code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def fill_dataset_tree(self, tree, data_sets): tree.model().removeRows(0, tree.model().rowCount()) for index, (time, script) in enumerate(data_sets.items()): name = script.settings['tag'] type = script.name item_time = QtGui.QStandardItem(str(time)) item_name = QtGui.QStandardItem(str(name)) item_type = QtGui.QStandardItem(str(type)) item_time.setSelectable(False) item_time.setEditable(False) item_type.setSelectable(False) item_type.setEditable(False) tree.model().appendRow([item_time, item_name, item_type])
fills the tree with data sets where datasets is a dictionary of the form Args: tree: data_sets: a dataset Returns:
juraj-google-style
def clamp(value, maximum=None): value = max(value, 0) if (maximum is not None): return min(value, maximum) else: return value
Clamp numeric values to be non-negative, an optionally, less than a given maximum. Args: value (float) : A number to clamp. maximum (float, optional) : A max bound to to clamp to. If None, there is no upper bound, and values are only clamped to be non-negative. (default: None) Returns: float
codesearchnet
def get_string(self, significant_figures=6): ph = ('{:.%df}' % significant_figures) lines = [] for (bound, d) in zip(self.bounds, 'xyz'): fillers = (bound + ([d] * 2)) bound_format = ' '.join((([ph] * 2) + [' {}lo {}hi'])) lines.append(bound_format.format(*fillers)) if self.tilt: tilt_format = ' '.join((([ph] * 3) + [' xy xz yz'])) lines.append(tilt_format.format(*self.tilt)) return '\n'.join(lines)
Returns the string representation of simulation box in LAMMPS data file format. Args: significant_figures (int): No. of significant figures to output for box settings. Default to 6. Returns: String representation
codesearchnet
def iso_date(d) -> str: if isinstance(d, datetime): return d.isoformat() elif isinstance(d, date): return datetime.combine(d, datetime.min.time()).isoformat() else: try: datetime.strptime(d, '%Y-%m-%dT%H:%M:%S') return d except ValueError: try: datetime.strptime(d, '%Y-%m-%d') return d + "T00:00:00" except ValueError: pass raise ISODateError("Can not convert value to ISO format for kg")
Return iso format of a date Args: d: Returns: str
juraj-google-style
def get_config(self): raise NotImplementedError(f'{self} does not implement get_config()')
Returns the config of the quantizer. A quantizer config is a Python dictionary (serializable) containing all configuration parameters of the quantizer. The same quantizer can be reinstantiated later (without any saved state) from this configuration. This method is optional if you are just training and executing models, exporting to and from SavedModels, or using weight checkpoints. This method is required for Keras `model_to_estimator`, saving and loading models to HDF5 formats, Keras model cloning, some visualization utilities, and exporting models to and from JSON. Returns: Python dictionary.
github-repos
def predict_on_batch(self, x): raise NotImplementedError
Returns predictions for a single batch of samples. Args: x: Input data. It must be array-like. Returns: NumPy array(s) of predictions.
github-repos
def _read_hip_para(self, length, *, version): counter = 0 optkind = list() options = dict() while (counter < length): kind = self._read_binary(2) if (not kind): break code = int(kind, base=2) cbit = (True if int(kind[15], base=2) else False) clen = self._read_unpack(2) plen = ((11 + clen) - ((clen + 3) % 8)) dscp = _HIP_PARA.get(code, 'Unassigned') data = _HIP_PROC(dscp)(self, code, cbit, clen, desc=dscp, length=plen, version=version) counter += plen if (dscp in optkind): if isinstance(options[dscp], tuple): options[dscp] += (Info(data),) else: options[dscp] = (Info(options[dscp]), Info(data)) else: optkind.append(dscp) options[dscp] = data if (counter != length): raise ProtocolError(f'HIPv{version}: invalid format') return (tuple(optkind), options)
Read HIP parameters. Positional arguments: * length -- int, length of parameters Keyword arguments: * version -- int, HIP version Returns: * dict -- extracted HIP parameters
codesearchnet
def MatchBestComponentName(self, component): fd = self.OpenAsContainer() file_listing = set(fd.ListNames()) if component not in file_listing: lower_component = component.lower() for x in file_listing: if lower_component == x.lower(): component = x break if fd.supported_pathtype != self.pathspec.pathtype: new_pathspec = rdf_paths.PathSpec( path=component, pathtype=fd.supported_pathtype) else: new_pathspec = self.pathspec.last.Copy() new_pathspec.path = component return new_pathspec
Returns the name of the component which matches best our base listing. In order to do the best case insensitive matching we list the files in the base handler and return the base match for this component. Args: component: A component name which should be present in this directory. Returns: the best component name.
juraj-google-style
def _update_record(self, identifier, rtype=None, name=None, content=None): if (identifier is not None): identifier = int(identifier) records = self._list_records_internal(identifier=identifier) else: records = self._list_records_internal(name=name, rtype=rtype) LOGGER.debug('Records to update (%d): %s', len(records), records) assert records, 'No record found to update' success = True for record in records: name = (name if (name is not None) else record['name']) rtype = (rtype if (rtype is not None) else record['type']) content = (content if (content is not None) else record['content']) success = (success and self._create_record_internal(rtype, name, content, record['id'])) return success
Update a DNS entry identified by identifier or name in the domain zone. Any non given argument will leave the current value of the DNS entry. Args: identifier (str): The easyname id of the DNS entry to update. [rtype] (str): The DNS rtype (e.g. A, TXT, MX, etc) of the new entry. [name] (str): The name of the new DNS entry, e.g the domain for which a MX entry shall be valid. [content] (str): The content of the new DNS entry, e.g. the mail server hostname for a MX entry. Returns: bool: True if the record was updated successfully, False otherwise. Raises: AssertionError: When a request returns unexpected or unknown data.
codesearchnet
def unescape(cls, text: str) -> str: chop = text.split("\\", 1) try: return (chop[0] if len(chop) == 1 else chop[0] + cls.unescape_map[chop[1][0]] + cls.unescape(chop[1][1:])) except KeyError: raise InvalidArgument(text) from None
Replace escape sequence with corresponding characters. Args: text: Text to unescape.
juraj-google-style
def _ImageDimensions(image, rank): if image.get_shape().is_fully_defined(): return image.get_shape().as_list() else: static_shape = image.get_shape().with_rank(rank).as_list() dynamic_shape = array_ops_stack.unstack(array_ops.shape(image), rank) return [s if s is not None else d for s, d in zip(static_shape, dynamic_shape)]
Returns the dimensions of an image tensor. Args: image: A rank-D Tensor. For 3-D of shape: `[height, width, channels]`. rank: The expected rank of the image Returns: A list of corresponding to the dimensions of the input image. Dimensions that are statically known are python integers, otherwise, they are integer scalar tensors.
github-repos
def GetFileAndLine(component): if inspect.isbuiltin(component): return (None, None) try: filename = inspect.getsourcefile(component) except TypeError: return (None, None) try: unused_code, lineindex = inspect.findsource(component) lineno = lineindex + 1 except (OSError, IndexError): lineno = None return (filename, lineno)
Returns the filename and line number of component. Args: component: A component to find the source information for, usually a class or routine. Returns: filename: The name of the file where component is defined. lineno: The line number where component is defined.
github-repos
def strip_prefix_from_items(prefix, items): items_no_prefix = [] for item in items: if item.startswith(prefix): items_no_prefix.append(item[len(prefix):]) else: items_no_prefix.append(item) return items_no_prefix
Strips out the prefix from each of the items if it is present. Args: prefix: the string for that you wish to strip from the beginning of each of the items. items: a list of strings that may or may not contain the prefix you want to strip out. Returns: items_no_prefix: a copy of the list of items (same order) without the prefix (if present).
codesearchnet
def encode(self, s): if s.endswith(".mp3"): out_filepath = s[:-4] + ".wav" call([ "sox", "--guard", s, "-r", "16k", "-b", "16", "-c", "1", out_filepath ]) s = out_filepath elif not s.endswith(".wav"): out_filepath = s + ".wav" if not os.path.exists(out_filepath): call(["sox", "-r", "16k", "-b", "16", "-c", "1", s, out_filepath]) s = out_filepath rate, data = wavfile.read(s) assert rate == self._sample_rate assert len(data.shape) == 1 if data.dtype not in [np.float32, np.float64]: data = data.astype(np.float32) / np.iinfo(data.dtype).max return data.tolist()
Transform a string with a filename into a list of float32. Args: s: path to the file with a waveform. Returns: samples: list of int16s
juraj-google-style
def start(self, name: str, increment_count: bool=True) -> None: if (not self._timing): return now = get_now_utc_pendulum() if self._stack: last = self._stack[(- 1)] self._totaldurations[last] += (now - self._starttimes[last]) if (name not in self._starttimes): self._totaldurations[name] = datetime.timedelta() self._count[name] = 0 self._starttimes[name] = now if increment_count: self._count[name] += 1 self._stack.append(name)
Start a named timer. Args: name: name of the timer increment_count: increment the start count for this timer
codesearchnet
def __init__(self, rfile, maxlen, bufsize=8192): self.rfile = rfile self.maxlen = maxlen self.bytes_read = 0 self.buffer = EMPTY self.bufsize = bufsize self.closed = False
Initialize ChunkedRFile instance. Args: rfile (file): file encoded with the 'chunked' transfer encoding maxlen (int): maximum length of the file being read bufsize (int): size of the buffer used to read the file
juraj-google-style
def collect_members(module_to_name): members = {} for (module, module_name) in module_to_name.items(): all_names = getattr(module, '__all__', None) for (name, member) in inspect.getmembers(module): if ((inspect.isfunction(member) or inspect.isclass(member)) and (not _always_drop_symbol_re.match(name)) and ((all_names is None) or (name in all_names))): fullname = ('%s.%s' % (module_name, name)) if (name in members): (other_fullname, other_member) = members[name] if (member is not other_member): raise RuntimeError(('Short name collision between %s and %s' % (fullname, other_fullname))) if (len(fullname) == len(other_fullname)): raise RuntimeError(("Can't decide whether to use %s or %s for %s: both full names have length %d" % (fullname, other_fullname, name, len(fullname)))) if (len(fullname) > len(other_fullname)): continue members[name] = (fullname, member) return members
Collect all symbols from a list of modules. Args: module_to_name: Dictionary mapping modules to short names. Returns: Dictionary mapping name to (fullname, member) pairs.
codesearchnet
def delete_tag(self, tag_name, **kwargs): resp = self._delete(self._u(self._TAG_ENDPOINT_SUFFIX, tag_name), **kwargs) resp.raise_for_status() return resp
delete a tag by name Args: tag_name (string): name of tag to delete
codesearchnet
def _normalize_hparams(hparams): result = {} for (k, v) in six.iteritems(hparams): if isinstance(k, HParam): k = k.name if k in result: raise ValueError("multiple values specified for hparam %r" % (k,)) result[k] = v return result
Normalize a dict keyed by `HParam`s and/or raw strings. Args: hparams: A `dict` whose keys are `HParam` objects and/or strings representing hyperparameter names, and whose values are hyperparameter values. No two keys may have the same name. Returns: A `dict` whose keys are hyperparameter names (as strings) and whose values are the corresponding hyperparameter values. Raises: ValueError: If two entries in `hparams` share the same hyperparameter name.
juraj-google-style
def _GetDateTime(self, filetime): if (filetime == 0): return dfdatetime_semantic_time.SemanticTime('Not set') return dfdatetime_filetime.Filetime(timestamp=filetime)
Retrieves the date and time from a FILETIME timestamp. Args: filetime (int): FILETIME timestamp. Returns: dfdatetime.DateTimeValues: date and time.
codesearchnet
def list(self, pattern='*'): if (self._descriptors is None): self._descriptors = self._client.list_metric_descriptors(filter_string=self._filter_string, type_prefix=self._type_prefix) return [metric for metric in self._descriptors if fnmatch.fnmatch(metric.type, pattern)]
Returns a list of metric descriptors that match the filters. Args: pattern: An optional pattern to further filter the descriptors. This can include Unix shell-style wildcards. E.g. ``"compute*"``, ``"*cpu/load_??m"``. Returns: A list of MetricDescriptor objects that match the filters.
codesearchnet
def byte_adaptor(fbuffer): if six.PY3: strings = fbuffer.read().decode('latin-1') fbuffer = six.StringIO(strings) return fbuffer else: return fbuffer
provides py3 compatibility by converting byte based file stream to string based file stream Arguments: fbuffer: file like objects containing bytes Returns: string buffer
juraj-google-style
def check(self, dsm, simplicity_factor=2, **kwargs): economy_of_mechanism = False message = '' data = dsm.data categories = dsm.categories dsm_size = dsm.size[0] if (not categories): categories = (['appmodule'] * dsm_size) dependency_number = 0 for i in range(0, dsm_size): for j in range(0, dsm_size): if ((categories[i] not in ('framework', 'corelib')) and (categories[j] not in ('framework', 'corelib')) and (data[i][j] > 0)): dependency_number += 1 if (dependency_number < (dsm_size * simplicity_factor)): economy_of_mechanism = True else: message = ' '.join([('Number of dependencies (%s)' % dependency_number), ('> number of rows (%s)' % dsm_size), ('* simplicity factor (%s) = %s' % (simplicity_factor, (dsm_size * simplicity_factor)))]) return (economy_of_mechanism, message)
Check economy of mechanism. As first abstraction, number of dependencies between two modules < 2 * the number of modules (dependencies to the framework are NOT considered). Args: dsm (:class:`DesignStructureMatrix`): the DSM to check. simplicity_factor (int): simplicity factor. Returns: bool: True if economic, else False
codesearchnet
def open_shards(glob_pattern, mode='rt', encoding='utf-8'): if 'b' in mode: encoding = None with tempfile.NamedTemporaryFile(delete=False) as out_file: for shard in glob.glob(glob_pattern): with open(shard, 'rb') as in_file: out_file.write(in_file.read()) concatenated_file_name = out_file.name return io.open(concatenated_file_name, mode, encoding=encoding)
Returns a composite file of all shards matching the given glob pattern. Args: glob_pattern (str): Pattern used to match files which should be opened. mode (str): Specify the mode in which the file should be opened. For available modes, check io.open() documentation. encoding (str): Name of the encoding used to decode or encode the file. This should only be used in text mode. Returns: A stream with the contents of the opened files.
github-repos
def __cloudflare_list_zone_records(self, *, account, zoneID, **kwargs): done = False records = {} page = 1 while not done: kwargs['page'] = page response = self.__cloudflare_request( account=account, path='/zones/{}/dns_records'.format(zoneID), args=kwargs ) info = response['result_info'] if 'total_pages' not in info or page >= info['total_pages']: done = True else: page += 1 for record in response['result']: if record['name'] in records: records[record['name']]['value'] = sorted(records[record['name']]['value'] + [record['content']]) else: records[record['name']] = { 'name': record['name'], 'value': sorted([record['content']]), 'type': record['type'] } return list(records.values())
Helper function to list all records on a CloudFlare DNS Zone. Returns a `dict` containing the records and their information. Args: account (:obj:`CloudFlareAccount`): A CloudFlare Account object zoneID (`int`): Internal CloudFlare ID of the DNS zone **kwargs (`dict`): Additional arguments to be consumed by the API endpoint Returns: :obj:`dict` of `str`: `dict`
juraj-google-style
def ParseSMS(self, parser_mediator, query, row, **unused_kwargs): query_hash = hash(query) phone_number = self._GetRowValue(query_hash, row, 'dstnum_sms') if phone_number: phone_number = phone_number.replace(' ', '') event_data = SkypeSMSEventData() event_data.number = phone_number event_data.query = query event_data.text = self._GetRowValue(query_hash, row, 'msg_sms') timestamp = self._GetRowValue(query_hash, row, 'time_sms') if timestamp: date_time = dfdatetime_posix_time.PosixTime(timestamp=timestamp) event = time_events.DateTimeValuesEvent(date_time, 'SMS from Skype') parser_mediator.ProduceEventWithEventData(event, event_data)
Parses an SMS. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. query (str): query that created the row. row (sqlite3.Row): row resulting from query.
juraj-google-style
def _orthogonal_matrix(self, n): a = random_ops.random_normal([n, n], dtype=self.dtype, seed=self.seed) if self.seed: self.seed += 1 q, r = gen_linalg_ops.qr(a) d = array_ops.diag_part(r) q *= math_ops.sign(d) return q
Construct an n x n orthogonal matrix. Args: n: Dimension. Returns: A n x n orthogonal matrix.
github-repos
def where(condition, x1=None, x2=None): if x1 is None and x2 is not None or (x1 is not None and x2 is None): raise ValueError('`x1` and `x2` either both should be `None` or both should have non-None value.') if any_symbolic_tensors((condition, x1, x2)): return Where().symbolic_call(condition, x1, x2) return backend.numpy.where(condition, x1, x2)
Return elements chosen from `x1` or `x2` depending on `condition`. Args: condition: Where `True`, yield `x1`, otherwise yield `x2`. x1: Values from which to choose when `condition` is `True`. x2: Values from which to choose when `condition` is `False`. Returns: A tensor with elements from `x1` where `condition` is `True`, and elements from `x2` where `condition` is `False`.
github-repos
def cartesian(self,subsets=None,step_pixels=100,max_distance_pixels=150,*args,**kwargs): n = Cartesian.read_cellframe(self,subsets=subsets,step_pixels=step_pixels,max_distance_pixels=max_distance_pixels,prune_neighbors=False,*args,**kwargs) if 'measured_regions' in kwargs: n.measured_regions = kwargs['measured_regions'] else: n.measured_regions = self.get_measured_regions() if 'measured_phenotypes' in kwargs: n.measured_phenotypes = kwargs['measured_phenotypes'] else: n.measured_phenotypes = self.phenotypes n.microns_per_pixel = self.microns_per_pixel return n
Return a class that can be used to create honeycomb plots Args: subsets (list): list of SubsetLogic objects step_pixels (int): distance between hexagons max_distance_pixels (int): the distance from each point by which to caclulate the quanitty of the phenotype for that area Returns: Cartesian: returns a class that holds the layout of the points to plot.
juraj-google-style
def categorize(self, categories, default=None): return dim(self, categorize, categories=categories, default=default)
Replaces discrete values with supplied categories Replaces discrete values in input array into a fixed set of categories defined either as a list or dictionary. Args: categories: List or dict of categories to map inputs to default: Default value to assign if value not in categories
juraj-google-style
def write(self, output_stream, kmip_version=enums.KMIPVersion.KMIP_1_0): local_stream = utils.BytearrayStream() if len(self._credentials) == 0: raise ValueError("Authentication struct missing credentials.") for credential in self._credentials: credential.write(local_stream, kmip_version=kmip_version) self.length = local_stream.length() super(Authentication, self).write( output_stream, kmip_version=kmip_version ) output_stream.write(local_stream.buffer)
Write the data encoding the Authentication struct to a stream. Args: output_stream (stream): A data stream in which to encode object data, supporting a write method; usually a BytearrayStream object. kmip_version (KMIPVersion): An enumeration defining the KMIP version with which the object will be encoded. Optional, defaults to KMIP 1.0.
juraj-google-style
def getTickTock(self, vals): val0, val1 = vals try: _tick = self._getLiftValu(val0) except ValueError as e: raise s_exc.BadTypeValu(name=self.name, valu=val0, mesg='Unable to process the value for val0 in getTickTock.') sortval = False if isinstance(val1, str): if val1.startswith(('+-', '-+')): sortval = True delt = s_time.delta(val1[2:]) _tock = _tick + delt _tick = _tick - delt elif val1.startswith('-'): sortval = True _tock = self._getLiftValu(val1, relto=_tick) else: _tock = self._getLiftValu(val1, relto=_tick) else: _tock = self._getLiftValu(val1, relto=_tick) if sortval and _tick >= _tock: tick = min(_tick, _tock) tock = max(_tick, _tock) return tick, tock return _tick, _tock
Get a tick, tock time pair. Args: vals (list): A pair of values to norm. Returns: (int, int): A ordered pair of integers.
juraj-google-style
async def count(self, text, opts=None): i = 0 async for _ in self.cell.eval(text, opts=opts, user=self.user): i += 1 return i
Count the number of nodes which result from a storm query. Args: text (str): Storm query text. opts (dict): Storm query options. Returns: (int): The number of nodes resulting from the query.
codesearchnet
def rpow(self, other, axis="columns", level=None, fill_value=None): return self._binary_op( "rpow", other, axis=axis, level=level, fill_value=fill_value )
Pow this DataFrame against another DataFrame/Series/scalar. Args: other: The object to use to apply the pow against this. axis: The axis to pow over. level: The Multilevel index level to apply pow over. fill_value: The value to fill NaNs with. Returns: A new DataFrame with the Pow applied.
juraj-google-style
def roc_auc_score(y_true: Union[List[List[float]], List[List[int]], np.ndarray], y_pred: Union[List[List[float]], List[List[int]], np.ndarray]) -> float: try: return sklearn.metrics.roc_auc_score(np.squeeze(np.array(y_true)), np.squeeze(np.array(y_pred)), average="macro") except ValueError: return 0.
Compute Area Under the Curve (AUC) from prediction scores. Args: y_true: true binary labels y_pred: target scores, can either be probability estimates of the positive class Returns: Area Under the Curve (AUC) from prediction scores
juraj-google-style
def get_backend_engine(self, name, **kwargs): if name not in self._engines: msg = "Given settings backend is unknowed: {}" raise SettingsBackendError(msg.format(name)) return self._engines[name](**kwargs)
Get backend engine from given name. Args: (string): Path to validate. Raises: boussole.exceptions.SettingsBackendError: If given backend name does not match any available engine. Returns: object: Instance of selected backend engine.
juraj-google-style
def get_sample_window(self, type_tag, size=10): size = size * 1024 * 1024 cursor = self.database[self.sample_collection].find({'type_tag': type_tag}, {'md5': 1,'length': 1}).sort('import_time',pymongo.DESCENDING) total_size = 0 md5_list = [] for item in cursor: if total_size > size: return md5_list md5_list.append(item['md5']) total_size += item['length'] return md5_list
Get a window of samples not to exceed size (in MB). Args: type_tag: Type of sample ('exe','pcap','pdf','json','swf', or ...). size: Size of samples in MBs. Returns: a list of md5s.
juraj-google-style
def update_swarm(self, version, swarm_spec=None, rotate_worker_token=False, rotate_manager_token=False): url = self._url('/swarm/update') response = self._post_json(url, data=swarm_spec, params={'rotateWorkerToken': rotate_worker_token, 'rotateManagerToken': rotate_manager_token, 'version': version}) self._raise_for_status(response) return True
Update the Swarm's configuration Args: version (int): The version number of the swarm object being updated. This is required to avoid conflicting writes. swarm_spec (dict): Configuration settings to update. Use :py:meth:`~docker.api.swarm.SwarmApiMixin.create_swarm_spec` to generate a valid configuration. Default: ``None``. rotate_worker_token (bool): Rotate the worker join token. Default: ``False``. rotate_manager_token (bool): Rotate the manager join token. Default: ``False``. Returns: ``True`` if the request went through. Raises: :py:class:`docker.errors.APIError` If the server returns an error.
codesearchnet
async def verify_docker_worker_task(chain, link): if chain != link: check_interactive_docker_worker(link) verify_docker_image_sha(chain, link)
Docker-worker specific checks. Args: chain (ChainOfTrust): the chain we're operating on link (ChainOfTrust or LinkOfTrust): the trust object for the signing task. Raises: CoTError: on failure.
juraj-google-style
def all(self, data={}, **kwargs): return super(Subscription, self).all(data, **kwargs)
Fetch all Subscription entities Returns: Dictionary of Subscription data
codesearchnet
def reduce_by(self, package_request): if self.pr: reqstr = _short_req_str(package_request) self.pr.passive('reducing %s wrt %s...', self, reqstr) if self.solver.optimised: if (package_request in self.been_reduced_by): return (self, []) if ((package_request.range is None) or (package_request.name not in self.fam_requires)): return (self, []) with self.solver.timed(self.solver.reduction_time): return self._reduce_by(package_request)
Remove variants whos dependencies conflict with the given package request. Returns: (VariantSlice, [Reduction]) tuple, where slice may be None if all variants were reduced.
codesearchnet
def emboss_pepstats_on_fasta(infile, outfile='', outdir='', outext='.pepstats', force_rerun=False): outfile = ssbio.utils.outfile_maker(inname=infile, outname=outfile, outdir=outdir, outext=outext) program = 'pepstats' pepstats_args = '-sequence="{}" -outfile="{}"'.format(infile, outfile) cmd_string = '{} {}'.format(program, pepstats_args) ssbio.utils.command_runner(cmd_string, force_rerun_flag=force_rerun, outfile_checker=outfile, silent=True) return outfile
Run EMBOSS pepstats on a FASTA file. Args: infile: Path to FASTA file outfile: Name of output file without extension outdir: Path to output directory outext: Extension of results file, default is ".pepstats" force_rerun: Flag to rerun pepstats Returns: str: Path to output file.
juraj-google-style
def GetApprovalForObject(object_urn, token=None, username=""): if token is None: raise access_control.UnauthorizedAccess( "No token given, cannot authenticate.") if not username: username = token.username approvals_root_urn = aff4.ROOT_URN.Add("ACL").Add( object_urn.Path()).Add(username) children_urns = list(aff4.FACTORY.ListChildren(approvals_root_urn)) if not children_urns: raise access_control.UnauthorizedAccess( "No approval found for user %s" % utils.SmartStr(username), subject=object_urn) last_error = None approvals = aff4.FACTORY.MultiOpen( children_urns, mode="r", aff4_type=Approval, age=aff4.ALL_TIMES, token=token) for approval in approvals: try: test_token = access_control.ACLToken( username=username, reason=approval.Get(approval.Schema.REASON)) approval.CheckAccess(test_token) return test_token except access_control.UnauthorizedAccess as e: last_error = e if last_error: raise access_control.UnauthorizedAccess(last_error, subject=object_urn) else: raise access_control.UnauthorizedAccess( "Couldn't open any of %d approvals " "for user %s" % (len(children_urns), utils.SmartStr(username)), subject=object_urn)
Looks for approvals for an object and returns available valid tokens. Args: object_urn: Urn of the object we want access to. token: The token to use to lookup the ACLs. username: The user to get the approval for, if "" we get it from the token. Returns: A token for access to the object on success, otherwise raises. Raises: UnauthorizedAccess: If there are no valid approvals available.
juraj-google-style
def checksum1(data, stringlength): value_buffer = 0 for count in range(0, stringlength): value_buffer = value_buffer ^ data[count] return value_buffer&0xFE
Calculate Checksum 1 Calculate the ckecksum 1 required for the herkulex data packet Args: data (list): the data of which checksum is to be calculated stringlength (int): the length of the data Returns: int: The calculated checksum 1
juraj-google-style
def from_json(cls, json): if json[cls.KEY_RANGE_PARAM] is None: key_ranges = None else: key_ranges = [] for k in json[cls.KEY_RANGE_PARAM]: if k: key_ranges.append(key_range.KeyRange.from_json(k)) else: key_ranges.append(None) if json[cls.NAMESPACE_RANGE_PARAM] is None: ns_range = None else: ns_range = namespace_range.NamespaceRange.from_json_object( json[cls.NAMESPACE_RANGE_PARAM]) if json[cls.CURRENT_KEY_RANGE_PARAM] is None: current_key_range = None else: current_key_range = key_range.KeyRange.from_json( json[cls.CURRENT_KEY_RANGE_PARAM]) return cls( json[cls.ENTITY_KIND_PARAM], key_ranges, ns_range, json[cls.BATCH_SIZE_PARAM], current_key_range, filters=json.get(cls.FILTERS_PARAM))
Create new DatastoreInputReader from the json, encoded by to_json. Args: json: json map representation of DatastoreInputReader. Returns: an instance of DatastoreInputReader with all data deserialized from json.
juraj-google-style
def substitute(self, var_map): if (self in var_map): return var_map[self] return self._substitute(var_map)
Substitute sub-expressions Args: var_map (dict): Dictionary with entries of the form ``{expr: substitution}``
codesearchnet
def initialize(self): if ops.executing_eagerly_outside_functions(): self._iterator._eager_reset() return [] else: return [self._iterator.initializer]
Initialize underlying iterator. In eager execution, this simply recreates the underlying iterator. In graph execution, it returns the initializer ops for the underlying iterator. Returns: A list of any initializer ops that should be run.
github-repos
def get_catalog_results(self, content_filter_query, query_params=None, traverse_pagination=False): query_params = query_params or {} try: endpoint = getattr(self.client, self.SEARCH_ALL_ENDPOINT) response = endpoint().post(data=content_filter_query, **query_params) if traverse_pagination: response['results'] = self.traverse_pagination(response, endpoint, content_filter_query, query_params) response['next'] = response['previous'] = None except Exception as ex: LOGGER.exception( 'Attempted to call course-discovery search/all/ endpoint with the following parameters: ' 'content_filter_query: %s, query_params: %s, traverse_pagination: %s. ' 'Failed to retrieve data from the catalog API. content -- [%s]', content_filter_query, query_params, traverse_pagination, getattr(ex, 'content', '') ) raise ex return response
Return results from the discovery service's search/all endpoint. Arguments: content_filter_query (dict): query parameters used to filter catalog results. query_params (dict): query parameters used to paginate results. traverse_pagination (bool): True to return all results, False to return the paginated response. Defaults to False. Returns: dict: Paginated response or all the records.
juraj-google-style
def samefile(path1, path2): (path1, path1_is_storage) = format_and_is_storage(path1) (path2, path2_is_storage) = format_and_is_storage(path2) if ((not path1_is_storage) and (not path2_is_storage)): return os_path_samefile(path1, path2) if ((not path1_is_storage) or (not path2_is_storage)): return False with handle_os_exceptions(): system = get_instance(path1) if (system is not get_instance(path2)): return False elif (system.relpath(path1) != system.relpath(path2)): return False return True
Return True if both pathname arguments refer to the same file or directory. Equivalent to "os.path.samefile". Args: path1 (path-like object): Path or URL. path2 (path-like object): Path or URL. Returns: bool: True if same file or directory.
codesearchnet
def from_file(cls, source, distance_weights=None, merge_same_words=False, group_marker_opening='<<', group_marker_closing='>>'): source_string = open(source, 'r').read() return cls.from_string(source_string, distance_weights, merge_same_words, group_marker_opening=group_marker_opening, group_marker_closing=group_marker_closing)
Read a string from a file and derive a ``Graph`` from it. This is a convenience function for opening a file and passing its contents to ``Graph.from_string()`` (see that for more detail) Args: source (str): the file to read and derive the graph from distance_weights (dict): dict of relative indices corresponding with word weights. See ``Graph.from_string`` for more detail. merge_same_words (bool): whether nodes which have the same value should be merged or not. group_marker_opening (str): The string used to mark the beginning of word groups. group_marker_closing (str): The string used to mark the end of word groups. Returns: Graph Example: >>> graph = Graph.from_file('cage.txt') # doctest: +SKIP >>> ' '.join(graph.pick().value for i in range(8)) # doctest: +SKIP 'poetry i have nothing to say and i'
codesearchnet
def schedule(self, function, args, kwargs): closure = Closure(function, self.closure_queue._cancellation_mgr, args=args, kwargs=kwargs) ret = closure.build_output_remote_value() self.closure_queue.put(closure) return ret
Schedules `function` to be dispatched to a worker for execution. Args: function: The function to be dispatched to a worker for execution asynchronously. args: Positional arguments for `fn`. kwargs: Keyword arguments for `fn`. Returns: A `RemoteValue` object.
github-repos
def get_organisation(self, id, name=None): return self.create_organisation(dict(id=id, name=name))
Get an organisation Returns: Organisation: The organisation with the given `id`
codesearchnet
def _split_list_into_bundles(self, output_pcollection, elements, max_element_per_bundle, element_size_fn): bundle = self._evaluation_context.create_bundle(output_pcollection) bundle_size = 0 bundles = [bundle] for element in elements: if max_element_per_bundle and bundle_size >= max_element_per_bundle: bundle = self._evaluation_context.create_bundle(output_pcollection) bundle_size = 0 bundles.append(bundle) bundle.output(element) bundle_size += element_size_fn(element) return bundles
Splits elements, an iterable, into multiple output bundles. Args: output_pcollection: PCollection that the elements belong to. elements: elements to be chunked into bundles. max_element_per_bundle: (approximately) the maximum element per bundle. If it is None, only a single bundle will be produced. element_size_fn: Function to return the size of a given element. Returns: List of output uncommitted bundles with at least one bundle.
github-repos
def metadata(self, url): _, path = self._parse_url(url) status = self._hdfs_client.status(path, strict=False) if status is None: raise BeamIOError('File not found: %s' % url) return FileMetadata(url, status[_FILE_STATUS_LENGTH], status[_FILE_STATUS_UPDATED] / 1000.0)
Fetch metadata fields of a file on the FileSystem. Args: url: string url of a file. Returns: :class:`~apache_beam.io.filesystem.FileMetadata`. Raises: ``BeamIOError``: if url doesn't exist.
github-repos
def exportUsufy(data, ext, fileH): if (ext == 'csv'): usufyToCsvExport(data, ((fileH + '.') + ext)) elif (ext == 'gml'): usufyToGmlExport(data, ((fileH + '.') + ext)) elif (ext == 'json'): usufyToJsonExport(data, ((fileH + '.') + ext)) elif (ext == 'ods'): usufyToOdsExport(data, ((fileH + '.') + ext)) elif (ext == 'png'): usufyToPngExport(data, ((fileH + '.') + ext)) elif (ext == 'txt'): usufyToTextExport(data, ((fileH + '.') + ext)) elif (ext == 'xls'): usufyToXlsExport(data, ((fileH + '.') + ext)) elif (ext == 'xlsx'): usufyToXlsxExport(data, ((fileH + '.') + ext))
Method that exports the different structures onto different formats. Args: ----- data: Data to export. ext: One of the following: csv, excel, json, ods. fileH: Fileheader for the output files. Returns: -------- Performs the export as requested by parameter.
codesearchnet
def CreateTask(self, session_identifier): task = tasks.Task(session_identifier) logger.debug('Created task: {0:s}.'.format(task.identifier)) with self._lock: self._tasks_queued[task.identifier] = task self._total_number_of_tasks += 1 self.SampleTaskStatus(task, 'created') return task
Creates a task. Args: session_identifier (str): the identifier of the session the task is part of. Returns: Task: task attribute container.
juraj-google-style
def delete(self, key): key = self._service_key(key) self._service_ops['delete'](key)
Removes the object named by `key` in `service`. Args: key: Key naming the object to remove.
codesearchnet
def build_all_reduce_device_prefixes(job_name, num_tasks): if (job_name != 'localhost'): return [('/job:%s/task:%d' % (job_name, d)) for d in range(0, num_tasks)] else: assert (num_tasks == 1) return [('/job:%s' % job_name)]
Build list of device prefix names for all_reduce. Args: job_name: "worker", "ps" or "localhost". num_tasks: number of jobs across which device names should be generated. Returns: A list of device name prefix strings. Each element spells out the full host name without adding the device. e.g. "/job:worker/task:0"
codesearchnet
def get_package(name, version, paths=None): if isinstance(version, basestring): range_ = VersionRange("==%s" % version) else: range_ = VersionRange.from_version(version, "==") it = iter_packages(name, range_, paths) try: return it.next() except StopIteration: return None
Get an exact version of a package. Args: name (str): Name of the package, eg 'maya'. version (Version or str): Version of the package, eg '1.0.0' paths (list of str, optional): paths to search for package, defaults to `config.packages_path`. Returns: `Package` object, or None if the package was not found.
juraj-google-style
def new_cells(self, name=None, formula=None): return self._impl.new_cells(name, formula).interface
Create a cells in the space. Args: name: If omitted, the model is named automatically ``CellsN``, where ``N`` is an available number. func: The function to define the formula of the cells. Returns: The new cells.
juraj-google-style
def Get(self, request, global_params=None): config = self.GetMethodConfig('Get') return self._RunMethod(config, request, global_params=global_params)
Gets the specified model resource by model ID. Args: request: (BigqueryModelsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Model) The response message.
github-repos
def _full_reduce(self, axis, map_func, reduce_func=None): if reduce_func is None: reduce_func = map_func mapped_parts = self.data.map_across_blocks(map_func) full_frame = mapped_parts.map_across_full_axis(axis, reduce_func) if axis == 0: columns = self.columns return self.__constructor__( full_frame, index=["__reduced__"], columns=columns ) else: index = self.index return self.__constructor__( full_frame, index=index, columns=["__reduced__"] )
Apply function that will reduce the data to a Pandas Series. Args: axis: 0 for columns and 1 for rows. Default is 0. map_func: Callable function to map the dataframe. reduce_func: Callable function to reduce the dataframe. If none, then apply map_func twice. Return: A new QueryCompiler object containing the results from map_func and reduce_func.
juraj-google-style
def swd_read16(self, offset): value = self._dll.JLINK_SWD_GetU16(offset) return ctypes.c_uint16(value).value
Gets a unit of ``16`` bits from the input buffer. Args: self (JLink): the ``JLink`` instance offset (int): the offset (in bits) from which to start reading Returns: The integer read from the input buffer.
juraj-google-style
def slice(inputs, start_indices, shape): if any_symbolic_tensors((inputs, start_indices)): return Slice(shape=shape).symbolic_call(inputs, start_indices) return backend.core.slice(inputs, start_indices, shape)
Return a slice of an input tensor. At a high level, this operation is an explicit replacement for array slicing e.g. `inputs[start_indices: start_indices + shape]`. Unlike slicing via brackets, this operation will accept tensor start indices on all backends, which is useful when indices dynamically computed via other tensor operations. ```python inputs = np.zeros((5, 5)) start_indices = np.array([3, 3]) shape = np.array([2, 2]) inputs = keras.ops.slice(inputs, start_indices, shape) ``` Args: inputs: A tensor, the tensor to be updated. start_indices: A list/tuple of shape `(inputs.ndim,)`, specifying the starting indices for updating. shape: The full shape of the returned slice. Returns: A tensor, has the same shape and dtype as `inputs`.
github-repos
def get_usb_serial(self, port_num): port = self.port_map[str(port_num)] arg = ''.join(['DEVICE INFO,', self._addr, '.', port]) cmd = ['esuit64', '-t', arg] info = subprocess.check_output(cmd, stderr=subprocess.STDOUT) serial = None if ('SERIAL' in info): serial_info = info.split('SERIAL:')[1] serial = serial_info.split('\n')[0].strip() use_info = info.split('BY')[1].split(' ')[1] if (use_info == 'NO'): cmd = ['esuit64', '-t', 'AUTO USE ALL'] subprocess.check_output(cmd, stderr=subprocess.STDOUT) time.sleep((50.0 / 1000.0)) else: raise ValueError('No USB device detected') return serial
Get the device serial number Args: port_num: port number on the Cambrionix unit Return: usb device serial number
codesearchnet
def string_to_scopes(scopes): if not scopes: return [] elif isinstance(scopes, six.string_types): return scopes.split(' ') else: return scopes
Converts stringifed scope value to a list. If scopes is a list then it is simply passed through. If scopes is an string then a list of each individual scope is returned. Args: scopes: a string or iterable of strings, the scopes. Returns: The scopes in a list.
juraj-google-style
def make_single_array(ds, batch_size=(8 * 1024)): if (isinstance(ds.output_types, tuple) or isinstance(ds.output_shapes, tuple)): raise ValueError('Dataset must have a single type and shape') nshapes = len(ds.output_shapes) if (nshapes > 0): raise ValueError('Dataset must be comprised of scalars (TensorShape=[])') batches = [] with tf.Session() as sess: ds = ds.batch(batch_size) iterator = ds.make_initializable_iterator() sess.run(iterator.initializer) get_next = iterator.get_next() with tqdm(desc='Elements', unit_scale=1) as pbar: try: while True: batches.append(sess.run(get_next)) pbar.update(len(batches[(- 1)])) except tf.errors.OutOfRangeError: pass if batches: return np.concatenate(batches) return np.array([], dtype=ds.output_types.as_numpy_dtype)
Create a single numpy array from a dataset. The dataset must have only one dimension, that is, the length of its `output_shapes` and `output_types` is 1, and its output shape must be `[]`, that is, every tensor in the dataset must be a scalar. Args: ds: a TF Dataset. batch_size: how many elements to read per pass Returns: a single numpy array.
codesearchnet
def na_if(series, *values): series = pd.Series(series) series[series.isin(values)] = np.nan return series
If values in a series match a specified value, change them to `np.nan`. Args: series: Series or vector, often symbolic. *values: Value(s) to convert to `np.nan` in the series.
codesearchnet
def from_api_repr(cls, resource): if ( "datasetReference" not in resource or "datasetId" not in resource["datasetReference"] ): raise KeyError( "Resource lacks required identity information:" '["datasetReference"]["datasetId"]' ) project_id = resource["datasetReference"]["projectId"] dataset_id = resource["datasetReference"]["datasetId"] dataset = cls(DatasetReference(project_id, dataset_id)) dataset._properties = copy.deepcopy(resource) return dataset
Factory: construct a dataset given its API representation Args: resource (Dict[str: object]): Dataset resource representation returned from the API Returns: google.cloud.bigquery.dataset.Dataset: Dataset parsed from ``resource``.
juraj-google-style
def custom_apply(self, path: utils.KeyPath, value_spec: pg_typing.ValueSpec, allow_partial: bool, child_transform: Optional[Callable[[utils.KeyPath, pg_typing.Field, Any], Any]]=None) -> Tuple[bool, 'Dict']: proceed_with_standard_apply = True if self._value_spec: if value_spec and (not value_spec.is_compatible(self._value_spec)): raise ValueError(utils.message_on_path(f'Dict (spec={self._value_spec!r}) cannot be assigned to an incompatible field (spec={value_spec!r}).', path)) if self._allow_partial == allow_partial: proceed_with_standard_apply = False else: self._allow_partial = allow_partial elif isinstance(value_spec, pg_typing.Dict): self._value_spec = value_spec return (proceed_with_standard_apply, self)
Implement pg.typing.CustomTyping interface. Args: path: KeyPath of current object. value_spec: Origin value spec of the field. allow_partial: Whether allow partial object to be created. child_transform: Function to transform child node values in dict_obj into their final values. Transform function is called on leaf nodes first, then on their containers, recursively. Returns: A tuple (proceed_with_standard_apply, transformed value)
github-repos
def dict_of_sets_add(dictionary, key, value): set_objs = dictionary.get(key, set()) set_objs.add(value) dictionary[key] = set_objs
Add value to a set in a dictionary by key Args: dictionary (DictUpperBound): Dictionary to which to add values key (Any): Key within dictionary value (Any): Value to add to set in dictionary Returns: None
juraj-google-style
def _binary_assert_doc_v2(sym, opname, test_var): def _decorator(func): func.__doc__ = '\n Assert the condition `x {sym} y` holds element-wise.\n\n This Op checks that `x[i] {sym} y[i]` holds for every pair of (possibly\n broadcast) elements of `x` and `y`. If both `x` and `y` are empty, this is\n trivially satisfied.\n\n If `x` {sym} `y` does not hold, `message`, as well as the first `summarize`\n entries of `x` and `y` are printed, and `InvalidArgumentError` is raised.\n\n When using inside `tf.function`, this API takes effects during execution.\n It\'s recommended to use this API with `tf.control_dependencies` to\n ensure the correct execution order.\n\n In the following example, without `tf.control_dependencies`, errors may\n not be raised at all.\n Check `tf.control_dependencies` for more details.\n\n >>> def check_size(x):\n ... with tf.control_dependencies([\n ... tf.debugging.{opname}(tf.size(x), {test_var},\n ... message=\'Bad tensor size\')]):\n ... return x\n\n >>> check_size(tf.ones([2, 3], tf.float32))\n Traceback (most recent call last):\n ...\n InvalidArgumentError: ...\n\n Args:\n x: Numeric `Tensor`.\n y: Numeric `Tensor`, same dtype as and broadcastable to `x`.\n message: A string to prefix to the default message. (optional)\n summarize: Print this many entries of each tensor. (optional)\n name: A name for this operation (optional). Defaults to "{opname}".\n\n Returns:\n Op that raises `InvalidArgumentError` if `x {sym} y` is False. This can\n be used with `tf.control_dependencies` inside of `tf.function`s to\n block followup computation until the check has executed.\n @compatibility(eager)\n returns None\n @end_compatibility\n\n Raises:\n InvalidArgumentError: if the check can be performed immediately and\n `x == y` is False. The check can be performed immediately during eager\n execution or if `x` and `y` are statically known.\n '.format(sym=sym, opname=opname, test_var=test_var) return func return _decorator
Common docstring for v2 assert_* ops that compare two tensors element-wise. Args: sym: Binary operation symbol, i.e. "==" opname: Name for the symbol, i.e. "assert_equal" test_var: A number used in the docstring example Returns: Decorator that adds the appropriate docstring to the function for symbol `sym`.
github-repos
def inspect_edge(G: AnalysisGraph, source: str, target: str): return create_statement_inspection_table( G[source][target]["InfluenceStatements"] )
'Drill down' into an edge in the analysis graph and inspect its provenance. This function prints the provenance. Args: G source target
juraj-google-style
def __eq__(self, other): return SeriesWeld( grizzly_impl.compare( self.expr, other, "==", self.weld_type ), WeldBit(), self.df, self.column_name )
Summary Args: other (TYPE): Description Returns: TYPE: Description
juraj-google-style
async def get_ticket(self, request): session = (await get_session(request)) return session.get(self.cookie_name)
Called to return the ticket for a request. Args: request: aiohttp Request object. Returns: A ticket (string like) object, or None if no ticket is available for the passed request.
codesearchnet
def get_all_artifacts_per_task_id(chain, upstream_artifacts): all_artifacts_per_task_id = {} for link in chain.links: if link.task_type in PARENT_TASK_TYPES: add_enumerable_item_to_dict( dict_=all_artifacts_per_task_id, key=link.task_id, item='public/task-graph.json' ) if link.task_type in DECISION_TASK_TYPES: add_enumerable_item_to_dict( dict_=all_artifacts_per_task_id, key=link.task_id, item='public/actions.json' ) add_enumerable_item_to_dict( dict_=all_artifacts_per_task_id, key=link.task_id, item='public/parameters.yml' ) if upstream_artifacts: for upstream_dict in upstream_artifacts: add_enumerable_item_to_dict( dict_=all_artifacts_per_task_id, key=upstream_dict['taskId'], item=upstream_dict['paths'] ) for task_id, paths in all_artifacts_per_task_id.items(): all_artifacts_per_task_id[task_id] = sorted(set(paths)) return all_artifacts_per_task_id
Return every artifact to download, including the Chain Of Trust Artifacts. Args: chain (ChainOfTrust): the chain of trust object upstream_artifacts: the list of upstream artifact definitions Returns: dict: sorted list of paths to downloaded artifacts ordered by taskId
juraj-google-style
def from_api_repr(cls, resource): entry = resource.copy() role = entry.pop("role", None) entity_type, entity_id = entry.popitem() if len(entry) != 0: raise ValueError("Entry has unexpected keys remaining.", entry) return cls(role, entity_type, entity_id)
Factory: construct an access entry given its API representation Args: resource (Dict[str, object]): Access entry resource representation returned from the API Returns: google.cloud.bigquery.dataset.AccessEntry: Access entry parsed from ``resource``. Raises: ValueError: If the resource has more keys than ``role`` and one additional key.
juraj-google-style
def sent_request(self, value): if value == self._defaults['sentRequest'] and 'sentRequest' in self._values: del self._values['sentRequest'] else: self._values['sentRequest'] = value
The sent_request property. Args: value (string). the property value.
juraj-google-style
def filter_def_file(def_file: str, filter_file: str, filtered_file: str) -> None: with open(filter_file, 'r', encoding='utf-8') as filter_file_handle: filter_json: Dict[str, Any] = json.load(filter_file_handle) inclusion_patterns: List[str] = filter_json['global'] + ['EXPORTS', '*;*'] incl_patterns: List[Pattern[str]] = [re.compile(re.escape(p).replace('\\*', '.*')) for p in inclusion_patterns] exclusion_patterns: List[str] = filter_json['local'] excl_patterns: List[Pattern[str]] = [re.compile(re.escape(p).replace('\\*', '.*')) for p in exclusion_patterns] with open(def_file, 'r') as orig_file, open(filtered_file, 'w') as filt_file: for l in orig_file: if not matches_any(excl_patterns, l) or matches_any(incl_patterns, l): filt_file.write(l)
Filters a windows .def file based on a filter .json. Args: def_file: The path to the input windows .def file. filter_file: The path to the filter file (JSON format). filtered_file: The path to the output filtered windows .def file.
github-repos
def BuildAdGroupOperations(batch_job_helper, campaign_operations, number_of_adgroups=1): adgroup_operations = [{'xsi_type': 'AdGroupOperation', 'operand': {'campaignId': campaign_operation['operand']['id'], 'id': batch_job_helper.GetId(), 'name': ('Batch Ad Group return adgroup_operations
Builds the operations adding desired number of AdGroups to given Campaigns. Note: When the AdGroups are created, they will have a different Id than those generated here as a temporary Id. This is just used to identify them in the BatchJobService. Args: batch_job_helper: a BatchJobHelper instance. campaign_operations: a list containing the operations that will add Campaigns. number_of_adgroups: an int defining the number of AdGroups to be created per Campaign. Returns: a list containing the operations that will add the desired number of AdGroups to each of the provided Campaigns.
codesearchnet
def __init__(self, job, runner, options=None): self._job = job self._runner = runner self._options = options self.metric_results = None
Initialize a new DataflowPipelineResult instance. Args: job: Job message from the Dataflow API. Could be :data:`None` if a job request was not sent to Dataflow service (e.g. template jobs). runner: DataflowRunner instance.
github-repos
def create_autocast_variable(variable): if not distributed_training_utils.is_distributed_variable(variable): return AutoCastVariable(variable) class AutoCastDistributedVariable(AutoCastVariable, variable.__class__): def __repr__(self): return '<AutoCastDistributedVariable dtype={v.dtype.name} dtype_to_cast_to={v._cast_dtype.name} inner_variable={v._variable}>'.format(v=self) return AutoCastDistributedVariable(variable)
Creates an AutoCastVariable that wraps another variable. This typically just returns `AutoCastVariable(variable)`. But, if the variable is a DistributedVariable or one of its subclasses, we instead dynamically create a class that subclasses from both AutoCastVariable and variable.__class__. This is so the returned variable will still pass `isinstance(variable, variable.__class__)`, which is required for DistributedVariables and its subclasses to work properly. Args: variable: A floating-point resource variable to wrap. Returns: An AutoCastVariable that wraps the variable.
github-repos
def compute_bleu(reference_corpus, translation_corpus, max_order=4, use_bp=True): reference_length = 0 translation_length = 0 bp = 1.0 geo_mean = 0 matches_by_order = ([0] * max_order) possible_matches_by_order = ([0] * max_order) precisions = [] for (references, translations) in zip(reference_corpus, translation_corpus): reference_length += len(references) translation_length += len(translations) ref_ngram_counts = _get_ngrams_with_counter(references, max_order) translation_ngram_counts = _get_ngrams_with_counter(translations, max_order) overlap = dict(((ngram, min(count, translation_ngram_counts[ngram])) for (ngram, count) in ref_ngram_counts.items())) for ngram in overlap: matches_by_order[(len(ngram) - 1)] += overlap[ngram] for ngram in translation_ngram_counts: possible_matches_by_order[(len(ngram) - 1)] += translation_ngram_counts[ngram] precisions = ([0] * max_order) smooth = 1.0 for i in xrange(0, max_order): if (possible_matches_by_order[i] > 0): precisions[i] = (float(matches_by_order[i]) / possible_matches_by_order[i]) if (matches_by_order[i] > 0): precisions[i] = (float(matches_by_order[i]) / possible_matches_by_order[i]) else: smooth *= 2 precisions[i] = (1.0 / (smooth * possible_matches_by_order[i])) else: precisions[i] = 0.0 if (max(precisions) > 0): p_log_sum = sum((math.log(p) for p in precisions if p)) geo_mean = math.exp((p_log_sum / max_order)) if use_bp: ratio = (translation_length / reference_length) bp = (math.exp((1 - (1.0 / ratio))) if (ratio < 1.0) else 1.0) bleu = (geo_mean * bp) return np.float32(bleu)
Computes BLEU score of translated segments against one or more references. Args: reference_corpus: list of references for each translation. Each reference should be tokenized into a list of tokens. translation_corpus: list of translations to score. Each translation should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. use_bp: boolean, whether to apply brevity penalty. Returns: BLEU score.
codesearchnet
def _ring_2d(m, n): if (m == 1): return [(0, i) for i in range(n)] if (n == 1): return [(i, 0) for i in range(m)] if ((m % 2) != 0): tf.logging.warning('Odd dimension') return [((i % m), (i ret = [(0, 0)] for i in range((m for j in range(1, n): ret.append(((2 * i), j)) for j in range((n - 1), 0, (- 1)): ret.append((((2 * i) + 1), j)) for i in range((m - 1), 0, (- 1)): ret.append((i, 0)) return ret
Ring-order of a mxn mesh. Args: m: an integer n: an integer Returns: a list of mxn pairs
codesearchnet
def to_json_string(self, use_diff: bool=True) -> str: if use_diff is True: config_dict = self.to_diff_dict() else: config_dict = self.to_dict() return json.dumps(config_dict, indent=2, sort_keys=True) + '\n'
Serializes this instance to a JSON string. Args: use_diff (`bool`, *optional*, defaults to `True`): If set to `True`, only the difference between the config instance and the default `PretrainedConfig()` is serialized to JSON string. Returns: `str`: String containing all the attributes that make up this configuration instance in JSON format.
github-repos
def get_aligned_output_features_output_indices(out_features: Optional[list[str]], out_indices: Optional[Union[list[int], tuple[int]]], stage_names: list[str]) -> tuple[list[str], list[int]]: out_indices = list(out_indices) if out_indices is not None else None verify_out_features_out_indices(out_features=out_features, out_indices=out_indices, stage_names=stage_names) output_features, output_indices = _align_output_features_output_indices(out_features=out_features, out_indices=out_indices, stage_names=stage_names) verify_out_features_out_indices(out_features=output_features, out_indices=output_indices, stage_names=stage_names) return (output_features, output_indices)
Get the `out_features` and `out_indices` so that they are aligned. The logic is as follows: - `out_features` not set, `out_indices` set: `out_features` is set to the `out_features` corresponding to the `out_indices`. - `out_indices` not set, `out_features` set: `out_indices` is set to the `out_indices` corresponding to the `out_features`. - `out_indices` and `out_features` not set: `out_indices` and `out_features` are set to the last stage. - `out_indices` and `out_features` set: they are verified to be aligned. Args: out_features (`List[str]`): The names of the features for the backbone to output. out_indices (`List[int]` or `Tuple[int]`): The indices of the features for the backbone to output. stage_names (`List[str]`): The names of the stages of the backbone.
github-repos
def get_output_embeddings(self) -> nn.Module: return None
Returns the model's output embeddings. Returns: `nn.Module`: A torch module mapping hidden states to vocabulary.
github-repos
def bulk_insert(self, rows, return_model=False): if (self.conflict_target or self.conflict_action): compiler = self._build_insert_compiler(rows) objs = compiler.execute_sql(return_id=True) if return_model: return [self.model(**dict(r, **k)) for (r, k) in zip(rows, objs)] else: return [dict(r, **k) for (r, k) in zip(rows, objs)] return super().bulk_create([self.model(**fields) for fields in rows])
Creates multiple new records in the database. This allows specifying custom conflict behavior using .on_conflict(). If no special behavior was specified, this uses the normal Django create(..) Arguments: rows: An array of dictionaries, where each dictionary describes the fields to insert. return_model (default: False): If model instances should be returned rather than just dicts. Returns: A list of either the dicts of the rows inserted, including the pk or the models of the rows inserted with defaults for any fields not specified
codesearchnet
def get_header(message, name): header = message.get(name) log.debug('Getting header {!r}: {!r}'.format(name, header)) if header: return decode_header_part(header) return six.text_type()
Gets an email.message.Message and a header name and returns the mail header decoded with the correct charset. Args: message (email.message.Message): email message object name (string): header to get Returns: decoded header
codesearchnet
def flip_variable(self, v): try: idx = self.variables.index(v) except ValueError: raise ValueError('variable {} is not a variable in constraint {}'.format(v, self.name)) if (self.vartype is dimod.BINARY): original_func = self.func def func(*args): new_args = list(args) new_args[idx] = (1 - new_args[idx]) return original_func(*new_args) self.func = func self.configurations = frozenset((((config[:idx] + ((1 - config[idx]),)) + config[(idx + 1):]) for config in self.configurations)) else: original_func = self.func def func(*args): new_args = list(args) new_args[idx] = (- new_args[idx]) return original_func(*new_args) self.func = func self.configurations = frozenset((((config[:idx] + ((- config[idx]),)) + config[(idx + 1):]) for config in self.configurations)) self.name = '{} ({} flipped)'.format(self.name, v)
Flip a variable in the constraint. Args: v (variable): Variable in the constraint to take the complementary value of its construction value. Examples: This example creates a constraint that :math:`a = b` on binary variables and flips variable a. >>> import dwavebinarycsp >>> const = dwavebinarycsp.Constraint.from_func(operator.eq, ... ['a', 'b'], dwavebinarycsp.BINARY) >>> const.check({'a': 0, 'b': 0}) True >>> const.flip_variable('a') >>> const.check({'a': 1, 'b': 0}) True >>> const.check({'a': 0, 'b': 0}) False
codesearchnet
def add(self, other_op): self._op.logEntries.extend(other_op.logEntries) self._merge_timestamps(other_op) self._merge_metric_values(other_op)
Combines `other_op` with the operation held by this aggregator. N.B. It merges the operations log entries and metric values, but makes the assumption the operation is consistent. It's the callers responsibility to ensure consistency Args: other_op ( class:`endpoints_management.gen.servicecontrol_v1_messages.Operation`): an operation merge into this one
codesearchnet
def ParsePageVisitedRow(self, parser_mediator, query, row, cache=None, database=None, **unused_kwargs): query_hash = hash(query) from_visit = self._GetRowValue(query_hash, row, 'from_visit') hidden = self._GetRowValue(query_hash, row, 'hidden') rev_host = self._GetRowValue(query_hash, row, 'rev_host') typed = self._GetRowValue(query_hash, row, 'typed') extras = [] if from_visit: extras.append('visited from: {0:s}'.format(self._GetUrl(from_visit, cache, database))) if (hidden == '1'): extras.append('(url hidden)') if (typed == '1'): extras.append('(directly typed)') else: extras.append('(URL not typed directly)') event_data = FirefoxPlacesPageVisitedEventData() event_data.host = self._ReverseHostname(rev_host) event_data.offset = self._GetRowValue(query_hash, row, 'id') event_data.query = query event_data.title = self._GetRowValue(query_hash, row, 'title') event_data.url = self._GetRowValue(query_hash, row, 'url') event_data.visit_count = self._GetRowValue(query_hash, row, 'visit_count') event_data.visit_type = self._GetRowValue(query_hash, row, 'visit_type') if extras: event_data.extra = extras timestamp = self._GetRowValue(query_hash, row, 'visit_date') if timestamp: date_time = dfdatetime_posix_time.PosixTimeInMicroseconds(timestamp=timestamp) event = time_events.DateTimeValuesEvent(date_time, definitions.TIME_DESCRIPTION_LAST_VISITED) parser_mediator.ProduceEventWithEventData(event, event_data)
Parses a page visited row. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. query (str): query that created the row. row (sqlite3.Row): row. cache (Optional[SQLiteCache]): cache. database (Optional[SQLiteDatabase]): database.
codesearchnet
def AddEvent(self, event): self._RaiseIfNotWritable() event_data_identifier = event.GetEventDataIdentifier() if event_data_identifier: if not isinstance(event_data_identifier, identifiers.SQLTableIdentifier): raise IOError('Unsupported event data identifier type: {0:s}'.format( type(event_data_identifier))) event.event_data_row_identifier = event_data_identifier.row_identifier self._AddSerializedEvent(event)
Adds an event. Args: event (EventObject): event. Raises: IOError: when the storage file is closed or read-only or if the event data identifier type is not supported. OSError: when the storage file is closed or read-only or if the event data identifier type is not supported.
juraj-google-style
def getGrid(self, use_mask=True): grid_card_name = 'WATERSHED_MASK' if (not use_mask): grid_card_name = 'ELEVATION' return self.getGridByCard(grid_card_name)
Returns GDALGrid object of GSSHA model bounds Paramters: use_mask(bool): If True, uses watershed mask. Otherwise, it uses the elevaiton grid. Returns: GDALGrid
codesearchnet
def on_predict_batch_end(self, batch, logs=None): if self._should_call_predict_batch_hooks: self._call_batch_hook(ModeKeys.PREDICT, 'end', batch, logs=logs)
Calls the `on_predict_batch_end` methods of its callbacks. Args: batch: Integer, index of batch within the current epoch. logs: Dict. Aggregated metric results up until this batch.
github-repos
def _gauss(mean: int, sigma: int) -> int: return int(random.gauss(mean, sigma))
Creates a variation from a base value Args: mean: base value sigma: gaussian sigma Returns: random value
codesearchnet
def get_identifier(identifier, module_globals, module_name): if isinstance(identifier, six.string_types): fn = module_globals.get(identifier) if (fn is None): raise ValueError('Unknown {}: {}'.format(module_name, identifier)) return fn elif callable(identifier): return identifier else: raise ValueError('Could not interpret identifier')
Helper utility to retrieve the callable function associated with a string identifier. Args: identifier: The identifier. Could be a string or function. module_globals: The global objects of the module. module_name: The module name Returns: The callable associated with the identifier.
codesearchnet
def set_intrusion_alert_through_smoke_detectors(self, activate: bool = True): data = {"intrusionAlertThroughSmokeDetectors": activate} return self._restCall( "home/security/setIntrusionAlertThroughSmokeDetectors", json.dumps(data) )
activate or deactivate if smoke detectors should "ring" during an alarm Args: activate(bool): True will let the smoke detectors "ring" during an alarm
juraj-google-style
def add_arguments(self, parser, bootstrap=False): [item.add_argument(parser, bootstrap) for item in self._get_items(bootstrap=False)]
Adds all items to the parser passed in. Args: parser (argparse.ArgumentParser): The parser to add all items to. bootstrap (bool): Flag to indicate whether you only want to mark bootstrapped items as required on the command-line.
codesearchnet
def datacenters(self): if (not self.__datacenters): self.__datacenters = Datacenters(self.__connection) return self.__datacenters
Gets the Datacenters API client. Returns: Datacenters:
codesearchnet