q[3] ** 2))))) pitch = np.arcsin((2 * ((self.q[0] * self.q[2]) + (self.q[3] * self.q[1])))) roll = np.arctan2((2 * ((self.q[0] * self.q[1]) - (self.q[2] * self.q[3]))), (1 - (2 * ((self.q[1] ** 2) + (self.q[2] ** 2))))) return (yaw, pitch, roll)
Get the equivalent yaw-pitch-roll angles aka. intrinsic Tait-Bryan angles following the z-y'-x'' convention Returns: yaw: rotation angle around the z-axis in radians, in the range `[-pi, pi]` pitch: rotation angle around the y'-axis in radians, in the range `[-pi/2, -pi/2]` roll: rotation angle around the x''-axis in radians, in the range `[-pi, pi]` The resulting rotation_matrix would be R = R_x(roll) R_y(pitch) R_z(yaw) Note: This feature only makes sense when referring to a unit quaternion. Calling this method will implicitly normalise the Quaternion object to a unit quaternion if it is not already one.
codesearchnet
def initial_state(self, batch_size, trainable=False): init_state = tf.eye(self._mem_slots, batch_shape=[batch_size]) if (self._mem_size > self._mem_slots): difference = (self._mem_size - self._mem_slots) pad = tf.zeros((batch_size, self._mem_slots, difference)) init_state = tf.concat([init_state, pad], (- 1)) elif (self._mem_size < self._mem_slots): init_state = init_state[(:, :, :self._mem_size)] return init_state
Creates the initial memory. We should ensure each row of the memory is initialized to be unique, so initialize the matrix to be the identity. We then pad or truncate as necessary so that init_state is of size (batch_size, self._mem_slots, self._mem_size). Args: batch_size: The size of the batch. trainable: Whether the initial state is trainable. This is always True. Returns: init_state: A truncated or padded matrix of size (batch_size, self._mem_slots, self._mem_size).
codesearchnet
def Collect(self, top_frame): frame = top_frame top_line = self.breakpoint['location']['line'] breakpoint_frames = self.breakpoint['stackFrames'] try: if 'expressions' in self.breakpoint: self.breakpoint['evaluatedExpressions'] = [ self._CaptureExpression(top_frame, expression) for expression in self.breakpoint['expressions']] while frame and (len(breakpoint_frames) < self.max_frames): line = top_line if frame == top_frame else frame.f_lineno code = frame.f_code if len(breakpoint_frames) < self.max_expand_frames: frame_arguments, frame_locals = self.CaptureFrameLocals(frame) else: frame_arguments = [] frame_locals = [] breakpoint_frames.append({ 'function': _GetFrameCodeObjectName(frame), 'location': { 'path': NormalizePath(code.co_filename), 'line': line }, 'arguments': frame_arguments, 'locals': frame_locals }) frame = frame.f_back except BaseException as e: self.breakpoint['status'] = { 'isError': True, 'description': { 'format': ('INTERNAL ERROR: Failed while capturing locals ' 'of frame $0: $1'), 'parameters': [str(len(breakpoint_frames)), str(e)]}} num_vars = 1 while (num_vars < len(self._var_table)) and ( self._total_size < self.max_size): self._var_table[num_vars] = self.CaptureVariable( self._var_table[num_vars], 0, self.default_capture_limits, can_enqueue=False) num_vars += 1 self.TrimVariableTable(num_vars) self._CaptureEnvironmentLabels() self._CaptureRequestLogId() self._CaptureUserId()
Collects call stack, local variables and objects. Starts collection from the specified frame. We don't start from the top frame to exclude the frames due to debugger. Updates the content of self.breakpoint. Args: top_frame: top frame to start data collection.
juraj-google-style
def make_call_types(f, globals_d): arg_spec = getargspec(f) args = [k for k in arg_spec.args if k != "self"] defaults = {} if arg_spec.defaults: default_args = args[-len(arg_spec.defaults):] for a, default in zip(default_args, arg_spec.defaults): defaults[a] = default if not getattr(f, "__annotations__", None): annotations = make_annotations(f, globals_d) else: annotations = f.__annotations__ call_types = OrderedDict() for a in args: anno = anno_with_default(annotations[a], defaults.get(a, NO_DEFAULT)) assert isinstance(anno, Anno), \ "Argument %r has type %r which is not an Anno" % (a, anno) call_types[a] = anno return_type = anno_with_default(annotations.get("return", None)) if return_type is Any: return_type = Anno("Any return value", Any, "return") assert return_type is None or isinstance(return_type, Anno), \ "Return has type %r which is not an Anno" % (return_type,) return call_types, return_type
Make a call_types dictionary that describes what arguments to pass to f Args: f: The function to inspect for argument names (without self) globals_d: A dictionary of globals to lookup annotation definitions in
juraj-google-style
def start_listener_thread(self, timeout_ms=30000, exception_handler=None): try: thread = Thread(target=self.listen_forever, args=(timeout_ms, exception_handler)) thread.daemon = True self.sync_thread = thread self.should_listen = True thread.start() except RuntimeError: e = sys.exc_info()[0] logger.error("Error: unable to start thread. %s", str(e))
Start a listener thread to listen for events in the background. Args: timeout (int): How long to poll the Home Server for before retrying. exception_handler (func(exception)): Optional exception handler function which can be used to handle exceptions in the caller thread.
juraj-google-style
def __write_to_fil_light(self, filename_out, *args, **kwargs): n_bytes = self.header[b'nbits'] / 8 with open(filename_out, "wb") as fileh: fileh.write(generate_sigproc_header(self)) j = self.data if n_bytes == 4: np.float32(j.ravel()).tofile(fileh) elif n_bytes == 2: np.int16(j.ravel()).tofile(fileh) elif n_bytes == 1: np.int8(j.ravel()).tofile(fileh)
Write data to .fil file. Args: filename_out (str): Name of output file
juraj-google-style
def _get_snippet_ctime(self, snip_name): if snip_name not in self.snip_ctimes: snippet = yaml_snippet_loader.YamlSnippetLoader.get_snippet_by_name(snip_name) self.snip_ctimes[snip_name] = os.path.getctime(snippet.path) return self.snip_ctimes[snip_name]
Returns and remembers (during this DevAssistant invocation) last ctime of given snippet. Calling ctime costs lost of time and some snippets, like common_args, are used widely, so we don't want to call ctime bazillion times on them during one invocation. Args: snip_name: name of snippet to get ctime for Returns: ctime of the snippet
juraj-google-style
def _GetWinevtRcDatabaseReader(self): if ((not self._winevt_database_reader) and self._data_location): database_path = os.path.join(self._data_location, self._WINEVT_RC_DATABASE) if (not os.path.isfile(database_path)): return None self._winevt_database_reader = winevt_rc.WinevtResourcesSqlite3DatabaseReader() if (not self._winevt_database_reader.Open(database_path)): self._winevt_database_reader = None return self._winevt_database_reader
Opens the Windows Event Log resource database reader. Returns: WinevtResourcesSqlite3DatabaseReader: Windows Event Log resource database reader or None.
codesearchnet
class PoolerAnswerClass(nn.Module): def __init__(self, config): super().__init__() self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) self.activation = nn.Tanh() self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False) logger.warning_once('[DEPRECATION WARNING] `PoolerAnswerClass` is deprecated and will be removed in v4.53. Please use model-specific class, e.g. `XLMPoolerAnswerClass`.') def forward(self, hidden_states: torch.FloatTensor, start_states: Optional[torch.FloatTensor]=None, start_positions: Optional[torch.LongTensor]=None, cls_index: Optional[torch.LongTensor]=None) -> torch.FloatTensor: hsz = hidden_states.shape[-1] assert start_states is not None or start_positions is not None, 'One of start_states, start_positions should be not None' if start_positions is not None: start_positions = start_positions[:, None, None].expand(-1, -1, hsz) start_states = hidden_states.gather(-2, start_positions).squeeze(-2) if cls_index is not None: cls_index = cls_index[:, None, None].expand(-1, -1, hsz) cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) else: cls_token_state = hidden_states[:, -1, :] x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1)) x = self.activation(x) x = self.dense_1(x).squeeze(-1) return x
Compute SQuAD 2.0 answer class from classification and start tokens hidden states. Args: config ([`PretrainedConfig`]): The config used by the model, will be used to grab the `hidden_size` of the model.
github-repos
def __call__(self, func: T) -> T: api_names_attr = API_ATTRS[self._api_name].names api_names_attr_v1 = API_ATTRS_V1[self._api_name].names _, undecorated_func = tf_decorator.unwrap(func) self.set_attr(undecorated_func, api_names_attr, self._names) self.set_attr(undecorated_func, api_names_attr_v1, self._names_v1) for name in self._names: _NAME_TO_SYMBOL_MAPPING[name] = func for name_v1 in self._names_v1: _NAME_TO_SYMBOL_MAPPING['compat.v1.%s' % name_v1] = func return func
Calls this decorator. Args: func: decorated symbol (function or class). Returns: The input function with _tf_api_names attribute set.
github-repos
def create_pull_response(responses): from google.cloud import pubsub from google.protobuf import timestamp_pb2 res = pubsub.types.PullResponse() for response in responses: received_message = pubsub.types.ReceivedMessage() message = received_message.message message.data = response.data if response.attributes is not None: for k, v in response.attributes.items(): message.attributes[k] = v publish_time = timestamp_pb2.Timestamp() if response.publish_time_secs is not None: publish_time.seconds = response.publish_time_secs if response.publish_time_nanos is not None: publish_time.nanos = response.publish_time_nanos message.publish_time = publish_time if response.ack_id is not None: received_message.ack_id = response.ack_id res.received_messages.append(received_message) return res
Create an instance of ``google.cloud.pubsub.types.ReceivedMessage``. Used to simulate the response from pubsub.SubscriberClient().pull(). Args: responses: list of ``PullResponseMessage`` Returns: An instance of ``google.cloud.pubsub.types.PullResponse`` populated with responses.
github-repos
def get_reference(root): reference = {} elem = root.find('bibliographyLink') if (elem is None): raise MissingElementError('bibliographyLink') ref_doi = elem.get('doi', None) ref_key = elem.get('preferredKey', None) if (ref_doi is not None): try: ref = crossref_api.works(ids=ref_doi)['message'] except (HTTPError, habanero.RequestError, ConnectionError): if (ref_key is None): raise KeywordError('DOI not found and preferredKey attribute not set') else: warn('Missing doi attribute in bibliographyLink or lookup failed. Setting "detail" key as a fallback; please update to the appropriate fields.') reference['detail'] = ref_key if (reference['detail'][(- 1)] != '.'): reference['detail'] += '.' else: if (ref_key is not None): warn('Using DOI to obtain reference information, rather than preferredKey.') reference['doi'] = elem.attrib['doi'] reference['journal'] = ref.get('container-title')[0] ref_year = (ref.get('published-print') or ref.get('published-online')) reference['year'] = int(ref_year['date-parts'][0][0]) reference['volume'] = int(ref.get('volume')) reference['pages'] = ref.get('page') reference['authors'] = [] for author in ref['author']: auth = {} auth['name'] = ' '.join([author['given'], author['family']]) orcid = author.get('ORCID') if orcid: auth['ORCID'] = orcid.lstrip('http: reference['authors'].append(auth) elif (ref_key is not None): warn('Missing doi attribute in bibliographyLink. Setting "detail" key as a fallback; please update to the appropriate fields.') reference['detail'] = ref_key if (reference['detail'][(- 1)] != '.'): reference['detail'] += '.' else: raise MissingAttributeError('preferredKey', 'bibliographyLink') return reference
Read reference info from root of ReSpecTh XML file. Args: root (`~xml.etree.ElementTree.Element`): Root of ReSpecTh XML file Returns: properties (`dict`): Dictionary with reference information
codesearchnet
def path_fraction_point(points, fraction): seg_id, offset = path_fraction_id_offset(points, fraction, relative_offset=True) return linear_interpolate(points[seg_id], points[seg_id + 1], offset)
Computes the point which corresponds to the fraction of the path length along the piecewise linear curve which is constructed from the set of points. Args: points: an iterable of indexable objects with indices 0, 1, 2 correspoding to 3D cartesian coordinates fraction: path length fraction (0 <= fraction <= 1) Returns: The 3D coordinates of the aforementioned point
juraj-google-style
def tail(self, n): if n < 0: n = max(0, len(self.index) + n) if self._is_transposed: result = self.__constructor__( self.data.transpose().take(1, -n).transpose(), self.index[-n:], self.columns, self._dtype_cache, ) result._is_transposed = True else: result = self.__constructor__( self.data.take(0, -n), self.index[-n:], self.columns, self._dtype_cache ) return result
Returns the last n rows. Args: n: Integer containing the number of rows to return. Returns: DataManager containing the last n rows of the original DataManager.
juraj-google-style
def _GetNumberOfDaysInCentury(self, year): if (year < 0): raise ValueError('Year value out of bounds.') (year, _) = divmod(year, 100) if self._IsLeapYear(year): return 36525 return 36524
Retrieves the number of days in a century. Args: year (int): year in the century e.g. 1970. Returns: int: number of (remaining) days in the century. Raises: ValueError: if the year value is out of bounds.
codesearchnet
def GetDataDownloader(self, version=sorted(_SERVICE_MAP.keys())[(- 1)], server=None): if (not server): server = DEFAULT_ENDPOINT return DataDownloader(self, version, server)
Creates a downloader for Ad Manager reports and PQL result sets. This is a convenience method. It is functionally identical to calling DataDownloader(ad_manager_client, version, server) Args: [optional] version: A string identifying the Ad Manager version to connect to. This defaults to what is currently the latest version. This will be updated in future releases to point to what is then the latest version. server: A string identifying the webserver hosting the Ad Manager API. Returns: A DataDownloader tied to this AdManagerClient, ready to download reports.
codesearchnet
def getmtime(self, path): try: file_obj = self.filesystem.resolve(path) return file_obj.st_mtime except IOError: self.filesystem.raise_os_error(errno.ENOENT, winerror=3)
Returns the modification time of the fake file. Args: path: the path to fake file. Returns: (int, float) the modification time of the fake file in number of seconds since the epoch. Raises: OSError: if the file does not exist.
codesearchnet
def parse_peddy_ped_check(lines): ped_check = [] header = [] for i,line in enumerate(lines): line = line.rstrip() if i == 0: header = line.lstrip(' else: pair_info = dict(zip(header, line.split(','))) pair_info['hets_a'] = convert_number(pair_info['hets_a']) pair_info['hets_b'] = convert_number(pair_info['hets_b']) pair_info['ibs0'] = convert_number(pair_info['ibs0']) pair_info['ibs2'] = convert_number(pair_info['ibs2']) pair_info['n'] = convert_number(pair_info['n']) pair_info['rel'] = convert_number(pair_info['rel']) pair_info['pedigree_relatedness'] = convert_number(pair_info['pedigree_relatedness']) pair_info['rel_difference'] = convert_number(pair_info['rel_difference']) pair_info['shared_hets'] = convert_number(pair_info['shared_hets']) pair_info['pedigree_parents'] = make_bool(pair_info.get('pedigree_parents')) pair_info['predicted_parents'] = make_bool(pair_info.get('predicted_parents')) pair_info['parent_error'] = make_bool(pair_info.get('parent_error')) pair_info['sample_duplication_error'] = make_bool(pair_info.get('sample_duplication_error')) ped_check.append(pair_info) return ped_check
Parse a .ped_check.csv file Args: lines(iterable(str)) Returns: ped_check(list(dict))
juraj-google-style
def _decorate_run_options_for_profile(self, run_options): run_options.trace_level = config_pb2.RunOptions.FULL_TRACE
Modify a RunOptions object for profiling TensorFlow graph execution. Args: run_options: (RunOptions) the modified RunOptions object.
github-repos
def page(self, title=None, pageid=None, auto_suggest=True, redirect=True, preload=False): if (((title is None) or (title.strip() == '')) and (pageid is None)): raise ValueError('Either a title or a pageid must be specified') elif title: if auto_suggest: temp_title = self.suggest(title) if (temp_title is None): raise PageError(title=title) else: title = temp_title return MediaWikiPage(self, title, redirect=redirect, preload=preload) else: return MediaWikiPage(self, pageid=pageid, preload=preload)
Get MediaWiki page based on the provided title or pageid Args: title (str): Page title pageid (int): MediaWiki page identifier auto-suggest (bool): **True:** Allow page title auto-suggest redirect (bool): **True:** Follow page redirects preload (bool): **True:** Load most page properties Raises: ValueError: when title is blank or None and no pageid is \ provided Raises: :py:func:`mediawiki.exceptions.PageError`: if page does \ not exist Note: Title takes precedence over pageid if both are provided
codesearchnet
def _calculate_page_index(index, data): if (index > data['total_results']): raise ValueError('index not in paged data') page_length = len(data['results']) return (((index
Determine the location of a given index in paged data. Arguments: index (:py:class:`int`): The overall index. data: (:py:class:`dict`) The first page of data. Returns: :py:class:`tuple`: The location of that index, in the format ``(page, index_in_page)``.
codesearchnet
def MemberVisible(component, name, member, class_attrs=None, verbose=False): if isinstance(name, str) and name.startswith('__'): return False if verbose: return True if member is absolute_import or member is division or member is print_function: return False if isinstance(member, type(absolute_import)): return False modules_to_hide = [] if inspect.ismodule(member) and member in modules_to_hide: return False if inspect.isclass(component): if class_attrs is None: class_attrs = inspectutils.GetClassAttrsDict(component) or {} class_attr = class_attrs.get(name) if class_attr: if class_attr.kind in ('method', 'property'): return False tuplegetter = getattr(collections, '_tuplegetter', type(None)) if isinstance(class_attr.object, tuplegetter): return False if isinstance(name, str): return not name.startswith('_') return True
Returns whether a member should be included in auto-completion or help. Determines whether a member of an object with the specified name should be included in auto-completion or help text(both usage and detailed help). If the member name starts with '__', it will always be excluded. If it starts with only one '_', it will be included for all non-string types. If verbose is True, the members, including the private members, are included. When not in verbose mode, some modules and functions are excluded as well. Args: component: The component containing the member. name: The name of the member. member: The member itself. class_attrs: (optional) If component is a class, provide this as: inspectutils.GetClassAttrsDict(component). If not provided, it will be computed. verbose: Whether to include private members. Returns A boolean value indicating whether the member should be included.
github-repos
def get_formal_type_parameter(self, t: str) -> 'BaseValue': del t return self.ctx.convert.unsolvable
Get the class's type for the type parameter. Treating self as a class_mixin.Class, gets its formal type for the given type parameter. For the real implementation, see ParameterizedClass.get_formal_type_parameter. Args: t: The name of the type parameter. Returns: A formal type.
github-repos
def _is_txn_to_replay(self, txn_id, possible_successor, already_seen): is_successor = self._is_predecessor_of_possible_successor( txn_id, possible_successor) in_different_batch = not self._is_in_same_batch(txn_id, possible_successor) has_not_been_seen = possible_successor not in already_seen return is_successor and in_different_batch and has_not_been_seen
Decide if possible_successor should be replayed. Args: txn_id (str): Id of txn in failed batch. possible_successor (str): Id of txn to possibly replay. already_seen (list): A list of possible_successors that have been replayed. Returns: (bool): If the possible_successor should be replayed.
juraj-google-style
def _runExperimentImpl(options, model=None): json_helpers.validate(options.privateOptions, schemaDict=g_parsedPrivateCommandLineOptionsSchema) experimentDir = options.experimentDir descriptionPyModule = helpers.loadExperimentDescriptionScriptFromDir( experimentDir) expIface = helpers.getExperimentDescriptionInterfaceFromModule( descriptionPyModule) if options.privateOptions['listAvailableCheckpoints']: _printAvailableCheckpoints(experimentDir) return None experimentTasks = expIface.getModelControl().get('tasks', []) if (len(experimentTasks) == 0 and expIface.getModelControl()['environment'] == OpfEnvironment.Nupic): expIface.convertNupicEnvToOPF() experimentTasks = expIface.getModelControl().get('tasks', []) expIface.normalizeStreamSources() newSerialization = options.privateOptions['newSerialization'] if options.privateOptions['listTasks']: print "Available tasks:" for label in [t['taskLabel'] for t in experimentTasks]: print "\t", label return None if options.privateOptions['runCheckpointName']: assert model is None checkpointName = options.privateOptions['runCheckpointName'] model = ModelFactory.loadFromCheckpoint( savedModelDir=_getModelCheckpointDir(experimentDir, checkpointName), newSerialization=newSerialization) elif model is not None: print "Skipping creation of OPFExperiment instance: caller provided his own" else: modelDescription = expIface.getModelDescription() model = ModelFactory.create(modelDescription) if options.privateOptions['createCheckpointName']: checkpointName = options.privateOptions['createCheckpointName'] _saveModel(model=model, experimentDir=experimentDir, checkpointLabel=checkpointName, newSerialization=newSerialization) return model taskIndexList = range(len(experimentTasks)) customTaskExecutionLabelsList = options.privateOptions['taskLabels'] if customTaskExecutionLabelsList: taskLabelsList = [t['taskLabel'] for t in experimentTasks] taskLabelsSet = set(taskLabelsList) customTaskExecutionLabelsSet = set(customTaskExecutionLabelsList) assert customTaskExecutionLabelsSet.issubset(taskLabelsSet), \ ("Some custom-provided task execution labels don't correspond " "to actual task labels: mismatched labels: %r; actual task " "labels: %r.") % (customTaskExecutionLabelsSet - taskLabelsSet, customTaskExecutionLabelsList) taskIndexList = [taskLabelsList.index(label) for label in customTaskExecutionLabelsList] print " i in taskIndexList] for taskIndex in taskIndexList: task = experimentTasks[taskIndex] taskRunner = _TaskRunner(model=model, task=task, cmdOptions=options) taskRunner.run() del taskRunner if options.privateOptions['checkpointModel']: _saveModel(model=model, experimentDir=experimentDir, checkpointLabel=task['taskLabel'], newSerialization=newSerialization) return model
Creates and runs the experiment Args: options: namedtuple ParseCommandLineOptionsResult model: For testing: may pass in an existing OPF Model instance to use instead of creating a new one. Returns: reference to OPFExperiment instance that was constructed (this is provided to aid with debugging) or None, if none was created.
juraj-google-style
def exhaustive_curie_check(self, ontology: pd.DataFrame, curie_predicate: str, curie_prefix: str, diff: bool=True) -> Tuple[list]: (inside, outside) = ([], []) curie_prefix = curie_prefix.replace(':', '') header = (['Index'] + list(ontology.columns)) for row in ontology.itertuples(): row = {header[i]: val for (i, val) in enumerate(row)} entity_curie = row[curie_predicate] if isinstance(entity_curie, list): if (len(entity_curie) != 0): exit('Need to have only 1 iri in the cell from the onotology.') else: entity_curie = entity_curie[0] entity_curie = ((curie_prefix + ':') + self.extract_fragment(entity_curie)) ilx_row = self.curie2row.get(entity_curie) if ilx_row: inside.append({'external_ontology_row': row, 'ilx_rows': [ilx_row]}) else: outside.append(row) if diff: diff = self.__exhaustive_diff(inside) return (inside, outside, diff) return (inside, outside)
All entities with conflicting curies gets a full diff to see if they belong Args: ontology: pandas DataFrame created from an ontology where the colnames are predicates and if classes exist it is also thrown into a the colnames. curie_predicate: usually in qname form and is the colname of the DataFrame curie_prefix: Not all cells in the DataFrame will have complete curies so we extract the fragement from the cell and use the prefix to complete it. diff: complete exhaustive diff if between curie matches... will take FOREVER if there are a lot -> n^2 Returns: inside: entities that are inside of InterLex outside: entities NOT in InterLex diff (optional): List[List[dict]]... so complicated but usefull diff between matches only
codesearchnet
def _controller_buffer(self, port): address = _LIB.Controller(self._env, port) buffer_ = ctypes.cast(address, ctypes.POINTER(CONTROLLER_VECTOR)).contents return np.frombuffer(buffer_, dtype='uint8')
Find the pointer to a controller and setup a NumPy buffer. Args: port: the port of the controller to setup Returns: a NumPy buffer with the controller's binary data
juraj-google-style
def _compile_arithmetic_expression(self, expr: Expression, scope: Dict[(str, TensorFluent)], batch_size: Optional[int]=None, noise: Optional[List[tf.Tensor]]=None) -> TensorFluent: etype = expr.etype args = expr.args if (len(args) == 1): etype2op = {'+': (lambda x: x), '-': (lambda x: (- x))} if (etype[1] not in etype2op): raise ValueError('Invalid binary arithmetic expression:\n{}'.format(expr)) op = etype2op[etype[1]] x = self._compile_expression(args[0], scope, batch_size, noise) fluent = op(x) else: etype2op = {'+': (lambda x, y: (x + y)), '-': (lambda x, y: (x - y)), '*': (lambda x, y: (x * y)), '/': (lambda x, y: (x / y))} if (etype[1] not in etype2op): raise ValueError('Invalid binary arithmetic expression:\n{}'.format(expr)) op = etype2op[etype[1]] x = self._compile_expression(args[0], scope, batch_size, noise) y = self._compile_expression(args[1], scope, batch_size, noise) fluent = op(x, y) return fluent
Compile an arithmetic expression `expr` into a TensorFluent in the given `scope` with optional batch size. Args: expr (:obj:`rddl2tf.expr.Expression`): A RDDL arithmetic expression. scope (Dict[str, :obj:`rddl2tf.fluent.TensorFluent`]): A fluent scope. batch_size (Optional[size]): The batch size. Returns: :obj:`rddl2tf.fluent.TensorFluent`: The compiled expression as a TensorFluent.
codesearchnet
def slice_hidden(self, x): x_sliced = tf.reshape(x, shape=[(- 1), self.hparams.num_blocks, self.hparams.block_dim]) return x_sliced
Slice encoder hidden state into block_dim. Args: x: Encoder hidden state of shape [-1, hidden_size]. Returns: Sliced states of shape [-1, num_blocks, block_dim].
codesearchnet
def floor(x): if any_symbolic_tensors((x,)): return Floor().symbolic_call(x) return backend.numpy.floor(x)
Return the floor of the input, element-wise. The floor of the scalar `x` is the largest integer `i`, such that `i <= x`. Args: x: Input tensor. Returns: Output tensor, element-wise floor of `x`.
github-repos
def get(cls, issue_id): res = Issue.get(issue_id, IssueType.get(cls.issue_type).issue_type_id) return (cls(res) if res else None)
Returns the class object identified by `issue_id` Args: issue_id (str): Unique EC2 Instance ID to load from database Returns: EC2 Instance object if found, else None
codesearchnet
def _ParseCachedEntryVista(self, value_data, cached_entry_offset): try: cached_entry = self._ReadStructureFromByteStream( value_data[cached_entry_offset:], cached_entry_offset, self._cached_entry_data_type_map) except (ValueError, errors.ParseError) as exception: raise errors.ParseError( 'Unable to parse cached entry value with error: {0!s}'.format( exception)) path_size = cached_entry.path_size maximum_path_size = cached_entry.maximum_path_size path_offset = cached_entry.path_offset if path_offset > 0 and path_size > 0: path_size += path_offset maximum_path_size += path_offset try: path = value_data[path_offset:path_size].decode('utf-16-le') except UnicodeDecodeError: raise errors.ParseError('Unable to decode cached entry path to string') cached_entry_object = AppCompatCacheCachedEntry() cached_entry_object.cached_entry_size = ( self._cached_entry_data_type_map.GetByteSize()) cached_entry_object.insertion_flags = cached_entry.insertion_flags cached_entry_object.last_modification_time = ( cached_entry.last_modification_time) cached_entry_object.path = path cached_entry_object.shim_flags = cached_entry.shim_flags return cached_entry_object
Parses a Windows Vista cached entry. Args: value_data (bytes): value data. cached_entry_offset (int): offset of the first cached entry data relative to the start of the value data. Returns: AppCompatCacheCachedEntry: cached entry. Raises: ParseError: if the value data could not be parsed.
juraj-google-style
def get(cls, session, team_id): return cls( '/teams/%d.json' % team_id, singleton=True, session=session, )
Return a specific team. Args: session (requests.sessions.Session): Authenticated session. team_id (int): The ID of the team to get. Returns: helpscout.models.Person: A person singleton representing the team, if existing. Otherwise ``None``.
juraj-google-style
def List(self, request, global_params=None): config = self.GetMethodConfig('List') return self._RunMethod(config, request, global_params=global_params)
Lists all jobs that you started in the specified project. Job information is available for a six month period after creation. The job list is sorted in reverse chronological order, by job creation time. Requires the Can View project role, or the Is Owner project role if you set the allUsers property. Args: request: (BigqueryJobsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (JobList) The response message.
github-repos
def preprocess(source): doc = html5lib.parseFragment(source) source = ET.tostring(doc, encoding='utf-8', method='text').decode('utf-8') source = source.replace(u'\n', u'').strip() source = re.sub('\\s\\s+', u' ', source) return source
Removes unnecessary break lines and white spaces. Args: source (str): Input sentence. Returns: Preprocessed sentence. (str)
codesearchnet
def _parse_flowcontrol_send(self, config): value = 'off' match = re.search(r'flowcontrol send (\w+)$', config, re.M) if match: value = match.group(1) return dict(flowcontrol_send=value)
Scans the config block and returns the flowcontrol send value Args: config (str): The interface config block to scan Returns: dict: Returns a dict object with the flowcontrol send value retrieved from the config block. The returned dict object is intended to be merged into the interface resource dict
juraj-google-style
def time_zones_for_number(numobj): ntype = number_type(numobj) if ntype == PhoneNumberType.UNKNOWN: return _UNKNOWN_TIME_ZONE_LIST elif not is_number_type_geographical(ntype, numobj.country_code): return _country_level_time_zones_for_number(numobj) return time_zones_for_geographical_number(numobj)
As time_zones_for_geographical_number() but explicitly checks the validity of the number passed in. Arguments: numobj -- a valid phone number for which we want to get the time zones to which it belongs Returns a list of the corresponding time zones or a single element list with the default unknown time zone if no other time zone was found or if the number was invalid
juraj-google-style
def build_chain(self, source, chain): for group in WalkByGroup(source, (chain.order + 1)): pre = group[:(- 1)] res = group[(- 1)] if (pre not in chain.content): chain.content[pre] = {res: 1} elif (res not in chain.content[pre]): chain.content[pre][res] = 1 else: chain.content[pre][res] += 1 chain.decache()
Build markov chain from source on top of existin chain Args: source: iterable which will be used to build chain chain: MarkovChain in currently loaded shelve file that will be extended by source
codesearchnet
def _GetEntries(self, paths, max_entries, iterator_from_file, is_sequence=False): entries = {} index = 0 for filepath in paths: reader = iterator_from_file(filepath) for record in reader: if is_sequence: sequence_example = tf.train.SequenceExample.FromString(record) self._ParseExample(sequence_example.context.feature, sequence_example.feature_lists.feature_list, entries, index) else: self._ParseExample(tf.train.Example.FromString(record).features.feature, [], entries, index) index += 1 if (index == max_entries): return (entries, index) return (entries, index)
Extracts examples into a dictionary of feature values. Args: paths: A list of the paths to the files to parse. max_entries: The maximum number of examples to load. iterator_from_file: A method that takes a file path string and returns an iterator to the examples in that file. is_sequence: True if the input data from 'iterator_from_file' are tf.SequenceExamples, False if tf.Examples. Defaults to false. Returns: A tuple with two elements: - A dictionary of all features parsed thus far and arrays of their values. - The number of examples parsed.
codesearchnet
def SetDecodedStreamSize(self, decoded_stream_size): if self._is_open: raise IOError('Already open.') if (decoded_stream_size < 0): raise ValueError('Invalid decoded stream size: {0:d} value out of bounds.'.format(decoded_stream_size)) self._decoded_stream_size = decoded_stream_size
Sets the decoded stream size. This function is used to set the decoded stream size if it can be determined separately. Args: decoded_stream_size (int): size of the decoded stream in bytes. Raises: IOError: if the file-like object is already open. OSError: if the file-like object is already open. ValueError: if the decoded stream size is invalid.
codesearchnet
def _might_have_parameter(fn_or_cls, arg_name): if inspect.isclass(fn_or_cls): fn = _find_class_construction_fn(fn_or_cls) else: fn = fn_or_cls while hasattr(fn, '__wrapped__'): fn = fn.__wrapped__ arg_spec = _get_cached_arg_spec(fn) if six.PY3: if arg_spec.varkw: return True return arg_name in arg_spec.args or arg_name in arg_spec.kwonlyargs else: if arg_spec.keywords: return True return arg_name in arg_spec.args
Returns True if `arg_name` might be a valid parameter for `fn_or_cls`. Specifically, this means that `fn_or_cls` either has a parameter named `arg_name`, or has a `**kwargs` parameter. Args: fn_or_cls: The function or class to check. arg_name: The name fo the parameter. Returns: Whether `arg_name` might be a valid argument of `fn`.
juraj-google-style
def get_sv_variants(self, chromosome=None, end_chromosome=None, sv_type=None, pos=None, end=None): query = {} if chromosome: query['chrom'] = chromosome if end_chromosome: query['end_chrom'] = end_chromosome if sv_type: query['sv_type'] = sv_type if pos: if not '$and' in query: query['$and'] = [] query['$and'].append({'pos_left': {'$lte': pos}}) query['$and'].append({'pos_right': {'$gte': pos}}) if end: if not '$and' in query: query['$and'] = [] query['$and'].append({'end_left': {'$lte': end}}) query['$and'].append({'end_right': {'$gte': end}}) LOG.info("Find all sv variants {}".format(query)) return self.db.structural_variant.find(query).sort([('chrom', ASCENDING), ('pos_left', ASCENDING)])
Return all structural variants in the database Args: chromosome (str) end_chromosome (str) sv_type (str) pos (int): Left position of SV end (int): Right position of SV Returns: variants (Iterable(Variant))
juraj-google-style
class IntLayerNorm(nn.Module): def __init__(self, normalized_shape, eps, output_bit=8, quant_mode=False, force_dequant='none'): super().__init__() self.normalized_shape = normalized_shape self.eps = eps self.weight = nn.Parameter(torch.zeros(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.quant_mode = quant_mode if force_dequant in ['nonlinear', 'layernorm']: logger.info('Force dequantize layernorm') self.quant_mode = False self.register_buffer('shift', torch.zeros(1)) self.output_bit = output_bit self.max_bit = 32 self.dim_sqrt = None self.activation = QuantAct(self.output_bit, quant_mode=self.quant_mode) def set_shift(self, y_int): with torch.no_grad(): y_sq_int = y_int ** 2 var_int = torch.sum(y_sq_int, axis=2, keepdim=True) shift = torch.log2(torch.sqrt(var_int / 2 ** self.max_bit)).ceil().max() shift_old = self.shift self.shift = torch.max(self.shift, shift) logger.info(f'Dynamic shift adjustment: {int(shift_old)} -> {int(self.shift)}') def overflow_fallback(self, y_int): self.set_shift(y_int) y_int_shifted = floor_ste.apply(y_int / 2 ** self.shift) y_sq_int = y_int_shifted ** 2 var_int = torch.sum(y_sq_int, axis=2, keepdim=True) return var_int def forward(self, x, scaling_factor=None): if not self.quant_mode: mean = x.mean(axis=2, keepdim=True) y = x - mean var = torch.mean(y ** 2, axis=2, keepdim=True) x = y / torch.sqrt(self.eps + var) x = x * self.weight + self.bias return (x, None) if self.dim_sqrt is None: n = torch.tensor(x.shape[2], dtype=torch.float) self.dim_sqrt = torch.sqrt(n).to(x.device) x_int = x / scaling_factor mean_int = round_ste.apply(x_int.mean(axis=2, keepdim=True)) y_int = x_int - mean_int y_int_shifted = floor_ste.apply(y_int / 2 ** self.shift) y_sq_int = y_int_shifted ** 2 var_int = torch.sum(y_sq_int, axis=2, keepdim=True) if self.training: if var_int.max() >= 2 ** self.max_bit: var_int = self.overflow_fallback(y_int) assert var_int.max() < 2 ** self.max_bit + 0.1, 'Error detected in overflow handling: `var_int` exceeds `self.max_bit` (the maximum possible bit width)' std_int = floor_ste.apply(torch.sqrt(var_int)) * 2 ** self.shift factor = floor_ste.apply(2 ** 31 / std_int) y_int = floor_ste.apply(y_int * factor / 2) scaling_factor = self.dim_sqrt / 2 ** 30 bias = self.bias.data.detach() / self.weight.data.detach() bias_int = floor_ste.apply(bias / scaling_factor) y_int = y_int + bias_int scaling_factor = scaling_factor * self.weight x = y_int * scaling_factor return (x, scaling_factor)
Quantized version of `torch.nn.LayerNorm`. Adds quantization-specific arguments on top of `torch.nn.LayerNorm`. Args: output_bit (`int`, *optional*, defaults to `8`): Bitwidth for the layer output activation. quant_mode (`bool`, *optional*, defaults to `False`): Whether or not the layer is quantized. force_dequant (`str`, *optional*, defaults to `"none"`): Force dequantize the layer if either "layernorm" or "nonlinear" is given.
github-repos
def add_graph(self, run_key, device_name, graph_def, debug=False): graph_dict = (self._run_key_to_debug_graphs if debug else self._run_key_to_original_graphs) if (not (run_key in graph_dict)): graph_dict[run_key] = dict() graph_dict[run_key][tf.compat.as_str(device_name)] = debug_graphs_helper.DebugGraphWrapper(graph_def)
Add a GraphDef. Args: run_key: A key for the run, containing information about the feeds, fetches, and targets. device_name: The name of the device that the `GraphDef` is for. graph_def: An instance of the `GraphDef` proto. debug: Whether `graph_def` consists of the debug ops.
codesearchnet
def _determine_best_metric(self, metrics, trial): is_new_best_metric = False if self.args.metric_for_best_model is not None: metric_to_check = self.args.metric_for_best_model if not metric_to_check.startswith('eval_'): metric_to_check = f'eval_{metric_to_check}' try: metric_value = metrics[metric_to_check] except KeyError as exc: raise KeyError(f"The `metric_for_best_model` training argument is set to '{metric_to_check}', which is not found in the evaluation metrics. The available evaluation metrics are: {list(metrics.keys())}. Consider changing the `metric_for_best_model` via the TrainingArguments.") from exc operator = np.greater if self.args.greater_is_better else np.less if self.state.best_metric is None: self.state.best_metric = float('-inf') if self.args.greater_is_better else float('inf') if operator(metric_value, self.state.best_metric): self.state.best_metric = metric_value if self.args.save_strategy in [SaveStrategy.STEPS, SaveStrategy.EPOCH]: self.state.best_global_step = self.state.global_step is_new_best_metric = True return is_new_best_metric
Determine if the model should be saved based on the evaluation metrics. Returns: bool: True if a new best metric was found, else False
github-repos
def _ParseAndComputePenalties(self, code, dumptree=False): tree = pytree_utils.ParseCodeToTree(code) split_penalty.ComputeSplitPenalties(tree) if dumptree: pytree_visitor.DumpPyTree(tree, target_stream=sys.stderr) return tree
Parses the code and computes split penalties. Arguments: code: code to parse as a string dumptree: if True, the parsed pytree (after penalty assignment) is dumped to stderr. Useful for debugging. Returns: Parse tree.
github-repos
def t0(self): return self._t0
Absolute timestamp of the first dumped tensor across all devices. Returns: (`int`) absolute timestamp of the first dumped tensor, in microseconds.
github-repos
def write(self, default: bool=False): none_type = type(None) if default: ordered_vals = ['query', 'subject', 'identity', 'length', 'mismatches', 'gaps', 'query_start', 'query_end', 'subject_start', 'subject_end', 'evalue', 'bitscore'] else: try: ordered_vals = [self.custom_fs[i] if i in self.custom_fs else getattr(self, i) for i in self.fs_order] except TypeError: ordered_vals = [getattr(self, i) for i in self.fs_order] fstr = "\t".join(['-' if type(i) == none_type else str(i) for i in ordered_vals]) return '{}{}'.format(fstr, os.linesep)
Restore B6/M8 entry to original format Args: default (bool): output entry in default BLAST+ B6 format Returns: str: properly formatted string containing the B6/M8 entry
juraj-google-style
def last_metric_eval(multiplexer, session_name, metric_name): try: (run, tag) = run_tag_from_session_and_metric(session_name, metric_name) tensor_events = multiplexer.Tensors(run=run, tag=tag) except KeyError as e: raise KeyError(("Can't find metric %s for session: %s. Underlying error message: %s" % (metric_name, session_name, e))) last_event = tensor_events[(- 1)] return (last_event.wall_time, last_event.step, tf.make_ndarray(last_event.tensor_proto).item())
Returns the last evaluations of the given metric at the given session. Args: multiplexer: The EventMultiplexer instance allowing access to the exported summary data. session_name: String. The session name for which to get the metric evaluations. metric_name: api_pb2.MetricName proto. The name of the metric to use. Returns: A 3-tuples, of the form [wall-time, step, value], denoting the last evaluation of the metric, where wall-time denotes the wall time in seconds since UNIX epoch of the time of the evaluation, step denotes the training step at which the model is evaluated, and value denotes the (scalar real) value of the metric. Raises: KeyError if the given session does not have the metric.
codesearchnet
def call_api(self, method_type, method_name, valid_status_codes, resource, data, uid, **kwargs): url = resource.get_resource_url(resource, base_url=self.Meta.base_url) if (method_type in SINGLE_RESOURCE_METHODS): if ((not uid) and (not kwargs)): raise MissingUidException url = resource.get_url(url=url, uid=uid, **kwargs) params = {'headers': self.get_http_headers(self.Meta.name, method_name, **kwargs), 'url': url} if ((method_type in ['POST', 'PUT', 'PATCH']) and isinstance(data, dict)): params.update(json=data) prepared_request = self.prepare_http_request(method_type, params, **kwargs) response = self.session.send(prepared_request) return self._handle_response(response, valid_status_codes, resource)
Make HTTP calls. Args: method_type: The HTTP method method_name: The name of the python method making the HTTP call valid_status_codes: A tuple of integer status codes deemed acceptable as response statuses resource: The resource class that will be generated data: The post data being sent. uid: The unique identifier of the resource. Returns: kwargs is a list of keyword arguments. Additional custom keyword arguments can be sent into this method and will be passed into subclass methods: - get_url - prepare_http_request - get_http_headers
codesearchnet
def fit_cosine_function(wind): wind_daily = wind.groupby(wind.index.date).mean() wind_daily_hourly = pd.Series(index=wind.index, data=wind_daily.loc[wind.index.date].values) df = pd.DataFrame(data=dict(daily=wind_daily_hourly, hourly=wind)).dropna(how='any') x = np.array([df.daily, df.index.hour]) (popt, pcov) = scipy.optimize.curve_fit(_cosine_function, x, df.hourly) return popt
fits a cosine function to observed hourly windspeed data Args: wind: observed hourly windspeed data Returns: parameters needed to generate diurnal features of windspeed using a cosine function
codesearchnet
def check_embeddings_within_bounds(tensor: tf.Tensor, embed_dim: int, tensor_name: str='input_ids') -> None: tf.debugging.assert_less(tensor, tf.cast(embed_dim, dtype=tensor.dtype), message=f"The maximum value of {tensor_name} ({tf.math.reduce_max(tensor)}) must be smaller than the embedding layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.")
`tf.gather`, on which TF embedding layers are based, won't check positive out of bound indices on GPU, returning zeros instead. This function adds a check against that dangerous silent behavior. Args: tensor (`tf.Tensor`): The tensor of indices to check. embed_dim (`int`): The embedding dimension. tensor_name (`str`, *optional*): The name of the tensor to use in the error message.
github-repos
def _list_certs(certificate_store='My'): ret = dict() blacklist_keys = ['DnsNameList', 'Thumbprint'] ps_cmd = ['Get-ChildItem', '-Path', r"'Cert:\LocalMachine\{0}'".format(certificate_store), '|', 'Select-Object DnsNameList, SerialNumber, Subject, Thumbprint, Version'] cmd_ret = _srvmgr(cmd=ps_cmd, return_json=True) try: items = salt.utils.json.loads(cmd_ret['stdout'], strict=False) except ValueError: raise CommandExecutionError('Unable to parse return data as Json.') for item in items: cert_info = dict() for key in item: if key not in blacklist_keys: cert_info[key.lower()] = item[key] cert_info['dnsnames'] = [] if item['DnsNameList']: cert_info['dnsnames'] = [name['Unicode'] for name in item['DnsNameList']] ret[item['Thumbprint']] = cert_info return ret
List details of available certificates in the LocalMachine certificate store. Args: certificate_store (str): The name of the certificate store on the local machine. Returns: dict: A dictionary of certificates found in the store
juraj-google-style
def set_render_option(self, render_option): self._render_option = render_option
Sets the rendering option. Args: render_option: (str) this parameter decides how the pipeline graph is rendered. See display.pipeline_graph_renderer for available options.
github-repos
def module_selected(self, module_name, module_ui): if self.current_button == self.module_buttons[module_name]: return self.module_buttons[module_name].config(bg=" if self.current_button is not None: self.current_button.config(bg="white") self.current_button = self.module_buttons[module_name] self.clear_ui() try: module_ui_frame = ModuleUIBaseFrame(self.module_ui, module_name, module_ui) module_ui_frame.grid(column=0, row=0, sticky="W E N S") except Exception as e: logger.error("Could not load UI for {}".format(module_name)) logger.exception(e) tk.Label(self.module_ui, text="Could not load UI for {}".format(module_name)).grid( column=0, row=0, padx=0, pady=0, sticky="W E N S")
Called when a module is selected Args: module_name (str): The name of the module module_ui: The function to call to create the module's UI
juraj-google-style
def set_attr_text(self, attr_key, attr_val, el_idx=0): self.get_element_by_attr_key(attr_key, el_idx).attrib[attr_key] = attr_val
Set the value of the selected attribute of the selected element. Args: attr_key : str Name of attribute for which to search attr_val : str Text to set for the attribute. el_idx : int Index of element to use in the event that there are multiple sibling elements with the same name.
codesearchnet
async def wait_done(self) -> int: (await self._done_running_evt.wait()) if (self._exit_code is None): raise SublemonLifetimeError('Subprocess exited abnormally with `None` exit code') return self._exit_code
Coroutine to wait for subprocess run completion. Returns: The exit code of the subprocess.
codesearchnet
def set_notify_dispatch_request(self, notify_dispatch_request, *args): self._notify_dispatch_request = notify_dispatch_request self._notify_args = args
Set function to call just before requests are dispatched Args: notify_dispatch_request (callable): function will be called with request as single arg just before request is dispatched
juraj-google-style
def Write(self, schedule, output_file): root = ET.Element('kml') root.attrib['xmlns'] = 'http: doc = ET.SubElement(root, 'Document') open_tag = ET.SubElement(doc, 'open') open_tag.text = '1' self._CreateStopsFolder(schedule, doc) if self.split_routes: route_types = set() for route in schedule.GetRouteList(): route_types.add(route.route_type) route_types = list(route_types) route_types.sort() for route_type in route_types: self._CreateRoutesFolder(schedule, doc, route_type) else: self._CreateRoutesFolder(schedule, doc) self._CreateShapesFolder(schedule, doc) self._SetIndentation(root) if isinstance(output_file, file): output = output_file else: output = open(output_file, 'w') output.write() ET.ElementTree(root).write(output, 'utf-8')
Writes out a feed as KML. Args: schedule: A transitfeed.Schedule object containing the feed to write. output_file: The name of the output KML file, or file object to use.
juraj-google-style
def cumulative_distribution(self, X): self.check_fit() return norm.cdf(X, loc=self.mean, scale=self.std)
Cumulative distribution function for gaussian distribution. Arguments: X: `np.ndarray` of shape (n, 1). Returns: np.ndarray: Cumulative density for X.
codesearchnet
def update_dynamic_gene_list(self, case, hgnc_symbols=None, hgnc_ids=None, phenotype_ids=None, build='37'): dynamic_gene_list = [] res = [] if hgnc_ids: LOG.info('Fetching genes by hgnc id') res = self.hgnc_collection.find({'hgnc_id': {'$in': hgnc_ids}, 'build': build}) elif hgnc_symbols: LOG.info('Fetching genes by hgnc symbols') res = [] for symbol in hgnc_symbols: for gene_obj in self.gene_by_alias(symbol=symbol, build=build): res.append(gene_obj) for gene_obj in res: dynamic_gene_list.append({'hgnc_symbol': gene_obj['hgnc_symbol'], 'hgnc_id': gene_obj['hgnc_id'], 'description': gene_obj['description']}) LOG.info('Update dynamic gene panel for: %s', case['display_name']) updated_case = self.case_collection.find_one_and_update({'_id': case['_id']}, {'$set': {'dynamic_gene_list': dynamic_gene_list, 'dynamic_panel_phenotypes': (phenotype_ids or [])}}, return_document=pymongo.ReturnDocument.AFTER) LOG.debug('Case updated') return updated_case
Update the dynamic gene list for a case Adds a list of dictionaries to case['dynamic_gene_list'] that looks like { hgnc_symbol: str, hgnc_id: int, description: str } Arguments: case (dict): The case that should be updated hgnc_symbols (iterable): A list of hgnc_symbols hgnc_ids (iterable): A list of hgnc_ids Returns: updated_case(dict)
codesearchnet
def set_properties(self, property_dict): self.properties.update(property_dict)
Sets a dictionary of properties on this entity. Args: property_dict: A map from property name to value. See :class:`google.cloud.datastore.entity.Entity` documentation for allowed values.
github-repos
def int64_counter(urn, metric, ptransform=None, pcollection=None, labels=None) -> metrics_pb2.MonitoringInfo: labels = labels or {} labels.update(create_labels(ptransform=ptransform, pcollection=pcollection)) if isinstance(metric, int): metric = coders.VarIntCoder().encode(metric) return create_monitoring_info(urn, SUM_INT64_TYPE, metric, labels)
Return the counter monitoring info for the specifed URN, metric and labels. Args: urn: The URN of the monitoring info/metric. metric: The payload field to use in the monitoring info or an int value. ptransform: The ptransform id used as a label. pcollection: The pcollection id used as a label.
github-repos
def _ConstructAndTestGradient(self, image_shape, kernel_shape, strides, rates, padding, use_gpu): assert image_shape[3] == kernel_shape[2] np.random.seed(1) image = np.random.random_sample(image_shape).astype(np.float32) kernel = np.random.random_sample(kernel_shape).astype(np.float32) strides = [1] + strides + [1] rates = [1] + rates + [1] image_tensor = constant_op.constant(image, shape=image_shape, name='input') kernel_tensor = constant_op.constant(kernel, shape=kernel_shape, name='filter') def compute_erosion2d(image_tensor, kernel_tensor): return nn_ops.erosion2d(image_tensor, kernel_tensor, strides=strides, rates=rates, padding=padding, name='erosion2d') with test_util.device(use_gpu=use_gpu): with self.cached_session(): err1 = gradient_checker_v2.max_error(*gradient_checker_v2.compute_gradient(lambda x: compute_erosion2d(x, kernel_tensor), [image_tensor])) err2 = gradient_checker_v2.max_error(*gradient_checker_v2.compute_gradient(lambda x: compute_erosion2d(image_tensor, x), [kernel_tensor])) err = max(err1, err2) print('Erosion gradient error = %f' % err) self.assertLess(err, 0.0001)
Verifies the gradients of the erosion function. Args: image_shape: Input shape, [batch, in_height, in_width, channels]. kernel_shape: Filter shape, [filter_height, filter_width, channels]. strides: Output strides, specified as [stride_height, stride_width]. rates: Atrous rates, specified as [rate_height, rate_width]. padding: Padding type. use_gpu: Whether we are running on GPU.
github-repos
def prune_candidates(candidates): pruned = [] for (first, second) in candidates: if (first.__class__ is Linearization): nodes1 = first.curve.nodes else: nodes1 = first.nodes if (second.__class__ is Linearization): nodes2 = second.curve.nodes else: nodes2 = second.nodes if convex_hull_collide(nodes1, nodes2): pruned.append((first, second)) return pruned
Reduce number of candidate intersection pairs. .. note:: This is a helper for :func:`_all_intersections`. Uses more strict bounding box intersection predicate by forming the actual convex hull of each candidate curve segment and then checking if those convex hulls collide. Args: candidates (List): An iterable of pairs of curves (or linearized curves). Returns: List: A pruned list of curve pairs.
codesearchnet
def get_plot(self, ylim=None, units='thz'): u = freq_units(units) plt = pretty_plot(12, 8) band_linewidth = 1 data = self.bs_plot_data() for d in range(len(data['distances'])): for i in range(self._nb_bands): plt.plot(data['distances'][d], [(data['frequency'][d][i][j] * u.factor) for j in range(len(data['distances'][d]))], 'b-', linewidth=band_linewidth) self._maketicks(plt) plt.axhline(0, linewidth=1, color='k') plt.xlabel('$\\mathrm{Wave\\ Vector}$', fontsize=30) ylabel = '$\\mathrm{{Frequencies\\ ({})}}$'.format(u.label) plt.ylabel(ylabel, fontsize=30) x_max = data['distances'][(- 1)][(- 1)] plt.xlim(0, x_max) if (ylim is not None): plt.ylim(ylim) plt.tight_layout() return plt
Get a matplotlib object for the bandstructure plot. Args: ylim: Specify the y-axis (frequency) limits; by default None let the code choose. units: units for the frequencies. Accepted values thz, ev, mev, ha, cm-1, cm^-1.
codesearchnet
def parse_args(cmd_args, is_script=False): parser = argparse.ArgumentParser( description=__doc__, formatter_class=NewlinesHelpFormatter, epilog=CODES_TABLE ) if is_script: parser.add_argument( "files", metavar="FILES", nargs="*", default=sys.stdin, help="A whitespace separated list of STIX files or directories of " "STIX files to validate. If none given, stdin will be used." ) parser.add_argument( "-r", "--recursive", dest="recursive", action="store_true", default=True, help="Recursively descend into input directories." ) parser.add_argument( "-s", "--schemas", dest="schema_dir", help="Custom schema directory. If provided, input will be validated " "against these schemas in addition to the STIX schemas bundled " "with this script." ) parser.add_argument( "--version", dest="version", default=DEFAULT_VER, help="The version of the STIX specification to validate against (e.g. " "\"2.0\")." ) parser.add_argument( "-v", "--verbose", dest="verbose", action="store_true", default=False, help="Print informational notes and more verbose error messages." ) parser.add_argument( "-q", "--silent", dest="silent", action="store_true", default=False, help="Silence all output to stdout." ) parser.add_argument( "-d", "--disable", "--ignore", dest="disabled", default="", help="A comma-separated list of recommended best practice checks to " "skip. By default, no checks are disabled. \n\n" "Example: --disable 202,210" ) parser.add_argument( "-e", "--enable", "--select", dest="enabled", default="", help="A comma-separated list of recommended best practice checks to " "enable. If the --disable option is not used, no other checks " "will be run. By default, all checks are enabled.\n\n" "Example: --enable 218" ) parser.add_argument( "--strict", dest="strict", action="store_true", default=False, help="Treat warnings as errors and fail validation if any are found." ) parser.add_argument( "--strict-types", dest="strict_types", action="store_true", default=False, help="Ensure that no custom object types are used, only those defined" " in the STIX specification." ) parser.add_argument( "--strict-properties", dest="strict_properties", action="store_true", default=False, help="Ensure that no custom properties are used, only those defined" " in the STIX specification." ) parser.add_argument( "--no-cache", dest="no_cache", action="store_true", default=False, help="Disable the caching of external source values." ) parser.add_argument( "--refresh-cache", dest="refresh_cache", action="store_true", default=False, help="Clears the cache of external source values, then " "during validation downloads them again." ) parser.add_argument( "--clear-cache", dest="clear_cache", action="store_true", default=False, help="Clear the cache of external source values after validation." ) parser.add_argument( "--enforce-refs", dest="enforce_refs", action="store_true", default=False, help="Ensures that all SDOs being referenced by SROs are contained " "within the same bundle." ) args = parser.parse_args(cmd_args) if not is_script: args.files = "" if not args.version: args.version = DEFAULT_VER return ValidationOptions(args)
Parses a list of command line arguments into a ValidationOptions object. Args: cmd_args (list of str): The list of command line arguments to be parsed. is_script: Whether the arguments are intended for use in a stand-alone script or imported into another tool. Returns: Instance of ``ValidationOptions``
juraj-google-style
def __str__(self, talker='GP'): if not len(talker) == 2: raise ValueError('Talker ID must be two characters %r' % talker) data = ['%sGLL' % talker] data.extend(nmea_latitude(self.latitude)) data.extend(nmea_longitude(self.longitude)) data.append('%s.%02i' % (self.time.strftime('%H%M%S'), self.time.microsecond / 1000000)) data.append('A' if self.status else 'V') if self.mode: data.append(self.mode) data = ','.join(data) return '$%s*%02X\r' % (data, calc_checksum(data))
Pretty printed position string. Args: talker (str): Talker ID Returns: str: Human readable string representation of ``Position`` object
juraj-google-style
def putfile(self, filepath, buildroot, metahash): def gen_obj_path(filename): filehash = util.hash_file(filepath).hexdigest() return filehash, os.path.join(self.obj_cachedir, filehash[0:2], filehash[2:4], filehash) filepath_relative = filepath.split(buildroot)[1][1:] incachepath = self._genpath(filepath_relative, metahash) filehash, obj_path = gen_obj_path(filepath) if not os.path.exists(obj_path): obj_dir = os.path.dirname(obj_path) if not os.path.exists(obj_dir): os.makedirs(obj_dir) log.debug('Adding to obj cache: %s -> %s', filepath, obj_path) os.link(filepath, obj_path) if os.path.exists(incachepath): existingfile_hash = util.hash_file(incachepath).hexdigest() if filehash != existingfile_hash: log.warn('File found in mh cache, but checksum differs. ' 'Replacing with this new version. (File: %s)', filepath) log.warn('Possible reasons for this:') log.warn(' 1. This build is not hermetic, and something ' 'differs about the build environment compared to the ' 'previous build.') log.warn(' 2. This file has a timestamp or other build-time ' 'related data encoded into it, which will always ' 'cause the checksum to differ when built.') log.warn(' 3. Everything is terrible and nothing works.') os.unlink(incachepath) if not os.path.exists(incachepath): log.debug('Adding to mh cache: %s -> %s', filepath, incachepath) if not os.path.exists(os.path.dirname(incachepath)): os.makedirs(os.path.dirname(incachepath)) os.link(obj_path, incachepath)
Put a file in the cache. Args: filepath: Path to file on disk. buildroot: Path to buildroot buildrule: The rule that generated this file. metahash: hash object
juraj-google-style
def SignMessage(self, message, script_hash): keypair = self.GetKeyByScriptHash(script_hash) prikey = bytes(keypair.PrivateKey) res = Crypto.Default().Sign(message, prikey) return res, keypair.PublicKey
Sign a message with a specified script_hash. Args: message (str): a hex encoded message to sign script_hash (UInt160): a bytearray (len 20). Returns: str: the signed message
juraj-google-style
def attention_lm_decoder(decoder_input, decoder_self_attention_bias, hparams, name='decoder'): x = decoder_input with tf.variable_scope(name): for layer in range(hparams.num_hidden_layers): with tf.variable_scope(('layer_%d' % layer)): with tf.variable_scope('self_attention'): y = common_attention.multihead_attention(common_layers.layer_preprocess(x, hparams), None, decoder_self_attention_bias, (hparams.attention_key_channels or hparams.hidden_size), (hparams.attention_value_channels or hparams.hidden_size), hparams.hidden_size, hparams.num_heads, hparams.attention_dropout) x = common_layers.layer_postprocess(x, y, hparams) with tf.variable_scope('ffn'): y = common_layers.conv_hidden_relu(common_layers.layer_preprocess(x, hparams), hparams.filter_size, hparams.hidden_size, dropout=hparams.relu_dropout) x = common_layers.layer_postprocess(x, y, hparams) return common_layers.layer_preprocess(x, hparams)
A stack of attention_lm layers. Args: decoder_input: a Tensor decoder_self_attention_bias: bias Tensor for self-attention (see common_attention.attention_bias()) hparams: hyperparameters for model name: a string Returns: y: a Tensors
codesearchnet
def nrows(self): if self._nrows is not None: return self._nrows nsplits = tensor_shape.dimension_at_index(self._row_splits.shape, 0) if nsplits.value is None: return array_ops.shape(self._row_splits, out_type=self.dtype)[0] - 1 else: return constant_op.constant(nsplits.value - 1, dtype=self.dtype)
Returns the number of rows created by this `RowPartition`. Returns: scalar integer Tensor
github-repos
def __init__(self, site1, site2): self.site1 = site1 self.site2 = site2
Initializes a covalent bond between two sites. Args: site1 (Site): First site. site2 (Site): Second site.
juraj-google-style
def dumps(self, with_defaults=False): return self._rw.dump_config_to_string(self._config, with_defaults=with_defaults)
Generate a string representing all the configuration values. Args: with_defaults (bool): if ``True``, values of items with no custom values will be included in the output if they have a default value set.
juraj-google-style
def ReconcileShadow(self, store_type): for k, v in iteritems(self.entry): if v.pw_entry.store == store_type: shadow_entry = self.shadow.get(k) if shadow_entry is not None: v.pw_entry = shadow_entry else: v.pw_entry.store = "UNKNOWN"
Verify that entries that claim to use shadow files have a shadow entry. If the entries of the non-shadowed file indicate that a shadow file is used, check that there is actually an entry for that file in shadow. Args: store_type: The type of password store that should be used (e.g. /etc/shadow or /etc/gshadow)
juraj-google-style
def register_recipe(cls, recipe): recipe_name = recipe.contents['name'] cls._recipe_classes[recipe_name] = ( recipe.contents, recipe.args, recipe.__doc__)
Registers a dftimewolf recipe. Args: recipe: imported python module representing the recipe.
juraj-google-style
def call(self, hidden_states: tf.Tensor, attention_mask: np.ndarray | tf.Tensor | None=None, layer_head_mask: tf.Tensor | None=None, past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]]=None, training: Optional[bool]=False, output_attentions: Optional[bool]=False, use_cache: Optional[bool]=False) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: residual = hidden_states if self.do_layer_norm_before: hidden_states = self.self_attn_layer_norm(hidden_states) self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None hidden_states, self_attn_weights, present_key_value = self.self_attn(hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states if not self.do_layer_norm_before: hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states if self.do_layer_norm_before: hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states if not self.do_layer_norm_before: hidden_states = self.final_layer_norm(hidden_states) return (hidden_states, self_attn_weights, present_key_value)
Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`, *optional*): mask for attention heads in a given layer of size `(decoder_attention_heads,)` past_key_value (`Tuple(tf.Tensor)`, *optional*): cached past key and value projection states training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
github-repos
def read_bit(self, registeraddress, functioncode=2): _checkFunctioncode(functioncode, [1, 2]) return self._genericCommand(functioncode, registeraddress)
Read one bit from the slave. Args: * registeraddress (int): The slave register address (use decimal numbers, not hex). * functioncode (int): Modbus function code. Can be 1 or 2. Returns: The bit value 0 or 1 (int). Raises: ValueError, TypeError, IOError
juraj-google-style
def linear_quantize(input, scale, zero_point, inplace=False): if len(input.shape) == 4: scale = scale.view(-1, 1, 1, 1) zero_point = zero_point.view(-1, 1, 1, 1) elif len(input.shape) == 2: scale = scale.view(-1, 1) zero_point = zero_point.view(-1, 1) else: scale = scale.view(-1) zero_point = zero_point.view(-1) if inplace: input.mul_(1.0 / scale).add_(zero_point).round_() return input return torch.round(1.0 / scale * input + zero_point)
Quantize single-precision input tensor to integers with the given scaling factor and zeropoint. Args: input (`torch.Tensor`): Single-precision input tensor to be quantized. scale (`torch.Tensor`): Scaling factor for quantization. zero_pint (`torch.Tensor`): Shift for quantization. inplace (`bool`, *optional*, defaults to `False`): Whether to compute inplace or not. Returns: `torch.Tensor`: Linearly quantized value of *input* according to *scale* and *zero_point*.
github-repos
def automatic_density_by_vol(structure, kppvol, force_gamma=False): vol = structure.lattice.reciprocal_lattice.volume kppa = kppvol * vol * structure.num_sites return Kpoints.automatic_density(structure, kppa, force_gamma=force_gamma)
Returns an automatic Kpoint object based on a structure and a kpoint density per inverse Angstrom^3 of reciprocal cell. Algorithm: Same as automatic_density() Args: structure (Structure): Input structure kppvol (int): Grid density per Angstrom^(-3) of reciprocal cell force_gamma (bool): Force a gamma centered mesh Returns: Kpoints
juraj-google-style