code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def _encode_value(self, value):
if isinstance(value, (int, float, str, bool, datetime)):
return value
elif isinstance(value, list):
return [self._encode_value(item) for item in value]
elif isinstance(value, dict):
result = {}
for (key, item) in value.items():
result[key] = self._encode_value(item)
return result
else:
return self._gridfs.put(Binary(pickle.dumps(value)), workflow_id=self._workflow_id) | Encodes the value such that it can be stored into MongoDB.
Any primitive types are stored directly into MongoDB, while non-primitive types
are pickled and stored as GridFS objects. The id pointing to a GridFS object
replaces the original value.
Args:
value (object): The object that should be encoded for storing in MongoDB.
Returns:
object: The encoded value ready to be stored in MongoDB. | codesearchnet |
def NewFromJSON(data):
s = Shake(
id=data.get('id', None),
name=data.get('name', None),
url=data.get('url', None),
thumbnail_url=data.get('thumbnail_url', None),
description=data.get('description', None),
type=data.get('type', None),
created_at=data.get('created_at', None),
updated_at=data.get('updated_at', None)
)
if data.get('owner', None):
s.owner = User.NewFromJSON(data.get('owner', None))
return s | Create a new Shake instance from a JSON dict.
Args:
data (dict): JSON dictionary representing a Shake.
Returns:
A Shake instance. | juraj-google-style |
def reopen_encoded(fileobj, mode='r', fallback_encoding=None):
encoding = determine_encoding(fileobj.name, fallback_encoding)
fileobj.close()
return open(fileobj.name, mode, encoding=encoding) | Makes sure that a file was opened with some valid encoding.
Arguments:
fileobj (file): The file-object.
mode (str, optional): The mode in which to re-open the file.
fallback_encoding (str, optional): The encoding in which to re-open
the file if it does not specify an encoding itself.
Returns:
file: The re-opened file. | juraj-google-style |
def cifar_generator(cifar_version, tmp_dir, training, how_many, start_from=0):
if cifar_version == "cifar10":
url = _CIFAR10_URL
train_files = _CIFAR10_TRAIN_FILES
test_files = _CIFAR10_TEST_FILES
prefix = _CIFAR10_PREFIX
image_size = _CIFAR10_IMAGE_SIZE
label_key = "labels"
elif cifar_version == "cifar100" or cifar_version == "cifar20":
url = _CIFAR100_URL
train_files = _CIFAR100_TRAIN_FILES
test_files = _CIFAR100_TEST_FILES
prefix = _CIFAR100_PREFIX
image_size = _CIFAR100_IMAGE_SIZE
if cifar_version == "cifar100":
label_key = "fine_labels"
else:
label_key = "coarse_labels"
_get_cifar(tmp_dir, url)
data_files = train_files if training else test_files
all_images, all_labels = [], []
for filename in data_files:
path = os.path.join(tmp_dir, prefix, filename)
with tf.gfile.Open(path, "rb") as f:
if six.PY2:
data = cPickle.load(f)
else:
data = cPickle.load(f, encoding="latin1")
images = data["data"]
num_images = images.shape[0]
images = images.reshape((num_images, 3, image_size, image_size))
all_images.extend([
np.squeeze(images[j]).transpose((1, 2, 0)) for j in range(num_images)
])
labels = data[label_key]
all_labels.extend([labels[j] for j in range(num_images)])
return image_utils.image_generator(
all_images[start_from:start_from + how_many],
all_labels[start_from:start_from + how_many]) | Image generator for CIFAR-10 and 100.
Args:
cifar_version: string; one of "cifar10" or "cifar100"
tmp_dir: path to temporary storage directory.
training: a Boolean; if true, we use the train set, otherwise the test set.
how_many: how many images and labels to generate.
start_from: from which image to start.
Returns:
An instance of image_generator that produces CIFAR-10 images and labels. | juraj-google-style |
def _create_RSA_private_key(self,
bytes):
try:
private_key = serialization.load_pem_private_key(
bytes,
password=None,
backend=default_backend()
)
return private_key
except Exception:
private_key = serialization.load_der_private_key(
bytes,
password=None,
backend=default_backend()
)
return private_key | Instantiates an RSA key from bytes.
Args:
bytes (byte string): Bytes of RSA private key.
Returns:
private_key
(cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey):
RSA private key created from key bytes. | juraj-google-style |
def diff_charsToLines(self, diffs, lineArray):
for i in range(len(diffs)):
text = []
for char in diffs[i][1]:
text.append(lineArray[ord(char)])
diffs[i] = (diffs[i][0], "".join(text)) | Rehydrate the text in a diff from a string of line hashes to real lines
of text.
Args:
diffs: Array of diff tuples.
lineArray: Array of unique strings. | juraj-google-style |
def get_gutter_client(alias='default', cache=CLIENT_CACHE, **kwargs):
from gutter.client.models import Manager
if (not alias):
return Manager(**kwargs)
elif (alias not in cache):
cache[alias] = Manager(**kwargs)
return cache[alias] | Creates gutter clients and memoizes them in a registry for future quick access.
Args:
alias (str or None): Name of the client. Used for caching.
If name is falsy then do not use the cache.
cache (dict): cache to store gutter managers in.
**kwargs: kwargs to be passed the Manger class.
Returns (Manager):
A gutter client. | codesearchnet |
def __instancecheck__(cls, other):
try:
return bool(
isinstance(other, cls.__type__) and cls(other)
)
except ValueError:
return False | Determine if an instance is of the sliced type and within bounds.
Args:
other: The instance to test.
Returns:
True if the object is both of the same type as sliced by the
created class as well as within the bounds defined by the class. | juraj-google-style |
async def verify_parent_task(chain, link):
worker_type = get_worker_type(link.task)
if (worker_type not in chain.context.config['valid_decision_worker_types']):
raise CoTError('{} is not a valid decision workerType!'.format(worker_type))
if (chain is not link):
path = link.get_artifact_full_path('public/task-graph.json')
if (not os.path.exists(path)):
raise CoTError("{} {}: {} doesn't exist!".format(link.name, link.task_id, path))
link.task_graph = load_json_or_yaml(path, is_path=True, exception=CoTError, message="Can't load {}! %(exc)s".format(path))
for target_link in chain.get_all_links_in_chain():
if ((target_link.parent_task_id == link.task_id) and (target_link.task_id != link.task_id) and (target_link.task_type not in PARENT_TASK_TYPES)):
verify_link_in_task_graph(chain, link, target_link)
try:
(await verify_parent_task_definition(chain, link))
except (BaseDownloadError, KeyError) as e:
raise CoTError(e) | Verify the parent task Link.
Action task verification is currently in the same verification function as
decision tasks, because sometimes we'll have an action task masquerading as
a decision task, e.g. in templatized actions for release graphs. To make
sure our guess of decision or action task isn't fatal, we call this
function; this function uses ``is_action()`` to determine how to verify
the task.
Args:
chain (ChainOfTrust): the chain we're operating on.
link (LinkOfTrust): the task link we're checking.
Raises:
CoTError: on chain of trust verification error. | codesearchnet |
def apply_strain(self, strain):
s = (1 + np.array(strain)) * np.eye(3)
self.lattice = Lattice(np.dot(self._lattice.matrix.T, s).T) | Apply a strain to the lattice.
Args:
strain (float or list): Amount of strain to apply. Can be a float,
or a sequence of 3 numbers. E.g., 0.01 means all lattice
vectors are increased by 1%. This is equivalent to calling
modify_lattice with a lattice with lattice parameters that
are 1% larger. | juraj-google-style |
def register_scenario(self, scenario_name, handler):
if (scenario_name in self._known_scenarios):
raise ArgumentError('Attempted to add the same scenario name twice', scenario_name=scenario_name, previous_handler=self._known_scenarios[scenario_name])
self._known_scenarios[scenario_name] = handler | Register a scenario handler for this object.
Scenario handlers are callable functions with no positional arguments
that can be called by name with the load_scenario function and should
prepare the emulated object into a known state. The purpose of a
scenario is to make it easy to get a device into a specific state for
testing purposes that may otherwise be difficult or time consuming to
prepare on the physical, non-emulated device.
Args:
scenario_name (str): The name of this scenario that can be passed to
load_scenario later in order to invoke the scenario.
handler (callable): A callable function that takes no positional
arguments and can prepare this object into the given scenario
state. It may take required or optional keyword arguments that
may be passed to `load_scenario` if needed. | codesearchnet |
def GetMessages(self, formatter_mediator, event):
if self.DATA_TYPE != event.data_type:
raise errors.WrongFormatter('Unsupported data type: {0:s}.'.format(
event.data_type))
event_values = event.CopyToDict()
return self._FormatMessages(
self.FORMAT_STRING, self.FORMAT_STRING_SHORT, event_values) | Determines the formatted message strings for an event object.
Args:
formatter_mediator (FormatterMediator): mediates the interactions
between formatters and other components, such as storage and Windows
EventLog resources.
event (EventObject): event.
Returns:
tuple(str, str): formatted message string and short message string.
Raises:
WrongFormatter: if the event object cannot be formatted by the formatter. | juraj-google-style |
def confirm_iam_role(self, account):
try:
iam = self.session.client('iam')
rolearn = iam.get_role(RoleName=self.role_name)['Role']['Arn']
return rolearn
except ClientError as e:
if (e.response['Error']['Code'] == 'NoSuchEntity'):
self.create_iam_role(account)
else:
raise
except Exception as e:
self.log.exception('Failed validating IAM role for VPC Flow Log Auditing for {}'.format(e)) | Return the ARN of the IAM Role on the provided account as a string. Returns an `IAMRole` object from boto3
Args:
account (:obj:`Account`): Account where to locate the role
Returns:
:obj:`IAMRole` | codesearchnet |
def _update_object(object_key: str, event: Event):
events_list_key = _keys.events_list(object_key)
events_data_key = _keys.events_data(object_key)
event_dict = deepcopy(event.config)
event_dict.pop('id')
DB.append_to_list(events_list_key, event.id, pipeline=True)
DB.set_hash_value(events_data_key, event.id, json.dumps(event_dict),
pipeline=True) | Update the events list and events data for the object.
- Adds the event Id to the list of events for the object.
- Adds the event data to the hash of object event data keyed by event
id.
Args:
object_key (str): Key of the object being updated.
event (Event): Event object | juraj-google-style |
def region(self, start=0, end=None):
if end is None:
end = len(self.sequence)
return '>{}\n{}'.format(self.id, self.sequence[start:end]) | Returns a region of ``Sequence.sequence``, in FASTA format.
If called without kwargs, the entire sequence will be returned.
Args:
start (int): Start position of the region to be returned. Default
is 0.
end (int): End position of the region to be returned. Negative values
will function as they do when slicing strings.
Returns:
str: A region of ``Sequence.sequence``, in FASTA format | juraj-google-style |
def cast_type(self, var, cast_type=None):
if cast_type is None:
cast_type = self.valid_values
try:
if cast_type == int:
return int(var)
elif cast_type == float:
return float(var)
elif type == str:
return str(var)
elif isinstance(cast_type, list):
return type(cast_type[0])(var)
else:
return None
except ValueError:
return None
return var | cast the value into the type typ
if type is not provided it is set to self.valid_values
Args:
var: variable to be cast
type: target type
Returns: the variable var csat into type typ | juraj-google-style |
def start_automated_run(path, automated_run_id):
with functions.DBContextManager(path) as session:
automated_run = session.query(models.AutomatedRun).filter_by(id=automated_run_id).first()
if (not automated_run):
raise exceptions.UserError('Automated run {} does not exist'.format(automated_run_id))
automated_run.job_id = get_current_job().id
automated_run.job_status = 'started'
session.add(automated_run)
session.commit()
try:
if (automated_run.category == 'bayes'):
automatedruns.start_naive_bayes(automated_run, session, path)
elif (automated_run.category == 'tpot'):
automatedruns.start_tpot(automated_run, session, path)
elif (automated_run.category == 'greedy_ensemble_search'):
automatedruns.start_greedy_ensemble_search(automated_run, session, path)
else:
raise Exception('Something went wrong. Invalid category for automated run')
automated_run.job_status = 'finished'
session.add(automated_run)
session.commit()
except:
session.rollback()
automated_run.job_status = 'errored'
automated_run.description['error_type'] = repr(sys.exc_info()[0])
automated_run.description['error_value'] = repr(sys.exc_info()[1])
automated_run.description['error_traceback'] = traceback.format_exception(*sys.exc_info())
session.add(automated_run)
session.commit()
raise | Starts automated run. This will automatically create
base learners until the run finishes or errors out.
Args:
path (str): Path to Xcessiv notebook
automated_run_id (str): Automated Run ID | codesearchnet |
def ias53(msg):
d = hex2bin(data(msg))
if d[12] == '0':
return None
ias = bin2int(d[13:23])
return ias | Indicated airspeed, DBS 5,3 message
Args:
msg (String): 28 bytes hexadecimal message
Returns:
int: indicated arispeed in knots | juraj-google-style |
def _non_batched_matmul(lhs, rhs, lhs_contraction, rhs_contraction):
return math_ops.tensordot(lhs, rhs, axes=(list(lhs_contraction), list(rhs_contraction))) | Compute the non-batched matrix multiplication.
If it is the general non-batched/single-batched matrix multiplication,
use the highly optimized kernel `tf.tensordot` to handle it.
Args:
lhs: an array (the left-hand side matrix/vector to be multiplied)
rhs: an array (the right-hand side matrix/vector to be multiplied)
lhs_contraction: Sequence[int] (the contraction dimensions of lhs)
rhs_contraction: Sequence[int] (the contraction dimensions of rhs)
Returns:
An array that contains the result. | github-repos |
def update(self, data):
updated = self.set_property('state', data['state'])
updated |= self.set_property('notes', sorted(data['notes'] or []))
updated |= self.set_property('last_notice', data['last_notice'])
if updated:
self.set_property('last_change', datetime.now())
return updated | Updates the object information based on live data, if there were any changes made. Any changes will be
automatically applied to the object, but will not be automatically persisted. You must manually call
`db.session.add(instance)` on the object.
Args:
data (:obj:): AWS API Resource object fetched from AWS API
Returns:
`bool` | juraj-google-style |
def NewOutputModule(cls, name, output_mediator):
output_class = cls.GetOutputClass(name)
return output_class(output_mediator) | Creates a new output module object for the specified output format.
Args:
name (str): name of the output module.
output_mediator (OutputMediator): output mediator.
Returns:
OutputModule: output module.
Raises:
KeyError: if there is no output class found with the supplied name.
ValueError: if name is not a string. | juraj-google-style |
def createSimpleResourceMap(ore_pid, scimeta_pid, sciobj_pid_list):
ore = ResourceMap()
ore.initialize(ore_pid)
ore.addMetadataDocument(scimeta_pid)
ore.addDataDocuments(sciobj_pid_list, scimeta_pid)
return ore | Create a simple OAI-ORE Resource Map with one Science Metadata document and any
number of Science Data objects.
This creates a document that establishes an association between a Science Metadata
object and any number of Science Data objects. The Science Metadata object contains
information that is indexed by DataONE, allowing both the Science Metadata and the
Science Data objects to be discoverable in DataONE Search. In search results, the
objects will appear together and can be downloaded as a single package.
Args:
ore_pid: str
Persistent Identifier (PID) to use for the new Resource Map
scimeta_pid: str
PID for an object that will be listed as the Science Metadata that is
describing the Science Data objects.
sciobj_pid_list: list of str
List of PIDs that will be listed as the Science Data objects that are being
described by the Science Metadata.
Returns:
ResourceMap : OAI-ORE Resource Map | codesearchnet |
def get_path_attribute(obj, path):
path = path.replace('original.', '').replace('current_user.', '')
attr_parts = path.split('.')
res = obj
try:
for part in attr_parts:
try:
res = getattr(res, part)
except AttributeError:
res = getattr(res.get(), part)
except (peewee.DoesNotExist, AttributeError):
return None
return res | Given a path like `related_record.related_record2.id`, this method
will be able to pull the value of ID from that object, returning None
if it doesn't exist.
Args:
obj (fleaker.db.Model):
The object to attempt to pull the value from
path (str):
The path to follow to pull the value from
Returns:
(int|str|None):
The value at the end of the path. None if it doesn't exist at
any point in the path. | codesearchnet |
def _ParseDistributedTrackingIdentifier(
self, parser_mediator, uuid_object, origin):
if uuid_object.version == 1:
event_data = windows_events.WindowsDistributedLinkTrackingEventData(
uuid_object, origin)
date_time = dfdatetime_uuid_time.UUIDTime(timestamp=uuid_object.time)
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_CREATION)
parser_mediator.ProduceEventWithEventData(event, event_data)
return '{{{0!s}}}'.format(uuid_object) | Extracts data from a Distributed Tracking identifier.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
uuid_object (uuid.UUID): UUID of the Distributed Tracking identifier.
origin (str): origin of the event (event source).
Returns:
str: UUID string of the Distributed Tracking identifier. | juraj-google-style |
def set_peer_link(self, value=None, default=False, disable=False):
return self._configure_mlag('peer-link', value, default, disable) | Configures the mlag peer-link value
Args:
value (str): The value to configure the peer-link
default (bool): Configures the peer-link using the
default keyword
disable (bool): Negates the peer-link using the no keyword
Returns:
bool: Returns True if the commands complete successfully | codesearchnet |
def prepare_data_index(self, silence_percentage, unknown_percentage, wanted_words, validation_percentage, testing_percentage):
random.seed(RANDOM_SEED)
wanted_words_index = {}
for index, wanted_word in enumerate(wanted_words):
wanted_words_index[wanted_word] = index + 2
self.data_index = {'validation': [], 'testing': [], 'training': []}
unknown_index = {'validation': [], 'testing': [], 'training': []}
all_words = {}
search_path = os.path.join(self.data_dir, '*', '*.wav')
for wav_path in gfile.Glob(search_path):
_, word = os.path.split(os.path.dirname(wav_path))
word = word.lower()
if word == BACKGROUND_NOISE_DIR_NAME:
continue
all_words[word] = True
set_index = which_set(wav_path, validation_percentage, testing_percentage)
if word in wanted_words_index:
self.data_index[set_index].append({'label': word, 'file': wav_path})
else:
unknown_index[set_index].append({'label': word, 'file': wav_path})
if not all_words:
raise Exception('No .wavs found at ' + search_path)
for index, wanted_word in enumerate(wanted_words):
if wanted_word not in all_words:
raise Exception('Expected to find ' + wanted_word + ' in labels but only found ' + ', '.join(all_words.keys()))
silence_wav_path = self.data_index['training'][0]['file']
for set_index in ['validation', 'testing', 'training']:
set_size = len(self.data_index[set_index])
silence_size = int(math.ceil(set_size * silence_percentage / 100))
for _ in range(silence_size):
self.data_index[set_index].append({'label': SILENCE_LABEL, 'file': silence_wav_path})
random.shuffle(unknown_index[set_index])
unknown_size = int(math.ceil(set_size * unknown_percentage / 100))
self.data_index[set_index].extend(unknown_index[set_index][:unknown_size])
for set_index in ['validation', 'testing', 'training']:
random.shuffle(self.data_index[set_index])
self.words_list = prepare_words_list(wanted_words)
self.word_to_index = {}
for word in all_words:
if word in wanted_words_index:
self.word_to_index[word] = wanted_words_index[word]
else:
self.word_to_index[word] = UNKNOWN_WORD_INDEX
self.word_to_index[SILENCE_LABEL] = SILENCE_INDEX | Prepares a list of the samples organized by set and label.
The training loop needs a list of all the available data, organized by
which partition it should belong to, and with ground truth labels attached.
This function analyzes the folders below the `data_dir`, figures out the
right
labels for each file based on the name of the subdirectory it belongs to,
and uses a stable hash to assign it to a data set partition.
Args:
silence_percentage: How much of the resulting data should be background.
unknown_percentage: How much should be audio outside the wanted classes.
wanted_words: Labels of the classes we want to be able to recognize.
validation_percentage: How much of the data set to use for validation.
testing_percentage: How much of the data set to use for testing.
Returns:
Dictionary containing a list of file information for each set partition,
and a lookup map for each class to determine its numeric index.
Raises:
Exception: If expected files are not found. | github-repos |
def create_image_streamer_client(self):
image_streamer = ImageStreamerClient(self.__image_streamer_ip, self.__connection.get_session_id(), self.__connection._apiVersion, self.__connection._sslBundle)
return image_streamer | Create the Image Streamer API Client.
Returns:
ImageStreamerClient: | codesearchnet |
def zip_columns(columns):
weld_obj = WeldObject(encoder_, decoder_)
column_vars = []
for column in columns:
col_var = weld_obj.update(column)
if isinstance(column, WeldObject):
col_var = column.obj_id
weld_obj.dependencies[col_var] = column
column_vars.append(col_var)
arrays = ", ".join(column_vars)
weld_template =
weld_obj.weld_code = weld_template % {
"array": arrays,
}
return weld_obj | Zip together multiple columns.
Args:
columns (WeldObject / Numpy.ndarray): lust of columns
Returns:
A WeldObject representing this computation | juraj-google-style |
def CalculateHashes(self, base_path_specs, output_writer):
for base_path_spec in base_path_specs:
file_system = resolver.Resolver.OpenFileSystem(base_path_spec)
file_entry = resolver.Resolver.OpenFileEntry(base_path_spec)
if (file_entry is None):
logging.warning('Unable to open base path specification:\n{0:s}'.format(base_path_spec.comparable))
continue
self._CalculateHashesFileEntry(file_system, file_entry, '', output_writer) | Recursive calculates hashes starting with the base path specification.
Args:
base_path_specs (list[dfvfs.PathSpec]): source path specification.
output_writer (StdoutWriter): output writer. | codesearchnet |
def recipe_dcm_to_bigquery(config, auth_read, auth_write, account, report_id, report_name, dataset, table, is_incremental_load):
dcm(config, {'auth': auth_read, 'report': {'account': account, 'report_id': report_id, 'name': report_name}, 'out': {'bigquery': {'auth': auth_write, 'dataset': dataset, 'table': table, 'header': True, 'is_incremental_load': is_incremental_load}}}) | Move existing CM report into a BigQuery table.
Args:
auth_read (authentication) - Credentials used for reading data.
auth_write (authentication) - Credentials used for writing data.
account (integer) - CM network id.
report_id (integer) - CM report id, empty if using name .
report_name (string) - CM report name, empty if using id instead.
dataset (string) - Dataset to be written to in BigQuery.
table (string) - Table to be written to in BigQuery.
is_incremental_load (boolean) - Clear data in destination table during this report's time period, then append report data to existing table. | github-repos |
def to_numpy(self, dtype=None, copy=False):
return self._default_to_pandas("to_numpy", dtype=dtype, copy=copy) | Convert the DataFrame to a NumPy array.
Args:
dtype: The dtype to pass to numpy.asarray()
copy: Whether to ensure that the returned value is a not a view on another
array.
Returns:
A numpy array. | juraj-google-style |
def create_default_views(self, create_datastore_views=False):
package = deepcopy(self.data)
if self.resources:
package['resources'] = self._convert_hdxobjects(self.resources)
data = {'package': package, 'create_datastore_views': create_datastore_views}
self._write_to_hdx('create_default_views', data, 'package') | Create default resource views for all resources in dataset
Args:
create_datastore_views (bool): Whether to try to create resource views that point to the datastore
Returns:
None | juraj-google-style |
def reorder_resource_views(self, resource_views):
if not isinstance(resource_views, list):
raise HDXError('ResourceViews should be a list!')
ids = list()
for resource_view in resource_views:
if isinstance(resource_view, str):
resource_view_id = resource_view
else:
resource_view_id = resource_view['id']
if is_valid_uuid(resource_view_id) is False:
raise HDXError('%s is not a valid resource view id!' % resource_view)
ids.append(resource_view_id)
_, result = self._read_from_hdx('resource view', self.data['id'], 'id',
ResourceView.actions()['reorder'], order=ids) | Order resource views in resource.
Args:
resource_views (List[Union[ResourceView,Dict,str]]): A list of either resource view ids or resource views metadata from ResourceView objects or dictionaries
Returns:
None | juraj-google-style |
def incr(self, counter_name, delta=1):
self._state.counters_map.increment(counter_name, delta) | Changes counter by delta.
Args:
counter_name: the name of the counter to change. str.
delta: int. | codesearchnet |
def in_sorted(values, value):
index = bisect.bisect_left(values, value)
if index >= len(values):
return False
return values[index] == value | Checks if a value is in a sorted list.
Uses the :mod:`bisect` builtin to find the insertion point for
``value``.
Args:
values (List[int]): Integers sorted in ascending order.
value (int): Value to check if contained in ``values``.
Returns:
bool: Indicating if the value is contained. | juraj-google-style |
def configure_bigchaindb(command):
@functools.wraps(command)
def configure(args):
config_from_cmdline = None
try:
if (args.log_level is not None):
config_from_cmdline = {'log': {'level_console': args.log_level, 'level_logfile': args.log_level}, 'server': {'loglevel': args.log_level}}
except AttributeError:
pass
bigchaindb.config_utils.autoconfigure(filename=args.config, config=config_from_cmdline, force=True)
command(args)
return configure | Decorator to be used by command line functions, such that the
configuration of bigchaindb is performed before the execution of
the command.
Args:
command: The command to decorate.
Returns:
The command wrapper function. | codesearchnet |
def _contains_op_with_name_and_attribute(self, nodes: Iterable[node_def_pb2.NodeDef], op_name: str, attr_name: str, attr_val: _AttrValType, node_name: str='') -> bool:
def match_node_name(name):
if not node_name:
return True
compiled_regex = re.compile(node_name)
match = re.fullmatch(compiled_regex, name)
return match is not None
return any((node.attr.get(attr_name) == attr_val for node in nodes if node.op == op_name and match_node_name(node.name))) | Determine whether there is a node whose operation name matches `op_name`.
If `attr_name` is given, additionally check if the `attr_val` matches with
the attribute value of the op.
Args:
nodes: Iterable of NodeDefs.
op_name: Name of the op to match.
attr_name: Name of the attribute of the op to match.
attr_val: Value of the attr_name to check.
node_name: Name of the node to match. Accepts regex2 format.
Returns:
True if there exists a node whose name matches `op_name` and 'attr_val' if
'attr_name' is given. | github-repos |
def unparse(node, indentation=None, include_encoding_marker=True):
del indentation
if not isinstance(node, (list, tuple)):
node = (node,)
codes = []
if include_encoding_marker:
codes.append('
for n in node:
if isinstance(n, gast.AST):
ast_n = gast.gast_to_ast(n)
else:
ast_n = n
if astunparse is ast:
ast.fix_missing_locations(ast_n)
codes.append(astunparse.unparse(ast_n).strip())
return '\n'.join(codes) | Returns the source code of given AST.
Args:
node: The code to compile, as an AST object.
indentation: Unused, deprecated. The returning code will always be indented
at 4 spaces.
include_encoding_marker: Bool, whether to include a comment on the first
line to explicitly specify UTF-8 encoding.
Returns:
code: The source code generated from the AST object
source_mapping: A mapping between the user and AutoGraph generated code. | github-repos |
def has_implicit_access_to_dashboard(user, obj):
request = get_request_or_stub()
decoded_jwt = get_decoded_jwt_from_request(request)
return request_user_has_implicit_access_via_jwt(decoded_jwt, ENTERPRISE_DASHBOARD_ADMIN_ROLE) | Check that if request user has implicit access to `ENTERPRISE_DASHBOARD_ADMIN_ROLE` feature role.
Returns:
boolean: whether the request user has access or not | codesearchnet |
def max_steps_per_epoch():
return _MAX_STEPS_PER_EPOCH | Get the maximum number of steps for any call to fit/evaluate/predict.
Retrieves the limit on the number of epochs set by
`keras.config.set_max_steps_per_epoch` or the `KERAS_MAX_STEPS_PER_EPOCH`
environment variable.
Args:
max_epochs: The integer limit on the number of epochs or `None`. If
`None`, no limit is applied. | github-repos |
def to_qasm(self,
header: Optional[str] = None,
precision: int = 10,
qubit_order: ops.QubitOrderOrList = ops.QubitOrder.DEFAULT,
) -> str:
return str(self._to_qasm_output(header, precision, qubit_order)) | Returns QASM equivalent to the circuit.
Args:
header: A multi-line string that is placed in a comment at the top
of the QASM. Defaults to a cirq version specifier.
precision: Number of digits to use when representing numbers.
qubit_order: Determines how qubits are ordered in the QASM
register. | juraj-google-style |
def _decode_filename(base_filename, problem_name, decode_hp):
if (decode_hp.shards > 1):
base_filename = _add_shard_to_filename(base_filename, decode_hp)
if ('beam{beam}.alpha{alpha}.decodes'.format(beam=str(decode_hp.beam_size), alpha=str(decode_hp.alpha)) in base_filename):
return base_filename
else:
return '{base}.{model}.{hp}.{problem}.beam{beam}.alpha{alpha}.decodes'.format(base=base_filename, model=FLAGS.model, hp=FLAGS.hparams_set, problem=problem_name, beam=str(decode_hp.beam_size), alpha=str(decode_hp.alpha)) | Generates decode filename.
Args:
base_filename: A string, base of the decode filename.
problem_name: A string, name of the problem.
decode_hp: HParams for decoding.
Returns:
A string, produced decode filename. | codesearchnet |
def cipher(self):
if (self.offset is False):
self.offset = randrange(5, 25)
logging.info('Random offset selected: {0}'.format(self.offset))
logging.debug('Offset set: {0}'.format(self.offset))
ciphered_message_list = list(self.message)
for (i, letter) in enumerate(ciphered_message_list):
if letter.isalpha():
if letter.isupper():
alphabet = [character.upper() for character in self.alphabet]
else:
alphabet = self.alphabet
logging.debug('Letter: {0}'.format(letter))
logging.debug('Alphabet: {0}'.format(alphabet))
value = alphabet.index(letter)
cipher_value = (value + self.offset)
if ((cipher_value > 25) or (cipher_value < 0)):
cipher_value = (cipher_value % 26)
logging.debug('Cipher value: {0}'.format(cipher_value))
ciphered_message_list[i] = alphabet[cipher_value]
logging.debug('Ciphered letter: {0}'.format(letter))
self.message = ''.join(ciphered_message_list)
return self.message | Applies the Caesar shift cipher.
Based on the attributes of the object, applies the Caesar shift cipher
to the message attribute. Accepts positive and negative integers as
offsets.
Required attributes:
message
offset
Returns:
String with cipher applied. | codesearchnet |
def solve(A, b):
r
A = asarray(A, float)
b = asarray(b, float)
if A.shape[0] == 1:
with errstate(divide="ignore"):
A_ = array([[1.0 / A[0, 0]]])
if not isfinite(A_[0, 0]):
raise LinAlgError("Division error.")
return dot(A_, b)
elif A.shape[0] == 2:
a = A[0, 0]
b_ = A[0, 1]
c = A[1, 0]
d = A[1, 1]
A_ = array([[d, -b_], [-c, a]])
with errstate(divide="ignore"):
A_ /= a * d - b_ * c
if not npy_all(isfinite(A_)):
raise LinAlgError("Division error.")
return dot(A_, b)
return _solve(A, b) | r"""Solve for the linear equations :math:`\mathrm A \mathbf x = \mathbf b`.
Args:
A (array_like): Coefficient matrix.
b (array_like): Ordinate values.
Returns:
:class:`numpy.ndarray`: Solution ``x``. | juraj-google-style |
class TFTopPLogitsWarper(TFLogitsWarper):
def __init__(self, top_p: float, filter_value: float=-float('Inf'), min_tokens_to_keep: int=1):
if not isinstance(top_p, float) or (top_p < 0 or top_p > 1.0):
raise ValueError(f'`top_p` has to be a float > 0 and < 1, but is {top_p}')
if not isinstance(min_tokens_to_keep, int) or min_tokens_to_keep < 1:
raise ValueError(f'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}')
self.top_p = top_p
self.filter_value = filter_value
self.min_tokens_to_keep = min_tokens_to_keep
def __call__(self, input_ids: tf.Tensor, scores: tf.Tensor, cur_len: int) -> tf.Tensor:
topk_scores, topk_indices = tf.math.top_k(scores, scores.shape[-1])
mask_scores = tf.fill(scores.shape, self.filter_value)
cumulative_probs = tf.math.cumsum(stable_softmax(topk_scores, axis=-1), axis=-1)
score_mask = cumulative_probs < self.top_p
score_mask = tf.concat((tf.ones([score_mask.shape[0], 1], dtype=tf.bool), score_mask[:, :-1]), axis=-1)
score_mask = tf.concat((tf.ones([score_mask.shape[0], self.min_tokens_to_keep], dtype=tf.bool), score_mask[:, self.min_tokens_to_keep:]), axis=-1)
topk_next_scores = tf.where(score_mask, topk_scores, mask_scores)
scatter_rows = tf.tile(tf.expand_dims(tf.range(topk_indices.shape[0]), axis=-1), [1, topk_indices.shape[-1]])
scatter_indices = tf.stack((scatter_rows, topk_indices), axis=-1)
next_scores = tf.scatter_nd(scatter_indices, topk_next_scores, shape=topk_next_scores.shape)
return next_scores | [`TFLogitsWarper`] that performs top-p, i.e. restricting to top tokens summing to <= prob_cut_off.
Args:
top_p (`float`):
If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
higher are kept for generation.
filter_value (`float`, *optional*, defaults to -inf):
All filtered values will be set to this float value.
min_tokens_to_keep (`int`, *optional*, defaults to 1):
Minimum number of tokens that cannot be filtered. | github-repos |
def get_function_from_signature(self, function_signature):
return next((f for f in self.functions if f.full_name == function_signature), None) | Return a function from a signature
Args:
function_signature (str): signature of the function (without return statement)
Returns:
Function | juraj-google-style |
def has_values(o):
try:
next(o)
return True
except StopIteration:
return False | Converts iterator to a boolean.
Destroys iterator but returns True if at least one value is present.
Args:
* o: An iterator instance.
Returns:
* True if at least one instance or False if none. | github-repos |
def _to_components(self, value):
raise NotImplementedError('%s._to_components()' % type(self).__name__) | Encodes `value` as a nested structure of `Tensor` or `CompositeTensor`.
Args:
value: A value compatible with this `TypeSpec`. (Caller is responsible
for ensuring compatibility.)
Returns:
A nested structure of `tf.Tensor` or `tf.CompositeTensor` compatible with
`self._component_specs`, which can be used to reconstruct `value`. | github-repos |
def store(self, store=None, usage='both', mech=None, overwrite=False, set_default=False):
if (store is None):
if (rcred_rfc5588 is None):
raise NotImplementedError('Your GSSAPI implementation does not have support for RFC 5588')
return rcred_rfc5588.store_cred(self, usage, mech, overwrite, set_default)
else:
if (rcred_cred_store is None):
raise NotImplementedError('Your GSSAPI implementation does not have support for manipulating credential stores directly')
store = _encode_dict(store)
return rcred_cred_store.store_cred_into(store, self, usage, mech, overwrite, set_default) | Store these credentials into the given store
This method stores the current credentials into the specified
credentials store. If the default store is used, support for
:rfc:`5588` is required. Otherwise, support for the credentials
store extension is required.
:requires-ext:`rfc5588` or :requires-ext:`cred_store`
Args:
store (dict): the store into which to store the credentials,
or None for the default store.
usage (str): the usage to store the credentials with -- either
'both', 'initiate', or 'accept'
mech (OID): the :class:`MechType` to associate with the
stored credentials
overwrite (bool): whether or not to overwrite existing credentials
stored with the same name, etc
set_default (bool): whether or not to set these credentials as
the default credentials for the given store.
Returns:
StoreCredResult: the results of the credential storing operation
Raises:
GSSError
ExpiredCredentialsError
MissingCredentialsError
OperationUnavailableError
DuplicateCredentialsElementError | codesearchnet |
def get_name_servers(self, id_or_uri):
uri = (self._client.build_uri(id_or_uri) + '/nameServers')
return self._client.get(uri) | Gets the named servers for an interconnect.
Args:
id_or_uri: Can be either the interconnect id or the interconnect uri.
Returns:
dict: the name servers for an interconnect. | codesearchnet |
def user_lists(self, username, member_type='USER'):
return self.client.service.getUserLists(username, member_type, self.proxy_id) | Look up all the lists that the user is a member of.
Args:
username (str): The MIT username of the user
member_type(str): The type of user, "USER" or "STRING"
Returns:
list of strings: names of the lists that this user is a member of | codesearchnet |
def dumps(messages):
serialized_messages = []
try:
for message in messages:
message_dict = message._dump()
serialized_messages.append(message_dict)
except AttributeError:
_log.error("Improper object for messages serialization.")
raise TypeError("Message have to be instance of Message class or subclass.")
return json.dumps(serialized_messages, sort_keys=True) | Serialize messages to a JSON formatted str
Args:
messages (list): The list of messages to serialize. Each message in
the messages is subclass of Messge.
Returns:
str: Serialized messages.
Raises:
TypeError: If at least one message is not instance of Message class or subclass. | juraj-google-style |
def decode(value, strip=False):
if value is None:
return None
if isinstance(value, bytes) and not isinstance(value, unicode):
value = value.decode("utf-8")
if strip:
return unicode(value).strip()
return unicode(value) | Python 2/3 friendly decoding of output.
Args:
value (str | unicode | bytes | None): The value to decode.
strip (bool): If True, `strip()` the returned string. (Default value = False)
Returns:
str: Decoded value, if applicable. | juraj-google-style |
def set_hostname(hostname):
with salt.utils.winapi.Com():
conn = wmi.WMI()
comp = conn.Win32_ComputerSystem()[0]
return comp.Rename(Name=hostname) | Set the hostname of the windows minion, requires a restart before this will
be updated.
.. versionadded:: 2016.3.0
Args:
hostname (str): The hostname to set
Returns:
bool: ``True`` if successful, otherwise ``False``
CLI Example:
.. code-block:: bash
salt 'minion-id' system.set_hostname newhostname | juraj-google-style |
def train_model(samples_path: str, labels_path: str, model_state_output_path: str):
samples = pandas.read_csv(samples_path)
labels = pandas.read_csv(labels_path)
xgb = xgboost.XGBClassifier(max_depth=3)
xgb.fit(samples, labels)
xgb.save_model(model_state_output_path)
return xgb | Function to train the XGBoost model.
Args:
samples_path: path to csv file containing the training data
labels_path: path to csv file containing the labels for the training data
model_state_output_path: Path to store the trained model | github-repos |
def get_function_args_defaults(f):
signature = get_signature(f)
parameter = inspect.Parameter
_SUPPORTED_ARG_TYPES = [parameter.POSITIONAL_ONLY, parameter.POSITIONAL_OR_KEYWORD]
args = [name for name, p in signature.parameters.items() if p.kind in _SUPPORTED_ARG_TYPES]
defaults = [p.default for p in signature.parameters.values() if p.kind in _SUPPORTED_ARG_TYPES and p.default is not p.empty]
return (args, defaults) | Returns the function arguments of a given function.
Returns:
(args: List[str], defaults: List[Any]). The first list names the
arguments of the method and the second one has the values of the default
arguments. This is similar to ``inspect.getfullargspec()``'s results, except
it doesn't include bound arguments and may follow function wrappers. | github-repos |
def trainer_results(trainer, mean=0, std=1, title='', show=True, save=True):
return plot_network_results(network=trainer.module, ds=trainer.ds, mean=mean, std=std, title=title, show=show, save=save) | Plot the performance of the Network and SupervisedDataSet in a pybrain Trainer
DataSet target and output values are denormalized before plotting with:
output * std + mean
Which inverses the normalization
(output - mean) / std
Args:
trainer (Trainer): a pybrain Trainer instance containing a valid Network and DataSet
ds (DataSet): a pybrain DataSet to override the one contained in `trainer`.
Required if trainer is a Network instance rather than a Trainer instance.
mean (float): mean of the denormalized dataset (default: 0)
Only affects the scale of the plot
std (float): std (standard deviation) of the denormalized dataset (default: 1)
title (str): title to display on the plot.
Returns:
3-tuple: (trainer, mean, std), A trainer/dataset along with denormalization info | codesearchnet |
def run_experiment(hparams):
estimator = train_and_maybe_evaluate(hparams)
schema = taxi.read_schema(hparams.schema_file)
tf_transform_output = tft.TFTransformOutput(hparams.tf_transform_dir)
eval_model_dir = os.path.join(hparams.output_dir, EVAL_MODEL_DIR)
receiver_fn = lambda: model.eval_input_receiver_fn(tf_transform_output, schema)
tfma.export.export_eval_savedmodel(estimator=estimator, export_dir_base=eval_model_dir, eval_input_receiver_fn=receiver_fn) | Train the model then export it for tf.model_analysis evaluation.
Args:
hparams: Holds hyperparameters used to train the model as name/value pairs. | github-repos |
def loadnetcdf(filename, copy=True):
filename = str(Path(filename).expanduser())
if copy:
dataarray = xr.open_dataarray(filename).copy()
else:
dataarray = xr.open_dataarray(filename, chunks={})
if dataarray.name is None:
dataarray.name = filename.rstrip('.nc')
for key, val in dataarray.coords.items():
if val.dtype.kind == 'S':
dataarray[key] = val.astype('U')
elif val.dtype == np.int32:
dataarray[key] = val.astype('i8')
return dataarray | Load a dataarray from a NetCDF file.
Args:
filename (str): Filename (*.nc).
copy (bool): If True, dataarray is copied in memory. Default is True.
Returns:
dataarray (xarray.DataArray): Loaded dataarray. | juraj-google-style |
def load_data_split(proc_data_dir):
ds_train = Dataset.load(path.join(proc_data_dir, 'train.bin'))
ds_val = Dataset.load(path.join(proc_data_dir, 'val.bin'))
ds_test = Dataset.load(path.join(proc_data_dir, 'test.bin'))
return (ds_train, ds_val, ds_test) | Loads a split dataset
Args:
proc_data_dir: Directory with the split and processed data
Returns:
(Training Data, Validation Data, Test Data) | codesearchnet |
def _prefix_from_ip_int(self, ip_int):
prefixlen = self._max_prefixlen
while prefixlen:
if ip_int & 1:
break
ip_int >>= 1
prefixlen -= 1
if ip_int == (1 << prefixlen) - 1:
return prefixlen
else:
raise NetmaskValueError('Bit pattern does not match /1*0*/') | Return prefix length from a bitwise netmask.
Args:
ip_int: An integer, the netmask in expanded bitwise format.
Returns:
An integer, the prefix length.
Raises:
NetmaskValueError: If the input is not a valid netmask. | juraj-google-style |
def set_cookie(self, key, value, domain=None, path='/', secure=False,
httponly=True):
self._cookies[key] = value
if domain:
self._cookies[key]['domain'] = domain
if path:
self._cookies[key]['path'] = path
if secure:
self._cookies[key]['secure'] = secure
if httponly:
self._cookies[key]['httponly'] = httponly | Set a cookie.
Args:
key (:obj:`str`): Cookie name
value (:obj:`str`): Cookie value
domain (:obj:`str`): Cookie domain
path (:obj:`str`): Cookie value
secure (:obj:`bool`): True if secure, False otherwise
httponly (:obj:`bool`): True if it's a HTTP only cookie, False
otherwise | juraj-google-style |
def set_json(self, obj, status=HttpStatusCodes.HTTP_200):
obj = json.dumps(obj, sort_keys=True, default=(lambda x: str(x)))
self.set_status(status)
self.set_header(HttpResponseHeaders.CONTENT_TYPE, 'application/json')
self.set_content(obj) | Helper method to set a JSON response.
Args:
obj (:obj:`object`): JSON serializable object
status (:obj:`str`, optional): Status code of the response | codesearchnet |
def get_2d_local_memory_v2(x, query_shape, memory_flange):
(_, height, width, depth_x) = common_layers.shape_list(x)
paddings = [[0, 0], [memory_flange[0], memory_flange[0]], [memory_flange[1], memory_flange[1]], [0, 0]]
padded_x = tf.pad(x, paddings)
padded_x.set_shape([None, (height + (2 * memory_flange[0])), (width + (2 * memory_flange[1])), depth_x])
num_h_memory_blocks = ((height
num_w_memory_blocks = ((width
x_memory_blocks = _extract_blocks(padded_x, query_shape[0], query_shape[1])
x_width_blocks = tf.split(x_memory_blocks, num_w_memory_blocks, 2)
x_left_width = tf.concat(x_width_blocks[:(num_w_memory_blocks - 1)], axis=2)
x_right_width = tf.concat(x_width_blocks[1:], axis=2)
x_memory_blocks = tf.concat([x_left_width, x_right_width], axis=4)
x_height_blocks = tf.split(x_memory_blocks, num_h_memory_blocks, 1)
x_top_height = tf.concat(x_height_blocks[:(num_h_memory_blocks - 1)], axis=1)
x_bottom_height = tf.concat(x_height_blocks[1:], axis=1)
x = tf.concat([x_top_height, x_bottom_height], axis=3)
return x | Gathering memory blocks around query blocks. flange is half of query .
Only works if memory flanges are half of query sizes.
Args:
x: a [batch, height, width, depth tensor]
query_shape: 2-d integer list of query shape
memory_flange: 2-d integer list of memory flanges
Returns:
x: A [batch, num_h_blocks, num_w_blocks,
query_shape[0]+2*memory_flange[0],query_shape[1]+2*memory_flange[1]]
tensor. | codesearchnet |
def files_delete(self, *, id: str, **kwargs) -> SlackResponse:
kwargs.update({'id': id})
return self.api_call('files.delete', json=kwargs) | Deletes a file.
Args:
id (str): The file id. e.g. 'F1234467890' | codesearchnet |
def list(self, name=None, all=False, filters=None):
resp = self.client.api.images(name=name, all=all, filters=filters)
return [self.get(r['Id']) for r in resp] | List images on the server.
Args:
name (str): Only show images belonging to the repository ``name``
all (bool): Show intermediate image layers. By default, these are
filtered out.
filters (dict): Filters to be processed on the image list.
Available filters:
- ``dangling`` (bool)
- ``label`` (str): format either ``key`` or ``key=value``
Returns:
(list of :py:class:`Image`): The images.
Raises:
:py:class:`docker.errors.APIError`
If the server returns an error. | codesearchnet |
def _SetFieldType(self, field_proto, field_desc, package, scope):
if field_proto.type_name:
desc = self._GetTypeFromScope(package, field_proto.type_name, scope)
else:
desc = None
if not field_proto.HasField('type'):
if isinstance(desc, descriptor.Descriptor):
field_proto.type = descriptor.FieldDescriptor.TYPE_MESSAGE
else:
field_proto.type = descriptor.FieldDescriptor.TYPE_ENUM
field_desc.cpp_type = descriptor.FieldDescriptor.ProtoTypeToCppProtoType(
field_proto.type)
if (field_proto.type == descriptor.FieldDescriptor.TYPE_MESSAGE
or field_proto.type == descriptor.FieldDescriptor.TYPE_GROUP):
field_desc.message_type = desc
if field_proto.type == descriptor.FieldDescriptor.TYPE_ENUM:
field_desc.enum_type = desc
if field_proto.label == descriptor.FieldDescriptor.LABEL_REPEATED:
field_desc.has_default_value = False
field_desc.default_value = []
elif field_proto.HasField('default_value'):
field_desc.has_default_value = True
if (field_proto.type == descriptor.FieldDescriptor.TYPE_DOUBLE or
field_proto.type == descriptor.FieldDescriptor.TYPE_FLOAT):
field_desc.default_value = float(field_proto.default_value)
elif field_proto.type == descriptor.FieldDescriptor.TYPE_STRING:
field_desc.default_value = field_proto.default_value
elif field_proto.type == descriptor.FieldDescriptor.TYPE_BOOL:
field_desc.default_value = field_proto.default_value.lower() == 'true'
elif field_proto.type == descriptor.FieldDescriptor.TYPE_ENUM:
field_desc.default_value = field_desc.enum_type.values_by_name[
field_proto.default_value].number
elif field_proto.type == descriptor.FieldDescriptor.TYPE_BYTES:
field_desc.default_value = text_encoding.CUnescape(
field_proto.default_value)
else:
field_desc.default_value = int(field_proto.default_value)
else:
field_desc.has_default_value = False
if (field_proto.type == descriptor.FieldDescriptor.TYPE_DOUBLE or
field_proto.type == descriptor.FieldDescriptor.TYPE_FLOAT):
field_desc.default_value = 0.0
elif field_proto.type == descriptor.FieldDescriptor.TYPE_STRING:
field_desc.default_value = u''
elif field_proto.type == descriptor.FieldDescriptor.TYPE_BOOL:
field_desc.default_value = False
elif field_proto.type == descriptor.FieldDescriptor.TYPE_ENUM:
field_desc.default_value = field_desc.enum_type.values[0].number
elif field_proto.type == descriptor.FieldDescriptor.TYPE_BYTES:
field_desc.default_value = b''
else:
field_desc.default_value = 0
field_desc.type = field_proto.type | Sets the field's type, cpp_type, message_type and enum_type.
Args:
field_proto: Data about the field in proto format.
field_desc: The descriptor to modiy.
package: The package the field's container is in.
scope: Enclosing scope of available types. | juraj-google-style |
def _create_all_weights(self, var_list):
_ = self.iterations
self._create_hypers()
self._create_slots(var_list) | Creates all weights, including iterations, hyperparameters and slot vars.
This will add newly created variables to `optimizer.weights`.
New variables are only created when this method is called the first time, or
when called with different variables in the var_list.
Args:
var_list: list or tuple of `Variable` objects that will be minimized
using this optimizer. | github-repos |
def serialize(data):
return rapidjson.dumps(data, skipkeys=False, ensure_ascii=False, sort_keys=True) | Serialize a dict into a JSON formatted string.
This function enforces rules like the separator and order of keys.
This ensures that all dicts are serialized in the same way.
This is specially important for hashing data. We need to make sure that
everyone serializes their data in the same way so that we do not have
hash mismatches for the same structure due to serialization
differences.
Args:
data (dict): dict to serialize
Returns:
str: JSON formatted string | codesearchnet |
def _process_image_id(self):
try:
image_info = self.image_id.strip().split(':')
self.image_publisher = image_info[0]
self.image_offer = image_info[1]
self.image_sku = image_info[2]
self.image_version = image_info[3]
except Exception:
self.image_publisher = None | Split image id into component values.
Example: SUSE:SLES:12-SP3:2018.01.04
Publisher:Offer:Sku:Version
Raises:
If image_id is not a valid format. | codesearchnet |
def _init_index(root_dir, schema, index_name):
index_dir = os.path.join(root_dir, index_name)
try:
if (not os.path.exists(index_dir)):
os.makedirs(index_dir)
return (create_in(index_dir, schema), index_dir)
else:
return (open_dir(index_dir), index_dir)
except Exception as e:
logger.error("Init error: failed to open search index at: '{}': {} ".format(index_dir, e))
raise | Creates new index or opens existing.
Args:
root_dir (str): root dir where to find or create index.
schema (whoosh.fields.Schema): schema of the index to create or open.
index_name (str): name of the index.
Returns:
tuple ((whoosh.index.FileIndex, str)): first element is index, second is index directory. | codesearchnet |
def register_extension(self, ext_in, ext_out, force=False):
if not force and (ext_in in self.__extensions.keys()):
self.log_warning("Extension %s already exist, ignore redefinition." % ext_in)
return
self.__extensions[ext_in] = ext_out | Add/register a file extension.
Args:
ext_in (str): Extension of input files.
ext_out (str): Extension of corresponding output files.
force (bool): If ``force`` is set to ``True``, simply overwrite existing extensions, otherwise do nothing.
If the ``logger`` is set, log a warning about the duplicate extension if ``force == False``. | juraj-google-style |
def MessageToJson(message, including_default_value_fields=False):
js = _MessageToJsonObject(message, including_default_value_fields)
return json.dumps(js, indent=2) | Converts protobuf message to JSON format.
Args:
message: The protocol buffers message instance to serialize.
including_default_value_fields: If True, singular primitive fields,
repeated fields, and map fields will always be serialized. If
False, only serialize non-empty fields. Singular message fields
and oneof fields are not affected by this option.
Returns:
A string containing the JSON formatted protocol buffer message. | juraj-google-style |
def get_all_thread_ids(self):
json = self._get_json(self._url.thread_list())
return [thread['no'] for page in json for thread in page['threads']] | Return the ID of every thread on this board.
Returns:
list of ints: List of IDs of every thread on this board. | codesearchnet |
def handle_upnp_error(self, xml_error):
xml_error = xml_error.encode('utf-8')
error = XML.fromstring(xml_error)
log.debug("Error %s", xml_error)
error_code = error.findtext(
'.
if error_code is not None:
description = self.UPNP_ERRORS.get(int(error_code), '')
raise SoCoUPnPException(
message='UPnP Error {} received: {} from {}'.format(
error_code, description, self.soco.ip_address),
error_code=error_code,
error_description=description,
error_xml=xml_error
)
else:
log.error("Unknown error received from %s", self.soco.ip_address)
raise UnknownSoCoException(xml_error) | Disect a UPnP error, and raise an appropriate exception.
Args:
xml_error (str): a unicode string containing the body of the
UPnP/SOAP Fault response. Raises an exception containing the
error code. | juraj-google-style |
def _FormatField(self, field):
if self._FIELD_DELIMITER and isinstance(field, py2to3.STRING_TYPES):
return field.replace(self._FIELD_DELIMITER, ' ')
return field | Formats a field.
Args:
field (str): field value.
Returns:
str: formatted field value. | juraj-google-style |
def get_number_of_image_patches(self, height: int, width: int, images_kwargs=None):
do_image_splitting = images_kwargs.get('do_image_splitting', None) or self.do_image_splitting
max_image_size = images_kwargs.get('max_image_size', None) or self.max_image_size
size = images_kwargs.get('size', None) or self.size
if do_image_splitting:
height, width = _resize_output_size_rescale_to_max_len(height, width, max_len=size['longest_edge'])
height, width = _resize_output_size_scale_below_upper_bound(height, width, max_len=4096)
aspect_ratio = width / height
if width >= height:
resized_width = math.ceil(width / max_image_size['longest_edge']) * max_image_size['longest_edge']
resized_height = int(width / aspect_ratio)
resized_height = math.ceil(height / max_image_size['longest_edge']) * max_image_size['longest_edge']
elif height > width:
resized_height = math.ceil(height / max_image_size['longest_edge']) * max_image_size['longest_edge']
resized_width = int(height * aspect_ratio)
resized_width = math.ceil(width / max_image_size['longest_edge']) * max_image_size['longest_edge']
max_height = max_width = max_image_size['longest_edge']
if resized_height > max_height or resized_width > max_width:
num_rows = math.ceil(resized_height / max_height)
num_cols = math.ceil(resized_width / max_width)
num_patches = num_rows * num_cols + 1
return num_patches | A utility that returns number of image patches for a given image size.
Args:
height (`int`):
Height of the input image.
width (`int`):
Width of the input image.
images_kwargs (`dict`, *optional*)
Any kwargs to override defaults of the image processor.
Returns:
`int`: Number of patches per image. | github-repos |
def rtruediv(self, other, axis="columns", level=None, fill_value=None):
return self._binary_op(
"rtruediv", other, axis=axis, level=level, fill_value=fill_value
) | Div this DataFrame against another DataFrame/Series/scalar.
Args:
other: The object to use to apply the div against this.
axis: The axis to div over.
level: The Multilevel index level to apply div over.
fill_value: The value to fill NaNs with.
Returns:
A new DataFrame with the rdiv applied. | juraj-google-style |
class TFIdeficsVisionEncoder(tf.keras.layers.Layer):
def __init__(self, config: IdeficsVisionConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.layers = [TFIdeficsVisionEncoderLayer(config, name=f'layers.{i}') for i in range(config.num_hidden_layers)]
self.gradient_checkpointing = False
def call(self, inputs_embeds, attention_mask: Optional[tf.Tensor]=None, causal_attention_mask: Optional[tf.Tensor]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, training: Optional[bool]=None) -> Union[Tuple, TFBaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = tf.recompute_grad(create_custom_forward(encoder_layer), hidden_states, attention_mask, causal_attention_mask)
else:
layer_outputs = encoder_layer(hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple((v for v in [hidden_states, encoder_states, all_attentions] if v is not None))
return TFBaseModelOutput(last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, 'layers', None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None) | Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`TFIdeficsVisionEncoderLayer`].
Args:
config: IdeficsVisionConfig | github-repos |
def fit_transform(self, tables=None, transformer_dict=None, transformer_list=None, missing=None):
if (missing is None):
missing = self.missing
else:
self.missing = missing
warnings.warn(DEPRECATION_MESSAGE.format('fit_transform'), DeprecationWarning)
transformed = {}
if (tables is None):
tables = self.table_dict
if ((transformer_dict is None) and (transformer_list is None)):
transformer_dict = self.transformer_dict
for table_name in tables:
(table, table_meta) = tables[table_name]
transformed_table = self.fit_transform_table(table, table_meta, transformer_dict, transformer_list)
transformed[table_name] = transformed_table
return transformed | Create, apply and store the specified transformers for the given tables.
Args:
tables(dict): Mapping of table names to `tuple` where each tuple is on the form
(`pandas.DataFrame`, `dict`). The `DataFrame` contains the table data
and the `dict` the corresponding meta information.
If not specified, the tables will be retrieved using the meta_file.
transformer_dict(dict): Mapping `tuple(str, str)` -> `str` where the tuple is
(table_name, column_name).
transformer_list(list): List of transformers to use. Overrides the transformers in
the meta_file.
missing(bool): Wheter or not use NullTransformer to handle missing values.
Returns:
dict: Map from `str` (table_names) to `pandas.DataFrame` (transformed data). | codesearchnet |
def FindMessageTypeByName(self, full_name):
full_name = _NormalizeFullyQualifiedName(full_name)
if (full_name not in self._descriptors):
self.FindFileContainingSymbol(full_name)
return self._descriptors[full_name] | Loads the named descriptor from the pool.
Args:
full_name: The full name of the descriptor to load.
Returns:
The descriptor for the named type. | codesearchnet |
def Trim(lst, limit):
limit = max(0, limit)
clipping = lst[limit:]
del lst[limit:]
return clipping | Trims a given list so that it is not longer than given limit.
Args:
lst: A list to trim.
limit: A maximum number of elements in the list after trimming.
Returns:
A suffix of the input list that was trimmed. | codesearchnet |
def notify(self, notices):
tmpl_html = get_template('required_tags_notice.html')
tmpl_text = get_template('required_tags_notice.txt')
for (recipient, data) in list(notices.items()):
body_html = tmpl_html.render(data=data)
body_text = tmpl_text.render(data=data)
send_notification(subsystem=self.ns, recipients=[recipient], subject=self.email_subject, body_html=body_html, body_text=body_text) | Send notifications to the recipients provided
Args:
notices (:obj:`dict` of `str`: `list`): A dictionary mapping notification messages to the recipient.
Returns:
`None` | codesearchnet |
def completely_parse_reader(parser: Parser[(Input, Output)], reader: Reader[Input]) -> Result[Output]:
result = (parser << eof).consume(reader)
if isinstance(result, Continue):
return Success(result.value)
else:
used = set()
unique_expected = []
for expected_lambda in result.expected:
expected = expected_lambda()
if (expected not in used):
used.add(expected)
unique_expected.append(expected)
return Failure(result.farthest.expected_error(' or '.join(unique_expected))) | Consume reader and return Success only on complete consumption.
This is a helper function for ``parse`` methods, which return ``Success``
when the input is completely consumed and ``Failure`` with an appropriate
message otherwise.
Args:
parser: The parser doing the consuming
reader: The input being consumed
Returns:
A parsing ``Result`` | codesearchnet |
def supports_card_actions(channel_id: str, button_cnt: int = 100) -> bool:
max_actions = {
Channels.facebook: 3,
Channels.skype: 3,
Channels.ms_teams: 3,
Channels.line: 99,
Channels.slack: 100,
Channels.emulator: 100,
Channels.direct_line: 100,
Channels.webchat: 100,
Channels.cortana: 100,
}
return button_cnt <= max_actions[channel_id] if channel_id in max_actions else False | Determine if a number of Card Actions are supported by a Channel.
Args:
channel_id (str): The Channel to check if the Card Actions are supported in.
button_cnt (int, optional): Defaults to 100. The number of Card Actions to check for the Channel.
Returns:
bool: True if the Channel supports the button_cnt total Card Actions, False if the Channel does not support that number of Card Actions. | juraj-google-style |
def download_listing(self, file: Optional[IO], duration_timeout: Optional[float]=None) -> ListingResponse:
if (self._session_state != SessionState.directory_request_sent):
raise RuntimeError('File request not sent')
self._session_state = SessionState.file_request_sent
(yield from self.download(file=file, rewind=False, duration_timeout=duration_timeout))
try:
if (self._response.body.tell() == 0):
listings = ()
elif (self._listing_type == 'mlsd'):
self._response.body.seek(0)
machine_listings = wpull.protocol.ftp.util.parse_machine_listing(self._response.body.read().decode('utf-8', errors='surrogateescape'), convert=True, strict=False)
listings = list(wpull.protocol.ftp.util.machine_listings_to_file_entries(machine_listings))
else:
self._response.body.seek(0)
file = io.TextIOWrapper(self._response.body, encoding='utf-8', errors='surrogateescape')
listing_parser = ListingParser(file=file)
listings = list(listing_parser.parse_input())
_logger.debug('Listing detected as %s', listing_parser.type)
file.detach()
except (ListingError, ValueError) as error:
raise ProtocolError(*error.args) from error
self._response.files = listings
self._response.body.seek(0)
self._session_state = SessionState.response_received
return self._response | Read file listings.
Args:
file: A file object or asyncio stream.
duration_timeout: Maximum time in seconds of which the
entire file must be read.
Returns:
A Response populated the file listings
Be sure to call :meth:`start_file_listing` first.
Coroutine. | codesearchnet |
def filter_queryset(self, request, term, queryset=None, **dependent_fields):
if (queryset is None):
queryset = self.get_queryset()
search_fields = self.get_search_fields()
select = Q()
term = term.replace('\t', ' ')
term = term.replace('\n', ' ')
for t in [t for t in term.split(' ') if (not (t == ''))]:
select &= reduce((lambda x, y: (x | Q(**{y: t}))), search_fields, Q(**{search_fields[0]: t}))
if dependent_fields:
select &= Q(**dependent_fields)
return queryset.filter(select).distinct() | Return QuerySet filtered by search_fields matching the passed term.
Args:
request (django.http.request.HttpRequest): The request is being passed from
the JSON view and can be used to dynamically alter the response queryset.
term (str): Search term
queryset (django.db.models.query.QuerySet): QuerySet to select choices from.
**dependent_fields: Dependent fields and their values. If you want to inherit
from ModelSelect2Mixin and later call to this method, be sure to pop
everything from keyword arguments that is not a dependent field.
Returns:
QuerySet: Filtered QuerySet | codesearchnet |
def mlir_convert(options, saved_model_dir, input_tensors, output_tensors, **kwargs):
test_params = kwargs.get('test_params', {})
extra_convert_options = kwargs.get('extra_convert_options', zip_test_utils.ExtraConvertOptions())
tflite_model = None
log = ''
signature_key = signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
converter = lite.TFLiteConverterV2.from_saved_model(saved_model_dir, [signature_key])
converter.allow_custom_ops = extra_convert_options.allow_custom_ops
converter.experimental_new_quantizer = options.mlir_quantizer
if options.make_tf_ptq_tests:
if options.hlo_aware_conversion:
tf_quantization_mode = 'DEFAULT'
else:
tf_quantization_mode = 'LEGACY_INTEGER'
converter._experimental_tf_quantization_mode = tf_quantization_mode
if options.run_with_flex:
converter.target_spec.supported_ops = set([lite.OpsSet.TFLITE_BUILTINS, lite.OpsSet.SELECT_TF_OPS])
if options.enable_dynamic_update_slice:
converter._experimental_enable_dynamic_update_slice = True
converter.unfold_batchmatmul = options.unfold_batchmatmul
if test_params.get('dynamic_range_quantize', False):
converter.optimizations = [lite.Optimize.DEFAULT]
if options.experimental_low_bit_qat:
converter._experimental_low_bit_qat = True
if test_params.get('fully_quantize', False):
converter.optimizations = [lite.Optimize.DEFAULT]
min_value, max_value = test_params.get('input_range', (-1, 1))
def representative_dataset(input_tensors):
calibration_inputs = {}
for name, shape, dtype in input_tensors:
if shape:
dims = [1 if dim.value is None else dim.value for dim in shape.dims]
calibration_inputs[name] = np.random.uniform(min_value, max_value, tuple(dims)).astype(dtype.as_numpy_dtype)
return calibration_inputs
def representative_dataset_gen():
for _ in range(100):
yield representative_dataset(input_tensors)
if test_params.get('quant_16x8', False):
converter.target_spec.supported_ops = [lite.OpsSet.EXPERIMENTAL_TFLITE_BUILTINS_ACTIVATIONS_INT16_WEIGHTS_INT8]
else:
converter.target_spec.supported_ops = [lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.representative_dataset = representative_dataset_gen
if extra_convert_options.inference_input_type:
converter.inference_input_type = extra_convert_options.inference_input_type
if extra_convert_options.inference_output_type:
converter.inference_output_type = extra_convert_options.inference_output_type
try:
tflite_model = converter.convert()
if options.expected_ops_in_converted_model:
ops_list = tflite_test_util.get_ops_list(tflite_model)
for expected_op in options.expected_ops_in_converted_model:
if expected_op not in ops_list:
tflite_model = None
raise ValueError('{} op not found in the converted model'.format(expected_op))
except Exception as e:
log = str(e)
return (tflite_model, log) | Convert a saved model into a tflite model with MLIR-based conversion.
Args:
options: A lite.testing.generate_examples_lib.Options instance.
saved_model_dir: Path to the saved model.
input_tensors: List of input tensor tuples `(name, shape, type)`.
output_tensors: List of output tensors (names).
**kwargs: Extra parameters.
Returns:
output tflite model, log_txt from conversion
or None, log_txt if it did not convert properly. | github-repos |
async def verify_scriptworker_task(chain, obj):
errors = []
if (obj.worker_impl != 'scriptworker'):
errors.append('{} {} must be run from scriptworker!'.format(obj.name, obj.task_id))
raise_on_errors(errors) | Verify the signing trust object.
Currently the only check is to make sure it was run on a scriptworker.
Args:
chain (ChainOfTrust): the chain we're operating on
obj (ChainOfTrust or LinkOfTrust): the trust object for the signing task. | codesearchnet |
def html_page_for_render_items(bundle, docs_json, render_items, title, template=None, template_variables={}):
if (title is None):
title = DEFAULT_TITLE
(bokeh_js, bokeh_css) = bundle
json_id = make_id()
json = escape(serialize_json(docs_json), quote=False)
json = wrap_in_script_tag(json, 'application/json', json_id)
script = wrap_in_script_tag(script_for_render_items(json_id, render_items))
context = template_variables.copy()
context.update(dict(title=title, bokeh_js=bokeh_js, bokeh_css=bokeh_css, plot_script=(json + script), docs=render_items, base=FILE, macros=MACROS))
if (len(render_items) == 1):
context['doc'] = context['docs'][0]
context['roots'] = context['doc'].roots
context['plot_div'] = '\n'.join((div_for_render_item(item) for item in render_items))
if (template is None):
template = FILE
elif isinstance(template, string_types):
template = _env.from_string(('{% extends base %}\n' + template))
html = template.render(context)
return encode_utf8(html) | Render an HTML page from a template and Bokeh render items.
Args:
bundle (tuple):
a tuple containing (bokehjs, bokehcss)
docs_json (JSON-like):
Serialized Bokeh Document
render_items (RenderItems)
Specific items to render from the document and where
title (str or None)
A title for the HTML page. If None, DEFAULT_TITLE is used
template (str or Template or None, optional) :
A Template to be used for the HTML page. If None, FILE is used.
template_variables (dict, optional):
Any Additional variables to pass to the template
Returns:
str | codesearchnet |
def image_format(value):
if (value.image.format.upper() not in constants.ALLOWED_IMAGE_FORMATS):
raise ValidationError(MESSAGE_INVALID_IMAGE_FORMAT) | Confirms that the uploaded image is of supported format.
Args:
value (File): The file with an `image` property containing the image
Raises:
django.forms.ValidationError | codesearchnet |
def GetString(self):
string_list = []
string_list.append('Report generated from: {0:s}'.format(self.plugin_name))
time_compiled = getattr(self, 'time_compiled', 0)
if time_compiled:
time_compiled = timelib.Timestamp.CopyToIsoFormat(time_compiled)
string_list.append('Generated on: {0:s}'.format(time_compiled))
filter_string = getattr(self, 'filter_string', '')
if filter_string:
string_list.append('Filter String: {0:s}'.format(filter_string))
string_list.append('')
string_list.append('Report text:')
string_list.append(self.text)
return '\n'.join(string_list) | Retrieves a string representation of the report.
Returns:
str: string representation of the report. | codesearchnet |
def top_1(x, reduced_dim, dtype=tf.int32, name=None):
reduced_dim = convert_to_dimension(reduced_dim)
with tf.name_scope(name, default_name="top_1"):
max_val = reduce_max(x, reduced_dim=reduced_dim)
is_max = to_float(equal(x, max_val))
pos = mtf_range(x.mesh, reduced_dim, tf.float32)
ret = reduce_max(is_max * pos, reduced_dim=reduced_dim)
ret = cast(ret, dtype)
return ret, max_val | Argmax and Max.
Args:
x: a Tensor
reduced_dim: a Dimension in x.shape.dims
dtype: a tf.dtype (for the output)
name: an optional string
Returns:
indices: a Tensor with given dtype
values: optional Tensor equal to mtf.reduce_max(x, reduced_dim=reduced_dim) | juraj-google-style |
def create_package(name, data, package_cls=None):
from rez.package_maker__ import PackageMaker
maker = PackageMaker(name, data, package_cls=package_cls)
return maker.get_package() | Create a package given package data.
Args:
name (str): Package name.
data (dict): Package data. Must conform to `package_maker.package_schema`.
Returns:
`Package` object. | juraj-google-style |
def save(tiff_filename, numpy_data):
tiff_filename = os.path.expanduser(tiff_filename)
if (type(numpy_data) is str):
fp = open(png_filename, 'wb')
fp.write(numpy_data)
fp.close()
return png_filename
try:
img = tiff.imsave(tiff_filename, numpy_data)
except Exception as e:
raise ValueError('Could not save TIFF file {0}.'.format(tiff_filename))
return tiff_filename | Export a numpy array to a TIFF file.
Arguments:
tiff_filename: A filename to which to save the TIFF data
numpy_data: The numpy array to save to TIFF
Returns:
String. The expanded filename that now holds the TIFF data | codesearchnet |
def open_port(upnp, internal_port, external_start_port=None):
if external_start_port is None:
external_start_port = internal_port
if upnp is None:
return False
def register(internal, external):
mapping = upnp.getspecificportmapping(external, 'UDP')
if mapping is not None:
lanaddr, internal_mapped, name, _, _ = mapping
is_valid_mapping = (
lanaddr == upnp.lanaddr and
name == RAIDEN_IDENTIFICATOR and
internal_mapped == internal
)
is_not_our_mapping = (
internal_mapped != internal and
name != RAIDEN_IDENTIFICATOR
)
is_previous_mapping = (
internal_mapped != internal and
name == RAIDEN_IDENTIFICATOR and
lanaddr == upnp.lanaddr
)
if is_valid_mapping:
log.debug(
'keeping pre-existing portmapping',
internal=internal,
external=external,
lanaddr=lanaddr,
)
return True
elif lanaddr != upnp.lanaddr:
log.debug(
'ignoring existing mapping for other IP',
internal=internal,
external=external,
other_ip=lanaddr,
our_ip=upnp.lanaddr,
)
return False
elif is_not_our_mapping:
log.debug(
'ignoring existing mapping for other program',
name=name,
)
return False
elif is_previous_mapping:
log.debug('releasing previous port mapping')
upnp.deleteportmapping(external, 'UDP')
log.debug('trying to create new port mapping', internal=internal, external=external)
return upnp.addportmapping(
external,
'UDP',
upnp.lanaddr,
internal,
RAIDEN_IDENTIFICATOR,
'',
)
external_port = external_start_port
success = register(internal_port, external_port)
while not success and external_port <= MAX_PORT:
external_port += 1
log.debug('trying', external=external_port)
success = register(internal_port, external_port)
if success:
return upnp.externalipaddress(), external_port
else:
log.error(
'could not register a port-mapping',
location='FIXME',
)
return False
return False | Open a port for the raiden service (listening at `internal_port`) through
UPnP.
Args:
internal_port (int): the target port of the raiden service
external_start_port (int): query for an external port starting here
(default: internal_port)
Returns:
external_ip_address, external_port (tuple(str, int)): if successful or None | juraj-google-style |
def _escaped_token_to_subtoken_ids(self, escaped_token):
return [self._subtoken_string_to_id[subtoken] for subtoken in self._escaped_token_to_subtoken_strings(escaped_token)] | Converts an escaped token string to a list of subtoken IDs.
Args:
escaped_token: An escaped token as a unicode string.
Returns:
A list of subtoken IDs as integers. | codesearchnet |
def _error_messages(self, driver_id):
assert isinstance(driver_id, ray.DriverID)
message = self.redis_client.execute_command(
"RAY.TABLE_LOOKUP", ray.gcs_utils.TablePrefix.ERROR_INFO, "",
driver_id.binary())
if message is None:
return []
gcs_entries = ray.gcs_utils.GcsTableEntry.GetRootAsGcsTableEntry(
message, 0)
error_messages = []
for i in range(gcs_entries.EntriesLength()):
error_data = ray.gcs_utils.ErrorTableData.GetRootAsErrorTableData(
gcs_entries.Entries(i), 0)
assert driver_id.binary() == error_data.DriverId()
error_message = {
"type": decode(error_data.Type()),
"message": decode(error_data.ErrorMessage()),
"timestamp": error_data.Timestamp(),
}
error_messages.append(error_message)
return error_messages | Get the error messages for a specific driver.
Args:
driver_id: The ID of the driver to get the errors for.
Returns:
A list of the error messages for this driver. | juraj-google-style |
def __init__(self, code=None, contract_properties=0, name=None, version=None, author=None, email=None,
description=None):
self.Code = code
self.ContractProperties = contract_properties
self.Name = name
self.CodeVersion = version
self.Author = author
self.Email = email
self.Description = description | Create an instance.
Args:
code (neo.Core.FunctionCode):
contract_properties (neo.SmartContract.ContractParameterType): contract type.
name (bytes):
version (bytes):
author (bytes):
email (bytes):
description (bytes): | juraj-google-style |
def _GetKeysDefaultEmpty(self, top_level, keys, depth=1):
keys = set(keys)
match = {}
if (depth == 1):
for key in keys:
value = top_level.get(key, None)
if (value is not None):
match[key] = value
else:
for (_, parsed_key, parsed_value) in plist_interface.RecurseKey(top_level, depth=depth):
if (parsed_key in keys):
match[parsed_key] = parsed_value
if (set(match.keys()) == keys):
return match
return match | Retrieves plist keys, defaulting to empty values.
Args:
top_level (plistlib._InternalDict): top level plist object.
keys (set[str]): names of keys that should be returned.
depth (int): depth within the plist, where 1 is top level.
Returns:
dict[str, str]: values of the requested keys. | codesearchnet |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.