code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def with_rank_at_least(self, rank): if ((self.ndims is not None) and (self.ndims < rank)): raise ValueError(('Shape %s must have rank at least %d' % (self, rank))) else: return self
Returns a shape based on `self` with at least the given rank. Args: rank: An integer. Returns: A shape that is at least as specific as `self` with at least the given rank. Raises: ValueError: If `self` does not represent a shape with at least the given `rank`.
codesearchnet
def _make_estimator_serving_session(estimator, serving_input_fn, checkpoint_path): with tf.Graph().as_default() as g: mode = tf_v1.estimator.ModeKeys.PREDICT tf_v1.train.create_global_step(g) tf_v1.set_random_seed(estimator.config.tf_random_seed) serving_input_receiver = serving_input_fn() estimator_spec = estimator.model_fn(features=serving_input_receiver.features, labels=None, mode=mode, config=estimator.config) session = tf_v1.Session(config=estimator._session_config) with session.as_default(): saver_for_restore = (estimator_spec.scaffold.saver or tf_v1.train.Saver(sharded=True)) saver_for_restore.restore(session, checkpoint_path) return session
Returns a session constructed using `estimator` and `serving_input_fn`. The Estimator API does not provide an API to construct a graph and session, making it necessary for this function to replicate how an estimator builds a graph. This code is based on `Estimator.export_savedmodel` (another function that has to replicate how an estimator builds a graph). Args: estimator: tf.Estimator to use when constructing the session. serving_input_fn: A function that takes no arguments and returns a `ServingInputReceiver`. It is used to construct the session. checkpoint_path: The checkpoint path to restore in the session. Must not be None.
codesearchnet
def median(data): ordered = sorted(data) length = len(ordered) if ((length % 2) == 0): return ((ordered[(math.floor((length / 2)) - 1)] + ordered[math.floor((length / 2))]) / 2.0) elif ((length % 2) != 0): return ordered[math.floor((length / 2))]
Calculates the median of a list of integers or floating point numbers. Args: data: A list of integers or floating point numbers Returns: Sorts the list numerically and returns the middle number if the list has an odd number of items. If the list contains an even number of items the mean of the two middle numbers is returned.
codesearchnet
def reset_port_protection(self, id_or_uri, timeout=-1): uri = self._client.build_uri(id_or_uri) + "/resetportprotection" return self._client.update_with_zero_body(uri, timeout)
Triggers a reset of port protection. Cause port protection to be reset on all the interconnects of the logical interconnect that matches ID. Args: id_or_uri: Can be either the interconnect id or the interconnect uri. timeout: Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation in OneView; it just stops waiting for its completion. Returns: dict: The interconnect.
juraj-google-style
def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: Optional[List[int]]=None) -> List[int]: if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A Big Bird sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
github-repos
def ungzip(file_path, extract_path: Path = None): CHUNK = 16 * 1024 file_path = Path(file_path) extract_path = extract_path or file_path.with_suffix('') with gzip.open(file_path, 'rb') as fin, extract_path.open('wb') as fout: while True: block = fin.read(CHUNK) if not block: break fout.write(block)
Simple .gz archive extractor Args: file_path: path to the gzip file to be extracted extract_path: path where the file will be extracted
juraj-google-style
def _illegal_character(c, ctx, message=''): container_type = (((ctx.container.ion_type is None) and 'top-level') or ctx.container.ion_type.name) value_type = (((ctx.ion_type is None) and 'unknown') or ctx.ion_type.name) if (c is None): header = 'Illegal token' else: c = ('EOF' if BufferQueue.is_eof(c) else _chr(c)) header = ('Illegal character %s' % (c,)) raise IonException(('%s at position %d in %s value contained in %s. %s Pending value: %s' % (header, ctx.queue.position, value_type, container_type, message, ctx.value)))
Raises an IonException upon encountering the given illegal character in the given context. Args: c (int|None): Ordinal of the illegal character. ctx (_HandlerContext): Context in which the illegal character was encountered. message (Optional[str]): Additional information, as necessary.
codesearchnet
def ctype_to_dtype(cl_type, mot_float_type='float'): if is_vector_ctype(cl_type): (raw_type, vector_length) = split_vector_ctype(cl_type) if (raw_type == 'mot_float_type'): if is_vector_ctype(mot_float_type): (raw_type, _) = split_vector_ctype(mot_float_type) else: raw_type = mot_float_type vector_type = (raw_type + str(vector_length)) return getattr(cl_array.vec, vector_type) else: if (cl_type == 'mot_float_type'): cl_type = mot_float_type data_types = [('char', np.int8), ('uchar', np.uint8), ('short', np.int16), ('ushort', np.uint16), ('int', np.int32), ('uint', np.uint32), ('long', np.int64), ('ulong', np.uint64), ('float', np.float32), ('double', np.float64)] for (ctype, dtype) in data_types: if (ctype == cl_type): return dtype
Get the numpy dtype of the given cl_type string. Args: cl_type (str): the CL data type to match, for example 'float' or 'float4'. mot_float_type (str): the C name of the ``mot_float_type``. The dtype will be looked up recursively. Returns: dtype: the numpy datatype
codesearchnet
def decode_body(headers: MutableMapping, body: bytes) -> dict: type_, encoding = parse_content_type(headers) decoded_body = body.decode(encoding) if type_ == "application/json": payload = json.loads(decoded_body) else: if decoded_body == "ok": payload = {"ok": True} else: payload = {"ok": False, "data": decoded_body} return payload
Decode the response body For 'application/json' content-type load the body as a dictionary Args: headers: Response headers body: Response body Returns: decoded body
juraj-google-style
def top_prior(name, z_shape, learn_prior='normal', temperature=1.0): with tf.variable_scope(name, reuse=tf.AUTO_REUSE): h = tf.zeros(z_shape, dtype=tf.float32) if (learn_prior == 'normal'): prior_dist = tfp.distributions.Normal(h, tf.exp(h)) elif (learn_prior == 'single_conv'): prior_dist = single_conv_dist('top_learn_prior', h) else: raise ValueError(('Expected learn_prior to be normal or single_conv got %s' % learn_prior)) return TemperedNormal(prior_dist.loc, prior_dist.scale, temperature)
Unconditional prior distribution. Args: name: variable scope z_shape: Shape of the mean / scale of the prior distribution. learn_prior: Possible options are "normal" and "single_conv". If set to "single_conv", the gaussian is parametrized by a single convolutional layer whose input are an array of zeros and initialized such that the mean and std are zero and one. If set to "normal", the prior is just a Gaussian with zero mean and unit variance. temperature: Temperature with which to sample from the Gaussian. Returns: objective: 1-D Tensor shape=(batch_size,) summed across spatial components. Raises: ValueError: If learn_prior not in "normal" or "single_conv"
codesearchnet
def main(argv): parser = _BuildParser() args = parser.parse_args(argv[1:]) style_config = args.style if args.style_help: _PrintHelp(args) return 0 if args.lines and len(args.files) > 1: parser.error('cannot use -l/--lines with more than one file') lines = _GetLines(args.lines) if args.lines is not None else None if not args.files: if args.in_place or args.diff: parser.error('cannot use --in-place or --diff flags when reading from stdin') original_source = [] while True: if hasattr(sys.stdin, 'closed') and sys.stdin.closed: break try: original_source.append(_raw_input()) except EOFError: break except KeyboardInterrupt: return 1 if style_config is None and (not args.no_local_style): style_config = file_resources.GetDefaultStyleForDir(os.getcwd()) source = [line.rstrip() for line in original_source] source[0] = _removeBOM(source[0]) try: reformatted_source, _ = yapf_api.FormatCode(str('\n'.join(source).replace('\r\n', '\n') + '\n'), filename='<stdin>', style_config=style_config, lines=lines) except errors.YapfError: raise except Exception as e: raise errors.YapfError(errors.FormatErrorMsg(e)) file_resources.WriteReformattedCode('<stdout>', reformatted_source) return 0 exclude_patterns_from_ignore_file = file_resources.GetExcludePatternsForDir(os.getcwd()) files = file_resources.GetCommandLineFiles(args.files, args.recursive, (args.exclude or []) + exclude_patterns_from_ignore_file) if not files: raise errors.YapfError('input filenames did not match any python files') changed = FormatFiles(files, lines, style_config=args.style, no_local_style=args.no_local_style, in_place=args.in_place, print_diff=args.diff, parallel=args.parallel, quiet=args.quiet, verbose=args.verbose, print_modified=args.print_modified) return 1 if changed and (args.diff or args.quiet) else 0
Main program. Arguments: argv: command-line arguments, such as sys.argv (including the program name in argv[0]). Returns: Zero on successful program termination, non-zero otherwise. With --diff: zero if there were no changes, non-zero otherwise. Raises: YapfError: if none of the supplied files were Python files.
github-repos
def update_pos(self, pos_id, name, pos_type, location=None): arguments = {'name': name, 'type': pos_type, 'location': location} return self.do_req('PUT', self.merchant_api_base_url + '/pos/' + pos_id + '/', arguments)
Update POS resource. Returns the raw response object. Arguments: pos_id: POS id as chosen on registration name: Human-readable name of the POS, used for displaying payment request origin to end user pos_type: POS type location: Merchant location
juraj-google-style
def defaultannotator(self, annotationtype, set=None): if (inspect.isclass(annotationtype) or isinstance(annotationtype, AbstractElement)): annotationtype = annotationtype.ANNOTATIONTYPE if (not set): set = self.defaultset(annotationtype) try: return self.annotationdefaults[annotationtype][set]['annotator'] except KeyError: raise NoDefaultError
Obtain the default annotator for the specified annotation type and set. Arguments: annotationtype: The type of annotation, this is conveyed by passing the corresponding annototion class (such as :class:`PosAnnotation` for example), or a member of :class:`AnnotationType`, such as ``AnnotationType.POS``. set (str): the set, should formally be a URL pointing to the set definition Returns: the set (str) Raises: :class:`NoDefaultError` if the annotation type does not exist or if there is ambiguity (multiple sets for the same type)
codesearchnet
def from_args_and_dict(cls, args, processor_dict: dict[str, Any], **kwargs): processor_dict = processor_dict.copy() return_unused_kwargs = kwargs.pop('return_unused_kwargs', False) if 'processor_class' in processor_dict: del processor_dict['processor_class'] if 'auto_map' in processor_dict: del processor_dict['auto_map'] processor_dict.update(kwargs) accepted_args_and_kwargs = cls.__init__.__code__.co_varnames[:cls.__init__.__code__.co_argcount][1:] unused_kwargs, valid_kwargs = cls.validate_init_kwargs(processor_config=processor_dict, valid_kwargs=accepted_args_and_kwargs) args_to_remove = [i for i, arg in enumerate(accepted_args_and_kwargs) if arg in processor_dict] args = [arg for i, arg in enumerate(args) if i not in args_to_remove] processor = cls(*args, **valid_kwargs) logger.info(f'Processor {processor}') if return_unused_kwargs: return (processor, unused_kwargs) else: return processor
Instantiates a type of [`~processing_utils.ProcessingMixin`] from a Python dictionary of parameters. Args: processor_dict (`Dict[str, Any]`): Dictionary that will be used to instantiate the processor object. Such a dictionary can be retrieved from a pretrained checkpoint by leveraging the [`~processing_utils.ProcessingMixin.to_dict`] method. kwargs (`Dict[str, Any]`): Additional parameters from which to initialize the processor object. Returns: [`~processing_utils.ProcessingMixin`]: The processor object instantiated from those parameters.
github-repos
def lines(start=None, end=None, reverse=False, selection=False): if selection: (start, end) = get_selection() else: (start, end) = fix_addresses(start, end) if (not reverse): item = idaapi.get_item_head(start) while (item < end): (yield Line(item)) item += idaapi.get_item_size(item) else: item = idaapi.get_item_head((end - 1)) while (item >= start): (yield Line(item)) item = idaapi.get_item_head((item - 1))
Iterate lines in range. Args: start: Starting address, start of IDB if `None`. end: End address, end of IDB if `None`. reverse: Set to true to iterate in reverse order. selection: If set to True, replaces start and end with current selection. Returns: iterator of `Line` objects.
codesearchnet
def transfer(self, payment_id, data={}, **kwargs): url = '{}/{}/transfers'.format(self.base_url, payment_id) return self.post_url(url, data, **kwargs)
Create Transfer for given Payment Id Args: payment_id : Id for which payment object has to be transfered Returns: Payment dict after getting transfered
codesearchnet
def _gradient(self, diff, d, coords): denom = np.copy(d) denom[denom == 0] = 1e-5 with np.errstate(divide='ignore', invalid='ignore'): K = -2 * diff / denom K[np.isnan(K)] = 0 g = np.empty_like(coords) for n in range(self.n): for i in range(self.m): g[i, n] = ((coords[i, n] - coords[:, n]) * K[i, :]).sum() return g
Compute the gradient. Args: diff (`array-like`): [`m`, `m`] matrix. `D` - `d` d (`array-like`): [`m`, `m`] matrix. coords (`array-like`): [`m`, `n`] matrix. Returns: `np.array`: Gradient, shape [`m`, `n`].
juraj-google-style
def capture(self, data_buffer=None, log_time=False, debug_print=False, retry_reset=True): start = time.time() if (data_buffer is None): data_buffer = np.ndarray((Lepton.ROWS, Lepton.COLS, 1), dtype=np.uint16) elif ((data_buffer.ndim < 2) or (data_buffer.shape[0] < Lepton.ROWS) or (data_buffer.shape[1] < Lepton.COLS) or (data_buffer.itemsize < 2)): raise Exception('Provided input array not large enough') while True: Lepton.capture_segment(self.__handle, self.__xmit_buf, self.__msg_size, self.__capture_buf[0]) if (retry_reset and ((self.__capture_buf[(20, 0)] & 65295) != 5120)): if debug_print: print('Garbage frame number reset waiting...') time.sleep(0.185) else: break self.__capture_buf.byteswap(True) data_buffer[(:, :)] = self.__capture_buf[(:, 2:)] end = time.time() if debug_print: print('---') for i in range(Lepton.ROWS): fid = self.__capture_buf[(i, 0, 0)] crc = self.__capture_buf[(i, 1, 0)] fnum = (fid & 4095) print('0x{0:04x} 0x{1:04x} : Row {2:2} : crc={1}'.format(fid, crc, fnum)) print('---') if log_time: print('frame processed int {0}s, {1}hz'.format((end - start), (1.0 / (end - start)))) return (data_buffer, data_buffer.sum())
Capture a frame of data. Captures 80x60 uint16 array of non-normalized (raw 12-bit) data. Returns that frame and a frame_id (which is currently just the sum of all pixels). The Lepton will return multiple, identical frames at a rate of up to ~27 Hz, with unique frames at only ~9 Hz, so the frame_id can help you from doing additional work processing duplicate frames. Args: data_buffer (numpy.ndarray): Optional. If specified, should be ``(60,80,1)`` with `dtype`=``numpy.uint16``. Returns: tuple consisting of (data_buffer, frame_id)
codesearchnet
def are_equal(self, sp1, sp2): set1 = set(sp1.elements) set2 = set(sp2.elements) return (set1.issubset(set2) or set2.issubset(set1))
True if there is some overlap in composition between the species Args: sp1: First species. A dict of {specie/element: amt} as per the definition in Site and PeriodicSite. sp2: Second species. A dict of {specie/element: amt} as per the definition in Site and PeriodicSite. Returns: True always
codesearchnet
def open(self, mode='r', buffering=(- 1), encoding=None, errors=None, newline=None): if self._closed: self._raise_closed() return FakeFileOpen(self.filesystem, use_io=True)(self._path(), mode, buffering, encoding, errors, newline)
Open the file pointed by this path and return a fake file object. Raises: IOError: if the target object is a directory, the path is invalid or permission is denied.
codesearchnet
def assert_title(self, title, **kwargs): query = TitleQuery(title, **kwargs) @self.synchronize(wait=query.wait) def assert_title(): if not query.resolves_for(self): raise ExpectationNotMet(query.failure_message) return True return assert_title()
Asserts that the page has the given title. Args: title (str | RegexObject): The string or regex that the title should match. **kwargs: Arbitrary keyword arguments for :class:`TitleQuery`. Returns: True Raises: ExpectationNotMet: If the assertion hasn't succeeded during the wait time.
juraj-google-style
def _min_max_filter(t: List, min_v: str, max_v: str) -> bool: def tofloat(value): try: float(value) return float(value) except ValueError: return False for a_token in t: if not tofloat(a_token.text): return False else: if min_v and tofloat(min_v): this_v = tofloat(a_token.text) if this_v < tofloat(min_v): return False if max_v and tofloat(max_v): this_v = tofloat(a_token.text) if this_v > tofloat(max_v): return False return True
Min and Max filter Args: t: List, list of tokens min_v: str max_v: str Returns: bool
juraj-google-style
def compress_multiple_pdfs(source_directory, output_directory, ghostscript_binary): source_paths = _get_pdf_filenames_at(source_directory) (yield len(source_paths)) for source_path in source_paths: output = os.path.join(output_directory, os.path.basename(source_path)) compress_pdf(source_path, output, ghostscript_binary) (yield output)
Compress all PDF files in the current directory and place the output in the given output directory. This is a generator function that first yields the amount of files to be compressed, and then yields the output path of each file. Args: source_directory (str): Filepath to the source directory. output_directory (str): Filepath to the output directory. ghostscript_binary (str): Name of the Ghostscript binary. Returns: list(str): paths to outputs.
codesearchnet
def mean_minimum_centroid_distance(item_a, item_b, max_value): centroids_a = np.array([item_a.center_of_mass(t) for t in item_a.times]) centroids_b = np.array([item_b.center_of_mass(t) for t in item_b.times]) distance_matrix = (((centroids_a[(:, 0:1)] - centroids_b.T[0:1]) ** 2) + ((centroids_a[(:, 1:)] - centroids_b.T[1:]) ** 2)) mean_min_distances = np.sqrt((distance_matrix.min(axis=0).mean() + distance_matrix.min(axis=1).mean())) return (np.minimum(mean_min_distances, max_value) / float(max_value))
RMS difference in the minimum distances from the centroids of one track to the centroids of another track Args: item_a: STObject from the first set in TrackMatcher item_b: STObject from the second set in TrackMatcher max_value: Maximum distance value used as scaling value and upper constraint. Returns: Distance value between 0 and 1.
codesearchnet
def random_dna(self, random_generator: Union[types.ModuleType, random.Random, None]=None, attach_spec: bool=True, previous_dna: Optional['DNA']=None) -> 'DNA': random_generator = random_generator or random dna = self._random_dna(random_generator, previous_dna) if attach_spec: dna.use_spec(self) return dna
Returns a random DNA based on current spec. Args: random_generator: An optional Random object. If None, the global random module will be used. attach_spec: If True, current spec will be attached to the returned DNA. previous_dna: An optional DNA representing previous DNA. This field might be useful for generating stateful random DNAs. Returns: A random DNA based on current spec.
github-repos
def _CheckStatusWorkerProcess(self, pid): self._RaiseIfNotRegistered(pid) process = self._processes_per_pid[pid] process_status = self._QueryProcessStatus(process) if process_status is None: process_is_alive = False else: process_is_alive = True process_information = self._process_information_per_pid[pid] used_memory = process_information.GetUsedMemory() or 0 if self._worker_memory_limit and used_memory > self._worker_memory_limit: logger.warning(( 'Process: {0:s} (PID: {1:d}) killed because it exceeded the ' 'memory limit: {2:d}.').format( process.name, pid, self._worker_memory_limit)) self._KillProcess(pid) if isinstance(process_status, dict): self._rpc_errors_per_pid[pid] = 0 status_indicator = process_status.get('processing_status', None) else: rpc_errors = self._rpc_errors_per_pid.get(pid, 0) + 1 self._rpc_errors_per_pid[pid] = rpc_errors if rpc_errors > self._MAXIMUM_RPC_ERRORS: process_is_alive = False if process_is_alive: rpc_port = process.rpc_port.value logger.warning(( 'Unable to retrieve process: {0:s} (PID: {1:d}) status via ' 'RPC socket: http: process.name, pid, rpc_port)) processing_status_string = 'RPC error' status_indicator = definitions.STATUS_INDICATOR_RUNNING else: processing_status_string = 'killed' status_indicator = definitions.STATUS_INDICATOR_KILLED process_status = { 'processing_status': processing_status_string} self._UpdateProcessingStatus(pid, process_status, used_memory) for worker_status in self._processing_status.workers_status: if worker_status.pid == pid: status_indicator = worker_status.status break if status_indicator in definitions.ERROR_STATUS_INDICATORS: logger.error(( 'Process {0:s} (PID: {1:d}) is not functioning correctly. ' 'Status code: {2!s}.').format(process.name, pid, status_indicator)) self._TerminateProcessByPid(pid) replacement_process = None for replacement_process_attempt in range( self._MAXIMUM_REPLACEMENT_RETRIES): logger.info(( 'Attempt: {0:d} to start replacement worker process for ' '{1:s}').format(replacement_process_attempt + 1, process.name)) replacement_process = self._StartWorkerProcess( process.name, self._storage_writer) if replacement_process: break time.sleep(self._REPLACEMENT_WORKER_RETRY_DELAY) if not replacement_process: logger.error( 'Unable to create replacement worker process for: {0:s}'.format( process.name))
Checks the status of a worker process. If a worker process is not responding the process is terminated and a replacement process is started. Args: pid (int): process ID (PID) of a registered worker process. Raises: KeyError: if the process is not registered with the engine.
juraj-google-style
def decode(self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray]=None, decoder_attention_mask: Optional[jnp.ndarray]=None, decoder_position_ids: Optional[jnp.ndarray]=None, past_key_values: Optional[dict]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, train: bool=False, params: Optional[dict]=None, dropout_rng: PRNGKey=None): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError('Make sure to provide `decoder_position_ids` when passing `past_key_values`.') decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) rngs = {} if dropout_rng is not None: rngs['dropout'] = dropout_rng inputs = {'params': params or self.params} if past_key_values: inputs['cache'] = past_key_values mutable = ['cache'] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module(decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs) outputs = self.module.apply(inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype='i4'), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype='i4'), decoder_position_ids=jnp.array(decoder_position_ids, dtype='i4'), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype='i4'), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward) if past_key_values is not None and return_dict: outputs, past = outputs outputs['past_key_values'] = unfreeze(past['cache']) return outputs elif past_key_values is not None and (not return_dict): outputs, past = outputs outputs = outputs[:1] + (unfreeze(past['cache']),) + outputs[1:] return outputs
Returns: Example: ```python >>> import jax.numpy as jnp >>> from transformers import AutoTokenizer, FlaxBlenderbotForConditionalGeneration >>> model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> last_decoder_hidden_states = outputs.last_hidden_state ```
github-repos
def _get_tags(self): tags = self.data.get('tags', None) if (not tags): return list() return [x['name'] for x in tags]
Return the dataset's list of tags Returns: List[str]: list of tags or [] if there are none
codesearchnet
def obj_with_unit(obj, unit): unit_type = _UNAME2UTYPE[unit] if isinstance(obj, numbers.Number): return FloatWithUnit(obj, unit=unit, unit_type=unit_type) elif isinstance(obj, collections.Mapping): return {k: obj_with_unit(v, unit) for k,v in obj.items()} else: return ArrayWithUnit(obj, unit=unit, unit_type=unit_type)
Returns a `FloatWithUnit` instance if obj is scalar, a dictionary of objects with units if obj is a dict, else an instance of `ArrayWithFloatWithUnit`. Args: unit: Specific units (eV, Ha, m, ang, etc.).
juraj-google-style
def power(self, n): if n > 0: return super().power(n) return Kraus(SuperOp(self).power(n))
The matrix power of the channel. Args: n (int): compute the matrix power of the superoperator matrix. Returns: Kraus: the matrix power of the SuperOp converted to a Kraus channel. Raises: QiskitError: if the input and output dimensions of the QuantumChannel are not equal, or the power is not an integer.
juraj-google-style
def _compare(self, other: Any, comparison: Callable[[Any, Any], bool]) -> bool: if isinstance(other, str): return comparison(self.path, other) if isinstance(other, KeyPath): return comparison(tuple(map(KeyPath._KeyComparisonWrapper, self.keys)), tuple(map(KeyPath._KeyComparisonWrapper, other.keys))) raise TypeError(f"Comparison is not supported between instances of 'KeyPath' and {type(other).__name__!r}.")
Compare to another KeyPath or a string. Args: other: A Keypath or a string. comparison: A comparison operator. Returns: Whether or not the comparison holds true. Raises: TypeError: The other object is neither a Keypath nor a string.
github-repos
def WriteFileHash(self, path, hash_value): string = '{0:s}\t{1:s}'.format(hash_value, path) encoded_string = self._EncodeString(string) print(encoded_string)
Writes the file path and hash to stdout. Args: path (str): path of the file. hash_value (str): message digest hash calculated over the file data.
juraj-google-style
def get_current_user(with_domain=True): try: user_name = win32api.GetUserNameEx(win32api.NameSamCompatible) if user_name[-1] == '$': test_user = win32api.GetUserName() if test_user == 'SYSTEM': user_name = 'SYSTEM' elif get_sid_from_name(test_user) == 'S-1-5-18': user_name = 'SYSTEM' elif not with_domain: user_name = win32api.GetUserName() except pywintypes.error as exc: raise CommandExecutionError( 'Failed to get current user: {0}'.format(exc)) if not user_name: return False return user_name
Gets the user executing the process Args: with_domain (bool): ``True`` will prepend the user name with the machine name or domain separated by a backslash Returns: str: The user name
juraj-google-style
def filter_collections_by_statement(data_collections, statement): pattern = BaseCollection.pattern_from_collections_and_statement(data_collections, statement) collections = [coll.filter_by_pattern(pattern) for coll in data_collections] return collections
Generate a filtered data collections according to a conditional statement. Args: data_collections: A list of aligned Data Collections to be evaluated against the statement. statement: A conditional statement as a string (e.g. a>25 and a%5==0). The variable should always be named as 'a' (without quotations). Return: collections: A list of Data Collections that have been filtered based on the statement.
codesearchnet
def walknset_vars(self, task_class=None, *args, **kwargs): def change_task(task): if ((task_class is not None) and (task.__class__ is not task_class)): return False return True if self.is_work: for task in self: if (not change_task(task)): continue task.set_vars(*args, **kwargs) elif self.is_flow: for task in self.iflat_tasks(): if (not change_task(task)): continue task.set_vars(*args, **kwargs) else: raise TypeError(("Don't know how to set variables for object class %s" % self.__class__.__name__))
Set the values of the ABINIT variables in the input files of the nodes Args: task_class: If not None, only the input files of the tasks belonging to class `task_class` are modified. Example: flow.walknset_vars(ecut=10, kptopt=4)
codesearchnet
def format_rpc(data): (address, rpc_id, args, resp, _status) = data name = rpc_name(rpc_id) if isinstance(args, (bytes, bytearray)): arg_str = hexlify(args) else: arg_str = repr(args) if isinstance(resp, (bytes, bytearray)): resp_str = hexlify(resp) else: resp_str = repr(resp) return ('%s called on address %d, payload=%s, response=%s' % (name, address, arg_str, resp_str))
Format an RPC call and response. Args: data (tuple): A tuple containing the address, rpc_id, argument and response payloads and any error code. Returns: str: The formated RPC string.
codesearchnet
def random_dna(dna_spec: DNASpec, random_generator: Union[None, types.ModuleType, random.Random]=None, attach_spec: bool=True, previous_dna: Optional[DNA]=None) -> DNA: return dna_spec.random_dna(random_generator or random, attach_spec, previous_dna)
Generates a random DNA from a DNASpec. Example:: spec = pg.geno.space([ pg.geno.oneof([ pg.geno.constant(), pg.geno.constant(), pg.geno.constant() ]), pg.geno.floatv(0.1, 0.2) ]) print(pg.random_dna(spec)) # DNA([2, 0.1123]) Args: dna_spec: a DNASpec object. random_generator: a Python random generator. attach_spec: If True, attach the DNASpec to generated DNA. previous_dna: An optional DNA representing previous DNA. This field might be useful for generating stateful random DNAs. Returns: A DNA object.
github-repos
def dummy_signatures(self): if (not self.signing_algorithm): return [] algo_id = {'sha1': 1, 'sha384': 2}[self.signing_algorithm] signature = make_dummy_signature(algo_id) return [(algo_id, signature)]
Create a dummy signature. This is used when initially writing the MAR header and we don't know what the final signature data will be. Returns: Fake signature data suitable for writing to the header with .write_signatures()
codesearchnet
def get_image_data(self, ids=None, voxels=None, dense=True): return self.image_table.get_image_data(ids, voxels=voxels, dense=dense)
A convenience wrapper for ImageTable.get_image_data(). Args: ids (list, array): A list or 1D numpy array of study ids to return. If None, returns data for all studies. voxels (list, array): A list or 1D numpy array of voxel indices (i.e., rows) to return. If None, returns data for all voxels.
juraj-google-style
def ReplaceAll(pattern, rep, s): if pattern not in _regexp_compile_cache: _regexp_compile_cache[pattern] = sre_compile.compile(pattern) return _regexp_compile_cache[pattern].sub(rep, s)
Replaces instances of pattern in a string with a replacement. The compiled regex is kept in a cache shared by Match and Search. Args: pattern: regex pattern rep: replacement text s: search string Returns: string with replacements made (or original string if no replacements)
juraj-google-style
def get_text_features(self, input_ids: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, position_ids: Optional[torch.Tensor]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None) -> torch.FloatTensor: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states return_dict = return_dict if return_dict is not None else self.config.use_return_dict text_outputs = self.text_model(input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = text_outputs[1] text_features = self.text_projection(pooled_output) return text_features
Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`GroupViTTextModel`]. Examples: ```python >>> from transformers import CLIPTokenizer, GroupViTModel >>> model = GroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> tokenizer = CLIPTokenizer.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> text_features = model.get_text_features(**inputs) ```
github-repos
def crypto_withdraw(self, amount, currency, crypto_address): params = {'amount': amount, 'currency': currency, 'crypto_address': crypto_address} return self._send_message('post', '/withdrawals/crypto', data=json.dumps(params))
Withdraw funds to a crypto address. Args: amount (Decimal): The amount to withdraw currency (str): The type of currency (eg. 'BTC') crypto_address (str): Crypto address to withdraw to. Returns: dict: Withdraw details. Example:: { "id":"593533d2-ff31-46e0-b22e-ca754147a96a", "amount":"10.00", "currency": "BTC", }
juraj-google-style
def __init__(self, fetches): self._fetch_type = type(fetches) if isinstance(fetches, collections.defaultdict): self._type_ctor = functools.partial(collections.defaultdict, fetches.default_factory) else: self._type_ctor = self._fetch_type self._keys = fetches.keys() self._mappers = [_FetchMapper.for_fetch(fetch) for fetch in fetches.values()] self._unique_fetches, self._value_indices = _uniquify_fetches(self._mappers)
Creates a _DictFetchMapper. Args: fetches: Dict of fetches.
github-repos
def get_estimated_size_and_observables(self, value, nested=False): return (self.estimate_size(value, nested), [])
Returns estimated size of value along with any nested observables. The list of nested observables is returned as a list of 2-tuples of (obj, coder_impl), where obj is an instance of observable.ObservableMixin, and coder_impl is the CoderImpl that can be used to encode elements sent by obj to its observers. Arguments: value: the value whose encoded size is to be estimated. nested: whether the value is nested. Returns: The estimated encoded size of the given value and a list of observables whose elements are 2-tuples of (obj, coder_impl) as described above.
github-repos
def _handle_skip_feature(self, test_dict): skip_reason = None if "skip" in test_dict: skip_reason = test_dict["skip"] elif "skipIf" in test_dict: skip_if_condition = test_dict["skipIf"] if self.session_context.eval_content(skip_if_condition): skip_reason = "{} evaluate to True".format(skip_if_condition) elif "skipUnless" in test_dict: skip_unless_condition = test_dict["skipUnless"] if not self.session_context.eval_content(skip_unless_condition): skip_reason = "{} evaluate to False".format(skip_unless_condition) if skip_reason: raise SkipTest(skip_reason)
handle skip feature for test - skip: skip current test unconditionally - skipIf: skip current test if condition is true - skipUnless: skip current test unless condition is true Args: test_dict (dict): test info Raises: SkipTest: skip test
juraj-google-style
def __add__(self, other: Self | Processor) -> PartProcessor | Processor: if isinstance(other, _ChainPartProcessor): return _ChainPartProcessor([self] + other._processor_list) elif isinstance(other, _ChainProcessor): return _ChainProcessor([self.to_processor().call] + other._processor_list) elif isinstance(other, Processor): return _ChainProcessor([self.to_processor().call, other]) else: return _ChainPartProcessor([self, other])
Adds `other` to this processor. Args: other: a processor to add to `self`. Returns: The chain of this process with `other`.
github-repos
def _pearson_correlation(self, imgs_to_decode): x, y = imgs_to_decode.astype(float), self.feature_images.astype(float) return self._xy_corr(x, y)
Decode images using Pearson's r. Computes the correlation between each input image and each feature image across voxels. Args: imgs_to_decode: An ndarray of images to decode, with voxels in rows and images in columns. Returns: An n_features x n_images 2D array, with each cell representing the pearson correlation between the i'th feature and the j'th image across all voxels.
juraj-google-style
def replace_in_file(filename: str, text_from: str, text_to: str) -> None: log.info("Amending {}: {} -> {}", filename, repr(text_from), repr(text_to)) with open(filename) as infile: contents = infile.read() contents = contents.replace(text_from, text_to) with open(filename, 'w') as outfile: outfile.write(contents)
Replaces text in a file. Args: filename: filename to process (modifying it in place) text_from: original text to replace text_to: replacement text
juraj-google-style
def __init__(self, config: interfaces.Config | None=None): self._config = config or interfaces.Config()
Initializes the TopicVerbalizer. Args: config: The agent configuration.
github-repos
def _lease_owned(self, lease, current_uuid_path): (prev_uuid_path, prev_uuid) = lease.metadata with open(current_uuid_path) as f: current_uuid = f.read() return ((current_uuid_path == prev_uuid_path) and (prev_uuid == current_uuid))
Checks if the given lease is owned by the prefix whose uuid is in the given path Note: The prefix must be also in the same path it was when it took the lease Args: path (str): Path to the lease current_uuid_path (str): Path to the uuid to check ownership of Returns: bool: ``True`` if the given lease in owned by the prefix, ``False`` otherwise
codesearchnet
def are_equal(self, sp1, sp2): comp1 = Composition(sp1) comp2 = Composition(sp2) return comp1.get_el_amt_dict() == comp2.get_el_amt_dict()
True if element:amounts are exactly the same, i.e., oxidation state is not considered. Args: sp1: First species. A dict of {specie/element: amt} as per the definition in Site and PeriodicSite. sp2: Second species. A dict of {specie/element: amt} as per the definition in Site and PeriodicSite. Returns: Boolean indicating whether species are the same based on element and amounts.
juraj-google-style
def reply(self, user, msg, errors_as_replies=True): return self._brain.reply(user, msg, errors_as_replies)
Fetch a reply from the RiveScript brain. Arguments: user (str): A unique user ID for the person requesting a reply. This could be e.g. a screen name or nickname. It's used internally to store user variables (including topic and history), so if your bot has multiple users each one should have a unique ID. msg (str): The user's message. This is allowed to contain punctuation and such, but any extraneous data such as HTML tags should be removed in advance. errors_as_replies (bool): When errors are encountered (such as a deep recursion error, no reply matched, etc.) this will make the reply be a text representation of the error message. If you set this to ``False``, errors will instead raise an exception, such as a ``DeepRecursionError`` or ``NoReplyError``. By default, no exceptions are raised and errors are set in the reply instead. Returns: str: The reply output.
codesearchnet
async def execute_method(self, method, **params): url = self.url_builder(method, url_params=params) logger.info('Executing method %r', method) response = (await aiohttp.get(url)) logger.info('Status: %r', response.status) if (response.status == 200): json = (await response.json()) logger.debug('...with JSON %r', json) if json.get('ok'): return json raise SlackApiError(json['error']) else: raise_for_status(response)
Execute a specified Slack Web API method. Arguments: method (:py:class:`str`): The name of the method. **params (:py:class:`dict`): Any additional parameters required. Returns: :py:class:`dict`: The JSON data from the response. Raises: :py:class:`aiohttp.web_exceptions.HTTPException`: If the HTTP request returns a code other than 200 (OK). SlackApiError: If the Slack API is reached but the response contains an error message.
codesearchnet
def _scan(self, fs, dir_path, namespaces=None): try: for info in fs.scandir(dir_path, namespaces=namespaces): (yield info) except FSError as error: if (not self.on_error(dir_path, error)): six.reraise(type(error), error)
Get an iterator of `Info` objects for a directory path. Arguments: fs (FS): A filesystem instance. dir_path (str): A path to a directory on the filesystem. namespaces (list): A list of additional namespaces to include in the `Info` objects. Returns: ~collections.Iterator: iterator of `Info` objects for resources within the given path.
codesearchnet
def IsDerivedFunction(clean_lines, linenum): for i in xrange(linenum, max((- 1), (linenum - 10)), (- 1)): match = Match('^([^()]*\\w+)\\(', clean_lines.elided[i]) if match: (line, _, closing_paren) = CloseExpression(clean_lines, i, len(match.group(1))) return ((closing_paren >= 0) and Search('\\boverride\\b', line[closing_paren:])) return False
Check if current line contains an inherited function. Args: clean_lines: A CleansedLines instance containing the file. linenum: The number of the line to check. Returns: True if current line contains a function with "override" virt-specifier.
codesearchnet
def oauth_aware(self, method): def setup_oauth(request_handler, *args, **kwargs): if self._in_error: self._display_error_message(request_handler) return user = users.get_current_user() if (not user): request_handler.redirect(users.create_login_url(request_handler.request.uri)) return self._create_flow(request_handler) self.flow.params['state'] = _build_state_value(request_handler, user) self.credentials = self._storage_class(self._credentials_class, None, self._credentials_property_name, user=user).get() try: resp = method(request_handler, *args, **kwargs) finally: self.credentials = None return resp return setup_oauth
Decorator that sets up for OAuth 2.0 dance, but doesn't do it. Does all the setup for the OAuth dance, but doesn't initiate it. This decorator is useful if you want to create a page that knows whether or not the user has granted access to this application. From within a method decorated with @oauth_aware the has_credentials() and authorize_url() methods can be called. Args: method: callable, to be decorated method of a webapp.RequestHandler instance.
codesearchnet
def matches(self, applied_ptransform): raise NotImplementedError
Determines whether the given AppliedPTransform matches. Note that the matching will happen *after* Runner API proto translation. If matching is done via type checks, to/from_runner_api[_parameter] methods must be implemented to preserve the type (and other data) through proto serialization. Consider URN-based translation instead. Args: applied_ptransform: AppliedPTransform to be matched. Returns: a bool indicating whether the given AppliedPTransform is a match.
github-repos
def enroll_users_in_program(cls, enterprise_customer, program_details, course_mode, emails, cohort=None): (existing_users, unregistered_emails) = cls.get_users_by_email(emails) course_ids = get_course_runs_from_program(program_details) successes = [] pending = [] failures = [] for user in existing_users: succeeded = cls.enroll_user(enterprise_customer, user, course_mode, *course_ids) if succeeded: successes.append(user) else: failures.append(user) for email in unregistered_emails: pending_user = enterprise_customer.enroll_user_pending_registration(email, course_mode, *course_ids, cohort=cohort) pending.append(pending_user) return (successes, pending, failures)
Enroll existing users in all courses in a program, and create pending enrollments for nonexisting users. Args: enterprise_customer: The EnterpriseCustomer which is sponsoring the enrollment program_details: The details of the program in which we're enrolling course_mode (str): The mode with which we're enrolling in the program emails: An iterable of email addresses which need to be enrolled Returns: successes: A list of users who were successfully enrolled in all courses of the program pending: A list of PendingEnterpriseCustomerUsers who were successfully linked and had pending enrollments created for them in the database failures: A list of users who could not be enrolled in the program
codesearchnet
def import_image(self, src=None, repository=None, tag=None, image=None, changes=None, stream_src=False): if (not (src or image)): raise errors.DockerException('Must specify src or image to import from') u = self._url('/images/create') params = _import_image_params(repository, tag, image, src=(src if isinstance(src, six.string_types) else None), changes=changes) headers = {'Content-Type': 'application/tar'} if (image or (params.get('fromSrc') != '-')): return self._result(self._post(u, data=None, params=params)) elif isinstance(src, six.string_types): with open(src, 'rb') as f: return self._result(self._post(u, data=f, params=params, headers=headers, timeout=None)) else: if stream_src: headers['Transfer-Encoding'] = 'chunked' return self._result(self._post(u, data=src, params=params, headers=headers))
Import an image. Similar to the ``docker import`` command. If ``src`` is a string or unicode string, it will first be treated as a path to a tarball on the local system. If there is an error reading from that file, ``src`` will be treated as a URL instead to fetch the image from. You can also pass an open file handle as ``src``, in which case the data will be read from that file. If ``src`` is unset but ``image`` is set, the ``image`` parameter will be taken as the name of an existing image to import from. Args: src (str or file): Path to tarfile, URL, or file-like object repository (str): The repository to create tag (str): The tag to apply image (str): Use another image like the ``FROM`` Dockerfile parameter
codesearchnet
def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, layer_head_mask: torch.Tensor, is_index_masked=None, is_index_global_attn=None, is_global_attn=None, output_attentions=False): residual = hidden_states attn_outputs = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, is_index_masked=is_index_masked, is_index_global_attn=is_index_global_attn, is_global_attn=is_global_attn, output_attentions=output_attentions) hidden_states = attn_outputs[0] hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) if hidden_states.dtype == torch.float16 and (torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) return (hidden_states,) + attn_outputs[1:]
Args: hidden_states (`torch.FloatTensor`): input to the layer of shape *(batch, seq_len, embed_dim)* attention_mask (`torch.FloatTensor`): attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size *(encoder_attention_heads,)*.
github-repos
def Rsync(url, tgt_name, tgt_root=None): if (tgt_root is None): tgt_root = str(CFG['tmp_dir']) from benchbuild.utils.cmd import rsync tgt_dir = (local.path(tgt_root) / tgt_name) if (not source_required(tgt_dir)): Copy(tgt_dir, '.') return rsync('-a', url, tgt_dir) update_hash(tgt_dir) Copy(tgt_dir, '.')
RSync a folder. Args: url (str): The url of the SOURCE location. fname (str): The name of the TARGET. to (str): Path of the target location. Defaults to ``CFG["tmpdir"]``.
codesearchnet
def cat_adb_log(self, tag, begin_time): if (not self.adb_logcat_file_path): raise Error(self._ad, 'Attempting to cat adb log when none has been collected.') end_time = mobly_logger.get_log_line_timestamp() self._ad.log.debug('Extracting adb log from logcat.') adb_excerpt_path = os.path.join(self._ad.log_path, 'AdbLogExcerpts') utils.create_dir(adb_excerpt_path) f_name = os.path.basename(self.adb_logcat_file_path) out_name = f_name.replace('adblog,', '').replace('.txt', '') out_name = (',%s,%s.txt' % (begin_time, out_name)) out_name = out_name.replace(':', '-') tag_len = (utils.MAX_FILENAME_LEN - len(out_name)) tag = tag[:tag_len] out_name = (tag + out_name) full_adblog_path = os.path.join(adb_excerpt_path, out_name) with io.open(full_adblog_path, 'w', encoding='utf-8') as out: in_file = self.adb_logcat_file_path with io.open(in_file, 'r', encoding='utf-8', errors='replace') as f: in_range = False while True: line = None try: line = f.readline() if (not line): break except: continue line_time = line[:mobly_logger.log_line_timestamp_len] if (not mobly_logger.is_valid_logline_timestamp(line_time)): continue if self._is_timestamp_in_range(line_time, begin_time, end_time): in_range = True if (not line.endswith('\n')): line += '\n' out.write(line) elif in_range: break
Takes an excerpt of the adb logcat log from a certain time point to current time. Args: tag: An identifier of the time period, usualy the name of a test. begin_time: Logline format timestamp of the beginning of the time period.
codesearchnet
def address(self, num): url_root = 'company/{}/registered-office-address' baseuri = (self._BASE_URI + url_root.format(num)) res = self.session.get(baseuri) self.handle_http_error(res) return res
Search for company addresses by company number. Args: num (str): Company number to search on.
codesearchnet
def point_probability(self, threshold): point_prob = np.zeros(self.data.shape[1:]) for t in range(self.data.shape[1]): point_prob[t] = np.where(self.data[:, t] >= threshold, 1.0, 0.0).mean(axis=0) return EnsembleConsensus(point_prob, "point_probability", self.ensemble_name, self.run_date, self.variable + "_{0:0.2f}_{1}".format(threshold, self.units.replace(" ", "_")), self.start_date, self.end_date, "")
Determine the probability of exceeding a threshold at a grid point based on the ensemble forecasts at that point. Args: threshold: If >= threshold assigns a 1 to member, otherwise 0. Returns: EnsembleConsensus
juraj-google-style
def disassemble(self, start=None, end=None, arch_mode=None): if arch_mode is None: arch_mode = self.binary.architecture_mode curr_addr = start if start else self.binary.ea_start end_addr = end if end else self.binary.ea_end while curr_addr < end_addr: encoding = self.__fetch_instr(curr_addr) asm_instr = self.disassembler.disassemble(encoding, curr_addr, architecture_mode=arch_mode) if not asm_instr: return yield curr_addr, asm_instr, asm_instr.size curr_addr += asm_instr.size
Disassemble native instructions. Args: start (int): Start address. end (int): End address. arch_mode (int): Architecture mode. Returns: (int, Instruction, int): A tuple of the form (address, assembler instruction, instruction size).
juraj-google-style
def assert_splits_match(nested_splits_lists): error_msg = 'Inputs must have identical ragged splits' for splits_list in nested_splits_lists: if len(splits_list) != len(nested_splits_lists[0]): raise ValueError(error_msg) return [check_ops.assert_equal(s1, s2, message=error_msg) for splits_list in nested_splits_lists[1:] for s1, s2 in zip(nested_splits_lists[0], splits_list)]
Checks that the given splits lists are identical. Performs static tests to ensure that the given splits lists are identical, and returns a list of control dependency op tensors that check that they are fully identical. Args: nested_splits_lists: A list of nested_splits_lists, where each split_list is a list of `splits` tensors from a `RaggedTensor`, ordered from outermost ragged dimension to innermost ragged dimension. Returns: A list of control dependency op tensors. Raises: ValueError: If the splits are not identical.
github-repos
def _starts_with(field, filter_value): valid = False if field.startswith(filter_value): valid = True return valid
Validate field starts with provided value. Args: filter_value (string): A string or list of values. Returns: (boolean): Results of validation
juraj-google-style
def get_min_max_value(self) -> tuple[float, float]: total_freq = sum(self._hist_freq) hist_freq_cumsum = np.cumsum(self._hist_freq) / total_freq min_quantile, max_quantile = (self._calib_opts.calibration_parameters.min_percentile / 100.0, self._calib_opts.calibration_parameters.max_percentile / 100.0) min_quantile_idx, max_quantile_idx = (np.searchsorted(hist_freq_cumsum, min_quantile, side='right'), np.searchsorted(hist_freq_cumsum, max_quantile, side='left')) min_value, max_value = (self._hist_mids[min_quantile_idx], self._hist_mids[max_quantile_idx]) return (min_value, max_value)
Calculates min and max from statistics using calibration options. A "percentile" is a statistical concept that represents the value below which a given percentage of data falls in a dataset. It involves sorting the data from smallest to largest and then finding the value at a specified percentage position. For example, the 0.01 percentile represents the value in a given data set that corresponds to the lowest 0.01% of the data. HistogramPercentile calibration uses min_percentile and max_percentile to find min and max. min_percentile and max_percentile must be in range [0, 100]. min_percentile is 0.001 by default. max_percentile is 99.999 by default. Returns: (min_value, max_value): Min and max calculated using HistogramPercentile
github-repos
def get_bin_test(self, hashes): all_responses = {} if self._cache: api_name = 'shadowserver-bin-test' all_responses = self._cache.bulk_lookup(api_name, hashes) hashes = [key for key in hashes if key not in all_responses.keys()] all_responses = dict([(key, val) for key, val in all_responses.items() if len(val) >= 2]) HASHES_PER_REQ = 25 hash_chunks = ['\n'.join(hashes[pos:pos + HASHES_PER_REQ]) for pos in range(0, len(hashes), HASHES_PER_REQ)] responses = self._requests.multi_post(self.BINTEST_URL, data=hash_chunks, to_json=False, send_as_file=True) for response in responses: if response is not None and 200 == response.status_code: response_lines = response.text.split('\n') for line in response_lines: val = {} index_of_first_space = line.find(' ') if -1 == index_of_first_space: index_of_first_space = len(line) key = line[:index_of_first_space].lower() json_text = line[index_of_first_space + 1:] if len(json_text): try: val = simplejson.loads(json_text) if len(val.keys()) >= 2: all_responses[key] = val except ValueError: pass if self._cache: self._cache.cache_value(api_name, key, val) return all_responses
Test hashes against a list of known software applications. Known hashes will return a dictionary of information. Unknown hashes will return nothing. Args: hashes: list of string hashes. Returns: A dict with the hash as key and the shadowserver report as value.
juraj-google-style
def Process(self, parser_mediator, cache=None, database=None, **kwargs): if (database is None): raise ValueError('Invalid database.') super(ESEDBPlugin, self).Process(parser_mediator) self.GetEntries(parser_mediator, cache=cache, database=database, **kwargs)
Determines if this is the appropriate plugin for the database. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. cache (Optional[ESEDBCache]): cache. database (Optional[pyesedb.file]): ESE database. Raises: ValueError: If the database attribute is not valid.
codesearchnet
def get_logfile_name(tags): if (not os.path.exists(sd.LOG_DIR)): os.mkdir(sd.LOG_DIR) filename = 'log' for tag in tags: filename += '_{}'.format(tag) filename += '.txt' filename = os.path.join(sd.LOG_DIR, filename) return filename
Formulates a log file name that incorporates the provided tags. The log file will be located in ``scgpm_seqresults_dnanexus.LOG_DIR``. Args: tags: `list` of tags to append to the log file name. Each tag will be '_' delimited. Each tag will be added in the same order as provided.
codesearchnet
def restore(self, state): selector = DataStreamSelector.FromString(state.get(u'selector')) if self.selector != selector: raise ArgumentError("Attempted to restore an InvalidStreamWalker with a different selector", selector=self.selector, serialized_data=state) if state.get(u'type') != u'invalid': raise ArgumentError("Invalid serialized state for InvalidStreamWalker", serialized_data=state)
Restore the contents of this virtual stream walker. Args: state (dict): The previously serialized state. Raises: ArgumentError: If the serialized state does not have a matching selector.
juraj-google-style
def _get_cert_expiration_time(headers): cache_control = headers.get('Cache-Control', '') for entry in cache_control.split(','): match = _MAX_AGE_REGEX.match(entry) if match: cache_time_seconds = int(match.group(1)) break else: return 0 age = headers.get('Age') if age is not None: try: age = int(age) except ValueError: age = 0 cache_time_seconds -= age return max(0, cache_time_seconds)
Get the expiration time for a cert, given the response headers. Get expiration time from the headers in the result. If we can't get a time from the headers, this returns 0, indicating that the cert shouldn't be cached. Args: headers: A dict containing the response headers from the request to get certs. Returns: An integer with the number of seconds the cert should be cached. This value is guaranteed to be >= 0.
juraj-google-style
def IsCppString(line): line = line.replace(r'\\', 'XX') return ((line.count('"') - line.count(r'\"') - line.count("'\"'")) & 1) == 1
Does line terminate so, that the next symbol is in string constant. This function does not consider single-line nor multi-line comments. Args: line: is a partial line of code starting from the 0..n. Returns: True, if next character appended to 'line' is inside a string constant.
juraj-google-style
def leaky_relu(x, name=None): with tf.name_scope(name, 'leaky_relu', [x]) as scope: x = tf.convert_to_tensor(x, name='x') return tf.where(tf.less(x, 0.0), 0.01 * x, x, name=scope)
Creates a leaky_relu. This is an alternate non-linearity to relu. The leaky part of the relu may prevent dead Neurons in a model since the gradient doesn't go completely to 0. Args: x: The input tensor. name: Optional name for this op. Returns: x if x > 0 otherwise 0.01 * x.
juraj-google-style
def r_edges(step): rbot, rtop = misc.get_rbounds(step) centers = step.rprof.loc[:, 'r'].values + rbot edges = (centers[:-1] + centers[1:]) / 2 edges = np.insert(edges, 0, rbot) edges = np.append(edges, rtop) return edges, edges
Cell border. Args: step (:class:`~stagpy.stagyydata._Step`): a step of a StagyyData instance. Returns: tuple of :class:`numpy.array`: the position of the bottom and top walls of the cells. The two elements of the tuple are identical.
juraj-google-style
def process_usufy(self, data): mode = 'usufy' info = [] try: verifier = self.modes.get(mode, {}).get('extra_fields', {}) for field in verifier.keys(): regexp = verifier[field] values = re.findall(regexp, data) for val in values: aux = {} aux['type'] = field aux['value'] = val aux['attributes'] = [] if (aux not in info): info.append(aux) except AttributeError as e: for field in self.fieldsRegExp[mode].keys(): try: regexp = ((self.fieldsRegExp[mode][field]['start'] + '([^\\)]+)') + self.fieldsRegExp[mode][field]['end']) tmp = re.findall(regexp, data) values = [] for t in tmp: if (self.fieldsRegExp[mode][field]['end'] in t): values.append(t.split(self.fieldsRegExp[mode][field]['end'])[0]) else: values.append(t) except: regexp = self.fieldsRegExp[mode][field] values = re.findall(regexp, data) for val in values: aux = {} aux['type'] = field aux['value'] = val aux['attributes'] = [] if (aux not in info): info.append(aux) return info
Method to process and extract the entities of a usufy Args: ----- data: The information from which the info will be extracted. Return: ------- A list of the entities found.
codesearchnet
def weights_to_cpu(state_dict): state_dict_cpu = OrderedDict() for (key, val) in state_dict.items(): state_dict_cpu[key] = val.cpu() return state_dict_cpu
Copy a model state_dict to cpu. Args: state_dict (OrderedDict): Model weights on GPU. Returns: OrderedDict: Model weights on GPU.
codesearchnet
def ParseReportDescriptor(rd, desc): rd = bytearray(rd) pos = 0 report_count = None report_size = None usage_page = None usage = None while (pos < len(rd)): key = rd[pos] (key_size, value_length) = GetValueLength(rd, pos) if ((key & REPORT_DESCRIPTOR_KEY_MASK) == INPUT_ITEM): if (report_count and report_size): byte_length = ((report_count * report_size) desc.internal_max_in_report_len = max(desc.internal_max_in_report_len, byte_length) report_count = None report_size = None elif ((key & REPORT_DESCRIPTOR_KEY_MASK) == OUTPUT_ITEM): if (report_count and report_size): byte_length = ((report_count * report_size) desc.internal_max_out_report_len = max(desc.internal_max_out_report_len, byte_length) report_count = None report_size = None elif ((key & REPORT_DESCRIPTOR_KEY_MASK) == COLLECTION_ITEM): if usage_page: desc.usage_page = usage_page if usage: desc.usage = usage elif ((key & REPORT_DESCRIPTOR_KEY_MASK) == REPORT_COUNT): if (len(rd) >= ((pos + 1) + value_length)): report_count = ReadLsbBytes(rd, (pos + 1), value_length) elif ((key & REPORT_DESCRIPTOR_KEY_MASK) == REPORT_SIZE): if (len(rd) >= ((pos + 1) + value_length)): report_size = ReadLsbBytes(rd, (pos + 1), value_length) elif ((key & REPORT_DESCRIPTOR_KEY_MASK) == USAGE_PAGE): if (len(rd) >= ((pos + 1) + value_length)): usage_page = ReadLsbBytes(rd, (pos + 1), value_length) elif ((key & REPORT_DESCRIPTOR_KEY_MASK) == USAGE): if (len(rd) >= ((pos + 1) + value_length)): usage = ReadLsbBytes(rd, (pos + 1), value_length) pos += (value_length + key_size) return desc
Parse the binary report descriptor. Parse the binary report descriptor into a DeviceDescriptor object. Args: rd: The binary report descriptor desc: The DeviceDescriptor object to update with the results from parsing the descriptor. Returns: None
codesearchnet
def get_env_spec(self, filters=None): spec = { 'domains': { vm_name: deepcopy(vm_object.spec) for vm_name, vm_object in self._vms.viewitems() }, 'nets': { net_name: deepcopy(net_object.spec) for net_name, net_object in self._nets.viewitems() } } if filters: utils.filter_spec(spec, filters) return spec
Get the spec of the current env. The spec will hold the info about all the domains and networks associated with this env. Args: filters (list): list of paths to keys that should be removed from the init file Returns: dict: the spec of the current env
juraj-google-style
def get_checklists(self, **query_params): checklists = self.get_checklist_json(self.base_uri, query_params=query_params) checklists_list = [] for checklist_json in checklists: checklists_list.append(self.create_checklist(checklist_json)) return checklists_list
Get the checklists for this card. Returns a list of Checklist objects. Returns: list(Checklist): The checklists attached to this card
codesearchnet
def update(self, information, timeout=(- 1)): return self._client.update(information, timeout=timeout)
Edit an IPv4 Range. Args: information (dict): Information to update. timeout: Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation in OneView; it just stops waiting for its completion. Returns: dict: Updated IPv4 range.
codesearchnet
def serialize_workflow(self): self.workflow.refresh_waiting_tasks() return CompactWorkflowSerializer().serialize_workflow(self.workflow, include_spec=False)
Serializes the current WF. Returns: WF state data.
codesearchnet
def with_dtype(self, dtype): dtype = dtypes.as_dtype(dtype) if dtype not in (dtypes.int32, dtypes.int64): raise ValueError('dtype must be int32 or int64') if self.dtype == dtype: return self return RowPartition(row_splits=_cast_if_not_none(self._row_splits, dtype), row_lengths=_cast_if_not_none(self._row_lengths, dtype), value_rowids=_cast_if_not_none(self._value_rowids, dtype), nrows=_cast_if_not_none(self._nrows, dtype), uniform_row_length=_cast_if_not_none(self._uniform_row_length, dtype), internal=_row_partition_factory_key)
Returns a copy of this RowPartition with the given encoding dtype. Args: dtype: The dtype for encoding tensors, such as `row_splits` and `nrows`. One of `tf.int32` or `tf.int64`. Returns: A copy of this RowPartition, with the encoding tensors cast to the given type.
github-repos
def is_predecessor_of_other(self, predecessor, others): return any(((predecessor in self._predecessors_by_id[o]) for o in others))
Returns whether the predecessor is a predecessor or a predecessor of a predecessor...of any of the others. Args: predecessor (str): The txn id of the predecessor. others (list(str)): The txn id of the successor. Returns: (bool)
codesearchnet
def inspect(obj: object) -> None: root = nodes.Node.from_obj(obj) html_content = IPython.display.HTML(f'\n {resource_utils.resource_import('theme.css')}\n {pyjs_com.js_import()}\n {resource_utils.resource_import('main.js')}\n\n {main_inspect_html(root)}\n <script>\n load_content("{root.id}");\n </script>\n ') IPython.display.display(html_content)
Inspect all attributes of a Python object interactivelly. Args: obj: Any object to inspect (module, class, dict,...).
github-repos
def recompose(src: Path, target_file: Path): (mission_folder, assets_folder) = NewMiz._get_subfolders(src) base_info = ujson.loads(Path(mission_folder, 'base_info.json').read_text(encoding=ENCODING)) version = base_info['__version__'] with Miz(target_file) as miz: LOGGER.info('re-composing mission table from folder: "%s"', mission_folder) miz.mission.d = NewMiz._recreate_dict_from_folder(mission_folder, version) for item in assets_folder.iterdir(): target = Path(miz.temp_dir, item.name).absolute() if item.is_dir(): if target.exists(): shutil.rmtree(target) shutil.copytree(item.absolute(), target) elif item.is_file(): shutil.copy(item.absolute(), target) miz.zip(target_file, encode=False)
Recompose a Miz from json object Args: src: folder containing the json structure target_file: target Miz file
codesearchnet
def get_variables_in_module(module, collection=tf.GraphKeys.TRAINABLE_VARIABLES): return module.get_variables(collection=collection)
Returns tuple of `tf.Variable`s declared inside an `snt.Module`. Note that this operates by searching the variable scope a module contains, and so does not know about any modules which were constructed elsewhere but used inside this module. Args: module: `snt.Module` instance to query the scope of. collection: Collection to restrict query to. By default this is `tf.Graphkeys.TRAINABLE_VARIABLES`, which doesn't include non-trainable variables such as moving averages. Returns: A tuple of `tf.Variable` objects. Raises: NotConnectedError: If the module is not connected to the Graph.
codesearchnet
def put(self, item): if not item: return self._queue.put(item) if self._queue.qsize() >= self._max_queue_length: self.flush()
Adds the passed in item object to the queue and calls :func:`flush` if the size of the queue is larger than :func:`max_queue_length`. This method does nothing if the passed in item is None. Args: item (:class:`contracts.Envelope`) item the telemetry envelope object to send to the service.
juraj-google-style
def create(cls, name, config=None, kind='spark'): conn = Qubole.agent() return conn.post(cls.rest_entity_path, data={'name': name, 'config': config, 'kind': kind})
Create a new app. Args: `name`: the name of the app `config`: a dictionary of key-value pairs `kind`: kind of the app (default=spark)
codesearchnet
def _address_content(self, x): mem_keys = tf.layers.dense(self.mem_vals, self.key_depth, bias_initializer=tf.constant_initializer(1.0), name='mem_key') mem_query = tf.layers.dense(x, self.key_depth, bias_initializer=tf.constant_initializer(1.0), name='mem_query') norm = tf.matmul(self._norm(mem_query), self._norm(mem_keys), transpose_b=True) dot_product = tf.matmul(mem_query, mem_keys, transpose_b=True) cos_dist = tf.div(dot_product, (norm + 1e-07), name='cos_dist') access_logits = (self.sharpen_factor * cos_dist) return access_logits
Address the memory based on content similarity. Args: x: a tensor in the shape of [batch_size, length, depth]. Returns: the logits for each memory entry [batch_size, length, memory_size].
codesearchnet
def set_mtu(self, name, value=None, default=False, disable=False): if (value is not None): value = int(value) if (not (68 <= value <= 65535)): raise ValueError('invalid mtu value') commands = [('interface %s' % name)] commands.append(self.command_builder('mtu', value=value, default=default, disable=disable)) return self.configure(commands)
Configures the interface IP MTU Args: name (string): The interface identifier to apply the interface config to value (integer): The MTU value to set the interface to. Accepted values include 68 to 65535 default (bool): Configures the mtu parameter to its default value using the EOS CLI default command disable (bool); Negate the mtu parameter value using the EOS CLI no command Returns: True if the operation succeeds otherwise False. Raises: ValueError: If the value for MTU is not an integer value or outside of the allowable range
codesearchnet
def get_tensor_dependencies(tensor): dependencies = set() dependencies.update(tensor.op.inputs) for sub_op in tensor.op.inputs: dependencies.update(get_tensor_dependencies(sub_op)) return dependencies
Utility method to get all dependencies (including placeholders) of a tensor (backwards through the graph). Args: tensor (tf.Tensor): The input tensor. Returns: Set of all dependencies (including needed placeholders) for the input tensor.
juraj-google-style
def get_forced_variation(self, experiment, user_id): forced_variations = experiment.forcedVariations if forced_variations and user_id in forced_variations: variation_key = forced_variations.get(user_id) variation = self.config.get_variation_from_key(experiment.key, variation_key) if variation: self.logger.info('User "%s" is forced in variation "%s".' % (user_id, variation_key)) return variation return None
Determine if a user is forced into a variation for the given experiment and return that variation. Args: experiment: Object representing the experiment for which user is to be bucketed. user_id: ID for the user. Returns: Variation in which the user with ID user_id is forced into. None if no variation.
juraj-google-style
def __init__(self, vocab, unk_token, normalize_text=True): self.vocab = vocab self.unk_token = unk_token self.normalize_text = normalize_text
Constructs a CharacterTokenizer. Args: **vocab**: Vocabulary object. **unk_token**: str A special symbol for out-of-vocabulary token. **normalize_text**: (`optional`) boolean (default True) Whether to apply unicode normalization to text before tokenization.
github-repos
def rectify_acquaintance_strategy( circuit: circuits.Circuit, acquaint_first: bool=True ) -> None: if not is_acquaintance_strategy(circuit): raise TypeError('not is_acquaintance_strategy(circuit)') rectified_moments = [] for moment in circuit: gate_type_to_ops = collections.defaultdict(list ) for op in moment.operations: gate_type_to_ops[isinstance(op.gate, AcquaintanceOpportunityGate) ].append(op) if len(gate_type_to_ops) == 1: rectified_moments.append(moment) continue for acquaint_first in sorted(gate_type_to_ops.keys(), reverse=acquaint_first): rectified_moments.append( ops.Moment(gate_type_to_ops[acquaint_first])) circuit._moments = rectified_moments
Splits moments so that they contain either only acquaintance gates or only permutation gates. Orders resulting moments so that the first one is of the same type as the previous one. Args: circuit: The acquaintance strategy to rectify. acquaint_first: Whether to make acquaintance moment first in when splitting the first mixed moment.
juraj-google-style
def register_entity(self, entity_value, entity_type, alias_of=None, domain=0): if domain not in self.domains: self.register_domain(domain=domain) self.domains[domain].register_entity(entity_value=entity_value, entity_type=entity_type, alias_of=alias_of)
Register an entity to be tagged in potential parse results. Args: entity_value(str): the value/proper name of an entity instance (Ex: "The Big Bang Theory") entity_type(str): the type/tag of an entity instance (Ex: "Television Show") domain(str): a string representing the domain you wish to add the entity to
juraj-google-style
class ActivityRegularization(Layer): def __init__(self, l1=0.0, l2=0.0, **kwargs): super(ActivityRegularization, self).__init__(activity_regularizer=regularizers.L1L2(l1=l1, l2=l2), **kwargs) self.supports_masking = True self.l1 = l1 self.l2 = l2 def compute_output_shape(self, input_shape): return input_shape def get_config(self): config = {'l1': self.l1, 'l2': self.l2} base_config = super(ActivityRegularization, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Layer that applies an update to the cost function based input activity. Args: l1: L1 regularization factor (positive float). l2: L2 regularization factor (positive float). Input shape: Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. Output shape: Same shape as input.
github-repos
def SvelteComponent(name, path): if (path[(- 3):] == '.js'): js_path = path elif (path[(- 5):] == '.html'): print('Trying to build svelte component from html...') js_path = build_svelte(path) js_content = read(js_path, mode='r') def inner(data): id_str = js_id(name) html = _template.replace('$js', js_content).replace('$name', name).replace('$data', json.dumps(data)).replace('$id', id_str) _display_html(html) return inner
Display svelte components in iPython. Args: name: name of svelte component (must match component filename when built) path: path to compile svelte .js file or source svelte .html file. (If html file, we try to call svelte and build the file.) Returns: A function mapping data to a rendered svelte component in ipython.
codesearchnet
def get_path(url): url = urlsplit(url) path = url.path if url.query: path += '?{}'.format(url.query) return path
Get the path from a given url, including the querystring. Args: url (str) Returns: str
codesearchnet