code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def main(pipeline_name, pipeline_context_input, working_dir, log_level, log_path):
pypyr.log.logger.set_root_logger(log_level, log_path)
logger.debug('starting pypyr')
pypyr.moduleloader.set_working_directory(working_dir)
load_and_run_pipeline(pipeline_name=pipeline_name, pipeline_context_input=pipeline_context_input, working_dir=working_dir)
logger.debug('pypyr done') | Entry point for pypyr pipeline runner.
Call this once per pypyr run. Call me if you want to run a pypyr pipeline
from your own code. This function does some one-off 1st time initialization
before running the actual pipeline.
pipeline_name.yaml should be in the working_dir/pipelines/ directory.
Args:
pipeline_name: string. Name of pipeline, sans .yaml at end.
pipeline_context_input: string. Initialize the pypyr context with this
string.
working_dir: path. looks for ./pipelines and modules in this directory.
log_level: int. Standard python log level enumerated value.
log_path: os.path. Append log to this path.
Returns:
None | codesearchnet |
def list():
kbs = []
ret = _pshell_json('Get-HotFix | Select HotFixID')
for item in ret:
kbs.append(item['HotFixID'])
return kbs | Get a list of updates installed on the machine
Returns:
list: A list of installed updates
CLI Example:
.. code-block:: bash
salt '*' wusa.list | codesearchnet |
def sbi_ids(self) -> List[str]:
return ast.literal_eval(DB.get_hash_value(self._key, 'sbi_ids')) | Get the list of SBI Ids.
Returns:
list, list of SBI ids associated with this subarray. | codesearchnet |
def create_public_ip(access_token, subscription_id, resource_group, public_ip_name, dns_label, location):
endpoint = ''.join([get_rm_endpoint(), '/subscriptions/', subscription_id, '/resourceGroups/', resource_group, '/providers/Microsoft.Network/publicIPAddresses/', public_ip_name, '?api-version=', NETWORK_API])
ip_body = {'location': location}
properties = {'publicIPAllocationMethod': 'Dynamic'}
properties['dnsSettings'] = {'domainNameLabel': dns_label}
ip_body['properties'] = properties
body = json.dumps(ip_body)
return do_put(endpoint, body, access_token) | Create a public ip address.
Args:
access_token (str): A valid Azure authentication token.
subscription_id (str): Azure subscription id.
resource_group (str): Azure resource group name.
public_ip_name (str): Name of the new public ip address resource.
dns_label (str): DNS label to apply to the IP address.
location (str): Azure data center location. E.g. westus.
Returns:
HTTP response. Public IP address JSON body. | codesearchnet |
def copy2(src, dst, metadata=None, retry_params=None):
common.validate_file_path(src)
common.validate_file_path(dst)
if metadata is None:
metadata = {}
copy_meta = 'COPY'
else:
copy_meta = 'REPLACE'
metadata.update({'x-goog-copy-source': src,
'x-goog-metadata-directive': copy_meta})
api = storage_api._get_storage_api(retry_params=retry_params)
status, resp_headers, content = api.put_object(
api_utils._quote_filename(dst), headers=metadata)
errors.check_status(status, [200], src, metadata, resp_headers, body=content) | Copy the file content from src to dst.
Args:
src: /bucket/filename
dst: /bucket/filename
metadata: a dict of metadata for this copy. If None, old metadata is copied.
For example, {'x-goog-meta-foo': 'bar'}.
retry_params: An api_utils.RetryParams for this call to GCS. If None,
the default one is used.
Raises:
errors.AuthorizationError: if authorization failed.
errors.NotFoundError: if an object that's expected to exist doesn't. | juraj-google-style |
def validate(self, value):
if (value == ''):
if self.kwargs.get('nullable', __nullable__):
value = None
else:
value = 0
if (not isinstance(value, Model)):
return super(ReferenceProperty, self).validate(value)
if (not value.is_saved()):
raise BadValueError(('%s instance must be saved before it can be stored as a reference' % self.reference_class.__class__.__name__))
if (not isinstance(value, self.reference_class)):
raise KindError(('Property %s must be an instance of %s' % (self.name, self.reference_class.__class__.__name__)))
return value | Validate reference.
Returns:
A valid value.
Raises:
BadValueError for the following reasons:
- Value is not saved.
- Object not of correct model type for reference. | codesearchnet |
def get_list_subtask_positions_objs(client, list_id):
params = {'list_id': int(list_id)}
response = client.authenticated_request(client.api.Endpoints.SUBTASK_POSITIONS, params=params)
return response.json() | Gets all subtask positions objects for the tasks within a given list. This is a convenience method so you don't have to get all the list's tasks before getting subtasks, though I can't fathom how mass subtask reordering is useful.
Returns:
List of SubtaskPositionsObj-mapped objects representing the order of subtasks for the tasks within the given list | codesearchnet |
def __random_density_hs(N, rank=None, seed=None):
G = __ginibre_matrix(N, rank, seed)
G = G.dot(G.conj().T)
return G / np.trace(G) | Generate a random density matrix from the Hilbert-Schmidt metric.
Args:
N (int): the length of the density matrix.
rank (int or None): the rank of the density matrix. The default
value is full-rank.
seed (int): Optional. To set a random seed.
Returns:
ndarray: rho (N,N a density matrix. | juraj-google-style |
def decrypt(key, ciphertext, shift_function=shift_case_english):
return [shift_function(key, symbol) for symbol in ciphertext] | Decrypt Shift enciphered ``ciphertext`` using ``key``.
Examples:
>>> ''.join(decrypt(3, "KHOOR"))
HELLO
>> decrypt(15, [0xcf, 0x9e, 0xaf, 0xe0], shift_bytes)
[0xde, 0xad, 0xbe, 0xef]
Args:
key (int): The shift to use
ciphertext (iterable): The symbols to decrypt
shift_function (function (shift, symbol)): Shift function to apply to symbols in the ciphertext
Returns:
Decrypted ciphertext, list of plaintext symbols | juraj-google-style |
def matches(self, msg_seq: int, msg: MessageInterface) -> bool:
return all((crit.matches(msg_seq, msg) for crit in self.all_criteria)) | The message matches if all the defined search key criteria match.
Args:
msg_seq: The message sequence ID.
msg: The message object. | codesearchnet |
def predict(self, data, alpha=0.01, max_iter=2000, **kwargs):
edge_model = GraphLasso(alpha=alpha, max_iter=max_iter)
edge_model.fit(data.values)
return nx.relabel_nodes(nx.DiGraph(edge_model.get_precision()),
{idx: i for idx, i in enumerate(data.columns)}) | Predict the graph skeleton.
Args:
data (pandas.DataFrame): observational data
alpha (float): regularization parameter
max_iter (int): maximum number of iterations
Returns:
networkx.Graph: Graph skeleton | juraj-google-style |
def _create_sample_validator(expected_input_keys: Collection[str]) -> Callable[[rd.RepresentativeSample], rd.RepresentativeSample]:
def validator(sample: rd.RepresentativeSample) -> rd.RepresentativeSample:
if not isinstance(sample, Mapping):
raise ValueError(f'Invalid representative sample type. Provide a mapping (usually a dict) of {{input_key: input_value}}. Got type: {type(sample)} instead.')
if set(sample.keys()) != expected_input_keys:
raise KeyError(f'Invalid input keys for representative sample. The function expects input keys of: {set(expected_input_keys)}. Got: {set(sample.keys())}. Please provide correct input keys for representative samples.')
return sample
return validator | Creates a validator function for a representative sample.
Args:
expected_input_keys: Input keys (keyword argument names) that the function
the sample will be used for is expecting to receive.
Returns:
A callable that validates a `RepresentativeSample`. | github-repos |
def _validate_iss(claims, issuer=None):
if issuer is not None:
if isinstance(issuer, string_types):
issuer = (issuer,)
if claims.get('iss') not in issuer:
raise JWTClaimsError('Invalid issuer') | Validates that the 'iss' claim is valid.
The "iss" (issuer) claim identifies the principal that issued the
JWT. The processing of this claim is generally application specific.
The "iss" value is a case-sensitive string containing a StringOrURI
value. Use of this claim is OPTIONAL.
Args:
claims (dict): The claims dictionary to validate.
issuer (str or iterable): Acceptable value(s) for the issuer that
signed the token. | juraj-google-style |
def _get_required_fn(fn, root_path):
if (not fn.startswith(root_path)):
raise ValueError('Both paths have to be absolute or local!')
replacer = ('/' if root_path.endswith('/') else '')
return fn.replace(root_path, replacer, 1) | Definition of the MD5 file requires, that all paths will be absolute
for the package directory, not for the filesystem.
This function converts filesystem-absolute paths to package-absolute paths.
Args:
fn (str): Local/absolute path to the file.
root_path (str): Local/absolute path to the package directory.
Returns:
str: Package-absolute path to the file.
Raises:
ValueError: When `fn` is absolute and `root_path` relative or \
conversely. | codesearchnet |
def get_hours_description(self):
expression = self._expression_parts[2]
return self.get_segment_description(expression, _('every hour'), (lambda s: self.format_time(s, '0')), (lambda s: _('every {0} hours').format(s)), (lambda s: _('between {0} and {1}')), (lambda s: _('at {0}'))) | Generates a description for only the HOUR portion of the expression
Returns:
The HOUR description | codesearchnet |
def pathcase(string):
string = snakecase(string)
if not string:
return string
return re.sub(r"_", "/", string) | Convert string into path case.
Join punctuation with slash.
Args:
string: String to convert.
Returns:
string: Path cased string. | juraj-google-style |
def compile_source(self, sourcepath):
relpath = os.path.relpath(sourcepath, self.settings.SOURCES_PATH)
conditions = {'sourcedir': None, 'nopartial': True, 'exclude_patterns': self.settings.EXCLUDES, 'excluded_libdirs': self.settings.LIBRARY_PATHS}
if self.finder.match_conditions(sourcepath, **conditions):
destination = self.finder.get_destination(relpath, targetdir=self.settings.TARGET_PATH)
self.logger.debug(u'Compile: {}'.format(sourcepath))
(success, message) = self.compiler.safe_compile(self.settings, sourcepath, destination)
if success:
self.logger.info(u'Output: {}'.format(message))
else:
self.logger.error(message)
return (sourcepath, destination)
return None | Compile source to its destination
Check if the source is eligible to compile (not partial and allowed
from exclude patterns)
Args:
sourcepath (string): Sass source path to compile to its
destination using project settings.
Returns:
tuple or None: A pair of (sourcepath, destination), if source has
been compiled (or at least tried). If the source was not
eligible to compile, return will be ``None``. | codesearchnet |
def format_statevector(vec, decimals=None):
num_basis = len(vec)
vec_complex = np.zeros(num_basis, dtype=complex)
for i in range(num_basis):
vec_complex[i] = (vec[i][0] + (1j * vec[i][1]))
if decimals:
vec_complex = np.around(vec_complex, decimals=decimals)
return vec_complex | Format statevector coming from the backend to present to the Qiskit user.
Args:
vec (list): a list of [re, im] complex numbers.
decimals (int): the number of decimals in the statevector.
If None, no rounding is done.
Returns:
list[complex]: a list of python complex numbers. | codesearchnet |
def load_tf_sharded_weights_from_safetensors(model, shard_files, ignore_mismatched_sizes=False, strict=False, _prefix=None):
unexpected_keys = set()
all_missing_keys = []
mismatched_keys = set()
for shard_file in shard_files:
missing_layers, unexpected_layers, mismatched_layers = load_tf_weights_from_safetensors(model, shard_file, ignore_mismatched_sizes=ignore_mismatched_sizes, _prefix=_prefix)
all_missing_keys.append(set(missing_layers))
unexpected_keys.update(unexpected_layers)
mismatched_keys.update(mismatched_layers)
gc.collect()
missing_keys = set.intersection(*all_missing_keys)
if strict and (len(missing_keys) > 0 or len(unexpected_keys) > 0):
error_message = f'Error(s) in loading state_dict for {model.__class__.__name__}'
if len(missing_keys) > 0:
str_missing_keys = ','.join([f'"{k}"' for k in missing_keys])
error_message += f'\nMissing key(s): {str_missing_keys}.'
if len(unexpected_keys) > 0:
str_unexpected_keys = ','.join([f'"{k}"' for k in unexpected_keys])
error_message += f'\nMissing key(s): {str_unexpected_keys}.'
raise RuntimeError(error_message)
return (missing_keys, unexpected_keys, mismatched_keys) | This is the same as `load_tf_weights_from_safetensors` but for a sharded TF-format safetensors checkpoint.
Detect missing and unexpected layers and load the TF weights from the shard file accordingly to their names and
shapes.
This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being
loaded in the model.
Args:
model (`keras.models.Model`): The model in which to load the checkpoint.
shard_files (`str` or `os.PathLike`): A list containing the sharded checkpoint names.
ignore_mismatched_sizes`bool`, *optional`, defaults to `True`):
Whether or not to ignore the mismatch between the sizes
strict (`bool`, *optional*, defaults to `True`):
Whether to strictly enforce that the keys in the model state dict match the keys in the sharded checkpoint.
Returns:
Three lists, one for the missing layers, another one for the unexpected layers, and a last one for the
mismatched layers. | github-repos |
def attach(cls, transform_job_name, sagemaker_session=None):
sagemaker_session = (sagemaker_session or Session())
job_details = sagemaker_session.sagemaker_client.describe_transform_job(TransformJobName=transform_job_name)
init_params = cls._prepare_init_params_from_job_description(job_details)
transformer = cls(sagemaker_session=sagemaker_session, **init_params)
transformer.latest_transform_job = _TransformJob(sagemaker_session=sagemaker_session, job_name=init_params['base_transform_job_name'])
return transformer | Attach an existing transform job to a new Transformer instance
Args:
transform_job_name (str): Name for the transform job to be attached.
sagemaker_session (sagemaker.session.Session): Session object which manages interactions with
Amazon SageMaker APIs and any other AWS services needed. If not specified, one will be created
using the default AWS configuration chain.
Returns:
sagemaker.transformer.Transformer: The Transformer instance with the specified transform job attached. | codesearchnet |
def _on_receive(self, client, userdata, message):
topic = message.topic
encoded = message.payload
try:
packet = json.loads(encoded)
except ValueError:
self._logger.warn("Could not decode json packet: %s", encoded)
return
try:
seq = packet['sequence']
message_data = packet['message']
except KeyError:
self._logger.warn("Message received did not have required sequence and message keys: %s", packet)
return
if topic not in self.queues:
found = False
for _, regex, callback, ordered in self.wildcard_queues:
if regex.match(topic):
self.queues[topic] = PacketQueue(0, callback, ordered)
found = True
break
if not found:
self._logger.warn("Received message for unknown topic: %s", topic)
return
self.queues[topic].receive(seq, [seq, topic, message_data]) | Callback called whenever we receive a message on a subscribed topic
Args:
client (string): The client id of the client receiving the message
userdata (string): Any user data set with the underlying MQTT client
message (object): The mesage with a topic and payload. | juraj-google-style |
def _apply(self, ctx: ExtensionContext) -> AugmentedDict:
def process(pattern: Pattern[str], _str: str) -> Any:
_match = pattern.match(_str)
if (_match is None):
return _str
(placeholder, external_path) = (_match.group(1), _match.group(2))
with open(self.locator(external_path, (cast(str, ctx.document) if Validator.is_file(document=ctx.document) else None))) as fhandle:
content = fhandle.read()
return _str.replace(placeholder, content)
(node_key, node_value) = ctx.node
_pattern = re.compile(self.__pattern__)
return {node_key: process(_pattern, node_value)} | Performs the actual loading of an external resource into the current model.
Args:
ctx: The processing context.
Returns:
Returns a dictionary that gets incorporated into the actual model. | codesearchnet |
def get_item_concept_mapping(self, lang):
concepts = self.filter(active=True, lang=lang)
return group_keys_by_value_lists(Concept.objects.get_concept_item_mapping(concepts, lang)) | Get mapping of items_ids to concepts containing these items
Args:
lang (str): language of concepts
Returns:
dict: item (int) -> set of concepts (int) | codesearchnet |
def Open(self, file_object):
if (not file_object):
raise ValueError('Missing file-like object.')
file_object.seek(0, os.SEEK_SET)
data = file_object.read(len(self._HEADER_SIGNATURE))
if (data != self._HEADER_SIGNATURE):
file_object.close()
raise IOError('Unsupported SQLite database signature.')
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
self._temp_file_path = temp_file.name
while data:
temp_file.write(data)
data = file_object.read(self._COPY_BUFFER_SIZE)
self._connection = sqlite3.connect(self._temp_file_path)
self._connection.text_factory = bytes
self._cursor = self._connection.cursor() | Opens the database file object.
Args:
file_object (FileIO): file-like object.
Raises:
IOError: if the SQLite database signature does not match.
OSError: if the SQLite database signature does not match.
ValueError: if the file-like object is invalid. | codesearchnet |
def get_all_leaves(self, item_ids=None, language=None, forbidden_item_ids=None):
return sorted(set(flatten(self.get_leaves(item_ids, language=language, forbidden_item_ids=forbidden_item_ids).values()))) | Get all leaves reachable from the given set of items. Leaves having
inactive relations to other items are omitted.
Args:
item_ids (list): items which are taken as roots for the reachability
language (str): if specified, filter out items which are not
available in the given language
Returns:
set: leaf items which are reachable from the given set of items | juraj-google-style |
def get_angle(v1, v2, units="degrees"):
d = np.dot(v1, v2) / np.linalg.norm(v1) / np.linalg.norm(v2)
d = min(d, 1)
d = max(d, -1)
angle = math.acos(d)
if units == "degrees":
return math.degrees(angle)
elif units == "radians":
return angle
else:
raise ValueError("Invalid units {}".format(units)) | Calculates the angle between two vectors.
Args:
v1: Vector 1
v2: Vector 2
units: "degrees" or "radians". Defaults to "degrees".
Returns:
Angle between them in degrees. | juraj-google-style |
def ParseInteger(text, is_signed=False, is_long=False):
result = _ParseAbstractInteger(text, is_long=is_long)
checker = _INTEGER_CHECKERS[((2 * int(is_long)) + int(is_signed))]
checker.CheckValue(result)
return result | Parses an integer.
Args:
text: The text to parse.
is_signed: True if a signed integer must be parsed.
is_long: True if a long integer must be parsed.
Returns:
The integer value.
Raises:
ValueError: Thrown Iff the text is not a valid integer. | codesearchnet |
def write(self, output_stream, kmip_version=enums.KMIPVersion.KMIP_1_0):
local_stream = BytearrayStream()
if self._unique_identifier:
self._unique_identifier.write(local_stream, kmip_version=kmip_version)
else:
raise ValueError('Invalid struct missing the unique identifier attribute.')
if self._cryptographic_parameters:
self._cryptographic_parameters.write(local_stream, kmip_version=kmip_version)
self.length = local_stream.length()
super(MACSignatureKeyInformation, self).write(output_stream, kmip_version=kmip_version)
output_stream.write(local_stream.buffer) | Write the data encoding the MACSignatureKeyInformation struct to a
stream.
Args:
output_stream (stream): A data stream in which to encode object
data, supporting a write method; usually a BytearrayStream
object.
kmip_version (KMIPVersion): An enumeration defining the KMIP
version with which the object will be encoded. Optional,
defaults to KMIP 1.0. | codesearchnet |
def make_coordinated_read_dataset(self, cluster, num_consumers, sharding_policy=data_service_ops.ShardingPolicy.OFF):
if sharding_policy not in [data_service_ops.ShardingPolicy.OFF, data_service_ops.ShardingPolicy.DYNAMIC]:
raise ValueError(f'Unsupported sharding policy: {sharding_policy}')
ds = dataset_ops.Dataset.from_tensors(math_ops.cast(0, dtypes.int64))
ds = ds.concatenate(dataset_ops.Dataset.random())
def make_group(x):
x = x % 2 ** 32
return dataset_ops.Dataset.range(x * num_consumers, (x + 1) * num_consumers)
ds = ds.flat_map(make_group)
consumers = []
for consumer_index in range(num_consumers):
consumers.append(self.make_distributed_dataset(ds, cluster, job_name='test', processing_mode=sharding_policy, consumer_index=consumer_index, num_consumers=num_consumers))
ds = dataset_ops.Dataset.from_tensor_slices(consumers)
ds = ds.interleave(lambda x: x, cycle_length=num_consumers, num_parallel_calls=num_consumers)
return ds | Creates a dataset that performs coordinated reads.
The dataset simulates `num_consumers` consumers by using parallel
interleave to read with `num_consumers` threads, one for each consumer. The
nth element of the dataset is produced by consumer `n % num_consumers`.
The dataset executed on each worker will produce groups of `num_consumers`
sequentially increasing numbers. For example, if `num_consumers=3` a worker
dataset could produce [0, 1, 2, 9, 10, 11, 21, 22, 23]. This enables
`checkCoordinatedReadGroups` below to assess whether the values received in
each step came from the same group.
Args:
cluster: A tf.data service `TestCluster`.
num_consumers: The number of consumers to simulate.
sharding_policy: The sharding policy to use. Currently only OFF and
DYNAMIC are supported.
Returns:
A dataset that simulates reading with `num_consumers` consumers. | github-repos |
def make_hash(self, task):
t = [serialize_object(task['func_name'])[0], serialize_object(task['fn_hash'])[0], serialize_object(task['args'])[0], serialize_object(task['kwargs'])[0], serialize_object(task['env'])[0]]
x = b''.join(t)
hashedsum = hashlib.md5(x).hexdigest()
return hashedsum | Create a hash of the task inputs.
This uses a serialization library borrowed from ipyparallel.
If this fails here, then all ipp calls are also likely to fail due to failure
at serialization.
Args:
- task (dict) : Task dictionary from dfk.tasks
Returns:
- hash (str) : A unique hash string | codesearchnet |
def __init__(self, channel):
self.GetGroup = channel.unary_unary(
"/google.devtools.clouderrorreporting.v1beta1.ErrorGroupService/GetGroup",
request_serializer=google_dot_devtools_dot_clouderrorreporting__v1beta1_dot_proto_dot_error__group__service__pb2.GetGroupRequest.SerializeToString,
response_deserializer=google_dot_devtools_dot_clouderrorreporting__v1beta1_dot_proto_dot_common__pb2.ErrorGroup.FromString,
)
self.UpdateGroup = channel.unary_unary(
"/google.devtools.clouderrorreporting.v1beta1.ErrorGroupService/UpdateGroup",
request_serializer=google_dot_devtools_dot_clouderrorreporting__v1beta1_dot_proto_dot_error__group__service__pb2.UpdateGroupRequest.SerializeToString,
response_deserializer=google_dot_devtools_dot_clouderrorreporting__v1beta1_dot_proto_dot_common__pb2.ErrorGroup.FromString,
) | Constructor.
Args:
channel: A grpc.Channel. | juraj-google-style |
def sketch_fasta(fasta_path, outdir):
genome_name = genome_name_from_fasta_path(fasta_path)
outpath = os.path.join(outdir, genome_name)
args = ['mash', 'sketch', '-o', outpath, fasta_path]
logging.info('Running Mash sketch with command: %s', ' '.join(args))
p = Popen(args)
p.wait()
sketch_path = (outpath + '.msh')
assert os.path.exists(sketch_path), 'Mash sketch for genome {} was not created at {}'.format(genome_name, sketch_path)
return sketch_path | Create a Mash sketch from an input fasta file
Args:
fasta_path (str): input fasta file path. Genome name in fasta filename
outdir (str): output directory path to write Mash sketch file to
Returns:
str: output Mash sketch file path | codesearchnet |
def distort_color(image, thread_id=0, scope=None):
with tf.name_scope(values=[image], name=scope, default_name='distort_color'):
color_ordering = thread_id % 2
if color_ordering == 0:
image = tf.image.random_brightness(image, max_delta=32. / 255.)
image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
image = tf.image.random_hue(image, max_delta=0.2)
image = tf.image.random_contrast(image, lower=0.5, upper=1.5)
elif color_ordering == 1:
image = tf.image.random_brightness(image, max_delta=32. / 255.)
image = tf.image.random_contrast(image, lower=0.5, upper=1.5)
image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
image = tf.image.random_hue(image, max_delta=0.2)
image = tf.clip_by_value(image, 0.0, 1.0)
return image | Distort the color of the image.
Each color distortion is non-commutative and thus ordering of the color ops
matters. Ideally we would randomly permute the ordering of the color ops.
Rather then adding that level of complication, we select a distinct ordering
of color ops for each preprocessing thread.
Args:
image: Tensor containing single image.
thread_id: preprocessing thread ID.
scope: Optional scope for name_scope.
Returns:
color-distorted image | juraj-google-style |
def ParseRecord(self, parser_mediator, key, structure):
if (key not in ('log_entry', 'log_entry_at_end', 'log_entry_offset', 'log_entry_offset_at_end')):
raise errors.ParseError('Unable to parse record, unknown structure: {0:s}'.format(key))
try:
date_time_string = self._GetISO8601String(structure)
except ValueError as exception:
parser_mediator.ProduceExtractionWarning('unable to determine date time string with error: {0!s}'.format(exception))
fraction_of_second_length = len(structure.fraction_of_second)
if (fraction_of_second_length == 3):
date_time = dfdatetime_time_elements.TimeElementsInMilliseconds()
elif (fraction_of_second_length in (6, 7)):
date_time = dfdatetime_time_elements.TimeElementsInMicroseconds()
try:
date_time.CopyFromStringISO8601(date_time_string)
except ValueError as exception:
parser_mediator.ProduceExtractionWarning('unable to parse date time value: {0:s} with error: {1!s}'.format(date_time_string, exception))
return
event_data = SCCMLogEventData()
event_data.component = structure.component
event_data.offset = 0
event_data.text = structure.text
event = time_events.DateTimeValuesEvent(date_time, definitions.TIME_DESCRIPTION_WRITTEN)
parser_mediator.ProduceEventWithEventData(event, event_data) | Parse the record and return an SCCM log event object.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
key (str): name of the parsed structure.
structure (pyparsing.ParseResults): structure of tokens derived from
a line of a text file.
Raises:
ParseError: when the structure type is unknown. | codesearchnet |
def find_local_maxima(self, input_grid):
(pixels, q_data) = self.quantize(input_grid)
centers = OrderedDict()
for p in pixels.keys():
centers[p] = []
marked = (np.ones(q_data.shape, dtype=int) * self.UNMARKED)
MIN_INFL = int(np.round((1 + (0.5 * np.sqrt(self.max_size)))))
MAX_INFL = (2 * MIN_INFL)
marked_so_far = []
for b in sorted(pixels.keys(), reverse=True):
infl_dist = (MIN_INFL + int(np.round(((float(b) / self.max_bin) * (MAX_INFL - MIN_INFL)))))
for p in pixels[b]:
if (marked[p] == self.UNMARKED):
ok = False
del marked_so_far[:]
for ((i, j), v) in np.ndenumerate(marked[((p[0] - infl_dist):((p[0] + infl_dist) + 1), (p[1] - infl_dist):((p[1] + infl_dist) + 1))]):
if (v == self.UNMARKED):
ok = True
marked[(((i - infl_dist) + p[0]), ((j - infl_dist) + p[1]))] = b
marked_so_far.append((((i - infl_dist) + p[0]), ((j - infl_dist) + p[1])))
else:
ok = False
break
if ok:
centers[b].append(p)
else:
for m in marked_so_far:
marked[m] = self.UNMARKED
marked[(:, :)] = self.UNMARKED
deferred_from_last = []
deferred_to_next = []
for delta in range(0, (self.delta + 1)):
for b in sorted(centers.keys(), reverse=True):
bin_lower = (b - delta)
deferred_from_last[:] = deferred_to_next[:]
del deferred_to_next[:]
foothills = []
n_centers = len(centers[b])
tot_centers = (n_centers + len(deferred_from_last))
for i in range(tot_centers):
if (i < n_centers):
center = centers[b][i]
else:
center = deferred_from_last[(i - n_centers)]
if (bin_lower < 0):
bin_lower = 0
if (marked[center] == self.UNMARKED):
captured = self.set_maximum(q_data, marked, center, bin_lower, foothills)
if (not captured):
deferred_to_next.append(center)
else:
pass
self.remove_foothills(q_data, marked, b, bin_lower, centers, foothills)
del deferred_from_last[:]
del deferred_to_next[:]
return marked | Finds the local maxima in the inputGrid and perform region growing to identify objects.
Args:
input_grid: Raw input data.
Returns:
array with labeled objects. | codesearchnet |
def compute_weighted_loss(losses, sample_weight=None, reduction=ReductionV2.SUM_OVER_BATCH_SIZE, name=None):
ReductionV2.validate(reduction)
if reduction == ReductionV2.AUTO:
reduction = ReductionV2.SUM_OVER_BATCH_SIZE
if sample_weight is None:
sample_weight = 1.0
with backend.name_scope(name or 'weighted_loss'):
ops.get_default_graph()._last_loss_reduction = reduction
if not isinstance(losses, (keras_tensor.KerasTensor, ragged_tensor.RaggedTensor)):
losses = tensor_conversion.convert_to_tensor_v2_with_dispatch(losses)
input_dtype = losses.dtype
if not isinstance(sample_weight, keras_tensor.KerasTensor):
sample_weight = tensor_conversion.convert_to_tensor_v2_with_dispatch(sample_weight)
losses = math_ops.cast(losses, 'float32')
sample_weight = math_ops.cast(sample_weight, 'float32')
losses, _, sample_weight = squeeze_or_expand_dimensions(losses, None, sample_weight)
weighted_losses = math_ops.multiply(losses, sample_weight)
loss = reduce_weighted_loss(weighted_losses, reduction)
loss = math_ops.cast(loss, input_dtype)
return loss | Computes the weighted loss.
Args:
losses: `Tensor` of shape `[batch_size, d1, ... dN]`.
sample_weight: Optional `Tensor` whose rank is either 0, or the same rank as
`losses`, or be broadcastable to `losses`.
reduction: (Optional) Type of `tf.keras.losses.Reduction` to apply to loss.
Default value is `SUM_OVER_BATCH_SIZE`.
name: Optional name for the op.
Raises:
ValueError: If the shape of `sample_weight` is not compatible with `losses`.
Returns:
Weighted loss `Tensor` of the same type as `losses`. If `reduction` is
`NONE`, this has the same shape as `losses`; otherwise, it is scalar. | github-repos |
def sparse_top_k_categorical_accuracy(y_true, y_pred, k=5, from_sorted_ids=False):
reshape_matches = False
y_pred = ops.convert_to_tensor(y_pred)
y_true_dtype = y_pred.dtype if from_sorted_ids else 'int32'
y_true = ops.convert_to_tensor(y_true, dtype=y_true_dtype)
y_true_rank = len(y_true.shape)
y_pred_rank = len(y_pred.shape)
y_true_org_shape = ops.shape(y_true)
if y_true_rank is not None and y_pred_rank is not None:
if y_pred_rank > 2:
y_pred = ops.reshape(y_pred, [-1, y_pred.shape[-1]])
if y_true_rank > 1:
reshape_matches = True
y_true = ops.reshape(y_true, [-1])
if from_sorted_ids:
matches = ops.any(ops.equal(ops.expand_dims(y_true, axis=1), y_pred[:, :k]), axis=1)
else:
matches = ops.in_top_k(y_true, y_pred, k=k)
matches = ops.cast(matches, dtype=backend.floatx())
if reshape_matches:
matches = ops.reshape(matches, y_true_org_shape)
return matches | Computes how often integer targets are in the top `K` predictions.
Args:
y_true: A tensor of shape `(batch_size)` representing indices or IDs of
true categories.
y_pred: If `from_sorted_ids=False`, a tensor of shape
`(batch_size, num_categories)` containing the scores for each sample
for all possible categories. If `from_sorted_ids=True`, a tensor of
shape `(batch_size, N)` containing indices or IDs of the top `N`
categories in order from highest score to lowest score.
k: (Optional) Number of top elements to look at for computing accuracy.
Defaults to `5`.
from_sorted_ids: (Optional) Whether `y_pred` is sorted category IDs or
scores for all categories (the default).
Returns:
A tensor with the same shape as `y_true` containing ones where `y_true`
is in the top `k` and zeros elsewhere. | github-repos |
def load_install_json(self, filename=None):
if (filename is None):
filename = 'install.json'
file_fqpn = os.path.join(self.app_path, filename)
install_json = None
if os.path.isfile(file_fqpn):
try:
with open(file_fqpn, 'r') as fh:
install_json = json.load(fh)
except ValueError as e:
self.handle_error('Failed to load "{}" file ({}).'.format(file_fqpn, e))
else:
self.handle_error('File "{}" could not be found.'.format(file_fqpn))
return install_json | Return install.json data.
Args:
filename (str, optional): Defaults to None. The install.json filename (for bundled
Apps).
Returns:
dict: The contents of the install.json file. | codesearchnet |
def is_supported(cls, file=None, request=None, response=None, url_info=None):
tests = ((response, cls.is_response), (file, cls.is_file), (request, cls.is_request), (url_info, cls.is_url))
for (instance, method) in tests:
if instance:
try:
result = method(instance)
except NotImplementedError:
pass
else:
if result:
return True
elif (result is VeryFalse):
return VeryFalse | Given the hints, return whether the document is supported.
Args:
file: A file object containing the document.
request (:class:`.http.request.Request`): An HTTP request.
response (:class:`.http.request.Response`): An HTTP response.
url_info (:class:`.url.URLInfo`): A URLInfo.
Returns:
bool: If True, the reader should be able to read it. | codesearchnet |
def get_named_parent(decl):
if (not decl):
return None
parent = decl.parent
while (parent and ((not parent.name) or (parent.name == '::'))):
parent = parent.parent
return parent | Returns a reference to a named parent declaration.
Args:
decl (declaration_t): the child declaration
Returns:
declaration_t: the declaration or None if not found. | codesearchnet |
def unlock(self):
if (not unlockers.unlock(self, self._device.manufacturer)):
raise errors.JLinkException('Failed to unlock device.')
return True | Unlocks the device connected to the J-Link.
Unlocking a device allows for access to read/writing memory, as well as
flash programming.
Note:
Unlock is not supported on all devices.
Supported Devices:
Kinetis
Returns:
``True``.
Raises:
JLinkException: if the device fails to unlock. | codesearchnet |
def is_file(self, follow_symlinks=True):
return self._system.isfile(
path=self._path, client_kwargs=self._client_kwargs) | Return True if this entry is a file or a symbolic link pointing to a
file; return False if the entry is or points to a directory or other
non-file entry, or if it doesn’t exist anymore.
The result is cached on the os.DirEntry object.
Args:
follow_symlinks (bool): Follow symlinks.
Not supported on cloud storage objects.
Returns:
bool: True if directory exists. | juraj-google-style |
def _ensure_list(tensor_or_list):
if isinstance(tensor_or_list, (list, tuple)):
return list(tensor_or_list), True
return [tensor_or_list], False | Converts the input arg to a list if it is not a list already.
Args:
tensor_or_list: A `Tensor` or a Python list of `Tensor`s. The argument to
convert to a list of `Tensor`s.
Returns:
A tuple of two elements. The first is a Python list of `Tensor`s containing
the original arguments. The second is a boolean indicating whether
the original argument was a list or tuple already. | juraj-google-style |
def assert_input_compatibility(input_spec, inputs, layer_name):
if not input_spec:
return
input_spec = nest.flatten(input_spec)
if isinstance(inputs, dict):
names = [spec.name for spec in input_spec]
if all(names):
list_inputs = []
for name in names:
if name not in inputs:
raise ValueError('Missing data for input "%s". You passed a data dictionary with keys %s. Expected the following keys: %s' % (name, list(inputs.keys()), names))
list_inputs.append(inputs[name])
inputs = list_inputs
inputs = nest.flatten(inputs)
for x in inputs:
if not hasattr(x, 'shape'):
raise TypeError('Inputs to a layer should be tensors. Got: %s' % (x,))
if len(inputs) != len(input_spec):
raise ValueError('Layer ' + layer_name + ' expects ' + str(len(input_spec)) + ' input(s), but it received ' + str(len(inputs)) + ' input tensors. Inputs received: ' + str(inputs))
for input_index, (x, spec) in enumerate(zip(inputs, input_spec)):
if spec is None:
continue
shape = tensor_shape.TensorShape(x.shape)
if shape.rank is None:
return
if spec.ndim is not None and (not spec.allow_last_axis_squeeze):
ndim = shape.rank
if ndim != spec.ndim:
raise ValueError('Input ' + str(input_index) + ' of layer ' + layer_name + ' is incompatible with the layer: expected ndim=' + str(spec.ndim) + ', found ndim=' + str(ndim) + '. Full shape received: ' + str(tuple(shape)))
if spec.max_ndim is not None:
ndim = x.shape.rank
if ndim is not None and ndim > spec.max_ndim:
raise ValueError('Input ' + str(input_index) + ' of layer ' + layer_name + ' is incompatible with the layer: expected max_ndim=' + str(spec.max_ndim) + ', found ndim=' + str(ndim))
if spec.min_ndim is not None:
ndim = x.shape.rank
if ndim is not None and ndim < spec.min_ndim:
raise ValueError('Input ' + str(input_index) + ' of layer ' + layer_name + ' is incompatible with the layer: : expected min_ndim=' + str(spec.min_ndim) + ', found ndim=' + str(ndim) + '. Full shape received: ' + str(tuple(shape)))
if spec.dtype is not None:
if x.dtype.name != spec.dtype:
raise ValueError('Input ' + str(input_index) + ' of layer ' + layer_name + ' is incompatible with the layer: expected dtype=' + str(spec.dtype) + ', found dtype=' + str(x.dtype))
shape_as_list = shape.as_list()
if spec.axes:
for axis, value in spec.axes.items():
if hasattr(value, 'value'):
value = value.value
if value is not None and shape_as_list[int(axis)] not in {value, None}:
raise ValueError('Input ' + str(input_index) + ' of layer ' + layer_name + ' is incompatible with the layer: expected axis ' + str(axis) + ' of input shape to have value ' + str(value) + ' but received input with shape ' + display_shape(x.shape))
if spec.shape is not None and shape.rank is not None:
spec_shape = spec.shape
if spec.allow_last_axis_squeeze:
if shape_as_list and shape_as_list[-1] == 1:
shape_as_list = shape_as_list[:-1]
if spec_shape and spec_shape[-1] == 1:
spec_shape = spec_shape[:-1]
for spec_dim, dim in zip(spec_shape, shape_as_list):
if spec_dim is not None and dim is not None:
if spec_dim != dim:
raise ValueError('Input ' + str(input_index) + ' is incompatible with layer ' + layer_name + ': expected shape=' + str(spec.shape) + ', found shape=' + display_shape(x.shape)) | Checks compatibility between the layer and provided inputs.
This checks that the tensor(s) `inputs` verify the input assumptions
of a layer (if any). If not, a clear and actional exception gets raised.
Args:
input_spec: An InputSpec instance, list of InputSpec instances, a nested
structure of InputSpec instances, or None.
inputs: Input tensor, list of input tensors, or a nested structure of
input tensors.
layer_name: String, name of the layer (for error message formatting).
Raises:
ValueError: in case of mismatch between
the provided inputs and the expectations of the layer. | github-repos |
def macro_state(self, micro_state):
assert (len(micro_state) == len(self.micro_indices))
reindexed = self.reindex()
micro_state = np.array(micro_state)
return tuple(((0 if (sum(micro_state[list(reindexed.partition[i])]) in self.grouping[i][0]) else 1) for i in self.macro_indices)) | Translate a micro state to a macro state
Args:
micro_state (tuple[int]): The state of the micro nodes in this
coarse-graining.
Returns:
tuple[int]: The state of the macro system, translated as specified
by this coarse-graining.
Example:
>>> coarse_grain = CoarseGrain(((1, 2),), (((0,), (1, 2)),))
>>> coarse_grain.macro_state((0, 0))
(0,)
>>> coarse_grain.macro_state((1, 0))
(1,)
>>> coarse_grain.macro_state((1, 1))
(1,) | codesearchnet |
def write(self, output_buffer, kmip_version=enums.KMIPVersion.KMIP_1_3):
if (kmip_version < enums.KMIPVersion.KMIP_1_3):
raise exceptions.VersionNotSupported('KMIP {} does not support the CapabilityInformation object.'.format(kmip_version.value))
local_buffer = BytearrayStream()
if self._streaming_capability:
self._streaming_capability.write(local_buffer, kmip_version=kmip_version)
if self._asynchronous_capability:
self._asynchronous_capability.write(local_buffer, kmip_version=kmip_version)
if self._attestation_capability:
self._attestation_capability.write(local_buffer, kmip_version=kmip_version)
if (kmip_version >= enums.KMIPVersion.KMIP_1_4):
if self._batch_undo_capability:
self._batch_undo_capability.write(local_buffer, kmip_version=kmip_version)
if self._batch_continue_capability:
self._batch_continue_capability.write(local_buffer, kmip_version=kmip_version)
if self._unwrap_mode:
self._unwrap_mode.write(local_buffer, kmip_version=kmip_version)
if self._destroy_action:
self._destroy_action.write(local_buffer, kmip_version=kmip_version)
if self._shredding_algorithm:
self._shredding_algorithm.write(local_buffer, kmip_version=kmip_version)
if self._rng_mode:
self._rng_mode.write(local_buffer, kmip_version=kmip_version)
self.length = local_buffer.length()
super(CapabilityInformation, self).write(output_buffer, kmip_version=kmip_version)
output_buffer.write(local_buffer.buffer) | Write the CapabilityInformation structure encoding to the data stream.
Args:
output_buffer (stream): A data stream in which to encode
CapabilityInformation structure data, supporting a write
method.
kmip_version (enum): A KMIPVersion enumeration defining the KMIP
version with which the object will be encoded. Optional,
defaults to KMIP 2.0.
Raises:
VersionNotSupported: Raised when a KMIP version is provided that
does not support the CapabilityInformation structure. | codesearchnet |
def disambiguate_text(self, text, language=None, entities=None):
body = {
"text": text,
"entities": [],
"onlyNER": "false",
"customisation": "generic"
}
if language:
body['language'] = {"lang": language}
if entities:
body['entities'] = entities
result, status_code = self._process_query(body)
if status_code != 200:
logger.debug('Disambiguation failed.')
return result, status_code | Call the disambiguation service in order to get meanings.
Args:
text (str): Text to be disambiguated.
language (str): language of text (if known)
entities (list): list of entities or mentions to be supplied by
the user.
Returns:
dict, int: API response and API status. | juraj-google-style |
def generate_nearest_neighbour_lookup_table(self):
self.jump_probability = {}
for site_label_1 in self.connected_site_pairs:
self.jump_probability[site_label_1] = {}
for site_label_2 in self.connected_site_pairs[site_label_1]:
self.jump_probability[site_label_1][site_label_2] = {}
for coordination_1 in range(self.max_coordination_per_site[site_label_1]):
self.jump_probability[site_label_1][site_label_2][coordination_1] = {}
for coordination_2 in range(1, (self.max_coordination_per_site[site_label_2] + 1)):
self.jump_probability[site_label_1][site_label_2][coordination_1][coordination_2] = self.relative_probability(site_label_1, site_label_2, coordination_1, coordination_2) | Construct a look-up table of relative jump probabilities for a nearest-neighbour interaction Hamiltonian.
Args:
None.
Returns:
None. | codesearchnet |
def wait_until_page_ready(page_object, timeout=WTF_TIMEOUT_MANAGER.NORMAL):
try:
do_until(lambda: page_object.webdriver.execute_script("return document.readyState").lower()
== 'complete', timeout)
except wait_utils.OperationTimeoutError:
raise PageUtilOperationTimeoutError(
"Timeout occurred while waiting for page to be ready.") | Waits until document.readyState == Complete (e.g. ready to execute javascript commands)
Args:
page_object (PageObject) : PageObject class
Kwargs:
timeout (number) : timeout period | juraj-google-style |
def infer_from_frame_stack(self, ob_stack):
(logits, vf) = self.sess.run([self.logits_t, self.value_function_t], feed_dict={self.obs_t: ob_stack})
return (logits, vf) | Infer policy from stack of observations.
Args:
ob_stack: array of shape (1, frame_stack_size, height, width, channels)
Returns:
logits and vf. | codesearchnet |
def update(self, measurement, measurement_matrix):
measurement_matrix = np.atleast_2d(measurement_matrix)
expected_meas_mat_shape = (measurement.mean.shape[0], self.state_length)
if measurement_matrix.shape != expected_meas_mat_shape:
raise ValueError("Measurement matrix is wrong shape ({}). " \
"Expected: {}".format(
measurement_matrix.shape, expected_meas_mat_shape))
self.measurements[-1].append(measurement)
self.measurement_matrices[-1].append(measurement_matrix)
prior = self.posterior_state_estimates[-1]
innovation = measurement.mean - measurement_matrix.dot(prior.mean)
innovation_cov = measurement_matrix.dot(prior.cov).dot(
measurement_matrix.T)
innovation_cov += measurement.cov
kalman_gain = prior.cov.dot(measurement_matrix.T).dot(
np.linalg.inv(innovation_cov))
post = self.posterior_state_estimates[-1]
self.posterior_state_estimates[-1] = MultivariateNormal(
mean=post.mean + kalman_gain.dot(innovation),
cov=post.cov - kalman_gain.dot(measurement_matrix).dot(prior.cov)
) | After each :py:meth:`predict`, this method may be called repeatedly to
provide additional measurements for each time step.
Args:
measurement (MultivariateNormal): Measurement for this
time step with specified mean and covariance.
measurement_matrix (array): Measurement matrix for this measurement. | juraj-google-style |
def find(self, predicate, first_n=0, device_name=None, exclude_node_names=None):
if exclude_node_names:
exclude_node_names = re.compile(exclude_node_names)
matched_data = []
for device in self._dump_tensor_data if device_name is None else (self._dump_tensor_data[device_name],):
for datum in self._dump_tensor_data[device]:
if exclude_node_names and exclude_node_names.match(datum.node_name):
continue
if predicate(datum, datum.get_tensor()):
matched_data.append(datum)
if first_n > 0 and len(matched_data) >= first_n:
return matched_data
return matched_data | Find dumped tensor data by a certain predicate.
Args:
predicate: A callable that takes two input arguments:
```python
def predicate(debug_tensor_datum, tensor):
# returns a bool
```
where `debug_tensor_datum` is an instance of `DebugTensorDatum`, which
carries the metadata, such as the `Tensor`'s node name, output slot
timestamp, debug op name, etc.; and `tensor` is the dumped tensor value
as a `numpy.ndarray`.
first_n: (`int`) return only the first n `DebugTensotDatum` instances (in
time order) for which the predicate returns True. To return all the
`DebugTensotDatum` instances, let first_n be <= 0.
device_name: optional device name.
exclude_node_names: Optional regular expression to exclude nodes with
names matching the regular expression.
Returns:
A list of all `DebugTensorDatum` objects in this `DebugDumpDir` object
for which predicate returns True, sorted in ascending order of the
timestamp. | github-repos |
def select_copula(cls, X):
frank = Bivariate(CopulaTypes.FRANK)
frank.fit(X)
if frank.tau <= 0:
selected_theta = frank.theta
selected_copula = CopulaTypes.FRANK
return selected_copula, selected_theta
copula_candidates = [frank]
theta_candidates = [frank.theta]
try:
clayton = Bivariate(CopulaTypes.CLAYTON)
clayton.fit(X)
copula_candidates.append(clayton)
theta_candidates.append(clayton.theta)
except ValueError:
pass
try:
gumbel = Bivariate(CopulaTypes.GUMBEL)
gumbel.fit(X)
copula_candidates.append(gumbel)
theta_candidates.append(gumbel.theta)
except ValueError:
pass
z_left, L, z_right, R = cls.compute_empirical(X)
left_dependence, right_dependence = cls.get_dependencies(
copula_candidates, z_left, z_right)
cost_L = [np.sum((L - l) ** 2) for l in left_dependence]
cost_R = [np.sum((R - r) ** 2) for r in right_dependence]
cost_LR = np.add(cost_L, cost_R)
selected_copula = np.argmax(cost_LR)
selected_theta = theta_candidates[selected_copula]
return CopulaTypes(selected_copula), selected_theta | Select best copula function based on likelihood.
Args:
X: 2-dimensional `np.ndarray`
Returns:
tuple: `tuple(CopulaType, float)` best fit and model param. | juraj-google-style |
def are_equal_elements(a_el, b_el):
if (a_el.tagName != b_el.tagName):
return False
if (sorted(a_el.attributes.items()) != sorted(b_el.attributes.items())):
return False
if (len(a_el.childNodes) != len(b_el.childNodes)):
return False
for (a_child_el, b_child_el) in zip(a_el.childNodes, b_el.childNodes):
if (a_child_el.nodeType != b_child_el.nodeType):
return False
if ((a_child_el.nodeType == a_child_el.TEXT_NODE) and (a_child_el.data != b_child_el.data)):
return False
if ((a_child_el.nodeType == a_child_el.ELEMENT_NODE) and (not are_equal_elements(a_child_el, b_child_el))):
return False
return True | Normalize and compare ElementTrees for equality.
Args:
a_el: ElementTree
b_el: ElementTree
ElementTrees to compare for equality.
Returns:
bool: ``True`` if the ElementTrees are semantically equivalent. | codesearchnet |
def get_unspent_outputs(self):
cursor = backend.query.get_unspent_outputs(self.connection)
return (record for record in cursor) | Get the utxoset.
Returns:
generator of unspent_outputs. | codesearchnet |
def pull(self, project, run=None, entity=None):
project, run = self.parse_slug(project, run=run)
urls = self.download_urls(project, run, entity)
responses = []
for fileName in urls:
_, response = self.download_write_file(urls[fileName])
if response:
responses.append(response)
return responses | Download files from W&B
Args:
project (str): The project to download
run (str, optional): The run to upload to
entity (str, optional): The entity to scope this project to. Defaults to wandb models
Returns:
The requests library response object | juraj-google-style |
def obtain_all_variant_tensor_ops(dataset):
return _traverse(dataset, lambda op: op.outputs[0].dtype == dtypes.variant) | Given an input dataset, finds all dataset ops used for construction.
A series of transformations would have created this dataset with each
transformation including zero or more Dataset ops, each producing a dataset
variant tensor. This method outputs all of them.
Args:
dataset: Dataset to find variant tensors for.
Returns:
A list of variant_tensor producing dataset ops used to construct this
dataset. | github-repos |
def download_supplementary_files(self, directory='./', download_sra=True, email=None, sra_kwargs=None):
directory_path = os.path.abspath(os.path.join(directory, ('%s_%s_%s' % ('Supp', self.get_accession(), re.sub('[\\s\\*\\?\\(\\),\\.;]', '_', self.metadata['title'][0])))))
utils.mkdir_p(os.path.abspath(directory_path))
downloaded_paths = dict()
if (sra_kwargs is None):
sra_kwargs = {}
blacklist = ('NONE',)
for (metakey, metavalue) in iteritems(self.metadata):
if ('supplementary_file' in metakey):
assert ((len(metavalue) == 1) and (metavalue != ''))
if (metavalue[0] in blacklist):
logger.warn(("%s value is blacklisted as '%s' - skipping" % (metakey, metavalue[0])))
continue
if ('sra' not in metavalue[0]):
download_path = os.path.abspath(os.path.join(directory, os.path.join(directory_path, metavalue[0].split('/')[(- 1)])))
try:
utils.download_from_url(metavalue[0], download_path)
downloaded_paths[metavalue[0]] = download_path
except Exception as err:
logger.error(('Cannot download %s supplementary file (%s)' % (self.get_accession(), err)))
if download_sra:
try:
downloaded_files = self.download_SRA(email, directory=directory, **sra_kwargs)
downloaded_paths.update(downloaded_files)
except Exception as err:
logger.error(('Cannot download %s SRA file (%s)' % (self.get_accession(), err)))
return downloaded_paths | Download all supplementary data available for the sample.
Args:
directory (:obj:`str`): Directory to download the data (in this directory
function will create new directory with the files).
Defaults to "./".
download_sra (:obj:`bool`): Indicates whether to download SRA raw
data too. Defaults to True.
email (:obj:`str`): E-mail that will be provided to the Entrez.
It is mandatory if download_sra=True. Defaults to None.
sra_kwargs (:obj:`dict`, optional): Kwargs passed to the
download_SRA method. Defaults to None.
Returns:
:obj:`dict`: A key-value pair of name taken from the metadata and
paths downloaded, in the case of SRA files the key is ``SRA``. | codesearchnet |
def make_iaf_stack(total_event_size,
num_hidden_layers=2,
seed=None,
dtype=tf.float32):
seed = tfd.SeedStream(seed, 'make_iaf_stack')
def make_iaf():
initializer = tf.compat.v2.keras.initializers.VarianceScaling(
2 * 0.01, seed=seed() % (2**31 - 1))
made = tfb.AutoregressiveLayer(
params=2,
event_shape=[total_event_size],
hidden_units=[total_event_size] * num_hidden_layers,
activation=tf.nn.elu,
kernel_initializer=initializer,
dtype=dtype)
def shift_and_scale(x):
x.set_shape(
x.shape.merge_with([None] * (x.shape.ndims - 1) + [total_event_size]))
return tf.unstack(made(x), num=2, axis=-1)
return tfb.Invert(tfb.MaskedAutoregressiveFlow(shift_and_scale))
def make_swap():
permutation = list(reversed(range(total_event_size)))
return tfb.Permute(permutation)
bijector = make_iaf()
bijector = make_swap()(bijector)
bijector = make_iaf()(bijector)
bijector = make_swap()(bijector)
bijector = make_iaf()(bijector)
bijector = make_swap()(bijector)
return bijector | Creates an stacked IAF bijector.
This bijector operates on vector-valued events.
Args:
total_event_size: Number of dimensions to operate over.
num_hidden_layers: How many hidden layers to use in each IAF.
seed: Random seed for the initializers.
dtype: DType for the variables.
Returns:
bijector: The created bijector. | juraj-google-style |
def addColumn(self, header, values=[]):
if (len(values) == 0):
self._impl.addColumn(header)
else:
assert (len(values) == self.getNumRows())
if any((isinstance(value, basestring) for value in values)):
values = list(map(str, values))
self._impl.addColumnStr(header, values)
elif all((isinstance(value, Real) for value in values)):
values = list(map(float, values))
self._impl.addColumnDbl(header, values)
else:
raise NotImplementedError | Add a new column with the corresponding header and values to the
dataframe.
Args:
header: The name of the new column.
values: A list of size :func:`~amplpy.DataFrame.getNumRows` with
all the values of the new column. | codesearchnet |
def unpack(self, buff, offset=0):
try:
self._value = struct.unpack_from(self._fmt, buff, offset)[0]
if self.enum_ref:
self._value = self.enum_ref(self._value)
except (struct.error, TypeError, ValueError) as exception:
msg = '{}; fmt = {}, buff = {}, offset = {}.'.format(exception,
self._fmt,
buff, offset)
raise UnpackException(msg) | Unpack *buff* into this object.
This method will convert a binary data into a readable value according
to the attribute format.
Args:
buff (bytes): Binary buffer.
offset (int): Where to begin unpacking.
Raises:
:exc:`~.exceptions.UnpackException`: If unpack fails. | juraj-google-style |
def ldap_sync(self, **kwargs):
path = '/groups/%s/ldap_sync' % self.get_id()
self.manager.gitlab.http_post(path, **kwargs) | Sync LDAP groups.
Args:
**kwargs: Extra options to send to the server (e.g. sudo)
Raises:
GitlabAuthenticationError: If authentication is not correct
GitlabCreateError: If the server cannot perform the request | juraj-google-style |
def ensure_value_spec(value_spec: class_schema.ValueSpec, src_spec: class_schema.ValueSpec, root_path: typing.Optional[utils.KeyPath]=None) -> typing.Optional[class_schema.ValueSpec]:
if isinstance(value_spec, Union):
value_spec = value_spec.get_candidate(src_spec)
if isinstance(value_spec, Any):
return None
if not src_spec.is_compatible(value_spec):
raise TypeError(utils.message_on_path(f'Source spec {src_spec} is not compatible with destination spec {value_spec}.', root_path))
return value_spec | Extract counter part from value spec that matches dest spec type.
Args:
value_spec: Value spec.
src_spec: Destination value spec.
root_path: An optional path for the value to include in error message.
Returns:
value_spec of src_spec_type
Raises:
TypeError: When value_spec cannot match src_spec_type. | github-repos |
def _SetUnknownFlag(self, name, value):
setter = self.__dict__['__set_unknown']
if setter:
try:
setter(name, value)
return value
except (TypeError, ValueError):
raise exceptions.IllegalFlagValueError('"{1}" is not valid for --{0}'
.format(name, value))
except NameError:
pass
raise exceptions.UnrecognizedFlagError(name, value) | Returns value if setting flag |name| to |value| returned True.
Args:
name: Name of the flag to set.
value: Value to set.
Returns:
Flag value on successful call.
Raises:
UnrecognizedFlagError
IllegalFlagValueError | juraj-google-style |
def from_composition_and_entries(comp, entries_in_chemsys, working_ion_symbol='Li'):
pd = PhaseDiagram(entries_in_chemsys)
return ConversionElectrode.from_composition_and_pd(comp, pd, working_ion_symbol) | Convenience constructor to make a ConversionElectrode from a
composition and all entries in a chemical system.
Args:
comp: Starting composition for ConversionElectrode, e.g.,
Composition("FeF3")
entries_in_chemsys: Sequence containing all entries in a
chemical system. E.g., all Li-Fe-F containing entries.
working_ion_symbol: Element symbol of working ion. Defaults to Li. | codesearchnet |
def adb_cmd(self, command, **kwargs):
kwargs['timeout'] = kwargs.get('timeout', self._adb_shell_timeout)
if isinstance(command, list) or isinstance(command, tuple):
return self.adb_device.run_cmd(*list(command), **kwargs)
return self.adb_device.run_cmd(command, **kwargs) | Run adb command, for example: adb(['pull', '/data/local/tmp/a.png'])
Args:
command: string or list of string
Returns:
command output | juraj-google-style |
def from_xmrs(cls, xmrs, **kwargs):
x = cls()
x.__dict__.update(xmrs.__dict__)
return x | Facilitate conversion among subclasses.
Args:
xmrs (:class:`Xmrs`): instance to convert from; possibly
an instance of a subclass, such as :class:`Mrs` or
:class:`Dmrs`
**kwargs: additional keyword arguments that may be used
by a subclass's redefinition of :meth:`from_xmrs`. | codesearchnet |
def get_nodes_lines(self, **kwargs):
params = {'Nodes': util.ints_to_string(kwargs.get('nodes', []))}
result = self.make_request('bus', 'get_nodes_lines', **params)
if (not util.check_result(result)):
return (False, result.get('resultDescription', 'UNKNOWN ERROR'))
values = util.response_list(result, 'resultValues')
return (True, [emtype.NodeLinesItem(**a) for a in values]) | Obtain stop IDs, coordinates and line information.
Args:
nodes (list[int] | int): nodes to query, may be empty to get
all nodes.
Returns:
Status boolean and parsed response (list[NodeLinesItem]), or message
string in case of error. | codesearchnet |
def google_api_initilaize(config, api_call, alias=None):
if api_call['function'].endswith('list') or alias == 'list':
api_call['iterate'] = True
if api_call['api'] == 'dfareporting':
if not api_call['function'].startswith('userProfiles'):
is_superuser, profile_id = get_profile_for_api(config, api_call['auth'], api_call['kwargs']['id'] if api_call['function'] == 'accounts.get' else api_call['kwargs']['accountId'])
api_call['kwargs']['profileId'] = profile_id
if is_superuser:
api_call['version'] = 'prerelease'
elif 'accountId' in api_call['kwargs']:
del api_call['kwargs']['accountId'] | Some Google API calls require a lookup or pre-call, add it here.
Modifies the API call before actual execution with any data
specifically required by an endpoint. Currently:
> dfa-reporting - look up user profile and add to call.
Args:
api_call (dict): the JSON for the API call as defined in recipe.
alias (string): mostly used to signal a list behavior (change to iterate in future?)
Returns (dict):
A modified JSON with additional API values added.
Currently mostly used by dfareporting API to add profile and account.
Raises:
ValueError: If a required key in the recipe is missing. | github-repos |
def __truediv__(self, other):
return self.__class__(self.x, self.y.__truediv__(other), *self._args,
**self._kwargs) | True division of y
Args:
other: The divisor
Returns:
Spectrum object with y values divided | juraj-google-style |
def bridge_create(br, may_exist=True, parent=None, vlan=None):
param_may_exist = _param_may_exist(may_exist)
if ((parent is not None) and (vlan is None)):
raise ArgumentValueError('If parent is specified, vlan must also be specified.')
if ((vlan is not None) and (parent is None)):
raise ArgumentValueError('If vlan is specified, parent must also be specified.')
param_parent = ('' if (parent is None) else ' {0}'.format(parent))
param_vlan = ('' if (vlan is None) else ' {0}'.format(vlan))
cmd = 'ovs-vsctl {1}add-br {0}{2}{3}'.format(br, param_may_exist, param_parent, param_vlan)
result = __salt__['cmd.run_all'](cmd)
return _retcode_to_bool(result['retcode']) | Creates a new bridge.
Args:
br: A string - bridge name
may_exist: Bool, if False - attempting to create a bridge that exists returns False.
parent: String, the name of the parent bridge (if the bridge shall be
created as a fake bridge). If specified, vlan must also be
specified.
vlan: Int, the VLAN ID of the bridge (if the bridge shall be created as
a fake bridge). If specified, parent must also be specified.
Returns:
True on success, else False.
.. versionadded:: 2016.3.0
CLI Example:
.. code-block:: bash
salt '*' openvswitch.bridge_create br0 | codesearchnet |
def enableEditing(self, enabled):
for button in self.buttons[1:]:
button.setEnabled(enabled)
if button.isChecked():
button.setChecked(False)
model = self.tableView.model()
if model is not None:
model.enableEditing(enabled) | Enable the editing buttons to add/remove rows/columns and to edit the data.
This method is also a slot.
In addition, the data of model will be made editable,
if the `enabled` parameter is true.
Args:
enabled (bool): This flag indicates, if the buttons
shall be activated. | juraj-google-style |
def destringize(self, string):
m = read_tuple_destr_pattern.match(string)
if (not m):
smbl.messages.error("'{}' is not a valid read name with respect to the RNF specification".format(string), program='RNFtools', subprogram='RNF format', exception=ValueError)
groups = m.groups()
self.prefix = groups[0]
read_tuple_id = groups[1]
self.read_tuple_id = int(read_tuple_id, 16)
self.segments = []
segments_str = groups[2:(- 1)]
for b_str in segments_str:
if (b_str is not None):
if (b_str[0] == ','):
b_str = b_str[1:]
b = rnftools.rnfformat.Segment()
b.destringize(b_str)
self.segments.append(b)
self.suffix = groups[(- 1)] | Get RNF values for this read from its textual representation and save them
into this object.
Args:
string(str): Textual representation of a read.
Raises:
ValueError | codesearchnet |
def doMove(self, orgresource, dstresource, dummy = 56184, stresource = 'F', bShareFireCopy = 'false'):
url = nurls['doMove']
data = {'userid': self.user_id,
'useridx': self.useridx,
'dummy': dummy,
'orgresource': orgresource,
'dstresource': dstresource,
'overwrite': overwrite,
'bShareFireCopy': bShareFireCopy,
}
r = self.session.post(url = url, data = data)
try:
j = json.loads(r.text)
except:
print '[*] Success checkUpload: 0 result'
return False
return self.resultManager(r.text) | DoMove
Args:
dummy: ???
orgresource: Path for a file which you want to move
dstresource: Destination path
bShareFireCopy: ???
Returns:
True: Move success
False: Move failed | juraj-google-style |
def list_classes(mod_name):
mod = sys.modules[mod_name]
return [cls.__name__ for cls in mod.__dict__.values()
if is_mod_class(mod, cls)] | Lists all classes declared in a module.
Args:
mod_name: the module name
Returns:
A list of functions declared in that module. | juraj-google-style |
def write_input(self, output_dir, make_dir_if_not_present=True, include_cif=False):
vinput = self.get_vasp_input()
vinput.write_input(output_dir, make_dir_if_not_present=make_dir_if_not_present)
if include_cif:
s = vinput['POSCAR'].structure
fname = (Path(output_dir) / ('%s.cif' % re.sub('\\s', '', s.formula)))
s.to(filename=fname) | Writes a set of VASP input to a directory.
Args:
output_dir (str): Directory to output the VASP input files
make_dir_if_not_present (bool): Set to True if you want the
directory (and the whole path) to be created if it is not
present.
include_cif (bool): Whether to write a CIF file in the output
directory for easier opening by VESTA. | codesearchnet |
def validate_key(self, key):
if (not models.PasswordResetToken.valid_tokens.filter(key=key).exists()):
raise serializers.ValidationError(_('The provided reset token does not exist, or is expired.'))
return key | Validate the provided reset key.
Returns:
The validated key.
Raises:
serializers.ValidationError:
If the provided key does not exist. | codesearchnet |
def _is_part_processor_protocol(obj: Any) -> bool:
def _full_name(obj: Any) -> str:
return obj.__module__ + '.' + getattr(obj, '__qualname__', '')
if not callable(obj):
return False
if isinstance(obj, types.FunctionType):
type_hint = typing.get_type_hints(obj)
else:
type_hint = typing.get_type_hints(obj.__call__)
if 'return' not in type_hint:
return False
return_type = type_hint.pop('return')
if len(type_hint) != 1:
return False
if len(typing.get_args(return_type)) != 1:
return False
if return_type.__qualname__ != 'AsyncIterable' or _full_name(typing.get_args(return_type)[0]) != _full_name(content_api.ProcessorPart):
return False
if _full_name(next(iter(type_hint.values()))) != _full_name(content_api.ProcessorPart):
return False
return True | Returns True if `obj` implements PartProcessorFn.
This function is needed as Processors and PartProcessors are Protocols and do
not have proper runtime type checking.
Args:
obj: any object or function | github-repos |
def _Open(self, path_spec, mode='rb'):
if not path_spec.HasParent():
raise errors.PathSpecError(
'Unsupported path specification without parent.')
resolver.Resolver.key_chain.ExtractCredentialsFromPathSpec(path_spec)
fvde_volume = pyfvde.volume()
file_object = resolver.Resolver.OpenFileObject(
path_spec.parent, resolver_context=self._resolver_context)
try:
fvde.FVDEVolumeOpen(
fvde_volume, path_spec, file_object, resolver.Resolver.key_chain)
except:
file_object.close()
raise
self._fvde_volume = fvde_volume
self._file_object = file_object | Opens the file system defined by path specification.
Args:
path_spec (PathSpec): path specification.
mode (Optional[str]): file access mode. The default is 'rb'
read-only binary.
Raises:
AccessError: if the access to open the file was denied.
IOError: if the file system could not be opened.
PathSpecError: if the path specification is incorrect.
ValueError: if the path specification is invalid. | juraj-google-style |
def update_user_groups(self, user, claims):
if (settings.GROUPS_CLAIM is not None):
django_groups = [group.name for group in user.groups.all()]
if (settings.GROUPS_CLAIM in claims):
claim_groups = claims[settings.GROUPS_CLAIM]
if (not isinstance(claim_groups, list)):
claim_groups = [claim_groups]
else:
logger.debug("The configured groups claim '{}' was not found in the access token".format(settings.GROUPS_CLAIM))
claim_groups = []
groups_to_remove = (set(django_groups) - set(claim_groups))
groups_to_add = (set(claim_groups) - set(django_groups))
for group_name in groups_to_remove:
group = Group.objects.get(name=group_name)
user.groups.remove(group)
logger.debug("User removed from group '{}'".format(group_name))
for group_name in groups_to_add:
try:
if settings.MIRROR_GROUPS:
(group, _) = Group.objects.get_or_create(name=group_name)
logger.debug("Created group '{}'".format(group_name))
else:
group = Group.objects.get(name=group_name)
user.groups.add(group)
logger.debug("User added to group '{}'".format(group_name))
except ObjectDoesNotExist:
pass | Updates user group memberships based on the GROUPS_CLAIM setting.
Args:
user (django.contrib.auth.models.User): User model instance
claims (dict): Claims from the access token | codesearchnet |
def is_valid_op(self, symmop):
coords = self.centered_mol.cart_coords
for site in self.centered_mol:
coord = symmop.operate(site.coords)
ind = find_in_coord_list(coords, coord, self.tol)
if (not ((len(ind) == 1) and (self.centered_mol[ind[0]].species == site.species))):
return False
return True | Check if a particular symmetry operation is a valid symmetry operation
for a molecule, i.e., the operation maps all atoms to another
equivalent atom.
Args:
symmop (SymmOp): Symmetry operation to test.
Returns:
(bool): Whether SymmOp is valid for Molecule. | codesearchnet |
def multiply(self, other):
if not isinstance(other, Number):
raise QiskitError("other is not a number")
return Chi(other * self._data, self._input_dims, self._output_dims) | Return the QuantumChannel self + other.
Args:
other (complex): a complex number.
Returns:
Chi: the scalar multiplication other * self as a Chi object.
Raises:
QiskitError: if other is not a valid scalar. | juraj-google-style |
def get_nested_plot_frame(obj, key_map, cached=False):
clone = obj.map(lambda x: x)
for it1, it2 in zip(obj.traverse(lambda x: x), clone.traverse(lambda x: x)):
if isinstance(it1, DynamicMap):
with disable_constant(it2.callback):
it2.callback.inputs = it1.callback.inputs
with item_check(False):
return clone.map(lambda x: get_plot_frame(x, key_map, cached=cached),
[DynamicMap, HoloMap], clone=False) | Extracts a single frame from a nested object.
Replaces any HoloMap or DynamicMap in the nested data structure,
with the item corresponding to the supplied key.
Args:
obj: Nested Dimensioned object
key_map: Dictionary mapping between dimensions and key value
cached: Whether to allow looking up key in cache
Returns:
Nested datastructure where maps are replaced with single frames | juraj-google-style |
def get_board(self, id, name=None):
return self.create_board(dict(id=id, name=name)) | Get a board
Returns:
Board: The board with the given `id` | codesearchnet |
def list(cls, session, mailbox):
endpoint = ('/mailboxes/%d/conversations.json' % mailbox.id)
return super(Conversations, cls).list(session, endpoint) | Return conversations in a mailbox.
Args:
session (requests.sessions.Session): Authenticated session.
mailbox (helpscout.models.Mailbox): Mailbox to list.
Returns:
RequestPaginator(output_type=helpscout.models.Conversation):
Conversations iterator. | codesearchnet |
def _GetMaxSizeFromNestedMaximumIterations(value, while_ctxt):
value_name = value.name
curr_ctxt = ops.get_default_graph()._get_control_flow_context()
curr_ctxt_name = curr_ctxt.name if curr_ctxt is not None else ''
max_size = constant_op.constant(1)
while while_ctxt not in (None, curr_ctxt):
max_iter = while_ctxt.maximum_iterations
if max_iter is None:
raise ValueError("Cannot create a gradient accumulator for tensor '%s' inside XLA while_loop because maximum_iterations was not passed to the tf.while_loop call ('%s')." % (value_name, while_ctxt.name))
max_iter_ctxt = max_iter.op._get_control_flow_context()
if util.IsContainingContext(curr_ctxt, max_iter_ctxt):
max_size *= max_iter
else:
const_max_iter = tensor_util.constant_value(max_iter)
if const_max_iter is None:
raise ValueError("Cannot create a gradient accumulator for tensor '%s' inside XLA while_loop. maximum_iterations tensor '%s' for while_loop context '%s' must be statically known (e.g. a constant value or known shape dimension), or be defined at or outside the while loop context '%s' (currently defined in '%s')." % (value_name, max_iter.name, while_ctxt.name, curr_ctxt_name, max_iter_ctxt.name))
max_size *= const_max_iter
while_ctxt = util.GetContainingWhileContext(while_ctxt.outer_context, stop_ctxt=curr_ctxt)
return max_size | Calculate a max_size for use by stack ops inside an XLA while_loop.
Args:
value: The value inside the while_loop forward context. Used for printing
error messages.
while_ctxt: The forward context inside which value resides. This does not
always match the value's immediate context, as `value` may be inside e.g.
a cond context inside the while_loop.
Returns:
A tensor containing the `max_size` to feed to a Stack initializer.
Raises:
ValueError: If `value` is nested inside a `while_loop` that either
lacks a `maximum_iterations` parameter, or the `maximum_iterations`
parameter:
- is inside a `while_loop` that is a parent of the calling context, and
- cannot be evaluated at graph build time to a constant. | github-repos |
def isempty(self, tables=None):
tables = (tables or self.tables)
for table in tables:
if (self.num_rows(table) > 0):
return False
return True | Return whether a table or the entire database is empty.
A database is empty is if it has no tables. A table is empty
if it has no rows.
Arguments:
tables (sequence of str, optional): If provided, check
that the named tables are empty. If not provided, check
that all tables are empty.
Returns:
bool: True if tables are empty, else false.
Raises:
sql.OperationalError: If one or more of the tables do not
exist. | codesearchnet |
def remote_upload(self, remote_url, folder_id=None, headers=None):
kwargs = {'folder': folder_id, 'headers': headers}
params = {'url': remote_url}
params.update({key: value for (key, value) in kwargs.items() if value})
return self._get('remotedl/add', params=params) | Used to make a remote file upload to openload.co
Note:
If folder_id is not provided, the file will be uploaded to ``Home`` folder.
Args:
remote_url (str): direct link of file to be remotely downloaded.
folder_id (:obj:`str`, optional): folder-ID to upload to.
headers (:obj:`dict`, optional): additional HTTP headers (e.g. Cookies or HTTP Basic-Auth)
Returns:
dict: dictionary containing ("id": uploaded file id, "folderid"). ::
{
"id": "12",
"folderid": "4248"
} | codesearchnet |
def disassemble_instruction(self, instruction):
if not util.is_integer(instruction):
raise TypeError('Expected instruction to be an integer.')
buf_size = self.MAX_BUF_SIZE
buf = (ctypes.c_char * buf_size)()
res = self._dll.JLINKARM_DisassembleInst(ctypes.byref(buf), buf_size, instruction)
if res < 0:
raise errors.JLinkException('Failed to disassemble instruction.')
return ctypes.string_at(buf).decode() | Disassembles and returns the assembly instruction string.
Args:
self (JLink): the ``JLink`` instance.
instruction (int): the instruction address.
Returns:
A string corresponding to the assembly instruction string at the
given instruction address.
Raises:
JLinkException: on error.
TypeError: if ``instruction`` is not a number. | juraj-google-style |
def remove_send_message(self, connection):
if (connection in self._send_message):
del self._send_message[connection]
LOGGER.debug('Removed send_message function for connection %s', connection)
else:
LOGGER.warning('Attempted to remove send_message function for connection %s, but no send_message function was registered', connection) | Removes a send_message function previously registered
with the Dispatcher.
Args:
connection (str): A locally unique identifier provided
by the receiver of messages. | codesearchnet |
def adjust_internal_tacking_values(self,
min_non_zero_index,
max_index,
total_added):
if max_index >= 0:
max_value = self.get_highest_equivalent_value(self.get_value_from_index(max_index))
self.max_value = max(self.max_value, max_value)
if min_non_zero_index >= 0:
min_value = self.get_value_from_index(min_non_zero_index)
self.min_value = min(self.min_value, min_value)
self.total_count += total_added | Called during decoding and add to adjust the new min/max value and
total count
Args:
min_non_zero_index min nonzero index of all added counts (-1 if none)
max_index max index of all added counts (-1 if none) | juraj-google-style |
def run_trials(runs):
inside_runs = 0
for _ in range(runs):
x = random.uniform(0, 1)
y = random.uniform(0, 1)
inside_runs += 1 if x * x + y * y <= 1.0 else 0
return (runs, inside_runs, 0) | Run trials and return a 3-tuple representing the results.
Args:
runs: Number of trial runs to be executed.
Returns:
A 3-tuple (total trials, inside trials, 0).
The final zero is needed solely to make sure that the combine_results function
has same type for inputs and outputs (a requirement for combiner functions). | github-repos |
def significant_control(self, num, entity_id, entity_type='individual', **kwargs):
entities = {'individual': 'individual', 'corporate': 'corporate-entity', 'legal': 'legal-person', 'statements': 'persons-with-significant-control-statements', 'secure': 'super-secure'}
try:
entity = entities[entity_type]
except KeyError as e:
msg = ('Wrong entity_type supplied. Please choose from ' + 'individual, corporate, legal, statements or secure')
raise Exception(msg) from e
baseuri = ((self._BASE_URI + 'company/{}/persons-with-significant-control/'.format(num)) + '{}/{}'.format(entity, entity_id))
res = self.session.get(baseuri, params=kwargs)
self.handle_http_error(res)
return res | Get details of a specific entity with significant control.
Args:
num (str, int): Company number to search on.
entity_id (str, int): Entity id to request details for
entity_type (str, int): What type of entity to search for. Defaults
to 'individual'. Other possible opetions are
'corporate' (for corporate entitys), 'legal' (for legal
persons), 'statements' (for a person with significant control
statement) and 'secure' (for a super secure person).
kwargs (dict): additional keywords passed into requests.session.get
*params* keyword. | codesearchnet |
def createCategoryFilter(self, positiveExamples):
categoryFilter = self._fullClient.createCategoryFilter("CategoryFilter", positiveExamples)
return categoryFilter.positions | Creates a filter fingerprint.
Args:
positiveExamples, list(str): The list of positive example texts.
Returns:
list of int: the positions representing the filter representing the texts
Raises:
CorticalioException: if the request was not successful | juraj-google-style |
def __init__(self, port_no=None, queue_id=None):
super().__init__()
self.port_no = port_no
self.queue_id = queue_id | Create a QueueStatsRequest with the optional parameters below.
Args:
port_no (:class:`int`, :class:`~pyof.v0x01.common.phy_port.Port`):
All ports if :attr:`.Port.OFPP_ALL`.
queue_id (int): All queues if OFPQ_ALL (``0xfffffff``). | juraj-google-style |
def get_angle(v1, v2, units='degrees'):
d = ((np.dot(v1, v2) / np.linalg.norm(v1)) / np.linalg.norm(v2))
d = min(d, 1)
d = max(d, (- 1))
angle = math.acos(d)
if (units == 'degrees'):
return math.degrees(angle)
elif (units == 'radians'):
return angle
else:
raise ValueError('Invalid units {}'.format(units)) | Calculates the angle between two vectors.
Args:
v1: Vector 1
v2: Vector 2
units: "degrees" or "radians". Defaults to "degrees".
Returns:
Angle between them in degrees. | codesearchnet |
def __init__(self, name, context=None):
if context is None:
context = google.datalab.Context.default()
self._context = context
self._api = _api.Api(context)
self._name_parts = _utils.parse_dataset_name(name, self._api.project_id)
self._full_name = '%s.%s' % self._name_parts
self._info = None
try:
self._info = self._get_info()
except google.datalab.utils.RequestException:
pass | Initializes an instance of a Dataset.
Args:
name: the name of the dataset, as a string or (project_id, dataset_id) tuple.
context: an optional Context object providing project_id and credentials. If a specific
project id or credentials are unspecified, the default ones configured at the global
level are used.
Raises:
Exception if the name is invalid. | juraj-google-style |
def to_script(self, wf_name='wf'):
self._closed()
script = []
params = []
returns = []
for name, typ in self.wf_inputs.items():
params.append('{}=\'{}\''.format(name, typ))
returns.append(name)
script.append('{} = {}.add_inputs({})'.format(
', '.join(returns), wf_name, ', '.join(params)))
returns = []
for name, step in self.wf_steps.items():
pyname = step.python_name
returns = ['{}_{}'.format(pyname, o) for o in step['out']]
params = ['{}={}'.format(name, python_name(param))
for name, param in step['in'].items()]
script.append('{} = {}.{}({})'.format(
', '.join(returns), wf_name, pyname, ', '.join(params)))
params = []
for name, details in self.wf_outputs.items():
params.append('{}={}'.format(
name, python_name(details['outputSource'])))
script.append('{}.add_outputs({})'.format(wf_name, ', '.join(params)))
return '\n'.join(script) | Generated and print the scriptcwl script for the currunt workflow.
Args:
wf_name (str): string used for the WorkflowGenerator object in the
generated script (default: ``wf``). | juraj-google-style |
def url_to_text(self, url):
path, headers = urllib.request.urlretrieve(url)
return self.path_to_text(path) | Download PDF file and transform its document to string.
Args:
url: PDF url.
Returns:
string. | juraj-google-style |
def _validate_compose_list(destination_file, file_list, files_metadata=None, number_of_files=32):
common.validate_file_path(destination_file)
bucket = destination_file[0:(destination_file.index('/', 1) + 1)]
try:
if isinstance(file_list, types.StringTypes):
raise TypeError
list_len = len(file_list)
except TypeError:
raise TypeError('file_list must be a list')
if (list_len > number_of_files):
raise ValueError(('Compose attempted to create composite with too many(%i) components; limit is (%i).' % (list_len, number_of_files)))
if (list_len <= 0):
raise ValueError('Compose operation requires at least one component; 0 provided.')
if (files_metadata is None):
files_metadata = []
elif (len(files_metadata) > list_len):
raise ValueError(('files_metadata contains more entries(%i) than file_list(%i)' % (len(files_metadata), list_len)))
list_of_files = []
for (source_file, meta_data) in itertools.izip_longest(file_list, files_metadata):
if (not isinstance(source_file, str)):
raise TypeError('Each item of file_list must be a string')
if source_file.startswith('/'):
logging.warn('Detected a "/" at the start of the file, Unless the file name contains a "/" it may cause files to be misread')
if source_file.startswith(bucket):
logging.warn('Detected bucket name at the start of the file, must not specify the bucket when listing file_names. May cause files to be misread')
common.validate_file_path((bucket + source_file))
list_entry = {}
if (meta_data is not None):
list_entry.update(meta_data)
list_entry['Name'] = source_file
list_of_files.append(list_entry)
return (list_of_files, bucket) | Validates the file_list and merges the file_list, files_metadata.
Args:
destination: Path to the file (ie. /destination_bucket/destination_file).
file_list: List of files to compose, see compose for details.
files_metadata: Meta details for each file in the file_list.
number_of_files: Maximum number of files allowed in the list.
Returns:
A tuple (list_of_files, bucket):
list_of_files: Ready to use dict version of the list.
bucket: bucket name extracted from the file paths. | codesearchnet |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.