code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def setup(self, *args, **kwargs):
pass | Called to prepare an instance for combining.
This method can be useful if there is some state that needs to be loaded
before executing any of the other methods. The resources can then be
disposed of in ``CombineFn.teardown``.
If you are using Dataflow, you need to enable Dataflow Runner V2
before using this feature.
Args:
*args: Additional arguments and side inputs.
**kwargs: Additional arguments and side inputs. | github-repos |
def put(self, item):
with self._not_full:
if self._closed:
raise QueueClosedError()
if self._maxsize > 0:
while len(self._queue) == self._maxsize:
self._not_full.wait()
if self._closed:
raise QueueClosedError()
self._queue.append(item)
self._not_empty.notify() | Put an item into the queue.
If the queue is closed, fails immediately.
If the queue is full, blocks until space is available or until the queue
is closed by a call to close(), at which point this call fails.
Args:
item: an item to add to the queue
Raises:
QueueClosedError: if insertion failed because the queue is closed | github-repos |
def get_path_str(self, sep=os.path.sep, type_str=None):
return sep.join(list(reversed([v.label_str for v in self.parent_gen if (type_str in (None, v.type_str))]))) | Get path from root to this node.
Args:
sep: str
One or more characters to insert between each element in the path.
Defaults to "/" on Unix and "\" on Windows.
type_str:
SUBJECT_NODE_TAG, TYPE_NODE_TAG or None. If set, only include
information from nodes of that type.
Returns:
str: String describing the path from the root to this node. | codesearchnet |
def _format_param_val(self, param_val):
if isinstance(param_val, list):
return ' '.join(str(x) for x in param_val)
else:
return str(param_val) | Internal method to format values in the packmol parameter dictionaries
Args:
param_val:
Some object to turn into String
Returns:
string representation of the object | juraj-google-style |
def iterable_source(iterable, target):
it = iter(iterable)
for item in it:
try:
target.send(item)
except StopIteration:
return prepend(item, it)
return empty_iter() | Convert an iterable into a stream of events.
Args:
iterable: A series of items which will be sent to the target one by one.
target: The target coroutine or sink.
Returns:
An iterator over any remaining items. | codesearchnet |
def choose_1_from_each(lists):
if (len(lists) == 0):
(yield [])
else:
for el in lists[0]:
for next_list in choose_1_from_each(lists[1:]):
(yield ([el] + next_list)) | Takes a list of lists and returns a list of lists with one item
from each list. This new list should be the length of each list multiplied
by the others. 18 for an list with lists of 3, 2 and 3. Also the lenght
of each sub list should be same as the length of lists passed in.
Args:
lists(list of Lists): A list of lists
Returns:
list of lists: returns a list of lists constructions of one item from each
list in lists. | codesearchnet |
def garbage_collect_exports(export_dir_base, exports_to_keep):
if exports_to_keep is None:
return
version_paths = []
for filename in tf_v1.gfile.ListDirectory(export_dir_base):
path = os.path.join(
tf.compat.as_bytes(export_dir_base),
tf.compat.as_bytes(filename))
if len(filename) == 10 and filename.isdigit():
version_paths.append((int(filename), path))
oldest_version_path = sorted(version_paths)[:-exports_to_keep]
for _, path in oldest_version_path:
try:
tf_v1.gfile.DeleteRecursively(path)
except tf.errors.NotFoundError as e:
logging.warn("Can not delete %s recursively: %s", path, e) | Deletes older exports, retaining only a given number of the most recent.
Export subdirectories are assumed to be named with monotonically increasing
integers; the most recent are taken to be those with the largest values.
Args:
export_dir_base: the base directory under which each export is in a
versioned subdirectory.
exports_to_keep: Number of exports to keep. Older exports will be garbage
collected. Set to None to disable. | juraj-google-style |
def load(filename):
if not os.path.exists(filename):
LOG.error("load object - File '%s' does not exist.", filename)
return None
obj = None
with open(filename, 'rb') as obj_file:
obj = dill.load(obj_file)
return obj | Load a pickled obj from the filesystem.
You better know what you expect from the given pickle, because we don't check it.
Args:
filename (str): The filename we load the object from.
Returns:
The object we were able to unpickle, else None. | juraj-google-style |
def forward(self, input_ids: torch.Tensor, cache_position: torch.Tensor) -> torch.Tensor:
batch_size = input_ids.shape[0]
position_ids = cache_position.unsqueeze(0).expand(batch_size, -1)
outputs = self.model(input_ids=input_ids, attention_mask=None, position_ids=position_ids, past_key_values=self.cache, use_cache=True, cache_position=cache_position)
return outputs.logits | Forward pass of the module, which is compatible with the ExecuTorch llm runner.
Args:
input_ids (`torch.Tensor`): Tensor representing current input token id to the module.
cache_position (`torch.Tensor`): Tensor representing current input position in the cache.
Returns:
torch.Tensor: Logits output from the model. | github-repos |
def lookup_replicas(self, task_id: int, logical_core: int) -> List[int]:
try:
return self._task_and_cores_to_replicas[task_id][logical_core]
except KeyError:
raise ValueError('Can not find any replica in task: {} contains logical_core: {} '.format(task_id, logical_core)) | Lookup replica ids by task number and logical core.
Args:
task_id: TensorFlow task number.
logical_core: An integer, identifying a logical core.
Returns:
A sorted list of the replicas that are attached to that task and
logical_core.
Raises:
ValueError: If no replica exists in the task which contains the logical
core. | github-repos |
def add_listener(self, callback, event_type=None):
listener_uid = uuid4()
self.listeners.append({'uid': listener_uid, 'callback': callback, 'event_type': event_type})
return listener_uid | Add a listener that will send a callback when the client recieves
an event.
Args:
callback (func(roomchunk)): Callback called when an event arrives.
event_type (str): The event_type to filter for.
Returns:
uuid.UUID: Unique id of the listener, can be used to identify the listener. | codesearchnet |
def get_requirements(requirements_file="requirements.txt"):
with open(requirements_file) as fd:
lines = fd.readlines()
dependencies = []
for line in lines:
maybe_dep = line.strip()
if maybe_dep.startswith("
continue
if maybe_dep.startswith("git+"):
__, __, maybe_dep = maybe_dep.rpartition("
else:
maybe_dep, __, __ = maybe_dep.partition("
maybe_dep = maybe_dep.strip()
if maybe_dep:
dependencies.append(maybe_dep)
return dependencies | Get the contents of a file listing the requirements.
Args:
requirements_file (str): The path to the requirements file, relative
to this file.
Returns:
list: the list of requirements, or an empty list if
``requirements_file`` could not be opened or read. | juraj-google-style |
def length_of_overlap(first_start, first_end, second_start, second_end):
if first_end <= second_start or first_start >= second_end:
return 0.0
if first_start < second_start:
if first_end < second_end:
return abs(first_end - second_start)
else:
return abs(second_end - second_start)
if first_start > second_start:
if first_end > second_end:
return abs(second_end - first_start)
else:
return abs(first_end - first_start) | Find the length of the overlapping part of two segments.
Args:
first_start (float): Start of the first segment.
first_end (float): End of the first segment.
second_start (float): Start of the second segment.
second_end (float): End of the second segment.
Return:
float: The amount of overlap or 0 if they don't overlap at all. | juraj-google-style |
def fetch_tokens(self, client_id=None, client_secret=None, code=None,
redirect_uri=None, **kwargs):
client_id = client_id or self.client_id
client_secret = client_secret or self.client_secret
redirect_uri = redirect_uri or self.redirect_uri
data = {
'grant_type': 'authorization_code',
'client_id': client_id,
'client_secret': client_secret,
'code': code,
'redirect_uri': redirect_uri
}
r = self._httpclient.request(
method='POST',
url=self.token_url,
json=data,
path='/api/oauth2/RequestToken',
auth=None,
**kwargs
)
if not r.ok:
raise PanCloudError(
'%s %s: %s' % (r.status_code, r.reason, r.text)
)
try:
r_json = r.json()
except ValueError as e:
raise PanCloudError("Invalid JSON: %s" % e)
else:
if r.json().get(
'error_description'
) or r.json().get(
'error'
):
raise PanCloudError(r.text)
self.access_token = r_json.get('access_token')
self.jwt_exp = self._decode_exp(self.access_token_)
self.refresh_token = r_json.get('refresh_token')
self.write_credentials()
return r_json | Exchange authorization code for token.
Args:
client_id (str): OAuth2 client ID. Defaults to ``None``.
client_secret (str): OAuth2 client secret. Defaults to ``None``.
code (str): Authorization code. Defaults to ``None``.
redirect_uri (str): Redirect URI. Defaults to ``None``.
Returns:
dict: Response from token URL. | juraj-google-style |
def subscribe(object_type: str, subscriber: str, callback_handler: Callable=None) -> EventQueue:
key = _keys.subscribers(object_type)
DB.remove_from_list(key, subscriber)
DB.append_to_list(key, subscriber)
return EventQueue(object_type, subscriber, callback_handler) | Subscribe to the specified object type.
Returns an EventQueue object which can be used to query events
associated with the object type for this subscriber.
Args:
object_type (str): Object type
subscriber (str): Subscriber name
callback_handler (function, optional): Callback handler function.
Returns:
EventQueue, event queue object. | codesearchnet |
def ParseFileObject(self, parser_mediator, file_object):
win_registry_reader = FileObjectWinRegistryFileReader()
try:
registry_file = win_registry_reader.Open(file_object)
except IOError as exception:
parser_mediator.ProduceExtractionWarning(
'unable to open Windows Registry file with error: {0!s}'.format(
exception))
return
win_registry = dfwinreg_registry.WinRegistry()
key_path_prefix = win_registry.GetRegistryFileMapping(registry_file)
registry_file.SetKeyPathPrefix(key_path_prefix)
root_key = registry_file.GetRootKey()
if not root_key:
return
registry_find_specs = getattr(
parser_mediator.artifacts_filter_helper, 'registry_find_specs', None)
if not registry_find_specs:
try:
self._ParseRecurseKeys(parser_mediator, root_key)
except IOError as exception:
parser_mediator.ProduceExtractionWarning('{0!s}'.format(exception))
else:
artifacts_filter_helper = artifact_filters.ArtifactDefinitionsFilterHelper
if not artifacts_filter_helper.CheckKeyCompatibility(key_path_prefix):
logger.warning((
'Artifacts filters are not supported for Windows Registry file '
'with key path prefix: "{0:s}".').format(key_path_prefix))
else:
try:
win_registry.MapFile(key_path_prefix, registry_file)
self._ParseKeysFromFindSpecs(
parser_mediator, win_registry, registry_find_specs)
except IOError as exception:
parser_mediator.ProduceExtractionWarning('{0!s}'.format(exception)) | Parses a Windows Registry file-like object.
Args:
parser_mediator (ParserMediator): parser mediator.
file_object (dfvfs.FileIO): a file-like object. | juraj-google-style |
def get_conflicting_tools(self, request_only=False):
from collections import defaultdict
tool_sets = defaultdict(set)
tools_dict = self.get_tools(request_only=request_only)
for (variant, tools) in tools_dict.itervalues():
for tool in tools:
tool_sets[tool].add(variant)
conflicts = dict(((k, v) for (k, v) in tool_sets.iteritems() if (len(v) > 1)))
return conflicts | Returns tools of the same name provided by more than one package.
Args:
request_only: If True, only return the key from resolved packages
that were also present in the request.
Returns:
Dict of {tool-name: set([Variant])}. | codesearchnet |
def scalar_projection(v1, v2):
return np.dot(v1, v2) / np.linalg.norm(v2) | compute the scalar projection of v1 upon v2
Args:
v1, v2: iterable
indices 0, 1, 2 corresponding to cartesian coordinates
Returns:
3-vector of the projection of point p onto the direction of v | juraj-google-style |
def setup_engines(client=None):
if (not client):
try:
client = ipyparallel.Client()
except:
raise DistobClusterError(u"Could not connect to an ipyparallel cluster. Make\n sure a cluster is started (e.g. to use the CPUs of a\n single computer, can type 'ipcluster start')")
eids = client.ids
if (not eids):
raise DistobClusterError(u'No ipyparallel compute engines are available')
nengines = len(eids)
dv = client[eids]
dv.use_dill()
with dv.sync_imports(quiet=True):
import distob
ars = []
for i in eids:
dv.targets = i
ars.append(dv.apply_async(_remote_setup_engine, i, nengines))
dv.wait(ars)
for ar in ars:
if (not ar.successful()):
raise ar.r
if (distob.engine is None):
distob.engine = ObjectHub((- 1), client) | Prepare all iPython engines for distributed object processing.
Args:
client (ipyparallel.Client, optional): If None, will create a client
using the default ipyparallel profile. | codesearchnet |
def remove_behaviour(self, behaviour):
if not self.has_behaviour(behaviour):
raise ValueError("This behaviour is not registered")
index = self.behaviours.index(behaviour)
self.behaviours[index].kill()
self.behaviours.pop(index) | Removes a behaviour from the agent.
The behaviour is first killed.
Args:
behaviour (spade.behaviour.CyclicBehaviour): the behaviour instance to be removed | juraj-google-style |
def gallery_section(images, title):
imgs = []
while True:
img = yield marv.pull(images)
if img is None:
break
imgs.append({'src': img.relpath})
if not imgs:
return
widget = {'title': images.title, 'gallery': {'images': imgs}}
section = {'title': title, 'widgets': [widget]}
yield marv.push(section) | Create detail section with gallery.
Args:
title (str): Title to be displayed for detail section.
images: stream of marv image files
Returns
One detail section. | juraj-google-style |
class JetMoeMoA(nn.Module):
def __init__(self, config: JetMoeConfig):
super(JetMoeMoA, self).__init__()
self.num_experts = config.num_local_experts
self.input_size = config.hidden_size
self.hidden_size = config.kv_channels * config.num_key_value_heads
self.top_k = config.num_experts_per_tok
self.bias = torch.nn.Parameter(torch.empty(self.input_size))
self.input_linear = JetMoeParallelExperts(self.num_experts, self.input_size, self.hidden_size)
self.output_linear = JetMoeParallelExperts(self.num_experts, self.hidden_size, self.input_size)
self.router = JetMoeTopKGating(input_size=self.input_size, num_experts=self.num_experts, top_k=self.top_k)
def map(self, layer_input):
bsz, length, emb_size = layer_input.size()
layer_input = layer_input.reshape(-1, emb_size)
index_sorted_experts, batch_index, batch_gates, expert_size, router_logits = self.router(layer_input)
topo_info = (index_sorted_experts, batch_index, batch_gates, expert_size)
expert_inputs = layer_input[batch_index]
expert_outputs = self.input_linear(expert_inputs, expert_size)
zeros = torch.zeros((bsz * length * self.top_k, self.hidden_size), dtype=expert_outputs.dtype, device=expert_outputs.device)
layer_output = zeros.index_add(0, index_sorted_experts, expert_outputs)
layer_output = layer_output.view(bsz, length, self.top_k, -1)
return (layer_output, router_logits, topo_info)
def reduce(self, layer_input, topo_info):
bsz, length, k, hidden_size = layer_input.size()
layer_input = layer_input.reshape(-1, hidden_size)
index_sorted_experts, batch_index, batch_gates, expert_size = topo_info
expert_inputs = layer_input[index_sorted_experts]
expert_outputs = self.output_linear(expert_inputs, expert_size)
expert_outputs = expert_outputs * batch_gates[:, None]
zeros = torch.zeros((bsz * length, self.input_size), dtype=expert_outputs.dtype, device=expert_outputs.device)
layer_output = zeros.index_add(0, batch_index, expert_outputs)
layer_output = layer_output.view(bsz, length, self.input_size)
layer_output = layer_output + self.bias
return layer_output
def forward(self, layer_input):
raise NotImplementedError("This module doesn't support call and forward.") | A Sparsely gated mixture of attention layer with pairs of query- and output-projections as experts.
Args:
config:
Configuration object with model hyperparameters. | github-repos |
def dot(inputs, axes, normalize=False, **kwargs):
return Dot(axes=axes, normalize=normalize, **kwargs)(inputs) | Functional interface to the `Dot` layer.
Args:
inputs: A list of input tensors (at least 2).
axes: Integer or tuple of integers,
axis or axes along which to take the dot product.
normalize: Whether to L2-normalize samples along the
dot product axis before taking the dot product.
If set to True, then the output of the dot product
is the cosine proximity between the two samples.
**kwargs: Standard layer keyword arguments.
Returns:
A tensor, the dot product of the samples from the inputs. | github-repos |
def print_probabilities(state: State, ndigits: int = 4,
file: TextIO = None) -> None:
prob = bk.evaluate(state.probabilities())
for index, prob in np.ndenumerate(prob):
prob = round(prob, ndigits)
if prob == 0.0:
continue
ket = "".join([str(n) for n in index])
print(ket, ":", prob, file=file) | Pretty print state probabilities.
Args:
state:
ndigits: Number of digits of accuracy
file: Output stream (Defaults to stdout) | juraj-google-style |
def get_summary_dict(self, include_msd_t=False, include_mscd_t=False):
d = {'D': self.diffusivity, 'D_sigma': self.diffusivity_std_dev, 'D_charge': self.chg_diffusivity, 'D_charge_sigma': self.chg_diffusivity_std_dev, 'S': self.conductivity, 'S_sigma': self.conductivity_std_dev, 'S_charge': self.chg_conductivity, 'D_components': self.diffusivity_components.tolist(), 'S_components': self.conductivity_components.tolist(), 'D_components_sigma': self.diffusivity_components_std_dev.tolist(), 'S_components_sigma': self.conductivity_components_std_dev.tolist(), 'specie': str(self.specie), 'step_skip': self.step_skip, 'time_step': self.time_step, 'temperature': self.temperature, 'max_framework_displacement': self.max_framework_displacement, 'Haven_ratio': self.haven_ratio}
if include_msd_t:
d['msd'] = self.msd.tolist()
d['msd_components'] = self.msd_components.tolist()
d['dt'] = self.dt.tolist()
if include_mscd_t:
d['mscd'] = self.mscd.tolist()
return d | Provides a summary of diffusion information.
Args:
include_msd_t (bool): Whether to include mean square displace and
time data with the data.
include_msd_t (bool): Whether to include mean square charge displace and
time data with the data.
Returns:
(dict) of diffusion and conductivity data. | codesearchnet |
def get_iso3_country_code(cls, country, use_live=True, exception=None):
countriesdata = cls.countriesdata(use_live=use_live)
countryupper = country.upper()
len_countryupper = len(countryupper)
if len_countryupper == 3:
if countryupper in countriesdata['countries']:
return countryupper
elif len_countryupper == 2:
iso3 = countriesdata['iso2iso3'].get(countryupper)
if iso3 is not None:
return iso3
iso3 = countriesdata['countrynames2iso3'].get(countryupper)
if iso3 is not None:
return iso3
for candidate in cls.expand_countryname_abbrevs(countryupper):
iso3 = countriesdata['countrynames2iso3'].get(candidate)
if iso3 is not None:
return iso3
if exception is not None:
raise exception
return None | Get ISO3 code for cls. Only exact matches or None are returned.
Args:
country (str): Country for which to get ISO3 code
use_live (bool): Try to get use latest data from web rather than file in package. Defaults to True.
exception (Optional[ExceptionUpperBound]): An exception to raise if country not found. Defaults to None.
Returns:
Optional[str]: ISO3 country code or None | juraj-google-style |
def optimize(
self,
re_encoder_grads_list,
decoder_grads_list,
encoder_grads_list,
learning_rate,
epoch
):
self.__retrospective_encoder.optimize(re_encoder_grads_list, learning_rate, epoch)
self.__encoder_decoder_controller.optimize(
decoder_grads_list,
encoder_grads_list,
learning_rate,
epoch
) | Back propagation.
Args:
re_encoder_grads_list: re-encoder's `list` of graduations.
decoder_grads_list: decoder's `list` of graduations.
encoder_grads_list: encoder's `list` of graduations.
learning_rate: Learning rate.
epoch: Now epoch. | juraj-google-style |
def vrp_solver(path_graph, initial_solution=None, runtime_seconds=60):
routing = pywrapcp.RoutingModel(path_graph.num_nodes(),
1, path_graph.ORIGIN)
for disjunction in path_graph.iter_disjunctions():
routing.AddDisjunction(disjunction)
COST_MULTIPLIER = 1e4
def distance(i, j):
return int(path_graph.cost(i, j) * COST_MULTIPLIER)
routing.SetArcCostEvaluatorOfAllVehicles(distance)
start_time = time()
def found_solution():
t = time() - start_time
cost = routing.CostVar().Max() / COST_MULTIPLIER
print('\rBest solution at {} seconds has cost {} '.format(
int(t), cost), end='')
routing.AddAtSolutionCallback(found_solution)
if not initial_solution:
initial_solution = [i for i, _ in path_graph.iter_disjunctions()]
initial_assignment = routing.ReadAssignmentFromRoutes([initial_solution],
True)
search_parameters = pywrapcp.RoutingModel.DefaultSearchParameters()
search_parameters.time_limit_ms = runtime_seconds * 1000
search_parameters.local_search_metaheuristic = (
routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH)
assignment = routing.SolveFromAssignmentWithParameters(initial_assignment,
search_parameters)
print()
solution = []
index = routing.Start(0)
while not routing.IsEnd(index):
index = assignment.Value(routing.NextVar(index))
node = routing.IndexToNode(index)
if node != 0:
solution.append(node)
return solution | Solve a path using or-tools' Vehicle Routing Problem solver.
Params:
path_graph the PathGraph representing the problem
initial_solution a solution to start with (list of indices, not
including the origin)
runtime_seconds how long to search before returning
Returns: an ordered list of indices in the graph representing a
solution. | juraj-google-style |
def _publish_actor_class_to_key(self, key, actor_class_info):
self._worker.redis_client.hmset(key, actor_class_info)
self._worker.redis_client.rpush('Exports', key) | Push an actor class definition to Redis.
The is factored out as a separate function because it is also called
on cached actor class definitions when a worker connects for the first
time.
Args:
key: The key to store the actor class info at.
actor_class_info: Information about the actor class. | codesearchnet |
def _get_operand_name_and_index(self, numeric_verify_name: str) -> Tuple[str, int]:
tensor_name, tensor_idx = numeric_verify_name.rsplit(':', 1)
float_tensor_name = tensor_name[len(_NUMERIC_VERIFY_OP_NAME) + 1:]
if re.match('\\d', float_tensor_name[-1]):
float_tensor_name = float_tensor_name[:-1]
return (float_tensor_name, int(tensor_idx)) | Gets the index and name of NumericVerify Op's quantized input tensor.
Args:
numeric_verify_name: name of the NumericVerify op's output tensor. It has
format of `NumericVerify/{quantized_tensor_name}:{quantized_tensor_idx}`
Returns:
Tuple of (tensor_name, tensor_idx) for quantized op's output tensor. | github-repos |
def _prepare_init_params_from_job_description(cls, job_details, model_channel_name=None):
init_params = super(MXNet, cls)._prepare_init_params_from_job_description(job_details, model_channel_name)
image_name = init_params.pop('image')
framework, py_version, tag, _ = framework_name_from_image(image_name)
if not framework:
init_params['image_name'] = image_name
return init_params
init_params['py_version'] = py_version
init_params['framework_version'] = '0.12' if tag == '1.0' else framework_version_from_tag(tag)
training_job_name = init_params['base_job_name']
if framework != cls.__framework_name__:
raise ValueError("Training job: {} didn't use image for requested framework".format(training_job_name))
return init_params | Convert the job description to init params that can be handled by the class constructor
Args:
job_details: the returned job details from a describe_training_job API call.
model_channel_name (str): Name of the channel where pre-trained model data will be downloaded.
Returns:
dictionary: The transformed init_params | juraj-google-style |
def constant_value_as_shape(tensor):
if isinstance(tensor, core.Value):
return tensor_shape.TensorShape([dim if dim != -1 else None for dim in tensor.numpy()])
if tensor.get_shape().ndims == 0:
value = constant_value(tensor)
if value is None:
raise ValueError("Received a scalar with unknown value as shape; require a statically known scalar with value '-1' to describe an unknown shape.")
if value != -1:
raise ValueError(f"Received a scalar value '{value}' as shape; require a statically known scalar with value '-1' to describe an unknown shape.")
return tensor_shape.unknown_shape()
shape = tensor.get_shape().with_rank(1)
if shape == [0]:
return tensor_shape.TensorShape([])
elif tensor.op.type == 'Cast':
pre_cast = constant_value_as_shape(tensor.op.inputs[0])
if pre_cast.dims is None:
return pre_cast
cast_dtype = dtypes.as_dtype(tensor.op.get_attr('DstT'))
if cast_dtype not in (dtypes.int32, dtypes.int64):
return tensor_shape.unknown_shape(shape.dims[0].value)
dest_dtype_shape_array = np.array([x if x is not None else -1 for x in pre_cast.as_list()]).astype(cast_dtype.as_numpy_dtype)
return tensor_shape.TensorShape([x if x >= 0 else None for x in dest_dtype_shape_array])
elif tensor.op.type == 'Shape':
return tensor.op.inputs[0].get_shape()
elif tensor.op.type == 'Pack':
ret = tensor_shape.TensorShape([])
assert tensor.op.get_attr('axis') == 0
for pack_input in tensor.op.inputs:
pack_input_val = constant_value(pack_input)
if pack_input_val is None or pack_input_val < 0:
new_dim = tensor_shape.Dimension(None)
else:
new_dim = tensor_shape.Dimension(pack_input_val)
ret = ret.concatenate([new_dim])
return ret
elif tensor.op.type == 'Concat':
ret = tensor_shape.TensorShape([])
for concat_input in tensor.op.inputs[1:]:
ret = ret.concatenate(constant_value_as_shape(concat_input))
return ret
elif tensor.op.type == 'ConcatV2':
ret = tensor_shape.TensorShape([])
for concat_input in tensor.op.inputs[:-1]:
ret = ret.concatenate(constant_value_as_shape(concat_input))
return ret
elif tensor.op.type == 'StridedSlice':
try:
begin = constant_value(tensor.op.inputs[1])
end = constant_value(tensor.op.inputs[2])
strides = constant_value(tensor.op.inputs[3])
if begin is not None and end is not None and (strides is not None):
begin = begin[0]
end = end[0]
strides = strides[0]
begin_mask = tensor.op.get_attr('begin_mask')
if begin_mask == 1:
begin = None
end_mask = tensor.op.get_attr('end_mask')
if end_mask == 1:
end = None
ellipsis_mask = tensor.op.get_attr('ellipsis_mask')
new_axis_mask = tensor.op.get_attr('new_axis_mask')
shrink_axis_mask = tensor.op.get_attr('shrink_axis_mask')
valid_attributes = not ellipsis_mask and (not new_axis_mask) and (not shrink_axis_mask) and (not begin_mask or begin_mask == 1) and (not end_mask or end_mask == 1)
if valid_attributes:
prev = constant_value_as_shape(tensor.op.inputs[0])
prev = prev[begin:end:strides]
ret = tensor_shape.TensorShape(prev)
return ret
except ValueError:
pass
except TypeError:
pass
elif tensor.op.type == 'Placeholder' and tensor.op.graph.building_function and hasattr(tensor.op.graph, 'internal_captures'):
for i, capture in enumerate(tensor.op.graph.internal_captures):
if capture is tensor:
external_capture = tensor.op.graph.external_captures[i]
return constant_value_as_shape(external_capture)
ret = tensor_shape.unknown_shape(shape.dims[0].value)
value = constant_value(tensor)
if value is not None:
ret = ret.merge_with(tensor_shape.TensorShape([d if d >= 0 else None for d in value]))
return ret | A version of `constant_value()` that returns a `TensorShape`.
This version should be used when a constant tensor value is
interpreted as a (possibly partial) shape, e.g. in the shape
function for `tf.reshape()`. By explicitly requesting a
`TensorShape` as the return value, it is possible to represent
unknown dimensions; by contrast, `constant_value()` is
all-or-nothing.
Args:
tensor: The rank-0 or rank-1 Tensor to be evaluated.
Returns:
A `TensorShape` based on the constant value of the given `tensor`.
Raises:
ValueError: If the shape is rank-0 and is not statically known to be -1. | github-repos |
def GetTARInfo(self):
if (not self._tar_info):
location = getattr(self.path_spec, 'location', None)
if (location is None):
raise errors.PathSpecError('Path specification missing location.')
if (not location.startswith(self._file_system.LOCATION_ROOT)):
raise errors.PathSpecError('Invalid location in path specification.')
if (len(location) == 1):
return None
tar_file = self._file_system.GetTARFile()
try:
self._tar_info = tar_file.getmember(location[1:])
except KeyError:
pass
return self._tar_info | Retrieves the TAR info.
Returns:
tarfile.TARInfo: TAR info or None if it does not exist.
Raises:
PathSpecError: if the path specification is incorrect. | codesearchnet |
def to_hdf(self, path, key, mode='a'):
pd.DataFrame(self.serialize()).to_hdf(path, key, mode=mode, format='table', complib='zlib', complevel=9)
f = h5py.File(path, 'r+')
f[key].attrs['microns_per_pixel'] = (float(self.microns_per_pixel) if (self.microns_per_pixel is not None) else np.nan)
f.close() | Save the CellDataFrame to an hdf5 file.
Args:
path (str): the path to save to
key (str): the name of the location to save it to
mode (str): write mode | codesearchnet |
def _ParseVValueString(
self, parser_mediator, data, user_information_descriptor):
data_start_offset = (
user_information_descriptor.offset + self._V_VALUE_STRINGS_OFFSET)
data_end_offset = data_start_offset + user_information_descriptor.size
descriptor_data = data[data_start_offset:data_end_offset]
try:
username = descriptor_data.decode('utf-16-le')
except (UnicodeDecodeError, UnicodeEncodeError) as exception:
username = descriptor_data.decode('utf-16-le', errors='replace')
parser_mediator.ProduceExtractionWarning((
'unable to decode V value string with error: {0!s}. Characters '
'that cannot be decoded will be replaced with "?" or '
'"\\ufffd".').format(exception))
return username | Parses a V value string.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
data (bytes): Windows Registry V value data.
user_information_descriptor (user_information_descriptor): V value
user information descriptor.
Returns:
str: string value stored in the Windows Registry V value data. | juraj-google-style |
def get_step():
return _summary_state.step | Returns the default summary step for the current thread.
Returns:
The step set by `tf.summary.experimental.set_step()` if one has been set,
otherwise None. | github-repos |
def _merge_assets_key_collection(saved_model_proto, path):
for meta_graph in saved_model_proto.meta_graphs:
node_asset_map = {}
if (tf_v1.saved_model.constants.ASSETS_KEY in meta_graph.collection_def):
assets_any_proto = meta_graph.collection_def[tf_v1.saved_model.constants.ASSETS_KEY].any_list.value
for asset_any_proto in assets_any_proto:
asset_proto = meta_graph_pb2.AssetFileDef()
asset_any_proto.Unpack(asset_proto)
asset_filename = _get_asset_filename(path, asset_proto.filename)
node_asset_map[_get_node_name_from_tensor(asset_proto.tensor_info.name)] = asset_filename
del meta_graph.collection_def[tf_v1.saved_model.constants.ASSETS_KEY]
for node in meta_graph.graph_def.node:
asset_filepath = node_asset_map.get(node.name)
if asset_filepath:
_check_asset_node_def(node)
node.attr['value'].tensor.string_val[0] = asset_filepath | Merges the ASSETS_KEY collection into the GraphDefs in saved_model_proto.
Removes the ASSETS_KEY collection from the GraphDefs in the SavedModel and
modifies nodes with the assets filenames to point to the assets in `path`.
After this transformation, the SavedModel GraphDefs can be used without
feeding asset tensors.
Args:
saved_model_proto: SavedModel proto to be modified.
path: path where the SavedModel is being loaded from. | codesearchnet |
def lxml(self):
import lxml.etree
return lxml.etree.fromstring((e_views.XML_HEADER + self.xml()).encode('utf-8')) | render the record into a lxml document.
this is useful for querying data from the record using xpath, etc.
note: lxml must be installed.
Returns:
lxml.etree.ElementTree: the rendered and parsed xml document.
Raises:
ImportError: if lxml is not installed. | codesearchnet |
def GetConfiguredUsers(self):
if os.path.exists(self.google_users_file):
users = open(self.google_users_file).readlines()
else:
users = []
return [user.strip() for user in users] | Retrieve the list of configured Google user accounts.
Returns:
list, the username strings of users congfigured by Google. | codesearchnet |
def _bind_length_handlers(tids, user_handler, lns):
for tid in tids:
for ln in lns:
type_octet = _gen_type_octet(tid, ln)
ion_type = _TID_VALUE_TYPE_TABLE[tid]
if ln == 1 and ion_type is IonType.STRUCT:
handler = partial(_ordered_struct_start_handler, partial(user_handler, ion_type))
elif ln < _LENGTH_FIELD_FOLLOWS:
handler = partial(user_handler, ion_type, ln)
else:
handler = partial(_var_uint_field_handler, partial(user_handler, ion_type))
_HANDLER_DISPATCH_TABLE[type_octet] = handler | Binds a set of handlers with the given factory.
Args:
tids (Sequence[int]): The Type IDs to bind to.
user_handler (Callable): A function that takes as its parameters
:class:`IonType`, ``length``, and the ``ctx`` context
returning a co-routine.
lns (Sequence[int]): The low-nibble lengths to bind to. | juraj-google-style |
def get_self_attention_bias(x):
x_shape = common_layers.shape_list(x)
self_attention_bias = common_attention.attention_bias_lower_triangle(
x_shape[1])
return self_attention_bias | Creates masked self attention bias.
Args:
x: A tensor of shape [batch, length, depth]
Returns:
self_attention_bias: A tensor of shape [length, length, 1] | juraj-google-style |
def execute_script(self, script, *args):
args = [arg.base if isinstance(arg, Base) else arg for arg in args]
self.driver.execute_script(script, *args) | Execute the given script, not returning a result. This is useful for scripts that return
complex objects, such as jQuery statements. ``execute_script`` should be used over
:meth:`evaluate_script` whenever possible.
Args:
script (str): A string of JavaScript to execute.
*args: Variable length argument list to pass to the executed JavaScript string. | juraj-google-style |
def convert_strtime_datetime(dt_str):
dt, _, us = dt_str.partition(".")
dt = datetime.datetime.strptime(dt, "%Y-%m-%dT%H:%M:%S")
us = int(us.rstrip("Z"), 10)
return dt + datetime.timedelta(microseconds=us) | Converts datetime isoformat string to datetime (dt) object
Args:
:dt_str (str): input string in '2017-12-30T18:48:00.353Z' form
or similar
Returns:
TYPE: datetime object | juraj-google-style |
def encoding_specs(self, spec):
return spec._component_specs | Returns a list of `TensorSpec`(s) describing the encoding for `spec`.
See `encode` for a description of the default encoding. Subclasses may
override this default definition, when necessary.
Args:
spec: The TypeSpec whose encoding should be described.
Returns:
A nest (as defined by `tf.nest) of `tf.TypeSpec`, describing the values
that are returned by `self.encode(spec, ...)`. All TypeSpecs in this
nest must be batchable. | github-repos |
def to(self, new_unit):
return FloatWithUnit(
self * self.unit.get_conversion_factor(new_unit),
unit_type=self._unit_type,
unit=new_unit) | Conversion to a new_unit. Right now, only supports 1 to 1 mapping of
units of each type.
Args:
new_unit: New unit type.
Returns:
A FloatWithUnit object in the new units.
Example usage:
>>> e = Energy(1.1, "eV")
>>> e = Energy(1.1, "Ha")
>>> e.to("eV")
29.932522246 eV | juraj-google-style |
def info(self, code, message, compressed=False):
return ''.join([x for x in self.info_gen(code, message, compressed)]) | The complete content of an info response.
This should only used for commands that return small or known amounts of
data.
Returns:
A the complete content of a textual response. | codesearchnet |
def ProcessConfigOverrides(filename):
abs_filename = os.path.abspath(filename)
cfg_filters = []
keep_looking = True
while keep_looking:
abs_path, base_name = os.path.split(abs_filename)
if not base_name:
break
cfg_file = os.path.join(abs_path, "CPPLINT.cfg")
abs_filename = abs_path
if not os.path.isfile(cfg_file):
continue
try:
with open(cfg_file) as file_handle:
for line in file_handle:
line, _, _ = line.partition('
if not line.strip():
continue
name, _, val = line.partition('=')
name = name.strip()
val = val.strip()
if name == 'set noparent':
keep_looking = False
elif name == 'filter':
cfg_filters.append(val)
elif name == 'exclude_files':
if base_name:
pattern = re.compile(val)
if pattern.match(base_name):
sys.stderr.write('Ignoring "%s": file excluded by "%s". '
'File path component "%s" matches '
'pattern "%s"\n' %
(filename, cfg_file, base_name, val))
return False
elif name == 'linelength':
global _line_length
try:
_line_length = int(val)
except ValueError:
sys.stderr.write('Line length must be numeric.')
else:
sys.stderr.write(
'Invalid configuration option (%s) in file %s\n' %
(name, cfg_file))
except IOError:
sys.stderr.write(
"Skipping config file '%s': Can't open for reading\n" % cfg_file)
keep_looking = False
for filter in reversed(cfg_filters):
_AddFilters(filter)
return True | Loads the configuration files and processes the config overrides.
Args:
filename: The name of the file being processed by the linter.
Returns:
False if the current |filename| should not be processed further. | juraj-google-style |
def list_jobs(config, *, status=JobStatus.Active, filter_by_type=None, filter_by_worker=None):
celery_app = create_app(config)
if (filter_by_worker is not None):
inspect = celery_app.control.inspect(destination=(filter_by_worker if isinstance(filter_by_worker, list) else [filter_by_worker]))
else:
inspect = celery_app.control.inspect()
if (status == JobStatus.Active):
job_map = inspect.active()
elif (status == JobStatus.Registered):
job_map = inspect.registered()
elif (status == JobStatus.Reserved):
job_map = inspect.reserved()
elif (status == JobStatus.Scheduled):
job_map = inspect.scheduled()
else:
job_map = None
if (job_map is None):
return []
result = []
for (worker_name, jobs) in job_map.items():
for job in jobs:
try:
job_stats = JobStats.from_celery(worker_name, job, celery_app)
if ((filter_by_type is None) or (job_stats.type == filter_by_type)):
result.append(job_stats)
except JobStatInvalid:
pass
return result | Return a list of Celery jobs.
Args:
config (Config): Reference to the configuration object from which the
settings are retrieved.
status (JobStatus): The status of the jobs that should be returned.
filter_by_type (list): Restrict the returned jobs to the types in this list.
filter_by_worker (list): Only return jobs that were registered, reserved or are
running on the workers given in this list of worker names. Using
this option will increase the performance.
Returns:
list: A list of JobStats. | codesearchnet |
def minimum(self, vars_list: List[str]) -> 'TensorFluent':
return self._aggregation_op(tf.reduce_min, self, vars_list) | Returns the TensorFluent for the minimum aggregation function.
Args:
vars_list: The list of variables to be aggregated over.
Returns:
A TensorFluent wrapping the minimum aggregation function. | codesearchnet |
def relabel_variables(self, mapping, inplace=True):
if (not inplace):
return self.copy().relabel_variables(mapping, inplace=True)
try:
old_labels = set(mapping)
new_labels = set(mapping.values())
except TypeError:
raise ValueError('mapping targets must be hashable objects')
variables = self.variables
for v in new_labels:
if ((v in variables) and (v not in old_labels)):
raise ValueError('A variable cannot be relabeled "{}" without also relabeling the existing variable of the same name'.format(v))
shared = (old_labels & new_labels)
if shared:
(old_to_intermediate, intermediate_to_new) = resolve_label_conflict(mapping, old_labels, new_labels)
self.relabel_variables(old_to_intermediate, inplace=True)
self.relabel_variables(intermediate_to_new, inplace=True)
return self
for (oldterm, bias) in list(self.items()):
newterm = frozenset((mapping.get(v, v) for v in oldterm))
if (newterm != oldterm):
self[newterm] = bias
del self[oldterm]
return self | Relabel variables of a binary polynomial as specified by mapping.
Args:
mapping (dict):
Dict mapping current variable labels to new ones. If an
incomplete mapping is provided, unmapped variables retain their
current labels.
inplace (bool, optional, default=True):
If True, the binary polynomial is updated in-place; otherwise, a
new binary polynomial is returned.
Returns:
:class:`.BinaryPolynomial`: A binary polynomial with the variables
relabeled. If `inplace` is set to True, returns itself. | codesearchnet |
async def _verify_examples(self, client: GRPCClient, examples: List[Example], origin: Origin):
count_of_verified = 0
verify_status_failed = False
default_examples = []
for example in examples:
if example.tag.default_example:
default_examples.append(example)
if example.status not in Config.ERROR_STATUSES:
count_of_verified += 1
continue
if example.status == STATUS_VALIDATION_ERROR:
logging.error('Example: %s has validation error', example.filepath)
elif example.status == STATUS_PREPARATION_ERROR:
logging.error('Example: %s has preparation error', example.filepath)
elif example.status == STATUS_ERROR:
logging.error('Example: %s has error during setup run builder', example.filepath)
elif example.status == STATUS_RUN_TIMEOUT:
logging.error('Example: %s failed because of timeout', example.filepath)
elif example.status == STATUS_COMPILE_ERROR:
err = await client.get_compile_output(example.pipeline_id)
logging.error('Example: %s has compilation error: %s', example.filepath, err)
elif example.status == STATUS_RUN_ERROR:
err = await client.get_run_error(example.pipeline_id)
logging.error('Example: %s has execution error: %s', example.filepath, err)
verify_status_failed = True
logging.info('Number of verified Playground examples: %s / %s', count_of_verified, len(examples))
logging.info('Number of Playground examples with some error: %s / %s', len(examples) - count_of_verified, len(examples))
if origin == Origin.PG_EXAMPLES:
if len(default_examples) == 0:
logging.error('Default example not found')
raise VerifyException('CI step failed due to finding an incorrect number of default examples. Default example not found')
if len(default_examples) > 1:
logging.error('Many default examples found')
logging.error('Examples where the default_example field is true:')
for example in default_examples:
logging.error(example.filepath)
raise VerifyException('CI step failed due to finding an incorrect number of default examples. Many default examples found')
if verify_status_failed:
raise VerifyException('CI step failed due to errors in the examples') | Verify statuses of beam examples and the number of found default examples.
Check example.status for each examples. If the status of the example is:
- STATUS_VALIDATION_ERROR/STATUS_PREPARATION_ERROR
/STATUS_ERROR/STATUS_RUN_TIMEOUT: log error
- STATUS_COMPILE_ERROR: get logs using GetCompileOutput request and
log them with error.
- STATUS_RUN_ERROR: get logs using GetRunError request and
log them with error.
Args:
examples: beam examples that should be verified | github-repos |
def assert_no_current_path(self, path, **kwargs):
query = CurrentPathQuery(path, **kwargs)
@self.document.synchronize
def assert_no_current_path():
if query.resolves_for(self):
raise ExpectationNotMet(query.negative_failure_message)
assert_no_current_path()
return True | Asserts that the page doesn't have the given path.
Args:
path (str | RegexObject): The string or regex that the current "path" should match.
**kwargs: Arbitrary keyword arguments for :class:`CurrentPathQuery`.
Returns:
True
Raises:
ExpectationNotMet: If the assertion hasn't succeeded during the wait time. | codesearchnet |
def attach(self, engine, metric_names=None, output_transform=None, event_name=Events.ITERATION_COMPLETED, closing_event_name=Events.EPOCH_COMPLETED):
desc = self.tqdm_kwargs.get('desc', 'Epoch')
if (not ((event_name in Events) and (closing_event_name in Events))):
raise ValueError('Logging and closing events should be only ignite.engine.Events')
if (not self._compare_lt(event_name, closing_event_name)):
raise ValueError('Logging event {} should be called before closing event {}'.format(event_name, closing_event_name))
log_handler = _OutputHandler(desc, metric_names, output_transform, event_name=event_name, closing_event_name=closing_event_name)
super(ProgressBar, self).attach(engine, log_handler, event_name)
engine.add_event_handler(closing_event_name, self._close) | Attaches the progress bar to an engine object.
Args:
engine (Engine): engine object.
metric_names (list, optional): list of the metrics names to log as the bar progresses
output_transform (callable, optional): a function to select what you want to print from the engine's
output. This function may return either a dictionary with entries in the format of ``{name: value}``,
or a single scalar, which will be displayed with the default name `output`.
event_name: event's name on which the progress bar advances. Valid events are from
:class:`~ignite.engine.Events`.
closing_event_name: event's name on which the progress bar is closed. Valid events are from
:class:`~ignite.engine.Events`. | codesearchnet |
def add_package(self, pkg, action_type="Install"):
if isinstance(pkg, Package):
if action_type not in ("Install", "Cache", "Install Cached"):
raise ValueError
package = self.add_object_to_path(
pkg, "package_configuration/packages")
action = package.find("action")
if not action:
action = ElementTree.SubElement(package, "action")
action.text = action_type
else:
raise ValueError("Please pass a Package object to parameter: "
"pkg.") | Add a Package object to the policy with action=install.
Args:
pkg: A Package object to add.
action_type (str, optional): One of "Install", "Cache", or
"Install Cached". Defaults to "Install". | juraj-google-style |
def produce_csv_output(filehandle: TextIO,
fields: Sequence[str],
values: Iterable[str]) -> None:
output_csv(filehandle, fields)
for row in values:
output_csv(filehandle, row) | Produce CSV output, without using ``csv.writer``, so the log can be used
for lots of things.
- ... eh? What was I talking about?
- POOR; DEPRECATED.
Args:
filehandle: file to write to
fields: field names
values: values | juraj-google-style |
def default_onnx_opset(self) -> int:
return DEFAULT_ONNX_OPSET | Which onnx opset to use when exporting the model
Returns:
Integer ONNX Opset version | github-repos |
def create_with_secret(self, name, secret, encryption):
try:
encryption = encryption or DEFAULT_ENCRYPTION
enc = ENCRYPTION_MAP[encryption]
except KeyError:
raise TypeError('encryption must be one of "cleartext", "md5"'
' or "sha512"')
cmd = 'username %s secret %s %s' % (name, enc, secret)
return self.configure(cmd) | Creates a new user on the local node
Args:
name (str): The name of the user to craete
secret (str): The secret (password) to assign to this user
encryption (str): Specifies how the secret is encoded. Valid
values are "cleartext", "md5", "sha512". The default is
"cleartext"
Returns:
True if the operation was successful otherwise False | juraj-google-style |
def clone(self, spec=None, **overrides):
settings = dict(self.get_param_values(), **overrides)
if spec is None:
spec = (self.name, overrides.get('label', self.label))
if 'label' in overrides and isinstance(spec, basestring) :
spec = (spec, overrides['label'])
elif 'label' in overrides and isinstance(spec, tuple) :
if overrides['label'] != spec[1]:
self.param.warning(
'Using label as supplied by keyword ({!r}), ignoring '
'tuple value {!r}'.format(overrides['label'], spec[1]))
spec = (spec[0], overrides['label'])
return self.__class__(spec, **{k:v for k,v in settings.items()
if k not in ['name', 'label']}) | Clones the Dimension with new parameters
Derive a new Dimension that inherits existing parameters
except for the supplied, explicit overrides
Args:
spec (tuple, optional): Dimension tuple specification
**overrides: Dimension parameter overrides
Returns:
Cloned Dimension object | juraj-google-style |
def _is_propertyable(names, attrs, annotations, attr):
return ((attr in annotations) and (not attr.startswith('_')) and (not attr.isupper()) and ('__{}'.format(attr) not in names) and (not isinstance(getattr(attrs, attr, None), types.MethodType))) | Determine if an attribute can be replaced with a property.
Args:
names: The complete list of all attribute names for the class.
attrs: The attribute dict returned by __prepare__.
annotations: A mapping of all defined annotations for the class.
attr: The attribute to test.
Returns:
True if the attribute can be replaced with a property; else False. | codesearchnet |
def _in_multi_worker_mode(self):
strategy = self._distribution_strategy
if not strategy and distribute_lib.has_strategy():
strategy = distribute_lib.get_strategy()
return strategy and strategy.extended._in_multi_worker_mode() | Method to infer if this `Model` is working in multi-worker settings.
Multi-worker training refers to the setup where the training is
distributed across multiple workers, as opposed to the case where
only a local process performs the training. This function is
used to infer for example whether or not a distribute coordinator
should be run, and thus TensorFlow servers should be started for
communication with other servers in the cluster, or whether or not
saving/restoring checkpoints is relevant for preemption fault tolerance.
Experimental. Signature and implementation are subject to change.
Returns:
Whether this model indicates it's working in multi-worker settings. | github-repos |
def check_the_end_flag(self, state_arr):
if self.__check_goal_flag(state_arr) is True or self.__check_crash_flag(state_arr):
return True
else:
return False | Check the end flag.
If this return value is `True`, the learning is end.
As a rule, the learning can not be stopped.
This method should be overrided for concreate usecases.
Args:
state_arr: `np.ndarray` of state in `self.t`.
Returns:
bool | juraj-google-style |
def add(self, resource, provider_uri_or_id, timeout=-1):
uri = self._provider_client.build_uri(provider_uri_or_id) + "/device-managers"
return self._client.create(resource=resource, uri=uri, timeout=timeout) | Adds a Device Manager under the specified provider.
Args:
resource (dict): Object to add.
provider_uri_or_id: ID or URI of provider.
timeout:
Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation
in OneView, just stop waiting for its completion.
Returns:
dict: Added SAN Manager. | juraj-google-style |
def AddPerformanceOptions(self, argument_group):
argument_group.add_argument(
'--buffer_size', '--buffer-size', '--bs', dest='buffer_size',
action='store', default=0, help=(
'The buffer size for the output (defaults to 196MiB).'))
argument_group.add_argument(
'--queue_size', '--queue-size', dest='queue_size', action='store',
default=0, help=(
'The maximum number of queued items per worker '
'(defaults to {0:d})').format(self._DEFAULT_QUEUE_SIZE)) | Adds the performance options to the argument group.
Args:
argument_group (argparse._ArgumentGroup): argparse argument group. | juraj-google-style |
def set_status(self, status: Status, increment_try_count: bool=True,
filename: str=None):
url = self.url_record.url
assert not self._try_count_incremented, (url, status)
if increment_try_count:
self._try_count_incremented = True
_logger.debug(__('Marking URL {0} status {1}.', url, status))
url_result = URLResult()
url_result.filename = filename
self.app_session.factory['URLTable'].check_in(
url,
status,
increment_try_count=increment_try_count,
url_result=url_result,
)
self._processed = True | Mark the item with the given status.
Args:
status: a value from :class:`Status`.
increment_try_count: if True, increment the ``try_count``
value | juraj-google-style |
def html_for_cgi_argument(argument, form):
value = form[argument].value if argument in form else None
return KEY_VALUE_TEMPLATE.format(argument, value) | Returns an HTML snippet for a CGI argument.
Args:
argument: A string representing an CGI argument name in a form.
form: A CGI FieldStorage object.
Returns:
String HTML representing the CGI value and variable. | juraj-google-style |
def get(self, params=None):
return self._call('get', url=self.endpoint, params=params) | Send a POST request and return the JSON decoded result.
Args:
params (dict, optional): Mapping of parameters to send in request.
Returns:
mixed: JSON decoded response data. | juraj-google-style |
def from_params(cls, params):
key_fn = lambda x: id(x[1].owner)
streams = []
for _, group in groupby(sorted(params.items(), key=key_fn), key_fn):
group = list(group)
inst = [p.owner for _, p in group][0]
if not isinstance(inst, param.Parameterized):
continue
names = [p.name for _, p in group]
rename = {p.name: n for n, p in group}
streams.append(cls(inst, names, rename=rename))
return streams | Returns Params streams given a dictionary of parameters
Args:
params (dict): Dictionary of parameters
Returns:
List of Params streams | juraj-google-style |
def get_tensors(object_):
if torch.is_tensor(object_):
return [object_]
elif isinstance(object_, (str, float, int)):
return []
tensors = set()
if isinstance(object_, collections.abc.Mapping):
for value in object_.values():
tensors.update(get_tensors(value))
elif isinstance(object_, collections.abc.Iterable):
for value in object_:
tensors.update(get_tensors(value))
else:
members = [
value for key, value in inspect.getmembers(object_)
if not isinstance(value, (collections.abc.Callable, type(None)))
]
tensors.update(get_tensors(members))
return tensors | Get all tensors associated with ``object_``
Args:
object_ (any): Any object to look for tensors.
Returns:
(list of torch.tensor): List of tensors that are associated with ``object_``. | juraj-google-style |
def _collect_grades_data(self, enterprise_enrollment, course_details):
if (self.grades_api is None):
self.grades_api = GradesApiClient(self.user)
course_id = enterprise_enrollment.course_id
username = enterprise_enrollment.enterprise_customer_user.user.username
try:
grades_data = self.grades_api.get_course_grade(course_id, username)
except HttpNotFoundError as error:
if hasattr(error, 'content'):
response_content = json.loads(error.content)
if (response_content.get('error_code', '') == 'user_not_enrolled'):
LOGGER.info('User [%s] not enrolled in course [%s], enterprise enrollment [%d]', username, course_id, enterprise_enrollment.pk)
return (None, None, None)
LOGGER.error('No grades data found for [%d]: [%s], [%s]', enterprise_enrollment.pk, course_id, username)
return (None, None, None)
course_end_date = course_details.get('end')
if (course_end_date is not None):
course_end_date = parse_datetime(course_end_date)
now = timezone.now()
is_passing = grades_data.get('passed')
if ((course_end_date is not None) and (course_end_date < now)):
completed_date = course_end_date
grade = (self.grade_passing if is_passing else self.grade_failing)
elif is_passing:
completed_date = now
grade = self.grade_passing
else:
completed_date = None
grade = self.grade_incomplete
return (completed_date, grade, is_passing) | Collect the learner completion data from the Grades API.
Used for self-paced courses.
Args:
enterprise_enrollment (EnterpriseCourseEnrollment): the enterprise enrollment record for which we need to
collect completion/grade data
course_details (dict): the course details for the course in the enterprise enrollment record.
Returns:
completed_date: Date the course was completed, this is None if course has not been completed.
grade: Current grade in the course.
is_passing: Boolean indicating if the grade is a passing grade or not. | codesearchnet |
def _input_optional(inp):
if 'default' in inp.keys():
return True
typ = inp.get('type')
if isinstance(typ, six.string_types):
return typ.endswith('?')
elif isinstance(typ, dict):
return False
elif isinstance(typ, list):
return bool(u'null' in typ)
else:
raise ValueError('Invalid input "{}"'.format(inp.get['id'])) | Returns True if a step input parameter is optional.
Args:
inp (dict): a dictionary representation of an input.
Raises:
ValueError: The inp provided is not valid. | juraj-google-style |
def _split_bytecode(bytecode: list[opcodes.Opcode], processed_blocks: set[Block], python_version) -> list[Block]:
targets = {op.target for op in bytecode if op.target}
blocks = []
code = []
prev_block: Block = None
i = 0
while i < len(bytecode):
op = bytecode[i]
if python_version >= (3, 12) and isinstance(op, opcodes.SEND):
if code:
prev_block = Block(code)
blocks.append(prev_block)
code = []
new_blocks, i = _preprocess_async_for_and_yield(i, bytecode, prev_block, processed_blocks)
blocks.extend(new_blocks)
prev_block = blocks[-1]
continue
code.append(op)
if op.no_next() or op.does_jump() or op.pops_block() or (op.next is None) or (op.next in targets and (not isinstance(op.next, opcodes.GET_ANEXT) or python_version < (3, 12))):
prev_block = Block(code)
blocks.append(prev_block)
code = []
i += 1
return blocks | Given a sequence of bytecodes, return basic blocks.
This will split the code at "basic block boundaries". These occur at
every instruction that is jumped to, and after every instruction that jumps
somewhere else (or returns / aborts).
Args:
bytecode: A list of instances of opcodes.Opcode. (E.g. returned from
opcodes.dis())
Returns:
A list of _Block instances. | github-repos |
def _tf_predict(model_dir, input_csvlines):
with tf.Graph().as_default(), tf.Session() as sess:
input_alias_map, output_alias_map = _tf_load_model(sess, model_dir)
csv_tensor_name = list(input_alias_map.values())[0]
results = sess.run(fetches=output_alias_map,
feed_dict={csv_tensor_name: input_csvlines})
if len(input_csvlines) == 1:
for k, v in six.iteritems(results):
if not isinstance(v, (list, np.ndarray)):
results[k] = [v]
for k, v in six.iteritems(results):
if any(isinstance(x, bytes) for x in v):
results[k] = [x.decode('utf-8') for x in v]
return results | Prediction with a tf savedmodel.
Args:
model_dir: directory that contains a saved model
input_csvlines: list of csv strings
Returns:
Dict in the form tensor_name:prediction_list. Note that the value is always
a list, even if there was only 1 row in input_csvlines. | juraj-google-style |
def moving_average_variables(scope=None):
return ops.get_collection(ops.GraphKeys.MOVING_AVERAGE_VARIABLES, scope) | Returns all variables that maintain their moving averages.
If an `ExponentialMovingAverage` object is created and the `apply()`
method is called on a list of variables, these variables will
be added to the `GraphKeys.MOVING_AVERAGE_VARIABLES` collection.
This convenience function returns the contents of that collection.
Args:
scope: (Optional.) A string. If supplied, the resulting list is filtered to
include only items whose `name` attribute matches `scope` using
`re.match`. Items without a `name` attribute are never returned if a scope
is supplied. The choice of `re.match` means that a `scope` without special
tokens filters by prefix.
Returns:
A list of Variable objects. | github-repos |
def protocol(alias_name, default=None, allow_none=False):
warnings.warn('Will be removed in v1.0', DeprecationWarning, stacklevel=2)
try:
return _split_docker_link(alias_name)[0]
except KeyError as err:
if default or allow_none:
return default
else:
raise err | Get the protocol from the docker link alias or return the default.
Args:
alias_name: The docker link alias
default: The default value if the link isn't available
allow_none: If the return value can be `None` (i.e. optional)
Examples:
Assuming a Docker link was created with ``docker --link postgres:db``
and the resulting environment variable is ``DB_PORT=tcp://172.17.0.82:5432``.
>>> envitro.docker.protocol('DB')
tcp | juraj-google-style |
def compress_dir(path, compression='gz'):
for (parent, subdirs, files) in os.walk(path):
for f in files:
compress_file(os.path.join(parent, f), compression=compression) | Recursively compresses all files in a directory. Note that this
compresses all files singly, i.e., it does not create a tar archive. For
that, just use Python tarfile class.
Args:
path (str): Path to parent directory.
compression (str): A compression mode. Valid options are "gz" or
"bz2". Defaults to gz. | codesearchnet |
def WriteTaskStart(self):
self._RaiseIfNotWritable()
if (self._storage_type != definitions.STORAGE_TYPE_TASK):
raise IOError('Unsupported storage type.')
task_start = self._task.CreateTaskStart()
self._storage_file.WriteTaskStart(task_start) | Writes task start information.
Raises:
IOError: if the storage type is not supported or
when the storage writer is closed.
OSError: if the storage type is not supported or
when the storage writer is closed. | codesearchnet |
def extract_version(exepath, version_arg, word_index=-1, version_rank=3):
if isinstance(version_arg, basestring):
version_arg = [version_arg]
args = [exepath] + version_arg
stdout, stderr, returncode = _run_command(args)
if returncode:
raise RezBindError("failed to execute %s: %s\n(error code %d)"
% (exepath, stderr, returncode))
stdout = stdout.strip().split('\n')[0].strip()
log("extracting version from output: '%s'" % stdout)
try:
strver = stdout.split()[word_index]
toks = strver.replace('.', ' ').replace('-', ' ').split()
strver = '.'.join(toks[:version_rank])
version = Version(strver)
except Exception as e:
raise RezBindError("failed to parse version from output '%s': %s"
% (stdout, str(e)))
log("extracted version: '%s'" % str(version))
return version | Run an executable and get the program version.
Args:
exepath: Filepath to executable.
version_arg: Arg to pass to program, eg "-V". Can also be a list.
word_index: Expect the Nth word of output to be the version.
version_rank: Cap the version to this many tokens.
Returns:
`Version` object. | juraj-google-style |
def init_args(cls):
try:
argspec = getargspec(cls)
except TypeError:
argspec = getargspec(cls.__init__)
args = argspec.args
if args[0] == 'self':
args.remove('self')
return args | Return the __init__ args (minus 'self') for @cls
Args:
cls: class, instance or callable
Returns:
list of str, the arguments minus 'self' | juraj-google-style |
def element_at(self, index):
if self.closed():
raise ValueError('Attempt to call element_at() on a closed Queryable.')
if (index < 0):
raise OutOfRangeError('Attempt to use negative index.')
try:
return self._iterable[index]
except IndexError:
raise OutOfRangeError('Index out of range.')
except TypeError:
pass
for (i, item) in enumerate(self):
if (i == index):
return item
raise OutOfRangeError('element_at(index) out of range.') | Return the element at ordinal index.
Note: This method uses immediate execution.
Args:
index: The index of the element to be returned.
Returns:
The element at ordinal index in the source sequence.
Raises:
ValueError: If the Queryable is closed().
ValueError: If index is out of range. | codesearchnet |
def HasDefinition(self, name):
return name in self.consts or name in self.roles or name in self.states or (name in self.qualifiers) or (name in self.messages) or (name in self.events) or (name in self.transitions) | Whether this module has a named object |name|.
Args:
name: The string name of the object to look for.
Returns:
True if this module has an object with name |name|, False otherwise. | github-repos |
def __init__(self, token_provider):
if token_provider is None:
raise ValueError("token_provider is required")
if not isinstance(token_provider, TokenProvider):
raise ValueError("token_provider must be instance of TokenProvider")
self.__token = token_provider.get_token() | The Neurio API client.
Args:
token_provider (TokenProvider): object providing authentication services | juraj-google-style |
def _as_indexed_slices_list(inputs, optimize=True):
if not isinstance(inputs, (list, tuple)):
raise TypeError(f'Expected a list or tuple, not {type(inputs)}.')
outputs = [_as_indexed_slices(i, optimize=optimize) for i in inputs]
with_int32_index = [o.indices for o in outputs if o.indices.dtype == dtypes.int32]
if not with_int32_index or len(with_int32_index) == len(outputs):
return outputs
casted_outputs = []
for o in outputs:
if o.indices.dtype == dtypes.int32:
casted_outputs.append(indexed_slices.IndexedSlices(o.values, cast(o.indices, dtypes.int64), o.dense_shape))
else:
casted_outputs.append(o)
return casted_outputs | Convert all elements of 'inputs' to IndexedSlices.
Additionally, homogenize the types of all the indices to
either int32 or int64.
Args:
inputs: List containing either Tensor or IndexedSlices objects.
optimize: if true, attempt to optimize the conversion of each input.
Returns:
A list of IndexedSlices objects.
Raises:
TypeError: If 'inputs' is not a list or a tuple. | github-repos |
def user_warning(channel, user, warnings, max_warnings):
username = user.name
if isinstance(user, discord.Member):
if user.nick is not None:
username = user.nick
warning_count_text = "warnings" if warnings != 1 else "warning"
warning_text = "{} {}".format(warnings, warning_count_text)
result_text = "at {} you will be banned".format(max_warnings)
if warnings >= max_warnings:
result_text = "you are being banned because you have more than the maximum warnings"
gui = ui_embed.UI(
channel,
"Warning {}".format(username),
"You now have {} {}, {}".format(warning_text, username, result_text),
modulename=modulename
)
return gui | Creates an embed UI containing an user warning message
Args:
channel (discord.Channel): The Discord channel to bind the embed to
user (discord.User): The user to warn
warnings (str): The warnings for the user
max_warnings (str): The maximum warnings for the user
Returns:
ui (ui_embed.UI): The embed UI object | juraj-google-style |
def click_slot(self, slot, right=False):
if isinstance(slot, int):
slot = self.window.slots[slot]
button = (constants.INV_BUTTON_RIGHT if right else constants.INV_BUTTON_LEFT)
return self.send_click(windows.SingleClick(slot, button)) | Left-click or right-click the slot.
Args:
slot (Slot): The clicked slot. Can be ``Slot`` instance or integer.
Set to ``inventory.cursor_slot``
for clicking outside the window. | codesearchnet |
def read_init() -> Dict[str, List[str]]:
with open(os.path.join(PATH_TO_TRANSFORMERS, '__init__.py'), 'r', encoding='utf-8', newline='\n') as f:
lines = f.readlines()
line_index = 0
while not lines[line_index].startswith('if TYPE_CHECKING'):
line_index += 1
backend_specific_objects = {}
while line_index < len(lines):
backend = find_backend(lines[line_index])
if backend is not None:
while not lines[line_index].startswith(' else:'):
line_index += 1
line_index += 1
objects = []
while len(lines[line_index]) <= 1 or lines[line_index].startswith(' ' * 8):
line = lines[line_index]
single_line_import_search = _re_single_line_import.search(line)
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', '))
elif line.startswith(' ' * 12):
objects.append(line[12:-2])
line_index += 1
backend_specific_objects[backend] = objects
else:
line_index += 1
return backend_specific_objects | Read the init and extract backend-specific objects.
Returns:
Dict[str, List[str]]: A dictionary mapping backend name to the list of object names requiring that backend. | github-repos |
def set(self, time):
self._time = time
self._pb.sec = int(self._time)
self._pb.nsec = int(((self._time - self._pb.sec) * (10 ** 9))) | Sets time in seconds since Epoch
Args:
time (:obj:`float`): time in seconds since Epoch (see time.time())
Returns:
None | codesearchnet |
def volume( self ):
return np.dot( self.matrix[0], np.cross( self.matrix[1], self.matrix[2] ) ) | The cell volume.
Args:
None
Returns:
(float): The cell volume. | juraj-google-style |
def _is_png(contents, name=None):
with ops.name_scope(name, 'is_png'):
substr = string_ops.substr(contents, 0, 3)
return math_ops.equal(substr, b'\x89PN', name=name) | Convenience function to check if the 'contents' encodes a PNG image.
Args:
contents: 0-D `string`. The encoded image bytes.
name: A name for the operation (optional)
Returns:
A scalar boolean tensor indicating if 'contents' may be a PNG image.
is_png is susceptible to false positives. | github-repos |
def join(self, basepath, *paths):
return os.path.join(basepath, *paths) | Join two or more pathname components for the filesystem
Args:
basepath: string path of the first component of the path
paths: path components to be added
Returns: full path after combining all the passed components | github-repos |
def get_config(self):
raise NotImplementedError(f'{self} does not implement get_config()') | Returns the config of the regularizer.
An regularizer config is a Python dictionary (serializable)
containing all configuration parameters of the regularizer.
The same regularizer can be reinstantiated later
(without any saved state) from this configuration.
This method is optional if you are just training and executing models,
exporting to and from SavedModels, or using weight checkpoints.
This method is required for Keras `model_to_estimator`, saving and
loading models to HDF5 formats, Keras model cloning, some visualization
utilities, and exporting models to and from JSON.
Returns:
Python dictionary. | github-repos |
def ExpandSuperClasses(self, t):
superclasses = set()
self._CollectSuperclasses(t, superclasses)
return superclasses | Generate a list of all (known) superclasses for a type.
Arguments:
t: A type name. E.g. "int".
Returns:
A set of types. This set includes t as well as all its superclasses. For
example, this will return "bool", "int" and "object" for "bool". | github-repos |
def truncate_repetitions(text: str, min_len: int=30) -> str:
text_lower = text.lower()
text_length = len(text_lower)
if text_length < 2 * min_len:
return text
max_repetition_length = None
for repetition_length in range(min_len, int(text_length / 2)):
same = True
for i in range(0, repetition_length):
if text_lower[text_length - repetition_length - i - 1] != text_lower[text_length - i - 1]:
same = False
break
if same:
max_repetition_length = repetition_length
if max_repetition_length is None:
return text
lcs = text_lower[-max_repetition_length:]
substituted_text = text
substituted_text_lower = text_lower
while substituted_text_lower.endswith(lcs):
substituted_text = substituted_text[:-max_repetition_length]
substituted_text_lower = substituted_text_lower[:-max_repetition_length]
repeating_tail = text_lower[len(substituted_text_lower):]
substituted_text_lower_out = substituted_text_lower
while True:
sentence_end = find_next_punctuation(text_lower, len(substituted_text_lower_out))
sentence_start = find_next_punctuation(text_lower[::-1], len(substituted_text_lower_out))
if sentence_end and sentence_start:
sentence = text_lower[sentence_start:sentence_end]
substituted_text_lower_out = text_lower[:sentence_end + 1]
if sentence in repeating_tail:
break
else:
break
text_out = text[:len(substituted_text_lower_out)]
return text_out | Attempt to truncate repeating segments in the input string.
This function looks for the longest repeating substring at the end of the input string and truncates it to appear
only once. To be considered for removal, repetitions need to be continuous.
Args:
text (`str`):
The input raw prediction to be truncated.
min_len (int):
The minimum length of the repeating segment.
Returns:
`str`: The input string with repeated segments truncated. | github-repos |
def __init__(self, time: Timestamp, duration: Union[Duration, timedelta],
operation: ops.Operation) -> None:
self.time = time
self.duration = Duration.create(duration)
self.operation = operation | Initializes the scheduled operation.
Args:
time: When the operation starts.
duration: How long the operation lasts.
operation: The operation. | juraj-google-style |
def _ParseKey(self, parser_mediator, registry_key):
matching_plugin = None
normalized_key_path = self._NormalizeKeyPath(registry_key.path)
if self._path_filter.CheckPath(normalized_key_path):
matching_plugin = self._plugin_per_key_path[normalized_key_path]
else:
for plugin in self._plugins_without_key_paths:
if self._CanProcessKeyWithPlugin(registry_key, plugin):
matching_plugin = plugin
break
if not matching_plugin:
matching_plugin = self._default_plugin
if matching_plugin:
self._ParseKeyWithPlugin(parser_mediator, registry_key, matching_plugin) | Parses the Registry key with a specific plugin.
Args:
parser_mediator (ParserMediator): parser mediator.
registry_key (dfwinreg.WinRegistryKey): Windwos Registry key. | juraj-google-style |
def _compute_valid(self):
if (self._dimension != 2):
raise NotImplementedError('Validity check only implemented in R^2')
poly_sign = None
if (self._degree == 1):
first_deriv = (self._nodes[(:, 1:)] - self._nodes[(:, :(- 1))])
poly_sign = _SIGN(np.linalg.det(first_deriv))
elif (self._degree == 2):
bernstein = _surface_helpers.quadratic_jacobian_polynomial(self._nodes)
poly_sign = _surface_helpers.polynomial_sign(bernstein, 2)
elif (self._degree == 3):
bernstein = _surface_helpers.cubic_jacobian_polynomial(self._nodes)
poly_sign = _surface_helpers.polynomial_sign(bernstein, 4)
else:
raise _helpers.UnsupportedDegree(self._degree, supported=(1, 2, 3))
return (poly_sign == 1) | r"""Determines if the current surface is "valid".
Does this by checking if the Jacobian of the map from the
reference triangle is everywhere positive.
Returns:
bool: Flag indicating if the current surface is valid.
Raises:
NotImplementedError: If the surface is in a dimension other
than :math:`\mathbf{R}^2`.
.UnsupportedDegree: If the degree is not 1, 2 or 3. | codesearchnet |
def _parse_config(self, requires_cfg=True):
if len(self.config_paths) > 0:
try:
self._find_config()
except BisonError:
if not requires_cfg:
return
raise
try:
with open(self.config_file, 'r') as f:
parsed = self._fmt_to_parser[self.config_format](f)
except Exception as e:
raise BisonError(
'Failed to parse config file: {}'.format(self.config_file)
) from e
self._full_config = None
self._config = parsed | Parse the configuration file, if one is configured, and add it to
the `Bison` state.
Args:
requires_cfg (bool): Specify whether or not parsing should fail
if a config file is not found. (default: True) | juraj-google-style |
def save_data_files(vr, bs, prefix=None, directory=None):
filename = ('{}_band.dat'.format(prefix) if prefix else 'band.dat')
directory = (directory if directory else '.')
filename = os.path.join(directory, filename)
if bs.is_metal():
zero = vr.efermi
else:
zero = bs.get_vbm()['energy']
with open(filename, 'w') as f:
header = '
f.write(header)
for band in bs.bands[Spin.up]:
for (d, e) in zip(bs.distance, band):
f.write('{:.8f} {:.8f}\n'.format(d, (e - zero)))
f.write('\n')
if bs.is_spin_polarized:
for band in bs.bands[Spin.down]:
for (d, e) in zip(bs.distance, band):
f.write('{:.8f} {:.8f}\n'.format(d, (e - zero)))
f.write('\n')
return filename | Write the band structure data files to disk.
Args:
vs (`Vasprun`): Pymatgen `Vasprun` object.
bs (`BandStructureSymmLine`): Calculated band structure.
prefix (`str`, optional): Prefix for data file.
directory (`str`, optional): Directory in which to save the data.
Returns:
The filename of the written data file. | codesearchnet |
def _merge_tensors(t1, t2, name, validate):
if t1 is None:
return (t2, False)
elif t2 is None:
return (t1, False)
elif t1 is t2:
return (t1, True)
else:
err_msg = 'RowPartition._merge_precomputed_encodings: partitions have incompatible %s' % name
if not t1.shape.is_compatible_with(t2.shape):
raise ValueError(err_msg)
if validate:
checks = [check_ops.assert_equal(t1, t2, message=err_msg)]
return (control_flow_ops.with_dependencies(checks, t1), True)
else:
return (t1, False) | Merge two optional Tensors with equal values into a single Tensor.
Args:
t1: tf.Tensor or None
t2: tf.Tensor or None
name: A name for the tensors (for error messages)
validate: If true, then check that `t1` is compatible with `t2` (if both are
non-None).
Returns:
A pair `(merged_value, validated)`:
* `merged_value` is `t1` if it is not None; or `t2` otherwise.
* `validated` is true if we validated that t1 and t2 are equal (either
by adding a check, or because t1 is t2). | github-repos |
def _get_combined_properties(self, dev):
return (dev.job if dev.job is not None else self.job, dev.replica if dev.replica is not None else self.replica, dev.task if dev.task is not None else self.task, dev.device_type if dev.device_type is not None else self.device_type, dev.device_index if dev.device_index is not None else self.device_index) | Combine the current DeviceSpec with another DeviceSpec.
The combination of DeviceSpecs is will give priority to dev.
Args:
dev: a `DeviceSpec`
Returns:
A tuple of (job, replica, task, device_type, device_index) which
represents the combination of self and dev. | github-repos |
def lookup(self, iterable, index=0, gather=False, edit_distance=0, max_edit_distance=0, match_threshold=0.0, matched_length=0):
if self.is_terminal:
if index == len(iterable) or \
(gather and index < len(iterable) and iterable[index] == ' '):
confidence = float(len(self.key) - edit_distance) / float(max(len(self.key), index))
if confidence > match_threshold:
yield {
'key': self.key,
'match': iterable[:index],
'data': self.data,
'confidence': confidence * self.weight
}
if index < len(iterable) and iterable[index] in self.children:
for result in self.children[iterable[index]]\
.lookup(iterable, index + 1, gather=gather,
edit_distance=edit_distance, max_edit_distance=max_edit_distance, matched_length=matched_length + 1):
yield result
potential_confidence = float(index - edit_distance + (max_edit_distance - edit_distance)) / \
(float(index) + (max_edit_distance - edit_distance)) if index + max_edit_distance - edit_distance > 0 else 0.0
if edit_distance < max_edit_distance and potential_confidence > match_threshold:
for child in list(self.children):
if index >= len(iterable) or child != iterable[index]:
for result in self.children[child]\
.lookup(iterable, index + 1, gather=gather,
edit_distance=edit_distance + 1, max_edit_distance=max_edit_distance, matched_length=matched_length):
yield result
for result in self.children[child]\
.lookup(iterable, index + 2, gather=gather,
edit_distance=edit_distance + 1, max_edit_distance=max_edit_distance, matched_length=matched_length):
yield result
for result in self.children[child]\
.lookup(iterable, index, gather=gather,
edit_distance=edit_distance + 1, max_edit_distance=max_edit_distance, matched_length=matched_length):
yield result | TODO: Implement trie lookup with edit distance
Args:
iterable(list?): key used to find what is requested this could
be a generator.
index(int): index of what is requested
gather(bool): of weather to gather or not
edit_distance(int): the distance -- currently not used
max_edit_distance(int): the max distance -- not currently used
yields:
object: yields the results of the search | juraj-google-style |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.