code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def is_github_repo_owner_the_official_one(context, repo_owner):
official_repo_owner = context.config['official_github_repos_owner']
if (not official_repo_owner):
raise ConfigError('This worker does not have a defined owner for official GitHub repositories. Given "official_github_repos_owner": {}'.format(official_repo_owner))
return (official_repo_owner == repo_owner) | Given a repo_owner, check if it matches the one configured to be the official one.
Args:
context (scriptworker.context.Context): the scriptworker context.
repo_owner (str): the repo_owner to verify
Raises:
scriptworker.exceptions.ConfigError: when no official owner was defined
Returns:
bool: True when ``repo_owner`` matches the one configured to be the official one | codesearchnet |
def get_key(self, key, request_only=False):
values = {}
requested_names = [x.name for x in self._package_requests if (not x.conflict)]
for pkg in self.resolved_packages:
if ((not request_only) or (pkg.name in requested_names)):
value = getattr(pkg, key)
if (value is not None):
values[pkg.name] = (pkg, value)
return values | Get a data key value for each resolved package.
Args:
key (str): String key of property, eg 'tools'.
request_only (bool): If True, only return the key from resolved
packages that were also present in the request.
Returns:
Dict of {pkg-name: (variant, value)}. | codesearchnet |
def validate(self, config):
if (not isinstance(config, dict)):
raise errors.SchemeValidationError('Scheme can only validate a dictionary config, but was given {} (type: {})'.format(config, type(config)))
for arg in self.args:
if (arg.name in config):
arg.validate(config[arg.name])
elif arg.required:
raise errors.SchemeValidationError('Option "{}" is required, but not found.'.format(arg.name)) | Validate the given config against the `Scheme`.
Args:
config (dict): The configuration to validate.
Raises:
errors.SchemeValidationError: The configuration fails
validation against the `Schema`. | codesearchnet |
def get_label_set(self, type_str=None):
return {v.label_str for v in self.node_gen if type_str in (None, v.type_str)} | Get a set of label_str for the tree rooted at this node.
Args:
type_str:
SUBJECT_NODE_TAG, TYPE_NODE_TAG or None. If set, only include
information from nodes of that type.
Returns:
set: The labels of the nodes leading up to this node from the root. | juraj-google-style |
def test_src_dir_path(relative_path):
return os.path.join(os.environ['TEST_SRCDIR'], 'org_tensorflow/tensorflow', relative_path) | Creates an absolute test srcdir path given a relative path.
Args:
relative_path: a path relative to tensorflow root.
e.g. "contrib/session_bundle/example".
Returns:
An absolute path to the linked in runfiles. | github-repos |
def extractSchedule(self, schedule, period):
ret = namedtuple('ret', ['Hour', 'Min', 'Tariff', 'Period', 'Schedule'])
work_table = self.m_schd_1_to_4
if (Schedules.Schedule_5 <= schedule <= Schedules.Schedule_6):
work_table = self.m_schd_5_to_6
period += 1
schedule += 1
ret.Period = str(period)
ret.Schedule = str(schedule)
if ((schedule < 1) or (schedule > Extents.Schedules) or (period < 0) or (period > Extents.Periods)):
ekm_log(((('Out of bounds: tariff ' + str(period)) + ' for schedule ') + str(schedule)))
ret.Hour = ret.Min = ret.Tariff = str(0)
return ret
idxhr = (((('Schedule_' + str(schedule)) + '_Period_') + str(period)) + '_Hour')
idxmin = (((('Schedule_' + str(schedule)) + '_Period_') + str(period)) + '_Min')
idxrate = (((('Schedule_' + str(schedule)) + '_Period_') + str(period)) + '_Tariff')
if (idxhr not in work_table):
ekm_log(('Incorrect index: ' + idxhr))
ret.Hour = ret.Min = ret.Tariff = str(0)
return ret
if (idxmin not in work_table):
ekm_log(('Incorrect index: ' + idxmin))
ret.Hour = ret.Min = ret.Tariff = str(0)
return ret
if (idxrate not in work_table):
ekm_log(('Incorrect index: ' + idxrate))
ret.Hour = ret.Min = ret.Tariff = str(0)
return ret
ret.Hour = work_table[idxhr][MeterData.StringValue]
ret.Min = work_table[idxmin][MeterData.StringValue].zfill(2)
ret.Tariff = work_table[idxrate][MeterData.StringValue]
return ret | Read a single schedule tariff from meter object buffer.
Args:
schedule (int): A :class:`~ekmmeters.Schedules` value or in range(Extent.Schedules).
tariff (int): A :class:`~ekmmeters.Tariffs` value or in range(Extent.Tariffs).
Returns:
bool: True on completion. | codesearchnet |
def _parse_logging(log_values: dict, service_config: dict):
for log_key, log_value in log_values.items():
if 'driver' in log_key:
service_config['log_driver'] = log_value
if 'options' in log_key:
service_config['log_driver_options'] = log_value | Parse log key.
Args:
log_values (dict): logging configuration values
service_config (dict): Service specification | juraj-google-style |
def getWindow(title, exact=False):
titles = getWindows()
hwnd = titles.get(title, None)
if ((not hwnd) and (not exact)):
for (k, v) in titles.items():
if (title in k):
hwnd = v
break
if hwnd:
return Window(hwnd)
else:
return None | Return Window object if 'title' or its part found in visible windows titles, else return None
Return only 1 window found first
Args:
title: unicode string
exact (bool): True if search only exact match | codesearchnet |
def connectivity_array(self):
cart_coords = np.array(self.s.cart_coords)
all_sites = (cart_coords[(:, None, :)] + self.cart_offsets[(None, :, :)])
vt = Voronoi(all_sites.reshape(((- 1), 3)))
n_images = all_sites.shape[1]
cs = (len(self.s), len(self.s), len(self.cart_offsets))
connectivity = np.zeros(cs)
vts = np.array(vt.vertices)
for ((ki, kj), v) in vt.ridge_dict.items():
atomi = (ki
atomj = (kj
imagei = (ki % n_images)
imagej = (kj % n_images)
if ((imagei != (n_images
continue
if (imagei == (n_images
val = solid_angle(vt.points[ki], vts[v])
connectivity[(atomi, atomj, imagej)] = val
if (imagej == (n_images
val = solid_angle(vt.points[kj], vts[v])
connectivity[(atomj, atomi, imagei)] = val
if ((- 10.101) in vts[v]):
warn('Found connectivity with infinite vertex. Cutoff is too low, and results may be incorrect')
return connectivity | Provides connectivity array.
Returns:
connectivity: An array of shape [atomi, atomj, imagej]. atomi is
the index of the atom in the input structure. Since the second
atom can be outside of the unit cell, it must be described
by both an atom index and an image index. Array data is the
solid angle of polygon between atomi and imagej of atomj | codesearchnet |
def run_config_diagnostics(config_path=CONFIG_PATH):
config = read_config(config_path)
missing_sections = set()
malformed_entries = defaultdict(set)
for (section, expected_section_keys) in SECTION_KEYS.items():
section_content = config.get(section)
if (not section_content):
missing_sections.add(section)
else:
for option in expected_section_keys:
option_value = section_content.get(option)
if (not option_value):
malformed_entries[section].add(option)
return (config_path, missing_sections, malformed_entries) | Run diagnostics on the configuration file.
Args:
config_path (str): Path to the configuration file.
Returns:
str, Set[str], dict(str, Set[str]): The path to the configuration file, a set of missing
sections and a dict that maps each section to the entries that have either missing or empty
options. | codesearchnet |
def add_arguments(self, parser):
parser.add_argument('name', nargs=1, choices=['kinetis'],
help='name of MCU to unlock')
return self.add_common_arguments(parser, True) | Adds the unlock command arguments to the parser.
Args:
self (UnlockCommand): the ``UnlockCommand`` instance
parser (argparse.ArgumentParser): the parser to add the arguments to
Returns:
``None`` | juraj-google-style |
def acquaint_insides(swap_gate: ops.Gate, acquaintance_gate: ops.Operation, qubits: Sequence[ops.Qid], before: bool, layers: Layers, mapping: Dict[(ops.Qid, int)]) -> None:
max_reach = _get_max_reach(len(qubits), round_up=before)
reaches = itertools.chain(range(1, (max_reach + 1)), range(max_reach, (- 1), (- 1)))
offsets = ((0, 1) * max_reach)
swap_gate = SwapPermutationGate(swap_gate)
ops = []
for (offset, reach) in zip(offsets, reaches):
if (offset == before):
ops.append(acquaintance_gate)
for dr in range(offset, reach, 2):
ops.append(swap_gate(*qubits[dr:(dr + 2)]))
intrastitial_layer = getattr(layers, ('pre' if before else 'post'))
intrastitial_layer += ops
interstitial_layer = getattr(layers, (('prior' if before else 'posterior') + '_interstitial'))
interstitial_layer.append(acquaintance_gate)
reached_qubits = qubits[:(max_reach + 1)]
positions = list((mapping[q] for q in reached_qubits))
mapping.update(zip(reached_qubits, reversed(positions))) | Acquaints each of the qubits with another set specified by an
acquaintance gate.
Args:
qubits: The list of qubits of which half are individually acquainted
with another list of qubits.
layers: The layers to put gates into.
acquaintance_gate: The acquaintance gate that acquaints the end qubit
with another list of qubits.
before: Whether the acquainting is done before the shift.
swap_gate: The gate used to swap logical indices.
mapping: The mapping from qubits to logical indices. Used to keep track
of the effect of inside-acquainting swaps. | codesearchnet |
def log(self, metric):
message = self.LOGFMT.format(**metric)
if metric['context']:
message += ' context: {context}'.format(context=metric['context'])
self._logger.log(self.level, message) | Format and output metric.
Args:
metric (dict): Complete metric. | codesearchnet |
def split_input(cls, mapper_spec):
batch_size = int(_get_params(mapper_spec).get(
cls.BATCH_SIZE_PARAM, cls._BATCH_SIZE))
shard_count = mapper_spec.shard_count
namespace_ranges = namespace_range.NamespaceRange.split(shard_count,
contiguous=True)
return [NamespaceInputReader(ns_range, batch_size)
for ns_range in namespace_ranges] | Returns a list of input readers for the input spec.
Args:
mapper_spec: The MapperSpec for this InputReader.
Returns:
A list of InputReaders. | juraj-google-style |
def Validate(self, expression):
parsed = self._Load(expression)
if not parsed:
raise DefinitionError("Empty StatFilter expression.")
bad_keys = set(parsed) - self._KEYS
if bad_keys:
raise DefinitionError("Invalid parameters: %s" % ",".join(bad_keys))
if self.cfg.mask and not self.cfg.mode:
raise DefinitionError("mode can only be set when mask is also defined.")
if self.cfg.mask:
if len(self.cfg.mask) > 1:
raise DefinitionError("Too many mask values defined.")
if not self._PERM_RE.match(self.cfg.mask[0]):
raise DefinitionError("mask=%s is not octal, e.g. 0600" % self.cfg.mask)
if self.cfg.mode:
if len(self.cfg.mode) > 1:
raise DefinitionError("Too many mode values defined.")
if not self._PERM_RE.match(self.cfg.mode[0]):
raise DefinitionError("mode=%s is not octal, e.g. 0600" % self.cfg.mode)
if self.cfg.gid:
for gid in self.cfg.gid:
matched = self._UID_GID_RE.match(gid)
if not matched:
raise DefinitionError("gid: %s is not an integer preceded by "
"!, >, < or =." % gid)
if self.cfg.uid:
for uid in self.cfg.uid:
matched = self._UID_GID_RE.match(uid)
if not matched:
raise DefinitionError("uid: %s is not an integer preceded by "
"!, >, < or =." % uid)
if self.cfg.file_re:
if len(self.cfg.file_re) > 1:
raise DefinitionError("Too many regexes defined: %s" % self.cfg.file_re)
try:
self.file_re = re.compile(self.cfg.file_re[0])
except (re.error, TypeError) as e:
raise DefinitionError("Invalid file regex: %s" % e)
if self.cfg.path_re:
if len(self.cfg.path_re) > 1:
raise DefinitionError("Too many regexes defined: %s" % self.cfg.path_re)
try:
self.path_re = re.compile(self.cfg.path_re[0])
except (re.error, TypeError) as e:
raise DefinitionError("Invalid path regex: %s" % e)
if self.cfg.file_type:
if len(self.cfg.file_type) > 1:
raise DefinitionError(
"Too many file types defined: %s" % self.cfg.file_type)
file_type = self.cfg.file_type[0].upper()
if file_type not in self._TYPES:
raise DefinitionError("Unsupported file type %s" % file_type)
self._Initialize()
if not self.matchers:
raise DefinitionError("StatFilter has no actions: %s" % expression)
return True | Validates that a parsed rule entry is valid for fschecker.
Args:
expression: A rule expression.
Raises:
DefinitionError: If the filter definition could not be validated.
Returns:
True if the expression validated OK. | juraj-google-style |
def gpio_get(self, pins=None):
if (pins is None):
pins = range(4)
size = len(pins)
indices = (ctypes.c_uint8 * size)(*pins)
statuses = (ctypes.c_uint8 * size)()
result = self._dll.JLINK_EMU_GPIO_GetState(ctypes.byref(indices), ctypes.byref(statuses), size)
if (result < 0):
raise errors.JLinkException(result)
return list(statuses) | Returns a list of states for the given pins.
Defaults to the first four pins if an argument is not given.
Args:
self (JLink): the ``JLink`` instance
pins (list): indices of the GPIO pins whose states are requested
Returns:
A list of states.
Raises:
JLinkException: on error. | codesearchnet |
def add_primitives_path(path):
if path not in _PRIMITIVES_PATHS:
if not os.path.isdir(path):
raise ValueError('Invalid path: {}'.format(path))
LOGGER.debug('Adding new primitives path %s', path)
_PRIMITIVES_PATHS.insert(0, os.path.abspath(path)) | Add a new path to look for primitives.
The new path will be inserted in the first place of the list,
so any primitive found in this new folder will take precedence
over any other primitive with the same name that existed in the
system before.
Args:
path (str): path to add
Raises:
ValueError: A `ValueError` will be raised if the path is not valid. | juraj-google-style |
def is45(msg):
if allzeros(msg):
return False
d = hex2bin(data(msg))
if wrongstatus(d, 1, 2, 3):
return False
if wrongstatus(d, 4, 5, 6):
return False
if wrongstatus(d, 7, 8, 9):
return False
if wrongstatus(d, 10, 11, 12):
return False
if wrongstatus(d, 13, 14, 15):
return False
if wrongstatus(d, 16, 17, 26):
return False
if wrongstatus(d, 27, 28, 38):
return False
if wrongstatus(d, 39, 40, 51):
return False
if bin2int(d[51:56]) != 0:
return False
temp = temp45(msg)
if temp:
if temp > 60 or temp < -80:
return False
return True | Check if a message is likely to be BDS code 4,5.
Meteorological hazard report
Args:
msg (String): 28 bytes hexadecimal message string
Returns:
bool: True or False | juraj-google-style |
def get_reduced_structure(self, reduction_algo='niggli'):
if (reduction_algo == 'niggli'):
reduced_latt = self._lattice.get_niggli_reduced_lattice()
elif (reduction_algo == 'LLL'):
reduced_latt = self._lattice.get_lll_reduced_lattice()
else:
raise ValueError('Invalid reduction algo : {}'.format(reduction_algo))
if (reduced_latt != self.lattice):
return self.__class__(reduced_latt, self.species_and_occu, self.cart_coords, coords_are_cartesian=True, to_unit_cell=True, site_properties=self.site_properties, charge=self._charge)
else:
return self.copy() | Get a reduced structure.
Args:
reduction_algo (str): The lattice reduction algorithm to use.
Currently supported options are "niggli" or "LLL". | codesearchnet |
def trace(src, options=None):
options = options or config.Options.create()
with config.verbosity_from(options):
loader = load_pytd.create_loader(options)
ret = analyze.infer_types(src=src, options=options, loader=loader)
pytd_module = ret.ast
raw_traces = []
for op, symbol, data in ret.context.vm.opcode_traces:
raw_traces.append((op, symbol, tuple((_to_pytd(d, loader, pytd_module) for d in data))))
return source.Code(src, raw_traces, TypeTrace, options.input) | Generates type traces for the given source code.
Args:
src: The source text.
options: A pytype.config.Options object that can be used to specify options
such as the target Python version.
Returns:
A source.Code object. | github-repos |
def get_attr_location(self, name, location):
line, _ = location
src_line = self.line(line)
attr = name.split('.')[-1]
dot_attr = '.' + attr
if dot_attr in src_line:
col = src_line.index(dot_attr)
return (Location(line, col + 1), len(attr))
else:
attr_loc = self._get_multiline_location(location, 5, dot_attr)
if attr_loc:
return (Location(attr_loc.line, attr_loc.column + 1), len(attr))
else:
for l in self.get_closest_line_range(line, line + 5):
if self.line(l).endswith('.'):
next_line = self.next_non_comment_line(l)
text = self.line(next_line)
if text.lstrip().startswith(attr):
c = text.index(attr)
return (Location(next_line, c), len(attr))
return (location, len(name)) | Returns the location and span of the attribute in an attribute access.
Args:
name: The attribute name.
location: The location of the value the attribute is accessed on. | github-repos |
def __init__(self, server_id):
data = datatools.get_data()
self.server_id = server_id
self.logger = logging.getLogger("{}.{}".format(__name__, self.server_id))
self.songcache_dir = "{}/{}".format(_root_songcache_dir, self.server_id)
self.songcache_next_dir = "{}/{}/next".format(_root_songcache_dir, self.server_id)
self.output_format = "{}/{}".format(self.songcache_dir, file_format)
self.output_format_next = "{}/{}".format(self.songcache_next_dir, file_format)
self.vchannel = None
self.vclient = None
self.streamer = None
self.current_duration = 0
self.current_download_elapsed = 0
self.is_live = False
self.queue = []
self.prev_queue = []
self.prev_queue_max = 500
self.volume = 20
self.vclient_starttime = None
self.vclient_task = None
self.pause_time = None
self.prev_time = ""
self.loop_type = 'off'
self.mready = False
self.vready = False
self.state = 'off'
self.mchannel = None
self.embed = None
self.queue_display = 9
self.nowplayinglog = logging.getLogger("{}.{}.nowplaying".format(__name__, self.server_id))
self.nowplayinglog.setLevel("DEBUG")
self.nowplayingauthorlog = logging.getLogger("{}.{}.nowplayingauthor".format(__name__, self.server_id))
self.nowplayingauthorlog.setLevel("DEBUG")
self.nowplayingsourcelog = logging.getLogger("{}.{}.nowplayingsource".format(__name__, self.server_id))
self.nowplayingsourcelog.setLevel("DEBUG")
self.timelog = logging.getLogger("{}.{}.time".format(__name__, self.server_id))
self.timelog.setLevel("DEBUG")
self.timelog.propagate = False
self.queuelog = logging.getLogger("{}.{}.queue".format(__name__, self.server_id))
self.queuelog.setLevel("DEBUG")
self.queuelog.propagate = False
self.queuelenlog = logging.getLogger("{}.{}.queuelen".format(__name__, self.server_id))
self.queuelenlog.setLevel("DEBUG")
self.queuelenlog.propagate = False
self.volumelog = logging.getLogger("{}.{}.volume".format(__name__, self.server_id))
self.volumelog.setLevel("DEBUG")
self.statuslog = logging.getLogger("{}.{}.status".format(__name__, self.server_id))
self.statuslog.setLevel("DEBUG")
self.statustimer = None
self.clear_cache()
self.topic = ""
self.topicchannel = None
if "topic_id" in data["discord"]["servers"][self.server_id][_data.modulename]:
topic_id = data["discord"]["servers"][self.server_id][_data.modulename]["topic_id"]
if topic_id is not None and topic_id != "":
logger.debug("Topic channel id: {}".format(topic_id))
self.topicchannel = client.get_channel(topic_id)
if "volume" in data["discord"]["servers"][self.server_id][_data.modulename]:
self.volume = data["discord"]["servers"][self.server_id][_data.modulename]["volume"]
else:
self.write_volume() | Locks onto a server for easy management of various UIs
Args:
server_id (str): The Discord ID of the server to lock on to | juraj-google-style |
def flip_channel_order(self, image):
self._ensure_format_supported(image)
if isinstance(image, PIL.Image.Image):
image = self.to_numpy_array(image)
return image[::-1, :, :] | Flips the channel order of `image` from RGB to BGR, or vice versa. Note that this will trigger a conversion of
`image` to a NumPy array if it's a PIL Image.
Args:
image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
The image whose color channels to flip. If `np.ndarray` or `torch.Tensor`, the channel dimension should
be first. | github-repos |
def get_random_value(length=10, character_sets=[string.ascii_uppercase, string.ascii_lowercase]):
return ''.join((random.choice(''.join(character_sets)) for i in range(length))) | Get a random string with the given length.
Args:
length (int): The length of the string to return.
character_sets list(str): The caracter sets to use.
Returns:
str: The random string. | codesearchnet |
def _DownloadAuthUrl(self, url, dest_dir):
dest_file = tempfile.NamedTemporaryFile(dir=dest_dir, delete=False)
dest_file.close()
dest = dest_file.name
self.logger.info(
'Downloading url from %s to %s using authentication token.', url, dest)
if not self.token:
response = self.watcher.GetMetadata(
self.token_metadata_key, recursive=False, retry=False)
if not response:
self.logger.info(
'Authentication token not found. Attempting unauthenticated '
'download.')
return self._DownloadUrl(url, dest_dir)
self.token = '%s %s' % (
response.get('token_type', ''), response.get('access_token', ''))
try:
request = urlrequest.Request(url)
request.add_unredirected_header('Metadata-Flavor', 'Google')
request.add_unredirected_header('Authorization', self.token)
content = urlrequest.urlopen(request).read().decode('utf-8')
except (httpclient.HTTPException, socket.error, urlerror.URLError) as e:
self.logger.warning('Could not download %s. %s.', url, str(e))
return None
with open(dest, 'wb') as f:
f.write(content)
return dest | Download a Google Storage URL using an authentication token.
If the token cannot be fetched, fallback to unauthenticated download.
Args:
url: string, the URL to download.
dest_dir: string, the path to a directory for storing metadata scripts.
Returns:
string, the path to the file storing the metadata script. | juraj-google-style |
def uses_star_args_in_call(node):
if sys.version_info[:2] >= (3, 5):
for arg in node.args:
if isinstance(arg, ast.Starred):
return True
elif node.starargs:
return True
return False | Check if an ast.Call node uses arbitrary-length positional *args.
This function works with the AST call node format of Python3.5+
as well as the different AST format of earlier versions of Python.
Args:
node: The ast.Call node to check arg values for.
Returns:
True if the node uses starred variadic positional args or keyword args.
False if it does not. | github-repos |
def sign(self, byts):
chosen_hash = c_hashes.SHA256()
hasher = c_hashes.Hash(chosen_hash, default_backend())
hasher.update(byts)
digest = hasher.finalize()
return self.priv.sign(digest, c_ec.ECDSA(c_utils.Prehashed(chosen_hash))) | Compute the ECC signature for the given bytestream.
Args:
byts (bytes): The bytes to sign.
Returns:
bytes: The RSA Signature bytes. | codesearchnet |
def load_metrics(event_dir, epoch):
metrics = {}
for filename in tf.gfile.ListDirectory(event_dir):
path = os.path.join(event_dir, filename)
for event in tf.train.summary_iterator(path):
if ((event.step == epoch) and event.HasField('summary')):
value = event.summary.value[0]
metrics[value.tag] = value.simple_value
return metrics | Loads metrics for this epoch if they have already been written.
This reads the entire event file but it's small with just per-epoch metrics.
Args:
event_dir: TODO(koz4k): Document this.
epoch: TODO(koz4k): Document this.
Returns:
metrics. | codesearchnet |
def RegisterMessage(self, message):
desc = message.DESCRIPTOR
self._classes[desc.full_name] = message
self.pool.AddDescriptor(desc)
return message | Registers the given message type in the local database.
Calls to GetSymbol() and GetMessages() will return messages registered here.
Args:
message: a message.Message, to be registered.
Returns:
The provided message. | juraj-google-style |
def GetSectionByIndex(self, section_index):
if not self._is_parsed:
self._Parse()
self._is_parsed = True
if section_index < 0 or section_index >= len(self._sections):
return None
return self._sections[section_index] | Retrieves a specific section based on the index.
Args:
section_index (int): index of the section.
Returns:
VolumeExtent: a volume extent or None if not available. | juraj-google-style |
def run_commands(self, commands, encoding='json', send_enable=True, **kwargs):
commands = make_iterable(commands)
commands = [({'cmd': c.split('MULTILINE:')[0], 'input': ('%s\n' % c.split('MULTILINE:')[1].strip())} if ('MULTILINE:' in c) else c) for c in commands]
if send_enable:
if self._enablepwd:
commands.insert(0, {'cmd': 'enable', 'input': self._enablepwd})
else:
commands.insert(0, 'enable')
response = self._connection.execute(commands, encoding, **kwargs)
if send_enable:
response['result'].pop(0)
return response['result'] | Sends the commands over the transport to the device
This method sends the commands to the device using the nodes
transport. This is a lower layer function that shouldn't normally
need to be used, preferring instead to use config() or enable().
Args:
commands (list): The ordered list of commands to send to the
device using the transport
encoding (str): The encoding method to use for the request and
excpected response.
send_enable (bool): If True the enable command will be
prepended to the command list automatically.
**kwargs: Additional keyword arguments for expanded eAPI
functionality. Only supported eAPI params are used in building
the request
Returns:
This method will return the raw response from the connection
which is a Python dictionary object. | codesearchnet |
def parse(self, filepath, content):
try:
parsed = yaml.load(content)
except yaml.YAMLError as exc:
msg = "No YAML object could be decoded from file: {}\n{}"
raise SettingsBackendError(msg.format(filepath, exc))
return parsed | Parse opened settings content using YAML parser.
Args:
filepath (str): Settings object, depends from backend
content (str): Settings content from opened file, depends from
backend.
Raises:
boussole.exceptions.SettingsBackendError: If parser can not decode
a valid YAML object.
Returns:
dict: Dictionnary containing parsed setting elements. | juraj-google-style |
def __get_state_by_id(cls, job_id):
state = model.MapreduceState.get_by_job_id(job_id)
if state is None:
raise ValueError("Job state for job %s is missing." % job_id)
return state | Get job state by id.
Args:
job_id: job id.
Returns:
model.MapreduceState for the job.
Raises:
ValueError: if the job state is missing. | juraj-google-style |
def _print_test_names(test_classes):
for test_class in test_classes:
cls = test_class(config_parser.TestRunConfig())
test_names = []
try:
cls._pre_run()
if cls.tests:
test_names = list(cls.tests)
else:
test_names = cls.get_existing_test_names()
except Exception:
logging.exception('Failed to retrieve generated tests.')
finally:
cls._clean_up()
print('==========> %s <==========' % cls.TAG)
for name in test_names:
print(f'{cls.TAG}.{name}') | Prints the names of all the tests in all test classes.
Args:
test_classes: classes, the test classes to print names from. | github-repos |
def _get_prop_from_modelclass(modelclass, name):
if name == '__key__':
return modelclass._key
parts = name.split('.')
part, more = parts[0], parts[1:]
prop = modelclass._properties.get(part)
if prop is None:
if issubclass(modelclass, model.Expando):
prop = model.GenericProperty(part)
else:
raise TypeError('Model %s has no property named %r' %
(modelclass._get_kind(), part))
while more:
part = more.pop(0)
if not isinstance(prop, model.StructuredProperty):
raise TypeError('Model %s has no property named %r' %
(modelclass._get_kind(), part))
maybe = getattr(prop, part, None)
if isinstance(maybe, model.Property) and maybe._name == part:
prop = maybe
else:
maybe = prop._modelclass._properties.get(part)
if maybe is not None:
prop = getattr(prop, maybe._code_name)
else:
if issubclass(prop._modelclass, model.Expando) and not more:
prop = model.GenericProperty()
prop._name = name
else:
raise KeyError('Model %s has no property named %r' %
(prop._modelclass._get_kind(), part))
return prop | Helper for FQL parsing to turn a property name into a property object.
Args:
modelclass: The model class specified in the query.
name: The property name. This may contain dots which indicate
sub-properties of structured properties.
Returns:
A Property object.
Raises:
KeyError if the property doesn't exist and the model clas doesn't
derive from Expando. | juraj-google-style |
def run_idle(self):
if ((not self.idlers) or (self.inactive >= len(self.idlers))):
return False
idler = self.idlers.popleft()
(callback, args, kwds) = idler
_logging_debug('idler: %s', callback.__name__)
res = callback(*args, **kwds)
if (res is not None):
if res:
self.inactive = 0
else:
self.inactive += 1
self.idlers.append(idler)
else:
_logging_debug('idler %s removed', callback.__name__)
return True | Run one of the idle callbacks.
Returns:
True if one was called, False if no idle callback was called. | codesearchnet |
def _MakeFieldDescriptor(self, field_proto, message_name, index, is_extension=False):
if message_name:
full_name = '.'.join((message_name, field_proto.name))
else:
full_name = field_proto.name
return descriptor.FieldDescriptor(name=field_proto.name, full_name=full_name, index=index, number=field_proto.number, type=field_proto.type, cpp_type=None, message_type=None, enum_type=None, containing_type=None, label=field_proto.label, has_default_value=False, default_value=None, is_extension=is_extension, extension_scope=None, options=field_proto.options) | Creates a field descriptor from a FieldDescriptorProto.
For message and enum type fields, this method will do a look up
in the pool for the appropriate descriptor for that type. If it
is unavailable, it will fall back to the _source function to
create it. If this type is still unavailable, construction will
fail.
Args:
field_proto: The proto describing the field.
message_name: The name of the containing message.
index: Index of the field
is_extension: Indication that this field is for an extension.
Returns:
An initialized FieldDescriptor object | codesearchnet |
def __init__(self, qobj_model, **run_config):
self._qobj_model = qobj_model
self._run_config = run_config | Create new converter.
Args:
qobj_model (QobjInstruction): marshmallow model to serialize to object.
run_config (dict): experimental configuration. | juraj-google-style |
def __init__(self, column_names=None, title=None):
super(CLITableView, self).__init__(column_names=column_names, title=title)
if self._columns:
self._column_width = len(self._columns[0])
else:
self._column_width = 0 | Initializes a command line table view.
Args:
column_names (Optional[list[str]]): column names.
title (Optional[str]): title. | juraj-google-style |
def xldate_as_datetime(xldate, datemode=0, option="to_datetime"):
if option == "to_float":
d = (xldate - 25589) * 86400.0
else:
try:
d = datetime.datetime(1899, 12, 30) + \
datetime.timedelta(days=xldate + 1462 * datemode)
if option == "to_string":
date_format = "%Y-%m-%d %H:%M:%S"
d = d.strftime(date_format)
except TypeError:
logging.info(f'The date is not of correct type [{xldate}]')
d = xldate
return d | Converts a xls date stamp to a more sensible format.
Args:
xldate (str): date stamp in Excel format.
datemode (int): 0 for 1900-based, 1 for 1904-based.
option (str): option in ("to_datetime", "to_float", "to_string"),
return value
Returns:
datetime (datetime object, float, or string). | juraj-google-style |
def table_chains(self, table='filter'):
return dict(((c['name'], self.get_chain(c['name'], table)) for c in self.get_table(table))) | Get a dict where the keys are all the chains for the given table
and each value is the set of rules defined for the given chain.
Args:
table (str): table name, defaults to ``filter``
Returns:
dict: chains with set of defined rules | codesearchnet |
def cutting_indices(self, independent_decision_points: List[pg.geno.DecisionPoint], global_state: pg.geno.AttributeDict, step: int) -> List[int]: | Implementation of getting the indices of the cutting points.
Args:
independent_decision_points: A list of independent decision points.
global_state: An optional keyword argument as the global state. Subclass
can omit.
step: An optional keyword argument as the curent step. Subclass can omit.
Returns:
A list of integers as the cutting points. | github-repos |
def scroll(clicks, x=None, y=None, pause=None, _pause=True):
_failSafeCheck()
if (type(x) in (tuple, list)):
(x, y) = (x[0], x[1])
(x, y) = position(x, y)
platformModule._scroll(clicks, x, y)
_autoPause(pause, _pause) | Performs a scroll of the mouse scroll wheel.
Whether this is a vertical or horizontal scroll depends on the underlying
operating system.
The x and y parameters detail where the mouse event happens. If None, the
current mouse position is used. If a float value, it is rounded down. If
outside the boundaries of the screen, the event happens at edge of the
screen.
Args:
clicks (int, float): The amount of scrolling to perform.
x (int, float, None, tuple, optional): The x position on the screen where the
click happens. None by default. If tuple, this is used for x and y.
y (int, float, None, optional): The y position on the screen where the
click happens. None by default.
Returns:
None | codesearchnet |
def sample(self, bqm, num_reads=10):
values = tuple(bqm.vartype.value)
def _itersample():
for __ in range(num_reads):
sample = {v: choice(values) for v in bqm.linear}
energy = bqm.energy(sample)
yield sample, energy
samples, energies = zip(*_itersample())
return SampleSet.from_samples(samples, bqm.vartype, energies) | Give random samples for a binary quadratic model.
Variable assignments are chosen by coin flip.
Args:
bqm (:obj:`.BinaryQuadraticModel`):
Binary quadratic model to be sampled from.
num_reads (int, optional, default=10):
Number of reads.
Returns:
:obj:`.SampleSet` | juraj-google-style |
def get_property_dict(entity_proto):
return dict(((p.key, p.value) for p in entity_proto.property)) | Convert datastore.Entity to a dict of property name -> datastore.Value.
Args:
entity_proto: datastore.Entity proto message.
Usage:
>>> get_property_dict(entity_proto)
{'foo': {string_value='a'}, 'bar': {integer_value=2}}
Returns:
dict of entity properties. | codesearchnet |
def _read_mptcp_join(self, bits, size, kind):
if (self._syn and self._ack):
return self._read_join_synack(bits, size, kind)
elif self._syn:
return self._read_join_syn(bits, size, kind)
elif self._ack:
return self._read_join_ack(bits, size, kind)
else:
temp = self._read_fileng(size)
data = dict(kind=kind, length=(size + 1), subtype='MP_JOIN-Unknown', data=(bytes(chr(int(bits[:4], base=2)), encoding='utf-8') + temp))
return data | Read Join Connection option.
Positional arguments:
* bits - str, 4-bit data
* size - int, length of option
* kind - int, 30 (Multipath TCP)
Returns:
* dict -- extracted Join Connection (MP_JOIN) option
Structure of MP_JOIN [RFC 6824]:
Octets Bits Name Description
0 0 tcp.mp.kind Kind (30)
1 8 tcp.mp.length Length
2 16 tcp.mp.subtype Subtype (1)
2 20 tcp.mp.data Handshake-specific Data | codesearchnet |
def op_nodes(self, op=None):
nodes = []
for node in self._multi_graph.nodes():
if node.type == "op":
if op is None or isinstance(node.op, op):
nodes.append(node)
return nodes | Get the list of "op" nodes in the dag.
Args:
op (Type): Instruction subclass op nodes to return. if op=None, return
all op nodes.
Returns:
list[DAGNode]: the list of node ids containing the given op. | juraj-google-style |
def get_plugin_asset(plugin_asset_cls, graph=None):
if graph is None:
graph = ops.get_default_graph()
if not plugin_asset_cls.plugin_name:
raise ValueError('Class %s has no plugin_name' % plugin_asset_cls.__name__)
name = _PLUGIN_ASSET_PREFIX + plugin_asset_cls.plugin_name
container = graph.get_collection(name)
if container:
if len(container) != 1:
raise ValueError('Collection for %s had %d items, expected 1' % (name, len(container)))
instance = container[0]
if not isinstance(instance, plugin_asset_cls):
raise ValueError('Plugin name collision between classes %s and %s' % (plugin_asset_cls.__name__, instance.__class__.__name__))
else:
instance = plugin_asset_cls()
graph.add_to_collection(name, instance)
graph.add_to_collection(_PLUGIN_ASSET_PREFIX, plugin_asset_cls.plugin_name)
return instance | Acquire singleton PluginAsset instance from a graph.
PluginAssets are always singletons, and are stored in tf Graph collections.
This way, they can be defined anywhere the graph is being constructed, and
if the same plugin is configured at many different points, the user can always
modify the same instance.
Args:
plugin_asset_cls: The PluginAsset class
graph: (optional) The graph to retrieve the instance from. If not specified,
the default graph is used.
Returns:
An instance of the plugin_asset_class
Raises:
ValueError: If we have a plugin name collision, or if we unexpectedly find
the wrong number of items in a collection. | github-repos |
def __init__(self, loss_scale_value):
super(FixedLossScale, self).__init__()
if not isinstance(loss_scale_value, (int, float)):
raise ValueError('loss_scale_value must be a Python int or float.')
if loss_scale_value < 1:
raise ValueError('loss_scale_value must be at least 1.')
self._loss_scale_value = float(loss_scale_value) | Creates the fixed loss scale.
Args:
loss_scale_value: A Python float. Its ideal value varies depending on
models to run. Choosing a too small loss_scale might affect model
quality; a too big loss_scale might cause inf or nan. There is no single
right loss_scale to apply. There is no harm choosing a relatively big
number as long as no nan or inf is encountered in training.
Raises:
ValueError: If loss_scale_value is less than 1. | github-repos |
def _print_download_progress_msg(self, msg, flush=False):
if self._interactive_mode():
self._max_prog_str = max(self._max_prog_str, len(msg))
sys.stdout.write(('\r%-{}s'.format(self._max_prog_str) % msg))
sys.stdout.flush()
if flush:
print('\n')
else:
logging.info(msg) | Prints a message about download progress either to the console or TF log.
Args:
msg: Message to print.
flush: Indicates whether to flush the output (only used in interactive
mode). | codesearchnet |
def _address_content(self, x):
mem_keys = tf.layers.dense(self.mem_vals, self.key_depth,
bias_initializer=tf.constant_initializer(1.0),
name="mem_key")
mem_query = tf.layers.dense(x, self.key_depth,
bias_initializer=tf.constant_initializer(1.0),
name="mem_query")
norm = tf.matmul(self._norm(mem_query), self._norm(mem_keys),
transpose_b=True)
dot_product = tf.matmul(mem_query, mem_keys, transpose_b=True)
cos_dist = tf.div(dot_product, norm + 1e-7, name="cos_dist")
access_logits = self.sharpen_factor * cos_dist
return access_logits | Address the memory based on content similarity.
Args:
x: a tensor in the shape of [batch_size, length, depth].
Returns:
the logits for each memory entry [batch_size, length, memory_size]. | juraj-google-style |
def register_user(self, user):
self.users[user.index] = {'known_items': set()}
self.n_user += 1 | For new users, append their information into the dictionaries.
Args:
user (User): User. | juraj-google-style |
def write_fasta_file_from_dict(indict, outname, outdir=None, outext='.faa', force_rerun=False):
if (not outdir):
outdir = ''
outfile = ssbio.utils.outfile_maker(inname='', outname=outname, outdir=outdir, outext=outext)
if ssbio.utils.force_rerun(flag=force_rerun, outfile=outfile):
seqs = []
for (i, s) in indict.items():
seq = ssbio.protein.sequence.utils.cast_to_seq_record(s, id=i)
seqs.append(seq)
SeqIO.write(seqs, outfile, 'fasta')
return outfile | Write a FASTA file for a dictionary of IDs and their sequence strings.
Args:
indict: Input dictionary with keys as IDs and values as sequence strings
outname: Name of the output file which will have outext appended to it
outdir: Path to directory to output sequences to
outext: Extension of FASTA file, default ".faa"
force_rerun: If file should be overwritten if it exists
Returns:
str: Path to output FASTA file. | codesearchnet |
def Push(cls, connection, datafile, filename,
st_mode=DEFAULT_PUSH_MODE, mtime=0, progress_callback=None):
fileinfo = ('{},{}'.format(filename, int(st_mode))).encode('utf-8')
cnxn = FileSyncConnection(connection, b'<2I')
cnxn.Send(b'SEND', fileinfo)
if progress_callback:
total_bytes = os.fstat(datafile.fileno()).st_size if isinstance(datafile, file) else -1
progress = cls._HandleProgress(lambda current: progress_callback(filename, current, total_bytes))
next(progress)
while True:
data = datafile.read(MAX_PUSH_DATA)
if data:
cnxn.Send(b'DATA', data)
if progress_callback:
progress.send(len(data))
else:
break
if mtime == 0:
mtime = int(time.time())
cnxn.Send(b'DONE', size=mtime)
for cmd_id, _, data in cnxn.ReadUntil((), b'OKAY', b'FAIL'):
if cmd_id == b'OKAY':
return
raise PushFailedError(data) | Push a file-like object to the device.
Args:
connection: ADB connection
datafile: File-like object for reading from
filename: Filename to push to
st_mode: stat mode for filename
mtime: modification time
progress_callback: callback method that accepts filename, bytes_written and total_bytes
Raises:
PushFailedError: Raised on push failure. | juraj-google-style |
def _tuple_of_big_endian_int(bit_groups: Tuple[(np.ndarray, ...)]) -> Tuple[(int, ...)]:
return tuple((_big_endian_int(bits) for bits in bit_groups)) | Returns the big-endian integers specified by groups of bits.
Args:
bit_groups: Groups of descending bits, each specifying a big endian
integer with the 1s bit at the end.
Returns:
A tuple containing the integer for each group. | codesearchnet |
def register_for_auto_class(cls, auto_class='AutoProcessor'):
if not isinstance(auto_class, str):
auto_class = auto_class.__name__
import transformers.models.auto as auto_module
if not hasattr(auto_module, auto_class):
raise ValueError(f'{auto_class} is not a valid auto class.')
cls._auto_class = auto_class | Register this class with a given auto class. This should only be used for custom feature extractors as the ones
in the library are already mapped with `AutoProcessor`.
Args:
auto_class (`str` or `type`, *optional*, defaults to `"AutoProcessor"`):
The auto class to register this new feature extractor with. | github-repos |
def exe_cmd(*cmds, timeout=DEFAULT_TIMEOUT_SEC):
cmd = ' '.join(cmds)
ret, out, err = utils.run_command(cmd=cmd, stdout=PIPE, stderr=PIPE, shell=True, timeout=timeout)
logging.debug('cmd: %s, stdout: %s, stderr: %s, ret: %s', utils.cli_cmd_to_string(cmds), out, err, ret)
if not err:
return out
return err | Executes commands in a new shell. Directing stderr to PIPE, with timeout.
This is fastboot's own exe_cmd because of its peculiar way of writing
non-error info to stderr.
Args:
cmds: A sequence of commands and arguments.
timeout: The number of seconds to wait before timing out.
Returns:
The output of the command run, in bytes.
Raises:
Exception: An error occurred during the command execution or
the command timed out. | github-repos |
def is_distributing_by_cloning(model):
if backend.is_tpu_strategy(model._distribution_strategy) and context.executing_eagerly:
return False
elif ops.executing_eagerly_outside_functions():
return bool(model._compile_distribution)
return True | Decide whether this model is going to be distributed via cloning.
We are going to distribute the model by cloning in graph mode.
Args:
model: Keras model to distribute.
Returns:
True if the `model` is going to be distributed using cloning and False
otherwise. | github-repos |
def has_chosen(state, correct, msgs):
ctxt = {}
exec(state.student_code, globals(), ctxt)
sel_indx = ctxt['selected_option']
if (sel_indx != correct):
state.report(Feedback(msgs[(sel_indx - 1)]))
else:
state.reporter.success_msg = msgs[(correct - 1)]
return state | Verify exercises of the type MultipleChoiceExercise
Args:
state: State instance describing student and solution code. Can be omitted if used with Ex().
correct: index of correct option, where 1 is the first option.
msgs : list of feedback messages corresponding to each option.
:Example:
The following SCT is for a multiple choice exercise with 2 options, the first
of which is correct.::
Ex().has_chosen(1, ['Correct!', 'Incorrect. Try again!']) | codesearchnet |
def gather(strategy, value):
return nest.map_structure(functools.partial(_gather, strategy), value) | Gathers value from all workers.
This is intended for tests before we implement an official all-gather API.
Args:
strategy: a `tf.distribute.Strategy`.
value: a nested structure of n-dim `tf.distribute.DistributedValue` of
`tf.Tensor`, or of a `tf.Tensor` if the strategy only has one replica.
Cannot contain tf.sparse.SparseTensor.
Returns:
a (n+1)-dim `tf.Tensor`. | github-repos |
def convert_dropout(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting dropout ...')
if names == 'short':
tf_name = 'DO' + random_string(6)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
dropout = keras.layers.Dropout(rate=params['ratio'], name=tf_name)
layers[scope_name] = dropout(layers[inputs[0]]) | Convert dropout.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers | juraj-google-style |
def update_defaults(self, new_defaults, respect_none=False):
for key, value in six.iteritems(new_defaults):
item = self.get_item(key)
if item is None:
raise YapconfItemNotFound("Cannot update default for {0}, "
"there is no config item by the "
"name of {1}".format(key, key), None)
item.update_default(value, respect_none) | Update items defaults to the values in the new_defaults dict.
Args:
new_defaults (dict): A key-value pair of new defaults to be
applied.
respect_none (bool): Flag to indicate if ``None`` values should
constitute an update to the default. | juraj-google-style |
def cumulative_probabilities(self):
partition_function = np.sum(self.p)
return (np.cumsum(self.p) / partition_function) | Cumulative sum of the relative probabilities for all possible jumps.
Args:
None
Returns:
(np.array): Cumulative sum of relative jump probabilities. | codesearchnet |
def Append(self, item):
if self._index >= self._size:
self._index = self._index % self._size
try:
self._list[self._index] = item
except IndexError:
self._list.append(item)
self._index += 1 | Add an item to the list.
Args:
item (object): item. | juraj-google-style |
def where(self, *constraints: column_expression_builder.ColumnExpressionBuilder) -> 'View':
for constraint in constraints:
if constraint.node.return_type != _fhir_path_data_types.Boolean:
raise ValueError(('view `where` expressions must be boolean predicates', f' got `{constraint.node.to_fhir_path()}`'))
return View(self._context, self._root_resource, self._fields, self._constraints + tuple(constraints), self._handler) | Returns a new View instance with these added constraints.
Args:
*constraints: a list of FHIRPath expressions to conjuctively constrain the
underlying data. The returned view will apply the both the current and
additional constraints defined here. | github-repos |
def _add_bound_method(self, bound_method, identify_observed):
inst = bound_method.__self__
method_name = bound_method.__name__
key = self.make_key(bound_method)
if (key not in self.observers):
self.observers[key] = ObserverBoundMethod(inst, method_name, identify_observed, (key, self.observers))
return True
else:
return False | Add an bound method as an observer.
Args:
bound_method: The bound method to add as an observer.
identify_observed: See the docstring for add_observer.
Returns:
True if the bound method is added, otherwise False. | codesearchnet |
def forward(self, inputs_embeds, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(encoder_layer.__call__, hidden_states, output_attentions)
else:
layer_outputs = encoder_layer(hidden_states, output_attentions=output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple((v for v in [hidden_states, encoder_states, all_attentions] if v is not None))
return BaseModelOutput(last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions) | Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | github-repos |
def filter(self, *query_filter):
for query in query_filter:
self.query.append(query)
return self | Set the query filter to perform the query with
Args:
*query_filter: Simplified Query Language filter | codesearchnet |
def _CreateAdGroup(client, campaign_id):
ad_group_service = client.GetService('AdGroupService')
operations = [{
'operator': 'ADD',
'operand': {
'campaignId': campaign_id,
'adGroupType': 'SEARCH_DYNAMIC_ADS',
'name': 'Earth to Mars Cruises
'status': 'PAUSED',
'biddingStrategyConfiguration': {
'bids': [{
'xsi_type': 'CpcBid',
'bid': {
'microAmount': '3000000'
},
}]
}
}
}]
ad_group = ad_group_service.mutate(operations)['value'][0]
ad_group_id = ad_group['id']
print 'Ad group with ID "%d" and name "%s" was created.' % (
ad_group_id, ad_group['name'])
return ad_group_id | Creates an ad group.
Args:
client: an AdWordsClient instance.
campaign_id: an integer campaign ID.
Returns:
An integer ad group ID. | juraj-google-style |
def inverse_transform(self, y):
sklearn.base.check_is_fitted(self)
xp, _ = sklearn.utils._array_api.get_namespace(y)
if self.ndim_ == 1 and y.ndim == 2:
return xp.squeeze(y, axis=1)
return y | Revert the transformation of transform.
Args:
y: np.ndarray
Transformed numpy array.
Returns:
np.ndarray
If the transformer was fit to a 1D numpy array,
and a 2D numpy array with a singleton second dimension
is passed, it will be squeezed back to 1D. Otherwise, it
will eb left untouched. | github-repos |
def prepare_soap_body(self, method, parameters, namespace):
tags = []
for (name, value) in parameters:
tag = '<{name}>{value}</{name}>'.format(name=name, value=escape(('%s' % value), {'"': '"'}))
tags.append(tag)
wrapped_params = ''.join(tags)
if (namespace is not None):
soap_body = '<{method} xmlns="{namespace}">{params}</{method}>'.format(method=method, params=wrapped_params, namespace=namespace)
else:
soap_body = '<{method}>{params}</{method}>'.format(method=method, params=wrapped_params)
return soap_body | Prepare the SOAP message body for sending.
Args:
method (str): The name of the method to call.
parameters (list): A list of (name, value) tuples containing
the parameters to pass to the method.
namespace (str): tThe XML namespace to use for the method.
Returns:
str: A properly formatted SOAP Body. | codesearchnet |
class Iterator(PyDataset):
white_list_formats = ('png', 'jpg', 'jpeg', 'bmp', 'ppm', 'tif', 'tiff')
def __init__(self, n, batch_size, shuffle, seed):
self.n = n
self.batch_size = batch_size
self.seed = seed
self.shuffle = shuffle
self.batch_index = 0
self.total_batches_seen = 0
self.lock = threading.Lock()
self.index_array = None
self.index_generator = self._flow_index()
def _set_index_array(self):
self.index_array = np.arange(self.n)
if self.shuffle:
self.index_array = np.random.permutation(self.n)
def __getitem__(self, idx):
if idx >= len(self):
raise ValueError('Asked to retrieve element {idx}, but the Sequence has length {length}'.format(idx=idx, length=len(self)))
if self.seed is not None:
np.random.seed(self.seed + self.total_batches_seen)
self.total_batches_seen += 1
if self.index_array is None:
self._set_index_array()
index_array = self.index_array[self.batch_size * idx:self.batch_size * (idx + 1)]
return self._get_batches_of_transformed_samples(index_array)
def __len__(self):
return (self.n + self.batch_size - 1)
def on_epoch_end(self):
self._set_index_array()
def reset(self):
self.batch_index = 0
def _flow_index(self):
self.reset()
while 1:
if self.seed is not None:
np.random.seed(self.seed + self.total_batches_seen)
if self.batch_index == 0:
self._set_index_array()
if self.n == 0:
current_index = 0
else:
current_index = self.batch_index * self.batch_size % self.n
if self.n > current_index + self.batch_size:
self.batch_index += 1
else:
self.batch_index = 0
self.total_batches_seen += 1
yield self.index_array[current_index:current_index + self.batch_size]
def __iter__(self):
return self
def __next__(self):
with self.lock:
index_array = next(self.index_generator)
return self._get_batches_of_transformed_samples(index_array)
def _get_batches_of_transformed_samples(self, index_array):
raise NotImplementedError | Base class for image data iterators.
DEPRECATED.
Every `Iterator` must implement the `_get_batches_of_transformed_samples`
method.
Args:
n: Integer, total number of samples in the dataset to loop over.
batch_size: Integer, size of a batch.
shuffle: Boolean, whether to shuffle the data between epochs.
seed: Random seeding for data shuffling. | github-repos |
def main(args):
if (not args):
raise Exception('Please specify at least one JSON config path')
inputs = []
program = []
outputs = []
for arg in args:
with open(arg) as fd:
config = json.load(fd)
inputs.extend(config.get('inputs', []))
program.extend(config.get('program', []))
outputs.extend(config.get('outputs', []))
if (not program):
raise Exception('Please specify a program')
return run(inputs, program, outputs) | Invokes run function using a JSON file config.
Args:
args: CLI args, which can be a JSON file containing an object whose
attributes are the parameters to the run function. If multiple JSON
files are passed, their contents are concatenated.
Returns:
0 if succeeded or nonzero if failed.
Raises:
Exception: If input data is missing. | codesearchnet |
def request(self,message,message_type):
if message_type == MULTIPART:
raise Exception("Unsupported request type")
super(Requestor,self).send(message,message_type) | Send a request message of the given type
Args:
- message: the message to publish
- message_type: the type of message being sent | juraj-google-style |
def GetSourceStrings(cls, event):
formatter_object = cls.GetFormatterObject(event.data_type)
return formatter_object.GetSources(event) | Retrieves the formatted source strings for a specific event object.
Args:
event (EventObject): event.
Returns:
list[str, str]: short and long version of the source of the event. | juraj-google-style |
def qrandom(n):
import quantumrandom
return np.concatenate([quantumrandom.get_data(data_type='uint16', array_length=1024) for i in range(int(np.ceil((n / 1024.0))))])[:n] | Creates an array of n true random numbers obtained from the quantum random
number generator at qrng.anu.edu.au
This function requires the package quantumrandom and an internet connection.
Args:
n (int):
length of the random array
Return:
array of ints:
array of truly random unsigned 16 bit int values | codesearchnet |
def convert_slice(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting slice ...')
if len(params['axes']) > 1:
raise AssertionError('Cannot convert slice by multiple dimensions')
if params['axes'][0] not in [0, 1, 2, 3]:
raise AssertionError('Slice by dimension more than 3 or less than 0 is not supported')
def target_layer(x, axis=int(params['axes'][0]), start=int(params['starts'][0]), end=int(params['ends'][0])):
if axis == 0:
return x[start:end]
elif axis == 1:
return x[:, start:end]
elif axis == 2:
return x[:, :, start:end]
elif axis == 3:
return x[:, :, :, start:end]
lambda_layer = keras.layers.Lambda(target_layer)
layers[scope_name] = lambda_layer(layers[inputs[0]]) | Convert slice operation.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers | juraj-google-style |
def make_bubble_surface(dims=DEFAULT_DIMS, repeat=3):
gradients = make_gradients(dims)
return (
np.sin((gradients[0] - 0.5) * repeat * np.pi) *
np.sin((gradients[1] - 0.5) * repeat * np.pi)) | Makes a surface from the product of sine functions on each axis.
Args:
dims (pair): the dimensions of the surface to create
repeat (int): the frequency of the waves is set to ensure this many
repetitions of the function
Returns:
surface: A surface. | juraj-google-style |
def discovery(self, logfile=None, tracefile=None):
self._enable_logging(logfile=logfile, tracefile=tracefile)
self.log("'discovery' method is deprecated. Please 'connect' with force_discovery=True.")
self.log('Device discovery process started')
self.connect(logfile=logfile, force_discovery=True, tracefile=tracefile)
self.disconnect() | Discover the device details.
This method discover several device attributes.
Args:
logfile (file): Optional file descriptor for session logging. The file must be open for write.
The session is logged only if ``log_session=True`` was passed to the constructor.
It the parameter is not passed then the default *session.log* file is created in `log_dir`. | codesearchnet |
def ctc_loss_and_grad(logits, labels, label_length, logit_length, unique=None):
num_labels = _get_dim(logits, 2)
max_label_seq_length = _get_dim(labels, 1)
ilabel_log_probs = nn_ops.log_softmax(logits)
state_log_probs = _ilabel_to_state(labels, num_labels, ilabel_log_probs)
state_trans_probs = _ctc_state_trans(labels)
initial_state_log_probs, final_state_log_probs = ctc_state_log_probs(label_length, max_label_seq_length)
fwd_bwd_log_probs, log_likelihood = _forward_backward_log(state_trans_log_probs=math_ops.log(state_trans_probs), initial_state_log_probs=initial_state_log_probs, final_state_log_probs=final_state_log_probs, observed_log_probs=state_log_probs, sequence_length=logit_length)
if unique:
olabel_log_probs = _state_to_olabel_unique(labels, num_labels, fwd_bwd_log_probs, unique)
else:
olabel_log_probs = _state_to_olabel(labels, num_labels, fwd_bwd_log_probs)
grad = math_ops.exp(ilabel_log_probs) - math_ops.exp(olabel_log_probs)
max_logit_length = _get_dim(logits, 0)
logit_mask = array_ops.sequence_mask(logit_length, max_logit_length, dtypes.float32)
logit_mask = array_ops.transpose(logit_mask, perm=[1, 0])
logit_mask = array_ops.expand_dims(logit_mask, axis=2)
grad *= logit_mask
loss = -log_likelihood
return (loss, grad) | Computes the CTC loss and gradients.
Most users will want fwd_bwd.ctc_loss
This function returns the computed gradient, it does not have a gradient
of its own defined.
Args:
logits: tensor of shape [frames, batch_size, num_labels]
labels: tensor of shape [batch_size, max_label_seq_length]
label_length: tensor of shape [batch_size] Length of reference label
sequence in labels.
logit_length: tensor of shape [batch_size] Length of input sequence in
logits.
unique: (optional) unique label indices as computed by unique(labels) If
supplied, enables an implementation that is faster and more memory
efficient on TPU.
Returns:
loss: tensor of shape [batch_size]
gradient: tensor of shape [frames, batch_size, num_labels] | github-repos |
def _chunk_query(l, n, cn, conn, table, db_type):
[insert_query_m(l[i:i + n], table, conn, cn, db_type) for i in range(0, len(l), n)] | Call for inserting SQL query in chunks based on n rows
Args:
l (list): List of tuples
n (int): Number of rows
cn (str): Column names
conn (connection object): Database connection object
table (str): Table name
db_type (str): If "sqlite" or "mysql" | juraj-google-style |
def correlation_vector(self, value):
if value == self._defaults['ai.operation.correlationVector'] and 'ai.operation.correlationVector' in self._values:
del self._values['ai.operation.correlationVector']
else:
self._values['ai.operation.correlationVector'] = value | The correlation_vector property.
Args:
value (string). the property value. | juraj-google-style |
def emit(self, record):
if record.levelno < logging.getLevelName(self.min_level):
return
evt = LogEvent()
evt.level = record.levelname
evt.levelno = record.levelno
evt.timestamp = datetime.fromtimestamp(record.created)
evt.message = record.message
evt.filename = record.filename
evt.lineno = record.lineno
evt.module = record.module
evt.funcname = record.funcName
evt.pathname = record.pathname
evt.process_id = record.process
if record.levelno >= 40:
evt.stacktrace = traceback.format_exc()
try:
db.session.add(evt)
db.session.commit()
except Exception:
db.session.rollback() | Persist a record into the database
Args:
record (`logging.Record`): The logging.Record object to store
Returns:
`None` | juraj-google-style |
def _ot_make_closed(self, access_string):
self.observation_table.sm_vector.append(access_string)
for i in self.alphabet:
self.observation_table.smi_vector.append(access_string + i)
for e in self.observation_table.em_vector:
self._fill_table_entry(access_string + i, e) | Given a state input_string in Smi that is not equivalent with any state in Sm
this method will move that state in Sm create a corresponding Smi
state and fill the corresponding entries in the table.
Args:
access_string (str): State access string
Returns:
None | juraj-google-style |
def rpc(self, address, rpc_id, *args, **kwargs):
if isinstance(rpc_id, RPCDeclaration):
arg_format = rpc_id.arg_format
resp_format = rpc_id.resp_format
rpc_id = rpc_id.rpc_id
else:
arg_format = kwargs.get('arg_format', None)
resp_format = kwargs.get('resp_format', None)
arg_payload = b''
if (arg_format is not None):
arg_payload = pack_rpc_payload(arg_format, args)
self._logger.debug('Sending rpc to %d:%04X, payload=%s', address, rpc_id, args)
resp_payload = self.call_rpc(address, rpc_id, arg_payload)
if (resp_format is None):
return []
resp = unpack_rpc_payload(resp_format, resp_payload)
return resp | Immediately dispatch an RPC inside this EmulatedDevice.
This function is meant to be used for testing purposes as well as by
tiles inside a complex EmulatedDevice subclass that need to
communicate with each other. It should only be called from the main
virtual device thread where start() was called from.
**Background workers may not call this method since it may cause them to deadlock.**
Args:
address (int): The address of the tile that has the RPC.
rpc_id (int): The 16-bit id of the rpc we want to call
*args: Any required arguments for the RPC as python objects.
**kwargs: Only two keyword arguments are supported:
- arg_format: A format specifier for the argument list
- result_format: A format specifier for the result
Returns:
list: A list of the decoded response members from the RPC. | codesearchnet |
def label(self, main_type, sub_type, unique_id, label, action='ADD', owner=None, params=None):
params = params or {}
if owner:
params['owner'] = owner
action = action.upper()
if not sub_type:
url = '/v2/{}/{}/securityLabels/{}'.format(main_type, unique_id, quote(label))
else:
url = '/v2/{}/{}/{}/securityLabels/{}'.format(
main_type, sub_type, unique_id, quote(label)
)
if action == 'ADD':
return self.tcex.session.post(url, params=params)
if action == 'DELETE':
return self.tcex.session.delete(url, params=params)
if action == 'GET':
return self.tcex.session.get(url, params=params)
return None | Args:
owner:
main_type:
sub_type:
unique_id:
label:
action:
params:
Return: | juraj-google-style |
def from_key_counter(cls, key, counter, alg):
counter = _convert_to_state_tensor(counter)
key = _convert_to_state_tensor(key)
alg = random_ops_util.convert_alg_to_int(alg)
counter.shape.assert_is_compatible_with([_get_state_size(alg) - 1])
key.shape.assert_is_compatible_with([])
key = array_ops.reshape(key, [1])
state = array_ops.concat([counter, key], 0)
return cls(state=state, alg=alg) | Creates a generator from a key and a counter.
This constructor only applies if the algorithm is a counter-based algorithm.
See method `key` for the meaning of "key" and "counter".
Args:
key: the key for the RNG, a scalar of type STATE_TYPE.
counter: a vector of dtype STATE_TYPE representing the initial counter for
the RNG, whose length is algorithm-specific.,
alg: the RNG algorithm. If None, it will be auto-selected. See
`__init__` for its possible values.
Returns:
The new generator. | github-repos |
def HandleBlockReceived(self, inventory):
block = IOHelper.AsSerializableWithType(inventory, 'neo.Core.Block.Block')
if not block:
return
blockhash = block.Hash.ToBytes()
try:
if blockhash in BC.Default().BlockRequests:
BC.Default().BlockRequests.remove(blockhash)
except KeyError:
pass
try:
if blockhash in self.myblockrequests:
self.heart_beat(HEARTBEAT_BLOCKS)
self.myblockrequests.remove(blockhash)
except KeyError:
pass
self.leader.InventoryReceived(block) | Process a Block inventory payload.
Args:
inventory (neo.Network.Inventory): | juraj-google-style |
def plane_xz(size=(10, 10), resolution=(10, 10)) -> VAO:
(sx, sz) = size
(rx, rz) = resolution
(dx, dz) = ((sx / rx), (sz / rz))
(ox, oz) = (((- sx) / 2), ((- sz) / 2))
def gen_pos():
for z in range(rz):
for x in range(rx):
(yield (ox + (x * dx)))
(yield 0)
(yield (oz + (z * dz)))
def gen_uv():
for z in range(rz):
for x in range(rx):
(yield (x / (rx - 1)))
(yield (1 - (z / (rz - 1))))
def gen_normal():
for _ in range((rx * rz)):
(yield 0.0)
(yield 1.0)
(yield 0.0)
def gen_index():
for z in range((rz - 1)):
for x in range((rx - 1)):
(yield (((z * rz) + x) + 1))
(yield ((z * rz) + x))
(yield (((z * rz) + x) + rx))
(yield (((z * rz) + x) + 1))
(yield (((z * rz) + x) + rx))
(yield ((((z * rz) + x) + rx) + 1))
pos_data = numpy.fromiter(gen_pos(), dtype=numpy.float32)
uv_data = numpy.fromiter(gen_uv(), dtype=numpy.float32)
normal_data = numpy.fromiter(gen_normal(), dtype=numpy.float32)
index_data = numpy.fromiter(gen_index(), dtype=numpy.uint32)
vao = VAO('plane_xz', mode=moderngl.TRIANGLES)
vao.buffer(pos_data, '3f', ['in_position'])
vao.buffer(uv_data, '2f', ['in_uv'])
vao.buffer(normal_data, '3f', ['in_normal'])
vao.index_buffer(index_data, index_element_size=4)
return vao | Generates a plane on the xz axis of a specific size and resolution.
Normals and texture coordinates are also included.
Args:
size: (x, y) tuple
resolution: (x, y) tuple
Returns:
A :py:class:`demosys.opengl.vao.VAO` instance | codesearchnet |
def clear_errors():
data = []
data.append(0x0B)
data.append(BROADCAST_ID)
data.append(RAM_WRITE_REQ)
data.append(STATUS_ERROR_RAM)
data.append(BYTE2)
data.append(0x00)
data.append(0x00)
send_data(data) | Clears the errors register of all Herkulex servos
Args:
none | juraj-google-style |
def _decorate_run_options_for_debug(self, run_options, debug_urls, debug_ops='DebugIdentity', node_name_regex_allowlist=None, op_type_regex_allowlist=None, tensor_dtype_regex_allowlist=None, tolerate_debug_op_creation_failures=False):
run_options.output_partition_graphs = True
debug_utils.watch_graph(run_options, self._sess.graph, debug_urls=debug_urls, debug_ops=debug_ops, node_name_regex_allowlist=node_name_regex_allowlist, op_type_regex_allowlist=op_type_regex_allowlist, tensor_dtype_regex_allowlist=tensor_dtype_regex_allowlist, tolerate_debug_op_creation_failures=tolerate_debug_op_creation_failures, reset_disk_byte_usage=self._run_call_count == 1 or self._is_disk_usage_reset_each_run()) | Modify a RunOptions object for debug tensor watching.
Specifies request for outputting partition graphs. Adds
debug_tensor_watch_opts with proper debug URLs.
Args:
run_options: (RunOptions) the modified RunOptions object.
debug_urls: (list of str) debug URLs to be entered in run_options.
debug_tensor_watch_opts.
debug_ops: (str or list of str) debug op(s) to be used by the debugger.
node_name_regex_allowlist: Regular-expression allowlist for node
name.
op_type_regex_allowlist: Regular-expression allowlist for op type.
tensor_dtype_regex_allowlist: Regular-expression allowlist for tensor
dtype.
tolerate_debug_op_creation_failures: Whether debug op creation failures
are to be tolerated. | github-repos |
def parse_arguments(argv):
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description=textwrap.dedent())
parser.add_argument('--cloud',
action='store_true',
help='Analysis will use cloud services.')
parser.add_argument('--output',
metavar='DIR',
type=str,
required=True,
help='GCS or local folder')
input_group = parser.add_argument_group(
title='Data Source Parameters',
description='schema is only needed if using --csv')
input_group.add_argument('--csv',
metavar='FILE',
type=str,
required=False,
action='append',
help='Input CSV absolute file paths. May contain a '
'file pattern.')
input_group.add_argument('--schema',
metavar='FILE',
type=str,
required=False,
help='Schema file path. Only required if using csv files')
input_group.add_argument('--bigquery',
metavar='PROJECT_ID.DATASET.TABLE_NAME',
type=str,
required=False,
help=('Must be in the form project.dataset.table_name'))
parser.add_argument('--features',
metavar='FILE',
type=str,
required=True,
help='Features file path')
args = parser.parse_args(args=argv[1:])
if args.cloud:
if not args.output.startswith('gs:
raise ValueError('--output must point to a location on GCS')
if (args.csv and
not all(x.startswith('gs:
raise ValueError('--csv must point to a location on GCS')
if args.schema and not args.schema.startswith('gs:
raise ValueError('--schema must point to a location on GCS')
if not args.cloud and args.bigquery:
raise ValueError('--bigquery must be used with --cloud')
if not ((args.bigquery and args.csv is None and
args.schema is None) or
(args.bigquery is None and args.csv and
args.schema)):
raise ValueError('either --csv and --schema must both'
' be set or just --bigquery is set')
return args | Parse command line arguments.
Args:
argv: list of command line arguments, including program name.
Returns:
An argparse Namespace object.
Raises:
ValueError: for bad parameters | juraj-google-style |
def create_struct(name):
sid = idc.GetStrucIdByName(name)
if sid != idaapi.BADADDR:
raise exceptions.SarkStructAlreadyExists("A struct names {!r} already exists.".format(name))
sid = idc.AddStrucEx(-1, name, 0)
if sid == idaapi.BADADDR:
raise exceptions.SarkStructCreationFailed("Struct creation failed.")
return sid | Create a structure.
Args:
name: The structure's name
Returns:
The sturct ID
Raises:
exceptions.SarkStructAlreadyExists: A struct with the same name already exists
exceptions.SarkCreationFailed: Struct creation failed | juraj-google-style |
def deal_with_changeset_stack_policy(self, fqn, stack_policy):
if stack_policy:
kwargs = generate_stack_policy_args(stack_policy)
kwargs["StackName"] = fqn
logger.debug("Setting stack policy on %s.", fqn)
self.cloudformation.set_stack_policy(**kwargs) | Set a stack policy when using changesets.
ChangeSets don't allow you to set stack policies in the same call to
update them. This sets it before executing the changeset if the
stack policy is passed in.
Args:
stack_policy (:class:`stacker.providers.base.Template`): A template
object representing a stack policy. | juraj-google-style |
def get_review(review_struct):
review_fn = _resource_context("review.rst")
with open(review_fn) as f:
review = f.read()
with NamedTemporaryFile(suffix=".png") as qr_file:
url = pyqrcode.create(review_struct.internal_url)
url.png(qr_file.name, scale=5)
qr_file.flush()
qr_file.seek(0)
review = Template(review).substitute(
content=review_struct.get_rst(),
datum=time.strftime("%d.%m.%Y", time.localtime()),
cas=time.strftime("%H:%M", time.localtime()),
resources_path=RES_PATH,
qr_path=qr_file.name,
)
return gen_pdf(
review,
open(_resource_context("review_style.json")).read(),
) | Generate review from `review_struct`.
Args:
review_struct (obj): :class:`.GenerateReview` instance.
Returns:
obj: StringIO file instance containing PDF file. | juraj-google-style |
def get_dataset_split(tmp_dir, split, use_control_set):
if (not use_control_set):
dataset_split = {problem.DatasetSplit.TRAIN: [f for f in tf.gfile.Glob(os.path.join(tmp_dir, 'train-novels*.txt'))], problem.DatasetSplit.EVAL: [os.path.join(tmp_dir, 'lambada_control_test_data_plain_text.txt')]}
return dataset_split[split] | Gives the file paths with regards to the given split.
Args:
tmp_dir: temp directory
split: dataset split
use_control_set: uses control dataset if true.
Returns:
list of file paths. | codesearchnet |
def summarize_tensors(tensor_dict, tag=None):
if (tag is None):
tag = 'tensors/'
for t_name in list(tensor_dict):
t = tensor_dict[t_name]
tf.summary.histogram((tag + t_name), t) | Summarize the tensors.
Args:
tensor_dict: a dictionary of tensors.
tag: name scope of the summary; defaults to tensors/. | codesearchnet |
def rename(self, container, name):
url = self._url("/containers/{0}/rename", container)
params = {'name': name}
res = self._post(url, params=params)
self._raise_for_status(res) | Rename a container. Similar to the ``docker rename`` command.
Args:
container (str): ID of the container to rename
name (str): New name for the container
Raises:
:py:class:`docker.errors.APIError`
If the server returns an error. | juraj-google-style |
def predict_array(self, arr):
precompute = self.precompute
self.precompute = False
pred = super().predict_array(arr)
self.precompute = precompute
return pred | This over-ride is necessary because otherwise the learner method accesses the wrong model when it is called
with precompute set to true
Args:
arr: a numpy array to be used as input to the model for prediction purposes
Returns:
a numpy array containing the predictions from the model | juraj-google-style |
def play_alert(zones, alert_uri, alert_volume=20, alert_duration=0, fade_back=False):
for zone in zones:
zone.snap = Snapshot(zone)
zone.snap.snapshot()
print('snapshot of zone: {}'.format(zone.player_name))
for zone in zones:
if zone.is_coordinator:
if (not zone.is_playing_tv):
trans_state = zone.get_current_transport_info()
if (trans_state['current_transport_state'] == 'PLAYING'):
zone.pause()
zone.volume = alert_volume
zone.mute = False
print('will play: {} on all coordinators'.format(alert_uri))
for zone in zones:
if zone.is_coordinator:
zone.play_uri(uri=alert_uri, title='Sonos Alert')
time.sleep(alert_duration)
for zone in zones:
print('restoring {}'.format(zone.player_name))
zone.snap.restore(fade=fade_back) | Demo function using soco.snapshot across multiple Sonos players.
Args:
zones (set): a set of SoCo objects
alert_uri (str): uri that Sonos can play as an alert
alert_volume (int): volume level for playing alert (0 tp 100)
alert_duration (int): length of alert (if zero then length of track)
fade_back (bool): on reinstating the zones fade up the sound? | codesearchnet |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.